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ABSTRACT 

Heavy rains caused floods in the Eifel/Ahr region of Germany on July 14-15, 2021, 

killing 184 people and severely damaging infrastructure such as houses, roads, and com­

munications. Under current climatic conditions, a similar event is expected to occur ap­

proximately every 400 years in certain parts of Western Europe. This thesis aims to quan­

tify the ability of two existing data-driven (Neural Network) and one hydrological (GR6J) 

model to reconstruct the record-breaking flood events, which was caused by daily rainfall 

accumulation exceeding 100 mm. We have used observed precipitation and temperature 

data derived from different meteorological data sets and observed discharge time series on 

the Ahr river basin to set up and run the Neural Network (BRNN and LSTM) and hydro-

logical (GR6J) models for the period 1992-2021. The first half was used for calibration/-

model training and the latter half was used for independent evaluation. The comparison 

of simulated results to observed discharge data has shown that the GR6J results outper­

form the simulations of the BRNN and L S T M setups, particularly in the validation period 

across all four meteorologie forcing data sets. However, if the data-driven models (BRNN 

and LSTM) are trained on high daily accumulations and exceptional flood peaks, they can 

capture flood signals and, in some cases, the flood apex. 

Key words: floods; model setup; neural network; data analysis; GR6J; brnn; July 

2021; Ahr. 

ABSTRAKT 

Přívalové deště způsobily v německém regionu Eifel/Ahr ve dnech 14.-15. července 

2021 záplavy, při nichž zahynulo 184 lidí a byla vážně poškozena infrastruktura, například 

domy, silnice a komunikace. Za současných klimatických podmínek se očekává, že k 

podobné události dojde v některých částech západní Evropy přibližně jednou za 400 let. 

Cílem této práce je kvantifikovat schopnost dvou existujících datově řízených (neuronová 

sít) a jednoho hydrologického (GR6J) modelu rekonstrukci rekordních povodní, které by­

ly způsobeny denním úhrnem srážek přesahujícím 100 mm. K sestavení a spuštění neu-



ronové sítě (BRNN a LSTM) a hydrologického modelu (GR6J) pro období 1992-2021 

jsme použili pozorované údaje o srážkách a teplotě získané z různých meteorologických 

datových sad a pozorované časové řady odtoku v povodí řeky Ahr. První polovina byla 

použita pro kalibraci/trénování modelů a pozdější polovina pro nezávislé vyhodnocení. 

Srovnání simulovaných výsledků s pozorovanými údaji o odtoku ukázalo, že výsledky 

modelu GR6J překonávají simulace sestav BRNN a LSTM, zejména v ověřovacím období 

ve všech čtyřech souborech meteorologických podnětů. Pokud jsou však modely založené 

na datech (BRNN a LSTM) vycvičeny na vysokých denních akumulacích a výjimečných 

povodňových špičkách, mohou zachytit povodňové signály a v některých případech i vr­

chol povodně. 

Klíčová slova: povodně; sestavení modelu; neuronová sít; analýza dat; GR6J; brnn; 

červenec 2021; Ahr. 
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Chapter 1 

Introduction 

Due to global warming, the climate is changing all over the world, and it is also changing 

in Europe. It is projected that climate change will cause unexpected, unusual, severe, or 

unseasonal weather events, such as heavy rainfall, floods, heat waves, tornadoes, droughts, 

etc. According to the sixth Intergovernmental Panel on Climate Change (IPCC) assess­

ment report (Legg, 2021) heavy precipitation and consequently riverine flooding have been 

raised in Western and Central Europe in recent decades as a result of global warming. 

With reference to Kreienkamp et al.| Q2021D if global warming due to rising greenhouse 

gas emissions reaches 2 degrees Celsius by mid-century, as already expected, Europe may 

encounter harsher weather phenomena, such as a rise in heavy rainfall and river flooding, 

even in the warm months when the amount of wet days is expected to decrease. Although 

the frequency of wet days may lessen, the severity of extreme rain showers might escalate, 

leading to a greater possibility of intense weather events.(Menne et al.L |2013|). This was 

exactly the same scenario as what occurred in Germany and neighboring countries during 

the period of July 14-15, 2021. 

After above-average rainfall in June 2021 and repeated rainfall in early July, warm and 

very moist air masses moved from the Mediterranean region into southwestern Germany, 

resulting in persistent rain on July 13 and 14. As stated by Mohr et aL"lQ2022|) the extremely 

heavy and continuous rain combined with the already high soil moisture levels resulted in 

a catastrophic destructive flash flood on July 14-15 in the northern part of the low mountain 

range Eifel and affected the villages along the rivers Ahr and Erft. According to a study by 

World Weather Attribution (Kreienkamp et al., 2021), a similar event is expected to occur 
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approximately every 400 years in certain parts of Western Europe under current climatic 

conditions. The disaster led to 184 fatalities and significant damage to infrastructure such 

as houses, roads, communication, etc in Germany. As reported by Munich Re (2022) the 

total damage in Germany was estimated to be around €33 billion, making the event the 

most expensive disaster in German history. The majority of the deaths occurred in the 

Ahr valley, which runs 25 miles (40 kilometers) south of Bonn to where the river joins the 

Rhine. According to the Ahrweiler administrative district report (Truedinger et al.|,|2023), 

approximately 56 000 people live actively on the Ahr River, and nearly 42 000 of these 

people were negatively affected by the July 2021 flood. 

In the opinion of |Ye et aT] Q2020P efficient and effective emergency management is crit­

ical to mitigating the negative impacts of disasters, especially in the case of sudden natural 

disasters. A prerequisite for disaster preparedness is to identify the most vulnerable infras­

tructure and areas, prioritize emergency response, and organize evacuations if needed, by 

measuring the scale and extent of the event in the most accurate and timely manner pos­

sible. Anticipating such unexpected extremes challenges the prediction chain and opens 

new avenues for rethinking long-standing questions ([Wang et aL| |2011|). How reliable and 

accurate are current models in predicting unexpected floods? 

The catastrophic effects of the July flood in 2021 provide the impetus for an event at­

tribution analysis to investigate the efficacy of the existing data-driven (Neural network) 

model and hydrological (GR6J) model in predicting unexpected flood events. Since a 

recent study by Saadi et al. (2023) demonstrated that the accuracy of the recorded precip­

itation can affect the accuracy of the model, this study is conducted under the assumption 

that the recorded data provided by different data sets have the same accuracy. The main 

objectives are to investigate how well data-driven approaches can reconstruct the scale 

of flooding that occurred during the destructive floods in the Ahr River basin (Germany) 

in the summer of 2021. Additionally, the study will examine the impact of meteorologi­

cal uncertainty on the reconstruction process. The results will be additionally compared 

against a simple conceptual model of a predefined model structure using six calibration 

parameters. 

This thesis is followed by a description of the study domain (Section |2TTj), an overview 

2 



of the meteorological data sets (Section |2.2[), an evaluation of long-term statistics (Sec­

tion |2.3|), analyzing the observed stream-flow (Section |2.4|), a brief definition of the ap­

plied models (Section |2.5[), development and testing of BRNN model (Section |3.1|). Re­

sults of the development and testing of L S T M model (Section |3T2"|), development and test­

ing of GR6J hydrological model (Section |3.3[), evaluation of the models as testing period 

(Section |3.4|), evaluation of the models as training period (Section |3.5|), and finally the 

conclusion are included in (Section |4|). 
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Chapter 2 

Methodology 

This section is organized into several subsections. First, basin short description (Sec­

tion |Zj]); second, different meteorological data sources are described (Section |2T2"|); third, 

long-term statistics are quantified, such as monthly climatology and annual trends (Sec­

tion |2.3p. Next, observed stream-flow climatology and trends are analyzed (Section |2.4[). 

