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Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income
and food security, with the highest per capita consumption worldwide. Pests, pathogens and
environmental stress hamper sustainable production of bananas. Effort is being made to
improve the East African highland bananas (EAHB) through conventional crossbreeding, but
the selection cycle is too long. Improving the efficiency of selection in conventional
crossbreeding is a major priority in banana breeding. Marker assisted selection (MAS) has the
potential to reduce the selection cycle and increase genetic gain. However, the application of
molecular tools has been hampered by the limitations inherent with the classical MAS tools and
nature of traits in banana. While genomic selection can address some of the limitations of
classical MAS, no report about its utility in banana is available to date. This Thesis provides
the first empirical evidence on the performance of six genomic prediction models for 15 traits
in a banana genomic selection training population based on genotyping by sequencing (GBS)
data. The prediction models tested were Bayesian ridge regression (BRR), Bayesian LASSO
(BL), BayesA, BayesB, BayesC and reproducing kernel Hilbert space (RKHS). The aim was to
investigate the potential of genomic selection (GS) as a method of selection that could benefit
breeding through increased genetic gain per unit time and cost. Trait variation, the correlation
between traits and genetic diversity in the training population were analyzed as an essential first
step in the development and selection of suitable genomic prediction models for banana traits.
A training population of 307 genotypes consisting of EAHB breeding material and its progeny
was phenotyped for more than 15 traits in two contrasting conditions for two crop cycles. The
population was also genotyped by simple sequence repeats (SSR) and single nucleotide
polymorphism (SNP) markers. Clustering based on SSR markers revealed that the training
population was genetically diverse, reflecting a complex pedigree background, which was
mostly influenced by the male parents. A high level of correlation among vegetative and fruit
bunch related traits was observed. Genotype response to crop cycle and field management
practices varied greatly with respect to traits. Fruit bunch related traits accounted for 31-35%
of principal component variation under low and high input field management conditions. The
first two principal components accounted for 50% of phenotypic variation that was observed in
the training population. Resistance to black leaf streak (Black Sigatoka) was stable across crop
cycles, but varied under different field management depending on the genotype. The best cross
combination was 1201K-1 x SH3217 based on selection response (R) of hybrids. The predictive
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ability of genomic prediction models was evaluated for traits phenotyped over two crop cycles
and under different cross validation strategies. The 15 traits were grouped into five categories
that included plant stature, suckering behaviour, black leaf streak resistance, fruit bunch and
fruit filling. Models that account for additive genetic effects provided better predictions with
12 out of 15 traits. The performance of BayesB model was superior to other models particularly
on fruit filling and fruit bunch traits. Reproducing kernel Hilbert space model fitted with
pedigree and marker data (RKHS_PM) produced mixed results with the majority of traits
showing a decrease in prediction accuracy. Although RKHS models account for dominance and
epistasis, heterosis is another non-additive genetic factor that affects prediction accuracy in
bananas. Models that included averaged environment data for crop cycle one and two were
more robust in trait prediction even with reduced numbers of markers. Accounting for allele
dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-allelic
SNP (BA-SNP), but the prediction trend remained the same across traits. Since high correlation
in prediction was observed within trait categories, only traits easy to phenotype should be
considered for genomic predictions during the breeding phase. Although validation and more
optimization of model parameters are still required, the high predictive values observed in this
study confirmed the potential of genomic prediction in selection of best parents for further
crossing and in the negative selection of triploid hybrids with inferior fruits to reduce the

number of progenies to be evaluated in the field.
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Abstrakt

Banédnovnik je dulezitou plodinou v oblasti Velkych jezer ve vychodni Africe, kterd se
vyznacuje nejvyssi spotiebou banant na hlavu na svét€. Bananovnik ma v této oblasti zasadni
vyznam pii zajistovani dostatku potravin a piedstavuje vyznamnou ¢ast piijmt mistnich
obyvatel. Produkci bananii vSak snizuji choroby a sktdci, a také abiotické stresy. Klasické
Slechténi s cilem ziskat odrudy s lepSimi vlastnostmi je u této plodiny casové i technicky
naro¢né. Vybér pomoci molekularnich markertt ma potencial Slechténi urychlit a usnadnit,
bohuzel avSak vyuziti molekularnich metod narazi u bananovniku na fadu prekazek. Nékteré z
nich by mohla ptekonat genomicka selekce, ale jeji vyuziti u této plodiny dosud nebylo
popsano. Tato prace piinasi prvni poznatky o uspésnosti Sesti genomickych predikénich modela
pro patnact vybranych znakl u testovaci populace bandanovniku. V praci byly testovany
Bayesian Bridge Regression (BRR), Bayesian LASSO (BL), BayesA, BayesB, BayesC a
Reproducing kernel Hilbert space (RKHS). Hlavnim cilem bylo ovéfit potencial genomické
selekce jako selekéni metody, ktera by mohla vyznamné urychlit a zlevnit Slechtitelské
programy bananovniku. V préci byla také zkoumana variabilita jednotlivych hodnocenych
znak a jejich korelace s genetickou diverzitou testovaci populace, coz byl nezbytny krok pred
vlastnim vybérem vhodného predikéniho modelu pro fenotypové znaky bananovniku.
Testovaci populace ¢itajici 307 jedincii a zahrnujici Slechtitelsky material véetné potomstev
byla fenotypovana pro 15 znakl pfi péstovani za dvou kontrastnich podminek a po dvé
kultiva¢ni obdobi. Tato populace byla také genotypovana pomoci SSR a SNP markert. Analyza
pomoci SSR markert odhalila, Ze testovaci populace je geneticky variabilni, coz odrazi jeji
komplexni rodokmen, ktery je do zna¢né miry ovlivnény sam¢im rodi¢em. Vysoka mira
korelace byla pozorovana u vegetativnich znakt a vlastnosti trsu plodi. Chovani jednotlivych
genotypl bylo variabilni v pribéhu dvou kultiva¢nich obdobich a pfi odlisnych podminkach
kultivace. Znaky souvisejici s vlastnostmi trsu piedstavovaly 31 - 35% variability hlavniho
komponentu v kontrastnich polnich podminkéch. Prvni dva hlavni komponenty byly odpovédné
za 50% fenotypové variability pozorované v testovaci populaci. Rezistence viici chorobé
“Black Sigatoka” se v prub&hu kultivac¢nich obdobi neménila, ale lisila se v rtiznych polnich
podminkach. Na zaklad¢ hodnoceni vlastnosti hybrida bylo nejlepsi kombinaci kiizeni 1201K-
1 x SH3217. Ptedpovidaci schopnost prediktivnich genomickych modelti byla stanovena
pomoci znakd hodnocenych po dvé kultivaéni obdobi a pomoci riiznych valida¢nich strategii.
Patnéct fenotypovych znakt bylo sdruzeno do péti kategorii, které zahrnovaly vzrist rostliny,

odnoZovani, rezistenci k chorob¢é Black Sigatoka, vlastnosti trsu a vlastnosti plodu. Modely
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zohlednujici aditivni genetické efekty davaly lepsi pfedpovédi pro 12 z 15 znakd. Model
BayesB dopadl nejlépe, zejména pro znaky ovliviujici trs a plod. Model Reproducing kernel
Hilbert space, ktery zohlediioval rodokmen a data ziskana analyzou markertt (RKHS PM) m¢l
snizenou prediktivni hodnotu. Ackoli RHKS model zohlednoval dominanci a epistazi, heteroze
je dal$im neaditivnim genetickym faktorem, ktery ovliviiuje pfesnost predikce modelii. Modely,
které zahrnovaly zpriimérovana environmentélni data za ob¢ kultiva¢ni obdobi byly ve svych
predpovédich piesnéjsi a to presto, ze se opiraly o méné markert. Piihlédnuti k d6zi alel u SNP
markertt (AD-SNP) snizovalo prediktivni hodnotu oproti klasické bi-alelické metodé (BA-
SNP), ale trendy jednotlivych predikci zustaly stejné pro vSechny znaky. S ohledem na vysokou
korelaci predikci u kategorii jednotlivych znakl by béhem §lechténi mély byt do genomickych
predikci zahrnuty pouze takové znaky, které jsou jednoduse fenotypovatelné. Ackoli je nutnd
dalsi validace a optimalizace parametrti modelu, vysoké prediktivni hodnoty pozorované v této
praci potvrdily potencial genomické selekce pii vybéru nejvhodnéj$ich rodict pro kiizeni.
Zaroven umoziuji negativni selekci triploidnich hybridd s podifadnymi vlastnostmi ploda a

umozni tak sniZzeni rozsahu potomstva, které musi byt hodnoceno v polnich podminkach.
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1 General introduction

1.1 Origin of banana

Bananas and plantains are large perennial herbaceous monocotyledonous plants collectively
known as bananas. They belong to the order Zingiberales, family Musaceae and genus Musa.
The genus Musa has about 70 confirmed species, which include edible, ornamental types and
their wild relatives. It was previously divided into five sections: Australimusa (2n = 2x = 20),
Callimusa (2n = 2x = 20), Eumusa (2n = 2x = 22), Rhodochlamys (2n = 2x = 22) and
Ingentimusa (2n = 2x = 14) (Swennen and Vuylsteke 2001; Daniells et al. 2001; Wong et al.
2002). However, the recent revision by Hakkinen (2013) recognizes only section Callimusa,
which combines Australimusa and Callimusa, and section Musa, which combines Eumusa and
Rhodochlamys. Section Ingentimusa was considered as part of section Callimusa. This revision

is supported by evidence from molecular studies (Hiibova et al. 2011).

Cultivated bananas are believed to have arisen by intra- and inter-specific hybridization
between Musa acuminata (AA genome) and Musa balbisiana (BB genome) species at the area
of origin (INIBAP, 1995). The two species belong to section Musa (formerly Eumusa). They
are wild diploid bananas endemic in the Asia and Pacific regions, which includes: India,
Southeast Asia, Malaysia, Indonesia, Philippines and Papua New Guinea (Sharrock et al. 2001).
Most diversity is found in M. acuminata, which has several subspecies including, for example,
M. a. ssp. burmannica, M. a. ssp. siamea, M. a. ssp. malaccensis, M. a. ssp. truncata, M. a. ssp.
microcarpa, M. a. ssp. zebrina, M. a. ssp. errans and M. a. ssp. banksii (Fig 1). Bats
(Glossophaga soricina) are one of the natural pollinators that could have facilitated the
hybridization and seed dispersal process in the wild (Buddenhagen 2008). Later, female sterility
developed such that even pollinated flowers produced seedless fruits (Simmonds, 1962). It is
also likely that erratic meiosis within improved diploids followed by backcrossing gave rise to
parthenocarpic triploids (De Langhe et al. 2010; Perrier et al. 2011). Human intervention
accelerated the process of banana evolution and domestication. Hybrids that were seedless
(parthenocarpic), palatable and had good agronomic traits were selected and grown near human

settlements.
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Fig 1. Geographical distribution of banana domestication areas is Southeast Asia (Perrier et al. 2011)

The wide spread of many popular cultivated seedless bananas could have occurred by traders
from Arabia, Persia, India and Indonesia who navigated the Indian Ocean from Southeast Asia
(INIBAP 1995) (Fig 2). As they moved, they carried along with them suckers of different
cultivars with a broad mixture of genomic combinations between M. acuminata (AA) and M.
balbisiana (BB), and ploidy levels. These included diploid (AA, AB), triploid (AAA, AAB,
ABB) and tetraploid (AAAB, AABB, ABBB) that were delivered to the coastal areas. Within
these genomic combinations, we have East African highland cooking (matooke) and beer
bananas (both AAA), dessert bananas (AAA and AAB), plantains (AAB), cooking bananas
(ABB) and Mshare, or Mchare bananas (AA). Likewise, the Portuguese and Spaniards between
16™ and 19" century, carried bananas to all over tropical America (INIBAP 1995). However,

several domestication pathways have been proposed (Perrier et al. 2011).



Fig 2. Distribution pathways of domesticated bananas from Asia Pacific to Africa and other tropical areas
(Perrier et al. 2011)

1.2 Importance of banana

For several centuries, bananas have been an integral part of the farming systems especially in
the tropics and sub-tropics. The crop is grown in 130 countries worldwide (Workman 2006;
Evans and Ballen 2012). Bananas contribute tremendously to the livelihood of resource-poor
populations especially in the sub-Saharan Africa by providing food security and income (FAO,
2010). Sub-Saharan Africa produces nearly a third of global banana production. The utility of
banana depends on the genotypes and area. In the temperate countries, the most commonly
consumed bananas are the dessert type (Cavendish, AAA). Cavendish banana is grown for
export and it is a cash crop, thus a source of income for the exporting countries. The fruit are
eaten when ripe yellow. However, in other countries, Pome, Silk, Mysore and Sukali Ndizi
(AAB bananas) are also consumed as dessert bananas. Plantains are AAB bananas with high
starch content and the fruit remains very firm even after ripening. They are mostly eaten after

roasting and they make good chips as well.

In East Africa, there are two main groups of bananas that are endemic in the region. The EAHB
(AAA) and the Mchare (AA). They are grown in areas around Lake Victoria, the highlands and
part of the rift valley where severe drought periods are not experienced during the year

(Karamura 1998). In Uganda, Rwanda and Burundi, the per capita consumption of banana is
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estimated at 400-600 kg per year, the highest in the world, indicating that the crop is a major
staple in the region (Karamura et al. 1998). EAHB are divided into cooking (matooke) and beer
bananas. The term matooke is synonymous to food in Uganda and these bananas are cooked
when fresh green in different forms. However, during peak harvesting seasons, the surplus
matooke is used for wine production in Western Uganda. The beer bananas are very astringent
due to high tannin content (http://www.promusa.org/Uganda). They are allowed to ripen, juice
is squeezed out of the pulp and fermented to make beer, hence the name beer banana, also
known as Mbidde. The Mchare bananas have high starch content with firm pulp texture and are

mostly roasted before eating.

India is the highest producer of ABB cooking bananas. These bananas have starchy fruits and
sometimes are cooked when ripe for example, Saba and Bluggoe. In East Africa, about 85% of
produced bananas are consumed locally due to high demand and only a small percentage is
exported (Ortiz and Swennen 2014). Bananas provide about 25% of food energy requirements

for around 90 million people in East, West and Central Africa (Sharrock et al. 2001).

1.3 Main banana production areas

The highest production of bananas occurs in India followed by China and East Africa. Uganda
in particular produces about 10 million metric tons per year (De Buck and Swennen 2016). East
Africa is considered a secondary centre of banana genetic diversity harboring over 84 cultivars
that are not found elsewhere in the world. It is believed that EAHB are a product of single
hybridization event that were introduced by Arab traders at the East African coast way back in
600 A.D (Karamura 1998) and over the time, several somatic mutations and selection pressure
led to the origin of many distinct cultivars grown in the region (Kitavi et al. 2016). The EAHB
subgroup (AAA) was named Lujugira-Mutika (Shepherd 1957). The accessions in Uganda have
been grouped into five clone sets (Nfuuka, Nakitembe, Nakabululu, Musakala and Mbidde)
based on end-use and morphological distinctiveness (Karamura 1998). The Mbidde clone set is
used for beer production due to the astringency of fruit when fresh green while the rest of the

clone sets are used as matooke.

Banana plants grow with varying degrees of success in diverse climatic conditions, but

commercial banana plantations are primarily found in equatorial regions comprising of the



humid tropics and subtropics. In the primary centre of genetic diversity (Asia and Pacific),
several hundreds of different banana cultivars are grown alongside other wild uncultivated
genotypes. In West Africa, especially in Nigeria and Cameroon, large fields of plantain cultivars
are maintained (Ortiz and Vuylsteke 1994) as well as in Latin America. The Caribbean
countries mostly grow the Cavendish bananas, which are mainly exported to Europe and United
States, accounting for 13% of export banana (FAO 2014).

1.4 Production challenges

Reductions in productivity of landrace banana fields in various countries have been reported
(Macharia et al. 2010). The causes are pests, pathogens and environmental stress (Jones, 2000;
Biruma et al. 2007; Kumar et al. 2011, van Asten et al. 2011, Swennen et al. 2013). The major
pests include banana weevils (Cosmopolites sordidus, Gold et al. 2004; Sadik et al. 2010) and
the parasitic nematodes (Fig 3). Many nematode species have been associated with banana yield
decline and amongst them are Radopholus similis, Helicotylenchus multicinctus and
Pratylenchus goodeyi (Dochez 2004). These infect and damage banana roots that leads to

toppling of plants due to poor anchorage.

Bacterial, fungal and viral diseases affect bananas, causing varying degrees of yield loss (Jones,
2000). For instance, banana bacterial wilt caused by Xanthomonas campestris pv. musacearum
reduces crop yield by up to 100% (Biruma et al. 2007). Black leaf streak also known as Black
Sigatoka is a disease caused by a fungus Pseudocercospora fijiensis previously known as
Mycosphearella fijiensis, that affects banana leaves (ProMusa 2002) reducing yield by 30-50%
(Rowe and Rosales, 1996). Fusarium wilt also known as Panama disease is a soil borne disease
caused by a fungus Fusarium oxysporum f. sp. cubense. It caused significant losses in the
banana export industry when large plantations of cv. ‘Gros Michel” were wiped out in the 1940-
1960s (Stover 1962; Ploetz 2000). The export industry was revived when a banana cultivar
called Cavendish was discovered to grow in areas where cv. ‘Gros Michel’ had been wiped out
(Simmonds 1954). It was tested to be resistant to F. oxysporum f. sp. cubense (Foc) race 1 and

race 2 and it replaced the cv. ‘Gros Michel’ as a commercial cultivar for global export markets.

Foc is divided into four races that include race 1, race 2, race 3 and race 4. However, Foc race
3 does not affect banana, but Heliconia species, which belongs to the same order as bananas



thus, only three races are important to banana (Czislowski et al. 2017). The order of races
reflects the increasing pathogenicity of Foc, hence all cultivars that are susceptible to race 1
and 2 are susceptible to race 4. Race 4 is further subdivided into the tropical race 4 (TR4) and
sub-tropical race 4 (STR4). In East Africa, Foc race 1 affects ABB (Pisang Awak) and AAB
(Sukali Ndizi) banana varieties but not the AAA (EAHB). The tropical race 4 (TR4) affects the
commercial banana (cv. Cavendish), which replaced cv. ‘Gros Michel’ despite its resistance to
other Foc races. Incidences of TR4 have been reported in Indonesia and Mozambique (Ploetz
2015), but it is not yet known if the EAHB and other cultivars will resist, or succumb to TR4.
Of late, banana bunchy top virus (BBTV) transmitted by Pentalonia nigronervosa (banana
aphid), though first reported in 1889 in many Asian banana growing countries, is reported to
affect areas of Rwanda, Burundi and parts of Democratic Republic of Congo including many
other banana-growing areas. It is said to be more significant on plantains than EAHB (Kumar

et al. 2011), causing significant yield decline in those areas.

Among the abiotic constraints, limited rainfall (drought stress) reduces banana production
especially in rain-fed agricultural systems. Since bananas are mostly grown in tropics and sub-
tropics, taking a global and long-term view, the availability of water is thought to be the most
critical limiting factor for photosynthesis on dry land, and hence for agricultural production
(van Asten et al. 2011). Bananas require more than 1500 mm/year of rainfall for optimal growth
and yield, but in many areas the average annual rainfall is < 1200 mm/year (Taulya 2015).
Drought stress causes stomatal closure and has deleterious effects on numerous physiological
processes. It reduces photosynthesis and damages the photosynthetic machinery of chloroplasts
through a process known as photo-oxidation (Audran et al. 1998). Hence, the most productive
plant communities are the ones best supplied with water (Opik et al. 2005). Under situations of
mild drought stress, production has been shown to increase if potassium supply is sufficient
(Taulya 2015), but not many farmers in developing countries use fertilizers, or apply sufficient
mulch in the banana fields.

Cultivated bananas are vegetatively propagated, which limits gene flow and recombination, and
hampers their potential to evolve and adapt to the changing environmental (biotic and abiotic)
pressures (Myles 2013). Although the improvement of agronomic practices can lead to higher
yield (Ndabamenye et al. 2012), sustainability is limited. Breeding for resistant cultivars is the

only sustainable solution to banana production constraints (Simmonds 1986; Rowe 1990).



Fig 3: Main production constraints affecting East African highland banana. Banana field (A) infected with
black leaf streak disease spreads spores from infected leaves (B) to a healthy plantation (D). Photosynthetic area
is reduced by increasing leaf senescence, which affects yield. Banana fruit from plants infected by bacterial wilt
(C) are rotten and not edible. The inoculum from infected plants is transmitted to the young health plants through
farm tools and insects. R. similis (H) burrows into the banana roots causing necrosis (G). Plant anchorage into the
soil and nutrient uptake are reduced, which lead to toppling (E). The adult banana weevil (J) lays eggs into the
banana pseudostem, which hatch into larvae (1). The larvae make tunnels into the corm (F) that impede nutrient

movement and weaken the attachment of pseudostem to the corm, resulting in plant snapping.



1.5 History of banana breeding programs

Several inter- and intra-specific hybridization events that took place in the wild were facilitated
by natural pollinators. They gave rise to hybrids that had lost many of the wild characteristics
and had attributes attractive to humans such as high yield, plant vigour, seedlessness and
palatability of fruits (Simmonds 1962). The ability of man to select and domesticate the best
hybrids was the most primitive and by far the most successful method of banana breeding. The
selected cultivars were clonally propagated and spread over a wide area across the world
(Perrier et al. 2011). Rapid evolution for better adaptation of the selected cultivars has been
limited under nature’s dynamic forces because of three main reasons: (i) most of the selected
hybrids are sterile/partially sterile (Heslop-Harrison and Schwarzacher 2007), (ii) banana
propagation and distribution is by vegetative means (Zohary 2004), and (iii) male fertile
diploids are not grown in farmers’ fields. Changes in the environment have increased pests and
pathogens pressure making most cultivars susceptible.

The first breeding program was initiated in 1922 in Trinidad and later in 1924 in Jamaica.
However, the first successful breeding program to release improved, farmer-acceptable hybrids
was in Honduras, founded in 1984 called Fundacion Hondurefia de Investigacion Agricola
(FHIA). In addition to FHIA, relatively few crossbreeding programs have been established in
the world that are active and these include the International Institute of Tropical Agriculture
(IITA) in Nigeria where research on banana/plantains started in1976, but the actual breeding
started in 1987 (Ray 2002). In Uganda, 11 TA breeding work to improve the EAHB was initiated
in 1994 by the late Dirk Vuylsteke (Vuylsteke, 2001). This is done in collaboration with the
National Agricultural Research Organization (NARO). Since 2011, 1ITA extended its breeding
activities to Arusha in Tanzania where breeding of Mchare bananas is ongoing. In Brazil, the
Empresa Brasilliera de Pesquisa Agropecuaria (EMBRAPA) was established in 1982 with the
main focus on improving the Pome and Silk, ‘AAB’ bananas. In France, the Centre de
Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD)
began in 1983. It has stations in the Caribbean (Guadeloupe and Martinique) and Cameroon
with their main offices in Montpellier. They focus on plantains and other banana types with the
exception of EAHB and Mchare. Another active breeding program that was initiated as part of
the agreement between the Ministers of Research and Development for West and Central
African countries in 2001 is the Centre Africain de Recherches sur Bananiers et Plantains
(CARBAP) in Cameroon, which focuses more on plantain improvement. Other institutions such
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as Bioversity International hosted by Katholieke Universiteit Leuven, Belgium, support the
activities of these major breeding programs by maintaining the world’s banana germplasm
collection, called the International Musa Germplasm Transit Centre - ITC (Ray 2002; Dochez
2004; Lorenzen et al. 2010).

1.6 Breeding strategies

Three main strategies are used in banana improvement. When natural sources of resistance are
available within the germplasm pool, conventional crossbreeding is used (Persley and George
1996, Ortiz and Swennen 2014). This strategy is simple and requires skills in phenotypic
variation, taxonomy and genetics, but it is costly, labour intensive and time consuming due to
the long selection cycle. Use of doubled haploids (Umber et al. 2016) and autotetraploids from
chromosome doubled diploids (do Amaral et al. 2015) to fix important traits and reduce the

selection cycle are practiced in conventional crossbreeding, but on a small scale.

The second strategy is marker assisted selection (MAS). In this approach, mapping populations
from two parents with contrasting phenotypes are developed. The population is genotyped and
phenotyped to identify DNA loci and markers that co-segregate in the presence, or absence of
the trait. If the markers and loci controlling the trait are in linkage disequilibrium, then the
breeder can use these markers to track the trait of interest in breeding populations (Collard et
al. 2005). This approach is sometimes limited by the cost of marker development, high cost of
assays for large populations, lack of good mapping populations for agronomically and

economically important traits, and the need for technical capacity and modern infrastructure.

When natural sources of resistance are not available or have not been identified yet in the
species germplasm, then genetic transformation remains the only strategy of choice (Tripathi et
al. 2010). This involves the introduction of foreign genes into the target organism. However,
this technology is limited to traits that are controlled by a single gene, or few genes with major
genetic effects. Use of genetic engineering approaches to quantitative traits has not been done

in banana.



1.6.1 Constraints in conventional crossbreeding of bananas

Conventional banana crossbreeding starts with the identification of the right parents to cross.
At flowering, hand pollination is done. Pollen from a fertile diploid is rubbed onto stigma of
newly opened female flowers every morning. It is hard to predict the outcome of crosses
because of limited knowledge about the genetics of parental clones and how traits are inherited.
The success of conventional crossbreeding relies on large numbers of hybrids from which
selection is made (Ortiz and Swennen 2014). The hybrids generated come from several cross
combinations of parental clones that differ in ploidy (Fig 4). The erratic meiosis of polyploids
causes production of gametes with unpredictable chromosome constitution. While some
gametes are haploid, others carry unreduced number of chromosomes, or additional
chromosomes leading to variable ploidy levels and aneuploids in hybrids. Flow cytometry has
been used to ascertain the ploidy level in bananas (Dolezel 1997). A flow cytometer is used to
measure the fluorescence intensity of cell nuclei stained by a DNA fluorochrome such as
propidium iodide (PI), or 4’,6-diamidino-2-phenylindole (DAPI). As the fluorescence is

proportional to DNA amount, the assay is suitable for ploidy estimation.
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Fig 4. Crossbreeding scheme for improvement of East African Highland bananas showing crosses involving

parents of different ploidy levels

Getting many hybrids in banana breeding is a challenge due to partial, or complete sterility of

cultivars that have to be improved (Ssebuliba et al. 2006). This is further complicated by low
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embryo germination (Ssebuliba et al. 2005). Banana seeds do not readily germinate when
planted directly in the soil, except for the wild species. Thus, banana breeding programs use in
vitro embryo rescue techniques to increase the germination rate to about 30-40 % of seed
embryos using artificial medium (Vuylsteke and Swennen 1992) (Fig 5). Despite the difficulty
of getting seeds from banana crosses and having embryos germinate in vitro, about 90 % of
hybrids are never selected and advanced from early evaluation trial (EET) to a preliminary yield
trial (PYT) because a majority do not bear edible fruit, or show other shortcomings. This
problem is not unique to banana only, but has been encountered in other crops, for example,
99.99 % of the 52,000 apple seedlings were discarded after 26 years of evaluation by Dresden-
Pillnitz, a Germany apple-breeding program (Ignatov and Bodishevskaya 2011).

Fig 5. Conventional cross breeding steps of EAHB. The disease susceptible triploid EAHB (A) is crossed with
a disease resistant wild diploid (B). At flowering, the female flowers of EAHB are hand pollination (C) by mature
pollen from the male flowers (D). The pollinated fruit bunch (E) is covered with a polyethene bag to exclude other
sources of pollen. After all the hands are pollinated, the bunch cover is removed and the fruit bunch is allowed to
mature, harvested and ripened before seed extraction (F). The seeds are cracked to extract the embryos (G), which

are germinated on artificial medium (H). The germinated embryos are transferred onto the proliferation medium
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() after which they are cloned and transferred onto the rooting medium (J). The resulting plantlets are hardened

in a screenhouse after weaning before they are planted in the early evaluation trial (EET).

Banana improvement progress is assessed by phenotypic evaluation of hybrids at various levels
(Ortiz and Vuylsteke 1995b; Ortiz 2016) (Fig 6). The evaluation levels include EET, PYT,
advanced yield trial (AYT) and multilocational evaluation trial (MET). Newly generated
hybrids are first planted in the EET and the selection is based on the ability of a genotype to
produce a good fruit bunch and host plant resistance to black leaf streak for at least two crop
cycles. The number of replications per genotype in EET range from one to three. Usually, less
than 10 % of the genotypes are selected from EET. The selected genotypes are multiplied so
that each genotype is planted in two, or three single row plots of five replicates ina PYT (Ortiz
and Vuylsteke 1995b). Data on both yield and agronomic traits are collected for at least two
crop cycles. The quality of fruits is also used to select genotypes that are advanced to AYT, or
MET. Unlike EET and PYT, which are on-station trials, AYT and MET are off-station trials,
that involve more replications, blocks and different agroecological zones. The purpose of AYT
and MET is to evaluate the stability of genotype performance under different environmental
conditions because the genotype by environment (G x E) interaction affects trait expression
(Taghouti et al. 2010; Manrique and Hermann, 2000). These trials are done in collaboration
with farmers and the selection of best genotypes is more farmer-centred as acceptability of
hybrids is the key in the final step of cultivar release. Each banana plant occupies an area of 6
m?, or 9 m?, depending on the spacing (Tushemereirwe et al. 2015). Hence, going through all
these steps requires a lot of land. The many evaluation steps make the time required for cultivar

development to be very long (Tenkouano et al. 1999).

1.6.2 Achievements and improvement strategies

To date, conventional banana crossbreeding has delivered a few improved cultivars to farmers
from different breeding programs, but the rate is too low to cope with the demand. For example,
the FHIA breeding program released some hybrids that have been widely distributed due to
their high yield and resistance to Fusarium wilt, EMBRAPA in Brazil released some Pome and
Silk hybrids resistant to Fusarium wilt and some are currently being tested in East Africa. The
IITA-NARO breeding program has also released a few cooking banana hybrids and about 26
more hybrids (NARITA) are still under regional evaluation (Tushemereirwe et al. 2015).
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Methods that can increase seed set and germination, and speed up the selection process are
required to improve the breeding efficiency in banana.

To increase selection speed in conventional breeding, the genetic breeding values of parents
should be known so that target crosses are made. A reliable and cost-effective selection system
should be used to select the best hybrids with targeted traits prior to field evaluation. Marker
assisted selection, MAS (Choudhary et al. 2008) is one way to improve conventional breeding
efficiency. Reports on the use of MAS in banana breeding are limited because of two major
challenges: (1) many traits, especially those of agronomic and economic importance may be
controlled by many quantitative trait loci (QTL), each having a small effect on the phenotype
(Asins 2002; Collard et al. 2005; Choudhary et al. 2008), and (2) the difficulty to identify all
markers across the entire genome that are linked to QTL (Guo et al. 2011) due to the cost, labour
involved in marker assays and complexity of polyploid genomes. Details on these issues and

how markers have been used in banana research are discussed in the next section.

In Uganda, the IITA-NARO collaboration is focused on improving the EAHB that are
susceptible to both biotic and abiotic stress (Lorenzen et al. 2010). The choice of breeding
parents currently used was based mostly on field and screen-house phenotypic characterization
of available germplasm to identify sources of host plant resistance in diploids and female
fertility within the different clone sets of the EAHB (Ssebuliba et al. 2005, 2006; Karamura
1998). Since then, several hybrids have been generated from crosses involving Calcutta 4 (wild
diploid), improved parthenocarpic diploids, EAHB and tetraploids with EAHB background.
Due to partial sterility, polyploidy and the low percentage of germinating embryos in tissue
culture, few segregating populations have been generated from a single set of parents to allow
molecular characterization and mapping of all important traits (Mbanjo et al. 2012a; Pillay et
al. 2012; Xu 2010), but efforts are being made to generate more mapping populations. However,
many hybrids with related background are generated that can constitute a training population

for genomic predictions.

Application of molecular markers to assess breeding progress is still limited in the program
although simple sequence repeat markers are used in genotyping. The new developments in
genotyping such as genotyping by sequencing (Elshire et al. 2011) and MAS such as genomic
selection (GS) (Meuwissen et al. 2001), should be explored to reduce selection cycle and

increase product output in a cost-effective way. This Thesis therefore focuses on the
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development and evaluation of genomic prediction models based on SNP markers derived from
genotyping by sequencing approach and phenotypic data from related hybrids of mixed ploidy
levels and their parents as a training population. The training population was chosen to mirror
the breeder’s population so that inferences can easily be made as opposed to the classic bi-
parental diploid mapping populations commonly used in QTL analysis (Heffner 2009). The
population consisting of 307 genotypes was phenotyped under low input and high input field
management conditions for two crop cycles. Results of experiments are summarized in
publications under section six. It is expected that the information provided in this Thesis will

be useful in improving the efficiency of banana breeding.
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2 Role of molecular markers in banana research

2.1 General overview

Cultivated bananas are susceptible to pests, pathogens and environmental stresses, causing yield
reduction that leads to food insecurity (Stover 1962; Ploetz 2000; Gold et al. 2004; Biruma et
al. 2007; Tenkouano et al. 2012; Tripathi et al. 2015). Whereas chemical intervention is possible
to some extent, it is not a sustainable solution, given the risk of environmental pollution and the
economic burden on small-scale farmers. Thus, breeding for resistant banana cultivars is the

most sustainable solution (Rowe and Rosales 1993).

Molecular markers play a significant role in identification of genomic loci controlling important
traits in plant breeding (Brown et al. 2017). Markers that are linked to traits of interest are
determined by linkage and association analysis. Estimation of genetic diversity facilitates gene
introgression by choosing parents that are likely to give better genetic gain. The introgression
process is quickened by marker assisted selection. Markers are also helping in taxonomic
validation, cultivar identification, and characterization of evolutionary and speciation events.
Molecular markers reduce the selection cycle in conventional cross breeding as compared to
the classic phenotypic selection (Fig 6). The use of molecular markers shows promise in
improving the efficiency of plant breeding (Ortiz and Swennen 2014), but in banana breeding

programs, their utility is currently limited.

The release and improvement of a draft genomic sequence of the double haploid M. acuminata
cv. Pahang, A genome (D'Hont et al. 2012; Martin et al. 2016) and a draft sequence of M.
balbisiana cv. ‘Pisang Klutuk Wulung’, B genome (Davey et al. 2013) made a significant
contribution to marker development in banana. Numerous gene transcript data consisting of
46,665 expressed sequence tags (EST) and 35,752 annotated genes associated with M.
acuminata and M. balbisiana are publicly available (Li et al. 2013; Wang et al. 2012a;

https://www.ncbi.nlm.nih.gov/gquery/?term=Musa [retrieved on 14 August 2017]). Several

papers have reported on the utility of molecular markers in banana research and these are

summarized in Table 1.
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Fig 6: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection of

banana hybrids and (B) integrated genomic selection and phenotypic selection approach being investigated.
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Table 1. Summary of molecular markers that have been used in banana research.

Marker application Marker type Reference

Molecular systematics Isozymes, SSR, Simmonds (1966); Bhat et al. (1992);
DArT, RFLP, ETS Janssen and Bremer (2004); Kress and
and ITS Specht (2005, 2006); Boonruangrod et

Genetic diversity studies

Detection of mutant
clones

Genome characterization

Cultivar identification
and pedigree tracking

Isozymes, RAPD,
SSR, AFLP, RFLP,
SRAP, DArT and

MSAP

RAPD

RAPD, RFLP,

ITS,

dCAPS, IRAP and

SCAR

Isozymes, RFLP,
SSR, RAPD, EST-

SSR and ISSR

17

al. (2009); Perrier et al. (2011);
Hribova et al. (2011); Christelova et
al. (2011b); Cizkova et al. (2015)
Bhat et al. (1992); Jarret et al. (1993);
Bhat et al. (1995); Kaemmer et al.
(1997); Tenkuoano et al. (1999);
Crouch et al. (1999); Crouch et al.
(2000); Pillay et al. (2001); Ude et al.
(2002); Ude et al. (2003); Creste et al.
(2004); Noyer et al. (2005); Wang et
al. (2007); Risterucci et al. (2009);
Opara et al. (2010); Onyango et al.
(2010); Wei et al. (2011); Nyine and
Pillay (2011); Valdez-Ojeda et al.
(2014); Kitavi et al. (2016); Karamura
et al. (2016); Christelova et al. (2017)
Newbury et al. (2000); Martin et al.
(2006)

Pillay et al. (2000); Nwakanma et al.
(2003); Nair et al. (2005); de Jesus et
al. (2013); Noumbissié et al. (2016);
Mabonga and Pillay (2017)

Horry (1988); Howell et al. (2004);
Raboin et al. (2005); Venkatachalam
et al. (2008); Horry (2011); Hippolyte
et al. (2012); Mbanjo et al. (2012a)



Linkage analysis Isozyme, RAPD, Fauré et al. (1993); Hippolyte et al.
RFLP, AFLP, SSR (2010); Mbanjo et al. (2012b)
AS-PCR and DArT

Genome-wide Isozymes, dCAPS Umber et al. (2016); Noumbissié et al.

association studies and and SNP (2016) Sardos et al. (2016);

marker-assisted selection

AFLP — amplified fragment length polymorphism, AS-PCR — allele specific-polymerase chain reaction, DArT —
diversity array technology, dCAPS — derived cleaved amplified polymorphic sequences, EST — expressed
sequence tags, ETS — external transcribed spacer, MSAP — methylation-sensitive amplified polymorphism, IRAP
— inter retrotransposon amplified polymorphism, , ISSR — inter simple sequence repeats, ITS — internal transcribed
spacer, RAPD —randomly amplified polymorphic DNA, RFLP —restriction fragment length polymorphism, SCAR
— Sequence characterized amplified region, SNP — single nucleotide polymorphism, SRAP — sequence-related

amplified polymorphism, SSR — simple sequence repeats

2.2 Gene markers

Useful markers for molecular breeding are those that are tagged to genes having significant
contribution to traits of interest (Collard et al. 2008). When a gene and a marker are in linkage
disequilibrium, it allows for the screening of plant germplasm, or hybrid lines at the earliest
stages of plant improvement. The association of these markers with important traits can be
identified through classical linkage analysis, genome-wide association studies, or candidate
gene approaches. For example, Miller et al. (2008) identified 50 distinct nucleotide binding site
leucine rich repeats (NBS-LRR) linked to resistance gene analogs in cv. ‘Calcutta 4°. Based on
these findings, Emediato et al. (2009) were able to design degenerate primers that could amplify
sequence analogs for resistance genes to black leaf streak disease in M. acuminata cv. ‘Calcutta

4’ (resistant) and M. acuminata cv. ‘Pisang Berlin’ (susceptible).

Similarly, Wang et al. (2012b) identified randomly amplified polymorphic DNA (RAPD)
markers that could distinguish between cultivars resistant and susceptible to Foc TR4 using
pooled DNA from resistant and susceptible cultivars. Two RAPD markers were converted to
sequence characterized amplified regions (SCAR) markers, which could be amplified in Foc
TR4-resistant banana genotypes, but not in the susceptible genotypes. This work continues at
the National banana program in Brazil (EMBRAPA) and shows a great promise in providing

an early screen for resistance to Foc TR4 (Silva et al. 2016).
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M. balbisiana (B genome) is a good source of resistance, or tolerance to biotic and abiotic
stresses (Vanhove et al. 2012; Ravi et al. 2013). However, it harbors endogenous banana streak
virus (eBSV), which is activated when plants are stressed, or upon hybridization (Harper et al.
1999; Lheureux et al. 2003). This causes the limited use of any B genome containing accession
in banana breeding. Lheureux et al. (2003) mapped the eBSV-expressed locus on a linkage
group using amplified fragment length polymorphism (AFLP) markers. In a different study,
Noumbissié et al. (2016) used simple sequence repeat (SSR) markers and eBSV-specific PCR
markers to identify hybrids containing the B genome that were free of eBSV. These hybrids
resulted from crossing a tetraploid accession (AABB) with a diploid accession (AA). They
found that chromosome translocation and recombination had produced 24 offspring (13% of
the population) that did not contain eBSV. Using derived cleaved amplified polymorphic
sequences (dCAPS), Umber et al. (2016) identified the existence of infectious and non-
infectious BSV alleles. By chromosome doubling a haploid plant with B genome
(homozygosity checked using SSR markers), they produced lines, which were free of the
infectious BSV alleles. The two studies give a hope for the possibility of using diagnostic

markers and producing eBSV-free B genome hybrids that could be useful in banana breeding.

