VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF CONTROL AND INSTRUMENTATION

NEJISTOTY NEPŘÍMÉHO MĚŘENÍ STABILITY KMITOČTU FUNKČNÍCH GENERÁTORŮ

FREQUENCY STABILITY OF FUNCTION GENERATORS – ESTIMATION OF THE UNCERTAINTY OF INDIRECT MEASUREMENT

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR Michal Šmoldas

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Marie Havlíková Ph.D.

BRNO 2016

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta elektrotechniky a komunikačních technologií Ústav automatizace a měřicí techniky

Bakalářská práce

bakalářský studijní obor Automatizační a měřicí technika

Student: Michal Šmoldas Ročník: 3

ID: 164853 *Akademický rok:* 2015/16

NÁZEV TÉMATU:

Nejistoty nepřímého měření stability kmitočtu funkčních generátorů

POKYNY PRO VYPRACOVÁNÍ:

1. Popište sledované technické parametry funkčních generátorů, které udávají různí výrobci a vzájemně je porovnejte. Toto porovnání realizujte na základě dostupných literárních i internetových zdrojů.

2. Vytvořte matematický model pro měření pro krátkodobé stability kmitočtu funkčních generátorů a na jeho základě vypracujte metodický postup pro vyhodnocování standardních nejistot krátkodobé stability kmitočtu funkčních generátorů.

Realizujte měření krátkodobé stability kmitočtu u vybraných funkčních generátorů podle pokynů vedoucí práce a podle vypracovaných postupů vyhodnoťte standardní nejistoty těchto měření.
 Dosažené výsledky prezentujete a diskutujte.

DOPORUČENÁ LITERATURA:

[1] PALENČAR, R., VDOLEČEK, F., HALAJ,M. Nejistoty v měření l až V, Soubor článků v časopisech AUTOMA, č. 7-8/2001, č.10/2001, č.12/2001, č.4/2002, č.5/2002

Termín zadání: 8. 2. 2016

Termín odevzdání: 23.5.2016

Vedoucí práce: Ing. Marie Havlíková, Ph.D. Konzultanti bakalářské práce:

doc. Ing. Václav Jirsík, CSc. předseda oborové rady

UPOZORNĚNÍ:

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

Abstrakt

V bakalářské práci jsou rozebrány sledované technické parametry funkčních generátorů a teorie standardních nejistot měření, ze které je sestaven matematický model pro vyhodnocení krátkodobé stability kmitočtu. Dle sestaveného modelu bylo realizováno měření a vyhodnocení standardních nejistot krátkodobé stability kmitočtu.

Klíčová slova

Funkční generátor, krátkodobá stabilita kmitočtu, nepřímé měření, standardní nejistota měření, nejistota typu A, nejistota typu B, kombinovaná nejistota, rozšířená nejistota, univerzální čítač.

Abstract

In the thesis are discussed monitored the technical parameters of function generators and theory of standard measurement uncertainties, which consists of a mathematical model to evaluate the short-term stability frequency. According to the assembled model was realized measurement and evaluation of the standard uncertainty of short-term frequency stability.

Keywords

Function generator, short-term frequency stability, indirect measurement, standard measurement uncertainty, uncertainty type A, uncertainty type B, combined uncertainty, expanded uncertainty, universal counter.

Bibliografická citace:

ŠMOLDAS, M. *Nejistoty nepřímého měření stability kmitočtu funkčních generátorů.* Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, 2016. 60 s. Vedoucí bakalářské práce Ing. Marie Havlíková, Ph.D.

Prohlášení

Prohlašuji, že svou bakalářskou práci na téma Nejistoty nepřímého měření stability kmitočtu funkčních generátorů jsem vypracoval samostatně pod vedením vedoucího bakalářské práce a s použitím odborné literatury a dalších informačních zdrojů, které jsou všechny citovány v práci a uvedeny v seznamu literatury na konci práce.

Jako autor uvedené bakalářské práce dále prohlašuji, že v souvislosti s vytvořením této bakalářské práce jsem neporušil autorská práva třetích osob, zejména jsem nezasáhl nedovoleným způsobem do cizích autorských práv osobnostních a jsem si plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č.121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č. 40/2009 Sb.

V Brně dne: 20. 5. 2016

podpis autora

Poděkování

Děkuji vedoucí bakalářské práce Ing. Marii Havlíkové, Ph.D. a Ing. Soně Šedivé, Ph.D. za cenné rady, účinnou metodickou, pedagogickou a odbornou pomoc při zpracování mé bakalářské práce.

V Brně dne: 20. 5. 2016

podpis autora

Obsah

Se	znam	obrá	ızků	.10
Se	znam	tabu	lek	.11
Ú٧	vod	•••••		.12
1	Fun	kční	generátory	.13
	1.1	Dig	itální syntéza	.13
	1.2	Slee	lované technické údaje	.14
	1.3	Měì	řené funkční generátory	.20
	1.3.	1	Funkční generátor Agilent 33220A	.21
	1.3.	.2	Funkční generátor Hung Chang G305	.23
	1.3.	.3	Funkční generátor Newtronics 200MSP	.25
	1.4	Por	ovnání technických parametrů funkčních generátorů	.26
2	Star	ndaro	dní nejistoty měření	.27
	2.1	Nej	istoty přímých měření	.27
	2.1.	.1	Nejistota typu A - $u_A(x)$.27
	2.1.	.2	Nejistota typu B - $u_B(x)$	
	2.1	.3	Kombinovaná nejistota - $u_C(x)$	30
	2.1	.4	Rozšířená nejistota – $U(x)$	30
	2.2	Nej	istoty nepřímých měření	31
	2.2	.1	Výpočet kovariance	32
	2.2	.2	Kovariance zdrojů - metoda typu A	32
	2.2	.3	Kovariance zdrojů - metoda typu B	33
	2.3	For	mální uvádění nejistot měření	34
3	Moo	del r	něření a určení standardních nejistot krátkodobé stability kmitočtu	36
	3.1	Mo	del měření krátkodobé stability kmitočtu	36
	3.1	.1	Univerzální čítač Agilent 53131A	37
	3.2	Pos	tup určení standardních nejistot krátkodobé stability kmitočtu	38
	3.2	.1	Určení nejistoty typu A	38
	3.2	.2	Určení nejistoty typu B	39
4	Rea	liza	ce měření a výpočet standardních nejistot krátkodobé stability kmitočtu	43
	4.1	Tab	oulky naměřených hodnot krátkodobé stability kmitočtu	43
	4.2	Vze	or výpočtu standardních nejistot krátkodobé stability kmitočtu	44
	4.2	.1	Určení nejistoty typu A	44
	4.2	.2	Určení nejistoty typu B	45
	4.3	Tab	oulky výpočtu standardní nejistoty krátkodobé stability kmitočtu	47
	4.3	.1	Bilanční tabulka krátkodobé stability kmitočtu 1000Hz	47
	4.3	.2	Bilanční tabulka krátkodobé stability maximálního kmitočtu	49
	4.3	.3	Bilanční tabulka krátkodobé stability minimálního kmitočtu	50
	4.3	.4	Tabulka srovnání rozšířených nejistot	51