Finally, a description of the models used to simulate hydrological response is provided 

(Section I2T 

2.1 Description Of The Study Domain 

The Ahr River is an 85-kilometer-long left tributary of the Rhine in Western Germany 

(figure |2.ip. In accordance with |Campana et al.| P012P the Ahr River has a catchment 

area of approximately 900 km 2 and sources from the Eifel mountains near Blankenheim, 

at an elevation of around 470 meters above sea level (Roggenkamp and Herget, 2014). As 

determined by |U.S. Geological Survey! (|2018), the Ahr basin has a maximum elevation 

of 716 meters and a minimum elevation of 51 meters above sea level. While the average 

bottom gradient in the middle and lower reaches is not particularly steep, parts of the 

catchment are above 600 m asl, making the entire catchment area vulnerable to surface 

runoff intensification (Szymczak et a\\ |2022[). The geological foundation of the basin is 

dominated by shale rocks which prevent water from penetrating deeper layers (Campana 

|et al.[ |2014p. The lower valley of the Ahr basin has a U-shaped section carved by glaciers 

and strongly influences Ahr's stream-flow. Because of these morphological characteristics, 

villages adjacent to the Ahr are at risk of flood damage. As stated by Truedinger et al. 
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(2023) approximately 56000 people live actively on the Ahr River, and according to the 

Ahrweiler administrative district report, nearly 42000 of these people were negatively 

affected by the flood on July 2021. 

Altenahr Ahr Catchment In Germany 

Figure 2.1: Topographic map of the Altenahr Ahr basement in Germany 

2.2 Overview Meteorological Data Set 

2.2.1 E-OBS 

E-OBS is a land-only observational data set with a daily temporal resolution that is avail­

able at two spatial resolutions of 0.25° x 0.25° and 0.1° x 0.1° at regular grid over Europe 

covering the area 25°N-71.5°N, 25°W-45°E (jCornes et alJ, [2TJT81). E-OBS has been de­

rived from meteorological stations across Europe that are sourced from the European Na­

tional Meteorological and hydro-logical Services (NMHSs) or other data-holding associa­

tions (Klein Tank et al., 2002; Klok and Klein Tank], |2009"1). The data set covers the period 

from the 1st of January 1950 to the near real-time and is updated constantly and provides 

information on various meteorological factors, such as the daily minimum temperature 



(TN), daily maximum temperature (TX), daily average temperature (TG), daily total pre­

cipitation (RR), daily average wind speed (FG), daily mean sea level pressure (PP), daily 

average relative humidity (HU), and global radiation (QQ) dCornes et"al., 2018). The E-

OBS data set is publicly available from E-OBS database (2023). 

2.2.2 REGNIE 

REGNIE is a daily rainfall data set with a horizontal resolution of 1 km x 1 km over Ger­

many (Kreienkamp et al.|,|202ip. As stated by Kaspar et"äL] P015|) this data set is derived 

from station data provided by the German Meteorological Service since the 1st of January 

1931. REGNIE data set is available for public use in a format of arc-Files of one year 

from IREGNIE dataHasel (|2TJ2ll). 

2.2.3 EMO-larcmin 

EMO-larcmin is a multi-variable meteorological data set from Europe with a 1 km spa­

tial resolution and daily period (|Thiemig et al.|, |2022p. This data set is made on historical 

and real-time observations and covers the period from 1990 to 2019 (Kakoulaki et al.p, 

but regular updates until 2022 can be found on the data repository. The EMO-larcmin is 

a product of Copernicus Emergency Management Service and provides daily resolution 

data for total precipitation, solar radiation, minimum temperatures, maximum tempera­

tures, wind speed, and water vapor pressure (Thiemig et al.|,|202'2l). Furthermore, the data 

for precipitation and the mean temperature is available by this data set every 6 hours. 

The EMO-larcmin data set is publicly available from EMO-larcmin database (2023|) as a 

product of Copernicus. 

2.2.4 ERA5-Land 

The ERA5-Land is a reanalysis data set providing a constant view of the transition of 

land variables (Munoz-Sabater, 2021). This data set supplies hourly high-resolution in­

formation on surface variables from 1950 to 2-3 months before the present. ERA5-Land 
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has been created by replacing the land component of the ERA5 climate reanalysis with a 

better spatial resolution: approximately 9 km ( 0.08) grid spacing (Munoz Sabater, 2019). 

According to Munoz-Sabater (202T]) and|Jeppesen (2021), reanalysis uses the laws of 

physics and fills the gaps in the observational record by merging the model data with ob­

servations from all around the world and producing a universally complete and consistent 

data set. Created data by Reanalysis go several decades back in time and provide a precise 

description of the weather and climate of the past. 

ERA5-Land supplies data for a total of 50 variables such as 2m dew-point temper­

ature, 2m temperature, evaporation from bare soil, potential evaporation, runoff, total 

evaporation, total precipitation, etc. Accordant with Jeppesen (|2021[) at reduced spatial 

and temporal resolutions, ERA5-Land contains information for all variables about uncer­

tainties (data from locations or periods where observations are scanter are possible to be 

less confident).ERA5-Land is very convenient for all types of land surface applications 

like overflow or drought forecasting due to its temporal and spatial resolutions (Munoz 

Sabater, 2021). The latest ERA5-Land data set is available free of charge from ERAS-

L A N D database (2023) either in GRIB1, GRIB2, or netCDF format. 

2.3 Long-term Statistics For Meteorological Data Set 

2.3.1 Monthly Climatology Of Precipitation 

Figure shows the monthly mean of precipitation for observational data provided by 

four different data sets (ERA-5Land, E-OBS, REGNIE, and EMO-larcmin) over 30 years 

(1992-2021). The precipitation data in the y-axis is in millimeter (mm) scale and for all 

data sets except ERA5-Land is recorded in a similar range. For E-OBS, REGNIE, and 

EMO-larcmin, the lowest recorded rainfall is between 49 mm and 52 mm, and the highest 

recorded amount is between 74 mm and 76 mm, whereas for ERA5-Land, the minimum 

recorded precipitation is around 60mm, and the maximum recorded value exceeds 90mm, 

indicating that ERA5-Land consistently overestimates the values. The highest amounts of 

precipitation are recorded during the summer and winter seasons, and the least values are 

captured during the spring and autumn. 

The CDO codes below include the required Climate Data Operators by Schulzweida 
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Figure 2.2: Monthly climatology for precipitation based on four different meteorological 
data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) over 30 years (1992-2021). 

|et al.| P006D to process the precipitation data for monthly climatology in figure |2.2|. In this 

operation, the data over the Ahr basin was averaged over all grid cells and the resulting 

data were used to compute the mean precipitation for each month over a 40-year period 

(1980-2021). 