2.3 Linkage and association mapping

Linkage and association mapping are the basis of MAS in plant breeding, but have not gained
significant practical application in banana breeding. This could be attributed in part to
limitations inherent with the marker technologies themselves (Foolad 2007; Pillay et al. 2012),
polyploid nature of banana, and the difficulty in developing and maintaining banana genetic
mapping populations. Earlier attempts in linkage and association mapping used F1 and F
diploid populations, which limited the resolution and accuracy of mapping quantitative trait loci
(QTL) affecting important traits (Asins 2002). Efforts should be made to develop double
haploid populations, or recombinant inbred lines to facilitate QTL mapping in banana (Pollard
2012).

Genetic linkage maps are useful in gene identification and understanding the inheritance pattern
of traits (Korte and Farlow 2013). Linkage maps are derived from genotyping bi-parental
segregating populations. An important prerequisite is that the two parents from which the
segregating population is derived are significantly different in the trait of interest. Moreover,
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the markers used to genotype the population should show the segregation and population
structure, and should be distributed on all chromosomes. Proper and accurate collection of
phenotype data is critical if linkage maps are to be of any value. To avoid bias in phenotyping,

data from multiple years and locations should be collected.

To date, a limited number of Musa genetic linkage maps have been reported (Table 2). This is
because cultivated bananas are mostly triploid and partially, or completely sterile (Ssebuliba et
al. 2006), which makes it difficult to generate adequate study populations. Indeed, often they
lack genetic variability for the most important traits, which hinders construction of genetic
linkage maps. All genetic linkage maps reported so far are from diploid segregating population.

Table 2: Summary of banana genetic linkage maps currently publicly accessible

Reference  Popntype Popn No. of Linkage Typeof Segregation

size markers groups markers distortion

(%)
Fauréetal. F2(SF265x 92 77 15 RFLP, 36
(1993) banksii) isozyme
and
RAPD
Hippolyte et Fi (Borneo 180 489 11 SSRand 22
al. (2010) x P. Lilin) DArTs
Mbanjo et F1 (half-sib, 139 316 15 SSR, 41
al. (2012) 6142-1 x DArTs
8075-7 and and AS-
6142-1-S x PCRs
8075-7)

The first genetic mapping population (Fauré et al. 1993) consisted of an F. population of 92
individuals derived from selfing an F1 hybrid (SFB5) that resulted from a cross between SF265
and M. acuminata ssp. banksii. Seventy-seven loci consisting of RAPDs, Isozymes and RFLPs
were placed on 15 linkage groups and covered 606 cM. Segregation distortion was 36% of the
mapped loci and was biased towards M. acuminata ssp. banksii. Hippolyte et al. (2010)

published the most saturated map to date using an F1 diploid (AA) population created from a
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cross between M. acuminata cv. Borneo and M. acuminata cv. ‘Pisang Lilin’. The map was
constructed using 489 markers (including, SSR and diversity array technology, DAIT)
distributed across 11 linkage groups and covering 1197 cM. The segregation distortion of alleles
was 22%. The most recent genetic linkage map is that of Mbanjo et al. (2012b). They used an
F1 population consisting of two half sibs derived from crosses between M. acuminata hybrids
and these were 6142-1 x 8075-7 and 6142-1-S x 8075-7. Two maternal (6142-1 and 6142-1-S)
and one paternal (8075-7) maps were generated using DArT, SSR and AS-PCR markers. The
most inclusive map was the paternal map with 316 markers that were distributed on 15 linkage

groups covering 1004 cM. However, 41% of the allele loci showed segregation distortion.

Association mapping (genome-wide association study, GWAS) offers the opportunity to link
genetic markers and their location on genetic maps to phenotypic differences (Korte and Farlow
2013). The advantage of GWAS is the non-reliance on bi-parental populations and the ability
to capture both recent and historical recombination events (Borevitz and Nordborg 2003; Korte
and Farlow 2013). Whereas linkage mapping requires recombinant inbred lines to achieve a
good resolution, GWAS utilizes a panel of genotypes from unrelated population, or a population
with known genetic substructure to identify associations between molecular markers that are in

linkage disequilibrium with genetic loci affecting phenotypes.

Genome-wide molecular markers such as SNP are preferred for GWAS. For example, Sardos
et al. (2016) performed GWAS for parthenocarpy in banana. A panel of 104 diploid (AA)
accessions was genotyped by sequencing (GBS) and 5,544 SNP markers were derived. The
SNP markers were associated with the publicly available phenotypic data on parthenocarpy.
Thirteen genomic loci were identified to be associated with parthenocarpy and female sterility.
The genes identified in these regions were mostly related to growth regulators such as auxin,
gibberellin and abscisic acid, whereas the others were involved in gametophyte development
and one histidine kinase implicated in female sterility. Such studies need to be extended to other
traits using more objective and empirical phenotypic data.

In GWAS, the effect of each marker on the trait is estimated and markers with the smallest
probability values (P-values) are considered to have a strong significant association with the
trait (Korte and Farlow 2013). In order to limit the number of false associations between
markers and traits, a Bonferroni correction is used. For example, if the confidence level is set
at 95%, Bonferroni correction = 0.05 divided by the number of SNP markers analyzed. GWAS
results are presented on Manhattan plots generated by ggman-package in R (R core team, 2017),
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or in trait analysis by association, evolution and linkage (TASSEL) pipeline. The Bonferroni
correction line on a Manhattan plot is placed at -logio * Bonferroni correction value (Fig 7). All
markers that are above the Bonferroni correction line are considered to be significantly

associated with the trait.

Bonferroni correction line

-logio(p)

Chromosome

Fig 7. Manhattan plot generated in R using ggman package showing the Bonferroni correction line (red)

and the location of markers associated with the trait under study.

2.4 Genetic diversity studies

Genetic diversity is indispensable in breeding and is perhaps the single most limiting factor to
plant improvement. It is upon which breeders base their decisions to choose the parents to cross.
Conventionally, phenotypic, or morphological characters associated with vegetative and floral
structures of banana have long been used to estimate diversity and distinguish among cultivars
(Karamura 1998). However, phenotypic characteristics are greatly influenced by genotype,
environment and the interaction between genotype and environment (Batte et al. 2017). This
limits the genetic gain achieved from crossbreeding when parents are chosen on the basis of
morphological characteristics. Molecular markers have been used to supplement this effort and
expand germplasm diversity analysis among various collections and representative populations
displaying regional variation. A variety of molecular markers has been used in banana genetic
diversity studies and they included isozymes, RAPD, AFLP, SRAP, RFLP DArT, MSAP and
SSR (Table 1).
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Results from different banana genetic diversity studies cannot be compared. Each study is
unique in terms of population composition, type and number of markers used. However, the
general consensus is that molecular diversity does not correlate well with phenotypic diversity
(Crouch et al. 2000; Kitavi et al. 2016). The genetic variation explaining the substantial
morphological variation among regional Musa landraces is still lacking despite the availability
of numerous molecular markers. EAHB have been classified into five clone sets based on
phenotypic characteristics (Karamura 1998). This grouping has not been supported by any of
the molecular studies (Pillay et al. 2001; Kitavi et al. 2016; Karamura et al. 2016a). Hence,
EAHB are considered to be a product of single hybridization event and the morphological
differences observed are most probably a result of several somatic mutations, and selection

events that led to many distinct cultivars (Kitavi et al. 2016).

Markers can also be used to identify variation from sources where it has not been previously
reported. In plantain landraces of West Africa, RAPD, SSR and AFLP markers showed very
low polymorphisms (Crouch et al. 2000; Noyer et al. 2005). However, Hpall and Mspl, MSAP
profiles revealed three clusters that were not correlated with morphological differences in
plantains (Noyer et al. 2005) and a subset of plantains from Cameroon was genetically distinct
from others (Ude et al. 2003).

Somaclonal mutation resulting from prolonged sub-culturing of plants in tissue culture and
chimerism create diversity within cultivars. Molecular markers have been used to detect such
variation. For example, Martin et al. (2006) were able to differentiate somaclonal mutant named
CUDBT-B1 from the parent clone cv. ‘Grand Naine’ using RAPD marker S-20 (5°-
GGACCCTTAC-3’). The marker produced a unique 1650 bp band only in mutants. In
plantains, analysis of 48 clones derived from a single meristem of cv. Agbagba using RAPD
markers showed polymorphism within the clones. Field evaluation of these clones correlated
well with their genetic clustering leading to a conclusion that cv. Agbagba comprised of

periclinal chimera (Newbury et al. 2000).

2.5 Genomic selection in banana

QTL analysis is quite straightforward once one has a well-saturated linkage map and accurate
phenotypic data. However, this applies to qualitative traits, or traits governed by few QTL with
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major genetic effects such as pest and disease resistance (Asins 2002; Heffner et al. 2009). For
highly quantitative traits such as yield, or drought stress, QTL mapping becomes powerless due
to the presence of many loci contributing to the trait, each with small-explained variance (Asins
2002; Collard and Mackill 2008). Even if these QTL could be identified, introgressing and
selecting for them during breeding using MAS would be tedious. To overcome the above
challenges, genomic selection (GS) that uses predictive models has been proposed with the

prospect to reduce the selection cycle and increase genetic gain per unit time.

Genomic selection (GS) is a form of MAS that utilizes high-density molecular markers such as
SNP to estimate the genomic breeding value of a genotype using a statistical model (Meuwissen
etal. 2001). The approach used to perform genomic selection is called genomic prediction while
the unit of selection is called the genomic estimated breeding value (GEBV). In this approach,
identification of individual QTL associated with a trait of interest is not necessary because QTL
are assumed to be in linkage disequilibrium with at least one, or more SNP (Desta and Ortiz
2014). Since generation of marker data is increasingly becoming cheaper than phenotyping, it
is expected that GS will reduce breeding costs, increase selection intensity and accelerate
breeding efficiency. It is a well-established technique in animal breeding (Hayes and Goddard
2010) and it is gaining popularity among plant breeders (Crossa et al. 2010; Lorenz et al. 2011,
Ceballos et al. 2015; Crossa et al. 2016) with several publications in cereal breeding and fruit
trees. GS has not been applied in bananas yet, but it is currently being investigated. More details

on genomic selection are given in section three.

2.6 Characterizing evolutionary and speciation events

Identifying and utilizing progenitors of modern banana cultivars in breeding schemes provides
potential sources of improved quality traits associated with important commercial cultivars.
This provides bridges for gene transfer of traits such as host plant resistance to pathogens and
pests as well as drought tolerance from wild relatives. Understanding how these modern
cultivars arose may allow us to reconstruct them while also including source of resistance to
major abiotic and biotic sources of stress (Perrier et al. 2011). Therefore, proper identification
and classification of bananas both at morphological and more importantly at molecular level is

very necessary.
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Several studies have utilized isozymes, SSR, DAIrT, chloroplast (and mitochondria) DNA
RFLP, 5" external transcribed spacer rDNA (5'ETS rDNA) sequence information and various
cytological techniques to elucidate the domestication pathways of bananas (Boonruangrod et
al. 2009; Perrier et al. 2011). For example, through molecular analysis, the EAHB have been
shown to be a product of three subspecies of M. acuminata (M. a. ssp. banksii, M. a. ssp. zebrina
and M. a. ssp. malaccensis) while M. balbisiana and M. a. ssp. banksii are the founders of

plantains (Boonruangrod et al. 2009; Perrier et al. 2011).

The family Musaceae consists of domesticated edible and ornamental species, and their wild
relatives. The Musaceae family consists of three genera including, Ensete, Musa and Musella
(Janssens et al. 2016). Different classification systems in banana have been reported including
molecular phylogeny. Isozymes such as esterase, acid phosphatase and catalase were used in
the earlier classification of bananas (Simmonds 1966; Bhat et al. 1992). Christelova et al.
(2011a, 2017) used 19 informative SSR markers to discriminate different levels of classification

of Musa accession held at the International Musa Germplasm Transit Centre (ITC), Belgium.

Internal transcribed spacers (ITS) of rDNA show genetic variation despite the evolutionary
conservation of rRNA genes. This variation was used to assess the structure and genetic
diversity of Musaceae family. Analysis of ITS1 and ITS2 sequences revealed that section
Callimusa and Australimusa were in the same clade while Eumusa and Rhodochlamys formed
the second clade of genus Musa (Hiibova et al. 2011). Results from intronic sequence analysis
of single copy genes from Musa accessions supported the merger of Callimusa with
Australimusa and Eumusa with Rhodochlamys however, the old classification is still widely
used. Recent findings by Janssens et al. (2016) based on the analysis of four gene markers
(rpsl6, atpB-rbcL, trnL-F and ITS) using Bayesian inference methods, gave further support for
the merger of Callimusa, Astralimusa and Ingentimusa into one clade while Eumusa and
Rhodochlamys formed the second clade. In addition, the divergence time of Musaceae family
and evolution of genus Musa were estimated to be 69 Mya and 51 Mya, respectively
(Christelova et al. 2011b). These studies were expanded by using cytogenetics, ITS and SSR
markers (Cizkova et al. 2015). However, discrepancies in estimates of divergence time of
Musaceae family and speciation of Musa are noted in various publication depending on the
analysis method used (Janssen and Bremer 2004; Kress & Specht 2005, 2006; Janssens et al.
2016).
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2.7 Genome characterization, cultivar identification and pedigree tracking

Four types of genomes are present in banana and these include A, B, S and T representing M.
acuminata, M. balbisiana, M. schizocarpa and M. textilis, respectively (Swennen and
Vuylsteke, 2001). Many cultivated bananas consist of one, or a combination of two genomes.
The most common genomes within the edible bananas are the A and B genomes. Markers
specific to these genomes allow determination of genomic composition of allopolyploids and
track recombination event between genomes in hybrid progeny. For example, three RAPD
Operon primers Al7, A18 and D10 were used to distinguish between A and B genome
composition in 40 banana accessions (Pillay et al. 2000), thus providing a quick means of
genome characterization. Nwakanma et al. (2003) used PCR-RFLP on ribosomal DNA internal
transcribed spacer (ITS) and identified markers that were specific for A and B genomes in
bananas. Restriction digest of ITS-PCR products revealed a 530 bp fragment that was specific
to A genome and two fragments of 350 bp and 180 bp that were specific to B genome and their
intensity increased with increasing number of copies of B genomes in the accessions.

de Jesus et al. (2013) used a combination of flow cytometry, PCR-RFLP based on ITS
amplification products and SSR markers and confirmed the genomic constitution of 94.6% of
the total accessions maintained at the EMBRAPA ex situ collection. Their results supported the
hypothesis of homeologue recombination between A and B genomes. One inter-retrotransposon
amplified polymorphism (IRAP) marker designed from a long terminal repeat (LTR) of Musa
Ty3- gypsy-like retroelement (M. acuminata Monkey retrotransposon, AF 143332) was
identified to be specific for the B genome in bananas. The marker was used to classify the AAB
and ABB cultivars in South India and clarified the genome composition of some cultivars that
had been misidentified (Nair et al. 2005). Howell et al. (2004) developed nine RAPD primers
that distinguished banana accessions from ITC based on genome composition and ploidy level
following cluster analysis and these improved the precision of Musa identification and
classification. Mabonga and Pillay (2017), reported a SCAR marker developed from a RAPD
amplicon that produced 500 bp and 700 bp fragments in A and B genomes, respectively. They
concluded that the two genomes may not be fully differentiated as previously reported.

Germplasm collection centres and breeding programs maintain records of accessions and
crosses made, but mistakes arise due to human error either during in vitro sub-culturing, or field
planting. Molecular markers have proven to be useful in cultivar identification and pedigree
tracking. For example, cv. Cavendish and cv. ‘Gros Michel’ are popular dessert bananas that
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arose from 2n restitution and n gamete donors. RFLP markers showed that the 2n donors could
have been cvs. Samba, Chicame, or ‘Akondro Mainty’ because they shared almost the full allele
profiles (Raboin et al. 2005). Cv. ‘Akondro Mainty’ was highly linked to cv. Cavendish based
on isozyme, ribosomal gene spacer patterns and anthocyanin markers (Horry 1988; Horry
2011), whereas cv. Chicame could have contributed the 2n gametes to cv. ‘Gros Michel’.
However, it was not possible to identify a single n gamete donor that crossed with 2n gamete
donor to produce the triploid cultivars, but putative candidates were cvs. Sa and ‘Khai Nai On’.
Similar observation was made when a set of 22 SSR markers was used to analyze 561 Musa
accessions (Hippolyte et al. 2012). SSR-based platform for clarifying identity and integrity of
accessions conserved by the International Musa Germplasm Transit Centre (ITC) was
established. Several accessions have been proven to be true to type while others were
misidentified based on SSR and cytological results (Christelova et al. 2011a; Christelova et al.
2017).

Expressed sequence tags-SSR (EST-SSR) markers were used to clarify the genotype identity in
a diploid segregating population from hybrid 6142-1 and 8075-7. The analysis revealed two
half-sib populations instead of a single full-sib population (Mbanjo et al. 2012a).
Venkatachalam et al. (2008) used a combination of RAPD and inter simple sequence repeat
(ISSR) markers to identify and classify the South Indian cultivars. The authors were able to
separate global cultivars such as cvs. Williams and Robusta from those that had limited

geographical distribution and purely endemic to South India.
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3 Genomic prediction
3.1 Overview of genomic selection

Clarification on usage of terms: Genomic selection is a method of making a decision on which
individuals to choose from a population and advance in the breeding process based on the
differences in their genomic merit (value). Genomic prediction is a statistical model-based tool
that utilizes genomic data to estimate the genomic merit of an individual in a population.
Therefore, genomic prediction is a means to genomic selection and the output of genomic
prediction that facilitates genomic selection decision is called the genomic estimated breeding
value (GEBV).

Genomic selection (GS) based on genomic prediction models is a form of marker assisted
selection (MAS), which allows selection of individuals that have not been phenotyped
(Goddard and Hayes 2007; Goddard 2009). It utilizes dense markers that are spread across the
genome to predict the genomic breeding value of an individual (Meuwissen et al. 2001; Heffner
et al. 2009). As the predictions are based on genomic information, the selection index is called
genomic estimated breeding value (GEBV). Genomic selection addresses some limitations of
classical MAS and GWAS by simultaneously estimating all marker effects on the trait. Hence,
it is suitable for prediction of polygenic traits controlled by many small-effect QTL without a
need to identify individual QTL (Heffner et al. 2009) and the associated markers.

Genomic prediction is mostly used for selection of parents for further crossing (Goddard and
Hayes 2007). However, Crossa et al. (2014) proposed that genotypic values should also be used
to select genotypes with potential for release as new cultivars in maize and wheat breeding.
Several modifications to the original genomic selection methodology of Meuwissen et al.
(2001) have been proposed and these include: weighted genomic selection, optimal haploid
value selection, genotype building selection and optimal population value selection (Goiffon et
al. 2017).

Genomic selection has been made possible by high-throughput next generation sequencing
technologies that caused a dropdown in genotyping costs and by advances in genotyping
methods (Elshire et al. 2011; Deschamps et al. 2012). When dense markers became available

through approaches like genotyping by sequencing (Elshire et al. 2011; Poland et al. 2012a),
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most linear regression models could not handle data where the number of phenotypes, or sample
size (n) were less than the number of predictors, or markers (p) (Jannink et al. 2010; de los
Campos et al. 2013). To address the issue of small ‘n’ and large ‘p’, Bayesian and kernel
methods were developed alongside many other approaches (de los Campos et al. 2009a; Pérez
and de los Campos 2014). The Bayesian methods use the Monte Carlo Markov Chain (MCMC)
algorithms to sample from a posterior probability distribution (Meuwissen et al. 2001). The

posterior distribution of estimates is generated from prior probabilities, which are user defined.

Prior probabilities are very subjective, but can be derived from historical information (Goldstein
2006), like, if one knows the heritability of a trait, or the number of genes controlling the trait.
When only prior densities are used, then a non-informative model is generated. The priors are
updated when data become available to yield a more realistic posterior probability distribution
(Goldstein 2006). Hence, when a lot of data are available, the influence of prior probability on

the posterior probability distribution is superseded by the likelihood of the data.

The MCMC algorithms use the Gibbs sampler (Gelfand et al. 1990) and every time a sample is
obtained, the model is updated (Meuwissen et al. 2001). The number of iterations that the
MCMC must run are pre-set. The user also defines how many iterations should be discarded as
burn-in so that the Gibbs sampler does not pick samples from initial values that can bias the
mean of estimates. After the burn-in, the interval at which the sampler should collect the
samples to update the model is also defined, which is referred to as thin (MacEachern and
Berliner 1994). Thinning reduces sample autocorrelation of the Markov chain, which can cause
biased Monte Carlo standard errors. It also allows efficient use of computer storage space by
reducing the number of posterior samples kept. This means that any number of predictors can
be fitted in the model, thus enabling whole-genome regression and prediction (de los Campos
et al. 2013). While whole-genome regression is possible, the large amount of data from GBS
can still create computational challenges. These have been partly addressed by Bayesian
methods that perform variable shrinkage and selection of the linear predictors (de los Campos
et al. 2013; Pérez and de Los Campos 2014).

Genomic selection has been successful in dairy cattle for selection of bulls that give female
offspring with high milk production (Goddard and Hayes 2007). Traditionally, selection of
bulls for milk production depended on the performance of their daughters, which could make

the selection cycle very long. In plants, traits such as yield, sensory quality and postharvest
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qualities can only be determined after harvest, which also increases the selection cycle. The
primary advantage of GS is the ability to reduce selection cycle and increase selection intensity
that results in faster genetic gain per unit time and cost. Genetic gain (G) can be estimated as
the product of selection intensity (i), prediction accuracy (r) and square root of additive genetic
variance (V&%) divided by selection cycle time (t). Prediction accuracy is influenced by
phenotypic variance (dp), which is also influenced by the correlation between the breeder’s and
farmer’s environment while additive genetic variance is influenced by the heritability of the
trait. In practice, the breeder can increase genetic gain by increasing the selection intensity (i)
and by reducing the selection cycle time (t) even when the prediction accuracy is low compared
to phenotypic selection accuracy (Desta and Ortiz 2014; Bassi et al. 2016).

The predictive abilities of different genomic prediction models have been demonstrated in
various crops ranging from cereals to forest trees (Crossa et al. 2010; Heffner et al. 2011; de
Oliveira et al. 2012; Kumar et al. 2012; Wirschum et al. 2013; Beaulieu et al. 2014; Crossa et
al. 2014; Crossa et al. 2016; Onogi et al. 2016; Gezan et al. 2017). However, information
concerning use, or performance of genomic prediction models in banana breeding is not
available to date. This section of PhD Thesis divulges more of the main developments in the
field of genomic predictions to date starting from genotyping by sequencing, then predictive

models and computational requirements while putting banana breeding into perspective.

3.2 Genotyping by sequencing: a step towards genomic prediction

Genotyping by sequencing (GBS) is a next generation sequencing-based method that takes
advantage of reduced representation libraries to enable high throughput genotyping of large
numbers of individuals at a large number of SNP loci (Glaubitz et al. 2014). Advances in
sequencing technologies led to reduction in genotyping costs, which caused a rapid growth of
sequence databases (Bernardo and Yu 2007). Of all marker types, SNP markers are the most
abundant in the genomes of animal and plant species. This makes them the molecular markers
of choice for genomic predictions as they satisfy the requirement of dense markers (Bernardo
and Yu 2007; Elshire et al. 2011).

To reduce the cost of SNP genotyping without compromising quality, several reduced
representation sequencing approaches were developed (Sonah et al. 2013). These include
diversity array technology sequencing (DArTseq), restriction site associated DNA (RAD, Baird
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et al. 2008), genotyping by sequencing (GBS) and reduced representation library (RRL), or
complexity reduction of polymorphic sequences (CRoPS) (van Orsouw et al. 2007; Elshire et
al. 2011; Beissinger et al. 2013). Of the four, GBS is a low coverage approach, but by far the
most advantageous when genotyping large populations. Library construction for GBS is simple
and it requires small amounts of starting DNA. The introduction of a barcoding system to
samples allows several samples to be multiplexed and sequenced on the same sequencing lane,
which reduces the sequencing cost per sample. When a proper choice of restriction enzyme is
made, high SNP coverage in gene-rich regions of the genome can be attained in a highly cost-
effective manner (Elshire et al. 2011; Sonah et al. 2013). The choice of restriction enzymes for
GBS library preparation depends on the number of tags it can generate and the distribution of
tags across the genome (Hamblin and Rabbi, 2014). The fewer the tags, the more reads per tag
and the better the depth of coverage. However, the tags should be uniformly distributed across
the entire genome to get good genomic representation markers. Use of restriction endonuclease
ApeKI was demonstrated to give good depth of coverage in barley and maize (Elshire et al.
2011).

To improve the robustness of the GBS protocol, Poland et al. (2012a) modified the original
GBS protocol by using a two-enzyme approach (Pstl/Mspl), a rare cutter and a frequent cutter.
This approach was used to genotype bi-parental barley and wheat populations and was used to
develop a genetically anchored reference map to identify SNP and tags (Poland et al. 2012a).
Further studies in wheat were carried out to prove the robustness of GBS in breeding
applications (Poland et al. 2012b). Sonah et al. (2013), also improved the standard ApeKI
protocol by carrying out a final amplification step with selective primers extending across the
3’-ApeKI sites by 1 or 2 bases into the insert. With this modification, both the number and depth
of coverage of called SNPs were significantly improved. Using the Pstl restriction enzyme
alone with the standard GBS protocol was also found to give good sequence data. It is a
relatively rare cutting enzyme, which generates a moderate number of tags, thus giving more
reads with better depth of coverage. The tradeoff is that it gives a lower number of SNP markers
(Hamblin And Rabbi, 2014). This is good for genotyping multi-ploidy populations (e.g. banana)
that have varying number of alleles at any given locus. In cassava, a combination of Pstl and

Tagl improved the distribution and number of SNP markers (Hamblin and Rabbi, 2014).

Sequence reads from mitochondria DNA (mDNA) and chloroplast DNA (cpDNA) present a

problem when mapping reads to a reference genome especially in polyploid plants. For
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example, in heterozygous autotetraploid potato, cpDNA was shown to represent 60% of total
reads (Uitdewilligen et al. 2013). However, in the M. a. ssp. malaccensis complete chloroplast
DNA (cpDNA), only 14 Pstl restriction sites were found whereas in the current publicly
available banana reference genome (Martin et al. 2016), there are 85714 restriction sites for
Pstl. This suggests that the number of tags from cpDNA in the sequence library are very few
for banana, reducing a possible contamination of nuclear genome sequence reads with
organellar DNA sequences even when CTAB DNA extraction protocol is used (Lutz et al.
2011).

Genotyping by sequencing has also some limitations, the main ones being the high level of
missing data (Glaubitz et al. 2014), low coverage and non-uniform distribution of sequence
reads (Beissinger et al. 2013; Hamblin and Rabbi, 2014). The problem of missing data is usually
overcome by imputation methods such as random forest regression, multivariate normal
expectation maximum algorithm and impute amongst other methods (Poland et al. 2012b).
Proper choice of restriction enzyme during library construction and technical replication during

sequencing can also help to improve coverage and reduce missing data.

RAD sequencing in comparison to GBS offers ‘deep-sequencing” of SNP with a wide range of
coverage depending on the requirement of the researcher (Fonseca et al. 2016), while DArT
sequencing provides data with a few missing data points both dominant and co-dominant
markers (Sansaloni et al. 2011), but the two methods are not yet as cheap as GBS for genotyping

large populations.

3.3 Downstream analysis of GBS data

GBS protocol generates millions of short sequences reads, on average 100 bp each using the
Illumina sequencing platform. One main requirement for downstream analysis of sequence
reads is a reference genome sequence, or DNA contigs from a representative species (Elshire
et al. 2011; Perea et al. 2016). Tools such as Burrows-Wheeler alignment (Li and Durbin 2009)
and Bowtie 2 (Langmead and Salzberg 3012) work on the principle of Burrows-Wheeler
transform (BWT). They were designed to map short reads to the reference sequence in an

efficient and accurate manner, but many other read alignment tools exist. Once the reads are
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aligned to the reference, SNP discovery and genotyping can be done by variant caller tools such
as SAMtools, genome analysis toolkit (GATK), or FreeBayes (Clevenger et al. 2015).

The choice of a variant caller depends on the nature of the species under study (Clevenger et al.
2015). Calling SNPs from diploid organisms is straight-forward and also many polyploids with
an even ploidy level behave like diploids. However, for autopolyploid species, special
considerations must be made (Uitdewilligen et al. 2013). In allopolyploids such as wheat (T.
aestivum) with three sub-genomes, it is possible to map reads to specific sub-genomes and call
SNPs for each genome (Dvorak et al. 2006). Bananas are polyploid and some triploid bananas
such as EAHB are composed of three A sub-genomes originating from different subspecies that
are not easy to distinguish (Perrier et al. 2011). SNP calling from a banana population

comprising individuals of different ploidy levels requires a careful choice of variant caller tools.

Each variant caller has advantages and limitations. For example, SAMtools does not perform
well in calling heterozygous SNP, despite being simple to use. In contrast, GATK has many
steps and requires special data formats, but it is good for handling species with different ploidy
levels and when allele dosage is required. It is also capable of distinguishing true SNP from
sequence artifacts. The indel realignment step in GATK improves alignment around indels,
which removes frameshifts that usually result in false-positive SNP calls (Polyanovsky et al.
2011; Clevenger et al. 2015).

Bioinformatics workflows and pipelines make SNP calling and genotyping from GBS reads
more efficient. Currently, the bioinformatics pipeline that is commonly used is the TASSEL-
GBS (Glaubitz et al. 2014). Other bioinformatics pipelines that have been developed include
Stacks and next generation sequencing eclipse plugin, NGSEP (Catchen et al. 2011; Perea et
al. 2016). They offer flexibility of handling large number of samples with reduced errors. The
main characteristics of bioinformatics workflows and pipelines is that they combine the utility
of several specific tools and allow the user to specify some parameters although default settings
are always provided. Among such tools are the FASTX Toolkit and Picard Tools
(http://hannonlab.cshl.edu/fastx_toolkit/;  http://broadinstitute.github.io/picard/). ~ Custom

requirements are not easy to implement in standard pipelines and this may call for the user to
develop a customized workflow to execute specific tasks. The output SNP can be used for
GWAS, population structure analysis, genetic diversity studies and genomic predictions

(Elshire et al. 2011). Depending on the final use of SNP data, some conversion tools may be
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required to change the genotype data formats so that the data are compatible with other

software. This involves writing Perl scripts, or R functions.

3.4 Genomic prediction models

The basic model commonly used in simple experiments to predict dependent variable given the
independent variable data, or vice versa, is the simple linear regression model, or the least
squares estimation model given by the formula: y = o + Bx + €, where y is a vector of dependent
variables, a is the y intercept, B is the regression coefficient, x is a matrix of independent
variable and e is the vector of random residuals. If there are many co-variate factors that
influence the outcome variable, then the multiple linear regression model is adopted, which
takes the form: y = a + BiX1 + P2X2 + .... PnXn + €. The utility of these models in genomic

selection is limited due to the high number of linear predictors (Crossa et al. 2010).

Animal breeders have for a long time relied on the use of phenotypic data and pedigree
information to predict the breeding value of individuals (Goddard and Hayes 2007). Best linear
unbiased prediction (BLUP) model has been used to estimate random effects (genetic merit). It
is a linear model of the form: y = X + Zu + e, where y is a vector of phenotypic observations,
B and u are vectors of fixed and random effects, respectively, X and Z are design matrices, € IS
a vector of random residuals (Robinson, 1991). The advent of next generation sequencing
technologies increased access to genotypic data. Integrating these data into prediction models
showed an increase in genetic gain per unit time (Meuwissen et al. 2001; Goddard and Hayes
2007; Legarra et al. 2008; Hayes et al. 2009).

Meuwissen et al. (2001) incorporated SNP markers as random variables in BLUP equation in
their simulation study. They made an assumption that marker effects were normally distributed
and that all loci had equal variance, thus the genetic variance of an individual locus could be
obtained by dividing the total genetic variance, Vg4 by the total number of loci, n (Vg/n).
However, in some cases a few loci with major effects, or many loci with varying effects control
the trait, and are not uniformly distributed across the genome. This makes the assumption of
equal genetic variance unrealistic and leads to model over-parameterization (Resende et al.

2012). Parametric and semiparametric models based on Bayesian principles that perform
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shrinkage and variable selections were developed as alternatives for use in genomic prediction

(de los Campos et al. 2013; Pérez and de Los Campos 2014).

3.4.1 Implementation of genomic prediction

Genomic prediction is implemented in three phases, which include training, validation and
breeding (Jannink et al. 2010; Nakaya and Isobe 2012). In the training phase, a panel of
genotypes representing the genetic diversity within a breeding program is phenotyped and
genotyped. The marker variance and their effect on the trait (regression coefficient) at each
locus are estimated and the population’s trait mean is obtained from the phenotypic data. This
yields a model of the form “predicted phenotype (§) = general phenotype-mean in the
population (intercept, u) + GEBV (3 Xp) + residual error (€)”. This can be expressed as § =
+ 5 XpB + €, where X is a matrix of independent linear predictors such as SNP markers and f is
the regression coefficients of the independent linear predictors. The residual errors could be
environmental or spatial errors. When € is assumed to be random and normally distributed, that
is, &€ = ~N(0, J¢), where 6¢? is the variance of random residuals, then GEBV =y — . (Pérez and
de Los Campos 2014).

The complexity of the above genomic prediction model can be increased by adding a
relationship information. This information can be in the form of a genomic relationship matrix
(G-matrix), or pedigree matrix (VanRaden 2008). The G-matrix (G) can be calculated from
SNP data (X) consisting of score for minor alleles that take the form of 0, 1 and 2 for diploid
organisms, where 0 and 2 are homozygous major and minor allele states, respectively, while 1
represents the heterozygous state of a locus. Hence, G = XX’, where X" is the transpose of X,

which is a data frame of ‘n’ individuals and ‘p” SNP markers.

Pedigree matrix can be calculated when pedigree records are available using the pedigreemm
R-package (Vazquez et al. 2010). The choice as to whether a pedigree matrix is added to the
model, or not depends on the relationship of individuals in the GS population. When there is a
weak relationship, addition of pedigree matrix distorts the relationship based on genomic data
causing a reduction in performance of genomic prediction models (Zhong et al. 2009).
However, in some cases a combination of pedigree information with marker data was shown to

improve the prediction accuracy of genomic prediction models (Crossa et al. 2014).
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3.4.2 Estimate of model performance

In genomic selection, predictive ability is a measure of performance of a genomic prediction
model and is determined by cross validations. Predictive ability of a model is the correlation
between the predicted and observed value of a trait, or the correlation between GEBV and
observed phenotype (Crossa et al. 2010). Usually, the correlation between GEBV and predicted
phenotype is approximately 1.0. Most studies used five-fold (K=5) and ten-fold (K=10) cross
validation (Jannink et al. 2010). However, other strategies are also used. For example, 90 % of
the genotypes are used as training set while 10 % as cross validation (testing) set, but there are
many other approaches (Crossa et al. 2016). The average correlation of these cross validations
is reported as the predictive ability, or prediction accuracy of that model for a trait (Crossa et
al. 2014; Crossa et al. 2016). It is important that during cross validation there is no overlap
between genotypes in the training set and testing set.

Cross validation is a convenient way of evaluating the accuracy of genomic prediction models.
In order to use the genomic prediction model, the accuracy of prediction is first confirmed at
the validation phase for breeders to have confidence in the model (Nakaya and Isobe 2012).
The validation population should consist of genotypes that are different from those used in the
training population. This population is genotyped to allow prediction of the GEBV, then
phenotyped preferably in an environment other than that in which the training population was
phenotyped (Ly et al. 2013). The correlation between the observed phenotype and GEBV gives
the prediction accuracy of the model. To maintain a good performance of the model, the
validation and breeding populations must be related to the training population and genomic
prediction models have to be updated over time because of linkage disequilibrium decay
(Nakaya and Isobe 2012). The data collected from breeding and validation populations can be
used to update the genomic prediction model to improve its accuracy (reviewed by Varshney
etal. 2013; Ly et al. 2013).

In genomic prediction, the predictive ability value is the proportion of genetic variance
explained by marker data. It is often misinterpreted as the proportion of genotypes correctly
selected by genomic prediction versus phenotypic selection. As discussed by Bassi et al. (2016),
a prediction accuracy of 0.5 does not mean that 50% of the top selected individuals will actually
be phenotypically selected. In many cases the percentage of individuals correctly selected based

on GEBV has been above the prediction accuracy. For example, Beaulieu et al. (2014) reported
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that with predictive values between 0.33 and 0.44, they were able to achieve 90 % of
traditionally estimated breeding values during validation. Similarly, Heffner et al. (2011)
reported a 95 % prediction accuracy of genomic prediction compared to phenotypic selection
in a multi-family wheat population even if the predictive values ranged from 0.22 to 0.76. The
tradeoff between genomic selection and phenotypic selection is that genomic selection can
afford faster genetic gain per unit time, although it is not 100 % accurate as phenotypic selection
(Desta and Ortiz, 2014; Bassi et al, 2016).

During the breeding phase, new hybrids from the breeding program are genotyped and the
genotype data are fed into a validated genomic prediction model to predict the GEBV. The
breeder uses these GEBV to make a decision on which hybrids to select for further crossing, or
phenotyping. The model also predicts the likely phenotypic outcome for each hybrid (Pérez and
de Los Campos 2014). Selection can be done at the nursery stage so that only hybrids with a
good combination of traits are taken to the field for evaluation and the rest are discarded before
wasting resources on them. It is important for the breeders to develop the ‘selection index’ of

GEBV so that selection is product focused.

‘Selection index’ of GEBV means that among the traits the breeder is predicting, a priority
order is set as a way of eliminating hybrids that do not meet product requirements. It is an
efficient way of simultaneously selecting for all traits that define a best parent, promising
candidate cultivar, or best cross combination (Bassi et al. 2016). If the selection is intended to
eliminate hybrids with low genetic value, this can be referred to as negative selection that
reduces the phenotyping burden. For example, in banana, most hybrids are triploid and majority
show poor fruit filling characteristics. When selecting candidate cultivars, fruit filling trait such
as fruit circumference should be given top priority in the ‘selection index’ of GEBV. Once the
number of hybrids to phenotype is reduced, more replications can be planted without much
strain on financial resources (Heffner et al. 2009), or some evaluation stages such as EET and
PYT can be skipped so that hybrids are evaluated faster than usual in multiple locations to
reduce the selection cycle. This allow the identification of high performing hybrids with stable

traits in a much shorter time.
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3.4.3 Types of genomic prediction models

Different studies in both animals and plants have tested the predictive ability, or accuracy of
different genomic prediction models (Legarra et al. 2008; Heffner et al. 2011; Kumar et al.
2012; Wirschum et al. 2013; Crossa et al.2014; Weng et al. 2016; Momen et al 2017). These
models include ridge regression best linear unbiased prediction (rrBLUP), genomic best linear
unbiased prediction (GBLUP), best linear unbiased prediction method including a trait-specific
relationship matrix (TABLUP), least absolute shrinkage and selection operator (LASSO),
Bayesian ridge regression (BRR), Bayesian LASSO (BL), BayesA, BayesB, BayesC, BayesCr,
BayesDm, elastic net (EN), reproducing kernel Hilbert Space (RKHS), Bayesian neural
networks (BNN) and Bayesian regularization for feed-forward neural networks (BRNN)
(Robinson 1991; Tibshirani 1996; Meuwissen et al. 2001; Park and Casella 2008; Zhang et al.
2010; Pérez and de Los Campos 2014).

The difference in these models largely lies in how they estimate the marker variance and how
they generate the posterior distribution of marker effects (Table 3). They also differ in the
assumptions made about traits. Some assume that the traits are controlled by additive genetic
effects, while other account for non-additive genetic effects such as dominance and epistasis
(e.g. RKHS). The characteristics of these models have been summarized in various publications
(Meuwissen et al. 2001; Habier et al. 2011; Pérez and de Los Campos 2014; Desta and Ortiz
2014). In this Thesis, the predictive ability of six models was investigated using different cross
validation strategies and these included BRR, BL, BayesA, BayesB, BayesC and RKHS models

and a summary of their characteristics is given in Table 3.