Závěr	53
Literatura	54
Seznam příloh	56

SEZNAM OBRÁZKŮ

Dbr. č. 1: Principiální schéma DDS. Převzato z [2]	14
Dbr. č. 2: Znázornění průběhů základních modulací (AM, FM a PM). Převzato z [4]	16
Obr. č. 3: Výstup generátoru. Převzato z [4]	17
Obr. č. 4: Znázornění nástupné a sestupné hrany. Převzato z [4]	17
Obr. č. 5: Určení linearity signálu. Převzato z [8]	18
Obr. č. 6: Funkční generátor Agilent 33220A	21
Dbr. č. 7: Hung Chang G305	23
Dbr. č. 8: Newtronics 200MSP	25
Obr. č. 9: Rozdělení pravděpodobností s koeficienty k. Převzat z [12]	29
Obr. č. 10: Znázornění intervalu nejistoty výsledku	35
Dbr. č. 11: Univerzální čítač 53131A	37

SEZNAM TABULEK

Tab. č. 1: Přehled sledovaných technických údajů [1]	15
Tab. č. 2: Přehled uváděných stabilit kmitočtu [9]	20
Tab. č. 3: Sledované technické parametry generátoru Agilent 33220A [4]	22
Tab. č. 4: Sledované technické parametry generátoru Hung Chang G305 [5]	24
Tab. č. 5: Sledované technické parametry generátoru Newtronics 200MSP [6]	25
Tab. č. 6: Hodnoty korekčního koeficientu ks [10]	28
Tab. č. 7: Příklad bilanční tabulky [12]	35
Tab. č. 8: Použité měřicí přístroje	37
Tab. č. 9: Sledované technické parametry univerzálního čítače Agilent 53131A [7]	38
Tab. č. 10: Měření krátkodobé frekvenční stability funkčního generátoru	
Agilent 33220A (1 kHz)	43
Tab. č. 11: Bilanční tabulka výpočtu standardních nejistot nepřímého měření	
krátkodobé stability na kmitočet 1000 Hz	48
Tab. č. 12: Bilanční tabulka výpočtu standardních nejistot nepřímého měření	
krátkodobé stability maximálního kmitočtu	49
Tab. č. 13: Bilanční tabulka výpočtu standardních nejistot nepřímého měření	
krátkodobé stability minimálního kmitočtu	50
Tab. č. 14: Srovnání výsledků rozšířených nejistot měření krátkodobé stability kmite	očtu
jednotlivých generátorů	51
Příloha 1a Tab. č. 15: Měření krátkodobé frekvenční stability funkčního generátor	u
Agilent 33220A (20 MHz)	57
Příloha 1b Tab. č. 16: Měření krátkodobé frekvenční stability funkčního generátor	ru
Agilent 33220A (30 Hz)	57
Příloha 1c Tab. č. 17: Měření krátkodobé frekvenční stability funkčního generátor	ru
Newtronics 200MSP (1 kHz)	58
Příloha 1d Tab. č. 18: Měření krátkodobé frekvenční stability funkčního generátor	ru
Newtronics 200MSP (2 MHz)	58
Příloha 1e Tab. č. 19: Měření krátkodobé frekvenční stability funkčního generátor	ru
Newtronics 200MSP (30 Hz)	59
Příloha 1f Tab. č. 20: Měření krátkodobé frekvenční stability funkčního generátor	u
Hung Chang G305 (1 kHz)	59
Příloha 1g Tab. č. 21: Měření krátkodobé frekvenční stability funkčního generátor	ru
Hung Chang G305 (9,688 MHz)	60
Příloha 1h Tab. č. 22: Měření krátkodobé frekvenční stability funkčního generátor	ru
Hung Chang G305 (30 Hz)	60

ÚVOD

Práce se zabývá vyhodnocením standardních nejistot měření krátkodobé stability kmitočtu funkčních generátorů. Cílem práce je bližší popsání technických parametrů funkčních generátorů, následné vytvoření matematického modelu pro určení standardních nejistot krátkodobé stability kmitočtu a aplikace vytvořeného modelu na měření krátkodobé stability kmitočtu.

Jedním ze základních parametrů generátorů signálů (obecně všech oscilátorů) je krátkodobá stabilita kmitočtu. Definuje schopnost generátoru udržet neměnnou frekvenci po dobu určeného časového intervalu. Funkční generátor reprezentuje univerzální měřicí přístroj, který slouží ke generování výstupních signálů téměř libovolných vlastností a typu. Vlastnosti funkčních generátorů komplexně popisují sledované technické údaje, tyto údaje udávají souhrn nejdůležitějších parametrů o daném generátoru.

Problematika standardních nejistot měření je založena na platnosti zákona o šíření nejistot, který blíže popisuje směrnice s názvem GUM (Guide to Expression of the Uncertainty of Measurement) vydaná v roce 1993 metrologickými orgány. Zákon o šíření nejistot, ze kterého práce vychází, je vyjádřen souborem vzorců tvořících matematický aparát pro komplexní určení přesnosti měření. Nejistoty měření zahrnují veškeré možné odchylky vzniklé při měření. Výsledkem je interval, ve kterém se s určitou pravděpodobností vyskytuje měřená hodnota.

Práce obsahuje literární rešerši standardních nejistot měření, nutnou k osvojení problematiky nejistot měření a k následnému vytvoření matematického modelu pro vyhodnocení standardních nejistot měření krátkodobé stability kmitočtu. Meření stability kmitočtu je provedeno za pomocí univerzálního čítače Agilent 53131A na několika rozdílných funkčních generátorech a je aplikován sestavený matematický model určení standardních nejistot měření krátkodobé stability kmitočtu. Z důvodu složitosti výpočtu standardních nejistot měření krátkodobé stability kmitočtu je nezbytné uvést vzor výpočtu. Získané výsledky jsou vloženy do přehledných tabulek a zhodnoceny v závěru.

1 FUNKČNÍ GENERÁTORY

Pod pojmem funkční generátor si bylo dříve možné představit pouze generátor průběhů signálu, jako byl sinus (harmonický průběh), obdélník, trojúhelník nebo pila. Generátory obecných průběhů, nízkofrekvenční generátory, vysokofrekvenční generátory, stejnosměrné zdroje, syntezátory, šumové generátory a mnoho dalších, bylo potřeba pořizovat samostatně. Postupem času se měřicí technika modernizovala a některé funkce výše vyjmenovaných zařízení byly přidány do funkčního generátoru.

Tím se funkční generátor stal nejuniverzálnějším přístrojem pro měřicí techniku. Dříve se pro generování výstupních průběhů používal princip analogové digitální syntézy. Pomocí různých analogových filtrů, pásmových propustí a násobičů byl složen výsledný signál [1].

V současné době probíhá generování výstupních signálů převážně pomocí přímé digitální syntézy DDS (Direct Digital Synthesis). Díky ní jsou funkční generátory schopny velice rychle a přesně generovat harmonické signály v širokém frekvenčním rozsahu. Princip DDS je více popsán v kapitole 1.1.

