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Abstract 
Prom an early age, infants show an innate ability to infer linguistic structures from 

the speech signal long before they learn to read and write. In contrast, modern speech 
recognition systems require large collections of transcribed data to achieve a low error rate. 
The relatively recent field of Unsupervised Speech Learning has been dedicated to endow 
machines with a similar ability. As a part of this ongoing effort, this thesis focuses on the 
problem of discovering a set of acoustic units from a language given untranscribed audio 
recordings. Particularly, we explore the potential of Bayesian inference to address this 
problem. 

First, we revisit the state-of-the-art non-parametric Bayesian model for the task of acous­
tic unit discovery and derive a fast and efficient Variational Bayes inference algorithm. Our 
approach relies on the stick-breaking construction of the Dirichlet Process which allows 
expressing the model as a Hidden Markov Model-based phone-loop. Wi th this model and a 
suitable mean-field approximation of the variational posterior, the inference is made with an 
efficient iterative algorithm similar to the Expectation-Maximization scheme. Experiments 
show that this approach performs a better clustering than the original model while being 
orders of magnitude faster. 

Secondly, we address the problem of defining a meaningful a priori distribution over 
the potential acoustic units. To do so, we introduce the Generalized Subspace Model, a 
theoretical framework that allows defining distributions over low-dimensional manifolds 
in high-dimensional parameter space. Using this tool, we learn a phonetic subspace— 
a continuum of phone embeddings—from several languages with transcribed recordings. 
Then, this phonetic subspace is used to constrain our system to discover acoustic units that 
are similar to phones from other languages. Experimental results show that this approach 
significantly improves the clustering quality as well as the segmentation accuracy of the 
acoustic unit discovery system. 

Finally, we enhance our acoustic units discovery model by using a Hierarchical Dirichlet 
Process prior instead of the simple Dirichlet Process. By doing so, we introduce a Bayesian 
bigram phonotactic language model to the acoustic unit discovery system. This approach 
captures more accurately the phonetic structure of the target language and consequently 
helps the clustering of the speech signal. Also, to fully exploit the benefits of the phonotactic 
language model, we derive a modified Variational Bayes algorithm that can balance the 
preponderance of the role of the acoustic and language model during inference. 



Abstrakt 
Děti mají již od útlého věku vrozenou schopnost vyvozovat jazykové znalosti z mluvené 

řeči - dlouho předtím, než se naučí číst a psát. Moderní systémy pro rozpoznávání řeči 
oproti tomu potřebují k dosažení nízké chybovosti značná množství přepsaných řečových 
dat. Teprve nedávno založená vědecká oblast "učení řeči bez supervize" se věnuje přenosu 
popsaných lidských schopností do strojového učení. V rámci této oblasti se naše práce 
zaměřuje na problém určení sady akustických jednotek z jazyka, kde jsou k disposici pouze 
nepřepsané zvukové nahrávky. Pro řešení tohoto problému zkoumáme zejména potenciál 
bayesovské inference. 

V práci nejprve pro úlohu určování akustických jednotek revidujeme využití state-of-
the-art neparametrického bayesovského modelu, pro který jsme odvodili rychlý a efek­
tivní algoritmus variační bayesovské inference. Náš přístup se opírá o konstrukci Dirichle-
tova procesu pomocí "lámání hůlky" (stick breaking) umožňující vyjádření modelu jako 
fonémové smyčky založené na skrytém Markovově modelu. S tímto modelem a vhod­
nou středopolní (mean-field) aproximací variační posteriorní pravděpodobnosti je infer­
ence realizována pomocí efektivního iteračního algoritmu, podobného známému schématu 
Expectation-Maximization (EM). Experimenty ukazují, že tento přístup zajišťuje lepší 
shlukování než původní model, přičemž je řádově rychlejší. 

Druhým přínosem práce je řešení problému definice smysluplného apriorního rozdělení na 
potenciální akustické jednotky. Za t ímto účelem představujeme zobecněný pod-prostorový 
model (Generalized Subspace Model) - teoretický rámec umožňující definovat pravděpodob­
nostní rozdělení v nízkodimenzionálních nadplochách (manifoldech) ve vysokorozměrném 
prostoru parametrů. Pomocí tohoto nástroje učíme fonetický podprostor — kontinuum vek­
torových reprezentací (embeddingů) fonémů — z několika jazyků s přepsanými nahrávkami. 
Pak je tento fonetický podprostor použit k omezení našeho systému tak, aby určené aku­
stické jednotky byly podobné fonémům z ostatních jazyků. Experimentální výsledky ukazují, 
že tento přístup významně zlepšuje kvalitu shlukování i přesnost segmentace systému pro 
určování akustických jednotek. 

3 



Keywords 
Unsupervised Speech Learning, Acoustic Unit Discovery, Bayesian inference, Generalized 
Subspace Model. 

Klíčová slova 
Učení řeči bez supervize, určování akustických jednotek, bayesovská inference, zobecněný 
pod-prostorový model. 

Reference 
O N D E L , Lucas. Discovering Acoustic Units from Speech: 
a Bayesian Approach. Brno, 2020. PhD thesis. Brno University of Technology, Faculty of 
Information Technology. Supervisor Lukas Bürget 

4 



Discovering Acoustic Units from Speech: 
a Bayesian Approach 

Declaration 
Hereby I declare that this doctoral thesis was prepared as an original author's work under 
the supervision of Dr. Lukas Burget. A l l the relevant information sources, which were used 
during preparation of this thesis, are properly cited and included in the list of references. 

Lucas Ondel 
August 4, 2020 

Acknowledgements 
A long time ago, in what seems to be another life, I decided to spend a few months in 

Brno, Czech Republic... Months have turned to years and, to my bewilderment, here I am, 
submitting a doctoral thesis. It is sometimes difficult to foresee the consequences of small 
decisions. 

First and foremost, I would like to express my sincere gratitude to Lukáš Burget who 
successfully tame me and led me all along my studies. I can only hope someday of reaching 
his skills and knowledge. I would like also to thanks Jan "Honza" Cernocký, the benevolent 
dictator of the Brno speech group, who has been a constant support during all these years. 

I would like also to deeply thanks my parents, Henri Ondel and Elisabeth Marinier who 
have raised the little devil I was and, probably, still am. M y two brothers, Quentin and 
Renaud, also deserve some credits for all the joys, adventures, and sometimes fights we had 
together... As Regis Loisel have written: "Perhaps the purpose of ageing is to remember 
we were once a child". 

These years in the Czech Republic wouldn't have been the same had I not met Michal 
and Jana Jurka. Their kindness and friendship are invaluable to me and I shall never forget 
the time I spend with them. Michal, Jana, words are lacking to express my feelings so let 
me just say: Já Vám děkuji. 

Finally, I would like to address a very special thanks to Jinyi Yang for her support and 
love during this long journey. Jinyi, my next adventure will be with you. 



Contents 

1 Introduction 2 
1.1 Motivations 2 
1.2 Related works 3 
1.3 Thesis Contributions 5 

2 Non-Parametric Bayesian Phone-Loop Model 7 
2.1 Bayesian formulation of the A U D problem 7 

2.1.1 Non-parametric Bayesian A U D 8 
2.2 Model 11 

2.2.1 Acoustic Model 11 
2.2.2 Base measure 13 
2.2.3 Generative Process 14 

2.3 Conclusion 16 

3 Generalized Subspace Model for Sound Representation 18 
3.1 Generalized Subspace Model 18 

3.1.1 Definition 19 
3.2 Dirichlet Process Subspace Hidden Markov Model 20 

3.2.1 Revisiting the base measure 20 
3.2.2 Approximating the phonetic subspace of the target language . . . . 22 

3.3 Conclusion 23 

4 Phonotactic Language Model 24 
4.1 Non-Parametric Bigram Phone-Loop Model 24 

4.1.1 Hierarchical Dirichlet Process 25 
4.2 Results 26 
4.3 Conclusion 26 

5 Conclusion 28 
5.1 Future work 28 

5.1.1 Acoustic Modeling 28 
5.1.2 Language Modeling 29 

5.2 Summary of contributions 30 

1 



Chapter 1 

Introduction 

Speech is a highly structured signal which serves as the primary mean of communication 
among humans. The easiness and apparent simplicity with which we extract information 
hide the profound complexity of the speech signal and the human hearing apparatus. In 
acoustically challenging conditions, human listeners effortlessly decode phones, syllables, 
words composing the message. Remarkably, infants learn to recognize speech long before 
to know to read or write (Dupoux, 2018). They learn from a very limited set of speakers 
(mostly their caregivers) and generalizes very well to other speakers and new acoustic 
conditions. On the contrary, computers use an extremely large amount of data with high 
diversity in terms of speakers and recording conditions to achieve similar performance to 
human listeners (Xiong et al., 2016; Stolcke and Droppo, 2017). The difference between 
humans and machines is particularly striking as the latter requires very strong supervision 
whereas humans can learn to hear and speak with little guidance. The field of Unsupervised 
Speech Learning (USL) (Glass, 2012; Goldwater and Johnson, 2007; Lee, 2014; Drexler, 
2016; Kamper et al., 2017a) has been dedicated to endow machines with a similar capability: 
to learn to recognize the speech signal with little or no supervision. This thesis is our 
contribution to the USL research field and proposes a Bayesian approach to discover a 
phonological system—the set of basic sounds called acoustic units used to communicate in 
a language—from a collection of unlabeled audio recordings. 