The above prediction models were developed and optimized for diploid organisms. However,
they have been extended to polyploid organisms (Crossa et al. 2014; Gezan et al. 2017) where
a balanced distribution of alleles is assumed to exist as in diploids. Banana is unique in that
breeding populations are generated by crossing parents of different ploidy levels, which results
in a mixture of diploid, triploid and tetraploid hybrids. The generation of a prediction model
with a population consisting of genotypes of different ploidy levels is usually a challenge due
to (i) uncertainty of allele frequency in that population and (ii) uncertainty of allele dosage at
the loci. Blischak et al. (2015) attempted to address the problem of allele dosage uncertainty in
a simulated autopolyploid population. They treated the genotypes as latent variables in a
hierarchical Bayesian model and sequence reads as random samples. They concluded that
uncertainty of allele dosage in polyploids in addition to number of individuals sampled and
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sequencing coverage affected the calculation of allele frequencies. Yet, allele frequency is key

in population genetics models for understanding allele inheritance patterns.

Table 3: Main characteristics of the six genomic prediction models evaluated in this Thesis

Model
o BRR BL BayesA BayesB BayesC RKHS
characteristics
Parametric Yes Yes Yes Yes Yes
Semiparametric Yes
Additive genetic
Yes Yes Yes Yes Yes
effects
Non-additive
) Yes
genetic effect
- Fixed,
Distribution of _ _
Gaussian Gamma, or Scaledt Scaledt Gaussian
marker effects
Beta
Distribution of ¥ 2 Double ¥ 2 ¥ 2 x 2
marker variance exponential
Uniform
) Yes
shrinkage
Nonuniform
) Yes Yes Yes Yes
shrinkage
No marker
) Yes
selection
Variable marker
_ Yes Yes Yes Yes
selection
Prior probability
Yes Yes

of marker effect

Source: Desta and Ortiz (2014) and Pérez and de Los Campos (2014)

In bananas, the expected level of heterozygosity varies with ploidy level. For example, if a bi-

allelic SNP, A/G is segregating at locus i, then, one, two and three possible heterozygotes are
expected in diploids (AG), triploids (AAG and AGG) and tetraploids (AAAG, AAGG and
AGGG), respectively. Determining the level of heterozygosity at a locus depends on how well

the sequencing reads represent the true genotype and the choice of bioinformatics tools used



during SNP calling. Picard tools allow normalization of sequencing reads by marking and
removing duplicates so that genomic regions with fewer reads that are uniquely mapped are not
excluded during SNP calling. In addition, GATK has an option of setting the ploidy level during
SNP calling with UnifiedGenotyper that allows heterozygosity to vary according to ploidy level
(Clevenger et al. 2015). This is very useful when dealing with populations of mixed ploidy
levels. Genomic prediction models use marker data in a numeric form. In order to maintain
allele dosage status of the SNP data, careful choice of tools that convert SNP data to numeric
format is important. R-based script named AlleleDosage R function was developed as part of

this Thesis to address this issue. The script can be accessed from the link.

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage R_function.docx

Other than allele dosage and mixed ploidy population, several factors influence the predictive
ability of genomic prediction models. They include size and composition of the training
population, the relationship between training and breeding populations, differences in linkage
disequilibrium between markers and QTL across training and breeding populations, number of
markers used, the interaction between genotype and environment, and heritability of the trait
(Crossa et al. 2016; Bassi et al. 2016). In order to reach high predictive ability, the population
should be large enough to capture most of the segregating alleles in the breeding gene pool. As
noted by Bassi et al. (2016), no ideal population size exists for all species and traits. Hence,
attention should be paid to how related the individuals are, the heritability of the trait, whether
the population is bi-parental, or a mixture of several families and the cost involved in
phenotyping the training population. The breeding population should come from genotypes that
were involved in the training phase. The number of markers should be large enough so that at
least one, or more markers are in linkage disequilibrium with the QTL controlling the trait
(Myles 2013; Desta and Ortiz 2014). GBS gives many SNP markers that improves the
prediction accuracy of the genomic prediction models compared to other platforms that give

fewer markers with less missing data (Heslot et al. 2013).

Increasing the size of a training population has been shown to increase prediction accuracy and
most studies have used training populations ranging from 200 to 10,000 individuals (Lorenz et
al 2011). The gain in prediction accuracy due to increase in population size has a threshold
beyond which it plateaus, or makes no economic sense. Banana populations are expensive to
phenotype as each banana plant occupies 6 m? of field space for at least two, or three crop cycles

(Tushemereirwe et al. 2015). To obtain representative phenotypic data, each clone has to be
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replicated within the experimental plot and in several locations. Phenotyping thousands of
banana clones requires very large fields and the cost would be exorbitant in comparison to
phenotyping the same number of genotypes in cereals like wheat, which require about 0.054 m?

(18 cm between plants x 30 cm between rows) per plant, i.e. 0.9 % of what is needed for banana.

Therefore, the effective size of a training population required to achieve a high accuracy of the
genomic prediction model depends on the population under study (Goddard 2009) and the
heritability of trait of interest (Lorenz et al. 2011). Many breeding programs, including animal
breeding use a small number of parental lines that constitute the effective breeding population.
Animal breeders, however, keep phenotypic and genotypic records from many progenies
around the world and these constitute an effective training population, which makes genomic

prediction relatively easy to implement at no substantial cost (vanRaden et al. 2009).

In barley, the effective breeding population size is reported to be less than 50 lines (reviewed
by Lorenz et al. 2011). Regardless of the number of parental lines used in a breeding program,
data from many progenies resulting from crosses between parents is beneficial in genomic
prediction. Unlike QTL mapping, the training population for genomic selection is not
necessarily derived from bi-parental crosses, but is rather a collection of representative
genotypes from a breeding program where genomic prediction is to be applied (Heffner et al.
2009; reviewed by Mammadov et al. 2012). This makes it convenient to investigate the utility
of genomic prediction in banana where the effective breeding population is small, and
segregating populations for different traits are limited, or completely missing.

During genomic prediction model development, consideration for the interaction of genotype
by environment should be made because it leads to differences in phenotypic expressions of
some trait (Manrique and Hermann, 2000). Traits that are strongly controlled by the genotype
are more stable across different environments as compared to those controlled by environment.
The G x E interaction effect analysis is useful in studying trait heritability and stability in
breeding materials (Taghouti et al. 2010). Generally, genomic prediction models that use
average environment data have been shown to be more robust than those based on a single
environment (Burguerio et al. 2012). The challenge in banana is that we do not know what traits

are stable across environments due to lack of systematic research.
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3.5 Computational and software requirements for genomic prediction

With the fast progress in DNA sequencing technologies, computation challenges arose to cope
with the massively generated sequence data (Metzker 2010). The main challenges include
efficient storage, retrieval and processing of such huge data with reduced error at reduced cost
(Wang et al. 2009). Most breeding programs do not have funds and technical capacity do
establish such facilities. However, these services can be outsourced from private service
providers. The challenge comes when standard protocols cannot deliver all the breeder needs
to answer certain questions. Customizing a protocol for a onetime user, or a few users is very
expensive. This means that the breeder should have the capacity to perform these specialized
analyses. This is possible if several breeding programs come together and establish a synergy
that helps to improve the breeding process even in small, financially less privileged breeding

programs (Hickey et al. 2017).

Numerous bioinformatics tools have been developed to perform individual tasks such as
alignment of short reads to the reference genome, de novo assembly of reads into contigs for
organisms without reference genome, SNP calling tools, diversity analysis software and much
more. Some of these tools are in the form of bioinformatics kits, or pipelines and freely available
to the public, or commercialized. For example, Galaxy tools from galaxyproject.org and the
genomic association and prediction integrated tool (GAPIT) from Cornell University (Lipka et
al. 2014) are freely available while other are commercialized like for example, CLC genomic
workbench and others. Bioinformatics pipelines such as TASSEL-GBS have been developed

to help circumvent problems associated with handling GBS data (Glaubitz et al. 2014).

In genomic prediction, statistical modeling is crucial, yet GBS presents a lot of missing data
and accurate imputations are still a challenge for polyploid crops. In order for genomic selection
to be embraced by breeders, flexible statistical software that allows breeders to analyze massive
genomic data in real time and requires less sophisticated computer systems is of importance.

The R environment from www.r-project.org provides many packages that facilitate statistical

modeling of biological data. Through integrative packages in R, genomic and phenotypic data
can be analyzed together to generate genomic prediction models and to test their accuracy. One
example is the Bayesian generalized linear regression (BGLR) R package used for genomic

predictions (Pérez and de Los Campos 2014).
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3.6 Prospects of genomic prediction

Molecular markers have contributed enormously to the understanding of genetic diversity
within banana germplasm. They have been used to clarify taxonomic classification, identify
cultivars and track pedigrees in breeding populations. However, little progress has been made
in using DNA markers for routine breeding and selection of candidate cultivars and breeding
parents. With advances in molecular marker technology, it is expected that genomic selection
as a form of MAS will play a major role in improving the efficiency of conventional

crossbreeding.

Breeding recalcitrant crops and ensuring timely delivery of hybrids to farmers that address
issues of food security and income through sustainable production is the dream of every banana
breeder. Application of genomic predictions in banana breeding is quite timely as resources are
always small to support long-term programs. However, more is yet to be understood about this
field of applied biology in crop breeding. In the initial stages, resources need to be directed in
developing efficient, accurate and cost-effective phenotyping technologies as well as building

necessary capacities in breeding teams to implement genomic prediction.

Banana breeding requires multidimensional and interdisciplinary approaches involving
breeders, floral biologists, molecular biologists, geneticists, cytogeneticists, bioinformaticians,
biostatisticians, agronomists and farmers/consumers (Hickey et al. 2017). Therefore, there is
ultimate need to establish a banana interactive resource database (Musabase) to maintain global
Musa genotypes and phenotypic information with easy to use bioinformatics pipelines and
statistical packages for breeders. Although this may be farfetched, once achieved the benefits
could be remarkable. A recent publication by Ruas et al. (2017), which shows effort to link
different databases for banana information resources is a good starting point, but more is still
required. Trait based models need to be developed and validated for routine use in banana

breeding programs to increase genetic gain.
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4 Goals of the Thesis

The main goal of this Thesis is to present empirical evidence on the performance of genomic
prediction models in banana breeding based on SNP marker data obtained by the genotyping
by sequencing approach. The Thesis summarizes the current knowledge about bananas,
including production constraints, breeding strategies, use of molecular markers in banana
research and the need to accelerate conventional crossbreeding by using genome-wide markers
through genomic predictions. Special emphasis was directed towards developing and
understanding the predictive ability of six genomic prediction models (BRR, BL, BayesA,
BayesB, BayesC and RKHS) and how factors such as field management and crop cycle affect
trait variation in genotypes and the predictive ability of the prediction models for a set of 15
traits. The working hypothesis was that field management and crop cycle had no influence on
trait expression and predictive ability of genomic prediction models. To achieve the above
objective, the following specific objectives were pursued through experimental analysis and the
results obtained are summarized in publications:

1. To assess the variation and correlation of traits in the genomic selection training
population with respect to crop cycles and field management.

2. To determine the genetic diversity of the genomic selection training population.

3. To compare the predictive ability of a set of six models with marker, pedigree and both
pedigree and marker information for fifteen traits scored in the training population and
select the best genomic prediction model for each trait, or a group of traits.

4. To determine the predictive ability of models with a training population grown under
two different field management practices (Genotype x Environment interaction).

5. To determine the predictive ability of the best model for prediction of traits within and
across crop cycle 1 / mother plants and crop cycle 2 / first ratoons/first suckers
(Genotype x Cycle interaction)

6. To determine the effect of accounting for allele dosage on the predictive ability of the
best genomic prediction model for each trait.

7. To determine the effect of using genomic prediction models fitted with averaged
environment data and allele dosage SNP markers in the prediction of genotype
performance in particular environments.

8. To determine the accuracy of selection achieved based on GEBV relative to phenotypic

data within the training population.
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5 General conclusion and recommendations

The aim of this Thesis was to develop and evaluate the predictive ability of genomic prediction
models in a banana genomic selection training population. Among all models tested ((BRR,
BL, BayesA, BayesB, BayesC and RKHS), BayesB was superior in prediction for most traits,
hence, breeders could use it on all traits tested. Fruit filling and fruit bunch traits were predicted
quite well in all cross-validation strategies. This implies that negative selection could be applied
in breeding program to reduce the burden of phenotyping hybrids with inferior fruits. Although
the training population was composed of genotypes of different ploidy levels, accounting for
allele dosage in SNP markers (AD-SNP) reduced predictive ability relative to traditional bi-
allelic SNP (BA-SNP), but the prediction trend remained the same across traits. However, for
some traits, accounting for allele dosage may be necessary. A script to account for allele dosage
(AlleleDosage R function) was developed and can be customized depending on the user’s
requirements and it could be applicable on all polyploid species. The R-script can be accessed

from the following link:

http://olomouc.ueb.cas.cz/system/files/users/public/scripts/AlleleDosage R_function.docx

The high correlation observed between traits within trait categories (plant stature, suckering
behaviour, black leaf streak resistance, fruit bunch and fruit filling) during phenotypic analysis
was confirmed by the predictive values. Hence, breeders do not need to predict all traits in order
to make a decision on which hybrids to select as parents for further crossing, or as promising
candidate cultivars. Focus should be on one, or two traits that are easy to phenotype in each
trait category. Finally, phenotype data from all field trials should be used to train the prediction
model so that the model is robust enough to predict the performance of new hybrids in the

phenotyping environment.

The immediate application of the prediction models is to select against triploid hybrids without
edible fruits because they constitute the biggest percentage of hybrids in banana breeding and
yet, they have no further use in breeding. In the diploids and tetraploids, genomic predictions
will help in identifying the best parents for crosses. It is expected that when banana breeding
increases the number of hybrids produced, genomic prediction will be a valuable tool during

the selection process to improve the genetic gain per unit time and cost.

When implementing genomic selection at the breeding phase, the best parental clones and the
best promising candidate, or new cultivar should be the first priority. In order to maximise
45
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genetic diversity, two alternatives are proposed. (1) After selecting the top 5 %, the best
genotype in each family should be also selected for phenotyping. (2) After selecting the best
genotypes, include about 5 % of genotypes with median and worst GEBV for phenotyping as
well. Since the genotypic data will be already available, these data sets will be important for
updating the models once prediction accuracies decrease due to changes in allele frequencies.
Also, it will help in maintaining some rare alleles that could be totally lost if selection focuses
on the top best.

If genomic predictions are to be employed in breeding Mchare bananas and Plantain, separate
training populations have to be assembled, phenotyped and genotyped because of differences
in allele frequencies, trait expression and linkage disequilibrium. Selection of genotypes for the
training population should aim at multiple families. Hybrids that show segregation for various
traits within each family should be included in order to capture the additive and non-additive
genetic effects like heterosis very well. A minimum of 20 genotypes per family is
recommended for 15 to 25 families. However, if the cross combinations are many and involve
many half-sib families the number may be reduced so that a target training population of 300-
500 is achieved.

For EAHB, Mchare and Plantain breeding programs, routine screening of ploidy level using
flow cytometry should be done while the plants are still in the nursery. This will help during
selection process as the genomic selection criterial for triploids would be slightly different from

diploids and tetraploids based on the ‘selection index’ of GEBV.

Given the high prediction of fruit filling, genome-wide association studies should be conducted
to identify the loci and SNP markers associated with this trait. This could facilitate development
of PCR-based markers alongside genomic prediction for routine diagnosis of the trait by
breeding programs.

Sensory and postharvest quality traits should be recorded on the training population so that
genomic prediction models are developed for such traits before terminating the trials. Also, the
fertility of improved triploids should be tested with other male parents that are not in their
pedigree so that progressive breeding is practiced in banana. This could allow the secondary

triploids to serve a pathway for gene pyramiding.
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6 Publications

6.1 Moses Nyine, Brigitte Uwimana, Nicolas Blavet, Eva Hfibova, Helena Vanrespaille,
Michael Batte, Violet Akech, Allan Brown, Jim Lorenzen, Rony Swennen, Jaroslav Dolezel
(2017) Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and
Allele Dosage Effects on Predictive Ability in Banana. The Plant Genome [accepted on 19
December 2017]

Abstract

Improving the efficiency of selection in conventional crossbreeding is a major priority in
banana (Musa spp.) breeding. Routine application of classical marker assisted selection (MAS)
is lagging in banana due to limitations in MAS tools. Genomic selection (GS) based on genomic
prediction models can address some limitations of classical MAS, but the use of GS in banana
has not been reported to date. The aim of this study was to evaluate the predictive ability of six
genomic prediction models for 15 traits in a multi-ploidy training population. The population
consisted of 307 banana genotypes phenotyped under low and high input field management
conditions for two crop cycles. The single nucleotide polymorphism (SNP) markers used to fit
the models were obtained from genotyping by sequencing (GBS) data. Models that account for
additive genetic effects provided better predictions with 12 out of 15 traits. The performance of
BayesB model was superior to other models particularly on fruit filling and fruit bunch traits.
Models that included averaged environment data were more robust in trait prediction even with
a reduced number of markers. Accounting for allele dosage in SNP markers (AD-SNP) reduced
predictive ability relative to traditional bi-allelic SNP (BA-SNP), but the prediction trend
remained the same across traits. The high predictive values (0.47 — 0.75) of fruit filling and fruit
bunch traits show the potential of genomic prediction to increase selection efficiency in banana

breeding.
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6.2 Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla
Christelova, Eva Hfibova, Jim Lorenzen, Jaroslav Dolezel (2017) Trait variation and genetic
diversity in a banana genomic selection training population. PLoS ONE 12(6): e0178734.
https://doi.org/10.1371/journal.pone.0178734.

Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of income
and food security, with the highest per capita consumption worldwide. Pests, diseases and
climate change hamper sustainable production of bananas. New breeding tools with increased
crossbreeding efficiency are being investigated to breed for resistant, high yielding hybrids of
East African Highland banana (EAHB). These include genomic selection (GS), which will
benefit breeding through increased genetic gain per unit time. Understanding trait variation and
the correlation among economically important traits is an essential first step in the development
and selection of suitable genomic prediction models for banana. In this study, we tested the
hypothesis that trait variations in bananas are not affected by cross combination, cycle, field
management and their interaction with genotype. A training population created using EAHB
breeding material and its progeny was phenotyped in two contrasting conditions. A high level
of correlation among vegetative and yield related traits was observed. Therefore, genomic
prediction models could be developed for traits that are easily measured. It is likely that the
predictive ability of traits that are difficult to phenotype will be similar to less difficult traits
they are highly correlated with. Genotype response to cycle and field management practices
varied greatly with respect to traits. Yield related traits accounted for 31-35% of principal
component variation under low and high input field management conditions. Resistance to
Black Sigatoka was stable across cycles but varied under different field management depending
on the genotype. The best cross combination was 1201K-1xSH3217 based on selection
response (R) of hybrids. Genotyping using simple sequence repeat (SSR) markers revealed that
the training population was genetically diverse, reflecting a complex pedigree background,

which was mostly influenced by the male parents.
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8 Abbreviation

BL
BRR

CV.

EAHB
GBS
GEBV

GS
LASSO
RKHS_ M
RKHS_P
RKHS_PM
SNP

Bayesian LASSO

Bayesian ridge regression

Cultivar

East African Highland banana

Genotyping by sequencing

Genomic estimated breeding value

Genomic selection

Least absolute shrinkage and selection operator
Reproducing kernel Helbert space with marker data
Reproducing kernel Helbert space with pedigree data
Reproducing kernel Helbert space with pedigree and marker data

Single nucleotide polymorphism

69



9 Presentations

9.1 Conference abstract

Nyine, M. B. Uwimana, N. Blavet, E. Hiibova, H. Vanrespaille, M. Batte, V. Akech, A. Brown,
J. Lorenzen, R. Swennen and J. Dolezel (2018) The Benefits, Challenges and Prospects of
Genomic Prediction in Polyploid Banana. [Abstract] presented at Plant and Animal Genome
Conference XXVI. San Diego, CA (USA) 13-17 Jan. 2018.
https://pag.confex.com/pag/xxvi/meetingapp.cgi/Paper/30796

Abstract

The interploidy breeding approaches practiced in banana limit the application of classical
marker assisted selection strategies. Yet, there is an ultimate need to improve the efficiency of
conventional crossbreeding and reduce the selection cycle to respond more rapidly to abiotic
and biotic stresses. The development of sequencing and genotyping technologies such as
genotyping by sequencing (GBS) are leveraging the breeders to explore genomic prediction-
based approaches. In this work, the performance of six genomic prediction models was
evaluated in banana under different cross validation strategies using data from a genomic
selection training population comprising 307 genotypes. The population consisting of diploid,
triploid and tetraploid genotypes was phenotyped under two different field management
conditions and genotyped using GBS. Sequence data were processed through a bioinformatics
workflow and single nucleotide polymorphisms (SNPs) were called using the genomic analysis
tool kit (GATK). A custom R script was developed to process the SNP data prior to input into
the models. The genotypic data were both bi-allelic SNP and allele dosage SNP markers. The
total number of SNP markers varied from 5574 to 10807 depending on cross-validation
strategy. Phenotypic data collected for four years on 15 traits under plant stature, suckering
behavior, black leaf streak resistance, fruit bunch and fruit filling were used in cross validation.
We compared the effect of accounting for allele dosage in SNP markers on the predictive ability
of genomic prediction models. The results permit the evaluation of benefits, challenges and
prospects of applying genomic prediction in banana, an important polyploid clonally

propagated crop.
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9.2 Conference abstract

Nyine, M. B. Uwimana, R. Swennen, M. Batte, A. Brown, E. Hiibova and J. Dolezel (2016)
Genomic breeding approaches for East African bananas. [Abstract] presented at Plant and
Animal Genome Conference XXIV. San Diego, CA (USA) 9-13 Jan. 2016.
http://hdl.handle.net/10568/78754

Abstract

The polyploidy nature of banana is a limiting factor in the implementation of strategies such as
marker assisted selection (MAS) or genome wide association mapping (GWAS). The triploid
nature of cultivated varieties complicates conventional breeding strategies and improved
varieties can take up to 20 years before they can be released to the public, which necessitates
the use of efficient molecular tools to more rapidly respond to abiotic and biotic stresses and to
address the needs of growers and consumers. In addition, the high cost of phenotyping perennial
large-stature plants such as banana, and the rapidly decreasing cost of genotyping, makes the
use of genomic prediction models using single nucleotide polymorphism (SNP) markers
extremely attractive to banana breeders. A Genomic Selection (GS) training population
consisting of 307 banana genotypes was developed for initial analysis with ploidy levels of the
plant material ranging from diploids to tetraploids. Plants were genotyped using the genotyping
by sequencing (GBS) approach (Elshire et al. 2011) with Pstl as the sole restriction enzyme.
Sequence data was processed through a bioinformatics workflow and single nucleotide
polymorphisms (SNPs) were called using the genomic analysis tool kit (GATK). Data was
filtered for quality and for loci with >50% missing data. Phenotypic data for 25 traits are being
collected from two locations since 2012. Yield-related traits (fruit pulp diameter, bunch weight,
number of suckers, etc.) are collected at flowering and harvest Analysis of GBS data resulted

in 11201 SNP loci. The results of multiple prediction models are discussed and compared.
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9.3 Poster presentation

Moses Nyine, Brigitte Uwimana, Rony Swennen, Michael Batte, Allan Brown, Pavla
Christelova, Eva Hiibova, Jim Lorenzen, Jaroslav Dolezel (2017) Trait variation in a banana
training population for genomic selection. Annual Banana Project Meeting, April, Kampala,

Uganda.

Poster abstract

Conventional crossbreeding is the main approach used in banana improvement. However, the
method requires up to two decades of crossing and field evaluation to develop a new hybrid.
This is because selection is carried out at different levels. At every level, plants are evaluated
after three crop cycles, each taking about a year. Yield traits can only be scored at harvest while
organoleptic traits are recorded after harvesting, making the selection process slow, expensive
and labour intensive. New breeding tools with increased crossbreeding efficiency are being
investigated to breed for resistant, high yielding hybrids of East African Highland banana
(EAHB). These include genomic selection (GS), which will benefit breeding through increased
genetic gain per unit time. Understanding trait variation and the correlation among
economically important traits is an essential first step in the development and selection of
suitable genomic prediction models for banana. In this study, we tested the hypothesis that trait
variations in bananas are not affected by cross combination, cycle, field management and their
interaction with genotype. A training population created using EAHB breeding material and its
progeny was phenotyped in two contrasting conditions. A high level of correlation among
vegetative and yield related traits was observed. This could mean that the predictive ability of
traits that are difficult to phenotype will be similar to less difficult traits they are highly
correlated with. Therefore, genomic prediction models could be developed for traits that are
easily measured. Black Sigatoka related traits were not affected by crop cycle, meaning that
these could be measured in the first cycle only, to reduce on phenotyping burden. Growth traits
such as plant height and girth were the least affected by field input management. Conversely,
yield-related traits such as bunch weight, number of hands and number of fingers were

significantly affected by both crop cycle and field input management.
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9.4 Poster presentation
Nyine, M., B. Uwimana, R. Swennen, M. Batte, A. Brown, P. Christelova, E. Hfibova, J.
Lorenzen and J. DoleZel (2016) Trait Variation in a Banana Training Population for Genomic

Selection. P4D and R4D meeting, November at IITA, Ibadan, Nigeria.

9.5 Poster presentation
Nyine, M., B. Uwimana, T.R. Ssali, J. Kubiriba, E. Amorim, Y. Othman, R. Swennen, M. Batte,
E. Hribova and J. Dolezel (2015) Towards marker assisted breeding in banana. R4D meeting,

November at 1ITA, Ibadan, Nigeria.

9.6 Poster presentation

Nyine, M., B. Uwimana, R. Swennen, M. Batte, E. Hiibov4, J. Lorenzen and J. Dolezel (2015)
Genomic selection to accelerate banana breeding. Roots, Tubers and Bananas (RTB) project
evaluation, February at 1ITA, Sendusu, Uganda.

73



10 Supplementary information

74



Appendix |

Genomic prediction in a multiploid crop: Genotype by environment interaction and allele dosage
effects on predictive ability in banana. The Plant Genome [Accepted on 19 December 2017] doi:
10.3835/plantgenome2017.10.0090



Published online March 2, 2018

ORIGINAL RESEARCH

Genomic Prediction in a Multiploid Crop:
Genotype by Environment Interaction and Allele
Dosage Effects on Predictive Ability in Banana

Moses Nyine, Brigitte Uwimana, Nicolas Blavet, Eva Hfibovd, Helena Vanrespaille, Michael
Batte, Violet Akech, Allan Brown, Jim Lorenzen, Rony Swennen, and Jaroslav Dolezel*

Abstract

Improving the efficiency of selection in conventional
crossbreeding is a major priority in banana (Musa spp.)
breeding. Routine application of classical marker assisted
selection (MAS) is lagging in banana due to limifations in

MAS tools. Genomic selection (GS) based on genomic
prediction models can address some limitations of classical
MAS, but the use of GS in banana has not been reported

fo date. The aim of this study was to evaluate the predictive
ability of six genomic prediction models for 15 traits in a multi-
ploidy training population. The population consisted of 307
banana genotypes phenotyped under low and high input

field management conditions for two crop cycles. The single
nucleotide polymorphism (SNP) markers used to fit the models
were obtained from genotyping by sequencing (GBS| data.
Models that account for additive genetic effects provided better
predictions with 12 out of 15 fraits. The performance of BayesB
model was superior to other models particularly on fruit filling and
fruit bunch traifs. Models that included averaged environment
data were more robust in frait prediction even with a reduced
number of markers. Accounting for allele dosage in SNP markers
[AD-SNP) reduced predictive ability relative fo traditional bi-
allelic SNP (BA-SNP), but the prediction trend remained the same
across fraits. The high predictive values (0.47- 0.75) of fruit filling
and fruit bunch traits show the potential of genomic prediction to
increase selection efficiency in banana breeding.

Published in Plant Genome 11:170090.
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Core Ideas

o  First empirical evidence of genomic prediction in a
multi-ploidy banana population is presented.

o The effect of allele dosage single nucleotide polymorphism
on prediction accuracy depends on the trait.

o Use of averaged environmental data improves
prediction accuracy.

o BayesB model can be used across all traits during
genomic prediction in banana breeding.

o The high predictive values show the potential of
genomic prediction in banana breeding.
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BANANAS ARE LARGE, perennial, herbaceous monocots
with a majority of cultivated types being triploid

(2n = 3x = 33). They are a staple food to millions of
people in many tropical countries and a source of income
for many homesteads. Triploid bananas are mostly

sterile although some cultivars have residual fertility that
leads to limited seed production when hand pollinated
(Ssebuliba et al., 2006). They are vegetatively propagated
by means of suckers, a method that limits gene flow and
recombination. The lack of genetic variability of bananas
grown in particular regions renders all cultivars suscep-
tible to pests, pathogens and environmental stress. This
causes reduced productivity of bananas that leads to food
insecurity and income loss.

Given the importance of banana, improving the
resistance of cultivated bananas is the most sustainable
solution to declining production (Simmonds, 1986; Rowe,
1990). This can be achieved by crossing with wild or
improved diploids that carry host plant resistance genes
for pathogens and pests. The triploid nature of culti-
vated bananas such as the East African highland banana
(EAHB), impedes the breeding process due to low fertility
or complete sterility of most cultivars. To overcome
this problem, breeders have to develop intermediary
improved diploids and tetraploids, which serve as parents
to generate secondary triploids that are resistant and high
yielding. Unlike a majority of crops, banana breeding
involves crossing parents of different ploidy levels (Fig. 1).
Partial fertility of polyploids relies on irregular meiosis
and progenies consist of individuals with different ploidy.
Due to linkage drag of undesirable alleles, several evalu-
ations and phenotypic selection at various stages are
implemented making banana breeding (depicted in Fig. 2)
expensive and slow. Clearly, the integration of molecular
tools into conventional breeding programs is required to
increase banana breeding efficiency.

Marker assisted selection (M AS) helps in selection
of genotypes carrying the trait of interest at an early
stage. However, very few reports on the use of MAS in
banana improvement are available. For example, markers
have been used to screen for Fusarium tropical race 4
resistance and identification of banana hybrids that are
devoid of infectious endogenous banana streak virus in
the B-genome (Wang et al., 2012b; Umber et al., 2016;
Noumbissié et al., 2016). Most MAS technologies aim at
identifying molecular markers that are linked to traits
through quantitative trait loci (QTL) analysis. Once the
markers are identified, the breeder can use them to track
the inheritance of the traits of interest. Marker assisted
selection has been successfully implemented where traits
are controlled by a few QTL with major genetic effects
(Asins, 2002; Collard and Mackill, 2008). However, some
traits such as yield, drought tolerance, and some others
may be controlled by numerous QTL, each explaining
a small portion of the genetic variance (Asins, 2002).
Identifying all QTL controlling such traits and the
markers that are in linkage disequilibrium with those
QTL becomes a challenge. Even if it would be possible to

identify small-effect QTL, their introgression into active
breeding programs would be extremely challenging.

A relatively new approach of MAS in plant breeding
known as genomic selection (GS) that uses genomic predic-
tion models was proposed by Meuwissen et al. (2001).
Several variants of the original GS methodology have also
been proposed (Goiffon et al., 2017). In GS, high-density
markers spread across the entire genome are utilized to
estimate the genetic value of a genotype using statistical
models. As this estimate is based on genomic data, it is
referred to as genomic estimated breeding value (GEBV).
The primary advantage of GS over other forms of MAS is
that the identification of individual QTL associated with a
trait of interest is not necessary because QTL are assumed
to be in linkage disequilibrium with at least one or more
SNP (Meuwissen et al., 2001; Desta and Ortiz, 2014). The
decrease in genotyping costs by next generation sequencing
technologies and the emergence of GBS, which allows SNP
discovery in large populations, made genomic prediction
possible (Elshire et al., 2011). As the generation of marker
data becomes increasingly cheaper than phenotyping, it is
expected that GS will reduce breeding costs, increase selec-
tion intensity and accelerate the breeding efficiency.

Genomic selection is implemented in three phases
that include: training, validation, and breeding (Jannink
et al., 2010; Nakaya and Isobe, 2012). In the training
phase, a model of the form “predicted phenotype =
general phenotype mean in the population (inter-
cept) + GEBV + residual error” is generated from both
phenotypic and genotypic data. The predictive ability
of a genomic prediction model is determined by cross
validation as the correlation between the predicted and
observed value of a trait or the correlation between
GEBV and observed phenotype (Jannink et al., 2010;
Crossa et al., 2014; Crossa et al., 2016).

Genomic selection has been successful in animal
breeding (Gorddard and Hayes, 2007). It is also expected
to increase genetic gain per unit time and cost in plant
breeding especially when applied on traits with low heri-
tability for which phenotypic selection is difficult and for
crops with long selection cycle such as fruit trees, or banana
(Wong and Bernardo, 2008; Crossa et al., 2010; Beaulieu
etal., 2014; Crossa et al., 2014). Different studies in plants
and animals have tested the predictive ability, or accuracy
of different genomic prediction models (Legarra et al.,
2008; Heffner et al., 2011; Kumar et al., 2012; Wiirschum
etal,, 2013; Crossa et al., 2016; Weng et al., 2016; Momen
etal., 2017). These include best linear unbiased predic-
tion (BLUP) and different Bayesian models (Robinson,
1991; Tibshirani, 1996; Meuwissen et al., 2001; Park and
Casella, 2008; Zhang et al., 2010; Pérez and de los Campos,
2014). Characteristics of the models are summarized in
numerous publications (Meuwissen et al., 2001; Habier et
al,, 2011; Desta and Ortiz, 2014; Pérez and de los Campos,
2014). Although these models were originally developed
and optimized for diploid organisms, they have then been
extended to polyploid organisms (Crossa et al., 2014; Gezan
etal., 2017). However, all studies used populations with
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Fig. 1. Conventional crossbreeding of East African Highland bananas (EAHB) starts with crossing a triploid parthenocarpic landrace
with a wild, seeded diploid accession or a diploid cultivar showing fruit parthenocarpy. This cross gives diploids, triploids and tetra-
ploid hybrids. Tetraploids are selected and crossed with improved diploid hybrids selected from inter-diploid crosses. The resulting
secondary triploids are evaluated, selected and advanced as promising improved genotypes aiming at new cultivars. The diploid and
triploid (if fertile) hybrids can be further improved by crossing with other wild or improved diploids.

organisms of the same ploidy level. Polyploid organisms
are challenging to model due to (i) uncertainty of allele
frequency in the population and (ii) uncertainty of allele
dosage at the loci (Blischak et al., 2016).

For bananas, besides the polyploid nature, there is
a small effective breeding population. Yet the accuracy
of genomic prediction depends on the size of training
population. It should be large enough to capture all the
segregating alleles in the breeding genetic pool (Crossa
et al., 2014; Bassi et al., 2016). However, as noted by Bassi
et al. (2016), no ideal population size exists for all species
and traits. The parameters that need to be considered
include relatedness of the individuals, the heritability of
the trait, differences in linkage disequilibrium between
markers and QTL across training and breeding popula-
tions, whether the population is bi-parental, or a mixture
of several families and the cost involved in phenotyping
the training population. For example, Beaulieu et al. (2014)
used 1694 open pollinated genotypes of white spruce
with 6385 SNP markers and obtained different accuracies
of prediction depending on the trait and the relation-
ship between the training and validation data sets. The
highest predictive ability observed was 0.44 for cell radial
diameter. In contrast, Crossa et al. (2010) used a maize
population of less than 300 individuals with less than 1200
markers and obtained a predictive ability as high as 0.79
for male flowering under well-watered conditions.

This study explored the potential of genomic predic-
tion in banana, a polyploid crop for which the population
was composed of individuals with different ploidy levels,
but mostly triploids (~85%) derived from EAHB. The
objectives were to (i) compare the predictive ability of
a set of six models with marker, pedigree, and both
pedigree and marker information for 15 traits scored
in the training population, and select the best genomic
prediction model for each trait or a group of traits, (ii)
determine the predictive ability of models with a training
population grown under two different field manage-
ment practices (i.e., studying genotype x environment
interaction), (iii) determine the predictive ability of the
best model for prediction of traits within and across crop
cycle 1/mother plants and crop cycle 2/first ratoons/first
suckers (i.e., genotype x cycle interaction), (iv) determine
the effect of accounting for allele dosage on the predic-
tive ability of the best genomic prediction model for each
trait, (v) determine the effect of using genomic prediction
models fitted with averaged environment phenotype data
and allele dosage SNP (AD-SNP) markers on the predic-
tion of genotype performance in particular environments
and (vi) determine the accuracy of selection based on
GEBYV relative to phenotypic data within the training
population. To achieve these objectives, a training popu-
lation of 307 banana genotypes consisting of breeding
clones and hybrids was phenotyped and genotyped.
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Fig. 2. Approaches to hybrid selection in banana breeding pro-
gram. (A) The classical phenotypic selection of banana hybrids
and (B) integrated genomic selection and phenotypic selection

approach being investigated.

MATERIALS AND METHODS
Pheno’ryping

The banana genomic selection training population used

in this study and the traits measured were described in
detail by Nyine et al. (2017). Briefly, the training popula-
tion consisted of 307 genotypes that included diploid (11%),
triploid (85%), and tetraploid (4%) plants. The core breeding
clones (parents) accounted for 12% of the population. The
triploid parents were EAHB some of which were crossed
with cultivar (cv.) Calcutta 4 to generate tetraploid hybrids,
which are used as breeding clones (Supplemental Table SI).
The diploid parents consisted of both wild and improved
parthenocarpic genotypes. The rest were hybrids from
early evaluation trials and advanced clones that had been
selected over time during the 20 year of banana breeding
by the International Institute of Tropical Agriculture
(ITTA) and the National Agricultural Research Organiza-
tion of Uganda. In total, 77 families (cross combinations)
of variable sizes were represented in this population.
Phenotyping was done at IITA research station located at
Sendusu in Namulonge, 0.53° N 32.58° E, 1150 m above
sea level with rainfall of about 1200 mm/year split into two
rainy seasons, March-June and September-December, and
an average annual temperature of 22°C.

Two phenotyping fields were established to mimic
different agronomic practices that farmers use, thus
creating a difference in growth environment. A completely
randomized design with three replications per genotype
was used to establish the fields. Sword and maiden suckers
were used as planting materials with a spacing of 2 x 3 m.
In the genomic selection trial one (GSI), 20 kg of manure
was applied at planting, but neither mulching, nor nitrogen,
phosphorus and potassium (NPK) fertilizer application
was done afterward and this was considered a low input
field management. The genomic selection trial two (GS2)
was planted with 20 kg of manure, then mulched, and NPK
fertilizer (25:5:5) was added at a rate of 480 g per plant
mat per year, and this was considered a high input field
management. In both fields, sucker management was done
to maintain a maximum of three plants per mat.

Data were collected on two crop cycles in each field
between 2013 and 2016. Fifteen traits were considered for
genomic prediction modeling and these were categorized
as plant stature, suckering behavior, black leaf streak
resistance, fruit bunch, and fruit filling. For plant stature,
plant height and girth at 100 cm from soil surface were
measured at flowering. The total number of suckers and
height of tallest sucker were recorded at flowering of crop
cycle 1 and height of tallest sucker at harvest to represent
suckering behavior. The number of standing leaves and
index of non-spotted leaves were determined at flowering
to characterize black leaf streak resistance. The index of
non-spotted leaves was calculated according to the formula
of Craenen (1998) with some modification as reported
by Nyine et al. (2017). The fruit bunch traits scored at
harvesting included the days to fruit maturity, bunch mass,
number of hands, and number of fruits. For fruit filling,
fruit length, fruit circumference, fruit diameter, and pulp
diameter were measured at harvest. The data were checked
for outliers and entry errors prior to use in model fitting. It
should be noted that not all traits had full data sets because
some genotypes had not completed the second cycle
through harvest by the time of these analyses.

Genotyping

The population was genotyped by sequencing as
described by Elshire et al. (2011). The restriction enzyme
PstI was used in the genome complexity reduction during
sequencing library preparation. Barcodes containing
adaptors were ligated to the genomic DNA fragments.
Ninety-six samples were multiplexed and sequenced on

a single Illumina lane at the Institute of Genomic Diver-
sity, Cornell University. Each set of 96 samples was run
twice to increase the number of reads per PsfI tag. Single-
end reads of 100 bp were generated during sequencing.

A workflow for the analysis of sequence reads was devel-
oped (Supplemental Fig. S1).