V současné době nabízejí funkční generátory generování základních průběhů sinus, obdélník, pila, ale i libovolných, uživatelem definovaných průběhů v širokém frekvenčním rozsahu. Mezi další funkce patří natavení offsetu, triggeru, amplitudy, modulace signálu, různé úrovně vnitřní impedance a mnoho dalších základních i speciálních funkcí. Ke komunikaci s generátory lze použít např. GPIB, RS-232, USB rozhraní. [1].

1.1 Digitální syntéza

Základní princip přímé digitální syntézy DDS spočívá v použití digitálních bloků pro generování libovolného frekvenčně a fázově laditelného výstupního signálu, který vychází z referenčního, oscilátorem řízeného signálu [2].

Základem DDS je fázový akumulátor, který ukládá do kmitočtového registru hodnotu fáze $\Delta \varphi$. S každým příchodem *CLK* (hodinového signálu) uloží fázový akumulátor do kmitočtového registru zvýšenou hodnotu fáze $\Delta \varphi$. Fázový akumulátor obvykle bývá 24, 32 nebo 48 bitový. Změna, o kterou se fáze $\Delta \varphi$ zvýší v každém kroku, je určena tzv. přelaďovací rovnicí [2]:

$$f_0 = \frac{\Delta \varphi f_v}{2^n} \qquad [\text{Hz}] \tag{1}$$

Kde: f_0 - generovaný kmitočet,

 $\Delta \varphi$ - hodnota registru fáze,

 f_v - vzorkovací frekvence DDS (*CLK* kmitočet),

n - počet bitů fázového akumulátoru.

Nejvyšší kmitočet generovaný pomocí přímé digitální syntézy je $1/2 f_v$, nicméně používaná hodnota bývá 1/3 nebo $1/4 f_v$.

V akumulátoru fáze je aktuální hodnota fáze, která se nahraje do paměti při každém pulzu hodinového signálu. Frekvence a amplituda harmonického signálu je určena počtem použitých bitů a počtu přičtení hodnot zvýšení $\Delta \varphi$ do fázového akumulátoru. Aktuální hodnota akumulátoru se použije pro adresaci tabulky dat, za pomoci registru, v paměti ROM a přes vysokorychlostní D/A převodník se na výstup generuje harmonický signál o žádané frekvenci a amplitudě. Nutno na výstup přiřadit filtr typu dolní propust, protože frekvence výstupního signálu nemůže být vyšší jak 1/2 f_{ν} . Blokové schéma DDS je uvedeno na Obr. č. 1 [2].

Obr. č. 1: Principiální schéma DDS. Převzato z [2].

Výhody DDS jsou digitálně nastavitelná fáze signálu, extrémně rychlé přepínání frekvence bez anomálií výstupního signálu a vlivu ustálení, konstantní vzorkovací kmitočet, kde nevznikají problémy s nutností realizace rekonstrukčního filtru, teplotní nezávislost, nezávislost stárnutí součástek atd.

Existuje nespočet modifikací a vylepšení celého principu. Detailněji popsaný princip DDS lze najít například v publikaci [2] nebo odborných článcích [3].

1.2 Sledované technické údaje

Funkční generátory se liší svými parametry, vnitřní stavbou, přesností, cenou atd. Pro koncového zákazníka je nesmírně těžké a zdlouhavé z toho obrovského množství parametrů, jež výrobci udávají, vybrat ten správný generátor pro aplikaci, na kterou jej potřebuje.

Výrobci a prodejci generátorů proto uvádějí tzv. sledované technické údaje. Sledované technické údaje jsou reprezentovány jako soubor nejdůležitějších parametrů a informací o funkčním generátoru. Nicméně výrobci obvykle umožňují náhled do celé technické dokumentace k přístrojům. Přehled důležitých a obecně známých parametrů je uveden v Tab. č. 1 [1].

Parametr	Popis
Výstupní funkce	(průběhy, které je generátor schopný generovat)
Frekvenční rozlišení	(minimální krok změny frekvence)
Výstupní impedance	(velikost zatížení výstupu)
Amplituda	(maximální hodnota výchylky signálu)
Typy modulací	(změna charakteru nosného signálu pomocí modulujícího signálu)
Napájení	(hodnoty síťového napětí, pro které je přístroj určen)
Rozměry	(x,y,z rozměry přístroje)
Hmotnost	(hmotnost přístroje)
Pracovní rozsah teplot	(interval teplot, ve kterém je garantována správná funkce)
Frekvenční rozsahy	(interval garantování správné funkce)
Rozhraní	(podporované konektory, přes které je generátor možné připojit)

Tab. č. 1: Přehled sledovaných technických údajů [1].

Výstupní funkce, frekvenční rozlišení a rozsahy

Na začátku kapitoly je uvedeno, že v současnosti většina funkčních generátorů používá pro generování výstupního signálu princip přímé digitální syntézy DDS. DDS ovlivňuje frekvenční rozsahy a rozlišení (ovlivňuje to především referenční frekvence, vzorkovací frekvence, hloubka paměti, množství použitých bodů pro generování signálu, aliasing atd.). [1],[4].

Maximální hodnota výchylky signálu

Z důvodu generování signálu pomocí DDS je nutné výchylku signálu zvyšovat zvlášť. To bývá realizováno pomocí zdroje referenčního napětí, který přes spínací hladiny nastaví požadovanou úroveň výchylky. Uvádí se ve voltech *Vpp* (peak-to-peak, napětí špička-špička) nebo ve voltech RMS (efektivní hodnota signálu) [1],[4].

Modulace

Modulace je změna charakteru nosného signálu pomocí modulačního signálu. Druhy modulací jsou různé, vždy probíhají dle platné teorie modulací. Při interní (vnitřní) modulaci je zdrojem modulovaného průběhu sekundární DDS syntezátor, při externí (vnější) je zdrojem vnější zdroj. Frekvenční rozsahy rozlišení jsou udány DDS syntezátorem. Mezi základní modulace patří AM (amplitudová, mění se amplituda modulovaného signálu), FM (frekvenční, mění se frekvence modulovaného signálu), PM (fázová, mění se fáze modulovaného signálu). Průběhy základních modulací (AM, FM a PM) jsou znázorněny na Obr. č. 2 [1],[4].

Obr. č. 2: Znázornění průběhů základních modulací (AM, FM a PM). Převzato z [4].

Vzorkovací frekvence

Vzorkovací frekvence (rychlost spuštění digitálních hodin DDS) se udává v Sa/s (vzorcích za sekundu) a určuje maximální frekvenci výstupního signálu. Vzorkovací frekvence by měla být 2x vyšší než frekvence výstupního signálu [1].

Výstupní impedance

Výstupní impedance bývá obvykle 50 Ω nebo 600 Ω , ale je možno se setkat i s nastavitelným impedančním výstupem (50 – 1200) Ω . Výstupní impedanci je potřeba přizpůsobit dle charakteru měření (při jiném zatížení než je kalibrovaná hodnota se liší hodnota napětí nastavená na generátoru s naměřenou hodnotou na zátěži, např. když je výstup generátoru zatížen vysoko-impedančním zařízením, bude měřená hodnota napětí přibližně 2x vyšší než nastavená na generátoru). Pro názornost je výstupní napětí reprezentováno přepočtem $\Delta V_L(\%) \cong \frac{50}{R_L+50} \times \Delta R_L(\%)$. Uvedený přepočet vyplývá z

Obr. č. 3 [1],[4].