This introductory chapter is organized as follows: first we motivate the research interest 
of this thesis in section 1.1. Then, we survey related works in section 1.2 and summarize 
the contributions of this work in section 1.3. 

1.1 Motivations 

Automatic Speech Recognition (ASR) and related fields have made tremendous progress 
over the last 50 years. From the single-speaker digit recognition system proposed by Bell's 
lab (Davis et al., 1952) to recent large vocabulary continuous speech recognition systems 
(Sak et al., 2014, 2015; Sercu et al., 2016; B i et al., 2015; Qian et al., 2016; Y u et al., 
2016), the A S R technology has matured to the point where, in certain conditions, it shows 
similar performance to human listeners (Xiong et al., 2016; Stolcke and Droppo, 2017). 
The growth of computational resources paired with advanced machine learning techniques 
has yielded an almost continuous reduction of the error rates over time. Whereas early 
systems relied on expert-designed rules (David and Selfridge, 1962), the field has gradually 
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moved to statistical methods extracting empirical statistics from large collections of data. 
The amount of necessary expert knowledge has decreased to the extent that a state-of-
the-art system can be built with solely audio recordings and their corresponding textual 
transcriptions. However, the reduction of expert knowledge has been succeeded by a drastic 
increase in the amount of data. Nowadays, commercial systems rely on thousands of hours 
of transcribed data (Saon et al., 2015; Han et al., 2017; Xiong et al., 2018). These algorithms 
are so data-hungry that the applicability of A S R systems is limited to the very small set 
of languages in the world for which there is a sufficient amount of transcribed data and 
commercial interest. Out of the 7000 languages spoken worldwide (Eberhard, David M . , 
Gary F. Simons, and Charles D. Fennig, 2020), only about a hundred of them are covered 
by A S R with varying degrees of accuracy 1. This limitation is problematic as language 
diversity is diminishing worldwide at an alarming pace. Data-driven methods to discover 
a phonological system would be a strong help for on-field linguists to quickly document 
endangered languages. Moreover, for languages having low amount of transcribed data, 
the data-driven phonetic transcription of speech corpus can bootstrap a wide range of 
downstream applications such as word discovery (Lee et al., 2015), language identification 
(Shum et al., 2016), topic identification (Liu et al., 2017; Kesiraju et al., 2017) or text-to-
speech (Dunbar et al., 2019). 

As already mentioned, infants learn to recognize speech long before they learn to read 
and write (Dupoux, 2018). The inner details of this process remain largely unknown. 
Yet, a better understanding of the human speech learning mechanism would have a great 
impact on our knowledge of the brain and how to help children affected by neurological 
disorders. Investigation on this matter is complicated for ethical and practical reasons. It 
is impossible to constantly monitor children from their birth in a non-invasive way and 
designing experiments with toddlers is particularly difficult due to their limited attention 
and undeveloped verbal communication skills. A n unsupervised machine learning model 
simulating the acquisition of the phonology—and recognizing speech in general—would be 
a precious tool to psycho-linguists to better understand the cognitive processes underlying 
speech acquisition by humans. 

Finally, the recent success of machine learning in a wide range of areas has heightened 
the hope and the interest of our modern societies into building more intelligent systems. 
However, the traditional approach based on training a deep neural network to discriminate 
an input into a limited number of classes is very restrictive and severely narrows the range 
of applications. Indeed, the assumption that we can collect a sufficient amount of labeled 
data in all situations of interest is unrealistic. Conversely, the whole biosphere shows an 
incredible capacity to learn and to adapt from its sole sensory data. We believe that 
the development of unsupervised learning of such a complex signal as speech would be a 
significant breakthrough in direction of a true—or at least a practical—artificial intelligence. 

1.2 Related works 

The task of discovering a phonological system from only speech data amounts to solve three 
sub-problems: 

• decomposing the speech into variable-length segments 
x h t t p s : //c loud.google .com/speech-to-text/docs/languages 
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• clustering each of these segments, these clusters are often referred to as acoustic units 

• finding an appropriate model complexity, that is choosing the appropriate number of 
clusters necessary to describe the language. 

These three sub-tasks have been addressed, jointly or independently in numerous works. 
In the following, we attempt to give a general overview of the prior work on discovering 
acoustic units. 

Early approaches to discovering acoustic units have treated the segmentation and clus­
tering problem separately: (Cohen, 1981) proposes a dynamic programming based speech 
segmentation algorithm, (Lee et al., 1988) uses two distinct and independent statistical 
models to segment and cluster the segments respectively, (Cernocky, 1998) decompose the 
speech signal into quasi-stationary sub-signal before quantizing them, (Garcia and Gish, 
2006) uses segmental Gaussian Mixture Model to cluster variable-length sequence of fea­
tures. These approaches have all in common that the number of acoustic units, i.e. clusters, 
is a user-defined parameter and cannot be inferred from the data. 

Another line of work relies on the Segmental Dynamic Time Warping (S-DTW) algorithm 
(Park and Glass, 2005; Jansen et al., 2010; Jansen and Van Durme, 2011; Kamper et al., 
2017b) In these works, the S-DTW algorithm is used to spot re-occurring pattern in a 
signal. This approach differs from other works as it tries to directly identify words or 
syllables rather than phone-like units. The rationale is the following: since words last 
much longer than phones, they are more easily discovered. While this may seem to be a 
compelling idea, it has, nevertheless, a severe drawback: the number of words in a language 
being literally infinite, it is clear that we will never have enough data to discover all possible 
words. Moreover, clustering word-like units is more difficult as they have low occurrence 
frequency compared to phones. 

More recently, various Bayesian Generative Models (BGM) has been proposed to discover 
acoustic units (Lee and Glass, 2012; Ondel et al., 2016, 2017; Varadarajan et al., 2008; 
Kamper et al., 2016, 2017a; Kamper, 2017). These models improve over early approaches 
such as (Lee et al., 1988) by using a single model to segment and cluster speech together. 
Moreover, the use of non-parametric Bayesian modeling (Orbanz and Teh, 2010; Teh and 
Jordan, 2010) allows these models to also infer the number of acoustic units from the 
data itself. Whereas initial models were trained with Gibbs Sampling, the development of 
variational methods for non-parametric models (Blei, 2004; Blei et al., 2006) has enabled 
more efficient and scalable training approaches (Ondel et al., 2016). While B G M s have 
shown to be more efficient than D T W based methods (Ondel et al., 2018), they have 
relatively weak modeling power—compared to neural network based models—to preserve 
the tractability of the training. 

Neural networks based generative models have been successfully applied to learn a pow­
erful latent representation of speech (Dunbar et al.; Kamper et al., 2015; Hsu and Glass, 
2018; Hsu et al., 2017; Milde and Biemann, 2018; Chorowski et al., 2019). While most of 
these models are trained in an unsupervised fashion, other works replace the traditional 
transcription with a different modality such as images or videos (Holzenberger et al., 2019; 
Merkx et al., 2019; Harwath et al., 2016, 2018). While these models have generally more 
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modeling capability compared to B G M s , they cannot easily cluster the speech signal as the 
use of discrete latent variables precludes the back-propagation of gradients. Several works 
have been proposed to incorporate layers with discrete output either by relaxing discrete 
distributions (Jang et al., 2016; Maddison et al., 2017) or using some gradient approxima­
tion (van den Oord et al., 2017), nevertheless, clustering with neural network remains a 
difficult issue. Finally, recent works have shown than B G M s can be combined in a prin­
cipled way with neural networks (Johnson et al., 2016). This line of work is particularly 
interesting as it yields models that can learn jointly continuous and discrete hierarchical 
representations of the signals. 

1.3 Thesis Contributions 

This thesis has three major contributions; each of them is presented in a distinct chapter: 

Non-Parametric Bayesian Phone-Loop Model In chapter 2, we revisit a non-parametric 
Bayesian model for acoustic unit discovery proposed in (Lee and Glass, 2012). Whereas 
the authors originally used the Chinese Restaurant Process to sample from the distribution 
of the model's parameters, we propose to approximate this posterior distribution with the 
Variational Bayes framework. To achieve this, we describe the generative process of the 
model with the Sethuraman stick-breaking construction of the Dirichlet Process. Then, 
by choosing an adequately structured mean-field factorization of the variational posterior 
we show that the training of the model is amenable to a Variational Bayes Expectation-
Maximization (VB-EM) algorithm. This new inference scheme is beneficial as it consider­
ably speeds up the training and allows us to discover acoustic units from a larger amount 
of data. 

Generalized Subspace Model for Sound Representation Bayesian approaches for 
acoustic unit discovery rely on, among other components, a prior distribution over sounds. 
This prior distribution weighs which sounds are likely to be retained as acoustic units when 
clustering the speech. In general, this distribution is chosen to be non-informative, that is, 
it allows potentially any possible sounds to be an acoustic unit. In chapter 3, we propose to 
build a more refined prior which gives higher weights to a subset of sounds similar to phones 
from other languages. To do so, we introduce a new theoretical framework: the Generalized 
Subspace Model (GSM). The G S M allows learning low-dimensional embeddings representing 
probability distribution. In our case, we use the G S M in the following manner: 

• given a set of phonetically transcribed speech data (from a different language than 
the target one), we learn a Hidden Markov Model (HMM) model for each phone. 