Sequence reads were filtered using fastq_quality_filter
provided in the module fastx.0.0.13 (-q 20-p 90). Sequence
reads were subjected to quality control analysis using
fastqc provided in module FastQC.0.10.1. Reads from each
lane were de-multiplexed into individual sample reads
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using fastx_barcode_splitter.pl provided in fastx.0.0.13.
The barcodes were trimmed using fastx_trimmer in the
module fastx.0.0.13. Any remaining adaptor sequences
were removed using fastx_clipper also provided in module
fastx.0.0.13. The Pst] tag (5-TGCAG—-3’) was retained
on each sequence read to act as a reference point during
read alignment to the reference genome. Reads of the same
genotype were merged into one file for downstream analysis.
Bowtie2 was used to align reads to the latest publicly avail-
able reference banana genome (Martin et al., 2016). Read
groups were added to aligned sample reads after which the
duplicate reads were marked and removed using picard-
1.100. Indels were realigned and all realigned reads from all
samples were merged into one file before SNP calling.
Genome analysis tool kit (GATK) version 2.7.2,
UnifiedGenotyper (https://software.broadinstitute.org/
gatk/documentation/) was used as the variant caller.
First, all genotypes were considered as diploids and as
such bi-allelic SNP (BA-SNP) were called. Second, the
population was split and grouped according to ploidy
level. The respective ploidy levels were set during SNP
calling. Preliminary filtering of SNP was performed
prior to output of variant call file (VCF). The filters used
were QD < 2.0, FS > 60.0, MQ < 40 and Haplotypescore
> 13.0. Further stringent filtering was done in R (R
core team, 2016) where SNP loci with quality score less
than 98 and more than 50% of the banana genotypes
having missing data were excluded. Concordant SNP
loci across all ploidy levels were selected to generate a file
with SNP where allele dosage had been accounted for.
The remaining missing data were imputed with impute
function in R and SNP converted into numerical data
for input into genomic prediction models using a custom
R-script. The description of how the script works can be
accessed here: http://olomouc.ueb.cas.cz/system/files/
users/public/scripts/AlleleDosage_R_function.docx

Comparison of Genomic Prediction Models
and the Effect of Field Management and

Crop Cycle on their Performance

Bayesian models accounting for additive genetic effects
(Bayesian Ridge Regression [BRR], Bayesian LASSO [BL],
BayesA, BayesB and BayesC), and reproducing kernel
Hilbert space models with pedigree (P), markers (M),
pedigree and markers (PM) accounting for non-additive
genetic effects (RKHS_P, RKHS_M and RKHS_PM)
were compared. All models were implemented in
R-package BGLR (Pérez and de los Campos, 2014) using
10807 BA-SNP markers. Since the training popula-

tion consisted of many small families and genotypes of
different ploidy levels, both phenotype and SNP data
were completely randomized in the same order. The aim
was to minimize the effect of family structure and ploidy
level during cross validation.

The phenotype data used were the average phenotypic
observations per genotype per field. These were calculated
using the function ‘aggregate’ provided in R-package plyr.
The training population was divided into five groups and

each group was used once as the testing (cross validation)
set. The predictive ability of the model was determined

as the average correlation between the predicted and
observed phenotype of the testing sets from five cross
validations. Across field management, cross validation was
done so that data from one field were used to generate the
model using the training set, and the predicted pheno-
types of the genotypes in the testing set were correlated to
the observed phenotypes in the second field.

For all models, the priors for parameters such as
shape, rate, and counts were estimated from the data.
However, for BayesB and BayesC models, the prior
probability of a marker having a non-null effect on the
phenotype (probIn value) was set at 0.05 and the degrees
of freedom were set according to the available phenotype
and genotype data. The genetic variance in all models
was set at 0.5. For every cross validation, 10,000 itera-
tions were run with a burnIn of 5000 and thin 10.

The fifteen traits mentioned above were predicted with
all models to determine the best genomic prediction model
for each trait or group of traits. The effect of using models
generated with data from low input field management to
predict performance of genotypes under high input manage-
ment and vice versa (G x E effect) was also evaluated.

Next, the effect of crop cycle on trait prediction was
evaluated using one of the best identified genomic predic-
tion model. Cross validation across and within crop
cycles was done using the 10807 BA-SNP markers and the
average phenotype per crop cycle 1 and crop cycle 2 of
each field. Five cross validations were performed without
overlap of genotypes between the training and testing
set in each round. Only a few traits representing the trait
categories were considered because of high correlation
of traits within trait categories (Nyine et al., 2017). They
included plant girth at 100 cm from soil surface, index of
non-spotted leaves, bunch mass, and fruit circumference.
The total number of suckers was not analyzed because
this trait was scored only in crop cycle 1.

Effect of Allele Dosage on Model Performance

The performance of BayesB, BRR, BL, and RKHS_M
models fitted with BA-SNP and AD-SNP markers was
compared for the 15 traits. Predictions based on BA-SNP
markers were used as the baseline for comparison. Equal
number of SNP from same loci for both BA-SNP and
AD-SNP were used. Combined phenotypic data from the
two fields for the two crop cycles (environment averaged
data) were used to calculate the mean phenotype of each
individual genotype. In this cross-validation strategy,
first, genotypes were completely randomized. A five-fold
cross validation was performed using similar priors to
determine the predictive ability of the model for the trait.
Second, the performance of parents’ model versus prog-
eny’s model was compared using BA-SNP and AD-SNP.
Here, the training set consisted of either only parents
(parents’ model), or progeny (progeny’s model). Third,
the population was divided into three groups consisting
of diploids, triploids, and tetraploids. The training set
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comprised of any two of the ploidy groups while the
testing set consisted of genotypes from one ploidy level.
Due to differences in population sizes under different
ploidy level, we also used only triploids to compare the
effect of accounting for allele dosage.

The effect of using averaged environment model was
assessed based on AD-SNP to predict plant girth at 100
cm from soil surface, total number of suckers, index of
non-spotted leaves, bunch mass, and fruit circumference
under low and high input fields. The percentage differ-
ence in prediction (PDP) between low and high input
fields was calculated in reference to the prediction in the
low input field management.

To understand the variation and trend of predictive
ability across traits, both broad (H?) and narrow (h?)
sense heritabilities were estimated following the methods
described by Kruijer et al. (2015). The BA-SNP markers
(10,807) and phenotypic means from each field were used
to estimate h? using R-package heritability while the
results from analysis of variance were used to estimate
H2. Type B genetic correlation was also performed based
on phenotypic means from GSI and GS2 to determine
the effect of G x E interaction on the trend of trait
prediction across fields (Burdon, 1977).

The Accuracy of Genomic Prediction

within the Training Population

The GEBV obtained from the models fitted with
AD-SNP with best and worst predictive abilities for plant
girth, total number of suckers, index of non-spotted
leaves, bunch mass and fruit circumference were used

to rank the genotypes. The top 100 genotypes were
compared with the best 100 genotypes ranked on the
basis of the environment averaged phenotypic data. The
number of genotypes out of 100 captured by both GEBV
and phenotypic data was reported as the estimated
accuracy of genomic prediction within the training
population. For this analysis, the best genomic prediction
model identified above was used.

RESULTS

Genotyping

The discovery of SNP markers from GBS reads for the
training population was based on the latest publicly
available version of the double haploid Musa acumi-
nata cv. Pahang reference genome sequence (Martin

et al.,, 2016). To account for allele dosage in genotypes
of different ploidy, a workflow was developed for the
analysis of sequence data and GATK, UnifiedGeno-
typer was used as SNP caller (Supplemental Fig. S1). It
produced 52076 BA-SNP after pre-filtering. Less than
one percent of the loci had multi-allelic SNP. They were
eliminated from the data to avoid potential sequencing
artifacts. After further stringent filtering in R (R core
team, 2016), 10807 BA-SNP markers that were polymor-
phic with a minimum minor allele frequency of 0.01 were
retained. These were distributed on 11 pseudomolecules
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Fig. 3. Distribution of filtered SNP markers on 11 pseudomol-
ecules of the double haploid of M. acuminata cv. Pahang (Martin
et al., 2016). Q represents the unanchored scaffolds.

as well as on unanchored scaffold of the banana refer-
ence genome (Fig. 3). The percentage of imputed missing
genotypes was 16%. Accounting for allele dosage within
the ploidy groups (diploids, triploids, and tetraploids)
reduced the number of SNP markers to 5574.

Comparison of Genomic Prediction Models
and the Effect of Field Management and

Crop Cycle on their Performance

The best genomic prediction model for different traits
was selected based on congruity of predictive ability
results from cross validation between fields using
BA-SNP markers. The predictive ability of all models
varied across traits (Table 1; Supplemental Table S2).

For 12 out of 15 traits, genomic prediction models that
account for additive genetic effects gave the highest
predictions ranging from 0.2 to 0.72. These were the
correlations between the predicted and observed pheno-
types for the various traits. Reproducing kernel Hilbert
space model combining both pedigree and marker
information (RKHS_PM) gave the highest predictions
ranging from 0.24 to 0.49 for 3 out of 15 traits and these
were the days to fruit maturity, height of tallest sucker
at flowering and height of tallest sucker at harvesting.
BayesB and BayesC models predicted equally well and
better than other models for fruit filling and fruit bunch
traits. For example, the predictions of all fruit filling
traits by both models ranged from 0.65 to 0.72. For plant
stature, suckering behavior and black leaf streak resis-
tance traits, BayesB and BayesC models were not the best,
but either had the same predictive ability, or were lower
by 5 - 13 % in prediction as compared to other models.
The trend of prediction starting from the highest to

the lowest trait category was fruit filling, fruit bunch,
plant stature, black leaf streak resistance, and suckering
behavior. In general, genomic prediction models fitted
with phenotypic data from GS1 underpredicted the
performance of genotypes in GS2, and vice-versa (Fig.
4), but this did not affect the trend of prediction across
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Table 1. Comparison of average correlation (standard errors in parentheses) for five-fold cross validations
between the predicted and observed phenotypes across models fitted with data from either low input (GS1) or
high input (GS2) fields and 10807 bi-allelic SNP markers.

BRR BayesB BayesC RKHS_M RKHS_PM
Trait category Trait GSI 652 GSI 652 GS1 62 GS1 652 GS1 652
Plant stature Plant height 0.54 (0.06) 046 (0.09) 0.54 (0.06) 0.44(0.09) 0.54 (0.07) 0.45(0.09) 0.55(0.06) 0.44(0.09) 0.54 (0.05) 0.48 (0.07)
Plant girth 0.60 (0.06) 0.52(0.05) 0.60 (0.06) 0.52 (0.06) 0.60 (0.06) 0.51 (0.05) 0.60 (0.06) 0.51 (0.06) 0.55 (0.04) 0.50 (0.05)
Suckering behavior Total number of suckers 0.16 (0.06) 0.17(0.06) 0.16 (0.06) 0.1(9 (0.06) 0.15(0.06) 0.19(0.07) 0.17 (0.06) 0.18 (0.06) 0.16 (0.04) 0.17 (0.07)
Height of tallest sucker at flowering  0.28 (0.05) 0.18 (0.09) 0.27 (0.05) 0.20 (0.08) 0.26 (0.05) 0.2 (0.08) 0.28 (0.05) 019 (0.09) 0.30 (0.06)*0.24 (0.09)*
Height of tallest sucker at harvesting 0.27 (0.05) 0.26 (0.07) 0.28 (0.06) 0.24 (0.06) 0.27 (0.06) 0.25(0.07) 0.26 (0.05) 0.26 (0.06) 0.29 (0.03)*0.32 (0.07)*
Black leaf streak  Number of standing leaves at flowering 0.36 (0.08) 0.42 (0.08) 043 (0.06) 040 (0.08) 0.36 (0.08) 0.41(0.08) 0.37 (0.08) 0.41(0.08) 0.29 (0.07) 0.34 (0. 04
Index of non-spotted leaves  0.35 (0.04) 042 (0.06) 0.34 (0.05) 043 (0.06) 0.34 (0.05) 043 (0.06) 0.35(0.05) 042 (0.06) 0.32 (0.07) 0.36 (0.1
Fruit bunch Days to fruit maturity 047 (0.07) 042(0.09) 047(0.07) 042(0.09) 046 (0.07) 042(0.09 047(0.07) 042(0.10) 049 (0.06)* 0.4 (0. 09)*
Bunch mass 0.63 (0.03) 0.61(0.03) 0.64 (0.03)*0.62 (0.03)* 0.64 (0.03)*0.62 (0.03)* 0.61 (0.03) 0.61 (0.03) 0.52 (0.06) 0.55 (0.04)
Number of hands 0.60 (0.03)*0.62 (0.04)* 0.60 (0.02)*0.62 (0.04)* 0.59 (0.02) 0.62 (0.04) 0.59 (0.03) 0.62 (0.04) 048 (0.03) 0.53 (0.02)
Number of fruits 047 (0.03) 0.51(0.04) 047 (0.03)*0.52 (0.04)* 0.47 (0.02)* 0.52 (0.04)* 0.45 (0.03) 0.52 (0.04) 0.35(0.04) 045 (0.04)
Fruitfilling Fruit length 0.65 (0.04) 0.64 (0.02) 0.67 (0.04)*0.65 (0.02)* 0.67 (0.03)* 0.65 (0.02)* 0.64 (0.04) 0.64 (0.02) 0.59 (0.07) 0.59 (0.02)
Fruit circumference 0.67 (0.02) 0.66 (0.01) 0.70 (0.01)* 0.69 (0.01)* 0.70 (0.01)* 0.69 (0.01)* 0.65 (0.02) 0.66 (0.01) 0.57 (0.05) 0.60 (0.02)
Fruit diameter 0.67 (0.01) 0.63(0.05 0.70 (0.01)* 0.71 (0.02)* 0.70 (0.01)* 0.71 (0.02)* 0.65 (0.02) 0.67 (0.03) 0.57 (0.04) 0.59 (0.02)
Pulp diameter 0.67 (0.02) 0.68 (0.04) 0.70 (0.00* 0.72 (0.03)* 0.70 (0.01)* 0.72 (0.03)* 0.65 (0.02) 0.67 (0.04) 0.57 (0.04) 0.60 (0.03)

*Highest predictive value observed in both 6S1 and 652 for a trait using same model type. The values under GS1 column are the correlations between predicted and observed phenotype (predictive ability) in 652

when 6S1 data were used to fit the model and vice versa for GS2 column.

traits. Little difference in prediction was observed across
all models for traits within the same category.

The performance of RKHS model fitted with marker
data (RKHS_M) was comparable to BRR, BL, and BayesA
models fitted with marker data. RKHS model fitted with
pedigree information alone (RKHS_P) had the least predic-
tive ability that ranged from 0.12 to 0.5 (Supplemental Table
S2). There was a 4 to 29% loss in predictive ability (LIP) of
most traits when marker and pedigree information were
combined in the RKHS_PM model. However, the same
model gave a 4 to 21% gain in prediction for plant height,
height of tallest sucker at flowering, height of tallest sucker
at harvesting and days to fruit maturity.

The effect of crop cycle on trait prediction was tested
with BayesB model using BA-SNP markers, because this
model either out-performed other models, or performed
equally well as noted in Table 1; Supplemental Table S2. The
cross-validation strategies used were (a) within crop cycle
cross validation for which both the training and testing sets
were from the same crop cycle and (b) across crop cycle
cross validation where the training and testing sets were
selected from different crop cycles within the same field.
The predictive ability of BayesB model fitted with crop cycle
1, or crop cycle 2 data in both low input and high input
fields yielded mixed results when within and across crop
cycle cross validations were performed for different traits
(Table 2). Predictive ability of the model for fruit circumfer-
ence and bunch mass ranged from 0.58 to 0.73, while for
plant girth and index of non-spotted leaves ranged from
0.39 to 0.61 and 0.26 to 0.44, respectively, in both fields and
crop cycles. Less than 2% variation in prediction across
and within crop cycles was observed in both bunch mass
and fruit circumference. The highest difference of 20% in
prediction across (0.28) and within (0.35) crop cycle was

recorded in GS2 for index of non-spotted leaves when crop
cycle 2 data were used to fit the model.

Effect of Allele Dosage

The effect of AD-SNP on predictive ability of the best
genomic prediction models was evaluated for 15 traits in
comparison to predictions based on BA-SNP markers.
For both BA-SNP and AD-SNP, 5574 SNP markers from
the same loci and combined phenotypic data from the
two fields for the two crop cycles (environment averaged
data) were used to fit the models. First, genotypes were
completely randomized to minimize the effect of family
structure and ploidy. Second, the training set consisted
of either only parents (parents’ model), or progeny
(progeny’s model). Third, the population was divided
into diploids, triploids, and tetraploids. The training
set comprised of any two of the ploidy groups while the
testing set consisted of genotypes from one ploidy level.
Lastly, only triploids were considered during cross vali-
dation since 85% of genotypes in the training population
were triploids. The aim was to understand what traits
and which ploidy level were mostly affected by allele
dosage when implementing genomic predictions.

The results of the comparison of the effect of
allele dosage on performance of BayesB, BRR, BL, and
RKHS_M models are summarized in Table 3. When
AD-SNP were used to fit the models, predictive ability of
all models was trait dependent, but generally reduced by
15% on average as compared to the traditional BA-SNP
markers. When only triploids were considered during the
cross validation, predictive ability for fruit circumfer-
ence fell by 10% from 0.76 to 0.68, while for bunch mass
it decreased by 5% from 0.62 to 0.59. The highest loss in
prediction (PLP) of 24 to 44% was observed in suckering
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Table 2. Average predictive ability (standard errors in parentheses) of BayesB model fitted with either crop cycle
1, or crop cycle 2 phenotype data from low (GS1) and high (GS2) input field management using bi-allelic SNP
markers to predict traits across and within crop cycles.

Low input field management (GS1) High input field management (GS2)
(ycle T model (ycle 2 model (ycle T model Cycle 2 model
Trait category Trait Across Within Atross Within Across Within Atross Within
Plant stature Plant girth 0.39(0.04)  0.55(0.03) 51(0.02) 044005  0.54(0.02 059(0.02) 61(0.02  0.57 (0.02)
Black leaf streak  Index of non-spotted leaves 042 (0.06)  0.44 (0.03) 040 (0.04) 041(0.03)  0.30(0.08)  0.26(0.04) 028 (0.05)  0.35(0.05)
Fruit bunch Bunch mass 0.58(0.03) 0.60(0.04) 060 (0.06) 059(0.03) 063002 0650003  065(0.02 0.2 (0.03)
Fruit filling Fruit circumference 072(002) 071(0.03) 072(0.04) 072(002)  073(002) 073(0.03) 071(0.02 0.72(0.02)
3 A 3 ° and location of BA-SNP and AD-SNP, the environ-
%: oo ment (field management) averaged models with BA-SNP
2 8- e & %‘% ° markers gave higher predictions than those obtained with
g o . 5° across field cross validation with 10,807 SNP markers for
H s Qgg" L all traits. The highest predictive ability recorded was 0.75
s 87 S go:%o ° for fruit filling traits with the BayesB model (Table 3).
5 0 oof,f - LAY When only parental data were used to fit BayesB model
3 & - " %§° - (parents’ model), the predictive ability of traits within the
g o progeny ranged from 0.13 to 0.59 for BA-SNP and from
gd° °° -0.15 to 0.33 for AD-SNP (Supplemental Table S3). The LIP
R due to accounting for allele dosage was 63% on average
o a fox G e e G (36-179%). Similarly, when progeny data were used to fit
Predicted PHF (cm) BayesB model (progeny’s model), the predictive ability of
traits within parents ranged from 0.39 to 0.86 with BA-SNP
s |B °© and from -0.03 to 0.77 with AD-SNP markers. The LIP

due to accounting for allele dosage was 35% on average
(1.5-107%). The highest predictive value obtained with
BayesB model fitted with BA-SNP was 0.86 for number of
hands. This prediction dropped by nearly 50% (0.48) when
AD-SNP markers were used. Prediction accuracy of the
same trait in progeny using parents’ model was 0.45 with
BA-SNP and 0.03 with AD-SNP markers. The prediction
of bunch mass in the progeny using a parents’ model with

Observed PHF (cm)
300
1

3] AD-SNP was 0.17 while the prediction of the same trait in
& parents using a progeny’s model reduced to 0.08.
. : : ; Since allele dosage varies with ploidy level, cross vali-
200 250 300 350 dation across ploidy levels was performed. Genotypes from

Predicted PHF (cm) two ploidy levels were used to train the model and only
genotypes of same ploidy level were included in the testing
set during cross validation. Accounting for allele dosage
positively increased the predictive ability of all fruit filling
traits in tetraploids with BayesB model, but the results from
other trait categories varied greatly (Supplemental Table
S4). For example, prediction of pulp diameter increased
from -0.39 to 0.60, fruit diameter increased from -0.45 to

Fig. 4. Prediction of plant height at flowering (PHF) using a Bayesian
ridge regression model fitted with phenotype data from low input
field (A) and high input field (B). Where A, shows underprediction
and B, shows overprediction of PHF. The black and magenta circles
represent genotypes in the training and testing sets, respectively.

behavior traits when AD-SNP markers were used to fit 0.53 and fruit circumference increased from -0.15 to 0.35.
model using genotypes from all ploidy levels. However, BayesB model fitted with triploid and tetraploid data, and
the trend of prediction within and across trait categories BA-SNP gave the predictions ranging from 0.32 to 0.86 for
did not change by accounting for allele dosage. Fruit traits among diploids. Tetraploids and diploids were the
filling traits were the best predicted with the highest least represented in the training population (47 out of 307
predictive ability of 0.68 for pulp diameter. BayesB model ~ genotypes, or 15%) and of which the majority were parents.
maintained its superior prediction accuracy over other When their data were used to fit the model to predict traits
models, especially for fruit filling and fruit bunch traits. in triploids the prediction varied from 0.20 to 0.54 and
Although the number of SNP markers used in this from -0.06 to 0.11 with BA-SNP and AD-SNP, respectively.
prediction was reduced to 5574 because we wanted to When BayesB model was fitted with the environment
eliminate the bias in predictions due to variable number averaged data (including all ploidy levels) and AD-SNP
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Table 3. Effect of accounting for allele dosage on the predictive ability of genomic prediction models using

environment averaged phenotype data.

Bi-allelic SNP Allele dosage SNP

Trait category Trait BRR BayesB BL RKHS_M BRR BayesB BL RKHS_M
Plant stature Plant height 0.54 (0.03)1 0.53(0.02) 0.52(0.03) 0.53(0.03) 0.46(0.07) 0.45(0.06) 044(0.07) 0.45(0.07)
Plant girth 0.53 (0.04) 053 (0.03) 0.52(0.04) 0.52 (0.04) O 48 (0.04)  0.47 (0.04) O 47 (0.04) O 48 (0.04)
Suckering behavior Total number of suckers 0.32 (0.06)  0.29 (0.06) 0.33(0.05) 0.31 (0.06) 21(0.05) 0.16(0.05) 0.21 (0.05 0.21(0.05)
Height of tallest sucker at flowering ~ 0.37 (0.04)  0.34 (0.04)  0.37 (0.04)  0.38 (0.04) O 27 (0.06)  0.26 (0.05 0.27 (0.05) O 28 (0.05)
Height of tallest sucker at harvesting ~ 0.35 (0.04)  0.33 (0.03)  0.34 (0.04) 0.35(0.04)  0.24(0.03) 0.23(0.03) 0.23 (0.03) 0.25 (0.03)
Black leaf streck ~ Number of standing leaves ot flowering ~ 0.49 (0.05)  0.48 (0.05)  0.48 (0.05) 0.48 (0.05)  0.48 (0.06) 0.48 (0.06) 048 (0.06) 0.49 (0.06)
Index of non-spotted leaves 0.58 (0.03) 059 (0.03) 0.58(0.03) 0.58(0.03) 0.53(0.03) 0.52(0.03) 0.53(0.04) 0.53(0.03)
Fruit bunch Days to fruit maturity 0.53 (0.05) 054 (0.06) 0.53(0.06) 0.53(0.06) 0.44 (0.05) 0.43(0.05) 0.441(0.05 0.44(0.05
Bunch mass 0.61(0.05 0.62 (0.04) 0.61 (0.05) 0.61 (0.04)  0.54(0.03) 0.56 (0.03) 0.54 (0.03) 0.54(0.02)
Number of hands 0.63 (0.04) 0.62(0.04) 0.62 (0.04) 0.63 (0.04)  0.56 (0.03) 0.56 (0.03) 0.56 (0.03) 0.56 (0.03)
Number of fruits 049 (0.04) 049 (0.04) 0481(0.04) 0.501(0.04) 043 (0.03) 042(0.04) 042(0.03) 043 1(0.04)
Fruit filling Fruit length 0.69(0.02) 0.70(0.02) 0.69 (0.03) 0.69 (0.02)  0.60 (0.03) 0.64 (0.02) 0.60(0.02) 0.59 (0.03)
Fruit circumference 0.67 (0.03) 0.75(0.02) 0.68 (0.03) 0.66 (0.03)  0.59 (0.03) 0.66 (0.03) 0.60 (0.03) 0.59 (0.03)
Fruit diometer 0.67 (0.03)  0.75(0.02) 0.68 (0.03) 0.66 (0.03)  0.60 (0.03) 0.67 (0.03) 0.62 (0.02) 0.60 (0.02)
Pulp diameter 0.68 (0.03) 0.75(0.03) 0.69 (0.03) 0.67 (0.03)  0.61(0.03) 0.68 (0.03) 0.63 (0.03) 0.61 (0.02)

1The values in parentheses are the standard errors of predictive ability.

to predict the traits under low and high input fields, there
was a 2 to 8% increase in predictive ability under high
input field relative to low input field for plant girth, bunch
mass and fruit circumference (Table 4). However, for total
number of suckers and index of non-spotted leaves, the
predictions reduced by 47 and 15%, respectively.

Estimated H? and h? had positive relationship with
predictive ability. However, h? varied across fields with
some traits having higher h? than H? (Table 5). A similar
trend was observed between Type B genetic correlation
and predictive ability. The correlation varied between
0.71 and 0.9 for fruit bunch, fruit filling and plant stature
traits. The lowest correlation was recorded on the index
of non-spotted leaves (Table 5).

The Accuracy of Genomic Prediction

within the Training Population

The first 100 genotypes with the highest GEBV and

the first 100 genotypes with the highest environment
averaged phenotypic data were compared (Fig. 5). The
GEBYV used were obtained from BayesB model with best
and worst predictive abilities based on AD-SNP markers.
The number of genotypes out of 100 captured by both
GEBYV and phenotypic data was reported as the estimated
accuracy of genomic prediction within the training popu-
lation for the trait. The accuracy of prediction ranged from
76 to 84% for all the traits whereas the prediction values
ranged from 0.04 to 0.76. Models that gave high predictive
ability values had also the highest prediction accuracy.

DISCUSSION
Genotyping

Genomic selection as a form of marker assisted selec-
tion has been investigated in a range of plant species
including, for example, maize and wheat (Heftner et

al., 2011; Crossa et al., 2014; Crossa et al., 2016; Pérez-
Rodriguez et al., 2017), white spruce (Beaulieu et al.,
2014), sugar beet (Wiirschum et al., 2013), apples (Kumar
et al., 2012), strawberries (Gezan et al., 2017), and rice
(Onogi et al., 2016). In these experiments, genotypes of
same ploidy level constituted the training population.
The present study on banana is unique in this respect

as three ploidy levels were represented in the training
population. Within the three ploidy levels, both parents
and progeny were represented in varying proportions.
The hybrids in the training population arose from 77
cross combinations, mainly involving crosses between
tetraploids and diploids (Nyine et al., 2017). Innovative
approaches in SNP calling, including custom R-script
had to be adopted for such an unconventional popula-
tion (Supplemental Fig. S1). The script removes loci with
monomorphic SNP, eliminates loci with more than two
alternative SNP alleles, and converts the SNP file into a
numerical format while accounting for allele dosage, and
it can be customized to any polyploid plant species. Loci
with multi-allelic SNP were eliminated because GBS is a
low coverage sequencing technology. This makes it hard
to differentiate true rare SNP from sequence artifacts
especially when the population is small and the species is
clonally propagated due to lower rate of multiple muta-
tions at the same locus. Bowtie2 was used as the sequence
alignment tool while GATK, UnifiedGenotyper was the
variant caller. However, as indicated by Clevenger et al.
(2015), optimal alignment programs and variant callers
may vary among species.

GATK (https://software.broadinstitute.org/gatk/
documentation/) in particular is useful when handling
polyploid species. It allows setting the ploidy level and
reduces false positive SNP calls arising from frameshifts by
running INDEL realignment step (Clevenger et al., 2015).
When Picard tools (https://sourceforge.net/projects/picard/
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Table 4. Performance of BayesB model fitted with average phenotype data for all fields (environments) and AD-
SNP markers for predictions of five traits representing the trait categories within low and high input fields.

Trait category Trait Low input field (GS1) High input field (652) Percentage loss in prediction (PDP)
Plant stature Plant girth 0.48 (0.07) t 0.52 (0.08) 8.3
Suckering behavior Total number of suckers 0.15(0.05) 0.08 (0.05) -46.7
Black leaf streak Index of non-spotted leaves 0.39 (0.06) 0.33 (0.05 154
Fruit bunch Bunch mass 0.56 (0.05) 0.57 (0.05) 1.8
Fruit filling Fruit circumference 0.66 (0.01) 0.69 (0.03) 45

1The values in parentheses are the standard errors of predictive ability, PDP is percentage difference in prediction.

Table 5. Estimated broad (H?), narrow (h?) sense heritability within low (h2_GS1) and high (h?_GS2) input fields and

type B genetic correlation (r) between GS1 and GS1.

Trait category Trait H? h?_GS1 h?_GS2 r GS1/652 (type B)
Plant stature Plant height 0.89 0.99 093 0.79
Plant girth 0.90 093 091 0.83
Suckering behavior Total number of suckers 0.80 0.45 0.36 049
Height of tallest sucker at flowering 0.82 0.70 093 0.56
Height of tallest sucker at harvesting 0.86 041 0.84 0.47
Black leaf streak Number of standing leaves at flowering 0.83 0.63 0.81 0.54
Index of non-spotted leaves 0.72 0.72 0.63 0.38
Fruit bunch Days to fruit maturity 0.89 0.65 0.85 0.71
Bunch mass 0.94 096 0.95 0.86
Number of hands 093 091 091 0.81
Number of fruits 0.89 097 0.94 0.74
Fruit filling Fruit length 0.96 097 098 0.84
Fruit circumference 097 0.94 0.96 0.87
Fruit diometer 097 093 0.99 0.89
Pulp diameter 0.97 0.93 0.92 0.90

files/picard-tools/1.100/) are used prior to SNP calling,
normalization of sequence reads is possible by marking
and removing duplicate reads. This allows regions with low
reads coverage, but carrying SNP of interest to be included
in the genotype data. Picard tools also allow merging of
aligned sample reads by addition of read groups, which
help in separating genotypes after SNP calling.

What is the Best Genomic Prediction Model

for Each Trait or Group of Traits2

Different genomic prediction models were compared in
this work in terms of their predictive ability, or accuracy
for different traits as noted in Table 1 and Supplemental
Table S2. We compared the performance of models that
account for additive genetic effects and those that account
for non-additive genetic effects. A good performance of
models that account for additive genetic effects suggested
that a large proportion of phenotypic variation observed
in the training population was due to additive genetic
effects. Indeed, traits with high narrow sense heritability
(h?) had higher predictive values. A similar observation
was made by Luan et al. (2009). They reported a strong
relationship between prediction accuracy and trait herita-
bility in Norwegian red cattle. Differences in h? between
GS1 and GS2, and H? were attributed to bias in residual
error variance. Using phenotypic means reduces error
variance leading to over estimation of h? as compared to
replicated phenotypic data used in estimating H?. Usually,

proper estimation of heritability requires balanced pheno-
typic data (Piepho and Mohring, 2007). However, it is
hard to get balanced data for bananas because growth is
not synchronized between plants as well as data collection,
which causes high variation between genotypes and repli-
cates in the same environment. Generally, H? is specific

to a given population at a given location and period, but
depending on the genetic architecture of the trait correla-
tions might be observed across populations. For example,
our H? results are comparable to those summarized by
James et al. (2012) from various publications on bananas
and plantains.

Additive genetic effect models BayesB and BayesC
performed better than or equally well as other models.
These models perform both shrinkage and variable selec-
tion on markers to include in the model (Desta and Ortiz,
2014). The prior probability of a marker having a non-null
effect () was set at 0.05 in both models because it gave the
highest predictive ability values as compared to higher prior
settings. It is likely that the same markers were selected and
included in both models thus yielding closely related results.

Our results agree with other studies, which indicate
that models that perform specific shrinkage and variable
selection give better predictive ability values. For
example, Crossa et al. (2010) showed that a BL model that
shares some characteristics with BayesB outperformed
BLUP, which assumes equal variance for each marker.
Similarly, Clark et al. (2011) reported the superiority of
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Fig. 5. Accuracy of genomic prediction in the training population.
(A) Percentage of genotypes selected by both GEBV and pheno-
typic data within the first best ranked 100 genotypes. (B) Cor-
relations of the best and worst BayesB models used to generate
GEBV. Where, PG is plant girth at 100 cm from soil surface, TS is
total number of suckers, INSL is index of non-spotted leaves, BM is
bunch mass, FC is fruit circumference and CV is cross validation.

BayesB model over genomic BLUP. They argued that the
superiority was highly dependent on the presence of large
QTL effects. In relation to this argument, it is likely that
even in banana, fruit filling traits could be controlled by
large effect QTL that were selected by BayesB model in
all cross-validations. However, this remains to be proved
by QTL mapping and genome-wide association studies
that are out of the scope of this study. Tagging of loci
controlling fruit filling with DNA markers and selecting
for favorable alleles should also be considered. Fruit
filling is a bunch mass component that reflects the sink
capacity of a fruit bunch. It was treated separately from
other bunch mass components to better describe the
proportion of edible part of the fruit. Variation in perfor-
mance of models that perform shrinkage and variable
selection has also been reported. For example, in loblolly
pine, BayesCnt (Habier et al., 2011) and BayesA had better
prediction of fusiform rust disease-resistance traits than
BL (Resende et al., 2012)

The predictive ability of all models varied across
traits. Similar predictive values for traits within the same
category confirmed the findings of Nyine et al. (2017)
who reported a high correlation between these traits and

recommended that only traits easier to phenotype should
be considered for genomic predictions. The difference

in model performance between trait categories suggests
that variation in trait architecture, number of QTL
controlling the trait and linkage disequilibrium between
markers and QTL influence the performance of the
models (Clark et al., 2011).

The RKHS_PM model, which accounts for non-addi-
tive genetic effects yielded mixed prediction results. While
some traits had a slight increase in prediction, a majority
showed loss in predictive ability (Table 1; Supplemental
Table S2). Previous studies (Crossa et al., 2010) indicated
minor improvement in trait prediction in wheat and maize
when marker and pedigree information were included in
the model. However, Pérez-Rodriguez et al. (2017) reported
better prediction with RKHS_P for wheat lines in interna-
tional environments. The contradictions could be attributed
to the training population structure. Our training popula-
tion consisted of 77 subfamilies (cross combinations) of
varying sizes with diverse pedigree background (Nyine et
al,, 2017). This suggests that when the population consists
of many subfamilies, the relationship by pedigree becomes
less important. This is reflected by the poor performance of
RKHS_P model, which gave the least prediction accuracy
for all traits (Supplemental Table S2). A similar trend was
observed by Beaulieu et al. (2014). Hence, the estimates
of allele distribution within such a population is better
performed with marker data, while addition of pedigree
information distorts the relationship between the geno-
types. Zhong et al. (2009) also highlighted that knowledge
of pedigree is less informative in populations where the
average genetic relationship is low and homogeneity is high.

What is the Effect of G x E on Model Predictions?

We used a very conservative approach in determining
the best genomic prediction model by carrying out across
field (environment) cross validations. The purpose was to
understand the effect of genotype by field management
(G x E) interaction on the model performance. Nyine

et al. (2017) performed analysis of variance on the same
population and reported a variation in G X E interac-
tion across different traits. However, type B genetic
correlations (Table 5) were high for traits related to fruit
bunch and fruit filling, which explains why they had
high predictive ability values across all cross-validation
strategies. When Burdon (1977) proposed the use of type
B genetic correlation, he noted that in the analysis of
variance, any genetic expression variation between envi-
ronments can lead to statistical interaction that is not
necessarily a true interaction characterized by a change
in ranking of genotypes between different environ-
ments. The results showed that models fitted with GS1
phenotype data underpredicted the phenotypic expres-
sion of genotypes in GS2 while the models fitted with
GS2 phenotype data overpredicted genotypes in GSI1
(Fig. 4). However, the trend of prediction did not change
(Table 1). A similar approach was used by Ly et al. (2013),
who observed that across environment cross validations
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resulted into lower prediction accuracies. However, our
prediction values were substantially higher as compared
to those reported in other crops.

Trait overprediction in GS1 with models fitted with
GS2 data and vice versa indicated a variation in genotype
response to environment that influenced the training
population trait mean, estimated marker effect and
the predictive ability of the genomic prediction models
(Crossa et al., 2016). The high correlation between the
two fields shows that it is possible to use phenotype data
from any of the field management conditions to predict
genotypes that have the potential to perform well in other
field management conditions. However, the predicted
and the actual observed phenotype may differ for a single
genotype. For example, plants that had poor fruit filling
characteristics under low input field management did not
fill under high input field management, as well. However,
for genotypes that fill their fruits, there was an increase
in fruit size depending on the amount of available nutri-
ents and soil moisture in the field. A similar trend was
reported in maize flowering where QTL were consistent
across environments and less affected by environment
interaction (Buckler et al., 2009). This means that genomic
prediction models could be used in ‘negative selection’ to
discriminate the poor fruit filling hybrids from those with
potential of fruit filling at an early stage.

In banana breeding, most triploid hybrids are sterile.
The application of genomic prediction in its strict sense
of selecting best parents for further crossing (Meuwissen
et al,, 2001; Gorddard and Hayes, 2007) may not be
realistic, unless the focus is only on diploid and tetra-
ploid improvement. Since the prediction models give
both GEBV and predicted phenotype (Pérez and de
los Campos, 2014), these two parameters can be used
to eliminate triploid hybrids that are likely to be of no
value. Crossa et al. (2014) also proposed that another
application of genomic prediction was to predict the
genetic values of individuals for potential release as
cultivars. Therefore, if the prediction accuracy remains
high during the breeding phase, then breeders could
save time, space, and money by excluding 90% of hybrids
from phenotyping (Fig. 2). To achieve this, breeders
have to set priority order of traits, which could serve
as the ‘selection index’ for promising candidate culti-
vars (i.e., within triploids hybrids) and future parental
clones (within diploid and tetraploid hybrids). Also,
family based selection should be done to reduce future
inbreeding and maximize genetic diversity to ensure
increase in genetic gain (Jannink et al., 2010).

Although crop cycle was shown to influence varia-
tion in fruit filling, fruit bunch and plant stature, and
no effect on black leaf streak resistance traits (Nyine et
al., 2017), the predictions within and across crop cycle
1 and crop cycle 2 did not vary much for fruit filling
and fruit bunch traits. This is because fruit filling and
fruit bunch traits increase in crop cycle 2 relative to
crop cycle 1 (Tushemereirwe et al., 2015). However, for
black leaf streak resistance, resistant hybrids remain

resistant across crop cycles and field management.
Variation may be observed among susceptible hybrids
depending on the spore density in the field (Tushem-
ereirwe, 1996). Disease expression also depends on vigor
of the plant due to available nutrients, seasonal changes
and relative humidity in the field (Tushemereirwe, 1996).
This probably explains the variation observed in the
prediction within and across crop cycle for the index of
non-spotted leaves.

In bananas, suckering behavior traits had the lowest
prediction accuracy. One possible explanation is the low
heritability and poor representation of markers linked
to the QTL controlling these traits. Second, scoring total
number of suckers at crop cycle 1 from a trial established
with suckers, seems to result in biased phenotype data.
Two types of suckers are used as planting materials, the
sword and maiden suckers. Most maiden suckers are much
closer to flowering than sword suckers (Ortiz and Vuyl-
steke, 1994) and tend to direct most of resources toward
the initiation of the inflorescence, and less to the develop-
ment of lateral buds (future suckers). On the contrary,
sword suckers commit most of their resources to lateral
bud development. Hence, when a field is established with
suckers, the variation in physiological age of suckers likely
impacts sucker emergence that causes bias in total number
of suckers produced by a genotype at first crop cycle.

When environment averaged models were used to
predict the performance of genotypes in a particular
environment, the predictions were high (0.75 for fruit
filling traits) despite the lower number of SNP markers
(Table 3). This indicated that incorporation of data from
many environments could make the models more robust
(Burgueno et al., 2012). As discussed by Burguefio et
al. (2012), breeders either evaluate new breeding lines
so that they can select the best to advance, or evaluate
the performance stability of new, or old lines in a new
environment. In each of these cases, the model should be
robust enough to give accurate predictions in the respec-
tive environments (Pérez-Rodriguez et al., 2017). Hence,
using data from multi-environment trials and crop cycles
to fit the model has the advantage of incorporating infor-
mation due to genetic relationship and the interaction
between genotype and environment (Crossa et al., 2014).