Obr. č. 3: Výstup generátoru. Převzato z [4].

Parametry výstupních signálů:

Časy hran rise/fall

Časy hran rise/fall jsou vztaženy pouze k obdélníkovému nebo pulsnímu signálu. Rise time/fall time reprezentuje dobu náběhu/sestupu obdélníkového signálu z 10 % na 90 % velikosti pulzu. Některé funkční generátory umožňují nastavení hran sestupné a náběžné hrany. Čím rychleji se hrany mění, tím vyšší bude frekvence průběhu. Pro znázornění nástupné a sestupné hrany je uveden na Obr. č. 4 [1].

Obr. č. 4: Znázornění nástupné a sestupné hrany. Převzato z [4].

Činitel zkreslení harmonického signálu

Činitel zkreslení harmonického signálu *THD* (Total harmonic distortion) bývá vztažen k sinusovému průběhu a je reprezentován jako podíl součtu výkonů veškerých harmonických složek k výkonu první harmonické. U standardních funkčních generátorů se hodnota *THD* pohybuje maximálně 0,5 %. Existuje mnoho definic vyjádření *THD*, ale nejčastěji se používá výpočet, pomocí výkonů dílčích harmonických složek viz vzorec č. (2) [1].

$$THD = \frac{\sum_{n=2}^{n} P_n}{P_1} = \frac{P_2 + P_3 + \dots + P_n}{P_1} \cdot 100 \qquad [\%]$$
Kde: THD - celkové harmonické zkreslení signálu,
 P_n - výkony jednotlivých harmonických složek signálu.
(2)

Linearita signálu

Linearita je parametry charakterizující pilovitý a trojúhelníkový signál. Představuje, o kolik se daná funkce odchyluje od ideální přenosové charakteristiky (přímky), bývá uvedena v % s tím, že 100 % znamená ideálně lineární průběh. Relativní chybu linearity lze určit pomocí vzorce č. (3) a pro názornost je uveden Obr. č. 5 [8].

$$\delta_{L} = \frac{\Delta U}{U_{max} - U_{min}} \cdot 100 \quad [\%]$$
(3)
Kde: ΔU - odchylka signálu od ideální lineární funkce,
 U_{max} - max. napětí signálu v bodě průniku s ideální přímkou po dobu
periody,
 U_{min} - min. napětí signálu v bodě průniku s ideální přímkou po dobu
periody,
 δ_{L} - relativní chyba linearity.

Obr. č. 5: Určení linearity signálu. Převzato z [8].

Kmitočtová stabilita

Kmitočtová stabilita definuje schopnost generátoru udržet neměnnou frekvenci po dobu časového intervalu. Udává se v jednotkách [ppm], což představuje miliontinu celku (počet částic na jeden milion/ 10^6) a značí, o kolik se může frekvence za časový interval lišit od referenční hodnoty. Tato hodnota frekvenční stability se dá dohledat v technické dokumentaci k přístroji, obvykle v sekci specifikace [8]. V uvedeném parametru není zahrnuta pouze přesnost DDS, ale i ostatní přesnosti, například teplotní stabilita, stabilita síťového napětí, stárnutí, stárnutí referenčního krystalu, vibrace, zatížení a mnoho dalších vlivů [8].

Časový interval t < 100 s reprezentuje krátkodobou stabilitu kmitočtu a časový interval t > 100 s reprezentuje dlouhodobou stabilitu kmitočtu. Výrobci jako dlouhodobou stabilitu udávají interval den/měsíc/rok [8].

Frekvenční stabilitu lze určit pomocí absolutní změny Δf ($\Delta f = f_{max} - f_{min}$), vztažené ke střední (jmenovité) hodnotě kmitočtu $f_{střed}$, uvažované ve zvoleném časovém intervalu Δt . Model měření k určení frekvenční stability kmitočtu je znázorněn ve vzorci č. (4). Moderní měřicí přístroje umožňují měření přímo f_{max} , f_{min} , $f_{střed}$ a umožňují přesné nastavení Δt např. pomocí doby otevření hradla, počtu měření nebo ručním spuštěním. Přehled dostupných stabilit kmitočtu je uveden v Tab. č. 2 [8].

Vzorec pro výpočet frekvenční stability kmitočtu f_{stab} .

$$f_{stab} = \frac{Imax - Imin}{f_{střed}} \frac{1}{\Delta t}$$
[Hz] (4)
Kde: f_{stab} - kmitočtová stabilita,
 f_{max} - maximální měření frekvence,
 f_{min} - minimální měření frekvence,
 $f_{střed}$ - střední (jmenovitá) měření frekvence,
 Δt - časový interval měření.
Vzorec pro přepočet frekvenční stability kmitočtu f_{stab} na jednotky ppm

$$f_{stab} = \frac{f_{max} - f_{min}}{f_{st \check{r}ed}} \frac{1}{\Delta t} \, 10^6 \qquad [\text{ ppm/s }] \tag{5}$$

Kde: f_{stab} - kmitočtová stabilita,

 f_{max} - maximální měření frekvence,

 f_{min} - minimální měření frekvence,

*f*_{střed} - střední (jmenovitá) měření frekvence,

 Δt - časový interval měření.

Název	Jednotka	Popis
Stabilita kmitočtu	[ppm]	Odchylka kmitočtu za normálního
Stabilita Kilitoetu	լրքող	provozu
		Odchylka kmitočtu při časovém
Krátkodobá stabilita kmitočtu	[ppm/s]	intervalu spadajícím do krátkodobé
		stability
		Odchylka kmitočtu při časovém
Dlouhodobá stabilita kmitočtu	[ppm/rok]	intervalu spadajícím do dlouhodobé
		stability
Stabilita kmitočtu při	[nnm]	Odchylka kmitočtu při mechanickém
mechanickém namáhání	լիհայ	namáhání (pád, náraz)
Stabilita kmitočtu při změnách	[nnm/O]	Odchylka kmitočtu při změnách
zátěže	[hhun, 75]	připojené zátěže
Taplotní stabilita kmitočtu	[nnm/°C]	Odchylka kmitočtu při změnách
Teploini staolinta kiintoetu	[hhm c]	teploty

Tab. č. 2: Přehled uváděných stabilit kmitočtu [9]

1.3 Měřené funkční generátory

V této kapitole jsou uvedeny sledované technické parametry funkčních generátorů, které jsou k dispozici v laboratoři na Ústavu automatizace a měřicí techniky FEKT VUT v Brně. Měření krátkodobé stability kmitočtu je realizováno na funkčních generátorech Agilent 33220A, Hung Chang G305 a Newtronics 200MSP. Tyto tři generátory jsou vhodnými kandidáty pro experimentální měření krátkodobé stability kmitočtu, protože se navzájem jeden od druhého liší svými technickými parametry. Technické parametry jednotlivých generátorů jsou uvedeny v Tab. č. 3, Tab. č. 4, Tab. č. 5.

Bohužel z důvodu různého roku výroby se uvedené technické parametry liší, proto tabulky u generátoru Hung Chang G305 a Newtronics 200MSP nejsou tak podrobné.