• using the G S M framework we learn a subspace in the total parameter space of the 
H M M capturing the phonetic variability 

• finally, we set the prior distribution over sounds of the acoustic unit discovery model 
to be non-zero only on the subspace previously learned. 

The G S M is a principle way to incorporate prior information into a model. For the task of 
acoustic units discovery, we use the G S M to teach the model "what is a phone" (by using 
transcribed data from other languages) before clustering the speech in the target language. 
In addition to significantly improve the discovery of acoustic units, the G S M is very flexible 
and can be applied to a wide family of models. 
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Phonotactic Language Model Most of the Bayesian models for acoustic units dis­
covery rely on the Dirichlet Process prior. While mathematically convenient, this prior 
assumes the probability of sequence of acoustic units to be given by an unigram distri­
bution. In chapter 4, we propose to address this limitation by developing a model based 
on the Hierarchical Dirichlet Process (HDP). The H D P is a non-parametric prior which 
defines a probability over an infinite set of conditional distributions. We use a two-level 
H D P to build a non-parametric A U D model with bigram transition probabilites between 
acoustic units. By using Teh's stick-breaking construction of the HDP, we derive a V B - E M 
training algorithm almost identical to the one used for the Dirichlet Process based model. 
Additionally, to reduce the effect of the features; independence assumption of the H M M , 
we propose a corrected version of the model by introducing language and acoustic scaling 
factors. We show that these factors can be easily integrated in the V B - E M training and 
help to control the preponderance of the acoustic and language models for clustering speech 
data. 

Finally, for the sake of reproducibility, a practical implementation of all the models and 
experiments presented in this thesis can be found at: h t tps : / /g i thub.com/beer-asr / 
beer. 
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Chapter 2 

Non-Parametric Bayesian 
Phone-Loop Model 

This chapter describes a non-parametric Bayesian phone-loop model for A U D . It will serve 
as a basis for more refined models presented in chapters 3 and 4. It is derived from the 
combination of the Hidden Markov Model (HMM) (Rabiner, 1989) and non-parametric 
Bayesian methods (Ferguson, 1973; Rasmussen, 2000; Teh, 2010). Whereas the H M M 
has been used since the early days of statistical speech recognition (Jelinek, 1976), non-
parametric Bayesian methods were introduced more recently in the field of speech and 
language processing. Their capacity to assign probability to infinite sets has found impor­
tant applications in language modeling (Teh, 2006; Goldwater et al., 2006), unsupervised 
text segmentation (Mochihashi et al., 2009), and speaker diarization (Fox et al., 2011). 
Drawing inspiration from (Goldwater et al., 2009; Fox et al., 2011), the first version of 
the non-parametric phone-loop model for A U D was proposed in (Lee and Glass, 2012) and 
paved the way to a Bayesian approach to A U D . Our model revisit the model proposed 
(Lee and Glass, 2012) by replacing the Chinese Restaurant Process with the stick-breaking 
representation of the Dirichlet Process. This seemingly minor modification has, however, 
major consequences: 

• it allows the use of the Variational Bayes framework as inference instead of Gibbs 
Sampling. Therefore, it re-formulates the problem of A U D as an optimization of an 
objective function. 

• it allows to reinterpret the model as a phone-loop model making possible, by means of 
dynamic programming, to consider all possible sequences of units for a given sequence 
of speech features 

• it allows the parallelization of the training allowing use of bigger corpora. 

2.1 Bayesian formulation of the A U D problem 
We now give a formal definition of the A U D problem within the Bayesian framework. Let 
IE be a vector space, and r? £ IE a finite dimensional representation of sounds, i.e. 77 is 
a sound embedding. Given a sequence of N observations X = ( x i , . . . , xjy) of forming a 
speech utterance, we aim to find: 
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• A collection of P acoustic units H = (rjl,... ,rjP) best describing the observations. 
We denote the selected sounds acoustic units as they represent the basic elements of 
speech. For now, we assume P to be known. 

• The sequence of indices u = m,..., UL, L < N where u% £ { 1 , . . . , P} is the index of 
an acoustic unit. Thereafter, we will denote u as the label sequence. Note that, in 
practice, L is unknown. 

Using Bayes' rule, we can formulate the search of the best set of units H * and the best 
label sequence u* in probabilistic terms: 

H * , u * = a rgmaxp(H,u |X) (2.1) 
H , u 

/tt „ i x l p ( X | H , u ) p ( H , u )  
P ( H ' U | X ) " / H £ u p ( X | H , u ) p ( H , u ) d H <2"2) 

Because of the complexity of the task and the multiple way of describing a language phonet­
ically (phonetic features, phones, tri-phones, syllables, ...), the notion of „best solution" is 
somewhat tedious. We will therefore focus our attention on the quantity p (H, u | X ) rather 
than just the most likely solution given by H * and u*. 

The Bayesian statement of A U D given in (2.1) and (2.2) is reminiscent of the statistical 
formulation of A S R advocated by Frederick Jelinek (Jelinek, 1976). However, in the case of 
A U D , the inventory of units is unknown and needs to be inferred from the data along with 
the acoustic description of the units encoded in the embeddings rjl,rj2, • • • • Conversely, 
there is no need for these embeddings in A S R since the acoustic description of the words 
is assumed to be known or is unnecessary for the so-called end-to-end approach to A S R 
(Graves and Jaitly, 2014). 

2.1.1 Non-parametric Bayesian A U D 

Until now, we have assumed the number of acoustic units P to be fixed. Choosing a good 
value for P is, however, non-trivial as we don't know beforehand the type of acoustic units 
which will be chosen by the A U D algorithm. If the units represent phones, then, P might 
be between 50 or 100 depending on the language. On the other hand, if the units represent 
phones in context (di-phone, tri-phone, ...), we need to choose a much larger value for P 
(several thousand at least). We see that any choice of P implies some assumption and, 
consequently, will affect the type of acoustic units derived from the algorithm. Rather 
than making a hard decision, we prefer to let the A U D algorithm to choose an adequate 
P depending on the given data. Practically, this can be achieved by letting P —>• oo and 
adding a distribution V over the parameters of p(u, H ) 1 . This approach, referred to as 
non-parametric Bayesian (Orbanz and Teh, 2010), does not put any limit on the model 
complexity a priori. Rather, the model complexity is part of the inference process and, 
therefore, should be chosen in light of the data. In our case, we set V to be a Dirichlet 
Process (Orbanz and Teh, 2010). 

1Loosely speaking, the distribution V is a hyper-prior, i.e. a prior over the (parameters of the) prior 
distribution p(u, H) 
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The Dirichlet process, denoted D P ( 7 , Go), is a stochastic process for which each realiza­
tion G{rj) is a discrete probability distribution over infinitely many outcomes. Informally, 
it can be seen has an infinite-dimensional Dirichlet distribution. It is parameterized by 
a probability distribution Go(rj) called a base measure and a concentration parameter 7. 
The base measure defines the expectation of the Dirichlet process whereas the concentration 
controls the spread of the probability mass across the dimensions of the sampled probability 
distributions. When the concentration is close to 0, most of the probability mass is dis­
tributed in a few dimensions and conversely, when the concentration is high, the probability 
mass will be spread in many dimensions. 

Many Dirichlet process-based models use the Chinese restaurant process as inference 
scheme (Lee and Glass, 2012; Beal et al., 2002). The Chinese restaurant process is a 
sampling scheme that draws, in the limit, samples from the posterior distribution over the 
model's parameters marginalized over all possible distribution G sampled from a Dirichlet 
process (Rasmussen, 2000). Whereas this approach theoretically guarantees to draw sample 
from the exact posterior, it also has several issues: 

• the theoretical convergence is rarely met in practice as in many cases it involves 
infinitely long sampling time 

• samples are not independent of each other and therefore the training is not easily 
parallelizable 

These drawbacks make the Chinese restaurant process unadapted to speech techonologies 
which usually require large amounts of data. To address these issues, it is convenient 
to express the Dirichlet process in terms of the Sethuraman's stick-breaking construction 
(Sethuraman, 1994): 

1. Draw v; ~ ,8(1,7), i = { l , 2 , . . . } 

2. Draw r]i ~ G0, i = {1,2,...} 

3. tpi = Ui I15=iÍ1 - vi) 

4- G(V) = j:Zi^vÁV), 

where B is a 2-dimensional Dirichlet distribution usually called the Beta distribution. The 
samples from the base measure rjl,rj2,- - are referred to as the atoms of the sampled 
probability distribution G{rj). On one hand, this constructive definition of the Dirichlet 
process introduces the new latent variables v\, V2,... which are not needed when using the 
Chinese restaurant process. On the other hand, these new variables make possible to use 
Variational Bayes to approximate the posterior distribution of the model. The resulting 
inference algorithm is easily parallelizable and allows to process much larger collection of 
data. 
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(a) Stick-Breaking Process (b) Gamma Stick-Breaking Process 

Figure 2.1: Difference between the standard stick-breaking process with various concentra­
tion parameters and the stick-breaking process with a Gamma prior. The abscissa repre­
sents the indices of the portions of the stick and the ordinate represents the logarithm of 
these portions (i.e. the log-probabilities of the infinite mixture components). In Fig. 2.1a 
each line is a draw from the stick-breaking process with a specific concentration; there are 
10 draws for each concentration setting (1, 10, 100). In Fig. 2.1b each line is a draw from 
the stick-breaking process with concentration parameter sampled from the Gamma prior. 
The Gamma distribution was parameterized by ao = 1 (shape) and bo = 10 (rate). The 
Gamma prior increases the uncertainty of the stick-breaking and let the model choose an 
adequate value for the concentration 7 from the data. 