Traits that are stable across environments are much
easier to predict using data from one environment.
However, if there is a proportional change (collinearity) in
the trait expression within an environment across geno-
types, then selection based on predictions is likely to be
efficient (Burgueiio et al., 2012). Plant environments vary
and may refer to geographical locations with different
weather and climatic conditions, difference in seasons
within a same location and difference in soil conditions
based on the different agronomic practices used. As peren-
nial plants, bananas suffer the consequences of nutrient
deficiency and soil moisture variation across seasons
and locations depending on field management practices
(Ndabamenye et al., 2012; Taulya, 2015). These factors influ-
ence phenotypic expression of traits and are likely to affect
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the predictive ability of prediction models. Although we
considered field management and crop cycle as the major
environment co-variables, phenotyping of the current
training population in a different geographical location is
ongoing. Once the data are available, they will be used to
update the models to the benefit of the breeding program.

Bi-Allelic SNP vs. Allele Dosage SNP

Whereas many factors have been reported to influ-

ence the accuracy of genomic predictions (Crossa et al.,
2014), our results showed that allele dosage was another
important factor to consider when conducting predic-
tions in multi-ploidy populations (Supplemental Table
S4). The loss in predictive ability of the models fitted with
AD-SNP relative to those fitted with BA-SNP could be
attributed to variation in minor allele frequency across
loci, a key factor for determining SNP effects on the traits
and the allopolyploid nature of the training population.
The negative correlations observed from across ploidy
cross validation indicated a weak relationship between
the training and testing sets (Crossa et al., 2016). Clearly,
not all traits were affected equally by allele dosage
(Supplemental Table S4). The effect of allele dosage
becomes more important as the ploidy level increases.
This suggests that additive genetic effects vary across
traits. It is likely that the effect of deleterious recessive
alleles is masked by the dominant alleles and the more
copies of masking alleles the better the effect (Gu et al.,
2003). However, for traits controlled by exclusively reces-
sive alleles, the effect of allele dosage may be different. In
cassava, a large proportion of deleterious alleles arising
from mutations have not been eliminated by breeding
due to limited recombination, but the maintenance

of cassava yield through breeding has been attributed

to masking of most damaging mutations (Ramu et

al., 2017).

Predictions within multi-family population was
shown by Heffner et al. (2011) to be accurate and cost
effective. It is likely that genomic prediction models
trained only on diploid segregating populations would
be less efficient in prediction of traits among triploid
banana hybrids, yet promising candidate cultivars are
selected in this ploidy level. Second, allele dosage could
be accounted for in the marker data especially when
predicting fruit filling in tetraploids although use of
models that assume diploid state of all genotypes still
performed better in many cross-validation strategies.

To ensure that good hybrids are not left out, selection
based on GEBV should be done with prior knowledge of
ploidy level in multi-ploidy populations. Bunch mass and
general phenology in bananas tend to increase with increase
in ploidy level although in banana hybrids, the trend is
not always uniform due to positive and negative heterosis
(Tenkouano, 2000). Since banana breeding involves
crossing parents of different ploidy levels, prediction of
hybrid performance based on parental phenotype data
is less accurate due to heterosis. That is why the parents’
model prediction accuracies were low. Although we did

not measure heterosis in this study, the results of selection
differential and response to selection reported by Nyine et
al. (2017) show that it exists in this training population.

When the progeny’s model was used to predict the
parental traits, the predictions were appreciably high
(Supplemental Table S3). This indicated that a large size
of the training set relative to the testing set improves
prediction (Jannink et al., 2010; Clark et al., 2011; Crossa
et al., 2014). The lesson learned is that in bananas, when
the training population is made up of many diverse
hybrids, the segregation of parental alleles is observed.
Most of the additive genetic effects, heterosis, domi-
nance, and epistasis that control the phenotype are
captured in the model when all these phenotypic variants
are available (Lorenz et al., 2011). These results suggest
that for plant species with small effective breeding popu-
lation sizes like banana that show heterosis, increasing
the number of progeny from several parental crosses in
the training population could improve the predictive
ability of the models for future hybrids as compared to
using only parental clones.

The Accuracy of Genomic Prediction

The prediction accuracy within the training population
based on GEBV was above 75% even with models that
had low predictive abilities. The accuracy of genomic
prediction model is determined by the correlation
between GEBV and the observed phenotype, or the
correlation between predicted phenotype and observed
phenotype (Jannink et al., 2010; Lorenz et al., 2011). This
shows the proportion of genetic variance explained by
marker data. It is therefore not surprising that even with
low correlations, the accuracy of prediction can be high.
Beaulieu et al. (2014) reported that with GEBV accura-
cies between 0.33 and 0.44, they were able to achieve
90% of traditionally estimated breeding values during
validation. Similarly, Heffner et al. (2011) reported a 95%
prediction accuracy of genomic prediction compared to
phenotypic selection in a multi-family wheat population
even when the predictive values ranged from 0.22 to 0.76.
The true accuracy is estimated at the validation stage
using the validation population. It depends on the size of
the training population, heritability of the trait and the
estimated number of effects (Lorenz et al., 2011). Some-
times, it is not possible to explain all the genetic variance
due to missing marker data, or failure to capture other
QTL affecting the trait. This is further confounded by
uncontrolled environmental variable (Buckler et al.,
2009; Burgueno et al., 2012). That is why genomic selec-
tion is considered less accurate than phenotypic selection
but its power lies in increased selection intensity within a
much shorter time hence increasing the genetic gain per
unit time and cost (Desta and Ortiz, 2014; Lorenz et al.,
2011). Our results suggest that even with low predictive
values, the accuracy of prediction within the training
population was high. It remains to be verified at the vali-
dation stage if the accuracy remains high. Given the long
selection cycle observed in banana as depicted in Fig. 2,
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prediction accuracies above 70% could result in acceler-
ated selection efficiency at reduced cost as compared to
phenotypic selection.

Conclusion and Practical Implications
Polyploid breeding programs ought to use genomic
prediction models that have been fitted with data from
genotypes of all ploidy levels otherwise genomic selection
will face similar limitations as other MAS techniques,
which focus on bi-parental populations for QTL and
marker discovery. Fruit filling and fruit bunch traits had
the highest predictive ability hence, could be targeted for
early selection of hybrids. Accounting for allele dosage in
SNP markers (AD-SNP) reduced predictive ability of the
models relative to traditional bi-allelic SNP (BA-SNP).
Unlike autopolyploid, allele dosage seems to have less
influence on genomic prediction in allopolyploid popula-
tions. However, if ploidy specific prediction models are
required, the R script reported could be used to generate
AD-SNP. The heritability of traits estimated in this
training population were high and positively correlated
with the predictive ability. The results demonstrate that
genomic prediction in multi-ploidy population is possible
and the prediction accuracy can be improved by using
models based on data from many different environments.
To generate prediction models for each ploidy level
is expensive in the initial stages of genomic selection,
but as the training population keeps growing it becomes
possible. To minimize costs, the current models based on
multi-ploidy population should be validated and used with
the following recommendations: (i) unlike other breeding
programs where genomic prediction is used entirely for
prediction of best parents for further crossing, in banana,
selection among triploids should aim at identifying
promising candidate cultivars because a majority of them
are sterile and breeding clones should be selected from
diploids and tetraploids, (ii) ‘selection index’ is required for
efficient selection of new hybrids, i.e., the priority order of
traits should be set for promising cultivars and breeding
clones, (iii) family-based (cross combination) selection
should be considered to avoid reducing genetic diversity,
(iv) the lowest GEBV should be targeted for plant height,
or else a ratio of plant height to plant girth at 100 cm from
soil surface should be used. In the light of genomic selec-
tion, a potential area of research would be to investigate
the level of fertility in triploid banana hybrids so that they
are also selected as parents. This will allow ‘progressive’
breeding to be practiced in banana for faster genetic gain
since some traits are already fixed in the triploids.

Supplemental Material

Supplemental Table S1: List of banana genotypes used in
genomic predictions.

Supplemental Table S2: Comparison of average correla-
tion for five-fold cross validations between the predicted
and observed phenotypes across all models fitted with
data from either low input (GS1) or high input (GS2)
fields and 10807 bi-allelic SNP markers.

Supplemental Table S3: Comparison of predictive ability
of BayesB model fitted with parents’ data and progeny’s
data using bi-allelic and allele dosage SNP markers.
Supplemental Table S4: Effect of ploidy level and allele
dosage on the predictive ability of BayesB model fitted
with environment averaged phenotype data.
Supplemental Fig. S1: Workflow used to analyze the
genotyping by sequencing (GBS) reads to generate SNP
marker data used in genomic predictions.
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Supplemental Table S1: List of banana genotypes used in genomic predictions (Nyine et al. 2017)

S/No
1

- CS N\

a1

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Genotype name Female parent Male parent Ploidy
Enzirabahima Triploid
Kabucuragye Triploid
Tereza Triploid
Enyeru Triploid
Nakayonga Triploid
Namwezi Triploid
Entukura Triploid
Nakasabira Triploid
Nakawere Triploid
Nante Triploid
Kazirakwe Triploid
Nfuuka Triploid
Calcutta 4 Diploid
1201K-1 Nakawere Calcutta 4 Tetraploid
917K-2 Enzirabahima Calcutta 4 Tetraploid
660K-1 Enzirabahima Calcutta 4 Tetraploid
1438K-1 Entukura Calcutta 4 Tetraploid
222K-1 Nfuuka Calcutta 4 Tetraploid
376K-7 Nante Calcutta 4 Tetraploid
365K-1 Kabucuragye Calcutta 4 Tetraploid
401K-1 Entukura Calcutta 4 Tetraploid
2180K-6 Diploid
8075-7 SH3362 Calcutta 4 Diploid
7197-2 SH3362 Long Tavoy Diploid
SH3142 SH1734 Pisang Jari Buaya Diploid
SH3362 SH3217 SH3142 Diploid
SH3217 SH2095 SH2766 Diploid
5610S-1 Kabucuragye 7197-2 Diploid
9128-3 Tjau lagada Pisang lilin Diploid
1968-2 Who-gu Calcutta 4 Triploid
861S-1 Namwezi Calcutta 4 Diploid
cv. Rose Diploid




33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Pisang Lilin Diploid
Kokopo Diploid
Long Tavoy Diploid
M. a. M. a. malaccensis 250 Diploid
28165S-1 1201K-1 1968-2 Triploid
25583S-2 1201K-1 5610S-1 Triploid
26660S-1 1201K-1 5610S-1 Triploid
28434S-9 1201K-1 5610S-1 Triploid
17503S-3 1201K-1 7197-2 Triploid
16242S-1 1201K-1 8075-7 Triploid
12479S-1 1201K-1 9128-3 Triploid
12479S-13 1201K-1 9128-3 Triploid
26317S-1 1201K-1 9128-3 Triploid
27262S-1 1201K-1 9128-3 Triploid
27262S-3 1201K-1 9128-3 Triploid
27770S-20 1201K-1 cv. Rose Triploid
27770S-4 1201K-1 cv. Rose Triploid
27935S-1 1201K-1 cv. Rose Triploid
27960S-1 1201K-1 cv. Rose Triploid
28036S-11 1201K-1 cv. Rose Triploid
28036S-2 1201K-1 cv. Rose Triploid
28164S-3 1201K-1 cv. Rose Triploid
28246S-4 1201K-1 cv. Rose Triploid
28246S-7 1201K-1 cv. Rose Triploid
27935S-7 1201K-1 cv. Rose Triploid
26363S-1 1201K-1 Kokopo Triploid
26075S-6 1201K-1 Long Tavoy Triploid
26075S-7 1201K-1 Long Tavoy Triploid
26075S-8 1201K-1 Long Tavoy Triploid
27346S-2 1201K-1 M. a. malaccensis 250 Triploid
273465-4 1201K-1 M. a. malaccensis 250 Triploid
27437S-1 1201K-1 M. a. malaccensis 250 Triploid
27579S-1 1201K-1 M. a. malaccensis 250 Triploid
27579S-3 1201K-1 M. a. malaccensis 250 Triploid




67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

28030S-2 1201K-1 M. a. malaccensis 250 Triploid
28030S-6 1201K-1 M. a. malaccensis 250 Triploid
28071S-1 1201K-1 M. a. malaccensis 250 Triploid
28465S-2 1201K-1 M. a. malaccensis 250 Triploid
28465S-21 1201K-1 M. a. malaccensis 250 Triploid
28479S-2 1201K-1 M. a. malaccensis 250 Triploid
26337S-22A 1201K-1 SH3217 Triploid
26337S-40 1201K-1 SH3217 Triploid
26840S-7 1201K-1 SH3362 Diploid
26315S-1 1201K-1 SH3142 Triploid
12419S-13 1201K-1 SH3217 Triploid
26337S-11A 1201K-1 SH3217 Triploid
26337S-2 1201K-1 SH3217 Triploid
263375-34 1201K-1 SH3217 Triploid
26337S-37 1201K-1 SH3217 Triploid
26337S-39 1201K-1 SH3217 Triploid
263375-43 1201K-1 SH3217 Triploid
28263S-2 1201K-1 SH3217 Triploid
12618S-1 1201K-1 SH3362 Triploid
26316S-7 1201K-1 SH3362 Triploid
26840S-10 1201K-1 SH3362 Triploid
25328S-3 1438K-1 1537K-1 Triploid
24948S-10 1438K-1 5610S-1 Triploid
24948S-13 1438K-1 5610S-1 Triploid
24948S-24 1438K-1 5610S-1 Triploid
24948S-9 1438K-1 5610S-1 Triploid
26060S-1 1438K-1 9128-3 Triploid
13573S-1 1438K-1 9719-7 Triploid
27914S-1 1438K-1 cv. Rose Triploid
27914S-13 1438K-1 cv. Rose Triploid
28095S-1 1438K-1 cv. Rose Triploid
27264S-2 1438K-1 cv. Rose Diploid
27914S-24 1438K-1 cv. Rose Triploid
27914S-26 1438K-1 cv. Rose Triploid




101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

27914S-3 1438K-1 cv. Rose Triploid
25474S-1 1438K-1 Kokopo Triploid
26369S-4 1438K-1 Long Tavoy Triploid
28481S-1 1438K-1 M. a. malaccensis 250 Triploid
28561S-2 1438K-1 M. a. malaccensis 250 Triploid
26725S-1 1438K-1 SH3362 Triploid
25499S-7 1438K-1 SH3142 Triploid
26039S-2 1438K-1 SH3217 Triploid
26466S-2 1977K-1 5610S-1 Triploid
26466S-5 1977K-1 5610S-1 Triploid
22598S-2 365K-1 1201K-1 Triploid
14539S-4 365K-1 660K-1 Triploid
9750S-13 401K-1 9128-3 Triploid
25031S-1 5610S-1 2180K-6 Diploid
25031S-15 5610S-1 2180K-6 Diploid
25031S-16 5610S-1 2180K-6 Diploid
25031S-17 5610S-1 2180K-6 Diploid
25031S-19 5610S-1 2180K-6 Diploid
25031S-27 5610S-1 2180K-6 Diploid
250315-33 5610S-1 2180K-6 Diploid
25031S-34 5610S-1 2180K-6 Diploid
25031S-7 5610S-1 2180K-6 Diploid
24583S-2 660K-1 5610S-1 Triploid
26260S-3 660K-1 5610S-1 Triploid
13284S-1 660K-1 9128-3 Triploid
25371S-2 660K-1 9128-3 Triploid
9187S-8 660K-1 9128-3 Triploid
26709S-1 660K-1 Calcutta 4 Triploid
27713S-1 660K-1 M. a. malaccensis 250 Triploid
278255-4 660K-1 M. a. malaccensis 250 Triploid
278735-18 660K-1 M. a. malaccensis 250 Triploid
278735-38 660K-1 M. a. malaccensis 250 Triploid
27873S-4 660K-1 M. a. malaccensis 250 Triploid
27873S-5 660K-1 M. a. malaccensis 250 Triploid




135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

28188S-2 660K-1 M. a. malaccensis 250 Triploid
25623S-11 8817S-1 917K-2 Triploid
28492S-1 917K-2 1968-2 Triploid
26998S-1 917K-2 2180K-6 Triploid
27074S-1 917K-2 2180K-6 Triploid
25117S-1 917K-2 5610S-1 Triploid
25117S-2 917K-2 5610S-1 Triploid
25117S-3 917K-2 5610S-1 Triploid
25508S-1 917K-2 5610S-1 Triploid
25628S-11 917K-2 5610S-1 Triploid
26815S-3 917K-2 5610S-1 Triploid
26815S-8 917K-2 5610S-1 Triploid
26815S-9 917K-2 5610S-1 Triploid
26990S-10 917K-2 5610S-1 Triploid
26990S-11 917K-2 5610S-1 Triploid
26990S-4 917K-2 5610S-1 Triploid
27073S-1 917K-2 5610S-1 Triploid
27744S-1 917K-2 5610S-1 Triploid
12949S-2 917K-2 7197-2 Triploid
25909S-3 917K-2 7197-2 Triploid
25089S-4 917K-2 861S-1 Triploid
19798S-2 917K-2 9128-3 Triploid
24434S-3 917K-2 9128-3 Triploid
25435S5-11 917K-2 9128-3 Triploid
254355-4 917K-2 9128-3 Triploid
25737S-1 917K-2 9128-3 Triploid
262885-4 917K-2 9128-3 Triploid
26975S-1 917K-2 9128-3 Triploid
26975S-2 917K-2 9128-3 Triploid
7798S-2 917K-2 9128-3 Triploid
271845-4 917K-2 cv. Rose Triploid
278855-9 917K-2 cv. Rose Triploid
27184S-8 917K-2 cv. Rose Triploid
27494S-12 917K-2 cv. Rose Triploid




169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

27494S-4 917K-2 cv. Rose Triploid
27494S-5 917K-2 cv. Rose Triploid
28068S-9 917K-2 cv. Rose Triploid
27184S-6 917K-2 cv. Rose Triploid
27885S-1 917K-2 cv. Rose Triploid
24410S-2 917K-2 Kokopo Triploid
25680S-11 917K-2 Long Tavoy Triploid
25680S-13 917K-2 Long Tavoy Triploid
27261S-1 917K-2 M. a. malaccensis 250 Triploid
27261S-10 917K-2 M. a. malaccensis 250 Triploid
27261S-11 917K-2 M. a. malaccensis 250 Triploid
27334S-5 917K-2 M. a. malaccensis 250 Triploid
27401S-1 917K-2 M. a. malaccensis 250 Triploid
27524S-12A 917K-2 M. a. malaccensis 250 Triploid
275245-12B 917K-2 M. a. malaccensis 250 Triploid
27524S-22 917K-2 M. a. malaccensis 250 Triploid
27524S-30 917K-2 M. a. malaccensis 250 Triploid
27833S-10 917K-2 M. a. malaccensis 250 Triploid
27833S-13 917K-2 M. a. malaccensis 250 Triploid
27886S-5 917K-2 M. a. malaccensis 250 Triploid
28033S-14 917K-2 M. a. malaccensis 250 Triploid
28033S-15 917K-2 M. a. malaccensis 250 Triploid
28033S-18 917K-2 M. a. malaccensis 250 Triploid
28033S-23 917K-2 M. a. malaccensis 250 Triploid
28033S-3 917K-2 M. a. malaccensis 250 Triploid
28060S-8 917K-2 M. a. malaccensis 250 Triploid
28200S-3 917K-2 M. a. malaccensis 250 Triploid
28257S-1 917K-2 M. a. malaccensis 250 Triploid
28257S-2 917K-2 M. a. malaccensis 250 Triploid
28257S-4 917K-2 M. a. malaccensis 250 Triploid
284325-19 917K-2 M. a. malaccensis 250 Triploid
284325-20 917K-2 M. a. malaccensis 250 Triploid
28432S-3 917K-2 M. a. malaccensis 250 Triploid
28780S-1 917K-2 M. a. malaccensis 250 Triploid




203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

268745-5 917K-2 SH3362 Triploid
12468S-18 917K-2 SH3217 Triploid
12477S-13 917K-2 SH3217 Triploid
8386S-19 917K-2 SH3217 Triploid
13522S-5 917K-2 SH3362 Triploid
25974S-? 917K-2 SH3362 Triploid
25974S-19 917K-2 SH3362 Triploid
25974S-21 917K-2 SH3362 Triploid
259745-30 917K-2 SH3362 Triploid
25974S-35 917K-2 SH3362 Triploid
26666S-1 917K-2 SH3362 Triploid
28476S-7 917K-2 SH3362 Triploid
9494S-10 917K-2 SH3362 Triploid
16457S-2 Entukura 365K-1 Triploid
26540S-182 Entukura 8075-7 Diploid
28260S-2 Enzirabahima Calcutta 4 Triploid
21086S-1 Kazirakwe 7197-2 Triploid
28073S-1 Namwezi 7197-2 Triploid
25356S-1 Tereza 7197-2 Triploid
HB unknown unknown Triploid
HJ unknown unknown Triploid
HX unknown unknown Triploid
26337S-11B 1201K-1 SH3217 Triploid
16285S-13 Calcutta 4 660K-1 Diploid
26337S-22B 1201K-1 SH3217 Triploid
16285S-3 Calcutta 4 660K-1 Diploid
263375-28 1201K-1 SH3217 Triploid
25066S-1 1438K-1 Kokopo Triploid
16285S-6 Calcutta 4 660K-1 Diploid
25066S-2 1438K-1 Kokopo Triploid
16285S-8 Calcutta 4 660K-1 Diploid
25974S-11 917K-2 SH3362 Triploid
259745-15 917K-2 SH3362 Triploid
25457S-1 1438K-1 Kokopo Triploid




237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

16191S-6 Calcutta 4 917K-2 Diploid
24797S-7 917K-2 Kokopo Triploid
25102S-1 917K-2 Kokopo Triploid
28452S-11 Nakasabira Calcutta 4 Triploid
28033S-9 917K-2 M. a. malaccensis 250 Triploid
259745-13 917K-2 SH3362 Triploid
28256S-1 917K-2 cv. Rose Triploid
25974S-17 917K-2 SH3362 Tetraploid
12468S-6 917K-2 SH3217 Triploid
27914S-11 1438K-1 cv. Rose Triploid
27914S-18 1438K-1 cv. Rose Triploid
27914S-21 1438K-1 cv. Rose Triploid
27914S-22 1438K-1 cv. Rose Triploid
27914S-6 1438K-1 cv. Rose Triploid
27914S-7 1438K-1 cv. Rose Triploid
27914S-8 1438K-1 cv. Rose Triploid
27873S-12 660K-1 M. a. malaccensis 250 Triploid
27873S-14 660K-1 M. a. malaccensis 250 Triploid
27873S-17 660K-1 M. a. malaccensis 250 Triploid
27873S-33 660K-1 M. a. malaccensis 250 Triploid
27873S-37 660K-1 M. a. malaccensis 250 Triploid
27873S-7 660K-1 M. a. malaccensis 250 Triploid
26224S-3 1201K-1 SH3362 Triploid
26840S-9 1201K-1 SH3362 Triploid
26316S-14 1201K-1 SH3362 Triploid
26224S-2 1201K-1 SH3362 Triploid
26840S-5 1201K-1 SH3362 Triploid
256535-3 1201K-1 SH3142 Triploid
26315S-3 1201K-1 SH3142 Triploid
28528S-1 1201K-1 Kokopo Triploid
26369S-8 1438K-1 Long Tavoy Triploid
26530S-1 1438K-1 SH3362 Triploid
27528S-1 1438K-1 M. a. malaccensis 250 Triploid
27915S-3 1438K-1 M. a. malaccensis 250 Triploid




271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

28561S-5 1438K-1 M. a. malaccensis 250 Triploid
27915S-2 1438K-1 M. a. malaccensis 250 Triploid
28974S-11 1438K-1 M. a. malaccensis 250 Triploid
28974S-15 1438K-1 M. a. malaccensis 250 Triploid
28974S-22 1438K-1 M. a. malaccensis 250 Triploid
28974S-29 1438K-1 M. a. malaccensis 250 Triploid
29114S-1 5610S-1 M. a. malaccensis 250 Diploid
29114S-14 5610S-1 M. a. malaccensis 250 Triploid
29114S-19 5610S-1 M. a. malaccensis 250 Triploid
29114S-24 5610S-1 M. a. malaccensis 250 Triploid
27873S-26 660K-1 M. a. malaccensis 250 Triploid
27873S-31 660K-1 M. a. malaccensis 250 Triploid
29165S-5 660K-1 M. a. malaccensis 250 Triploid
28506S-1 Entukura Calcutta 4 Triploid
29364S-2 Namwezi cv. Rose Tetraploid
28077S-5 Nfuuka 8075-7 Triploid
28164S-15 1201K-1 cv. Rose Triploid
29285S-20 1201K-1 cv. Rose Triploid
26337S-32 1201K-1 SH3217 Triploid
276845-5 1201K-1 SH3362 Triploid
24948S-12 1438K-1 5610S-1 Triploid
24948S-21 1438K-1 5610S-1 Triploid
24948S-27 1438K-1 5610S-1 Triploid
29586S-4 1438K-1 5610S-1 Triploid
24948S-22 1438K-1 5610S-1 Triploid
24948S-2 1438K-1 5610S-1 Triploid
249485-29 1438K-1 5610S-1 Triploid
26820S-1 917K-2 1968-2 Triploid
25474S-5 917K-2 861S-1 Triploid
259745-18 917K-2 SH3362 Triploid
28476S-8 917K-2 SH3362 Triploid
25974S-31 917K-2 SH3362 Triploid
29275S-1 Enzirabahima M. a. malaccensis 250 Tetraploid
292755-4 Enzirabahima M. a. malaccensis 250 Tetraploid
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305
306
307

29275S-5 Enzirabahima M. a. malaccensis 250 Tetraploid
29636S-1 Tereza 7197-2 Tetraploid
28776S-2 Tereza 8075-7 Triploid
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Supplemental Table S2: Comparison of average correlation for five-fold cross validations between the predicted and observed phenotypes across all models fitted

with data from either low input (GS1) or high input (GS2) fields and 10807 bi-allelic SNP markers

Trait
category Traits BRR BL BayesA BayesB BayesC RKHS_P RKHS_M RKHS_PM
GS1 GS2 GS1 GS2 GS1 GSs2 GS1 GS2 GS1 GS2 GS1 GS2 GS1 GSs2 Gsi GS2
Plant
stature Plant height 0.54 0.46 0.55 045 054 045 0.54 0.44 0.54 045 042 040 055 044 054 0.48
Plant girth 0.60 0.52 0.6 0.51 0.6 0.51 0.60 0.52 0.60 051 044 040 060 051 055 0.50
Suckering
behaviour Total number of suckers  0.16 0.17 0.17 020 017 0.20 0.16 0.19 0.15 019 012 012 017 0.18 0.16 0.17
Height of tallest sucker
at flowering 0.28 0.18 0.30 020 028 0.18 0.27 0.20 0.26 020 027 024 028 019 0.30 0.24
Height of tallest sucker
at harvesting 0.27 0.26 0.26 028 028 0.25 0.28 0.24 0.27 025 028 029 026 026 0.29 0.32
Black leaf Number of standing
streak leaves at flowering 0.36 0.42 0.37 040 037 042 0.43 0.40 0.36 041 017 019 037 041 029 0.34
Index of non-spotted
leaves 0.35 0.42 0.35 042 034 043 0.34 0.43 0.34 043 022 022 035 042 0.32 0.36
Fruit bunch  Days to fruit maturity 0.47 0.42 0.47 042 047 042 0.47 0.42 0.46 042 044 041 047 042 049 0.44
Bunch mass 0.63 0.61 0.62 061 062 0.62 0.64 0.62 0.64 062 041 043 061 061 0.52 0.55
Number of hands 0.60 0.62 0.59 062 059 0.63 0.60 0.62 0.59 062 034 039 059 062 048 0.53
Number of fruits 0.47 0.51 0.47 053 047 052 0.47 0.52 0.47 052 025 033 045 052 035 0.45
Fruit filling  Fruit length 0.65 0.64 0.65 064 065 0.64 0.67 0.65 0.67 065 050 048 064 064 059 0.59
Fruit circumference 0.67 0.66 0.67 0.67 0.66 0.66 0.70 0.69 0.70 069 040 042 065 066 057 0.60
Fruit diameter 0.67 0.63 0.67 0.68 0.66 0.67 0.70 0.71 0.70 071 039 040 065 067 057 0.59
Pulp diameter 0.67 0.68 0.67 069 066 0.68 0.70 0.72 0.70 072 039 041 065 067 057 0.60

The values under GS1 column are the correlations between predicted and observed phenotype (predictive ability) in GS2 when GS1 data were used to fit the model and vice
versa for GS2 column.
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Supplemental Table S3: Comparison of predictive ability of BayesB model fitted with parents’ data and progeny’s data using bi-allelic and allele dosage SNP

markers
Parents model Progeny model
Trait category Traits BA-SNP AD-SNP LIP BA-SNP AD-SNP LIP
Plant stature Plant height 0.36 0.18 -50.0 0.77 0.51 -33.8
Plant girth 0.39 0.05 -87.2 0.80 0.43 -46.3
Suckering behaviour Total number of suckers 0.13 0.06 -53.8 0.39 0.22 -43.6
Height of tallest sucker at flowering 0.23 0.12 -47.8 0.50 0.37 -26.0
Height of tallest sucker at harvesting 0.19 -0.15 -178.9 0.43 -0.03 -107.0
Black leaf streak Number of standing leaves at flowering 0.31 0.20 -35.5 0.43 0.46 7.0
Index of non-spotted leaves 0.39 0.33 -15.4 0.85 0.77 -9.4
Fruit bunch Days to fruit maturity 0.39 0.32 -17.9 0.77 0.66 -14.3
Bunch mass 0.50 0.17 -66.0 0.66 0.08 -87.9
Number of hands 0.45 0.03 -93.3 0.86 0.48 -44.2
Number of fruits 0.31 0.10 -67.7 0.77 0.36 -53.2
Fruit filling Fruit length 0.59 0.23 -61.0 0.78 0.22 -71.8
Fruit circumference 0.49 0.17 -65.3 0.65 0.62 -4.6
Fruit diameter 0.42 0.22 -47.6 0.66 0.65 -1.5
Pulp diameter 0.49 0.23 -53.1 0.66 0.68 3.0

LIP = 100*((prediction with AD-SNP — prediction with BA-SNP)/prediction with BA-SNP)
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Supplemental Table S4: Effect of ploidy level and allele dosage on the predictive ability of BayesB model fitted with environment averaged phenotype data

Bi-allelic SNP Allele dosage SNP
Trait category Traits Tetraploid Triploid Diploid Tetraploid Triploid Diploid
Plant stature Plant height 0.04 0.37 0.71 -0.54 0.10 0.09
Plant girth 0.02 0.38 0.72 -0.02 -0.06 -0.46
Suckering behaviour Total number of suckers -0.17 0.07 0.34 -0.48 -0.04 0.01
Height of tallest sucker at flowering 0.19 0.31 0.32 -0.42 0.01 -0.13
Height of tallest sucker at harvesting 0.06 0.20 0.57 -0.15 -0.03 -0.17
Black leaf streak Number of standing leaves at flowering 0.19 0.40 0.38 0.05 0.09 -0.12
Index of non-spotted leaves -0.09 0.44 0.70 -0.30 0.12 0.31
Fruit bunch Days to fruit maturity 0.01 0.46 0.56 0.01 0.06 0.21
Bunch mass 0.15 0.39 0.73 0.03 0.03 -0.50
Number of hands 0.33 0.44 0.70 0.48 0.08 0.05
Number of fruits 0.50 0.37 0.57 -0.21 0.03 0.08
Fruit filling Fruit length -0.10 0.54 0.86 0.25 0.06 -0.21
Fruit circumference -0.15 0.43 0.79 0.35 0.05 -0.25
Fruit diameter -0.45 0.39 0.77 0.53 0.11 -0.15
Pulp diameter -0.39 0.41 0.79 0.60 -0.05 -0.23
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Appendix 11

Trait variation and genetic diversity in a banana genomic selection training population

https://doi.org/10.1371/journal.pone.0178734
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Abstract

Banana (Musa spp.) is an important crop in the African Great Lakes region in terms of
income and food security, with the highest per capita consumption worldwide. Pests, dis-
eases and climate change hamper sustainable production of bananas. New breeding tools
with increased crossbreeding efficiency are being investigated to breed for resistant, high
yielding hybrids of East African Highland banana (EAHB). These include genomic selec-
tion (GS), which will benefit breeding through increased genetic gain per unit time. Under-
standing trait variation and the correlation among economically important traits is an
essential first step in the development and selection of suitable GS models for banana. In
this study, we tested the hypothesis that trait variations in bananas are not affected by
cross combination, cycle, field management and their interaction with genotype. A training
population created using EAHB breeding material and its progeny was phenotyped in two
contrasting conditions. A high level of correlation among vegetative and yield related traits
was observed. Therefore, genomic selection models could be developed for traits that are
easily measured. ltis likely that the predictive ability of traits that are difficult to phenotype
will be similar to less difficult traits they are highly correlated with. Genotype response to
cycle and field management practices varied greatly with respect to traits. Yield related
traits accounted for 31-35% of principal component variation under low and high input
field management conditions. Resistance to Black Sigatoka was stable across cycles but
varied under different field management depending on the genotype. The best cross com-
bination was 1201K-1xSH3217 based on selection response (R) of hybrids. Genotyping
using simple sequence repeat (SSR) markers revealed that the training population was
genetically diverse, reflecting a complex pedigree background, which was mostly influ-
enced by the male parents.
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Introduction

East Africa is considered a secondary center of banana genetic diversity. Uganda in particu-
lar is a home to over eighty cultivars of East African Highland banana (EAHB) commonly
divided into cooking and beer types [1]. The crop greatly contributes to the income and food
security of many smallholder farmers in the region. The significance of the crop in the region
is reflected in the per capita consumption that ranges between 250kg and 600kg with an aver-
age of 400kg in Uganda [2]. Over 85% of the production is consumed locally due to high
demand [3, 4]. Sustainable production of bananas is a challenge because of disease, insect
and nematode pressure. This is worsened by abiotic stress arising through factors associated
with climate change [5]. Yield reductions in EAHB are caused by pests such as root burrow-
ing nematodes especially Radopholus similis and banana weevil (Cosmopolites sordidus).
Black Leaf Streak (Black Sigatoka), a fungal disease caused by Mycosphaerella fijiensis reduces
the photosynthetic area of the plant, which decreases yield. Banana bacterial wilt caused by
Xanthomonas campestris pv. musacearum causes 100% yield loss when the banana is attacked
[6-8]. Variation in rainfall patterns impacts banana production by causing drought stress
because most farmers in the region rely on rain for agricultural production. Although pheno-
typic variation is observed in EAHB, their genetic variation is low [9, 10] making them all
susceptible to biotic and abiotic stress. Adaptation of cultivated banana varieties to changing
environment is limited because while some are capable of sexual reproduction, they are all
propagated clonally.

In order to meet the food demand for the growing population, breeding for resistance
and high yielding varieties is considered to be the most sustainable solution to address
banana production constraints [11, 12]. Unlike other crops, banana breeding is complicated
by the polyploid nature of the crop characterized by abnormal meiosis in the cultivated trip-
loid varieties that results in reduced fertility or complete sterility [13-15]. Crossing cultivated
varieties with resistant wild diploids is possible, but a majority of the generated hybrids are
inferior due to linkage drag of unfavorable genes from the wild diploids. However, when
tetraploids are obtained, further improvement is possible because they are both male and
female fertile (Fig 1). Incorporating resistance while maintaining the unique attributes such
as fruit colour, aroma, texture and taste in existing varieties is a big challenge to banana
breeders that calls for dedicated effort and careful choice of cross combinations. Crossbreed-
ing is labour-intensive, costly and time consuming. In the last two decades, some success has
been registered with new hybrids released to farmers while others are in the advanced stages
of evaluation [16]. In order to keep up with the pace at which environmental changes occur
and the demand for new varieties that are productive and of good quality, new breeding
strategies should be employed to increase breeding efficiency and reduce the lengthy selec-
tion period [3].

Marker assisted selection (MAS) has been implemented in many animal and crop breed-
ing programs. The success of MAS greatly depends on the genetic architecture of traits
being improved. To date MAS has not been effectively deployed in banana breeding. The
possible reasons are polyploidy, important economic and agronomic traits may be con-
trolled by many quantitative trait loci (QTL), each with a small additive effect, and the lack
of saturated linkage maps for QTL mapping. It is believed that the application of genomic
selection (GS) will improve the efficiency of crossbreeding programs especially for crops
with long breeding and selection cycle [17, 18] like banana. GS is a form of MAS where
selection is based on the genomic estimated breeding values (GEBV) of superior individuals
in the population as determined by a statistical model [19-21]. This technique is well estab-
lished in animal breeding [22, 23]. In plants, GS has been tested in maize and wheat [24],
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Time scale: 10 - 15 years

4x Hybrid 3x Improved

3x Landrace 2x Wild 2x Improved

Fig 1. Conventional banana breeding starts with crossing 3x inferior and parthenocarpic landrace varieties
(A) with a wild, seeded 2x accession (B). 4x resulting from this cross (C) are selected and crossed with
improved 2x hybrids (D). The resulting secondary 3x (E) are selected and evaluated as potential improved
varieties. This process takes up to 15 years.

https://doi.org/10.1371/journal.pone.0178734.9001

white spruce [25], rice [26] and cassava [27]. However, in bananas GS is in its infancy.
Given that new varieties are selected based on a combination of traits, a selection index of
GEBYV in bananas is necessary.

GS studies have reported varying accuracies in prediction (predictive ability of GS models)
and this has been attributed to differences in trait heritability, number of markers, training
population size and genotype x environment interaction [24]. Bananas as perennial plants suf-
fer the consequences of nutrient deficiency and soil moisture variation across seasons and
locations depending on field management practices. Breeding generates genotypes from many
crosses that are genetically different and respond to growth environment differently and this
could affect the accuracy of GS. Therefore, understanding trait variation and the correlation
between different traits is essential to guide the development and selection of suitable GS mod-
els for banana breeding. In this study we tested the hypothesis that trait variations in bananas
are not affected by cross combination, cycle, field management and their interaction with
genotype. For this, a training population created using EAHB breeding material and its prog-
eny was phenotyped in two contrasting conditions. Genetic diversity of the training popula-
tion was assessed using simple sequence repeat (SSR) markers.
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Materials and methods
Plant population

Data were collected at the International Institute of Tropical Agriculture, Uganda from a
banana genomic selection (GS) training population between 2013 and 2016. The institute is
located at Namulonge research station, 0.53° N 32.58° E, 1150 m above sea level with rainfall
of about 1200 mm/y split into two rainy seasons, March-June and September-December and
an average annual temperature of 22°C. The GS population consisted of 307 genotypes that
included diploid (11%), triploid (85%) and tetraploid (4%) plants (S1 Table). The ploidy
level of the genotypes was determined using flow cytometry [28, 29]. The core breeding lines
(parents) accounted for 12% of the entire population. Two fields were established with each
genotype replicated three times in a completely randomized design. Suckers were used as
planting materials and before planting, 20kg of farmyard manure was applied in each hole.
One field (GS1) was managed without mulching, additional manure nor inorganic fertilizer
(low input). The second field (GS2) was mulched twice a year. Six months after planting, 480 g
of NPK (25:5:5) fertilizer was added and the same amount was added to each mat per year
(high input).

Traits

The yield-related traits scored included: days to fruit maturity (DFM) that is, days between
flowering and harvesting, bunch weight at full maturity (BWT), number of hands (cluster)
(NH) and number of fruit fingers (NF), fruit length (FL), fruit circumference (FC), fruit diam-
eter (FRD), pulp diameter (PLD) and peel thickness (PED), where PED = (FRD—PLD)/2. The
vegetative (growth) traits included: number of standing leaves at flowering (NSLF), youngest
leaf spotted with Black Sigatoka at flowering (YLSF), index of non-spotted leaves at flowering
(INSL), height of tallest sucker at harvesting (HTSH), plant height at flowering (PHF), plant
girth at 100 cm from soil surface (PG), height of tallest sucker at flowering (HTSF), total num-
ber of suckers at flowering (TS), number of standing leaves at harvesting (NSLH) and youngest
leaf spotted with black sigatoka at harvesting (YLSH).