# S t e p l : C a l c u l a t e the average over a l l g r i d c e l l s 
cdo fldmean i n p u t _ P r . n c fldmean_Pr_output.nc 

# Step2: C a l c u l a t i n g the monthly sum of the p r e c i p i t a t i o n 
cdo monsum fldmean_Pr_output.nc monsum_Pr_output.nc 

# Step3: C a l c u l a t i n g the y e a r l y mean of each month 
cdo ymonmean monsum_Pr_output.nc ymonmean_Pr_output.nc 
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2.3.2 Monthly Climatology Of Temperature 

Figure |2.3| shows the monthly mean of temperature for observational data from three dif­

ferent data sets (ERA-5Land, E-OBS, and EMO-larcmin) over 40 years period from 1980 

to 2021. The temperature data in the y-axis is given in degree Celsius units. The recorded 

data of E-OBS and EMO-larcmin display a similar range of temperature while Era5-Land 

stays a little further away due to the clear existing seasonality with reference to figure IZ2 

Because the ERA5-Land was more wet, the temperature is also lower. The maximum 

temperature recorded by the two data sets E-OBS and EMO-larcmin is around 16 C° and 

17 C°, respectively, while the highest temperature recorded by ERA5-Land does not even 

reach 15 C°. 
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Figure 2.3: Monthly climatology for temperature based on different meteorological data 
sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) over 4 decades (1980-2021). 

The following CDO codes provide the needed Climate Data Operators to process the 

temperature data for monthly climatology in figure |2.3[ During the procedure, the temper­

ature data over the Ahr basin was calculated for the mean over all grid cells and the result 

was used to measure the mean temperature for each month over 40 years (1980-2021). 

# S t e p l : C a l c u l a t e the average over a l l g r i d c e l l s 
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cdo fldmean input_tem.nc fldmean_tem_output.nc 

# Step2: C a l c u l a t i n g the y e a r l y mean of each month 
cdo ymonmean fldmean_tem_output.nc ymonmean_tem_output.nc 
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Figure 2.4: Annual daily precipitation trends for ERA5-Land, EMO-larcmin, E-OBS, and 
REGNIE data sets over 40 years (1980-2021). The trend line is highlighted in orange in 
the graphs. 

2.3.3 Precipitation Trends In The Annual Mean Values 

Figure shows the trends in the annual mean values for precipitation data provided 

by four different data sets (Era5-Land, E-OBS, EMO-larcmin, and REGNIE) based on 

Mann-Kendall Trend Test flMcLeodl, |20051). The Mann-Kendall (MK) test is used in con­

junction with linear regression analysis to determine whether the slope of the estimated 

linear regression line is greater/less than zero and whether the variable of interest has a 

monotonie upward or downward trend over time. This method primarily provides two 

different kinds of information: 

1. The Kendall Tau, also known as the Kendall rank correlation coefficient, assesses the 

monotony of the slope. 
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2. The Significance, which represents the point at which the hypothesis of no trend is 

accepted. When the p-value is less than 0.05, the trend is statistically considerable. 

Concerning the Significance of the M K test, the null hypothesis of no monotonie trend 

is rejected for all data sets (E-OBS, EMO-larcmin and REGNIE ) except ERA-Land, 

which has a higher p-value than 0.05 . Negative Kendal Tau values indicate a downward 

trend in precipitation from 1990 to 2021 for E-OBS, EMO-larcmin and REGNIE data 

sets. 
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Figure 2.5: Temperature trends for ERA5-Land, EMO-larcmin, E-OBS, and REGNIE 
data sets over 40 years from 1980 to 2021.The trend line is highlighted in orange in the 
graphs. 

2.3.4 Temperature Trends In The Annual Mean Values 

Figure |2.5| displays the Mann-Kendall Trend Test for annual mean values of temperature 

data from three different data sets (Era5-Land, E-OBS, and EMO-larcmin). The Mann-

Kendall (MK) test, in addition to linear regression analysis, is applied to decide whether 

the slope of the estimated linear regression line shows an upward or downward trend over 

the given period. Correspondingly for all three data sets the M K test's Significance rejects 
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the null hypothesis of no monotonie trend, and since p — values < 0.05, the Kendal Tau 

suggests an upward trend in temperature for the relevant timeline. 

2.4 Observed Hydrological Data 

2.4.1 Stream-Flow - Q 

Rhineland-Palatinate (2021) provides discharge data (Q [m3/s]) for the Ahr basin, a major 

tributary of the Rhine river with a catchment area of 747,087 km 2 , in 15-minute temporal 

resolution in the form of a text file (CSV file) or an Excel spreadsheet (XLS file). This 

data can be retrieved for a maximum of 30 days. In this paper, the data is aggregated into 

daily values for subsequent analysis. 

The following R-code is used to convert the 15-minute recorded data of Ahr basin dis­

charge to daily outflow. The result of aggregation shows that the minimum and maximum 

outflow in the Ahr basin over the last 30 years was 0.415 (m3/s) and 465.3125 (m3/s) 

during 2017-07-09 and 2021-07-15, respectively. 
# R e q u i r e d L i b r a r i e s 

l i b r a r y ( d p l y r ) 
l i b r a r y ( l u b r i d a t e ) 

# A g g r i g a t i n g t h e d a i l y mean o f d i s c h a r g e 
daily_mean <- d i s c h a r g e _ d f %>% 
group_by(Date) %>% 
summarize(dilyMean = mean(Q)) 

2.4.2 Monthly Climatology Of Observed Stream-Flow - Q 

Figure |2.6| represents the average value of the observed discharge in each month over a 

30-year time frame. The plotted data indicates that discharge is higher during the winter 

season and decreases as it gets closer to summer. 

To demonstrate seasonality, the data was processed in R as follows to convert daily outflow 

to monthly averaged discharge. 
# R e q u i r e d L i b r a r i e s 

l i b r a r y ( d p l y r ) 
l i b r a r y ( l u b r i d a t e ) 

# Convert t h e d a i l y mean t o ymonmean 
monthly_mean <- d i s c h a r g e _ d f %>% 
group_by(month) %>% 
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summarize(ymonmean = mean(dailyMean)) 
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Figure 2.6: Seasonality of monthly observed discharge over 30 years (1992-2021). 

2.4.3 Stream-Flow - Q Trends In The Annual Mean Values 

Figure |2"77|presents the Mann-Kendall Trend Test in annual daily mean values for observed 

discharge data. Even though the linear regression shows a monotonie bearish trend over 

time, the significance of the Mann-Kendall Trend Test cannot reject the null hypothesis of 

no monotonie trend for outflow. 

The R-code below reveals how to process daily discharge to obtain the yearly averaged 

outflow required for the Kendal trend test. 
# R e q u i r e d L i b r a r i e s 

l i b r a r y ( d p l y r ) 
l i b r a r y ( l u b r i d a t e ) 

# Convert t h e d a i l y mean[m"3/s] t o y e a r l y mean[mm/day] 
yearly_mean <- d i s c h a r g e _ d f %>% 
group_by(year) %>% 
summarize(yearlyMean = 
(mean(dailyMean)*(1000*24*3 600)/747000000)) 
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Figure 2.7: Trend of observed discharge over 30 years (1992-2021). The trend line is 
highlighted in orange. 

2.5 Modelling 

This section investigates several tools for simulating hydrological response to meteoro­

logical inputs, with a particular focus on representing the dramatic floods of July 14 and 

15, 2021 in the Ahr basin. This thesis uses data-driven models such as Neural Network 

Modeling (NNM) as well as a hydrological model like the GR6J rainfall-runoff modeling, 

and tests and evaluates their accuracy. The selection of these models was inspired by the 

recent work of Nasreen et al.|Q2022"|), who used the models to predict annual river flows for 

14 European catchments, while models here are used to simulate daily flows of the Ahr 

River. 