1.3.1 Funkční generátor Agilent 33220A

Funkční generátor Agilent 33220A nabízí uživateli rozsáhlou paletu funkcí v širokém frekvenčním rozsahu (1 μ Hz – 20 MHz). Od generování standardních výstupních průběhů (sinus, obdélník, pila atd.), až po generování libovolného průběhu, který lze uložit do paměti. Dále umožňuje různé druhy modulací (amplitudovou modulaci, pulsně šířkovou modulaci, frekvenční modulaci atd.) s použitím externího nebo vnitřního zdroje signálu. Funkční generátor Agilent 33220A lze připojit do měřícího systému přes rozhraní GPIB, LAN, USB. Těmito a i dalšími vlastnostmi se stává velice univerzálním. Technické parametry jsou uvedeny v Tab. č. 3. Funkční generátor Agilent 33220A je zobrazen na Obr. č. 6.

Obr. č. 6: Funkční generátor Agilent 33220A

	Sinus	1µHz – 20 MHz				
	Obdélník	1µHz – 20 N	ЛНz			
	Trojúhelník	1µHz – 200 KHz				
	Pila	1µHz – 200 KHz				
	Pulzy	$500\mu Hz - 5 MHz$				
Výstupní signály	Šum (gausosvký)	10 MHz - šířka pásma				
		Vlnová délk	a:	2 to 64 K points		
	Uživatelské	Amplitudov	é rozliš	ení: 14 bits		
	nrůhěhy.	Vzorkovací	krok:	50 MSa/s		
	pruceny.	Min. Rise/Fa	all Time	e: 35 ns		
		Linearita:		< 0.1% ze špičky OUT		
		Časová základna:		< 250 ns do final. hodnoty		
Amplituda	10 mV – 10 Vpp	Přesnost na 1kHz		± 1% natavené + 1 mVpp		
	AM	Frek. modulace		2 mHz-20 kHz		
	FM	Frek. modulace		2 mHz-20 kHz		
Modulace	РМ	Frek. modulace		2 mHz-20 kHz		
	PWM	Frek. modulace		2 mHz-20 kHz		
	FSK	Frek. modulace		2 mHz-100 kHz		
Napájení	240 V, 50 Hz	±10%		±10%		
Výstupní Impedance	50Ω, 600 Ω					
Pracovní rozsah T	$0 - 55 \circ C$					
Hmotnost	3.4 kg					
Rozměry	261.1 mm x 103.8 mm x 303 mm					
Rozhraní						
	OI ID, LAN, USD		(10			
Frekvenční stabilita	Přesnost		(10 ppm + 3 pHz) za 90 dnů (20 ppm + 3 pHz) za 1 rok			
	Tepelná závislost		< 1 ppm /(18-28) °C			

Tab. č. 3: Sledované technické parametry generátoru Agilent 33220A [4]

1.3.2 Funkční generátor Hung Chang G305

Funkční generátor Hung Chang G305 nabízí uživateli mnoho funkcí v širokém frekvenčním rozsahu (10 mHz – 10 MHz). Umožňuje generování standardních výstupních průběhů (sinus, obdélník, pila atd.), rozmítání signálu, nastavení doby otevření hradla, úroveň triggeru atd. Komunikovat s funkčním generátorem je možné přes rozhraní PC1EA. Technické parametry jsou uvedeny v Tab. č. 4. Funkční generátor Hung Chang G305 je zobrazen na Obr. č. 7.

Obr. č. 7: Hung Chang G305

	Sinus		10mHz - 10 MHz			
Victurní	Obdélník		10mHz - 10 MHz			
vystupni signály	Trojúhelník		10mHz – 10 MHz			
signary	Pila		10mHz – 10 MI	Hz		
	Pulzy		10mHz – 10 MI	Hz		
Frakvonční	Časová základ	na	0,01s 0,1s 1s, 10	$0s \pm 1 \text{ krok}$		
rozsahy	Citlivost		50 mVrms			
rozsany	Impedance		1MΩ 30pF			
Amplituda	20 Vpp					
DC OFFSET	±10V					
Modulace	AM 0-100		%	Vstupní signál: Max 5 Vpp		
Operace	CW, BURST, TRIGER, GA	SWEEF TE	D,	0~5V		
Časová základna	$10 \text{ MHz} \pm 3 \times 10^{-5} / \text{ M}$					
Napájení	110V, 117V, 2	220V, 24	40V 50/60Hz	±10%		
Výstupní Impedance	50Ω, 600 Ω			±10%		
Pracovní rozsah T	0 – 55 °C					
Hmotnost 4 kg						
Rozměry	300 mm x 98 n	nm x 30	00 mm			
Rozhraní	PC1EA, F2EA, BNC1EA, M1EA					

Tab. č. 4: Sledované technické parametry generátoru Hung Chang G305 [5]

1.3.3 Funkční generátor Newtronics 200MSP

Funkční generátor Newtronics 200MSP, oproti předchozím funkčním generátorům, obsahuje méně funkcí ve frekvenčním rozsahu (2 mHz – 2 MHz). Umožňuje generování standardních výstupních průběhů (sinus, obdélník, pila), napájení logických obvodů, dva druhy modulací (amplitudovou a fázovou modulaci). Technické parametry jsou uvedeny v Tab. č. 5. Funkční generátor Newtronics 200MSP je zobrazen na Obr. č. 8.

Obr. č. 8: Newtronics 200MSP

Vrietungi	Sinus		2 mHz – 2 MHz		Max 1% 20Hz-100kHz		
	Obdélník		2 mHz – 2 MHz		10-90%		
Signary	Trojúhelník		2 mHz – 2 MHz		Linearita max 1% do 200kHz		
Frekvenční	Krátkodobá		0,25%				
stability	Dlouhodobá		0,5% / den	0,5% / den			
Amplituda	20 Vpp						
DC OFFSET	$\pm 10 \mathrm{V}$						
Modulaça	AM		1000				
Woddlace	FM	0-100%					
	Zeslabovač			0-	0-60dB, krok 20dB		
Operace	Rozmítání			Linearita 0,5% zdvih 2% z rozsahu			
				µm zavin 1000.1 externi 0-3 v			
	TTL výstup			Přeběhy 40ns			
Napájení	240V, 50Hz						
Výstupní Impedance	50Ω, 600 Ω						

T - 1-	¥	5.	Cladara (4 l : - l - 4		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Martura	2001/00	Г <i>С</i> 1	
rad.	С.	5.	Sledovane	тесппіске	parametry	generatoru	Newtronics	200M3P	[0]	

1.4 Porovnání technických parametrů funkčních generátorů

Při bližším zkoumání výše uvedených technických parametrů je zřejmé, že ve všech kritériích disponuje nejlepšími parametry funkční generátor Agilent 33220A. Nabízí uživateli nejkomplexnější funkce od modulací až po velmi široké frekvenční rozsahy. Právě z frekvenčních rozsahů (jednotky μHz) lze soudit, že generování časové základny právě u tohoto generátoru je velice přesné. Napovídá tomu i údaj o frekvenční stabilitě. Jedná se o nejmodernější generátor, a proto je vysoká kmitočtová stabilita očekávaná.