Total number of suckers (TS) was recorded at flowering in cycle 1 only after which each
mat was left with a maximum of three plants and these included the flowered plant, follower
sucker and the sucker produced by follower sucker if present. A Vernier caliper was used to
measure FRD and PLD. Fruit related traits such as FL, FC, FRD and PLD were recorded
from the middle finger of the second hand on the bunch. Measurements for FC, FRD and PLD
were recorded midway the length of the finger. However, to measure FRD and PLD, a cross-
section of the fruit was made to expose the pulp. The INSL was calculated from the formula,
INSL = 100*(YLSF-1)/NSLF [30]. This formula should give percentage values ranging from
0-100% to represent completely susceptible (0%) and completely resistant (100%). In order
to get 100% INSL for completely resistant genotypes, the YLSF was scored as NSLF +1 thus
INSL = 100*((NSLF+1)-1)/NSLF or INSL = 100*NSLF/NSLF

Data analysis

All analyses were performed in R, open source statistical software from www.r-project.org. A
combination of Shapiro-Wilk test, boxplots, standard deviations and histograms were used to
check for normality and outliers in the data and where necessary the outliers were removed
before further analysis. Total number of suckers and bunch weight were transformed by square
root. Using the aggregate function from library (plyr), trait means were calculated for every
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genotype and cross combination (family) in every cycle, and field and these were used in corre-
lation analysis and principal component analysis (PCA).

Correlation analysis and test of significance for the correlations between traits were done
using library (Hmisc) and Student’s t-test based on cycle 2 data for cross combinations. Coeffi-
cient of determination (R®) was calculated as a square of correlation coefficient between cycle
1 and 2 data. To understand the structure of the population and how different traits influenced
that structure, principal component analysis was done using PCA function provided in the
library (FactoMineR). Traits (dependent variable), cross combinations and individual geno-
types were projected on the first two components (Dim1 and Dim?2).

Sources of trait variation were assessed using unbalanced analysis of variance (ANOVA)
based on cycle 1 and 2 data. Linear models were constructed for each trait in respect to each
cycle, field management practice and their interaction with genotype as model_fit = Im(trait
response~clone+cycle+field+clone:field+clone:cycle, data = mydata) where Im = linear model
function. Type III SS ANOVA tables were generated using Anova function provided in the
library(car) as result = Anova(model_fit, singular.ok = TRUE, type = “III”). In cases where
no significant interactions were observed between two independent variables and where one
explanatory variable was not significant, then type II or type I SS ANOVA was used for further
investigation.

Selection differential (S) and response to selection (R) were used to compare performance
of parental cross combinations [31]. S and R were calculated as, S = P—G and R = H—G,
where P = average performance of a pair of parents, G is the average performance of all paren-
tal lines in the training population and H is the average performance of all hybrid that shared
same parental pair. Only cross combinations that had at least five hybrids were compared
across all traits using combined data from the two fields.

Genetic diversity

Genetic diversity of the training population was assessed using simple sequence repeat (SSR)
markers. Cigar leaf samples were collected from the training population in Uganda and
shipped to the Institute of Experimental Botany, Olomouc, Czech Republic under cold chain.
Samples were lyophilized prior to DNA extraction. DNA from lyophilized samples was
extracted using NucleoSpin Plant II kit, Macherey-Nagel, Germany, following the manufactur-
er’s instructions. The concentration and quality of DNA was assessed by NanoDrop ND-1000
spectrophotometer. Nineteen informative Musa SSR primers were used to genotype the GS
training population. The list of primers used, polymerase chain reaction (PCR) conditions,
and fragment analysis procedure were adopted from Christelova et al. [32].

Two independent rounds of PCR were performed on each sample. The concordance of
alleles from each sample were inspected and scored manually in GeneMarker v1.75 (Softge-
netics, State College, PA, USA). A third round of PCR was performed only for samples that
showed incongruity with the two reactions. Alleles were scored as dominant markers for pres-
ence and absence (1/0). Data were imported in R and squared Euclidean distances were gener-
ated using the function dist provided in the library(ape). Clustering was done with function
hclust based on ward.D method [33, 34]. Polymorphism information content of each marker
was estimated by PowerMarker v3.25 software [35].

Results

During data analysis, some genotypes were excluded for some traits due to missing data or
extreme outliers. The outliers were mainly recorded on plants that were infected with banana
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Xanthomonas wilt before full maturity, plants that snapped due to weevil damage and prema-
ture breaking of the peduncle due to windstorm.

Correlation of traits

Significant correlations were observed among and between growth and yield traits (Tables 1
and 2). PHF had significant positive correlation with PG followed by HTSFE. PG positively cor-
related with BWT, NF and HTSF in that respective order. The traits associated with Black Siga-
toka resistance (NSLF, YLSF and INSL) also correlated significantly to each other. However,
they had significant negative correlations with fruit traits such as FC, FRD and PLD. A positive
and significant correlation was observed between BWT and all fruit traits (NH, NF, FL, FC,
FRD, PLD), which were similarly significantly and positively correlated to each other. Under
conditions of low input field management (GS1), TS, NSLH and NF were not significantly cor-
related with other traits while under high input field management (GS2), it was INSL, DFM
and HTSH that did not have significant correlation with other traits. In both fields, the highest
positive correlations were observed among the yield traits. In this population, absolute apical
dominance was not observed as all genotypes had at least one sucker at the time of flowering.
However, sucker regulation varied among genotypes with a range of 1-25 suckers per plant.

Principal component analysis (PCA)

Principal component analysis showed that in both fields, the yield (fruit) traits contributed to
the first component (Dim 1) while the vegetative (growth) traits contributed to the second
component (Dim 2) (Fig 2A and 2B). Among the vegetative traits, PHF and PG contributed to
Dim 1. Dim 1 accounted for 31.07% of variation in GS1 and 35.86% in GS2. Dim 2 accounted
for 21.89% of variation in GS1 and 15.40% in GS2. The traits with the highest negative loading
on Dim 1 included FC, FRD and PLD for GS1 while for GS2 it was FC, FRD, PLD and FL. In
both GS1 and GS2, the traits with the highest positive loading on Dim 2 were NSLF, YLSF,
INSL and NSLH. Both DFM and TS had the least contribution to the two components

with completely different orientation in GS1 and GS2. Generally, in both fields the two compo-
nents accounted for 50% of the variation observed in the genotype cross combinations (Fig 3A
and 3B).

For individual genotypes, a similar trend was observed with Dim 1 and Dim 2 accounting
for 31.43% and 19.11% of total trait variation, respectively (Fig 4A). Projection of the individ-
ual factors (genotypes) on the two components did not reveal any distinct population structure
(Fig 4B). The same trend was observed when individual cross combinations were projected
on the two components. However, in GS1 cross combinations C35 (917K-2 x Kokopo), C28
(8817S-1 x917K-2) and C52 (SH2095 x SH2766) and in GS2 cross combinations C35 (917K-2
x Kokopo), C22 (365K-1 x 660K-1) and C29 (8817S-1 x 917k-2) were distinct and clearly sepa-
rated out from the others (Fig 3a and 3b). When the data were re-examined, genotypes from
cross C35 had the least average scores on the yield traits while cross C22, C29 and C52 had the
highest average scores on the yield traits. All the four planes of the two components were rep-
resented in the population.

Based on Black Sigatoka resistance and fruit filling (indicated by FRD), four main groups
were represented in the population: (i) genotypes with high INSL and good fruit filling, (ii)
high INSL with poor fruit filling, (iii) low INSL with good fruit filling and (iv) low INSL with
poor fruit filling. On average the observed INSL and FRD for the genotypes in the four groups
were as follows: (i) 78.1% and 3.0cm, (ii) 80.1% and 1.4cm, (iii) 66.8% and 3.1cm, and (iv)
67.1% and 1.4cm, respectively. Genotypes projected on Dim 2 had high average scores on
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Fig 2. Principal component analysis plots generated in R using package FactoMineR for the traits
scored in a banana genomic selection training population. (A) shows the distribution of traits under low
input field management (GS1) and (B) shows the distribution of traits under high input field management
(GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.9002

NSLF, YLSH, INSL, and NSLH and in contrast they had the lowest average scores on BWT,
FL, FC, FRD, and PLD and the reverse was true for those projected on Dim 1.

Analysis of variance

Visual inspection of boxplots for various traits indicated a cycle effect on data distribution of
some traits while others were not affected by cycle. For example, Plant height increased at
cycle 2 while index of non-spotted leaves did not increase (Fig 5a and 5b) and this was con-
firmed by ANOVA results. Fruit traits such as FC, FRD and PLD showed a bimodal distribu-
tion with the histogram having two peaks. Based on these parameters, the population could be
separated into two main groups, poor fruit filling genotypes with FRD < 2.0 cm and FC < 8.0
cm, and good fruit filling genotypes with FRD > 2.0 cm and FC > 8.0 cm (S1A-S1D Fig).
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Fig 3. Principal component analysis plots generated in R using package FactoMineR for the cross
combinations in a banana genomic selection training population. (A) shows the distribution of cross
combinations under low input field management (GS1) and (B) shows the distribution of cross combinations
under high input field management (GS2) on the first two components.

https://doi.org/10.1371/journal.pone.0178734.9003
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Fig 4. Principal component analysis plots generated in R using package FactoMineR for the traits
scored in a banana genomic selection training population. (A) shows the distribution of traits for
individual genotypes and (B) shows the distribution of individual genotypes on the first two components based
on mean of combined data from the two fields.
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Coefficients of determination showed that under low input, cycle had less effect on NSLF,
YLSEF, INSL, TS, HTSF and PED across genotype cross combinations (Table 3). The Student’s
t-test revealed that both PED and HTSF were the most stable traits across cycles at 95% confi-
dence level with P = 0.515 and P = 0.108, respectively. Under high input, cycle accounted for
less than 50% of the variation in NSLF, YLSF, INSL, TS, HTSF, DFM, NSLH, NH, NF and
PED between cross combinations. Just as in the first field, PED and HTSF were the least
affected with P = 0.216 and P = 0.108, respectively. Under high input field management, trait
variation due to cycle was more homogenous as compared to low input field management.
However, in both cases the effects were statistically significant (P < 0.001) indicating that cycle
is a source of variation in genotype performance.

When generating ANOVA models, genotype (clone) was assumed to be the main source of
variation. In addition to genotype the effect of cycle, field and their interaction with genotype

Comparison of PHF for Cycle 1and 2 Comparison of INSL for Cycle 1and 2
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Fig 5. Effect of cycle on trait variation in bananas, where (a) shows an increase in plant height at
flowering at cycle 2 while (b) shows no increase in index of non-spotted leaves at cycle 2.

https://doi.org/10.1371/journal.pone.0178734.g005

PLOS ONE | https://doi.org/10.1371/journal.pone.0178734  June 6, 2017 10/23


https://doi.org/10.1371/journal.pone.0178734.g004
https://doi.org/10.1371/journal.pone.0178734.g005
https://doi.org/10.1371/journal.pone.0178734

O PLOS | oxe

Phenotyping and banana genomic selection

Table 3. Coefficient of determination and Student’s t-test P-values showing the effect of cycle on
cross combinations.

GS1 GS2

Traits df R? P-value df R? P-value
NH 60 0.87 <0.0001 56 0.44 <0.0001
PLD 57 0.78 <0.0001 56 0.65 <0.0001
FRD 59 0.77 <0.0001 56 0.68 <0.0001
PED 58 0.06 0.5150 56 0.03 0.2161
BWT 60 0.79 <0.0001 56 0.74 <0.0001
NF 60 0.54 <0.0001 56 0.37 <0.0001
FL 59 0.77 <0.0001 56 0.64 <0.0001
FC 58 0.79 <0.0001 56 0.73 <0.0001
DFM 59 0.54 <0.0001 56 0.25 <0.0001
NSLH 60 0.63 <0.0001 56 0.38 <0.0001
PHF 66 0.65 <0.0001 63 0.73 <0.0001
PG 66 0.65 <0.0001 63 0.73 <0.0001
NSLF 66 0.25 <0.0001 63 0.28 <0.0001
YLSF 66 0.47 <0.0001 63 0.26 <0.0001
INSL 66 0.14 0.0015 63 0.21 0.0001
TS 68 0.12 0.0032 68 0.12 0.0032
HTSF 68 0.04 0.1084 68 0.04 0.1084

Df = degrees of freedom, GS1 = low input field, GS2 = high input field and R? = coefficient of determination

https://doi.org/10.1371/journal.pone.0178734.t1003

was investigated. In all models for all traits, genotype had significant effect on trait variation
with P < 0.001 (Table 4, S3 Table). Traits that were not affected by the interaction between
genotype and field management practice include PHF and PG whereas traits not affected by
interaction between genotype and cycle include NSLF, YLSF, INSL, YLSH, FL, FRD and PED
(P > 0.05). Weak interaction between genotype and cycle was observed on NSLH and HTSH
with P = 0.0417 and 0.0408, respectively. In some cases, although there were significant inter-
actions between genotype and field or cycle, either field or cycle did not show significant effect
on the trait when interaction was included in the model.

Whereas there were significant interactions between genotype and field management, there
was no significant main effect of field on NSLF, YLSF, HTSF, INSL, TS, NSLH, YLSH, HTSH,
NH, NF and PED. Similarly, in the presence of significant interaction between genotype and
cycle, there was no main effect of cycle on INSL, HTSF, HTSH, FC, PLD and PED (Table 4, S3
Table). When the interactions were removed from the models, all the factors had significant
effect on the traits except INSL and PED, for which cycle had no effect. Analysis was repeated
on these two traits using type I and type Il ANOVA and both produced similar results as that
observed with type III SS.

Performance of cross combinations (parental pairs)

The GS training population consisted of 77 different cross combinations representing about
two decades of banana breeding activities by IITA and NARO Uganda. Some of these cross
combinations gave rise to the tetraploids and improved diploids that are part of the core breed-
ing lines in the program. Tetraploids and triploids were predominantly used as female parents
while the diploids provided the pollen source but in some instances 2x by 2x or 4x by 4x
crosses were made. The majority of the cross combinations were excluded for this analysis in
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Table 4. Effect of genotype (clone), field management, cycle and their interaction on trait variation.

Dep. variable Indep. variable Sum Sq Df F value Pr(>F)
PHF Clone 2222889.11 306 3.77 <0.0001
Clone:Field 432297.46 284 0.79 0.9947
Clone:Cycle 332846.71 299 1.05 0.2662
PG Clone 73176.82 306 4.30 <0.0001
Clone:Field 12061.30 284 0.76 0.9981
Clone:Cycle 13057.24 299 1.51 <0.0001
INSL Clone 116602.02 306 2.44 <0.0001
Clone:Field 58583.77 284 1.32 0.0005
Clone:Cycle 51026.49 299 0.95 0.6947
Tg%an Clone 240.28 305 3.21 <0.0001
Clone:Field 100.88 282 1.46 <0.0001
BWTS" Clone 1213.89 303 12.55 <0.0001
Clone:Field 126.77 269 1.48 <0.0001
Clone:Cycle 108.68 276 1.49 <0.0001
FC Clone 9506.06 300 16.11 0.0000
Clone:Field 733.66 269 1.39 0.0001
Clone:Cycle 751.00 272 1.29 0.0021
PLD Clone 865.42 299 17.60 0.0000
Clone:Field 68.27 269 1.54 <0.0001
Clone:Cycle 60.55 271 1.29 0.0022
PED Clone 20.96 299 11.41 <0.0001
Clone:Field 16.61 269 10.05 <0.0001
Clone:Cycle 3.15 271 0.80 0.9913
sqrt

Original data transformed by square root

https://doi.org/10.1371/journal.pone.0178734.t1004

this work because they had less than five hybrids in the population. However, crosses between
different EAHB with Calcutta 4 were treated as one cross because the EAHB represent a clone
set with very low genetic diversity [9]. In total sixteen cross combinations were compared and
they included one 2x by 2x, one 3x by 2x and fourteen 4x by 2x crosses (Table 5 and S2 Table).

The best cross in terms of yield and fruit size was C10 (1201K-1xSH3217). Many hybrids
from this cross had the highest bunch weight (R = 3.8) characterized by longer fruit fingers,
big fruit circumference and the highest pulp content. However, the plants were very tall with
big girth. Their maturity period was shorter (about 4.5 months on average) and comparable to
hybrids from EAHBxCalcutta 4. Generally, crosses involving SH3217, SH3362 and 9128-3 as
male parents produced hybrids that had good fruit filling characteristics although they varied
in Black Sigatoka resistance and suckering behavior. For example, crosses involving 9128-3
generated hybrids that had the lowest INSL.

Hybrids from a cross between 5610S-1 and 2180K-6 produced the highest number of leaves
scored at flowering (R = 2.1). They had the highest resistance to Black Sigatoka as reflected by
INSL (R = 7.2%) despite the parents being susceptible. They were the shortest (R = -62.3 cm)
with smaller plant girth. Their average maturity period was almost two months more than the
average of all parental lines (R = 54.6 days) and the longest of all other hybrids. Due to long
maturity period the number of standing leaves at harvest was very low because of normal
leaf senescence. Despite producing many fruit fingers and slightly more hands per bunch,
their average yield and size of fruits were lower than those of the parents. However, some
exceptional lines such as 25031S-7 (diploid) had sizable bunch with relatively big fruits.
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Table 5. Comparison of mean performance of parental cross combinations (S) and hybrids from those crosses (R) against the mean of all parents.

CROSS
S (NSLF)
R (NSLF)
S (YLSF)
R (YLSF)

S = Selection differential, R = Response to selection, bold values are the highest observations, C04 = 1201K-1x9128-3, C05 = 1201K-1 x cv. Rose,

co4
-0.5
-0.4
-0.7
-0.7
241
14.8
9.6
3.6
11.4
15.0
-1.8
-2.9
-1.6
-0.3
2.4
7.8
-0.7
-0.9
-0.4
-0.5
27.6
23.4
5.6
3.4
0.7
0.4
22.1
15.9
1.6
2.8
2.2
0.8
0.6
0.2
0.6
0.2
0.00
0.01

Co5
-0.2
0.5
-0.4
0.3
-33.5

0.0
0.00
0.01

cos
1.2
0.8
1.4
0.7
6.6
10.1
5.0
1.2
30.1
6.3
4.9
1.4
0.7
0.6
15.9
21.1
0.3
0.8
0.3
0.5
25.2
45.0
4.2
1.0
0.2
1.0
19.7
35.8
0.8
-0.8
2.2
-0.6
0.6
-0.3
0.6
-0.3
0.02
-0.01

c10
0.4
0.0
0.3
0.0
35.2
33.6
11.1
6.0
24.2
23.3
0.9
1.2
-1.0
0.8
10.0
7.3
-0.4
-0.4
-0.1
-0.2
34.0
24.0
7.2
3.8
2.6
0.9
37.2
12.8
2.8
25
2.1
1.2
0.6
0.3
0.6
0.3
0.00
0.01

Ci1 C12
0.2 -0.2
1.4 0.9
0.0 -0.2
0.8 0.4

358 | 17.2

-23.4 -7.4

1.7 2.8
-1.4 2.3

31.7 -5.5

-21.1 -7.3
0.3 0.2

-1.9 -0.7
1.1 -1.1
-1.0 -1.2
-1.3 4.9
-1.9 | 19.9
-0.5 -0.1
1.5 0.6
-0.2 0.0
0.9 0.1

26.8 5.9

-18.4 | 184
7.0 1.5

-0.9 1.0
0.5 0.7
1.2 1.1

17.5 7.0

19.9 | 13.9
1.9 0.7
-1.3 -0.2
3.1 1.2
-1.8 -0.7
0.9 0.4
-0.7 -0.3
0.9 0.3
-0.7 -0.3
0.02 | 0.03
0.00 | 0.02

C13
-0.3
0.1
-0.3
0.1
-37.5

-0.02
-0.01

C16
1.2
1.8
1.7
1.8
3.8

-6.6

-0.1

-1.4

20.5
14.3
7.2
5.7
1.2
1.0
31.4
8.3
1.3
2.3
1.0
0.8
10.8
17.3

-1.5

-4.0
0.0
0.9
7.7

21.7

-1.4

-3.9

-1.1

-3.4
0.0

-1.2
0.0

-1.2
0.01

-0.01

Cc22
0.7
2.1
0.2
2.2

-21.8
-62.3
-5.3
-5.7
-46.3
-32.5

-1.5
7.2

-1.7

-0.4

14.2

54.6
0.5
0.3
0.1
0.1

-21.7
-15.9

-0.6

-2.3
1.1
1.2
7.5

27.4

-1.5

-2.0
0.4

-2.8
0.2

-1.0
0.1

-1.0

0.01
0.01

c27
1.9
1.8
1.7
1.7
-1.5
2.5
1.3
-0.6
23.0
13.4
3.9
4.1
0.1
-0.8
32.9
32.6
1.5
1.4
1.1
0.6
28.9
19.1
2.1
-2.3
0.6
0.4
15.9
10.7
0.4
-2.6
0.9
-2.5
0.6
-0.8
0.6
-0.9

0.02
0.04

C31
0.1
0.6

-0.8
0.4

-14.0
0.5
0.9
2.2

-27.5
0.8

-6.4
0.1

-3.3
0.3
8.9

23.9
0.4
0.3

-0.1
0.2

-2.6

23.6
2.1
0.7
0.2
0.8
8.8

19.6
0.5

-0.5
1.2

-0.8
0.5

-0.4
0.5

-0.4

0.00
0.02

C33
-0.3
0.3
-1.1
-0.1
-11.4
7.9
1.4
4.9
-25.0
-2.5
-6.5
-1.8
-2.9
-1.9
10.9
11.2
0.1
0.1
-0.2
0.2
4.6
9.9
1.6
2.5
0.3
1.2
12.2
25.6
1.0
1.6
0.6
0.1
0.3
-0.1
0.3
-0.1

-0.03
0.01

C34
-0.1
-0.2
-0.7
-0.1
-58.2
-31.0
-8.5
-5.4

-0.03
0.00

C37
1.4
1.4
1.1
1.2

22,5
-17.6

-1.6

2.0
0.3

-4.0
1.1
27

0.7
0.0

28.0

22.3
1.4
1.1
0.6
0.8
1.6

15.0

-0.2

2.8

-0.3
0.5
9.2

16.3

-0.2

2.6
0.3

-3.0
0.2

-1.0
0.2

-1.0

-0.02
0.00

cé1
0.4
0.8
-0.3
0.7
0.2
-9.5
3.6
3.3
-4.7
-6.4
-4.3
2.2
-0.4
0.7
8.2
20.7
0.6
0.1
0.0
0.1
2.2
2.9
2.6
3.4
-0.1
0.7
3.6
13.5
1.2
2.3
1.4
0.6
0.6
0.1
0.6
0.1

-0.01
0.01

MxC4
-1.1
0.1
-1.5
-0.1
25.9
7.6
3.3
2.0
23.0
4.2
-7.0
-0.9
0.0
-1.2
-21.3
7.2
-0.7
0.2
-0.4
0.1
7.7
31.0
-0.7
1.4
-0.8
-0.3
-16.0
2.0
0.2
0.3
0.9
0.8
0.1
0.4
0.1
0.4

0.01

0.00

CO08 = 1201K-1 x malaccensis, C10 = 1201K-1 x SH3217, C11 = 1201K-1 x SH3362, C12 = 1438K-1 x 5610S-1, C13 = 1438K-1 x cv. Rose, C16 = 1438K-1
X malaccensis, C22 = 5610S-1 x 2180K-6, C27 = 660K-1 x malaccensis, C31 = 917K-2 x 5610S-1, C33 =917K-2 x 9128-3, C34 = 917K-2 x cv. Rose,
C37 =917K-2 x malaccensis, C61 = 917K-2 x SH3362 and MxC4 = Matooke (EAHB) x Calcutta 4

https://doi.org/10.1371/journal.pone.0178734.t005

Crosses involving M. acuminata ssp. malaccensis 250 as male parent produced hybrids
that were tall, slender, with bunches that had many fruit fingers poorly filled with pulp but
some individual genotype exceptions were observed. The hybrids were resistant to Black
Sigatoka and had the highest number of functional leaves at harvesting. Hybrids from cv.
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Rose were slender and shorter and were the highest in sucker production while other traits
varied considerably.

Hybrids from different cross combinations had longer maturity period (128-185 days) than
EAHB. On average EAHB mature within 90 days after flowering while the average maturity
period for all parental lines was 130 days.

Genetic diversity of GS training population

Out of the nineteen SSR markers, eighteen were used to delineate the structure of the study
population, because marker mMaCIR164 produced ambiguous allele profiles across samples.
From 18 loci, 195 alleles were scored and the number of alleles per locus ranged between 4 and
18 with an average of 10.8. Polymorphism information content (PIC) of the markers was high
with an average of 0.87 (0.53-0.95) while the major allele frequency was on average 0.22 (0.1-
0.45).

Despite the complex pedigree background of the GS population, SSR markers were infor-
mative enough to delineate the structure of the population (Fig 6). Hierarchical clustering
based on Ward’s criterion revealed ten groups indicating that the genetic diversity of popula-
tion was high. The triploid East African highland bananas clearly separated from other trip-
loids. They had the lowest within group genetic diversity. The tetraploids that resulted from
crossing EAHB by cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250 formed their own
cluster but were closely linked to that of EAHB, thus supporting the hypothesis that the tetra-
ploids were formed after fusion of unreduced gametes from triploid EAHB and haploid gam-
etes from diploid cv. ‘Calcutta 4’ and M. acuminata ssp. malaccensis 250. The within cluster
dispersion was rather homogenous and not highly diverse for the tetraploid hybrids probably
due high allele dosage from EAHB. SSR data suggested that the tetraploid presumed to be
hybrids of cv. Enzirabahima by M. a malaccensis 250 (29275S-1, 292755-4 and 29275S-5), were
in fact admixtures from pollination of EAHB with cv. ‘Calcutta 4. These tetraploid inherited
17 alleles specific for cv. ‘Calcutta 4’ and none of ssp. malaccensis 250 specific alleles across the
18 SSR markers used.

Hierarchical clustering of hybrids was much influenced by male parents used in the cross.
The biggest percentage of hybrids was produced from crosses involving tetraploids derived
from EAHB and cv. ‘Calcutta 4’. Hybrids from ssp. malaccensis 250 were more distinct from
the rest of the population and formed their own cluster. Four hybrids (26998S-1, 27074S-1,
28506S-1 and 27960s-1) presumed to be progeny of 2180K-6, cv. ‘Calcutta 4’ and cv. ‘Rose’ as
male parents clustered together with ssp. malaccensis 250 hybrids. SSR genotype profiles sug-
gested that those four hybrids were misidentified because they had ssp. malaccensis 250 specific
alleles. The highest genetic diversity was observed in the diploid parents and between families.
Diploids that were linked by pedigree clustered together but the within cluster differences
were high compared to EAHB and tetraploids. Diploids such as cv. ‘Calcutta 4’, 861S-1, 5610S-
1, 2180K-1, Kokopo, and cv. ‘Rose’ clustered with their hybrids. Hybrids derived from 5610S-1
x 2180K-1 were all diploids and closely related to cv. ‘Calcutta 4 and 861S-1 and formed a sep-
arate cluster. Although the pedigree of 2180K-1 could not be traced, there is a possibility that
one of its parents was cv. ‘Calcutta 4". Hybrids from cv. ‘Long Tavoy’ and cv. ‘Calcutta 4’ were
not easily delineated because of the close resemblance of these genotypes. One cluster (J) com-
prising of triploid hybrids showed high within cluster diversity. Majority of advanced hybrids
especially NARITA hybrids comprising of potential candidate varieties are found in this clus-
ter. The ssp. zebrina accessions included in the analysis clustered within the main clusters sug-
gesting their genetic relatedness with other acuminata genotypes. In the population, some
genotypes were duplicates. The duplicates identified included 28465S-2 (A&B), 26337S-11
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Fig 6. Dendrogram showing the genetic diversity of the genomic selection training population based on 19 informative SSR markers. The
squared Euclidean distances were used to generate the hierarchical clusters based on ward.D criterion. Where cluster A = tetraploids (4x) by M. a. spp.
malaccensis 250, * share only female parent, cluster B = matooke (EAHB), cluster C = tetraploids from EAHB (3x) by Calcutta 4 a wild diploid (2x), cluster
D = wild and improved diploids, cluster E = Black Sigatoka resistant diploid hybrids, cluster F = hybrids of 5610S-1 as a male parent, * share grandparent
Calcutta 4, GC = good for cooking and N = NARITA hybrid, cluster G = cv. Rose was the main male parent, * share genetic background, cluster H = Long
Tavoy and Calcutta 4 are the grandparents, cluster | = mostly hybrids of SH3217 as male parent, N = NARITA, @ = released variety as NARITA 7/M9/
Kiwangazi and cluster J = triploid hybrids with complex pedigree, most advanced hybrids such as NARITAs (N) are found in this cluster of which some are

promising variety candidates and GC = good for cooking.

https://doi.org/10.1371/journal.pone.0178734.9006
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(A&B) and 26337S-22 (A&B) while 27524S-12 (A&B) that were assumed to be duplicates
were clarified to be genetically different although both were progeny of ssp. malaccensis 250.
Other supposed unique genotypes were identified as likely clonal pairs, such as 24948S-9 and
24948S-10, 24948S-22 and 24948S-27, 25623S-11 and 25628S-11, 24948S-12 and 24948S-21,
12479S-1 and 12479S-13, 25737S-1 and 25356S-1, and 25066S-1 and 25066S-2.

Discussion
Trait evaluation

Bananas express many traits that are used to evaluate hybrids in breeding programs. These
traits can be broadly classified as vegetative/agronomic (growth) traits, or yield and consumer
appeal (fruit) traits. Growth and yield related traits are used to assess the level of introgression
of resistance genes and this is done in the early evaluation trial. The index of non-spotted
leaves (INSL) is a measure of resistance to Black Sigatoka, a fungal disease that causes rapid
drying of leaves hence reducing the photosynthetic area [7]. Results from ANOVA obtained in
this work showed that INSL was not significantly affected by cycle. However, the effect of level
of input in field management on INSL depended on genotype. This suggests that resistance to
Black Sigatoka might be under strong genetic control and less influenced by cycle.

Correlation analysis showed a positive correlation between INSL, NSLF and YLSF. How-
ever, these three had low but significant negative correlations with yield-related traits under
low input field management conditions. These results suggest that whereas some Black Siga-
toka resistant genotypes give good yield, others produce inferior fruits. Reduction in functional
leaves and photosynthetic area has been shown to impact banana yield potential [7]. Tushe-
mereirwe [36] indicated that Black Sigatoka reduced yield of EAHB by more than 30%. Our
results show that under high input field management conditions, the impact of the disease on
yield traits was less severe (Tables 1 and 2). This result is in agreement with Mobambo et al.
[37] who reported that soil fertility had an effect on host plant response to Black Sigatoka and
yield in plantains. The symptoms of Black Sigatoka often increase after flowering probably
because at that time the ability of a plant to withstand the fungal attack is lowered as it commits
most of the energy and resources to the developing inflorescence. Some genotypes had no
functional leaves at harvest, indicating that they were very susceptible to Black Sigatoka after
flowering. Selection of hybrids based on the number of functional leaves at harvest as a mea-
sure of resistance to Black Sigatoka should be done with caution because of the negative associ-
ation between foliar symptoms to Black Sigatoka and fruit filling.

The present study shows that based on yield and growth traits, four groups of bananas
existed in the training population that is, genotypes with high INSL and good fruit filling, high
INSL with poor fruit filling, low INSL with good fruit filling and low INSL with poor fruit fill-
ing representing the four planes of the two components. However, PCA could not resolve the
population structure into clear-cut clusters due to complex pedigrees, although Osuji et al.

[38] used this approach to distinguish between different Musa triploids. This phenomenon
could be attributed to differences in carbon source to sink capacities.

Plant physiological studies have shown that the balance between source and sink transloca-
tion of photosynthetic assimilates is key to plant productivity [39]. In bananas, Dens et al. [40]
demonstrated the effect of manipulating the carbon source (C-source) and carbon sink (C-
sink) of mother plant on ratoon crops in cv. ‘Williams” and cv. ‘Grand Nain’ at a mat level.
Their results showed genotype and environmental effect on flowering time, plant height and
bunch size for the first ratoon crop. They concluded that the bunch was a larger C-sink than
the ratoon crop. At individual plant level, it is likely that difference in C-source to C-sink
capacity exists in bananas because our results showed that poor fruit filling genotypes were not
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significantly affected by cycle and field inputs. It can be postulated that when plants have a
strong C-sink capacity they tend to have high yield with increased leaf senescence, while those
with low C-sink capacity maintain many leaves with low yield at harvest. More physiological
studies in banana are required to shed light on this aspect. It has been reported that at the time
of flowering, the fruits and seeds became major sinks and any factor that reduces translocation
of photosynthetic assimilates to fruits reduces the harvest index [41].

The training population consisted of poor and good fruit filling genotypes based on FL, FC,
FRD and PLD. This characteristic was consistent across cycles and field management, with
two overlapping peaks in a binary pattern (S1A Fig). However, given the consistence of the
traits under different field conditions, there is likelihood that fruit filling is under control of
one or few major-effect quantitative trait loci (QTL). Given that the training population was
not a classical bi-parental mapping population this argument may not hold, but investigations
using genome wide association studies while accounting for pedigree effect [42] may help to
unravel the underlying genetic mechanisms using genome-wide markers such as SNPs.

This study did not find sufficient evidence to show that absolute apical dominance existed
in our training population. Different levels of sucker regulation (1-25 suckers) were observed
in different cross combinations. This result is in agreement with the observation made by
Ortiz and Vuylsteke [43] that non-apical dominance genes were fixed in AA genotypes of
Musa.

GXE interaction

The effects of cycle and field input management on the genotype and how the genotype inter-
acted with these two aspects of the environment were evaluated. The effect of cross combina-
tion was also assessed. Based on coefficients of determination and analysis of variance,
genotype, cycle, field and their interactions had different levels of effect on trait variation
among cross combinations and individual genotypes. While PHF and PG significantly
increased at cycle 2, field management did not have a significant effect on these traits. This
could be attributed to the fact that the suckers used were at different physiological maturity.
Yield traits were also affected by cycle but the bi-modal distribution was maintained. When
bananas are planted in the field they first undergo an establishment phase and build reserves
that can accelerate growth of the daughter plants. Therefore, cycle 2 is best to compare geno-
types especially with regard to yield traits. Tushemereirwe et al. [16] reported a cycle effect on
traits when they analyzed some advanced hybrids, but it was not fully known whether this
behavior occurred in different banana genotypes. The effect of cycle alone varied across traits
depending on field management except for PED, HTSF and INSL that were most stable. It
should however be noted that under optimum field management the cycle explains a small
proportion of trait variation in genotypes because most traits had coefficient of determination
values below 0.4 in GS2.

The present results show that different banana traits may have different genetic architecture
with some traits influenced by GxE. In marker assisted selection this can hamper deployment
of classical marker technologies that rely on identifying QTLs. Approaches such as genomic
selection that utilize genome-wide markers in complex populations such as in this study
provide an opportunity to dissect such traits and could be exploited by banana breeders to
increase genetic gain per unit time. Genotype by environment interaction has been shown to
affect the accuracy of genomic selection models [24, 44]. Therefore, understanding genotype
trait variation across different environments is paramount.

Many hybrids generated from crossbreeding usually have inferior fruit size irrespective of
the ploidy level. Such inferiority has been attributed to linkage drag from wild diploids [45].
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Bananas have a long selection cycle, they are labor intensive, costly and require large land area
for evaluation. Any technology that can discriminate the inferior genotypes from the good
ones at a nursery stage could save a lot of resources and time for the breeders thus increasing
the breeding efficiency. With the availability of the Musa reference genome [46, 47] and
decreasing costs of next generation sequencing technologies, high density marker technologies
such as genotyping by sequencing are available for many plant species [48]. This provides an
opportunity to investigate the application of genomic selection in banana breeding.

Performance of cross combinations

The true breeding value of a genotype is determined by the quality of hybrids produced when
itis involved in a cross. By comparing the responses to selection (R) and selection differentials
(S) of sixteen cross combinations it was concluded that no single cross combination presented
all the good qualities targeted by the breeders in hybrids. This further explains the complex
trait variation observed within study population. No attempt was made to determine heritabil-
ity of the traits because of unbalanced design and the possibility of confounding from heterosis
[31]. Some hybrids that had many active leaves at harvest showed variation in fruit filling.
Performance of the hybrids was greatly influenced by the male parent involved in the cross.
Although both diploids and tetraploids had 50% segregation opportunity, the tetraploids were
genetically very similar, whereas the diploids were more genetically diverse with the exception
of SH3217 and SH3362 that were closely related. Crosses involving diploid SH3217, SH3362
and 9128-3 produced hybrids which were superior in yield compared to other crosses. These
diploids are parthenocarpic, with big fruits and many hands (clusters) per bunch. The best
cross combination was C10 (120K-1 x SH3217) that produced hybrids that were fairly resistant
to Black Sigatoka, high yielding and quick maturing. Despite the susceptibility of 1201K-1 par-
ent to Black Sigatoka, segregation was observed and some hybrids that had some acceptable
levels of resistance were produced.

Tenkouano et al. [49] reported a 4-fold contribution of male parents toward yield traits
while Rowe and Rosales [50] highlighted that breeding for improved diploids with pest and
disease resistance, parthenocarpy and good yield was the best strategy in banana improvement.
Gene pyramiding has also been suggested so that multiple introgressions of good traits are
possible [51]. Most of the improved varieties produced by crossbreeding are triploid and all
assumed to be completely sterile but no research has been conducted to evaluate their fertility.
Further improvement of these triploids is necessary given that no single hybrid has all traits
desired by farmers and consumers. The 2x by 2x hybrids were all diploid and some had sizable
bunches compared to other diploids in the core breeding set, i.e. could be interesting as
improved 2x parents. Further evaluation of these diploids for pollen viability and partheno-
carpy will be necessary before they are incorporated in the core breeding set despite their long
maturity period. Hybrids that take four months to mature may be considered quick maturing,
given that the majority take more than four months.

Genetic diversity of GS training population

Whereas principal component analysis on cross combinations and individual genotypes
showed that high genetic diversity existed in the training population, its power to resolve the
structure of the population into clear-cut clusters that make biological sense was limited. This
was attributed to complex pedigrees in the population with 77 cross combinations represented.
The half-sib families were closely related to one another with which they shared a common
parent. The population was interconnected due to shared parents in their pedigree. Use of
SSR markers proved valuable in delineating the population structure that could be easily
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interpreted. The set of markers used was reported to be informative and has been used on gen-
otyping the banana collection from the International Transit Center [32]. The polymorphism
information content (PIC) of 0.87 was high enough to resolve even the closest genotypes. Up
to ten unique clusters were resolved and results showed that clustering was mostly influenced
by the genetic diversity in diploid parents.

Triploid EAHB and tetraploids derived from them by crossing with cv. ‘Calcutta 4’ formed
two distinct but closely related clusters, supporting the hypothesis of production of unreduced
3n and reduced n gametes during meiotic events in the tetraploid progenitors [52]. Despite the
high PIC of the markers, the EAHB showed a very low genetic diversity consistent with the
hypothesis that this group of bananas is an ancient clone set [9]. Even with a high number of
polymorphic SSR markers Kitavi et al. and Karamura et al. [9, 53] failed to separate this group
into the corresponding phenotype-based clone sets of Karamura [1]. However, some genetic
differences were observed between some individual genotypes that could be attributed to
mutations within this ancient clone set. The population was predominated with genetic intro-
gression from cv. ‘Calcutta 4". Hybrids from M. acuminata ssp. malaccensis 250 formed a
distinct cluster. Three tetraploids presumed to be arising from a cross of EAHB with ssp.
malaccensis 250 grouped together with those derived from EAHB by cv. ‘Calcutta 4’. The pres-
ence of Calcutta 4-specific alleles in these tetraploids and the absence of ssp. malaccensis 250
specific alleles suggest that these hybrids are progeny of EAHB by cv. ‘Calcutta 4’ hence the
high genetic relationship with the rest of the tetraploids. Nevertheless, these tetraploids should
be tested as parents to determine their breeding values so that the breeding genetic pool is
expanded.

The SSR markers proved useful in identifying duplicates and closely related genotypes
based on pedigree background. A combination of highly polymorphic SSR markers and the
power of Ward’s clustering method that minimizes the within-group dispersion [34] in the
Euclidean space helped to resolve the structure of the population that was highly interlinked
by pedigree background. The high level of genetic complexity observed in this population rep-
resents different recombination events that make it suitable as a training population for geno-
mic selection.