The temperature and precipitation data from E-OBS, REGNIE, EMO-larcmin, and 

ERA5-Land were collected over 30 years on the Ahr basin and are used to run the cor­

responding models. Each data set is divided into halves to define the training and testing 

periods. For each model, the first half (1992-2007) is used for training and the second 

half (2008-2021) is used for testing. The selected objective function for constraining the 

model parameters of the BRNN and GR6J models was based on the root mean square 

(RMSE), while for L S T M this was based on the mean squared error (MSE). We assume 

this does not have a large difference for the simulated results, moreover, since several oth­

er objective functions are used for evaluating the model performance. In the first part of 
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the analysis, the overall hydrological response is summarized (and differences stemming 

from different meteorological products are documented), in the second half of the anal­

ysis, we assess, how the models can capture the peak of July 2021. The R-code below 

demonstrates the steps of creating the required training and testing periods for the models. 

This work is based on the code presented earlier by [Nasreen et al.| (|2022). 
# s t e p s t o s p l i t t h e d a t a i n t o t r a i n i n g and t e s t i n g p e r i o d s : 
#1) p r and tern d a t a f o r t h e t r a i n i n g p e r i o d 

m e t e o _ t r a i n i n g < - d a t a [ 1 : f l o o r ( 0 . 5 * n r o w ( d a t a ) , 
c ('pr' , 'tern' ) ] 
#2) p r and tern d a t a f o r t h e t e s t i n g p e r i o d 

m e t e o _ t e s t i n g < - d a t a [ ( f l o o r ( 0 . 5 * n r o w ( d a t a ) + 1 ) : n r o w ( d a t a ) , 
c (' p r ' , ' tern' ) ] 
#3) d i s c h a r g e d a t a f o r t h e t r a i n i n g p e r i o d 

Q o b s _ t r a i n i n g <- d a t a [ l : f l o o r ( 0 . 5 * n r o w ( d a t a ) , 
.(Q_m3)] 
#4) d i s c h a r g e d a t a f o r t h e t e s t i n g p e r i o d 

Q o b s _ t e s t i n g <- d a t a [ ( f l o o r ( 0 . 5 * n r o w ( d a t a ) + 1 ) : n r o w ( d a t a ) , 
.(Q_m3)] 

2.5.1 Neural Network Model 

Neural networks, also known as artificial neural networks (ANNs), are a branch of ma­

chine learning that form the foundation of deep learning algorithms. Their name and 

framework are derived from the human brain, and they work in the same way that bi­

ological neurons do (Abraham, 2005) as it is shown in the figure |2.8|. Neurons are the 

fundamental units of artificial neural networks (ANNs), which are typically structured in­

to layers. As stated by |Jain et alJ, ([1996P the arrangement of a neural network comprises 

three layers, namely, an initial layer composed of units representing the input fields, one 

or more hidden layers, and a concluding layer featuring one or multiple units that repre­

sent the target field(s). The units are connected using a variety of connection strengths (or 

weights). The first layer receives input data, and if any individual neuron's output exceeds 

a predefined threshold value, that neuron is amplified and sends data to the network's next 

layer (Zou et al\ |2009[). If this is not the case, no data is transferred to the next network 

layer. Finally, the output layer generates a result. Accordant with Benton et al. (2020) 

training data is used by neural networks to learn and enhance their precision over time 

by evaluating individual records, creating a prediction for each record, and adjusting the 

weights when it makes an invalid prediction. This process is repeated many times, and the 
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network's predictions improve until one or more of the stopping criteria are met. Today, 

different kinds of artificial neural networks are used in machine learning. However, Recur­

rent Neural Networks (RNN) are among the most popular. An RNN is a kind of artificial 

neural network that uses sequential or time series data and works on the principle of saving 

a layer's output and feeding it into the input to help predict the layer's outcome (Maladkar, 

2018). This means that each neuron will memorize some data from the prior time step as 

it moves from one-time step to the next. This causes each neuron to function as a memory 

cell when performing computations. For different purposes, RNN provides users with a 

variety of architectures including Bidirectional RNNs (BRNN), Long short-term memory 

(LSTM), and Gated recurrent units (GRUs). In this paper, BRNN and L S T M architectures 

of RNN are used to represent the hydrological cycle over the last 30 years in the Ahr basin. 

F igured i sp lays the similarity between biological and artificial neural networks. The 

left side of the image above represents a biological neuron, and the right side represents 

the links of multiple nodes (neurons) in A N N . Because A N N is based on the structure of 

a biological neural network (BNN), it resembles B N N in appearance. They are both made 

up of neurons (BNN consists of neurons as cells and A N N consists of neurons as nodes). 

Multiple neurons use electricity to transmit and receive data points from their predecessors 

and transfer them to their descendants. 
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2.5.2 Bidirectional RNN (BRNN) 

One of the most common RNN architectures is BRNN. BRNN is used when the user wants 

to explore future events without limiting the model's learning to the past and present, ac­

cording to |Kastrati and Biba| P02ip. As it is shown in figure a BRNN is made up of 

two RNNs, one of which moves forward from the beginning of the data set and the other 

backward from the end. 

Figure |2.9| shows the general structure of a BRNN model. A typical BRNN is made 

up of three layers: the input layer, the hidden layers, and the output layer. The diagram 

shows that the network's hidden layer stores two pieces of information. The two sets of 

RNN cells in this layer (labeled RNN F and RNN B) process the input data sequence (In 

i) in opposite directions, RNNF forward (left to right) and RNNB backward (right to left). 

In the final output (out n), the information from both parts is combined. 

(B-Outi^F-OutQ r-

RNN, R N N H « " 

' Forward RNN F RNN F initial HS 
^ j 

RNN F RNN F 

t f 

Figure 2.9: Diagram of bidirectional recurrent neural networks taken from Jokar and Sem-
perlottil (120201). 

In agreement with Kuhn (2022); Kuhn et aD, (|2"Ö20) the caret package (short for Clas­

sification And Regression Training) in R includes many functions that aim to make the 

model-building and analysis process as simple as possible, one of the most useful func­

tions that are considered a key tool in this package is the train function. The train function 

has the ability to set up a grid of tuning parameters for so many classification and regres­

sion routines, fit each model, and evaluate a resampling-based performance measure. 

The R-code below includes the train function and some of its arguments. One of the most 
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important arguments for this function is the method that specifies which classification or 

regression model to use. BRNN is one of the methods that could be used. This work is 

based on the code presented earlier by Nasreenet al.|d2"022). 
# r e q u i r e d l i b r a r y 
l i b r a r y ( c a r e t ) 

# t r a i n f u n c t i o n w i t h brnn method 
t r a i n (x, y, 

method = "brnn", 

w e i g h t s = NULL, 
m e t r i c = i f e l s e ( i s . f a c t o r ( y ) , "Accuracy", "RMSE"), 
maximize = i f e l s e ( m e t r i c == "RMSE", FALSE, TRUE), 
t r C o n t r o l = t r a i n C o n t r o l ( ) , 
t u n e G r i d = NULL, 
tuneLength = 3) 

Defined Arguments by Kuhn (2022): 

x : a data frame containing training data where samples are in rows and features are in 

columns. 

y : a numeric or factor vector containing the outcome for each sample. 

weights: a numeric vector of case weights. This argument will only affect models that 

allow case weights. 

maximize : a logical: should the metric be maximized or minimized? 

method: a string specifying which classification or regression model to use. Possible 

values are: ada, bag, bagEarth, bagFDA, blackboost, cforest, ctree, ctree2. 

tuneLength: an integer denoting the number of levels for each tuning parameter that 

should be generated by createGrid. 