U funkčních generátorů Hung Chang G305 a Newtronics 200MPS se dá při pohledu do tabulek sledovaných technických parametrů předpokládat, že krátkodobě frekvenčně stabilnější je funkční generátor Hung Chang G305, protože výrobce uvádí vyšší přesnost časové základny.

2 STANDARDNÍ NEJISTOTY MĚŘENÍ

Standardní nejistota měření komplexně definuje přesnost měření. S nejistotou měření vzniká interval, ve kterém se reálná (měřená) hodnota vyskytuje s určitou pravděpodobností [10],[11],[14].

Samotná nejistota měření se skládá z více částí a dělí se podle jejich zdrojů. Základem pro získání nejistoty je identifikace zdrojů nejistot. Za zdroj nejistoty se považuje cokoliv, co přímo nebo nepřímo ovlivní měřenou hodnotu. Může jít o metodu, rušivé vlivy, samotný přenos měřeného signálu, filtry, zaokrouhlení konstant, nevhodný rozsah vzorků, aproximace, nepřesnost referenčních zdrojů, změna vnějších vlivů atd. U každého zdroje je třeba si vyjádřit směrodatnou odchylku a pomocí zákona o šíření nejistot stanovit celkovou nejistotu. Nakonec je nutno určit interval, ve kterém se měřená hodnota pravděpodobně pohybuje [10],[11],[14].

Standardní nejistoty měření, jsou pomocí příručky GUM (Guide to the expression of uncertainty in measurement) [10] děleny do dvou základních skupin, nejistoty přímých a nepřímých měření. U obou typů se dále určuje nejistota typu A - $u_A(x)$ a nejistota typu B - $u_B(x)$, ze kterých se posléze určí kombinovaná nejistota $u_C(x)$ a rozšířená nejistota U(x) [10],[11],[14].

2.1 Nejistoty přímých měření

Při přímém měření je měřena veličina, u které jsou určovány dílčí složky nejistot. Určení nejistot přímého měření je jednoduší, než u nepřímého, protože se nemusí určovat a uvažovat vzájemné vazby mezi zdroji nejistot.

2.1.1 Nejistota typu A - $u_A(x)$

Jedná se o zpracování hodnot z přímého statistického výpočtu. Lze aplikovat jen na taková měření, která jsou provedena za neměnných podmínek. Takové hodnoty lze získat např. opakovaným přímým měřením. Pro určení nejistoty typu A se využívá statistické analýzy hodnot [10],[12],[14].

Určení nejistoty typu A se standardně provádí pomocí vzorce pro výpočet směrodatné odchylky odhadu výběrového souboru, vzorec č. (7). Tato reprezentace určení nejistoty typu A - $u_A(x)$, bude platná pouze za předpokladu, že *n* počet navzájem nezávislých měření je deset nebo více ($n \ge 10$) [10],[12],[14].

Vzorec pro výpočet aritmetického průměru *x*.

$$\bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j$$
 [-] (5)

Kde:

n - počet měření,

 x_j - hodnoty měření,

 \bar{x} - průměr ze všech měření.

Vzorec pro výpočet směrodatné odchylky výběrového souboru s(x).

$$s(x) = \sqrt{\frac{\sum_{j=1}^{n} \Delta_{xj}^{2}}{n-1}} = \sqrt{\frac{\sum_{j=1}^{n} (x_{j} - \bar{x})^{2}}{n-1}} \quad [-]$$
(6)

Kde: *n* - počet měření,

 x_i - hodnoty měření veličiny (x),

- \bar{x} průměr ze všech měřen veličiny (x),
- $s_{(x)}$ směrodatné odchylky odhadu výběrového souboru z hodnot veličiny (x).

Vzorec pro výpočet nejistoty typu A - $u_A(x)$, směrodatné odchylky odhadu výběrového souboru hodnot veličiny (\bar{x}).

$$u_A(\bar{x}) = s(\bar{x}) = \frac{s}{\sqrt{n}} = \sqrt{\frac{\sum_{j=1}^n (x_j - \bar{x})^2}{n(n-1)}} \qquad [-]$$
(7)

Kde: n - počet měření,

 x_i

S

- hodnoty měření veličiny (*x*),

 \bar{x} - průměr ze všech měření veličiny (x),

- směrodatná odchylka výběrového souboru,

 $s_{\bar{x}}$ - směrodatná odchylka odhadu výběrového souboru hodnot veličiny (\bar{x}),

 $u_A(x)$ - nejistota typu A - $u_A(x)$.

Vzorec č. (7) pro určení nejistoty typu A - $u_A(x)$ bude platný pouze, když je $n \ge 10$, jestliže bude n < 10, určí se nejistota typu A - $u_A(x)$ pomocí korekčního koeficientu k_s (hodnoty korekčního koeficientu se liší podle počtu provedených měření), kterým se vynásobí hodnota směrodatné odchylky odhadu výběrového souboru hodnot veličiny (\bar{x}) [10],[12],[14].

n	9	8	7	6	5	4	3	2
k_s	1,2	1,2	1,3	1,3	1,4	1,7	2,3	7,0

Tab. č. 6: Hodnoty korekčního koeficientu k_s [10]

2.1.2 Nejistota typu B - $u_B(x)$

Jedná se o zpracování hodnot jiným než statistickým způsobem. Nejistota typu B - $u_B(x)$ se určuje odhadem ze všech známých zdrojů nejistot. Je tedy závislá na úsudku obsluhy, množství a přesnosti informací o zdrojích nejistot. Tyto informace lze získat např. doporučením od výrobce, doporučením specialistů nebo manuálem k měřicím přístrojům. Musí se zde zahrnout i vnější vlivy, vlivy kabelů, uložení snímače, vliv

konstant atd. Přesnost závisí především na množství a přesnosti získaných informací [10],[12],[14].

Výpočet nejistoty typu B se provede na základě maximální odchylky dílčích nejistot jednotlivých zdrojů $u_{Bzj}(x)$. [10],[12],[14].

Vzorec pro výpočet maximální odchylky jednotlivých zdrojů nejistot $u_{Bz_{iMAX}}(x)$.

$$u_{Bz_{jMAX}}(x) = \frac{z_{jMAX}}{k} \qquad [-] \tag{8}$$

Kde: z_{jMAX} k

- koeficient rozdělení pravděpodobností,

- maximální odchylka j-tého zdroje,

 $u_{Bz_{jMAX}}(x)$ - dílčí nejistota typu B j-tého zdroje odhadu veličiny (x).

Odchylka má vysokou pravděpodobnost v okolí zdroje nejistoty [14].

- normální
- trojúhelníkové
- lichoběžníkové
- rovnoměrné

Odchylka má vysokou pravděpodobnost v okolí mezních hodnot [14].

- bimodální (trojúhelníkové)
- bimodální (Diracovo)

Obr. č. 9: Rozdělení pravděpodobností s koeficienty k. Převzat z [12].

Výsledná hodnota nejistoty typu $B - u_B(x)$ se určí výpočtem pro celkové hodnoty nejistoty typu $B - u_B(x)$.