Apart from obtaining important data on the banana GS training population, important les-
sons were learned during the course of this work. Dedicated efforts are required to understand
the genome organization of bananas through cytological approaches. Ploidy analysis should be
routinely employed in breeding programs to differentiate ploidy levels so that different selec-
tion criteria are used to select hybrids intended for the breeding pipeline from those eligible
for variety release. Despite a majority of the improved hybrids being triploids, their fertility
should be tested so that further improvements can be made on them as a way to achieve gene
pyramiding while minimizing inbreeding.

Conclusion

The response of genotype trait expression to cycle and field management practices varied
greatly. The largest proportion of genetic variation was due to the greater genetic diversity of
male parents used in crosses since the tetraploids used in the majority of crosses as female
parents were genetically related. Yield traits accounted for 31-35% of the total principal com-
ponent variation observed in the population and were loaded on the first component while
vegetative traits contributed to the second component with 15-22%. A high level of correlation
within vegetative- and yield-related traits was observed but correlation between vegetative and
yield traits was low and depended on the interaction with field management practices. There-
fore, genomic selection models could be developed for traits that are easy to measure. It is
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likely that the predictive ability of traits that are difficult to phenotype will be similar to traits
easily measured but highly correlated. The study population was observed to be genetically
diverse with complex pedigree structure. Yield-related traits showed a bi-modal distribution,
which was not influenced by cycle or field management. Resistance to Black Sigatoka was also
stable across cycles but varied under different field management depending on the genotype.
Principal component analysis could not delineate this complex population structure but the
application of SSR markers in combination with Ward’s hierarchical clustering proved power-
ful and resolved the structure into biologically meaningful groups.

Supporting information

S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution
of fruit circumference (FC), (B) cross sections of poor filling fruits, (C) good filling fruits with
fruit diameter (FRD) and pulp diameter (PLD) values in cm, and (D) poor filling and good fill-
ing banana fruits.

(TIF)

S1 Table. List of genotypes in a banana genomic selection training population.
(DOCX)

$2 Table. Data used to calculate selection differential and response to selection for the six-
teen cross combinations.
(XLSX)

§3 Table. Summary of all trait variations in response to cycle and field management.
(DOCX)
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S1 Table. List of genotypes in the genomic selection training population

S/No | Cross | Genotype name Female parent | Male parent Ploidy | Description
1 Enzirabahima 3X Parent
2 Kabucuragye 3X Parent
3 Tereza 3X Parent
4 Enyeru 3X Parent
5 Nakayonga 3x Parent
6 Namwezi 3X Parent
7 Entukura 3X Parent
8 Nakasabira 3X Parent
9 Nakawere 3X Parent
10 Nante 3X Parent
11 Kazirakwe 3X Parent
12 Nfuuka 3X Parent
13 Calcutta 4 2X Parent
14 C45 1201K-1 Nakawere Calcutta 4 4x Parent
15 C41 917K-2 Enzirabahima | Calcutta 4 4x Parent
16 C41 660K-1 Enzirabahima | Calcutta 4 4x Parent
17 C40 1438K-1 Entukura Calcutta 4 4x Parent
18 C51 222K-1 Nfuuka Calcutta 4 4x Parent
19 C49 376K-7 Nante Calcutta 4 4x Parent
20 C67 | 365K-1 Kabucuragye | Calcutta 4 4x Parent
21 C40 |401K-1 Entukura Calcutta 4 4x Parent
22 C66 | 2180K-6 2X Parent
23 C53 8075-7 SH3362 Calcutta 4 2X Parent
24 C54 7197-2 SH3362 Long Tavoy 2X Parent
25 C63 | SH3142 SH1734 Pisang Jari Buaya | 2x Parent
26 Coe4 SH3362 SH3217 SH3142 2X Parent
27 C52 | SH3217 SH2095 SH2766 2X Parent
28 C43 | 5610S-1 Kabucuragye | 7197-2 2X Parent
29 C65 |9128-3 Tjau lagada Pisang lilin 2X Parent
30 C57 | 1968-2 Who-gu Calcutta 4 3x Parent
31 C48 | 861S-1 Namwezi Calcutta 4 2X Parent
32 cv. Rose 2X Parent
33 Pisang Lilin 2X Parent
34 Kokopo 2X Parent
35 Long Tavoy 2X Parent
36 malaccensis 250 2X Parent
37 C01 | 28165S-1 1201K-1 1968-2 3x Hybrid
38 C02 | 25583S-2 1201K-1 5610S-1 3X Hybrid
39 C02 | 26660S-1 1201K-1 5610S-1 3X Hybrid
40 C02 | 28434S-9 1201K-1 5610S-1 3X Hybrid
41 C68 | 17503S-3 1201K-1 7197-2 3X Hybrid
42 C03 | 16242S-1 1201K-1 8075-7 3X Hybrid
43 C04 | 12479S-1 1201K-1 9128-3 3X Hybrid
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C10
Cil1
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Cl1
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12479S-13 1201K-1 9128-3 3X Hybrid
26317S-1 1201K-1 9128-3 3X Hybrid
27262S-1 1201K-1 9128-3 3x Hybrid
27262S-3 1201K-1 9128-3 3X Hybrid
27770S-20 1201K-1 cv. Rose 3x Hybrid
27770S-4 1201K-1 cv. Rose 3x Hybrid
27935S-1 1201K-1 cv. Rose 3X Hybrid
27960S-1 1201K-1 cv. Rose 3X Hybrid
28036S-11 1201K-1 cv. Rose 3X Hybrid
28036S-2 1201K-1 cv. Rose 3X Hybrid
28164S-3 1201K-1 cv. Rose 3x Hybrid
28246S-4 1201K-1 cv. Rose 3X Hybrid
28246S-7 1201K-1 cv. Rose 3X Hybrid
27935S-7 1201K-1 cv. Rose 3X Hybrid
26363S-1 1201K-1 Kokopo 3X Hybrid
26075S-6 1201K-1 Long Tavoy 3X Hybrid
26075S-7 1201K-1 Long Tavoy 3X Hybrid
26075S-8 1201K-1 Long Tavoy 3X Hybrid
27346S-2 1201K-1 malaccensis 250 | 3x Hybrid
27346S-4 1201K-1 malaccensis 250 | 3x Hybrid
27437S-1 1201K-1 malaccensis 250 | 3x Hybrid
27579S-1 1201K-1 malaccensis 250 | 3x Hybrid
27579S-3 1201K-1 malaccensis 250 | 3x Hybrid
28030S-2 1201K-1 malaccensis 250 | 3x Hybrid
28030S-6 1201K-1 malaccensis 250 | 3x Hybrid
28071S-1 1201K-1 malaccensis 250 | 3x Hybrid
28465S-2 1201K-1 malaccensis 250 | 3x Hybrid
28465S-21 1201K-1 malaccensis 250 | 3x Hybrid
28479S-2 1201K-1 malaccensis 250 | 3x Hybrid
26337S-22A 1201K-1 SH3217 3x Hybrid
26337S-40 1201K-1 SH3217 3x Hybrid
26840S-7 1201K-1 SH3362 2X Hybrid
26315S-1 1201K-1 SH3142 3X Hybrid
12419S-13 1201K-1 SH3217 3X Hybrid
26337S-11A 1201K-1 SH3217 3X Hybrid
26337S-2 1201K-1 SH3217 3X Hybrid
26337S-34 1201K-1 SH3217 3X Hybrid
26337S-37 1201K-1 SH3217 3X Hybrid
26337S-39 1201K-1 SH3217 3X Hybrid
26337S-43 1201K-1 SH3217 3X Hybrid
28263S-2 1201K-1 SH3217 3X Hybrid
12618S-1 1201K-1 SH3362 3X Hybrid
26316S-7 1201K-1 SH3362 3X Hybrid
26840S-10 1201K-1 SH3362 3X Hybrid
25328S-3 1438K-1 1537K-1 3X Hybrid
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24948S-10 1438K-1 5610S-1 3X Hybrid
24948S-13 1438K-1 5610S-1 3X Hybrid
24948S-24 1438K-1 5610S-1 3X Hybrid
24948S-9 1438K-1 5610S-1 3X Hybrid
26060S-1 1438K-1 9128-3 3X Hybrid
13573S-1 1438K-1 9719-7 3X Hybrid
27914S-1 1438K-1 cv. Rose 3x Hybrid
27914S-13 1438K-1 cv. Rose 3x Hybrid
28095S-1 1438K-1 cv. Rose 3X Hybrid
27264S-2 1438K-1 cv. Rose 2X Hybrid
27914S-24 1438K-1 cv. Rose 3x Hybrid
27914S-26 1438K-1 cv. Rose 3X Hybrid
27914S-3 1438K-1 cv. Rose 3X Hybrid
25474S-1 1438K-1 Kokopo 3X Hybrid
26369S-4 1438K-1 Long Tavoy 3X Hybrid
28481S-1 1438K-1 malaccensis 250 | 3x Hybrid
28561S-2 1438K-1 malaccensis 250 | 3x Hybrid
26725S-1 1438K-1 SH3362 3X Hybrid
25499S-7 1438K-1 SH3142 3X Hybrid
26039S-2 1438K-1 SH3217 3X Hybrid
26466S-2 1977K-1 5610S-1 3X Hybrid
26466S-5 1977K-1 5610S-1 3X Hybrid
22598S-2 365K-1 1201K-1 3X Hybrid
14539S-4 365K-1 660K-1 3X Hybrid
9750S-13 401K-1 9128-3 3X Hybrid
25031S-1 5610S-1 2180K-6 2X Hybrid
25031S-15 5610S-1 2180K-6 2X Hybrid
25031S-16 5610S-1 2180K-6 2X Hybrid
25031S-17 5610S-1 2180K-6 2X Hybrid
25031S-19 5610S-1 2180K-6 2X Hybrid
25031S-27 5610S-1 2180K-6 2X Hybrid
25031S-33 5610S-1 2180K-6 2X Hybrid
25031S-34 5610S-1 2180K-6 2X Hybrid
25031S-7 5610S-1 2180K-6 2X Hybrid
24583S-2 660K-1 5610S-1 3X Hybrid
26260S-3 660K-1 5610S-1 3X Hybrid
13284S-1 660K-1 9128-3 3X Hybrid
25371S-2 660K-1 9128-3 3X Hybrid
9187S-8 660K-1 9128-3 3X Hybrid
26709S-1 660K-1 Calcutta 4 3X Hybrid
27713S-1 660K-1 malaccensis 250 | 3x Hybrid
27825S-4 660K-1 malaccensis 250 | 3x Hybrid
27873S-18 660K-1 malaccensis 250 | 3x Hybrid
27873S-38 660K-1 malaccensis 250 | 3x Hybrid
27873S-4 660K-1 malaccensis 250 | 3x Hybrid
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135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

C27
C27
C28
C29
C30
C30
C31
C31
C31
C31
C31
C31
C31
C31
C31
C31
C31
C31
C31
C60
C60
C32
C33
C33
C33
C33
C33
C33
C33
C33
C33
C34
C34
C34
C34
C34
C34
C34
C34
C34
C35
C36
C36
C37
C37

27873S-5 660K-1 malaccensis 250 | 3x Hybrid
28188S-2 660K-1 malaccensis 250 | 3x Hybrid
25623S-11 8817S-1 917K-2 3x Hybrid
28492S-1 917K-2 1968-2 3x Hybrid
26998S-1 917K-2 2180K-6 3x Hybrid
27074S-1 917K-2 2180K-6 3x Hybrid
25117S-1 917K-2 5610S-1 3x Hybrid
25117S-2 917K-2 5610S-1 3x Hybrid
25117S-3 917K-2 5610S-1 3x Hybrid
25508S-1 917K-2 5610S-1 3x Hybrid
25628S-11 917K-2 5610S-1 3X Hybrid
26815S-3 917K-2 5610S-1 3X Hybrid
26815S-8 917K-2 5610S-1 3X Hybrid
26815S-9 917K-2 5610S-1 3X Hybrid
26990S-10 917K-2 5610S-1 3X Hybrid
26990S-11 917K-2 5610S-1 3X Hybrid
26990S-4 917K-2 5610S-1 3X Hybrid
27073S-1 917K-2 5610S-1 3X Hybrid
27744S-1 917K-2 5610S-1 3X Hybrid
12949S-2 917K-2 7197-2 3X Hybrid
25909S-3 917K-2 7197-2 3X Hybrid
25089S-4 917K-2 861S-1 3x Hybrid
19798S-2 917K-2 9128-3 3x Hybrid
24434S-3 917K-2 9128-3 3x Hybrid
25435S-11 917K-2 9128-3 3x Hybrid
25435S-4 917K-2 9128-3 3x Hybrid
25737S-1 917K-2 9128-3 3x Hybrid
26288S-4 917K-2 9128-3 3x Hybrid
26975S-1 917K-2 9128-3 3x Hybrid
26975S-2 917K-2 9128-3 3x Hybrid
7798S-2 917K-2 9128-3 3x Hybrid
27184S-4 917K-2 cv. Rose 3x Hybrid
27885S-9 917K-2 cv. Rose 3X Hybrid
27184S-8 917K-2 cv. Rose 3X Hybrid
27494S-12 917K-2 cv. Rose 3X Hybrid
27494S-4 917K-2 cv. Rose 3X Hybrid
27494S-5 917K-2 cv. Rose 3X Hybrid
28068S-9 917K-2 cv. Rose 3X Hybrid
27184S-6 917K-2 cv. Rose 3X Hybrid
27885S-1 917K-2 cv. Rose 3X Hybrid
24410S-2 917K-2 Kokopo 3X Hybrid
25680S-11 917K-2 Long Tavoy 3X Hybrid
25680S-13 917K-2 Long Tavoy 3X Hybrid
27261S-1 917K-2 malaccensis 250 | 3x Hybrid
27261S-10 917K-2 malaccensis 250 | 3x Hybrid
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191
192
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197
198
199
200
201
202
203
204
205
206
207
208
209
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212
213
214
215
216
217
218
219
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C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
C37
Co61
C38
C38
C38
Co61
Ce61
Co61
Co61
Co61
C6l
C6l
C6l
C6l
C62
C39
C41
C72
C46
C55
C75
C76

27261S-11 917K-2 malaccensis 250 | 3x Hybrid
27334S-5 917K-2 malaccensis 250 | 3x Hybrid
27401S-1 917K-2 malaccensis 250 | 3x Hybrid
27524S-12A 917K-2 malaccensis 250 | 3x Hybrid
27524S-12B 917K-2 malaccensis 250 | 3x Hybrid
27524S-22 917K-2 malaccensis 250 | 3x Hybrid
27524S-30 917K-2 malaccensis 250 | 3x Hybrid
27833S-10 917K-2 malaccensis 250 | 3x Hybrid
27833S-13 917K-2 malaccensis 250 | 3x Hybrid
27886S-5 917K-2 malaccensis 250 | 3x Hybrid
28033S-14 917K-2 malaccensis 250 | 3x Hybrid
28033S-15 917K-2 malaccensis 250 | 3x Hybrid
28033S-18 917K-2 malaccensis 250 | 3x Hybrid
28033S-23 917K-2 malaccensis 250 | 3x Hybrid
28033S-3 917K-2 malaccensis 250 | 3x Hybrid
28060S-8 917K-2 malaccensis 250 | 3x Hybrid
28200S-3 917K-2 malaccensis 250 | 3x Hybrid
28257S-1 917K-2 malaccensis 250 | 3x Hybrid
28257S-2 917K-2 malaccensis 250 | 3x Hybrid
28257S-4 917K-2 malaccensis 250 | 3x Hybrid
28432S-19 917K-2 malaccensis 250 | 3x Hybrid
28432S-20 917K-2 malaccensis 250 | 3x Hybrid
28432S-3 917K-2 malaccensis 250 | 3x Hybrid
28780S-1 917K-2 malaccensis 250 | 3x Hybrid
26874S-5 917K-2 SH3362 3x Hybrid
12468S-18 917K-2 SH3217 3X Hybrid
12477S-13 917K-2 SH3217 3X Hybrid
8386S-19 917K-2 SH3217 3X Hybrid
13522S-5 917K-2 SH3362 3x Hybrid
25974S-? 917K-2 SH3362 3x Hybrid
25974S-19 917K-2 SH3362 3x Hybrid
25974S-21 917K-2 SH3362 3x Hybrid
25974S-30 917K-2 SH3362 3x Hybrid
25974S-35 917K-2 SH3362 3X Hybrid
26666S-1 917K-2 SH3362 3X Hybrid
28476S-7 917K-2 SH3362 3X Hybrid
9494S-10 917K-2 SH3362 3X Hybrid
16457S-2 Entukura 365K-1 3X Hybrid
26540S-182 Entukura 8075-7 2X Hybrid
28260S-2 Enzirabahima | Calcutta 4 3X Hybrid
21086S-1 Kazirakwe 7197-2 3X Hybrid
28073S-1 Namwezi 7197-2 3X Hybrid
25356S-1 Tereza 7197-2 3X Hybrid
HB unknown unknown 3X Hybrid
HJ unknown unknown 3X Hybrid
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Cr7
C10
C73
C10
C73
C10
C14
C73
C14
C73
Col
Col
Cl4
Cr4
C35
C35
C44
C37
C6l
C34
C6l
C38
C13
C13
C13
C13
C13
C13
C13
C27
C27
C27
C27
C27
C27
Ci11
Cil1
Cil1
Cil1
Cil1
C09
C09
C06
C15
C19

HX unknown unknown 3X Hybrid
26337S-11B 1201K-1 SH3217 3X Hybrid
16285S-13 Calcutta 4 660K-1 2X Hybrid
26337S-22B 1201K-1 SH3217 3X Hybrid
16285S-3 Calcutta 4 660K-1 2X Hybrid
26337S-28 1201K-1 SH3217 3X Hybrid
25066S-1 1438K-1 Kokopo 3X Hybrid
16285S-6 Calcutta 4 660K-1 2X Hybrid
25066S-2 1438K-1 Kokopo 3X Hybrid
16285S-8 Calcutta 4 660K-1 2X Hybrid
25974S-11 917K-2 SH3362 3X Hybrid
25974S-15 917K-2 SH3362 3X Hybrid
25457S-1 1438K-1 Kokopo 3X Hybrid
16191S-6 Calcutta 4 917K-2 2X Hybrid
24797S-7 917K-2 Kokopo 3X Hybrid
25102S-1 917K-2 Kokopo 3X Hybrid
28452S-11 Nakasabira Calcutta 4 3X Hybrid
28033S-9 917K-2 malaccensis 250 | 3x Hybrid
25974S-13 917K-2 SH3362 3X Hybrid
28256S-1 917K-2 cv. Rose 3X Hybrid
25974S-17 917K-2 SH3362 4x Hybrid
12468S-6 917K-2 SH3217 3X Hybrid
27914S-11 1438K-1 cv. Rose 3x Hybrid
27914S-18 1438K-1 cv. Rose 3x Hybrid
27914S-21 1438K-1 cv. Rose 3x Hybrid
27914S-22 1438K-1 cv. Rose 3x Hybrid
27914S-6 1438K-1 cv. Rose 3X Hybrid
27914S-7 1438K-1 cv. Rose 3x Hybrid
27914S-8 1438K-1 cv. Rose 3X Hybrid
27873S-12 660K-1 malaccensis 250 | 3x Hybrid
27873S-14 660K-1 malaccensis 250 | 3x Hybrid
27873S-17 660K-1 malaccensis 250 | 3x Hybrid
27873S-33 660K-1 malaccensis 250 | 3x Hybrid
27873S-37 660K-1 malaccensis 250 | 3x Hybrid
27873S-7 660K-1 malaccensis 250 | 3x Hybrid
26224S-3 1201K-1 SH3362 3X Hybrid
26840S-9 1201K-1 SH3362 3X Hybrid
26316S-14 1201K-1 SH3362 3X Hybrid
26224S-2 1201K-1 SH3362 3X Hybrid
26840S-5 1201K-1 SH3362 3X Hybrid
25653S-3 1201K-1 SH3142 3X Hybrid
26315S-3 1201K-1 SH3142 3X Hybrid
28528S-1 1201K-1 Kokopo 3X Hybrid
26369S-8 1438K-1 Long Tavoy 3X Hybrid
26530S-1 1438K-1 SH3362 3X Hybrid
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C16
C16
C16
C16
C16
C16
C16
C16
C23
C23
C23
C23
C27
C27
C27
C40
C47
C50
C05
C05
C10
Cl1
C12
C12
C12
C12
C12
C12
C12
C29
C32
Co61
Co61
C6l
C42
C42
C42
C55
C56

27528S-1 1438K-1 malaccensis 250 | 3x Hybrid
27915S-3 1438K-1 malaccensis 250 | 3x Hybrid
28561S-5 1438K-1 malaccensis 250 | 3x Hybrid
27915S-2 1438K-1 malaccensis 250 | 3x Hybrid
28974S-11 1438K-1 malaccensis 250 | 3x Hybrid
28974S-15 1438K-1 malaccensis 250 | 3x Hybrid
28974S-22 1438K-1 malaccensis 250 | 3x Hybrid
28974S-29 1438K-1 malaccensis 250 | 3x Hybrid
29114S-14A 5610S-1 malaccensis 250 | 2x Hybrid
29114S-14B 5610S-1 malaccensis 250 | 3x Hybrid
29114S-19 5610S-1 malaccensis 250 | 3x Hybrid
29114S-24 5610S-1 malaccensis 250 | 3x Hybrid
27873S-26 660K-1 malaccensis 250 | 3x Hybrid
27873S-31 660K-1 malaccensis 250 | 3x Hybrid
29165S-5 660K-1 malaccensis 250 | 3x Hybrid
28506S-1 Entukura Calcutta 4 3X Hybrid
29364S-2 Namwezi cv. Rose 4x Hybrid
28077S-5 Nfuuka 8075-7 3X Hybrid
28164S-15 1201K-1 cv. Rose 3X Hybrid
29285S-20 1201K-1 cv. Rose 3X Hybrid
26337S-32 1201K-1 SH3217 3X Hybrid
27684S-5 1201K-1 SH3362 3X Hybrid
24948S-12 1438K-1 5610S-1 3X Hybrid
24948S-21 1438K-1 5610S-1 3X Hybrid
24948S-27 1438K-1 5610S-1 3x Hybrid
29586S-4 1438K-1 5610S-1 3x Hybrid
24948S-22 1438K-1 5610S-1 3x Hybrid
24948S-2 1438K-1 5610S-1 3x Hybrid
24948S-29 1438K-1 5610S-1 3x Hybrid
26820S-1 917K-2 1968-2 3X Hybrid
25474S-5 917K-2 861S-1 3X Hybrid
25974S-18 917K-2 SH3362 3x Hybrid
28476S-8 917K-2 SH3362 3x Hybrid
25974S-31 917K-2 SH3362 3X Hybrid
29275S-1 Enzirabahima | malaccensis 250 | 4x Hybrid
29275S-4 Enzirabahima | malaccensis 250 | 4x Hybrid
29275S-5 Enzirabahima | malaccensis 250 | 4x Hybrid
29636S-1 Tereza 7197-2 4x Hybrid
28776S-2 Tereza 8075-7 3X Hybrid

2x = diploid, 3x = triploid and 4x = tetraploid




S3 Table: Summary of all trait variations in response to cycle and field

management.
Dep. variable | Indep. variable Sum Sq Df F value Pr(>F)
NSLF Clone 3901.23 306 3.63 <0.0001
Field 4.67 1 1.33 0.2492
Clone:Field 1360.46 284 1.36 0.0001
Cycle 2.63 1 0.69 0.4052
Clone:Cycle 1174.64 299 1.04 0.3283
YLSF Clone 4790.39 306 4.50 <0.0001
Field 2.63 1 0.75 0.3852
Clone:Field 1483.14 284 1.50 <0.0001
Cycle 0.00 1 0.00 1.0000
Clone:Cycle 1102.33 299 0.85 0.9669
PHF Clone 2222889.11 306 3.77 <0.0001
Field 1126.34 1 0.58 0.4449
Clone:Field 432297.46 284 0.79 0.9947
Cycle 8714.88 1 8.25 0.0041
Clone:Cycle 332846.71 299 1.05 0.2662
PG Clone 73176.82 306 4.30 <0.0001
Field 1.52 1 0.03 0.8686
Clone:Field 12061.30 284 0.76 0.9981
Cycle 351.48 1 12.11 0.0005
Clone:Cycle 13057.24 299 1.51 <0.0001
HTSF Clone 2151815.75 306 2.96 <0.0001
Field 1075.15 1 0.45 0.5014
Clone:Field 895154.77 284 1.33 0.0005
Cycle 59.52 1 0.02 0.8836
Clone:Cycle 976295.15 299 1.18 0.0276
INSL Clone 116602.02 306 2.44 <0.0001
Field 4.96 1 0.03 0.8584
Clone:Field 58583.77 284 1.32 0.0005
Cycle 141.37 1 0.79 0.3740
Clone:Cycle 51026.49 299 0.95 0.6947
TSt Clone 240.28 305 3.21 <0.0001
Field 0.24 1 0.99 0.3204
Clone:Field 100.88 282 1.46 <0.0001
NSLH Clone 4746.65 303 5.14 <0.0001
Field 7.50 1 2.46 0.1170
Clone:Field 958.14 269 1.17 0.0417
Cycle 20.74 1 6.78 0.0093
Clone:Cycle 1154.94 276 1.37 0.0002
YLSH Clone 2261.86 303 4.18 <0.0001
Field 3.33 1 1.87 0.1719
Clone:Field 649.25 269 1.35 0.0003
Cycle 4.14 1 2.01 0.1562
Clone:Cycle 579.70 276 1.02 0.4063




HTSH Clone 2714448.28 303 4.55 <0.0001
Field 7053.33 1 3.58 0.0587
Clone:Field 1190067.21 269 2.25 <0.0001
Cycle 1920.12 1 0.65 0.4196
Clone:Cycle 949051.52 276 1.17 0.0408
BWTsa" Clone 1213.89 303 12.55 <0.0001
Field 1.4 1 4.38 0.0365
Clone:Field 126.77 269 1.48 <0.0001
Cycle 4.04 1 15.24 <0.0001
Clone:Cycle 108.68 276 1.49 <0.0001
NH Clone 3334.02 303 8.67 <0.0001
Field 0.03 1 0.03 0.8713
Clone:Field 569.58 269 1.67 <0.0001
Cycle 7.43 1 6.01 0.0143
Clone:Cycle 429.09 276 1.26 0.0048
NF Clone 1380508.67 303 5.46 <0.0001
Field 112.13 1 0.13 0.7139
Clone:Field 333080.59 269 1.49 <0.0001
Cycle 4742.88 1 6.13 0.0134
Clone:Cycle 262980.73 276 1.23 0.0092
FL Clone 16284.98 300 13.49 <0.0001
Field 33.92 1 8.43 0.0037
Clone:Field 1982.34 269 1.83 <0.0001
Cycle 5.95 1 1.10 0.2944
Clone:Cycle 1328.62 273 0.90 0.8661
FC Clone 9506.06 300 16.11 0.0000
Field 17.79 1 9.04 0.0027
Clone:Field 733.66 269 1.39 0.0001
Cycle 2.78 1 1.30 0.2548
Clone:Cycle 751.00 272 1.29 0.0021
FRD Clone 1003.46 299 17.55 0.0000
Field 2.52 1 13.19 0.0003
Clone:Field 139.73 269 2.72 <0.0001
Cycle 0.44 1 1.75 0.1866
Clone:Cycle 70.74 271 1.04 0.3331
PLD Clone 865.42 299 17.60 0.0000
Field 2.70 1 16.42 <0.0001
Clone:Field 68.27 269 1.54 <0.0001
Cycle 0.52 1 3.03 0.0820
Clone:Cycle 60.55 271 1.29 0.0022
PED Clone 20.96 299 11.41 <0.0001
Field 0.00 1 0.08 0.7799
Clone:Field 16.61 269 10.05 <0.0001
Cycle 0.00 1 0.13 0.7192
Clone:Cycle 3.15 271 0.80 0.9913

sat Original data transformed by square root,
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S1 Fig. Variation in fruit characteristics. (A) is a histogram showing the bimodal distribution of fruit
circumference (FC), (B) cross sections of poor filling fruits, (C) good filling fruits with fruit diameter

(FRD) and pulp diameter (PLD) values in cm, and (D) poor filling and good filling banana fruits.



Appendix 111

Poster presentation: Trait Variation in a Banana Training Population for Genomic

Selection. At: Annual banana meeting, April, 2017, Kampala, Uganda.

Poster presentation: Trait Variation in a Banana Training Population for Genomic

Selection. At: P4D and R4D meeting, November, 2016 at IITA, Ibadan, Nigeria.

Poster presentation: Towards marker assisted breeding in banana. At: R4D meeting,

November, 2015 at IITA, Ibadan, Nigeria.

Poster Presentation: Genomic selection to accelerate banana breeding. At: Roots,

Tubers and Bananas (RTB) project evaluation, February, 2015 at IITA, Sendusu, Uganda.
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Introduction

Conventional crossbreeding is the main approach used in banana improvement. However, the method
requires up to two decades of crossing and field evaluation to develop a new hybrid. This Is because selection
IS carried out at different levels (Fig 1). At every level, plants are evaluated after three crop cycles, each
taking about a year. Yield traits can only be scored at harvest while organoleptic traits are recorded after
harvesting, making the selection process slow, expensive and labour intensive. Molecular tools with the
potential to improve banana breeding efficiency are being investigated. These include genomic selection
(GS), which will benefit breeding through increased genetic gain per unit time (Meuwissen et al. 2001,
Nakaya and Isobe 2009). Understanding trait variation and the correlation among economically important
traits Is an essential first step in the development of GS models. In this study we tested the hypothesis that

trait variations in bananas are not affected by cross combination, cycle, field management and their

Interaction with genotype.

Cross pollination
Embryo rescue
In-vitro
multiplication of genotypes

1-1.5 years 1-1.5 years

Genotyping at tissue
culture or nursery
level

Early Evaluation Trial

3-4 years
<10% selected

3-6 months

Genomic Selection
Prediction

HYBRID

Preliminary Yield Trial

~2-3 years 3-4 years
Confirm < 5% selected
phenotype

Evaluation Trial

Advanced/
Multi-location

Phenotype the best

Predicted Genotypes

Sensory

Evaluation
3-4 years

< 1% selected

On-Farm Trial/

Farmer Participatory
Selection

COOKING VARIETY

Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection of banana hybrids and (B)

Integrated genomic selection and phenotypic selection approach being investigated.

Materials and Methods

The training population consists of 307 genotypes that include parents and the resulting hybrids. The
population was phenotyped under low (no mulch and NPK fertilizer) and high (mulch + NPK) field input
management at Namulonge research station. Data collected on two crop cycles were analysed using R
statistical software. The correlations and significance of correlations were determined using R package
Hmisc. Analysis of variance was performed to understand the effect of genotype and the interaction between

genotype and cycle, and genotype and field management on trait variation.

Results and Discussion

A high level of correlation among vegetative and yield related traits was observed (Table 1). This could mean
that the predictive ability of traits that are difficult to phenotype will be similar to less difficult traits they are
highly correlated with. Therefore, genomic selection models could be developed for traits that are easily
measured. Table 2 summarizes the genotypic effects and the interaction between genotype and cycle and
genotype and field management on the traits. Black Sigatoka-related traits were not affected by crop cycle.
These could be measured in the first cycle thus reducing on phenotyping burden. Growth traits such as plant
height and girth were the least affected by field input management. Conversely, yield-related traits such as
bunch weight, number of hands and number of fingers were significantly affected by both crop cycle and
field input management. The variation in traits observed suggest that different genomic selection models
should be tested. For traits affected by cycle and field management, models that account for non-additive
genetic effect are likely to have better predictive ability on them. Integration of genomic selection In
crossbreeding allows simultaneous prediction and selection of best hybrids. This is likely to reduce the

selection cycle and increase genetic gain per unit time.

Table 1: Pearson’s correlation coefficients of traits under high input field management

Pant | Plant [Index of non-| Bunch | Number | Number | Fruit Fruit Fruit

height | girth | spotted leaf | weight | of hands | of fruits | length | circumference | diameter
Plant girth 0.77%
Index of non-spotted leaf 0.21 0.27
Bunch weight 0.37% 0.62* —0.13

* *
Number of hands 022 042 0.10 0.52
* * * *

Number of fruits Sh 0.58 0.19 0.57 0.84
Fruit length 0.20 0.44* —0.15 0.83* 0.28* 0.27*
Fruit circumference 0.33% 0.45% —0.15 0.81* 0.15 0.15 0.85*
Eruit diameter 0.39* 0.48* —0.16 0.79* 0.16 0.18 0.80* 0.97*

0.39* 0.45* —0.16 0.74* 0.11 0.13 0.76* 0.94* 0.99*

Pulp diameter

* Significant correlation with P-value < 0.05

Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits
Indep. variable

BANANAS

Plant height Genotype 2222889 306 3.77 <0.0001
Genotype X Field 432297 284 0.79 0.995
Genotype x Cycle 332846 299 1.05 0.266
Plant girth Genotype 73176 306 4.30 <0.0001
Genotype x Field 12061 284 0.76 0.998
Genotype x Cycle 13057 299 1.51 <0.0001
Index of non-spotted leaf  Genotype 116602 306 2.44 <0.0001
Genotype x Field 58584 284 1.32 0.0005
Genotype x Cycle 51026 299 0.95 0.695
Bunch weight* Genotype 1214 303 12.55 <0.0001
Genotype x Field 127 269 1.48 <0.0001
Genotype x Cycle 109 276 1.49 <0.0001
Number of hands Genotype 3334 303 8.67 <0.0001
Genotype x Field 570 269 1.67 <0.0001
Genotype x Cycle 429 276 1.26 0.005
Number of fruits Genotype 1380509 303 5.46 <0.0001
Genotype x Field 333081 269 1.49 <0.0001
Genotype x Cycle 262981 276 1.23 0.009

* Original data was square root transformed

Conclusion

Genomic selection as a form of marker assisted selection is a non-stand alone approach but if integrated into

conventional crossbreeding it has the potential to accelerate the breeding process. The effectiveness of

genomic selection in banana will greatly depend on the prediction accuracy of the genomic selection models.
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Conventional crossbreeding is the main approach used in banana improvement. However, A high level of correlation among vegetative and yield related traits was observed (Table 1). This

Uwimana, Brigitte!

the method requires up to two decades of crossing and field evaluation to develop a new could mean that the predictive ability of traits that are difficult to phenotype will be similar to less

hybrid. This is because selection is carried out at different levels (Fig 1). At every level, difficult traits they are highly correlated with. Therefore, genomic selection models could be

Swennen, Rony?

plants are evaluated after three crop cycles, each taking about a year. Yield traits can only developed for traits that are easily measured. Table 2 summarizes the genotypic effects and the

Batte, Michael!

be scored at harvest while organoleptic traits are recorded after harvesting, making the Interaction between genotype and cycle and genotype and field management on the traits. Black

selection process slow, expensive and labour intensive. Molecular tools with the potential Sigatoka-related traits were not affected by crop cycle. These could be measured in the first cycle

Brown, Allan?

to improve banana breeding efficiency are being investigated. These include genomic thus reducing on phenotyping burden. Growth traits such as plant height and girth were the least

Christelova, Pavla3

selection (GS), which will benefit breeding through increased genetic gain per unit time affected by field input management. Conversely, yield-related traits such as bunch weight,

(Meuwissen et al. 2001; Nakaya and Isobe 2009). Understanding trait variation and the number of hands and number of fingers were significantly affected by both crop cycle and field

Hribova , Eva’

correlation among economically important traits is an essential first step in the Input management. The variation in traits observed suggest that different genomic selection

Lorenzen, Jim!”

development of GS models. In this study we tested the hypothesis that trait variations in models should be tested. For traits affected by cycle and field management, models that account

bananas are not affected by cross combination, cycle, field management and their for non-additive genetic effect are likely to have better predictive ability on them. Integration of

Dolezel, Jaroslavs

Interaction with genotype. genomic selection in crossbreeding allows simultaneous prediction and selection of best hybrids.

This is likely to reduce the selection cycle and increase genetic gain per unit time.
L International Institute

B A Table 1: Pearson’s correlation coefficients of traits under high input field management _ _
index of of Tropical Agriculture
Cross pollination Pant Plant non- Bunch Number Number Fruit Fruit Fruit
Embryo rescue height girth spotted weight of hands of fruits length circumferencediameter (I IT A) Kam pala
- . - - - - ] ]
1622 In-vitro multiplication lei-ri — leaf
y of genotypes y Plant girth ' Uganda
Index of non- 0.21 0.27
spotted leaf
Bunch weight 0.37% 0.62% -0.13
0.22 0.42* 0.10 0.52*
Number of hand " "
Genotyping at . HmBeEr ot nands 2 InternathnaI InStItUte
) Early Evaluation , 0.37* 058 019 0.57* 0.84*
tissue culture or Trial Number of fingers _ _
nursery level Fruit length 0.20 0.44* —0.15 0.83* 0.28* 0.27* Of Troplcal Ag“CU ItU e
Fruit 0.33* 0.45* -0.15 0.81* 0.15 0.15  0.85*
circumference (I ITA), AI‘USha,
3-6 3-4 years Fruit diameter 0.39* 0.48* -0.16 0.79*% 0.16 0.18 0.80* 0.97*
<10% selected
months 0% selecte s diameter  039%  045% —0.16 074 011 013 076* 0.94*  0.99* Tanzania
* Significant correlation with P-value < 0.05
Genomic o . _ . .
Sellefiar YRI D Preliminary Yield Table 2: Effect of genotype and genotype interaction with cycle and field management on the traits 3 | nStitUte Of
o ik | Trial
Prediction , Trait Indep. variable Sum Sq Df F value P value
. Experimental Botany,
Plant height Genotype 2222889 306 3.77 <0.0001
oS years 34 years Genotype x Field 432297 284 0.79 0.995 Palacky University,
0
phenotype selected Genotype x Cycle 332846 299 1.05 0.266
Plant girth Genotype 73176 306 4.30 <0.0001 CzeCh RePUbl IC
best Predicted Multilocation Genotype x Cycle 13057 209 1.51 <0.0001
Genotypes Evaluation Trial * -
Sensory Index of non-spotted ~ Genotype 116602 306 2.44 <0.0001 Curre ntly with the
Evaluation 3.4 e Genotype x Field 58584 284 1.32 0.0005 Bill and Melind
-4 years . . I n In
<1% d e ad
selected Genotype x Cycle 51026 299 0.95 0.695 )
. | Gates Foundation
On-Farm Trial/ Bunch weight* Genotype 1214 303 12.55 <0.0001
Farmer .
) Participatory Genotype x Field 127 269 1.48 <0.0001
\ Selection Genotype x Cycle 109 276 1.49 <0.0001
Number of hands Genotype 3334 303 8.67 <0.0001
Genotype X Field 570 269 1.67 <0.0001
P Genotype x Cycle 429 276 1.26 0.005
JUICE VARIETY OR COOKING VARIETY Number of fruits Genotype 1380509 303 5.46 <0.0001 a ¥
Genotype x Field 333081 269 1.49 <0.0001 ‘ /
Fig 1: Approaches to hybrid selection in banana breeding program. (A) the classical phenotypic selection Genotype x Cycle 262981 276 1.23 0.009

of banana hybrids and (B) integrated genomic selection and phenotypic selection approach being * Original data square root transformed

Investigated.

Conclusions and Recommendations

Genomic selection as a form of marker assisted selection Is a non-stand alone approach but if

Materials and Methods

The training population consists of 307 genotypes that include parents and the resulting

Integrated into conventional crossbreeding it has the potential to accelerate the breeding
process. The effectiveness of genomic selection in banana will greatly depend on the prediction

accuracy of the genomic selection models.

hybrids. The population was phenotyped under low (no mulch and NPK fertilizer) and
high (mulch + NPK) field input management at Namulonge research station. Data
References

1.Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-
wide dense marker maps. Genetics. 2001;157: 1819-1829.

collected on two crop cycles were analysed using R statistical software. The correlations
and significance of correlations were determined using R package Hmisc. Analysis of

variance was performed to understand the effect of genotype and the interaction between
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genotype and cycle, and genotype and field management on trait variation. 2.Nakaya A, Isobe SN. Will genomic selection be a practical method for plant breeding? Ann
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Towards Marker Assisted Breeding in Banana = i ferierewer

Introduction Results and Discussion Swennen, Rony’
Batte, Michael’

Breeding offers the most sustainable solution to most of the crop yield-limiting factors Diploid nematode-segregating population was developed by IITA banana breeding (Dochez et Hrib Eva’

such as pests, diseases and abiotic stress. Crossbreeding is the main approach used in al., 2009). The population was used to generate genetic linkage maps by Mbanjo et al., 2012 ribova, Eva

banana improvement but the method requires up to 20 years to release a variety. (figure 3A) based on SSR markers designed from expressed sequence tags (Lorenzen et al., 2011) Dolezel, Jaroslav®
Integration of molecular tools into crossbreeding speeds up variety development and diversity array technology (DArT) markers. The population has also been genotyped by

through marker-assisted selection (MAS) and genomic selection (GS). With these sequencing (GBS) to identify SNP markers. Together with the phenotype data, the QTLs T International Institute of
approaches, banana breeders can shorten the breeding cycle to less than a decade. The responsible for nematode resistance will be identified once the analysis is complete.