2.5.3 Long Short-Term Memory (LSTM) 

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN) archi­

tecture that allows information to be stored for a long period of time. L S T M performs 

similarly to an RNN cell at a high level. The internal operation of the L S T M network is 

shown in figure |2.10[ 

Figure g^D| displays the L S T M cell's different parts (the "Cell State" the "Hidden State" 

and the "Gate") each of which serves a single purpose. In agreement with Ryan (2021) 

Cell State (long-term memory) provides the model with a larger memory of past events 
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and enables the model to store and load information from events that are not necessarily 

immediately preceding while the Hidden State (short-term memory) provides the mod­

el with working memory capabilities that carry information from immediately preceding 

events and overwrites at each step. According to Siami-Namini et aLl P019D the Gate is 

composed of three parts: The first part is known as the Forget gate, the second as the 

Input gate, and the third as the Output gate. As stated by |Bruneo and De Vital ([2019) 

each Gate serves a unique function.: the Forget gate determines if the information from 

the prior timestamp should be remembered or is unimportant and should be ignored. The 

cell attempts to learn new information from the input to this cell in the Input gate and 

finally, in the Output gate, the cell updates the data from the present timestamp to a sub­

sequent timestamp. According to Allaire and Chollet (2023), the Keras package in R is an 
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Figure 2.10: Schamatization of the Long short-term memory (LSTM) cell, taken from 
Saxena|(|202ll). 

open-source Python software library that runs on top of the TensorFlow machine learning 

platform. Keras is a powerful interface for solving machine learning problems, with an 

emphasis on modern deep learning. One of Keras's most basic models is keras model 

sequential, which is constituted of a linear layers stack and whose learning process can be 

customized using the compile () function of this library. 

The Keras model sequential and its arguments are included in the R-code below. This 

work is based on the code provided by Nasreen et al. (2022). 
# r e q u i r e d l i b r a r y 
l i b r a r y ( k e r a s ) 
l i b r a r y ( t e n s o r f l o w ) 
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# c r e a t i o n o f t h e model 
model <- k e r a s _ m o d e l _ s e q u e n t i a l ( ) 
model %>% 

l a y e r _ d e n s e ( u n i t s = 32, i n p u t _ s h a p e = c(784)) %>% 
l a y e r _ a c t i v a t i o n ( ' r e l u ' ) %>% 
l a y e r _ d e n s e ( u n i t s = 10) %>% 
l a y e r _ a c t i v a t i o n ( ' softmax' ) 

# t h e c o n f i g u r a t i o n o f t h e model 
model %>% c o m p i l e ( 

o p t i m i z e r = o p t i m i z e r _ a d a m ( l e a r n i n g _ r a t e = 0.001) 
l o s s = "mae", 
m e t r i c s = 'mean_squared_error' 

) 

Defined Arguments by Allaire and Chollet (2023): 

l a y e r s : List of layers to add to the model, 

name : Name of the model. 

2.5.4 GR6J Hydrological Model 

According to Coron et a"L](|2017[) the GR6J Hydrological Model is an open-source, object-

oriented model designed to simulate and analyze the hydrological behavior of river basins. 

This model has been developed by researchers from the French National Research Insti­

tute for Agriculture, Food and Environment, and it is based on the GR (Gridded Runoff) 

models that were developed in the 1980s. The development of the GR6J model was mo­

tivated by the need for an accurate and reliable hydrological model that can simulate and 

forecast the response of a catchment area such as runoff, soil moisture, and evapotranspi-

ration, to different hydro-meteorological conditions (Delaigue et al\ |2018[). This ability of 

the model is achieved through the incorporation of advanced algorithms and mathematical 

models that take into account various factors, including precipitation, temperature, veg­

etation cover, soil properties, and topography. In agreement with Delaigue"et al.| (|2019[) 

the GR6J model includes several sub-models that simulate different aspects of the hydro-

logical processes, including a rainfall-runoff model, a snowmelt model, and an evapotran-

spiration model. These sub-models are based on well-established and validated concepts 

and equations that are supported by extensive research in the field. The GR6J hydrologi­

cal model uses data on a daily, monthly, and yearly time scale depending on the specific 
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application and data availability QCoron et~aE| |2018[). The daily time scale is appropriate 

for simulating hydrological processes that exhibit short-term variability, such as rainfall-

runoff processes, and for capturing the effects of climate change on water resources at a 

fine temporal resolution. On a daily time scale, the model considers daily variations in 

meteorological variables such as precipitation, temperature, and solar radiation, as well 

as daily changes in soil moisture and stream-flow. In keeping with |Coron et"aL] ([2022P 

R provides the AirGR library that implements the GR hydrological model. The package 

provides functions for parameter estimation, simulation, and evaluation of the model, as 

well as tools for sensitivity analysis and uncertainty quantification. 

In the R-code example below different steps of the model setup are shown. This work is 

based on the code presented by[Nasreen et al.|(|2022[), previously. 

# r e q u i r e d l i b r a r y 
l i b r a r y ( a i r G R ) 

# InputsModel o b j e c t 
InputsModel <- C r e a t e l n p u t s M o d e l 
(FUN_MOD = RunMo de1_GR 4 J , DatesR = BasinObs$DatesR, 

P r e c i p = BasinObs$P, PotEvap = BasinObs$E) 
#RunOptions o b j e c t 
Ind_Run <- seq 
(which(format(BasinObs$DatesR, 
format = "%Y-%m-%d") == "1992-01-01"), 
which(format(BasinObs$DatesR, 
format = "%Y-%m-%d") == "2007-12-31")) 

RunOptions <- CreateRunOptions 
(FUN_MOD = RunMo de1_GR 4 J , 

InputsModel = Inp u t s M o d e l , IndPeriod_Run = Ind_Run, 
I n i S t a t e s = NULL, 
I n i R e s L e v e l s = NULL, IndPeriod_WarmUp = NULL) 

t l n p u t s C r i t o b j e c t 
I n p u t s C r i t <- C r e a t e l n p u t s C r i t 
(FUN_CRIT = E r r o r C r i t _ R M S E , InputsModel = Inp u t s M o d e l , 
t r a n s f o = l , RunOptions = RunOptions, VarObs = "Q", 
Obs = BasinObs$Q_mm[Ind_Run]) 
t C a l i b O p t i o n s o b j e c t 
C a l i b O p t i o n s <- C r e a t e C a l i b O p t i o n s 
(FUN_MOD = RunMo de1_GR 4 J , FUN_CALIB = C a l i b r a t i o n _ M i c h e l ) 
O u t p u t s C a l i b <- C a l i b r a t i o n _ M i c h e l 
(InputsModel = Inp u t s M o d e l , RunOptions = RunOptions, 
I n p u t s C r i t = I n p u t s C r i t , C a l i b O p t i o n s = C a l i b O p t i o n s , 

FUN_MOD = RunMo de1_GR 4 J) 
t S i m u l a t i o n run 
OutputsModel <- RunModel_GR4J(InputsModel = Inp u t s M o d e l , 
RunOptions = RunOptions, Param = Param) 
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Defined Arguments ByjCoron et al. (2022): 

C r e a t e l n p u t sModel () : Prepares the inputs for the different hydrological mod­

els. 

CreateRunOpt io n s () : Function allows to prepare the options required to the Run-

Model^) functions, which are the actual models functions. 

C r e a t e l n p u t s C r i t () : Function allows preparing the input in order to calculate a 

criterion. 

C r e a t e C a l i b O p t i o n s () : Before using the automatic calibration tool, the user needs 

to prepare the calibration options. 

C a l i b r a t i o n _ M i c h e l () : This function allows running a calibration with the pack­

age models. 