Vzorec pro výpočet celkové nejistoty $B - u_B(x)$.

$$u_{B}(x) = \sqrt{\sum_{j=1}^{p} A_{j}^{2} u_{Bz_{jMAX}}(x)^{2}} \quad [-]$$
Kde:
$$P \qquad - \text{počet zdrojů,} \\ A_{j} \qquad - \text{součinitel citlivosti zdrojů j-tého zdroje, viz vzorec č. (10),}$$
(9)

 $u_{Bz_{iMAX}}(x)$ - dílčí standardní nejistota typu B j-tého zdroje odhadu veličiny (x),

 $u_B(x)$ - celková nejistota typu B odhadu veličiny (x).

Vzorec pro výpočet součinitele citlivosti j-tého zdroje Aj.

$$A_j = \frac{\partial f(X_1, X_2 \dots X_n)}{\partial X_j} \qquad [-] \tag{10}$$

Kde: X_i - vstupní veličina indexu j,

 X_n - vstupní veličina,

 A_j - součinitel citlivosti.

2.1.3 Kombinovaná nejistota - $u_C(x)$

Kombinovaná nejistota je spojením nejistoty typu A a typu B. Výpočet pro určení kombinované nejistoty vyjadřuje zákon o šíření nejistot [10],[11],[14]. Vzorec pro výpočet kombinované nejistoty $u_C(x)$.

$$u_c(x) = \sqrt{u_A^2(x) + u_B^2(x)} \quad [-]$$
(11)

Kde: $u_A(x)$ - celková nejistota typu A odhadu veličiny (x),

 $u_B(x)$ - celková nejistota typu B odhadu veličiny (x),

 $u_c(x)$ - kombinovaná nejistota odhadu veličiny (x).

Když je $u_A(x) >> u_B(x)$, při měření jsou dominantní náhodné vlivy, které ho negativně ovlivňují, jestliže je $u_A(x) \le u_B(x)$, při měření jsou dominantní vlivy typu B, to vypovídá o nevhodně zvoleném systému měření (postup, přístroje, metoda atd.) [10],[11],[14].

2.1.4 Rozšířená nejistota – U(x)

Při výpočtech nejistot typu $u_A(x), u_B(x)$ a $u_C(x)$ je určeno, že reálná hodnota leží v daném intervalu s pravděpodobností 68%. Rozšířená nejistota U(x) rozšířuje hodnotu kombinované nejistoty $u_C(x)$ koeficientem rozšíření k_r . Vynásobením koeficientem k_r je zvýšena pravděpodobnost výskytu hodnoty v intervalu. Nejčastěji se používá $k_r = 2$, což odpovídá pravděpodobnosti 95% [10],[11],[14].

Vzorec pro výpočet rozšířené nejistoty U(x).

$$U = k_r u_c(x) \qquad [-] \tag{12}$$

Kde:
$$u_C(x)$$
- kombinovaná nejistota odhadu veličiny (x), k_r - koeficient rozšíření, $U(x)$ - rozšířená nejistota odhadu veličiny (x).

2.2 Nejistoty nepřímých měření

Výstupní veličinu nelze přímo měřit, proto je měřena vstupní veličina. Ze vstupní veličiny se výstupní veličina určí pomocí přepočtu vzorcem, který vyplývá z fyzikální závislosti veličin [10],[13],[14].

Vzorec pro výpočet odhadu výstupních veličin y(x).

$$y(x) = f(x_1, x_2 \dots x_n)$$
 [-] (13)

Kde: f - známá funkce odhadů veličin x, x_n - odhad vstupní veličiny X, y(x) - odhad výstupní veličiny (x).

$$Y(x) = f(X_1, X_2 \dots X_n) \quad [-]$$
(14)

Kde: f - známá funkce vstupních veličin X, X_n - měřená vstupní veličina, Y(x) - výstupní veličina odhadu veličiny (x).

Vzorec pro výpočet celkové nejistoty u(y), při navzájem nezávislých vstupních veličinách.

$$u(y) = \sqrt{\sum_{j=1}^{p} A_j^2 u_j(x)^2} \quad [-]$$
(15)

Kde: P

počet zdrojů,

 A_j - součinitel citlivost j-tého zdroje viz vzorec č. (10),

 $u_j(x)$ - nejistota odhadu vstupních veličin (x),

u(y) - nejistota odhadu výstupních veličin (x).

Vzorec pro výpočet celkové nejistoty *u*(*y*), při navzájem závislých vstupních veličinách.

$$u^{2}(y) = \sum_{i=1}^{n} A_{i}^{2} u^{2}(x)_{i} + 2 \sum_{i=2}^{n} \sum_{j < i}^{n-1} A_{i} A_{j} u(x_{i}, x_{j}) \quad [-]$$
(16)
Kde: A_{i} - součinitel citlivost i-tého zdroje viz vzorec č. (10),
 $u(x)_{j}$ - nejistota odhadu vstupní veličiny (x_{j}) ,
 A_{j} - součinitel citlivost j-tého zdroje viz vzorec č. (10),
 $u(y)$ - celková nejistota odhadu výstupní veličiny (x) ,
 $u(x_{i}, x_{j})$ - navzájem závislá korelační vazba mezi prvky (x_{i}, x_{j}) .

V některých situacích je výhodnější variantou použít zvlášť metodu A a metodu B respektive použít pro výpočet vzorec kombinované nejistoty vzorec č. (11) [10],[13],[14].

2.2.1 Výpočet kovariance

Kovariance (korelační vazba) mezi zdroji nejistot určuje, jakou mezi sebou tyto zdroje mají vzájemnou vazbu, zda se ovlivňují a zda se jejich dílčí nejistoty slučují nebo vylučují. Tyto vazby mohou celkovou nejistotu snížit nebo naopak zvýšit. Korelační vazby se určují metodou typu A (statisticky) a metodou typu B [10],[13],[14].

2.2.2 Kovariance zdrojů - metoda typu A

Zjišťování kovariance pomocí metody typu A je použito tehdy, když je k dispozici soubor n hodnot měření (dvou vstupních veličin nejistot). Z těchto hodnot jsou sestaveny dva aritmetické průměry podle vzorce č. (5), tím jsou získány průměry i a j. Po dosazení průměrů do vzorce č. (17) je získána kovarianci metodou typu A [10],[13],[14].

Vzorec pro výpočet nejistoty kovariance metodou typu A.

$$u_{A}(x_{i}, x_{j}) = \frac{1}{n(n-1)} \sum_{k=1}^{n} (x_{ik} - \bar{x}_{i}) (x_{jk} - \bar{x}_{j}) \quad [-]$$
Kde: n - počet hodnot měření,
 x_{ik} - ik-tá hodnota odhadu prvního souboru hodnot,
 x_{jk} - jk-tá hodnota odhadu druhého souboru hodnot,
 $\bar{x}_{i}, \bar{x}_{j},$ - aritmetické průměry veličin $\bar{x}_{i}, \bar{x}_{j},$
 $u_{A}(x_{i}, x_{j})$ - kovariance nejistoty metoda typu A.