In the context of our A U D model, we use a Dirichlet process to construct the prior 
p(u, H) in the following way: 

L 

p(u,H) 
n=l p(u„|H) fe=l 

(2.3) 

(2.4) 

p(u|H) 
p(H) 

where L is the length of the sequence of labels u. Note that since we assume P —> 0 0 , the 
matrix of embeddings H = (772,772,...) has an infinite number of columns. It is important 
to understand the different roles played by the two terms in (2.4). On one hand, Go(r?) is 
a continuous density over the embedding space: it defines which embeddings are likely to 
be selected as acoustic units. On the other hand, G(rjUn) is a discrete distribution over an 
infinite set of atoms and it defines how frequently a unit occurs in speech. In other words, 
G is a (unigram) language model of the units. 

Even though the Dirichlet process assumes a potentially infinite number of classes, it 
may favour solution with small or large number of units depending on its concentration 
parameter 7. As can be observed from Figure 2.1a, the concentration parameter 7 strongly 
constrains samples from the Dirichlet process. This constraint can be relaxed by augmenting 
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the stick-breaking process with a Gamma prior over the concentration parameter 7 ~ 
G(ao, bo)2 leading to a modified stick-breaking process: 

1. Draw 7 ~ G(ao, bo) 

2. Draw V i ~ B(l,j), t = { l , 2 , . . . } 

3. ... 

As seen from Fig. 2.1b, the Gamma prior increases the variance of the standard stick-
breaking process. Therefore, this avoids the issue of choosing a specific concentration 
parameter as we can infer it from the data directly. Note that the inference is particularly 
simple as the Gamma distribution is conjugate to the stick-breaking process. 

2.2 Model 

The Bayesian formulation of the A U D problem given in section 2.1 does not specify a 
concrete model. More precisely, one needs to define the acoustic model p(X|H,u) and 
the base measure Go(rj) in order to estimate the posterior p(H,u|X). In this section, 
we describe both elements and connect them with the stick-breaking representation of the 
Dirichlet process completing the definition of the non-parametric Bayesian phone-loop A U D 
model. 

2.2.1 Acoustic Mode l 

We define the acoustic model assuming that, given a sequence of iV observations X = 
( x i , . . . , xjv) and a sequence of L units, the likelihood factorizes as: 

L L 

p(X|H,u) = l\p(XUl\H,Ul) = Hp(Xu'\Vui), (2.5) 
1=1 1=1 

where X"' is the sequence of observations associated to the Ith unit such that X = 
X " 1 , . . . , X U i . We assume this segmentation to be known even though this is not true 
in practice. This issue will naturally disappear when we reinterpret the full A U D model 
as a large H M M . Following (Lee and Glass, 2012), we set the likelihood p(X.Ul\r]u.) to be 
modeled by an H M M with S hidden states and G M M state's emission density with C 
components: 

p(Xu<K() = E E P&UL>cUl > *Ul\< > • • •' <> »n '•••,»Suf, S i ; 1 , . . . , Hs

uf) (2.6) 
sul cul 

Ni 

= E E ITpW.CKI.m:;'1,• • • , / 4 r c , K r \ • • • , K T c ) P « I K I - I ) m 
sul cul n=l 

where iV; is the length of the sequence of observations X"' and P(S^1\SQ1) = p(s\l) is the 
probability of the initial state. The parameters and the latent variables introduced in (2.6) 
correspond to the traditional parameterization of an H M M : 

• sUl = , . . . , ŝ y is the sequence of indices of the H M M states for acoustic unit u\ 

2We use the shape/rate parameterization of the Gamma distribution. 
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• c "I 

unit u\ 
'1 > • • • > °JV, is the sequence of indices of the mixture components for the acoustic 

• 7rL are the mixing weights of the G M M associated to the i th state of the H M M of 
the acoustic unit ui 

• fJLui is the mean of the j t h Normal component of the G M M associated to the i th state 
of the H M M of acoustic unit ui 

• is the covariance matrix of the j t h component of the G M M associated to the i th 
state of the H M M of acoustic unit ui 

Notice that we have not included any parameters of the transition probabilities l s n- i ) 
as it has been empirically observed that they play no significant role when modeling speech 
(Bourlard, 1996). Consequently, we assume the transition probabilities are fixed parameters 
such that the probability to go to any state given the current state is the same. 

We specify now the relation between the embedding rj of the acoustic unit with index 
ui and the corresponding H M M parameters. First, observe that the joint distribution of 

l rUl „Ul is a product of Normal and Categorical distributions and each of them is 
a member of the exponential family of distribution. Therefore we have: 

Y «l r
u l I o"! 

•"•n ' n Pra > • • • . 
P ( c « l < ? 

P ( x « v ^ ^ r

c " M C | < ) 

p ( c „ K ) = e x p { < T T ( C ) -

(2.8) 

(2.9) 

(2.10) 

where u>£?, T(c™1) and A(u^) are the natural parameters, the sufficient statistics and 
the log-normalizer of the Categorical distribution of the state with index s%. Similarly, 
#*™'c™, T ( x n ) and A(9^'Cn) are the natural parameters, the sufficient statistics and the log-
normalizer of the Normal distribution associated with state s™1 and mixture's component 
c^!. Note that to keep the notation uncluttered we write T(x) ,T(c) , A(LJ), A{9) instead 
of Tx(x), T c(c), ^4w(CJ), AQ{6). For both distributions, the natural parameters and the 
sufficient statistics can be derived from their respective definition: 

ui 

In 

In 

1 Z^fe^l 'ul,k 

i - E k — 1 ui ,k 

T(c, Ml s 

= 1] ' 

C - l ] 
(2.11) 

0 «1,2 i vec(S" r (x vec (x£x£ 
X « 

«1 Y U « T N > 
(2.12) 

where „vec" is the vectorization operation. Note that OJ is a (C — 1)-dimensional vector 
whereas 7r is a C-dimensional vector. This difference comes from the fact that the weights 
7Ti,TTC are constrained such that 0 < 7Tj < 1 and YlfLi 7Tj = 1. Finally, the log-normalizers 
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are defined as: 

A « ) = In ( 5 > x p { < T T ( C ) } 
Cn 

C - l 

= l n ( i + E e x p i < J ) 

fe=i 

ln( / exp{o^r

c»T(x«0}dx 

(2.13) 

(2.14) 

(2.15) 

= —0 m ^ e ^ ) - 1 ^ --ln\ 
D 

2 m a t f c c " ) | + - l n 2 7 r , (2.16) 

where „mat" is the inverse of the vectorization operator, that is it takes as input a D2-
dimensional vector and returns a D x D square matrix. We define the embedding rjU[ to be 
the concatenation of the natural parameters of the Normal and Categorical distributions 
of all S states of the H M M modeling the acoustic unit with index u\. Formally, rjUi can be 
seen as the „super-vector" of all the parameters of acoustic unit u\ and its layout is defined 
as: 

Vi Ill (2.17) 

where rfu is the concatenation of the natural parameters of the Normal and Categorical 
distributions for the i th state of the H M M modeling the acoustic unit with index ui. 

2.2.2 Base measure 

As discussed previously, the base measure is the distribution describing a priori which 
sounds (represented as embeddings) are likely to be retained as an acoustic unit. In our 
case, we have defined an embedding r/ to be the vector of natural parameters of an H M M . 
We set Go to be the conjugate prior of the conditional H M M likelihood: 

c 

s c 
e x p { ^ 0

T T K ) - A ( * 0 ) + J > o T T ( 0 ^ ) - A(tf 0 )}. 
3=1 

(2.18) 

(2.19) 
i=l 

Practically, this implies that the prior over the mixture weights 7r is Dirichlet distribution 
and the prior over mean vector /x and the (inverse) covariance matrix is a Normal-
Wishart distribution. (2.18) can be equivalently expressed as a prior over the standard 
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parameters as: 

s c 

i=i j=i 

pi**) = V(a0) 

p ( ^ , S ^ - 1 ) = AfW(m0, /?o, W 0 , UQ) 

(2.20) 

(2.21) 

(2.22) 

Where T> and J\fW are the Dirichlet and Normal-Wishart. This choice is convenient since, 
due to the conjugacy, it greatly simplifies the inference, however, it is difficult to control 
precisely which type of sounds the base measure will emphasize. This issue will be addressed 
in chapter 3. The natural parameters £ 0 , i?o ; the sufficient statistics T(ul), T(# l % ?) and the 
log-normalizing functions ^4(£ 0), A(&o) of the base measure GQ(TJ) can be derived from the 
definition of the Dirichlet and Normal-Wishart distributions: 

I V ) 

T(9i'j) 

«o,i - 1 

" o , c - i - 1 
. ( E f = i « o j ) - c . 