RunModel* () : To run a model, the user has to use the RunModel*(). A l l the data 

needed have already been prepared in the previous steps. 
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Chapter 3 

Results And Discussions 

This section is organized into several sections. First, the development and testing of the 

BRNN model (Section |3.1|); second, the development and testing of the L S T M model 

(Section |3.2D; third, the development and testing of the GR6J hydrological model (Sec­

tion |3.3|); followed by evaluation of the modeling results for the flood peak (as testing 

period) (Section |3.4|) and evaluation of the modeling results for the flood peak (as training 

period) in (Section [33J). 

3.1 Development And Testing Of NNM Model With BRNN Architec­
ture 

The response of the N N M with BRNN architecture for various meteorological input dai­

ly data (precipitation and temperature based on E-OBS, REGNIE, EMO-larcmin, and 

ERA5-Land) on the Ahr basin over 30 years (1992-2021) is examined in this section. 

Each simulation was split into halves to establish the training and testing periods in order 

to run the model. The first half contains data from 1992 to 2007, forming the training 

period, and the second half includes data from 2008 to 2021, creating the testing period. 

In order to execute the model, the RMSE was used as the objective function. 

Figure |3.1| shows the performance of the BRNN model for the training and testing 

periods of the ERA5-Land data set as an example. The RMSE was applied as an objec­

tive function to run the model. Kling-Gupta efficiency (KGE) and root-mean-square error 

(RMSE) values extracted from model performance indicate the model's prediction accura-
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cy level. The errors or differences between observed and simulated data are lower during 

the training period, implying that the model is more precise in the training data set than 

in the testing data. This is common, since training data is based on previously learned 

data, whereas test data may contain unknown or uncommon data, resulting in more errors 

or misclassifications when performing predictions. The long-term average performance 

of the model to represent the stream-flow climatology is more evident in figure |3T2] which 

depicts the average value of the observed and simulated discharge for different data sets (E-

OBS, REGNIE, EMO-larcmin, and ERA5-Land) in each month over three decades from 

1992 to 2021. The plotted data shows that the observed discharge ranges between 2 and 12 

(m3/s) whereas the maximum value simulated by the model is around 9 (m3/s). Since the 

difference between simulated products from different data sets (E-OBS, REGNIE, EMO-

larcmin, and ERA5-Land) is rather small and they are displaying the same pattern a closer 

look reveals that the model underestimated the discharge for the first three months of the 

year (January, February, and March), but the prediction is close to the observed values for 

the next five months (April to August), and the discharge was overestimated for the entire 

rest of the year (September to December). In other words, the model's performance could 

have been better during the autumn and winter seasons, but it predicted the discharge more 

accurately during the spring and summer seasons. 

Table |3.1| summarizes the results of the BRNN model for training and testing periods of 

different data sets in daily time steps. Since the model is fit on the training data, the errors 

are lower than in the testing period. The model's output, such as Kling-Gupta efficiency 

(KGE) and root-mean-square error (RMSE), demonstrate that the model performs slightly 

better on the ERA5-Land data set during both the training and testing periods. The dif­

ferences between different meteorological products are quite significant, mainly REGNIE 

and E-OBS in terms of the K G E having the most inferior performance. 

3.2 Development And Testing Of NNM Model With LSTM Architec­
ture 

The result of the N N M with L S T M architecture for different meteorological inputs such 

as precipitation and temperature based on E-OBS, REGNIE, EMO-larcmin, and ERA5-
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Figure 3.1: Hydro-graph of training (top) and testing (bottom) period by BRNN model for 
ERA5-Land. 

Land in daily time step on the Ahr basin over three decades (1992-2021) is discussed in 

this part. To operate the model, each simulation was divided into halves to create training 

and testing periods. The first half or the training period includes data from 1992 to 2007, 

and the second half or the testing period contains data from 2008 to 2021. The model was 
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Seasonality Of Simulated and Observed Discharge 

2 4 6 8 10 12 

Month 

Figure 3.2: The seasonality of simulated discharge by BRNN model based on four data 
sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) against observed discharge over 
30 years (1992-2021), including both the training and testing periods. 

Table 3.1: BRNN results for training and testing periods at daily time steps using precip­
itation and temperature based on different meteorological data sets (ERA5-Land, EMO-
larcmin, E-OBS, and REGNIE) as input. 

Training Period 
data sets K G E RMSE COR NSE M A E 
ERA5-Land 0.43 7.08 0.6 0.36 4.05 
EMO-larcmin 0.43 7.09 0.59 0.35 3.87 
REGNIE 0.21 7.91 0.44 0.2 4.32 
E-OBS 0.22 7.9 0.45 0.2 4.31 

Testing Period 
ERA5-Land 0.45 8.05 0.65 0.43 4.15 
EMO-larcmin 0.17 9.8 0.4 0.15 3.95 
REGNIE 0.1 10.1 0.33 0.1 4.38 
E-OBS 0.13 10.1 0.33 0.08 4.4 

run based on the mean squared error (MSE) objective function. 

Figure [33]represents the L S T M model's implementation during the training and testing 

phases of an example EMO-larcmin data set. The MSE was used as the objective func­

tion to run the model. The model's evaluation factors, such as KGE, M A E , and RMSE, 

indicate that the differences between observed and simulated data (errors) are lower dur­

ing the training period, whereas testing results in more errors or misclassifications when 

making predictions. The average value of observed and simulated outflow for various da­

ta sets (E-OBS, REGNIE, EMO-larcmin, and ERA5-Land) in each month over 30 years 
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Figure 3.3: Hydrograph at the top: as training and at the bottom: as testing period by 
LSTM model for EMO-larcmin. 

(1992-2021) derived from the L S T M model shown in figure [3̂ 4] indicates that the mean 

value of observed discharge is in the range of 2 to 12 (m3/s), while the model simulates 

approximately a range of 2 to 8 (m3/s) for all data sets. Even though all simulated dis­

charges follow the same pattern, the REGNIE and EMO-larcmin data sets with the ranges 
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of 2 to 6 (m3/s) and 2 to 8 (m3/s) have the lowest and highest accuracy of ranges, respec­

tively. The plotted results in figure show that the model underestimated the discharge 

during the first four months of the year (January, February, March, and April), however, 

this underestimation decreases during the next four months (May, June, July, and August), 

and the model at last overestimated the discharge during the rest three months (September, 

October, and November) and during last month of the year (December) performed with an 

underestimation. Furthermore, the model performed better during the spring and summer 

seasons. 

Seasonality Of Simulated and Observed Discharge 

Figure 3.4: The seasonality of simulated discharge by L S T M model using four different 
data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) against observed discharge 
over 3 decades (1992-2021), including the training and testing periods. 

Table|3.2|summarizes the L S T M model's outcomes for four different data sets' training 

and testing periods in daily time scales. The comparison of the results for training and 

testing periods indicates that the errors are minor during the training period than during 

the testing period due to the fact that the model is fit on training data. Statistical evaluation 

factors of the model, such as KGE, RMSE, and M A E results, illustrate that the model 

function slightly better on the EMO-larcmin data sets during both the training and testing 

periods. 
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Table 3.2: L S T M results for training and testing periods at daily time steps using precipi­
tation and temperature from four different data sets (ERA5-Land, EMO-larcmin, E-OBS, 
and REGNIE) as input. 