Tropical Agriculture (IITA)

initial stage towards MAS is to generate segregating populations followed by mapping

of quantitative trait loci (QTL) affecting target traits using linkage mapping. Genome- Two F, populations developed by NARO and segregating for weevil and Fusarium resistance

2 [ n
wide association studies (GWAS) are useful in underpinning alleles responsible for have been genotyped by IITA by GBS and SNP data are being analyzed to generate SNP-based National Ag”cu'tural

phenotypic variation. Given the high cost of phenotyping and the ever-decreasing cost of genetic linkage map for identification of QTLs for weevil and Fusarium resistance. Research Organisation
genotyping, genomic selection (GS) is being considered for routine use in breeding (NARO)
programs and as such predictive genomic selection models are being developed. IITA Application of genomic selection is being tested at [ITA-Uganda for the first time ever in banana
banana breeding, in collaboration with other partners, is fully committed to developing breeding. Over 300 accessions including parental lines and hybrids (training population) have o
an integrated approach to banana improvement with the aim of increasing genetic gain been genotyped by GBS and are being phenotyped in three fields (figure 3B). Disease and pest : Empresa Brasileira de
per unit time while reducing the selection cycle. resistance in plants is controlled by one or few QTLs with major effect on the phenotype. PeSqUisa Agropecuéria
However, yield and many agronomically important traits are controlled by many QTLs with small (EMBRAPA)
effects on the phenotype. GS is ideal for such traits as it utilizes genome-wide markers to
determine the genomic estimated breeding value (GEBV) of the individual plant (Meuwissen et 4 Centre for Research in
al., 2001, Nakaya and Isobe 2012). This is a model-based approach which requires the breeder Biotemnology for

to generate genotypic data which are fed into the model to predict phenotypic performance of

Agriculture (CEBAR),

the individual plant (figure 1). This approach holds promise to improve the efficiency of

C | | | |
I . . . . . o L University of Malaya
£ crossbreeding by reducing the selection cycle yet increasing genetic gain per unit time.
2

SNP QO
o LG1 LG2
! apt202781 21 00 5 Palacky University
baPt-293828 4 \Q/ 2.5 mMa-1-2-24 5 0.0
Ma513051273 7 — 11.5 baPt-782812 2
baPt-780048 7 19.6 3 —
AGTCGACCG.... baPt-785024_7 \ / 19.7  baPt780147 2N\ |/ 198
baPt-784533_7 ~\| |/ 19.8 Mb%'jggigﬁ‘gg_g 1 1 -g
baPt-782496 7 23.2 a = 3
AGTCA ACCG.... 5 Pt;g]ggg_; \—/25-4 Ma513036168_2 ~ | | ~23.1
art- _ — Ma513045122 1 —]| 24 .5
AGTCA ACCG.... baPt-781424_7 }\:/ 28.1 Ta3135 T 30.5
gagt—;gg?;g_; 316 baPt-780049 §_¢ 32.9
arFt- - — - baPt-784305 —|
AGTCCACCG.... baPt-780794_7 /: 32.4 baPt-784306 }/ N\ 331
baPt-781030_7 /—\ 33.1 baPt-78781913
= baPt-779304_7 — 34.2
O Ta0683 7 / \ 35.6
. baPt-783308 7 / 38.7 Ta7223 49.4
GS MODEL Ta1603_7 41.2
baPt-291217_7 42.3
=SS Ta1349 7 43.0
baPt-781313_7 48.8
baPt-782583 7 50.5
baPt-782325 7 50.8 baPt-285361 67.3
baPt-782402 7 52.9
baPt-779871_5 - 53.2
baPt-782196_ 7 56.5 mMMaSTMS15 1 \ / 81.7
baPt-780176_7 . 56.6 baPt-292005 2 A\’ 84 .1
baPt-785573 ~ 75.8 baPt-781835 | 84.7
baPt-780639 / \ 82.8 baPt-782171_2 84.8
. . ‘g T . . . . . . baPt-293044 83.0
Figure 1. A simplified depiction of genomic selection model development and application in crossbreeding
baPt-786138_1 98.5
A B

Figure 3. A - Part of linkage maps from nematode segregating population generated by Mbanjo et al. 2012, B — One of
the genomic selection training population phenotyping field at Namulonge, Uganda.

Crossbreeding

Conclusions

Segregating In marker assisted breeding, no single marker technique is sufficient to address all the

. i i Banana
Populations Genomic Selection

Germplasm breeders’ questions. In bananas different traits have different mechanisms of genetic control

ranging from single gene with major effect to multiple genes with small additive effects on the

phenotype. The interaction of genes by environment makes the interpretation of results even

> Analysis of of GBS data for training more challenging. However, with genomic selection this can be corrected for in the model
population » Screening of germplasm to identify

resistant and susceptible accessions development once phenotype data is collected in different environments while QTL mapping
» Phenotyping of GS training population to various production constraints

Expansion of nematode population

New diploid segregating
populations being generated

could help in selection for pest and disease resistance. Despite the challenges, IITA in

> Development of workflow for » Design crosses for segregating

impl ting GSinb breedi populations for genetic studies, . . . .
mpiementing &> banana breeding GWAS and QTL linkage analysis collaboration with other partners is committed to the development of platforms for marker

Phenotyping of existing populations

QTL linkage analysis of weevil and
nematode populations based on
GBS data

» Expansion of training population

assisted breeding in banana as a model polyploid plant. Once a break-through is realized this

will set a precedence for other polyploidy breeding programs to embrace marker assisted
Figure 2: On-going activities related to molecular breeding of bananas within IITA in collaboration with other
institutions such as NARO, Palacky University, EMBRAPA, and the University of Malaya breeding.
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“"A GENOMIC SELECTION TO ACCELERATE BANANA BREEDING
reionidis M-Nyine, B.Uwimana, R. Swennen, M. Batte, E. Hribova, J. Lorenzen J. Dolezel

Introduction Why genomic selection?

<> Genomic selection (GS) is a form of marker-assisted <> Conventional banana breeding is much slower
selection which involves the use of markers across the <> To increase genetic gain per unit time
genome to predict the genetic estimated breeding value <> Genotyping is becoming much cheaper than phenotyping

(GEBV) of a plant. <> To improve both variety and parental lines development
<> Phenotype prediction is based on a genomic selection pipelines

<> Selection is possible at nursery stage

Time scale for conventional breeding

10 - 15 years

AGTCOACEG....
AGTCA ACCO....
AGYCA ACCG....
AGTCUACEO. ...

State of the training population Conclusion

<> 320 accessions genotyped Genomic selection coupled with increased hybrids from
<> Three phenotyping established cross-breeding should increase efficiency of banana
<> Experimental design: CRD with three plants per accession improvement thus, faster variety release
<> Target traits: fruit filling, stature and suckering
<> Data is being collected on 22 additional traits ACknOWIedgementS:
IEB-Czech Repulic, IGD-Cornell and Dr. Rabbi Ismail

This work is supported by RTB consortium and BMGF through IITA



Appendix 1V

Articles in a popular magazine, Vesmir
1. Bananovnik z vychodoafrické vysoCiny: Zakladni potravina pro miliony
2. Bananovnik z vychodoafrické vysociny: Zahada ptivodu a péstovani

3. Bananovnik z vychodoafrické vysoc€iny: Slechténi bananovniku



1. Drobni péstitelé"prodavaji trsy
nezralych plodt bananovniku
matooke na mistnim trzisti .
v Mbarara v zdpadni Ugandé.
£isté je
hJ '

A

Trsy.vazi 20-40 kg ana t
farmari privazeji na kole

MOSES NYINE
JAROSLAV DOLEZEL

Z vychodoafrické vysociny

1. Zdkladni potravina pro miliony

Plody bananovniku jsou pro miliony lidi zadkladni potravinou. Je
tomu tak zejména v Ugandé¢ a dalSich zemich africké oblasti Vel-
kych jezer. Baninovnik ma v§ak mnohem $irsi vyuziti. MiiZe byt
napriklad stavebnim materidlem, dokazZe nahradit talife a africti
kluci si z néj uméji udélat kopaci mic.

Bananovniky jsou jednodélozné vytrvalé
byliny vlhkych tropt a subtropt (box). Je-
jich kulturni formy lze rozdélit podle plo-
dt. Nékteré jsou po dozrdni sladké a jedi
se syrové, jiné se konzumuji nezralé po te-
pelném zpracovani. Existuji také bananov-
niky s plody vhodnymi pro ptipravu népo-
ji, zejména bananového piva, bananovniky
vhodné pro ziskavani vldken i okrasné bana-
novniky. Na mezindrodnim trhu pfevladaji
banéany sladké (ovocné) a z nich zejména
plody odriidy Cavendish. Méné se na zahra-
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ni¢ni trhy vyvazeji banany s vysokym ob-
sahem $krobu pouZzivané na peceni (plain-
tains). Plody pro vafeni a pfipravu napojt
jsou konzumovany téméf vyhradné v oblas-
tech, kde se péstuji. Okrasné bananovniky
nemaji jedlé plody a zdobi je kvéty a pana-
$ované listy. Z nepravého stonku dalsi sku-
piny bandnovnikl (pfedevsim Musa textilis)
se ziskavaji vldkna bohatd na celulézu. Po
vycisténi se oznacuji jako manilské konopi
a pouzivaji se napf. na vyrobu specialniho
papiru pro filtry a bankovky.

Bananovnik ve vychodni Africe

Pro obyvatele vychodni Afriky a zejména
Ugandy ma bananovnik velky kulturni, spo-
lecensky a ekonomicky vyznam. V této oblas-
ti se péstuji hlavné odrtidy s plody vhodnymi
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pro vafeni (matooke) a v mensi mife s plody
pouzivanymi na pfipravu dzusu a bandnové-
ho piva (mbidde). V obou piipadech se skli-
zi nezralé zelené plody. Duzina plodt odrtd
typu mbidde obsahuje taniny a ma sviravou
chut. Proto se nechévaji dozrit, ziskaji zZlutou
barvu a jejich duzina sladkou chut. Teprve
poté se z nich pfipravuji napoje. Duzina ne-
zralych plodt skupiny odriid matooke nema
sviravou chut a na vafeni se pouzivaji nezralé
plody. Tento typ banant pfedstavuje hlavni
slozku vyzivy obyvatelstva a jejich spotfeba
dosahuje 400-600 kg na osobu za rok, coz je
nejvice na svété.

V Ugandé¢ se bandnovnik péstuje na plose
asi 1,5 milioni hektart a sklidi se vice nez
10 milionu tun banant, z nichz se 80 % spo-
ttebuje v misté produkce (obr. 1). Péstovani
banant je hlavnim zdrojem pfijméi mnoha
farmafrt, zejména v centrdlni a zipadni
Ugandé. Banany vhodné pro vafeni maji
siroké vyuziti. Oloupané se vaii v paie a jedi
se jako kase s riznymi omadackami. Jejich
duzina ma krémové bilou nebo svétle zlu-
tou barvu a vafenim v péfe se stava zlatozlu-
tou (obr. 3). Jidlo znamé jako katogo (obr. 3
vpravo) se pfipravuje vafenim oloupanych
banant spole¢né s fazolemi nebo s pastou
z burskych ofiskii, masem, rybou nebo vniti-
nostmi. Obvykle se podava k snidani a zahii-
va télo v dobé ranniho chladu.

Zeny po porodu dostavaji k jidlu katogo
pfipravené s vnitfnostmi, protoze se véii, ze
zahiati bfi$ni dutiny pomtiZze odstranit zby-
tek krve z délohy a stimuluje produkci ma-
tefského mléka. Bananova ka$e je pouzivana
pti prechodu kojencti k normalni stravé. Va-
fené banany jsou povaZovany za idealnf stra-
vu nemocnych lidi, ktefi ztratili chut k jidlu.
Pokud pacient neji ani je, naznacuje to vazny
stav a blizkost smrti.

Z varnych typt banand se vyrabi mouka,
kterd je vhodna pro pripravu kase, instant-
niho bananového pokrmu (instantni tooke),
peciva a sladkosti.

Z banant se vyrabéji také rtzné typy lu-
pinkt a ¢ipsti. Navic balenim potravin do lis-
tt bananovniku pfed vafenim v pare (obr. 4)
dostava jidlo unikatni chut. Jesté nerozvinu-
té listy (tzv. cigar leaves) se udi, bali se do
nich maso s kofenim a pripravuje se tak tra-
di¢ni pokrm luwombo (obr. 2). Ten se poda-

Moses Nyine, MSc., (¥1978) vystudoval molekularni biologii na
Makerere University v Ugandé a v Mezinarodnim ustavu tropic-
kého zemédélstvi v Ugandé se vénuje genetice a Slechténi bana-
novniku. V soucasné dobé je doktorandem Univerzity Palackého
v Olomouci a na olomouckém pracovisti Ustavu experimentalni
botaniky AV CR se zabyva genetickou diverzitou rodu bananovnik
avyvojem genomickych metod Slechténi bananovniku.

Prof. Ing. Jaroslav Dolezel, DrSc., (¥*1954) vystudoval Agronomic-
kou fakultu na Vysoké skole zemédélské v Brné. Zabyva se struk-
turou a evoluci genomu rostlin, vede Centrum strukturni a funk¢-
ni genomiky Ustavu experimentalni botaniky AV CR a prednasi na
Prirodovédecké fakulté Univerzity Palackého v Olomouci. Od roku
2004 je ¢lenem Uéené spoleénosti CR, v roce 2012 mu piedseda
AV CR udélil prestizni Akademickou prémii - Praemium Academiae
- avroce 2014 obdrzel cenu ministra Skolstvi, mladeze a télovy-
chovy za mimoradné vysledky vyzkumu, experimentalniho vyvoje
ainovaci.

2. Pfiprava tradi¢niho pokrmu luwombo varenim masa baleného v uzenych lis-
tech bananovniku.

va jen vyznamnym hostim a v restauracich

je drazsi nez ostatni jidla. Z plodd bananov-

niktt mbidde, druhého nejcastéjstho typu
ve vychodni Africe, se pfipravuje banano-
vé pivo znamé jako ,tonto“, dale dZusy, vi-
no a dzin.

3. Vlevo jidlo pripravené z kase bananti matooke a omacky z ryby, lilku a jiné
zeleniny. Vpravo jidlo zvané katogo pripravené z banant varenych spole¢né
s vnitFnostmi.
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4. Nahote: Vareni banant balenych v listech bananovniku.
5. Uprostred: Listy bananovniku a jiné ¢asti rostliny jsou pouzivany pfri zhotovo-
vani uméleckych predméti, levnych micd a uzitnych predméta.

Morfologie bananovniku

Bananovniky jsou vytrvalé jednodélozné byliny a péstované druhy patri
k nejstatnéjsim bylinam vibec. Zkraceny podzemni stonek (oddenek) nese
koreny, které rostou jen do hloubky 30-45 cm, a proto éerpaji Ziviny z po-
vrchovych pudnich vrstev. Apikalni meristém oddenku se nachazi pod po-
vrchem ptdy nebo na jeho turovni. Postupné z n€j ve Sroubovici vyriistaji no-
vé listy a odstiedivé smérem ven vytlacuji listy starsi. Nové listy jsou stoce-
né, a proto se jim Fika ,cigar leaf". Listové pochvy jsou tuhé (vytrvavaji i po
odumfeni éepeli), dlouhé, vzajemné tésné shlouéené a vytvareji tak nepravy
stonek, ktery zdanlivé vypada jako kmen. Pred rozkvétem prestanou rust
nové listy a z apikalniho meristému vyroste kvétenstvi, jehoz dlouha stop-
ka prorusta vnitfkem nepravého stonku. Vlastni kvétenstvi se pak objevi na
bazi shluku listovych cepeli v horni ¢asti rostliny, ¢asto byva previslé. V jeho
spodni casti se nejdrive ve shlucich vytvareji samici kvéty, které se vyvijeji
v plody (bobule), uprostied jsou jalové kvéty a na konci kvétenstvi pak shlu-
ky sam¢ich kvéta. Shluky kvéti jsou podeprené napadné zbarvenymi toul-
covitymi listeny. Péstované odruidy jsou bezsemenné a mnozi se vegetativné
pomoci odnoZi, které vyrustaji z postrannich pupent na zkraceném stonku.
Rust odnozi reguluje apikalni meristém a mezi druhy a odridami bananov-
niku existuji velké rozdily v poétu rychlosti jejich ristu.
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4

Ani nejedlé casti bandnovniku nepfijdou
nazmar. Slupky a nepravé stonky se pouzi-
vaji na krmeni hospodaftskych zvitat. V né-
kterych rodinach je zase zvykem podévat jid-
lo misto na talifich na bananovych listech.
V chudsich oblastech si lidé z listh bandnov-
niku stavi paravany pro docasné venkov-
ni koupelny. U prilezitosti riznych slavnos-
ti se z bananovych listd zhotovuji kostymy
pro tradi¢ni tance. V nékterych oblastech se
vlakna z nepravého stonku pouzivaji na stav-
bu sttech chysi. Déti z chudych rodin, které
si nemohou dovolit drahy kozeny mi¢, si hra-
ji s mic¢i vyrobenymi z bananovniku (obr. 5).
Su$ena hlavni zilka listu se navic pouziva
pro pleteni kosikti (viz maly obrazek nad
nadpisem).

Botanicka klasifikace bananovniku

Bananovniky patii do fadu zazvornikotva-
ré (Zingiberales), ¢eledi bandnovnikovité
(Musaceae), rodu bandnovnik (Musa). Dru-
hy bananovniku, kterych je asi sedmde-
sat, se na zdkladé novéjsich molekularnich
analyz ¢leni do dvou sekci: Musa s diploid-
nim pocétem chromozomd rovnym 22 a Cal-
limusa s diploidnim podétem chromozomu
rovnym 20 nebo 18. Na evoluci kulturnich
forem se podilela jak vnitrodruhova, tak
mezidruhova hybridizace a vedle diploid-
nich klont se dvéma sadami chromozomu
existuji klony triploidni se tfemi sadami
chromozomi a tetraploidni se ¢tyfmi sada-
mi chromozomu. Prostfednictvim mezidru-
hové hybridizace se na evoluci péstovanych
forem podilely zejména diploidni druhy
Musa acuminata s genomem A, M. balbisia-
na s genomem B a jen ve velmi malé mire
pak M. textilis s genomem T a M. schizocarpa
s genomem 8. SloZeni genom péstovanych
forem je tedy velmi pestré a zahrnuje diploi-
dy (AA, BB, AB, AS), triploidy (AAA, AAB,
ABB, AAT) a tetraploidy (AAAA, AABB,
ABBB, ABBT).

Bananovniky vychodoafrické vysociny
patii do sekce Musa (podskupina Lujugira-
-Mutika) a jsou to triploidni kultivary s ge-
nomem AAA. Piedpoklddad se, ze vznikly
vnitrodruhovou hybridizaci mezi diploid-
nimi poddruhy M. acuminata s genomy AA.
Jsou bezsemenné, obvykle sterilni a mnozi
se vyhradné vegetativné. Tyto bananovniky
dobfe rostou ve vysSich nadmofskych
vySkach (1400-2000 m n. m.) a pro opti-
malni riast a vyvoj vyzaduji primérné roc-
ni srazky okolo 1300 mm. Péstuji se v oblasti
velkych jezer a zejména v oblasti Viktorii-
na jezera a na vysocinach vychodoafrickych
zemi. Odtud také jejich ndzev. Na zdkladé
morfologie je celkem 84 kultivard péstova-
nych v Ugandé klasifikovano do ¢tyt skupin:
Nfuuka, Nakitembe, Nakabululu a Musaka-
la. T kdyZ jsou mezi jednotlivymi skupina-
mi dobfe patrné morfologické rozdily, mole-
kularni analyzy naznacuji velkou podobnost
jejich dédi¢nych informaci. ™
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Pristé o ptivodu bandnovniku a jeho péstovdani.
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2. ZAHADA PUVODU A PESTOVAN(

Bananovnik pochazi z jihovychodni Asie, kde byly nékteré
jeho typy asi pred deseti tisici lety domestikovany a kde se
také nachazi primarni centrum jeho diverzity. V tomto teritoriu
se vyvinuly bananovniky typické zvlast pro indomalajskou

a australasijskou oblast (viz ramecek na s. 38).

text MOSES NYINE, JAROSLAV DOLEZEL

VYCHODNI AFRIKA je sekundérnim
centrem diverzity s asi 120 klonové mnoze-
nymi odridami. Pivod vychodoafrickych
bandnovniki je vSak nejasny a vysvétlit se
jej snazi nékolik hypotéz.

Prvni z nich predpoklada, Ze se tyto
odridy do Afriky dostaly prostifednictvim
obchodnikd, ktefi se plavili Indickym
oceanem mezi jihovychodni Asii a vychod-
ni Afrikou. Ti mohli v obdobi 100-600 n. 1.
do vychodni Afriky pfivézt odnoze jedlych
odrid. Nejvétsim problémem této hypotézy
je absence stejnych forem bananovniku
v jihovychodni Asii.

Druha hypotéza vysvétluje ptivod vycho-
doafrickych bananovnikt kiiZenim mezi
diploidnimi druhy, které se do vychodni
Afriky dostaly z jihovychodni Asie. Dosud se
vsak nepodarilo nalézt Zadné diploidni druhy
nebo klony, jejichZ dédi¢na informace by se
podobala vychodoafrickym bananovnikiam.

Treti hypotéza predpoklada zménu dé-
di¢né informace odrud pifivezenych z Asie
nasledkem spontannich mutaci, coZ mohlo
mit za nasledek vznik kultivart s odliSnym
fenotypem. Tzv. somaklondlni variabilita
spoc¢iva v mutacich somatickych (télnich)
bunék, které zahrnuji zmény poctu a struk-
tury chromozomi. Somaklonalni variabilita
byla popsana u rostlin regenerovanych
z bunék kultivovanych in vitro. ProtoZe
jsou bananovniky mnoZeny vegetativné,
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zména dédi¢né informace v jejich somatic-
kych bunikach mutize byt pfenesena do dalsi
generace. Pro existenci takové variability
u rostlin péstovanych na poli vSak neexis-
tuji Zadné dukazy, a tak ani tato hypotéza
nebyla dosud prokazana.

V posledni dobé se vyzkumné tymy vénuji
moznému podilu epigenetickych zmén na
morfologické variabilité vychodoafrickych
bandnovniki. Epigenetické zmény jsou
dédi¢né a mohou mit za nasledek zménu
fenotypu, a to aniz by doslo ke zméné sek-
venci DNA. Podstatou téchto zmén, které
ovliviiuji funkci gend, jsou metylace DNA

1.REZ
NEPRAVYM
STONKEM
BANANOVNIKU
napadeného
houbou
Fusarium
oxysporum

f. sp. cubense,
ktera zpusobuje
fusariové
vadnuti.

a modifikace histonti. Je znamo, Ze mohou
byt vyvolany vnéjsim prostiedim. Tyto
zmény lze jen obtiZné identifikovat pomoci
molekularnich markert. Nicméné pokrok
v oblasti molekularni biologie a genomiky
dava nadéji, Ze bude v brzké dobé mozné
ovéfit pfipadny podil epigenetickych zmén
na vzniku vychodoafrickych bananovnika.

MOSES NYINE, MSc., (*1978)
vystudoval molekularni biologii na Makerere
University v Ugandé a v Mezinarodnim
tstavu tropického zemédélstvi v Ugandé se
vénuje genetice a Slechténi bananovniku.

V soucasné dobé je doktorandem Univerzity
Palackého v Olomouci a na olomouckém
pracovisti Ustavu experimentalni botaniky
AV CR se zabyva genetickou diverzitou rodu
bananovnik a vyvojem genomickych metod
Slechténi bananovniku.

Prof. Ing. JAROSLAV DOLEZEL,
DrSc., (*1954) vystudoval Agronomickou
fakultu na Vysoké Skole zemédélské v Brné.
Zabyva se strukturou a evoluci genomu
rostlin, vede Centrum strukturni a funkéni
genomiky Ustavu experimentalni botaniky
AV CR a prednasi na Pirodovédecké fakulté
Univerzity Palackého v Olomouci. Od roku
2004 je ¢lenem Udené spoleénosti CR, v roce
2012 mu predseda AV CR udélil prestizni
Akademickou prémii — Praemium Academiae
—avroce 2014 obdrzel
Cenu ministra Skolstvi,
mladeze a télovychovy

za mimoradné vysledky
vyzkumu, experimentalniho
vyvoje a inovaci.

Poslednim uvazovanym zdrojem morfo-
logickych odlisnosti vychodoafrickych
bananovnik je epistaze. Tento jev zahrnuje
situaci, kdy je jeden fenotypovy znak ovliv-
nén vice geny.

BANANOVNIK A OSTATNI
ORGANISMY

Vychodoafrické banianovniky ohroZuje fada
chorob a napadé je mnoho skuadct. To muzZe
mit negativni dopad na vyZzivu mistnich
obyvatel a snizit pfijmy malych farmar,
ktefi si nemohou dovolit pouzivani drahych
pesticidi. Snad nejnicivéjsi chorobou vy-
chodoafrickych bananovnikd, stejné jako
ostatnich odrud, je bakterialni vadnuti
zpusobené patologickou variantou musa-
cearum bakterie Xanthomonas campestris.
Infekce ma za nasledek tplnou ztratu trody.
Symptomy zahrnuji pfedcasné dozravani
plodti a zménu barvy jejich duziny (obr. 2),
nekrézu samé¢iho pupenu a pritomnost
zlutého slizu na fezu nepravym stonkem
(obr. 4). Dosud se nepodafilo nalézt odolné
genotypy. Reseni by mohly pfinést metody
genetického inzenyrstvi. Jediné, co mohou

2. PLODY BANANOVNIKU
znehodnocené infekci bakterii
Xanthomonas campestris pv.
musacearum, ktera zplsobuje
chorobu zvanou bakterialni
vadnuti.

Snimky na s. 36-38 © Moses Nyine.

3. KVETENSTVI
vychodoafrického
bananovniku.

farmari v soucasné dobé délat, je omezovat
negativni dopady choroby vhodnymi agro-
technickymi postupy.

Hlavnimi $kidci péstovanych bananov-
nikl jsou nosatcovity brouk Cosmopolites
sordidus (obr. 5) a hadatka Radopholus similis
(obr. 6), Pratylenchus spp. a Helicotylenchus
spp- Nosatec C. sordidus pacha nejvétsi skody
v larvalnim stadiu, kdy v oddenku vyzira
tunely, poskozuje ristovy vrchol a cévni
svazky. To zptisobuje sniZeni piijmu vody
a zivin, zastaveni ristu a vyvoje. Sklizen
pak byva ztratova. Hadatka parazituji na ko-
fenech a takto vznikla poskozeni vyvolavaji
nekrézy. Nasledkem je redukovany piijem
vody a Zivin a celkova destrukce kofenového
systému. V pripadé silnych vétra dochazi
k vyvraceni rostlin, které nejsou v pudé
dostate¢né ukotveny.

Z houbovych chorob napadajicich ba-

ka“, kterou zpusobuje houba Mycospaerella

1) Tato choroba je v anglické literatufe oznaCovand
jako Banana Xanthomonas Wilt (BXW).
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fijiensis. Jeji spory se $ifi vétrem a houba
napada listy, které zasychaji, a to vede ke
sniZeni fotosynteticky aktivni plochy rost-
liny (obr. 7) a ke sniZeni vynosu. Bananov-
niky vychodni Afriky napadaji také viry
BSV (banana streak virus) a BBTV (banana
bunchy top virus), které vsak produkci za-
sadnim zptisobem neohrozuji.

PANAMSKA CHOROBA

Zavaznou chorobou bananovniku je fusario-
vé vadnuti, které zptisobuje houba srpov-
nicka Fusarium oxysporum £. sp. cubense. Do
rostliny vnika pres kofeny a ucpava jeji cév-
ni systém (obr. 1). Napada mnoho kultivar,
zejména ovocné typy nesouci sladké plody.
Nastésti pro vychodoafrické farmafe vsak
nenapada jimi péstované odrtdy. Proti této
chorobé, nazyvané téZ ,panamska“, dosud
neexistuje i€¢inna ochrana. Pfitom to byla
pravé ona, ktera zisadnim zptisobem zmé-
nila produkci sladkych banant pro export.
Jeji tropicka rasa 1 (TR1) v letech 1940-1960

- 3
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ostatni AAB JREEa
IABB West N

LAY

i
]
!
%
i Bostatni AAAI ;
AAA Cavendish )

Puvod bananovniku

Predpokladany puvod a migrace bananovniku. Kfizenim mezi poddruhy
bananovniku Musa acuminata (banksii, errans, malaccensis, microcarpa,
zebrina) vnikly v oblasti jihovychodni Asie bezsemenné diploidni formy s ge-
nomem AA. Nékteré z téchto klond, které fadime do podskupiny Miali (Sedé
¢arkované Sipky), migrovaly na asijskou pevninu, kde mimo jiné daly vznik
triploidnimu kultivaru Cavendish (s genomem AAA); kfizenim s druhem Musa
balbisiana (s genomem BB) na indickém subkontinentu vznikly triploidni
kultivary podskupiny Pome s genomem AAB. Zastupci podskupiny Mlali

také migrovali na vychodoafrické pobrezi (Earkované Sipky). Dnes se v jiho-

vychodni Asii nevyskytuji a nachazeji se jen na vychodoafrickém pobrezi

a prilehlych ostrovech (Zanzibar, Madagaskar a Komory). V jihovychodni Asii
vznikly rovnéz triploidni klony nesouci Skrobové plody, které se vSak zde

v podstaté nepéstuji, a plné Sipky znazornuiji jejich migrace. Bananovniky

s genomem AAB vzniky kfizenim diploidnich forem (genom AA) s druhem

M. balbisiana (genom BB) a migrovaly do zapadni Afriky (AAB Plantain)

a opacnym smérem na pacifické ostrovy (AAB Popoulou). Kfizenim diploidt
s M. balbisiana jak na indickém subkontinentu, tak v jihovychodni Asii
vznikly rovnéz triploidni klony s genomem ABB. Néktefi autofi predpokladaji
migraci triploidnich kloni s genomem AAA fazenych do podskupiny Mutika

na vychodoafrické pobrezi, kde mohly dat vznik v sou€asnosti péstovanym
kultivardm vychodoafrické vysociny.

postupné znicila plantaZe osazené monokul-
turami odrady Gros Michel. Shodou okolnos-
ti je proti této rase odolna odrtida Cavendish,
ktera nahradila na infikovanych plantazich
odrudu Gros Michel a zachranila tak celé
odvétvi produkce bananti pro export. V sou-
Casné dobé se vSak zaCina $ifit tropicka rasa
4 (TR4), proti které neni odrida Cavendish
odoln4, a budouci produkce banant pro
export za¢ina byt opét ohroZena. ®

@

Zdroj: Perrier et al.: Multidisciplinary perspectives on banana
(Musa spp.) domestication. PNAS, July 12, 2011, vol. 108, no. 28, 11311-11318.

o0 Slechténi bananovniku
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se bakterialni
vadnuti projevuje
pritomnosti
zlutého slizu.

5. NOSATEC
Cosmopolites
sordidus s cerstvé
nakladenymi
vajicky. Larvy
vyziraji tunely ve
stonku a poskozuji
rustovy vrchol

a cévni svazky.

6. HADATKO
Radopholus

similis parazitujici
na korenech
bananovniku
zpusobuje nekrézy
a nic¢i korenovy
systém.

P ot

7. LIST BANANOVNIKU napadeny houbou Mycospaerella fijiensis, ktera
zpusobuje chorobu Black Sigatoka.
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3. SLECHTENI BANANOVNIKU

Klasické zpUsoby Slechténi bananovniku jsou éasové velmi
naro¢né a mohly by byt vyrazné urychleny pomoci novych
genomickych metod pro vyhledavani perspektivnich kfizenct.

text MOSES NYINE, JAROSLAV DOLEZEL

NENi POCHYB O TOM, Ze nejefektiv-
néjsi obranou proti chorobam a skidctim,
ktera nema negativni vliv na prostiedi,
je péstovani rezistentnich odrad. Kromé
choroby Banana Xanthomonas Wilt (Ves-
mir 95, 36, 2016/1) 1ze mezi planymi druhy
bananovnik nalézt zdroje rezistence a je
velky zajem vyuzit je ve Slechténi. U ba-
nanovniku je vSak problém se sterilitou -
péstované odrudy jsou bezsemenné. Piesto
ma kiiZeni smysl: s velmi malou frekvenci
vznikaji funkéni pohlavni buriky i u steril-
nich triploidu a 1ze ziskat hybridni semena.
Uspésnym pionyrem $lechténi byl Phil Rowe
(1939-2001) z USA, ktery v Hondurasu pra-
coval pro nékolik spole¢nosti. Jeho tspésna
strategie je zaloZena na $lechténi diploid-
nich fertilnich linii, které slouzi jako zdroje
pylu pro kiiZeni se sterilnimi triploidnimi
odridami. Kfizenci, které takto ziskal, jsou
odolni vi¢i mnoha chorobam a sktdctm,
maji vysoké vynosy a patii mezi prvni nové
odrudy, které farmari ochotné pfijali. O své
praci Rowe fekl:  kiizite rostliny, které
netvoii semena, abyste ziskali lepsi rostliny,
které nemaji semena®“.

Na zakladé poznatki Phila Rowa bylo
1. 1994 zahajeno $lechténi vychodoafrickych
bananovniki, na némz se podileji Mezina-
rodni dstav tropického zemédélstvi a Na-
rodni organizace pro zemédélsky vyzkum.
Cilem je zlepsit odolnost mistnich odrad vaci
chorobé Black Sigatoka, brouktim a hadat-
ktim pfenesenim rezistence z planych druhu.
Postup ukazuje ramecéek na protéjsi strané.
Nejprve byly na zakladé vysledku kiizeni
s diploidnim klonem Calcutta 4 planého dru-
hu M. acuminata ssp. burmanicoides vybrany
mistni odridy s nejvyssi samici fertilitou.
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Pak bylo jedenéct odrud zatfazeno do $lechti-
telského programu (obr. 1). Jejich kiiZenim
s klonem Calcutta 4 (obr. 2) se ziskaly tetra-
ploidni hybridy s jednou sadou chromozomi
diploidniho klonu a tfemi sadami chromo-
zom triploidnich odrud vychodoafrickych
bananovniku. Tetraploidni hybridy (obr. 4

a velky snimek) se potom kfizily s diploidni-
mi klony (obr. 3), které maji lepsi vlastnosti
nez Calcutta 4. Vysledkem byly triploidni
hybridy s jednou sadou chromozomu diploid-
niho rodice a dvéma sadami chromozomu
tetraploidniho rodice (obr. 5).

Hybridni semena maji velmi nizkou
kli¢ivost a jejich embrya jsou proto vyjmuta
a dopéstovavana v podminkach in vitro. Po
postupném otuZeni se nové hybridy pfesa-
zuji na pokusné lokality a hodnoti se jejich
odolnost vuci chorobam a skudcum, kvalita
plodi a vynos. Za 20 let trvani Slechtitel-
ského programu se ziskalo 27 novych odrtad
zvanych Narita, z nichZ farmafi jiz jednu
péstuji ve velkém. I kdy?Z je Slechtitelsky
program uspésny, je naro¢ny na ru¢ni praci
a Cas, a je tedy drahy.

ZVYSOVANI EFEKTIVITY
SLECHTENI

Ziskani nové odrudy bananovniku vy-

Zaduje nejméné 10 az 15 let a jeji prijeti
konzervativnimi farmafi a konzumenty neni
jisté (jeden cyklus hodnoceni vynosu a kvality
plodi trva jeden aZjeden a pul roku od vysa-
zeni odnoZe na pole). Rychlé sifeni novych
chorob a skadct vSak vyZaduje rychlejsi reakei
slechtitelti. Jednou z moznosti, jak urychlit
hodnoceni ziskanych kiiZencd, je jejich vybér
v ranych fazich riistu pomoci markert DNA.
ProtozZe klasickeé slechténi spoc¢iva v opakovani

Snimky na této dvoustrané Moses Nyine

cyklt kfiZzeni a vybéru potomstev s pozado-
vanymi vlastnostmi, vybér pomoci markert
(marker assisted selection, MAS) mtize vhodné
doplnit klasické postupy Slechténi. Pokud

je ur¢ity marker DNA v tésné vazbé na dany
znak, muzZe byt jeho nositel identifikovan

v rané fazi ristu na zakladé analyzy DNA.
Slechténi pomoci markert se viak u bana-
novniku zatim neuplatiiuje, protoze dilezité
znaky jsou komplexni a péstované odrtidy
jsou triploidni.

Nadéji tak mohou byt genomické metody,
jejichz uplatnéni se stalo realné diky pokroku
v novych technologiich sekvenovani a analyze
takto ziskanych dat. Za relativné nizkou cenu
je dnes mozné podrobné charakterizovat ge-
nomy mnoha jedinct. Charakterizace dédi¢né

MOSES NYINE, MSc., (*1978)

a prof. Ing. JAROSLAV
DOLEZEL, DrSc., (*1954) viz Vesmir
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informace kazdého jedince pomoci velmi vy-
sokého poc¢tu markerti DNA (typicky polymor-
fismy individualnich nukleotidti v sekvenci
DNA, tzv. SNP) umoziiuje navrhnout modely
pro tzv. genomickou selekei. Tyto modely bu-
dou pouzivany pii vybéru rodicovskych part-
nerq, aniz by bylo nutné identifkovat markery
vazané na konkrétni znaky. Genomicka
selekce je variantou vybéru pomoci markerd,
v niZ jsou vSechny dostupné markery souhrn-
né pouzivany pro odhad slechtitelské hodnoty
jedince, a to pomoci matematického modelu.
Spravnost modelu se ovéiuje v tzv. trénovaci
populaci. V pripadé spravného modelu je pak
mozné identifikovat hybridy s pozadovanymi
vlastnostmi uz v ranych fazich jejich rastu.
Pouziti genomické selekce ve Slechténi vycho-
doafrickych bananovnik se v soucasné dobé
testuje, a pokud se tento pristup osvédci, muze
podstatné zefektivnit slechténi a ziskavani no-
vych odrid s pozadovanymi vlastnostmi.

Slechténi

V & ”) o
bananovniku
vychodoafrické
vysociny
Vychodoafrické bananovniky
jsou citlivé viiéi mnoha chorobam
a S$kiidcim a nesou bezsemenné
plody, které se vytvareji bez
oplodnéni (jsou partenokarpické).
Plané diploidni (2x) formy jsou
odolné viiéi mnoha chorobam
a Sktdcum a jsou fertilni s plody
plnymi semen. Tetraploidni hybrid
(4x) se étyfmi sadami chromozomu
vznika splynutim neredukované
gamety odrtdy vychodoafrického
bananovniku, ktera je triploidni (3x),
a redukované gamety diploida, ktera
je haploidni (x). Ve srovnani s odriidou
vychodoafrického bananovniku je
trs plodt tetraploidniho hybridu
mensi. AvSak potomek k¥izeni tohoto
hybridu s vybranym diploidem
vykazuje heteroézni efekt. Takto
ziskany sekundarni triploid (3x) je
vétsi nez kterykoliv z rodiét, ma vétsi
trs plodt a je odolny viiéi chorobam
a $kadcim. Pokud uspéje u farmart
a spotiebitel, mdze byt uvolnén jako
nova odrida.

1.
vychodoafrického
bananovniku.
2.
bananovniku
Calcutta 4, jehoz pyl
se pouziva pfri kFizeni
s vychodoafrickymi
bananovniky.

3.

1. EAHB - 3x

bananovniku
vybrany pro kfizeni
s tetraploidnimi
hybridy.
4. tetraploidniho
hybridu ziskaného
kfizenim triploidni
odridy vychodoafrického
bananovniku s diploidnim
klonem Calcutta 4.
5. sekundarniho
triploida ziskaného v ramci
Slechtitelského programu.

3. vylepsSeny diploid

5. nova odrlida - 3x
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