- A ^ 

c-i 
[inT^c + C) + ] T lnr(e 0,i + 1)) - lnr(£o,i + C) 

i=l 
/3 0m 0 

2 
-\vec(j3 0momJ' + W 0 " 

2 

In 5 

f31 / ("o + l)P £>(£>+!) 
7T 4 

D 

JB = / 3 0

2 | W 0 | - 2 2 

i / 0 + 1 - ^ A " 1 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
d=l 

To summarize, an acoustic unit with index u is modeled by an H M M with natural pa­
rameters rju. The prior probability over each acoustic unit embedding is the conjugate of 
the H M M likelihood conditioned on its latent variable (sn and cn). The relation between 
the H M M and the base measure is illustrated in Fig. 2.2. A l l together, the A U D model can 
be understood as a mixture of H M M with an infinite number of components. Intuitively, 
inference with such model amounts to cluster segments of the speech signal into temporal 
patterns. 

2.2.3 Generative Process 

We have introduced the different elements of the A U D model separately. We assemble them 
now to present the full generative process using the stick-breaking process and a H M M for 
each acoustic unit: 
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Figure 2.2: Model of an acoustic unit and its relation with the base measure. Each acoustic 
unit is parameterized by a vector of natural parameters r? corresponding to the concate­
nation of all the H M M states' parameters. The base measure, Go, is a density over the 
acoustic (natural) parameter space. Therefore, it defines a priori which sounds are likely 
to be selected as acoustic units. The topology of the H M M and the transition probabili­
ties are the same for each acoustic unit. The square nodes 0 and 4 are the non-emitting 
start and end states respectively. Here, we have represented the embedding space as a 
2-dimensional space (dimensions r/i and 772) but in practice, the embeddings live in a much 
higher dimensional space (several thousands of dimensions at least). 

1. Draw 7 ~ G(ao, bo) 

2. Draw ~ 73(1,7), i = { l , 2 , . 

3. Draw rji ~ Go, i = {1, 2 , . . . } 

4. V'i = ViUj^ii1 ~ vj) 

5. Draw a sequence of units u, Uj 

6. For each UJ in u 

(a) Draw a state path s = si, 
tion 

(b) for each state Sk in s: 

i . Draw a component 

i i . Draw a data point 

Note that 7r„*., 'C f c and S ^ . , c ' are obtained from the natural parameters rju. The 
graphical representation of the generative process is shown in Figure 2.3. The model is 
essentially composed of several layers of latent variables, each of them capturing some 
specific aspect of the speech signal. The first layer (c) quantizes the continuous features 
space x, the second layer, (s) captures the temporal dynamic of the signal and finally, the 
last layer (u) captures the phonetic information. Finally, despite the fact that the model 
has many parameters and latent variables, the whole generative process is fully controlled 
by the following hyper-parameters: 

• ao and 60: the parameters of the Gamma distribution control the range of likely values 
for the concentration of the Dirichlet process. 

••} 

..., S[ from the H M M transition probability distribu-

~ C(7r*fe) from the state's mixture weights 

- A / X / i f N ^ f * ) 
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Acoustic unit 
labels 

H M M states 

G M M compo­
nents 

Observations 

Figure 2.3: Bayesian network of the non-parametric acoustic unit clustering model for a 
given segmentation. a\ refers to the variable a associated to the i th segment of the j t h unit. 
I is the duration of the first unit u\. Note that in practice the segmentation is unknown 
and the inference needs to evaluate all possible segmentations. 

• £g (or equivalently CXQ): the parameters of the prior over the G M M mixing weights 

• $o (or equivalently /?o, mo, W o , VQ): the parameters of the prior over the mean and 
precision matrix of each mixture component of the G M M s . 

2.3 Conclusion 

In this chapter, we have revisited the model proposed in (Lee and Glass, 2012) by using the 
Stick-Breaking construction of the Dirichlet process. Consequently, an approximation of the 
posterior distribution of the model's parameters can be derived using the Variational Bayes. 
This new algorithm for A U D achieves a better clustering, measured with the NMI , while 
being much faster and scalable to large database. The model has three main components: 

1. the per-unit likelihood model, which, in our case, is an H M M 

2. the stick-breaking process, which is a prior over unigram phonotactic language model 

3. the base measure which is a prior over the sounds likely to be chosen as acoustic unit. 

A first difficulty is how to define a consistent base measure. Indeed, choosing the right 
distribution is a non-trivial matter as the support of the base measure is defined over 
a hardly interpretable high-dimensional space. So far, we have bypassed this problem by 
using a vague prior which, roughly, allows any sound to be a candidate acoustic unit. While 
mathematically convenient, this solution is highly unsatisfactory as restricting support of 
the base measure to a small set of sounds would greatly reduce the searched space and 
therefore help the algorithm to find better units. This problem will be addressed in chapter 
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3, where we used Generalized Subspace Model to learn a low-dimensional representation of 
sounds from several languages to help the A U D task. 

A second weakness is the assumption of the unigram phonotactic language model. As 
the n-gram and other sophisticated language models have proven to be essential to achieve 
accurate ASR, it is reasonable to believe that a more refined language model should be also 
beneficial for the A U D task. In chapter 4, we extend the non-parametric phone-loop model 
to incorporate a bigram phonotactic language model using Hierarchical Dirichlet Process. 

Finally, the A U D model can also be improved by replacing the H M M by a more refined 
acoustic model. While we do not explore any other acoustic unit model in this work, an 
enhanced version of the non-parametric phone-loop based on Variational Auto-Encoder was 
proposed in (Ebbers et al., 2017; Glarner et al., 2018). 
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Chapter 3 

Generalized Subspace Model 
for Sound Representation 

In chapter 2, we have described a non-parametric phone-loop model to discover acoustic 
units from speech. This model represents each acoustic unit as a vector of parameters of 
an H M M . This approach suffers from the fact that the H M M parameter space is high-
dimensional—more than a thousand dimensions for common settings—whereas the set of 
possible acoustic units for a given language is confined to a "small" region of this space. 
Therefore, a natural question is how we can reformulate our A U D model such that the search 
space of the acoustic units is restrained to the subset of likely acoustic unit candidates. In 
this chapter, we develop the theory and the tools to address this problem in a principled 
way. In section 3.1, we introduce the concept of Generalized Subspace Model (GSM): a 
theoretical framework to embed probabilistic models in arbitrary vector space. Equipped 
with this new concept, we build the Subspace Hidden Markov Model (SHMM) to represent 
phones in a low-dimensional space. Finally, in section 3.2, we integrate the S H M M into the 
non-parametric phone-loop model for acoustic unit discovery. Our integration is done in 
two steps: first, we use the S H M M to learn the subspace of phone embeddings from several 
languages. Loosely speaking, the model is learning what is a phone. In a second time the 
A U D system will cluster the speech signal as described in chapter 2 but restraining the 
search to acoustic unit embeddings living in the subspace of phone learned at the previous 
step. 

3.1 Generalized Subspace Model 

A large part of the machine learning field is dedicated to representation of high-dimensional 
data points using low-dimensional embeddings. The projection from high to low-dimensional 
space ideally removes unwanted variability and allows for easy manipulation of the data. 
Techniques to learn this mapping range from simple linear projections such as Principal 
Component Analysis or Linear Discriminant Analysis (Bishop, 2006) to complex non-linear 
functions such as t-distributed Stochastic Neighbor Embedding (t-SNE) (Maaten and Hin-
ton, 2008). These techniques have also been generalized to build powerful density estimators 
(Tipping and Bishop, 1999; Prince and Elder, 2007; Ioffe, 2006; Kingma and Welling, 2013; 
Rezende and Mohamed, 2015). Yet, all these methods have in common that each data point 
has its own low-dimensional embedding, or put in another way, they project the data onto 
a low-dimensional manifold. In some cases, we would like the embeddings to represent not 
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the data itself but rather an ensemble of observations modeled by a density. For instance, 
one may want to have an embedding to represent a person identity whereas the observations 
are a set of images of this person. In another example, closer to our application, we would 
like to learn an embedding representing a phone from several utterances of this particular 
phone. In this setting, the task is not to learn a manifold in the data space directly, rather, 
each group of observations is represented by a probabilistic model and we aim to represent 
the set of models in a low-dimensional space. In speech, joint factor analysis (Kenny et al., 
2007), i-vector (Dehak et al., 2009) and Subspace Gaussian Mixture Model (SGMM) (Povey 
et al., 2011) are typical examples of such model applied to speaker identification and A S R 
respectively. 

Learning a subspace of probabilistic models is, however, quite complex. For instance, 
an i-vector model only deals with the mean parameters of the mixture components of a 
G M M to keep a closed form solution of the update equations. On the other hand, the 
S G M M incorporates the mixture's weights in the subspace but needs to introduce some 
approximation for the training. Furthermore, subspace models trained in the maximum 
likelihood fashion are prone to overfit which can significantly hamper the quality of the 
embeddings. In the following of this section, we introduce the Generalized Subspace Model 
(GSM) which: 

• unifies traditional subspace models into a single framework 

• is robust against overfitting by having a prior over the susbpace's parameters. 