Training Period 
data sets K G E RMSE COR NSE M A E 
ERA5-Land 0.43 7.19 0.59 0.33 3.82 
EMO-larcmin 0.51 7.40 0.57 0.30 3.66 
REGNIE 0.16 8.28 0.44 0.12 3.91 
E-OBS 0.25 8.01 0.44 0.18 4.02 

Testing Period 
ERA5-Land 0.11 10.0 0.36 0.11 3.74 
EMO-larcmin 0.30 10.1 0.38 0.09 3.67 
REGNIE 0 10.3 0.29 0.05 3.75 
E-OBS 0.09 10.1 0.31 0.09 4.01 

3.3 Development And Testing GR6J Hydrological Model 

This section discusses the findings of the GR6J model for meteorological inputs such 

as precipitation and potential evapotranspiration relying on E-OBS, REGNIE, EMO-

larcmin, and ERA5-Land in a daily time scale on the Ahr watershed over 30 years (1992-

2021). Each simulation was segmented into halves to generate calibration and evaluation 

intervals in order to run the model. The calibration period or the first half spans from 1992 

to 2007, and the evaluation period or the second half spans from 2008 to 2021. The model 

was run based on RMSE objective function. 

Figure |3.5| depicts the efficiency of the GR6J model during the REGNIE data set's 

calibration (training) and evaluation (testing) periods example. The model was run using 

the RMSE objective function. K G E and RMSE and M A E values extracted from the model 

performance point the model's prediction precision level is higher in the calibration data 

set than in the evaluation data. However, the model could capture the high signals of 

discharge during both calibration and evaluation period which is more evident in figure |3TB 

It represents the overall average of the observed and simulated discharge by the GR6J 

model for four different meteorological inputs (E-OBS, REGNIE, EMO-larcmin, and 

ERA5-Land) in each month from 1992 to 2021. The obtained from plotting data shows 

that the observed discharge ranges from 2 to 12 (m3/s), and the model's simulated outflows 

estimate nearly the same range of values and follow the same pattern across all seasons. 
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Figure 3.5: Hydro-graph of calibration (top) and evaluation (bottom) period by GR6J 
model for REGNIE data set. 

Table I3.3I outlines the GR6J model's calibration and evaluation results for four sets of 

data in daily time frames. The outcomes show the errors are lower during the calibration 

period. The statistical evaluation factors for the model, such as K G E and RMSE, as well 

as the M A E findings, demonstrate that the GR6J model performs relatively better on the 
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Seasonality Of Simulated and Observed Discharge 
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Figure 3.6: The seasonality of simulated discharge by GR6J model based on four meteo­
rological data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) against observed 
discharge over 30 years (1992-2021) including both, the training and testing periods. 

REGNIE data sets over the two calibration and evaluation periods. Overall, the results are 

more satisfactory than the simulations of the BRNN and the L S T M setups. Although the 

model structure of the GR6J model is fixed and model has only 6 calibration parameters, 

the model performance is more robust than the flexible model structure of the BRNN and 

LSTM structures, and it might be possible, that our implementation of these models for 

simulation daily hydro-graphs is sub-optimal. More research is required to test different 

configurations of the BRNN and L S T M structures. 

Table 3.3: GR6J model results for calibration (training) and evaluation (testing) peri­
ods using precipitation and potential evapotranspiration based on four different data sets 
(ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) as inputs at daily time steps. 

Calibration (training) Period 
data sets K G E RMSE COR NSE M A E 
ERA5-Land 0.80 4.63 0.85 0.72 2.26 
EMO-larcmin 0.66 5.95 0.74 0.55 2.86 
REGNIE 0.87 3.32 0.92 0.85 1.73 
E-OBS 0.87 3.55 0.91 0.83 1.90 

Evaluation (testing) Period 
ERA5-Land 0.56 6.50 0.82 0.65 2.57 
EMO-larcmin 0.29 9.51 0.51 0.26 2.80 
REGNIE 0.58 6.34 0.87 0.67 1.83 
E-OBS 0.49 7.22 0.84 0.57 2.05 
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3.4 Evaluation Of The Modeling Results For The Flood Peak Of July 
2021 (As Testing Period) 

After evaluating the ability of the three different models to represent daily and seasonal 

hydro-graphs across different meteorological forcing data, here, we focus on the ability to 

simulate the floods of July 2021. First, we quantify the cumulative precipitation for four 

meteorological data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) during 2021 

as shown in figure |3.7[ The rainfall values on the y-axis are in millimeters. Three data 

sets, E-OBS, REGNIE, and EMO-larcmin, roughly follow the same pattern and range 

of values, while ERA5-Land has a positive bias of about 30%, in other words, ERA5-

Land significantly overestimates the other three products. The graph shows that all four 

products exhibit a rapid increase in precipitation during July, which caused the 2021 flood 

event. During the flood peak, the highest daily recorded amount of precipitation for three 

meteorological data sets E-OBS, REGNIE, and EMO-larcmin is around 122 mm. 

Cumulative Sum Of Precipitation In 2021 

8 

—I— 
Mar 

—I— 

J LI Ma, Sep 

Figure 3.7: The cumulative precipitation based on four meteorological data sets (ERA5-
Land, EMO-larcmin, E-OBS, and REGNIE) in year 2021. 

The R-code below shows a simple calculation of cumulative precipitation in R using 

the base package provided by R Core Team (2022). 

f r e q u i r e d l i b r a r y 
l i b r a r y (base) 
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t c u m u l a t i v e p r e c i p i t a t i o n 
c u m s u m ( p r e c i p i t a t i o n _ d a t a ) 

Furthermore, we evaluate the model simulations based on the parameters obtained dur­

ing the testing/evaluation period of each model. This means that the model was not trained 

on the high daily accumulations and extraordinary flood peaks. Table |3.4| shows the ob­

served and simulated discharge by the BRNN model for different data sets for the flood 

peak of July 14 to 16, 2021 varies very significantly. The results indicate that the simulat­

ed discharge by the BRNN model is significantly understated and the model captured the 

flood signal just for one of the meteorological data sets (ERA5-Land). The best and worst 

fit of the model to the observed discharge is 325.1784 (m3/s) and 2.101211 (m3/s) from 

the ERA5-Land and E-OBS data sets, respectively. These results indicate that the model 

is very sensitive to different meteorological inputs. 

Table 3.4: BRNN model results for the flood peak of July 14 to 16, 2021 based on 
four meteorological data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE) against 
observed discharge. A l l the values are in cubic meters per second (m3/s). 

data set Simulated Q 
ERA5-Land 325.1784 
EMO-larcmin 60.837606 
REGNIE 2.169170 
E-OBS 2.101211 
Observed Q 465.3125 

For the flood peak of July 14 to 16, 2021, the table [33] summarizes the observed 

and simulated discharge by the L S T M model for various data sets. The findings demon­

strate that the L S T M model's simulated discharge is considerably underestimated as the 

flood signal is captured just in the EMO-larcmin data set. The best fit of the model to 

the observed outflow is 260.120544 (m3/s) from the EMO-larcmin and the poorest fit is 

1.676854 (m3/s) from the REGNIE data sets. Similar to the BRNN setup, also the LSTM 

model exhibits immense sensitivity to the different meteorological inputs and our LSTM 

implementation shows very volatile results for changing meteorological inputs, as the oth­

er model's settings remain identical across different setups. 

Finally, table lists the observed and simulated outflow by the GR6J model for 

multiple data sets for the flood peak of July 2021. The results show that the model's 
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Table 3.5: Results from the L S T M model based on four different data sets (ERA5-Land, 
EMO-larcmin, E-OBS, and REGNIE) for the flood peak of July 14 to 16, 2021 against 
observed discharge. A l l measurements are in cubic meters per second(m3/s). 

data set Simulated Q 
ER A5-Land 5.873678 
EMO-larcmin 260.120544 
REGNIE 1.676854 
E-OBS 1.800271 
Observed Q 465.3125 

simulated outflow captured a flood signal for all meteorological inputs from July 14 to 16. 