Finally, we describe a stochastic Variational Bayes training which can be applied to any 
possible subspace model. 

3.1.1 Definition 

Let's have K sets of observations X i , . . . , where the i th set has iVj observations: Xj = 
XJI , . . . , XjjVj- Each set is associated to a class (e.g. phone) and has a specific distribution 
parameterized by vector hj. We assume that the likelihood of a set of observations is given 
by a member of the exponential family of distributions, eventually conditioned by some 
latent variable: 

piXilZi, Vi) = exp{r ? 7T(X i , Zi) - A(Vi, Zt) + S(Xi, Zi)}, (3.1) 

where r]i £ % is the P-dimensional vector of natural parameters of the i th model, Zj is a 
set of latent variables specific to the model 1 and the functions T, A and B are, respectively, 
the sufficient statistics, the log-normalizer and the base measure2 specific to the likelihood 
model. Then, the generative process of the G S M is: 

1. W , b ~ p ( W , b ) 

2. hi~AA(0 , I ) Vi G {1,2,. ..,K} 

3. V i = f(WThi + b) 

1For some models, this set can be empty. 
2For members of the exponential family, the base measure is the part of the normalization constant 

that does not depend on the natural parameters and should not be confused with the base measure of the 
Dirichlet Process. 
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Figure 3.1: Graphical model of the Generalized Subspace Model. Dashed edges pointing to 
a square node represent a deterministic relation. 

4. Z i ~ p ( Z ) 

5. X i ~ p ( X | Z i , W , b , h i ) , 

where: 

• W e R P x D and b e K p are the subspace parameters 

• hi £ M>D is the embedding vector of a model 

• / : M p —>• % is a differentiable function mapping a real vector into the natural 
parameter space of the likelihood model. 

Note that the set of natural parameters does not necessarily lie in M p . For instance, the 
set of natural parameters for the Normal distribution, which is defined by all possible pairs 
of real vector and positive definite matrix, is only a subset of M p . The graphical model 
describing the generative process is shown in Fig 3.1. 

3.2 Dirichlet Process Subspace Hidden Markov Mode l 

We have defined the S H M M which, among other benefits, allows us to extract a low-
dimensional subspace representing the phonetic continuum of a language. Now, we show 
how the S H M M and the Dirichlet Process can be combined to form the Dirichlet Process 
Subspace Hidden Markov Model (DP-SHMM). This new model is very similar to the phone-
loop A U D model defined in section 2.2, however, by incorporating the phonetic subspace, 
it allows for significantly more accurate clustering of the acoustic units. 

3.2.1 Revisiting the base measure 

The base measure of the non-parametric phone-loop model defines a priori which sound 
is likely to be an acoustic unit. Practically, the base measure is a multivariate density 
over a H M M parameter vector 77 denoted GQ{T}). However, as the parameter space is high-
dimensional and hardly interpretable, we have so far set the base measure to be a 11 vague 
prior" which allows virtually any sound to become an acoustic unit. This choice has negative 
consequences as it allows the model to discover units that may not be relevant, for instance, 
the model may learn strongly speaker-dependent units. This problem can be resolved if we 
assume that we are given the phonetic subspace of the target language. Remember that the 
phonetic subspace describe a region in the total parameter space containing the phones of 
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the language. Wi th this piece of information, the A U D problem is easier as we only have to 
search for the low-dimensional embeddings hi, I12,... in the phonetic subspace rather than 
the high-dimensional embeddings rj1,rj2,... in the full parameter space. This approach 
can be implemented by setting the base measure over the low-dimensional embeddings: 
Go = p(h). By doing so, we limit the prior over the acoustic units to the set of H M M 
parameters that are phonetically relevant. The modified base measure of the Dirichlet 
Process of the A U D model is depicted in Fig. 3.2. 

Constraining the base measure also changes the generative process which can now be 
described in the following way: 

1. draw 7 ~ G(ao, bo) 

2. draw vt ~ B(l, 7), i = {1 ,2 , . . . } 

3. draw hj ~ Go i € {1 ,2 , . . . } 

4. map the unit embedding to the H M M parameter space r]i = / ( W T h j + b) 

6. Draw a sequence of units u, Uj ~ C(ip) 

7. For each Uj in u 

(a) Draw a state path s = s\,..., si from the H M M transition probability distribu­
tion 

(b) for each state s& in s: 

i . Draw a component c& ~ C(7r**) from the state's mixture weights 

i i . Draw a data point xfc ~ Af(^ik/Ck,Yis

u

k'Ck) 

From step 5., the generative process is the same as the original A U D model described in 
section 2.2.3 and the function / is the S H M M mapping function. We call this new model 
the Dirichlet Process Hidden Markov Model (DP-SHMM) and its graphical representation 
is shown in Fig. 3.3. Interestingly, the base measure is not a proper density function in 

5 

Figure 3.2: Base measure of the S H M M Dirichlet Process Mixture model. 
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Figure 3.3: Bayesian network of the Dirichlet Process Subspace Hidden Markov Model (DP-
S H M M ) . The atoms of the Dirichlet process are constrained to live in a low-dimensional 
subspace parameterized by W and b. 

the rj space, however, a sample from the Dirichlet Process, G ~ Go, is indeed a discrete 
probability distribution over the atoms h i , I12,...: 

G(h) = f > i M h ) . (3.2) 

The training of the D P - S H M M is the same as the S H M M with the two following modi­
fications: 

• the V B E-step is replaced with the one of the standard A U D phone-loop model 

• during the V B M-step, the parameters of the susbpace W and b are assumed to be 
known, therefore, we only optimize the variational posteriors (/(hi), q(h.2), • • • 

3.2.2 Approximating the phonetic subspace of the target language 

We have assumed that we had at our disposal the phonetic subspace of the language on 
which we would like to discover the acoustic units. Of course, this is not true in practice since 
to learn a phonetic subspace with an S H M M , one needs to have phonetic transcriptions of 
the audio recordings. Even though the actual phonetic subspace is unavailable, we can still 
approximate it using other languages. For instance, consider we wish to discover acoustic 
units from the Czech language. Czech has similar phonetics as other Slavic languages plus 
some extra typical phones such as the one denoted by the grapheme / f / . In practice, / f / is 
well approximated by the combination of / r / and / z / and, therefore, any phonetic subspace 
learned on a language having both / r / and / z / would help to discover the / f / sound. From 
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a more general perspective, despite the fact that each language has its own unique set 
of phones, there is a large overlap among languages of the same family. Consequently, a 
phonetic subspace from a given language can still be used to help discovering units from 
another language. Furthermore, we can also build a „universal" phonetic subspace by 
learning the subspace on several languages together. This approach allows the subspace 
to cover a broader phonetic range, giving more flexibility to the A U D model to fit typical 
phones of the target language. 

3.3 Conclusion 

In chapter 2, we have introduced non-parametric HMM-based model to discover acoustic 
units from unlabeled audio recordings. This model depends on a base measure: a probabil­
ity density function setting a priori which sound is likely to be an acoustic unit candidate. 
A common setting for this base measure is a vague prior letting, therefore, all the sounds as 
possible acoustic units. In this chapter, we have proposed a new method to design a more 
accurate base measure. First, we have introduced the Generalized Subspace Model (GSM), 
a unified framework to derive embeddings representing probabilistic models. Then, we have 
applied the G S M to a set of H M M s representing the phones of a language in order to learn a 
phonetic subspace: a smooth low-dimensional manifold in the H M M parameters space cap­
turing the phonetic variability of the language. Finally, we used this phonetic subspace to 
constrain the base measure of the A U D phone-loop model giving rise to a new A U D model: 
the Dirichlet Process Subspace Hidden Markov Model (DP-SHMM). This new model re­
quires labeled data from languages (other than the target one) to estimate a „universal 
phonetic subspace". Then, the new A U D model discovers acoustic units constrained to 
live in this phonetic subspace. Experimental results have shown that this approach pro­
vides a significant gain in terms of both N M I and F-score. Also, we have observed that 
our „universal phonetic subspace" is by far not optimal compared to the „true" phonetic 
subspace of the target language. A better approximation of the phonetic subspace remains 
an open problem and could lead to significant improvement on the A U D task. 

In addition to defining a better base measure, this approach also proposes a formal way 
to include knowledge extracted form other languages. This can be viewed from a Bayesian 
perspective where the learned phonetic subspace is used to define an „educated prior". 
Importantly, this approach is not limited to the H M M model. Indeed, since it relies on the 
newly introduced G S M framework, it can be applied to a vast collection of models and to 
other tasks than A U D . 