The ERA5-Land data set best fits the observed outflow at 271.114514 (m3/s), while the 

E-OBS data set provides the poorest fit at 144.777877 (m3/s). Despite the fact that the 

absolute magnitude of the flood peak was not captured, all four meteorological products 

are capable of displaying an exceptional flood event, which was never simulated in the 

part. It demonstrates that the hydrological model produces reliable and robust simulations 

in comparison to the other two data-driven methods. 

Table 3.6: The results of the GR6J model based on different meteorological data (ERA5-
Land, EMO-larcmin, E-OBS, and REGNIE) for the flood peak of July 14 to 16, 2021 
against observed discharge. A l l measurements are in cubic meters per second. (m3/s). 

data set Simulated Q 
ER A5-Land 271.114514 
EMO-larcmin 231.803866 
REGNIE 203.855522 
E-OBS 144.777877 
Observed Q 465.3125 

It is important to note that high-flow events, or floods, are typically associated with 

the winter and early spring seasons, as shown by climatology hydrographs in Figure |2.6|. 

However, the flood event that transpired during the summer of 2021 was anomalous, hap­

pening during a period when water flows are generally low. This anomaly may have 

contributed to the models' failure to predict the flood's peak accurately. Additionally, the 

recent study by |Kreienkamp et al.| Q2021P revealed that the floods in Ahr were caused by 

a high-intensity precipitation event that exceeded the soil's water-holding capacity, result­

ing in flash floods. This underscores the fact that extreme precipitation is not the sole 

cause of flooding, as wet soil from previous rainfall may also have played a role in the 
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floods. These factors are not fully incorporated into models, potentially contributing to 

the models' failure to anticipate peak flow accurately. 

Furthermore, Kreienkamp et al. (2021) noted robust evidence supporting the idea that 

global warming makes the atmosphere more humid, leading to more intense rainfall. How­

ever, other atmospheric and physical processes may alter this relationship. For example, 

heat release during larger-scale precipitation events may result in even more extreme rain­

fall events. On more minor scales, atmospheric stability and circulation changes may 

cause the relationship between humidity and extreme precipitation to be twice as strong as 

expected. Consequently, rising temperatures may lead to changes in rainfall patterns that 

make it challenging to detect trends in rare and extreme events like heavy precipitation, 

making it difficult for models to predict peak flow accurately. 

3.5 Evaluation Of The Modeling Results For The Flood Peak Of July 
2021 (As Training Period) 

To gain a better understanding of the July flood event and the performance of the models, 

all three types of models (BRNN, LSTM, and GR6J) were calibrated specifically to the 

year 2021. (i.e., the training/calibration period was set from 01.01.2021 to 30.09.2021) 

with the available data (precipitation and temperature) from four different data sets (E-

OBS, REGNIE, EMO-larcmin, and ERA5-Land). This is done to test, what the ability of 

the model would be if all data would be known prior to the model establishment. These 

outcomes are shown in figure |3.8[ It depicts a summary of the calibration results from 

three different models (BRNN, LSTM, and GR6J) for four different meteorological data 

sets in 2021. The top four plots show the results of the BRNN model, which could capture 

the flood peak for ERA5-Land and EMO-larcmin. The second four plots in the middle 

show the results of the L S T M model, which also performed perfectly for the ERA5-Land 

and EMO-larcmin by capturing the flood apex. The last four plots at the bottom show 

the GR6J model results, which were satisfactory in estimating flood peaks for all data 

sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE). The findings of the models in 

figure display that all three models for ERA5-Land and EMO-larcmin could precisely 

catch the flood peak, whereas for E-OBS and REGNIE flood apex is captured by the GR6J. 
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In other words, between data sets, ERA5-Land and EMO-larcmin had the best model 

adaptation, and the greatest model performance was for GR6J, which could capture the 

flood peak for all different data sets (ERA5-Land, EMO-larcmin, E-OBS, and REGNIE). 

Overall, the findings are improved, and even if the models for specific meteorological data 

could not capture the flood peak, they did spot the signals of an outlier. Note that after 

detailed scrutiny, we discovered that the high-intensity rainfall data from EMO-larcmin 

was recorded for one day after the flood event (due to a timing error in the provided 

netCDF files), so the data based on EMO-larcmin were shifted back one day to achieve a 

more accurate result and improve the models' performance. 
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Figure 3.8: Hydro-graph of calibration results for BRNN (top), L S T M (middle), and GR6J 
(bottom) in 2021 for four meteorological da¥a (ERA5-Land, EMO-larcmin, E-OBS, and 
REGNIE). 



40 



Chapter 4 

Conclusion And Future Work 

The events in western Germany in July 2021 called into question our current models' abil­

ity to accurately predict the severity of the floods. In this study, hydrological (GR6J) and 

two data-driven (BRNN and LSTM) models were applied to replicate the daily flows of 

the Ahr river from 1992 to 2021, taking a variety of input data into account. After vali­

dation of the simulated series, this study evaluates the models' performance in estimating 

the flood peak in July 2021 for the Ahr catchment in Germany. The key findings are as 

follows: 

1. Data-driven models are extremely sensitive to changing meteorological inputs and 

produce highly unstable results, particularly if they are not trained on high daily 

accumulations and exceptional flood peaks. 

2. Training data-driven models on data with remarkable flood peaks and high daily 

accumulation values can improve the accuracy of capturing flood signals and, in 

some cases, the flood peak. 

3. In terms of individual values, there is no significant difference between the BRNN-

and LSTM-simulated daily runoffs, especially when the models were calibrated to 

the year 2021 as the training period. 

4. Changes in meteorological inputs have little effect on the GR6J model. As a result, 

it could capture flood signals in all cases, although the maximum flood peak was 

slightly underestimated in all cases. 

5. Training the GR6J with data that included significantly high accumulation values and 



a notable flood peak improved the model even further, and as a result, the model was 

capable of predicting the flood peak for all different input data. 

6. The GR6J results outperform the BRNN and L S T M setup simulations. Despite the 

fact that the GR6J model has a fixed model structure and only six calibration param­

eters, its performance is more reliable than the BRNN and L S T M models' flexible 

model structures. 

It's worth noting that the BRNN and L S T M models used in our study were built up­

on models established by Nasreenetal. (2022) where the temporal resolution was annual 

time scale. However, it is important to recognize that other configurations and hyper-

parameters may exist that could potentially improve the performance of these models for 

our task. Nonetheless, because the primary goal of our thesis was to compare the perfor­

mance of machine learning models with a hydrological model, we did not pursue further 

research into the BRNN and L S T M model configurations. In the future, it may be worth­

while to investigate additional model architectures and hyperparameters to determine the 

best configuration for our task. 

Another possibility to further enhance this work is to force the hydrological model 

with the real meteorological forecast, instead of using observation-based data. While the 

observation-based type of meteorological data was appropriate for our research question 

and provided us with useful insights into the performance of the models, it is worth con­

sidering the potential benefits of using forecasted meteorological data in future research. 

As a result, it may be worthwhile to run our models with forecasted data in future studies 

to see if this approach produces better results and quantify the ability of these models to 

be used for early warning systems. This has the potential to provide new insights into the 

performance of different models under different conditions, as well as help us refine our 

understanding of the problem at hand. 

Code Availability Statement 

The entire source code used in our study is available on the GitHub repository h t t p s : 
/ / g i t h u b . com/RonakRah/final-Thesis, and it can be obtained upon a request 

via Email: Ronakrahmati25@gmail.com 
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