As a concluding remark, note that the final acoustic unit embeddings h i , I12,... live in 
the same space as the phone embeddings of the languages used to estimate the phonetic 
subspace. From this observation, it is relatively straightforward to interpret the derived 
acoustic units by comparing their distance to other known phones. For instance, if an 
acoustic unit emebedding lives close to several nasal phones, it is reasonable to believe that 
this unit is also a nasal sounds itself. By repeating this process for each acoustic unit, one 
could obtain a data-driven human-interpretable phone set. 
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Chapter 4 

Phonotactic Language Model 

As established in chapter 2, our Bayesian formulation of the A U D problem relies upon 
three major components: the acoustic unit model, the base measure and the prior over the 
acoustic unit language model (the phonotactic language model). The designs of the two 
first elements—the acoustic unit model and the base measure—were addressed in chapter 
2 and chapter 3 respectively. We now focus our attention on the prior over the phonotactic 
language model. So far, we have used the Dirichlet Process Mixture Model as the back-bone 
of our A U D model. Implicitly, this assumes that each unit label is independent of the other 
labels from the sequence. This assumption is, however, very unrealistic as each language 
has very specific phonotactic constraints. To overcome this issue, we revisit the phone-loop 
A U D to incorporate a bigram phonotactic language model to capture these phonotactic 
constraints. In section 4.1, we define this new model through the use of a hierarchical non-
parametric prior: the Hierarchical Dirichlet Process. We propose a „corrected" version of 
the bigram A U D model to control how the acoustic and language model affects the learning. 

4.1 Non-Parametric Bigram Phone-Loop Model 
Our Bayesian approach to the A U D task depends on the definition of the prior distribution 
p(u, H) where u = ui,..., UL is a sequence of L labels and H = (rjl,rj2, • • •) is a countably 
infinite set of acoustic unit embeddings. Recall from chapter 2 that setting V to be a 
Dirichlet Process leads to the following construction of the prior: 

n Qo(vk 
n=l 

p(u„|H) •fc=l 

(4.1) 

(4.2) 

p(u|H) 
P(H) 

where VP (7, Go) is a Dirichlet Process with concentration 7 and base measure Go- Impor­
tantly, we assume Go to be a continuous density function. The sampled measure G{rj) is a 
discrete distribution given by: 

(4.3) 
i=l 

where tpi is defined by step 3 of the stick-breaking process described in section 2.1.1. From 
(4.2), we see that, regardless of the sampled measure G, the probability of the label sequence 
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is always given by an unigram language model. To overcome this limitation, one has to 
consider a non-parametric prior which can sample more complex probability distributions. 
In this work, we shall focus on the Hierarchical Dirichlet Process (HDP) that will allow us 
to construct a prior over bigram phonotactic language model. The H D P was introduced in 
(Teh et al., 2004) and applied to language modeling and word segmentation in (Goldwater 
et al., 2009). These works can be seen as the non-parametric extensions of the Hierarchical 
Dirichlet distribution for language model introduced in (MacKay and Peto, 1995). Note 
that the H D P is not the only choice of non-parametric prior able to capture phonotactic 
constraints, for instance, the Hierarchical Pitman-Yor Process (Teh, 2006) is another non-
parametric prior best suited for long tail distributions. 

4.1.1 Hierarchical Dirichlet Process 

A H D P of order M is a sequence of M Dirichlet Processes where the base measure of the 
nth process is given by a sample of the n — 1 process in the sequence. Formally, it is defined 
as: 

G2~W(ji,GL) 

GM ~ W ( T M , GM-I) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The H D P is fully defined by the M concentration parameters 7 1 , . . . , 7 M and the initial base 
measure Go(rj). Note that Gi, G2, • • • are discrete distributions over the atoms generated 
from the base measure Go at the first step of the process. Using this definition, we can 
extend the D P mixture model to an H D P mixture model to build a infinite phone-loop A U D 
model having n-gram phonotactic language model. In this work, we will limit ourselves to 
bigram language model (using a H D P with order M = 2) but the extension to arbitrary 
n-grams is straightforward. The construction of phone-loop prior p(u, H) is given by: 

G i ~ W^o,G0) 
G2,i~W(ji,G1) Mi e {0,1,2,...} 

L 

p(u,H) 
n=l p(Un|«ra-l,H) 

p(u|H) 

fe=l 

(4.8) 

(4.9) 

(4.10) 

p(H) 

In (4.10), the probability of the sequence of labels u is defined through an infinite set of 
distributions G2 ,i , G2,2, • • • <J2,OO where the i th distribution G2,i is the probability over the 
labels 1,2,... given that the previous label of the sequence was i. For convenience, we set 
G2,o to be the probability over the first label of the sequence. We see that it differs from 
the D P mixture model which uses a single distribution G to define the probability of a 
sequence of units. Inference for the H P D mixture model can be done by sampling using 
an extension of the Chinese Restaurant Process: the Chinese Restaurant Franchise (Teh 
et al., 2004). However since we have observed in chapter 2 that Variational Bayes inference 
is more suited to our problem, we will focus on a variational treatement of this model. 
Similarly to the D P mixture model, we will first derive a stick-breaking construction of the 
H D P and then apply the mean-field approximation. 
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Model Features Corpus F-score N M I (%) 
D P - H M M M F C C TIMIT 63.25 35.11 

H D P - H M M M F C C TIMIT 64.08 35.82 
D P - S H M M M F C C TIMIT 75.56 39.14 

H D P - S H M M M F C C TIMIT 75.42 39.62 
D P - H M M M F C C M B O S H I 64.14 36.21 

H D P - H M M M F C C M B O S H I 65.47 36.53 
D P - S H M M M F C C M B O S H I 57.65 39.98 

H D P - S H M M M F C C M B O S H I 58.01 40.67 

Table 4.1: Comparison of the D P - ( S ) H M M and the H D P - ( S ) H M M on the A U D task. 

4.2 Results 

We now evaluate the H D P - H M M on the A U D task. We measure the benefit of introducing 
a bigram phonotactic language model using the „natural", i.e. uncorrected, model, and we 
analyze the effect of the correction factors using the corrected model. 

For our first experiment, we compared the performance of the D P - ( S ) H M M against 
the H D P - ( S ) H M M based A U D system. Results on the TIMIT and M B O S H I corpora are 
reported in Table 4.1. We observe the H D P prior provides a small but consistent improve­
ment over the D P - ( S ) H M M in terms of clustering quality (measured with the NMI) . The 
quality of the segmentation (F-score) slightly improves as well except for the case of the 
H D P - S H M M on TIMIT where we observe a slight degradation of the F-score. Overall, we 
see that the H D P prior improves the A U D task even without any correction factors. 

4.3 Conclusion 

In this chapter, we have empowered our A U D system with a bigram phonotactic language 
model. Our approach relies on the Hierarchical Dirichlet Process: a non-parametric prior 
over conditional distributions. Replacing the Dirichlet Process by a Hierarchical Dirichlet 
Process only affects the language model and, therefore, the H D P prior can be used with 
either the H M M or S H M M based A U D system. We have studied the case of a bigram 
language model but it is theoretically possible to extend this work to arbitrary n-gram 
language models. Similarly to the original D P - H M M , this model is trained with a V B - E M 
algorithm. This is possible thanks to the Teh's construction of the HDP, a hierarchical stick-
breaking process. Unfortunately, the Teh's stick-breaking process is not fully conjugate 
and, therefore, it is difficult to derive the optimal posterior of the parameters of HDP's 
root level. We bypass this issue by approximating this posterior with the posterior of an 
unigram D P - H M M . This approximation is very convenient but can also trap our model in 
a local optimum. This issue could be solved using the Sethuraman stick-breaking process 
but would considerably increase the computational cost. Experimental results show that 
the H D P prior gives a small but consistent improvement for the H M M and S H M M based 
A U D system on both TIMIT and M B O S H I corpora. 

Furthermore, we have shown that the H D P - H M M model can be augmented with acoustic 
and language model factors that weigh the importance of acoustic and language model in 
the likelihood function. These factors turn the A U D phone-loop model into an energy 
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based model. Nevertheless, we show that optimizing the variational lower-bound of this 
energy-based model still leads to a consistent estimate of the variational posterior. Our 
experiments show that, for suitable choice of correction factors, the „corrected" H D P - H M M 
achieves better clustering measured in terms of N M I . The segmentation quality however 
does not seem to benefit from such model correction. 
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Chapter 5 

Conclusion 

In the previous chapters, we have proposed several models to address the problem of learning 
a phonological system from speech. A l l these models rely upon a Bayesian formulation of 
the task. Wi th the use of Variational Bayes framework, we have seen that learning the 
acoustic units, i.e. the phonological system, can be achieved through the optimization 
of a well-defined objective function. Before summarizing the contributions of this thesis, 
we briefly discuss potential extensions and promising trends for the unsupervised speech 
learning research, including new phonetic acoustic model and non-parametric Bayesian 
neural network. 

5.1 Future work 

Let us discuss what are, in my opinion, the promising research directions emerging from 
this thesis. We have seen that the Bayesian formulation of the A U D task leads to the 
definition of four essential elements: 

• acoustic model 

• language model 

• prior over the language model 

• prior over the acoustic model parameter (the base measure in the context of the 
Dirichlet Process) 

Importantly, this formulation is very generic and does not imply any specific model. The 
choice to use the H M M and the Dirichlet Process was mostly driven by historical reasons 
and mathematical convenience rather than by a strong belief that they are ideal tools for 
the task. I believe that significant progress can be made in the field of unsupervised learning 
of speech by revisiting these "old" models in light of the recent development of the research 
on Bayesian generative models. In the following, I propose alternative models which could 
lead to significant improvements. 

5.1.1 Acoustic Model ing 

The 3-state H M M model remains de facto the state-of-the-art generative model for a pho­
netic unit in speech technologies. Yet, it is widely accepted that the observations inde­
pendence assumption following from this model is unrealistic and leads to poor modeling 
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capability. This issue is not dramatic in speech recognition since the language model can 
compensate for an inaccurate acoustic model. However, in the case of A U D , proper segmen­
tation and clustering of the speech largely depends on the quality of the acoustic model. 

A simple way to improve the H M M is by making an observation to depend on the hidden 
state and on previous observations. This model, called an autoregressive H M M , was recently 
introduced in Bryan and Levinson (2015). The time dependency between observations does 
have a cost: the inference requires to compute the autocorrelation function of the input 
signal. Nevertheless, modern hardware largely allows to perform this computation. Note 
that in Bryan and Levinson (2015), the authors model raw speech signal which is perhaps 
unsuited for t A U D . Applying the A R H M M directly on the short term (Mel) spectrum 
would be, in my opinion, more practical. Interestingly, doing so would lead to model the 
amplitude and frequency modulations of the speech signal which would be consistent with 
psychoacoutics studies Elhilali et al. (2003). 

Alternatively, rather than changing the H M M , one could transform the features such that 
they fit better the H M M assumption. This paradigm was the core idea of a recent model: 
the V A E - H M M Ebbers et al. (2017); Glarner et al. (2018). It is a promising approach as it 
makes use of neural network to define the generative model. However, the introduction of 
arbitrarily complex model comes with a downside: whereas it is fairly easy to use gradient 
ascent to train such a model, it is much more difficult to prevent the model from falling in 
a local optimum. Also, increasing the model's complexity increases the necessary amount 
of data which may be problematic when dealing with low-resources languages. Having a 
neural network-based A U D system is a compelling idea but it remains currently an open 
problem. 

This work has also shown the importance of the acoustic model prior for the outcome 
of the A U D sytem. The G S M defined in chapter 3 is general enough to accommodate a 
large family of acoustic models, including the ones mentioned above, but can be extended 
in several ways. For instance, the S H M M is based on an affine and non-linear transfor­
mation. We can envision a deep S H M M where the non-linearity would be learned by a 
neural network. Another potential improvement of the G S M is the introduction of multiple 
subspaces. These extra subspaces could either: 

• include non-phonetic factors such as speaker variability 

• decompose the phonetic subspace to better model linguistic features (for instance 
there could be separated subspaces for vowels and consonants). 

Lastly, let me mention a recent work on the factorization of subspace model Novotny et al. 
(2019). This line or work is particularly interesting as it could be used in the S H M M to 
model the language variability. 

5.1.2 Language Modeling 

A large par of the progress in unsupervised speech learning, including this thesis, is due to 
the development of Bayesian non-parametric priors. The Dirichlet process and its natural 
extension the Pitman-Yor process offer a well-grounded framework to define probability 
distributions over countably infinite sets. But after almost two decades of research, these 
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tools have also shown their limits. Even though the construction of hierarchical Dirichlet or 
Pitman-Yor processes is theoretically straightforward, variational inference in such models 
is nearly intractable for any hierarchy having more than 2 levels. On the other hand, 
samplers like the Chinese restaurant process can work with arbitrary deep models at the 
cost of very slow inference and exponential growth of the parameters. Finally, empirical 
experience has shown that neural network-based language models are far superior to n-gram 
based language models. A l l these issues, clearly call for an extension of the non-parametric 
priors to a much broader class of models. 

Defining non-parametric Bayesian priors for neural network based language model may 
seem a rather difficult task but recent advances in machine learning lean toward this direc­
tion. A promising step is the newly introduced Logistic Stick-Breaking Process Ren et al. 
(2011). This non-parametric prior is defined a spatial stick-breaking process whose param­
eters are Euclidean embeddings. This is particularly interesting as such embeddings could 
be the output of a neural network. Another work worth mentioning is Gal (2016) where the 
authors show how the dropout technique can be reinterpreted as an approximate Bayesian 
inference. Importantly, they also show how one could get an uncertainty estimate without 
any significant change in the neural network. Combining both the Logistic Stick-Breaking 
Process with a Bayesian neural network is a very compelling idea and could pave the way 
to more powerful non-parametric priors useful for unsupervised speech learning and many 
other fields. 

5.2 Summary of contributions 

The aim of this thesis has been to develop a Bayesian approach to the problem of learning 
a phonological system, i.e. an ensemble of acoustic units, used to communicate in a lan­
guage, from unlabeled speech recordings. This work can be seen as the extension and the 
continuation of previous works on non-parametric Bayesian learning applied to language 
modeling Goldwater and Johnson (2007) and acoustic unit discovery Lee (2014). 

In Lee and Glass (2012) the authors proposed a non-parametric Bayesian H M M to cluster 
unlabeled speech into phone-like units; they used the Chinese Restaurant Process to sample 
the parameters from the posterior distribution. In chapter 2, we derived a new inference 
scheme based on the Variational Bayes framework. It allows to cast the problem of discov­
ering acoustic units into an optimization problem with a well-defined objective function. 
Our approach relies upon Sethuraman stick-breaking construction of the Dirichlet Process 
which, combined with a suitable structured mean-field factorization of the variational pos­
terior, leads to an analytical V B - E M algorithm. Moreover, this new approach allows for 
the reinterpretation of the original model as an infinite phone-loop model capable of fast 
and parallelized inference. The computational benefits from this approach are important as 
they allow learning phonological units from a large speech corpus. We found experimentally 
that Variational Bayes training leads to sparser solution, i.e. the model uses less acoustic 
units to explain the data, and yet achieves better clustering quality in terms of NMI . 

In chapter 3, we addressed the issue of how to design a proper prior distribution over 
the possible acoustic unit embeddings. We first introduced the Generalized Subspace Model 
(GSM): a theoretical framework which allows learning low-dimensional embeddings rep-

30 



resenting probability distributions. The G S M is a natural extension of several existing 
models, such as the i-vector model or the Subspace Multinomial model, to any condition­
ally conjugate exponential models ( G M M , H M M , P C A , ...). In a controlled experiment, we 
have shown that the G S M is able to learn a coherent phonetic subspace where the phones, 
modeled by an H M M , are encoded as 100-dimensional embeddings. Finally, we used the 
G S M framework to learn a universal phonetic subspace from a multilingual labeled speech 
corpus. This universal phonetic subspace is then used as the base measure of the Dirichlet 
Process of our acoustic unit discovery system. By estimating the prior over acoustic units 
from other languages, we are effectively changing the learning procedure: informally, in­
stead of directly clustering unlabeled speech, we first use supervision from other languages 
to teach the model the notion of "phone" and then, the model clusters speech from a target 
language into patterns similar to the phones from other languages. Experimental results 
have shown the merit of this new approach: the G S M based A U D model achieved much 
better segmentation and clustering quality than the original non-parametric H M M model. 
The results also show that the G S M approach is more robust than using multilingual fea­
tures as an input to the A U D system. This is a strong indication that the G S M is a more 
principled way to transfer phonetic knowledge from a language to another. 

In chapter 4, we developed a new A U D model based on the Hierarchical Dirichlet Process 
(HDP). We coined this new model the H D P - H M M . The H D P is a non-parametric prior 
which defines a probability over an infinite set of conditional distributions. Thanks to this 
feature, we built an A U D model based on a bigram phonotactic language model. This is a 
substantial change compared to the D P - H M M , which can have only a unigram phonotactic 
language model. To infer the parameters of this new model we derived a V B - E M algorithm 
based on the Teh's stick-breaking construction of the HDP. As the H D P prior only affects 
the distribution of the units' labels, the training of the acoustic model is nearly identical 
to the V B - E M of the D P - H M M model. This key feature allows us to use the H D P prior 
seamlessly with the H M M or S H M M acoustic models. Teh's stick-breaking construction 
is particularly convenient since it expresses the sampled conditional distributions directly 
with the atoms generated by the root base measure and therefore avoids any ordering issue. 
However, it has the downside that it is not fully conditionally conjugate. Consequently, our 
training requires first to train a D P - H M M A U D model to estimate the variational posterior 
of the root stick-breaking process. Experimental results show that the H D P - H M M model 
applied to the A U D task provides a small but consistent gain over the D P - H M M in terms 
of clustering quality and segmentation. Moreover, we show that the model can be corrected 
using two factors weighing the contrinution of the acoustic and language models in the joint 
probability distribution of the model. We observed empirically that giving more importance 
to the language model (increasing the language model factor) results in a better NMI . 

To conclude, we hope that this thesis has provided an accessible study of Bayesian ap­
proaches to the problem of learning a phonological system from speech. We have developed 
a probabilistic formulation of the task and proposed several models to fulfill it. Altogether, 
this forms a well-grounded framework, which paves the way to many more models than the 
ones investigated in the previous chapters. We hope that this thesis will stimulate future 
research on the challenging problem of unsupervised speech learning. 
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