2.2.3 Kovariance zdrojů - metoda typu B

Pro určení kovariance typu B platí to stejné, jako u určení nejistoty typu B. Celý proces určení kovariance se lze seřadit do několika kroků. Prvním krokem je určení zdrojů kovariance. Poté se přichází na druhý krok a ten spočívá v odhadu korelačního koeficientu r mezi dvojicemi odhadů pro každý zdroj. Koeficient se pohybuje v intervalu (-1 až 1) s tím, že -1 a 1 je silná závislost a 0 značí slabou závislost [10],[13],[14].

Vzorec pro výpočet nejistoty metodou B za pomocí korelačního koeficientu.

$$u_B(x_i, x_j) = r(x_i, x_j)u_B(x_i)u_B(x_j) \quad [-]$$
(18)

Kde: $r(x_i, x_j)$ - korelační koeficient, $u_B(x_i)$ - odhad nejistoty typu B hodnot (x_i) , $u_B(x_j)$ - odhad nejistoty typu B hodnot (x_j) .

Odhady vstupních veličin x jsou navzájem nezávislé a dají se přepsat do tvaru $X_1 = g_1(Z_1, Z_2 \dots Z_n)$ a $X_2 = g_2(Z_1, Z_2 \dots Z_n)$. Výpočet kovariance bude vypadat následovně [10],[13],[14].

Vzorec pro výpočet kovariance metodou typu B při vzájemně nezávislých vstupních veličinách.

$$u_{B}(x_{1}, x_{2}) = \sum_{i=1}^{n} A_{1i} A_{2i} u_{B}^{2}(z_{i}) \qquad [-] \qquad (19)$$
Kde: n - počet hodnot měření,
 A_{1i} - koeficient citlivosti funkce g_{I} viz vzorec č. (10),
 A_{2i} - koeficient citlivosti funkce g_{2} viz vzorec č. (10),
 $u_{B}(z_{i})$ - odhad nejistoty typu B hodnot z_{i} ,
 $u_{B}(x_{1}, x_{2})$ - odhad nejistoty typu B hodnot (x_{I}, x_{2}) .

Odhady vstupních veličin x jsou navzájem závislé veličiny a dají se přepsat do tvaru $X_1 = g_1(Z_1, Z_2 \dots Z_n)$ a $X_2 = g_2(Z_1, Z_2 \dots Z_n)$. Výpočet kovariance bude vypadat následovně [10],[13],[14].

Vzorec pro výpočet kovariance metodou typu B při vzájemně závislých vstupních veličinách.

$$u_{B}(x_{1}, x_{2}) = \sum_{i=1}^{n} A_{1i}A_{2u}u_{B}^{2}(z_{i}) + 2\sum_{i=1}^{n}\sum_{j=1, j\neq i}^{n} A_{1i}A_{2j}u_{B}(z_{i}, z_{j}) \quad [-]$$
(20)
Kde: A_{1i} - koeficient citlivosti funkce g_{1} viz vzorec č. (10),
 A_{2i} - koeficient citlivosti funkce g_{2} viz vzorec č. (10),
 $u_{B}(z_{i})$ - odhad nejistoty typu B hodnot,
 $u_{B}(z_{i}, z_{j})$ - odhad nejistoty typu B hodnot (z_{i}, z_{j}) ,
 $u_{B}(x_{1}, x_{2})$ - odhad nejistoty typu B hodnot (x_{1}, x_{2}) .

Jestliže není k dispozici dostatek informací k určení korelačního členu, je možné určit tzv. horní hranici výsledné nejistoty z některé ze vstupních veličin. Dále se s nejistotou nepřímých měření pracuje stejně jako u přímých měření. Určí se kombinovaná nejistota $u_c(x)$ a rozšířená nejistota U(x) viz kapitola 2.1.3 a 2.1.4. [10],[13],[14].

2.3 Formální uvádění nejistot měření

Výsledek nejistoty měření se zpravidla uvádí jako dvousložková hodnota. První parametr x je parametr polohy a druhý je parametr rozšířené nejistoty U(x). Je také potřeba uvést povinné rozšiřující údaje např. komentářem [7].

Například: Uvedená rozšířená nejistota měření je součtem standardní nejistoty typu A a standardní nejistoty typu B, vynásobená koeficientem rozšíření k = 2 při normálovém rozdělení z důvodu dosažení pravděpodobnosti výsledku 95%.

Výsledek bude uveden v podobě zápisu $X = x \pm U(x)$ [-], jednotky se uvádí podle toho, k jaké fyzikální veličině je nejistota vztažená. Nejistoty se obvykle zaokrouhlí na 1 platnou číslici a vždy nahoru. V případě, že první platná číslice má hodnotu 1 nebo 2, povoluje se zaokrouhlení na dvě platné číslice, taktéž vždy nahoru. Nemá smysl uvádět cíleně nižší hodnotu nejistoty. Zaokrouhlení je provedeno pouze tehdy, když se s výsledkem nejistoty dále matematicky nepracuje [10],[14].

Další možností přehledného a doporučovaného zápisu standardní nejistoty bývá tzv. bilanční tabulka, používaná převážně u nejistot nepřímých měření, kde je patrný příspěvek jednotlivých nejistot vstupních veličin k rozšířené nejistotě U(x)[10],[14].

Veličina X _q	Odhad x _q	Standardní nejistota u _q (x)	Typ rozdělení	Koeficient citlivost A_q	Příspěvek ke standardní nejistotě u _q (y)
X_I	\bar{x}_1	$u_q(\bar{x}_1)$		$A_q(\bar{x}_1)$	$u_1(y)$
X_2	\bar{x}_2	$u_q(\bar{x}_2)$		$A_q(\bar{x}_2)$	$u_2(y)$
:	:	:		:	:
X_q	$\bar{x_q}$	$u_q(\bar{x}_q)$		$A_q(\bar{x}_q)$	$u_q(y)$

Tab. č. 7: Příklad bilanční tabulky [12]

Vzorec pro příspěvek ke standardní nejistotě $u_q(y)$.

$$u_q(y) = A_q u_q(x)$$
 [-] (21)

Kde: A_q - koeficient citlivosti viz vzorec č. (10), $u_q(x)$ - standardní nejistota $u_q(x)$,

uq(y) - příspěvek ke standardní nejistotě.
 Poznámka: index q vychází ze symboliky v Tab. č. 7

Standardní nejistota měření se váže přímo k výsledku a určuje interval pravděpodobnosti hodnoty. Musí se rozlišovat mezi jednotlivými nejistotami měření, zda jde o nejistotu typu A nebo typu B nebo kombinovanou nejistotu $u_c(x)$. U rozšířené nejistoty U(x) je povinnost uvést koeficient rozšíření k_r . Při zaokrouhlování nejistot se volí zaokrouhlení na 1 platnou číslici. Pro názornost je uveden Obr. č. 10, který znázorňuje vzniklý interval výpočtu nejistot[10],[14].

Obr. č. 10: Znázornění intervalu nejistoty výsledku.

3 MODEL MĚŘENÍ A URČENÍ STANDARDNÍCH NEJISTOT KRÁTKODOBÉ STABILITY KMITOČTU

Z teorie uvedené v předchozích kapitolách je sestaven model měření a metodický postup pro vyhodnocení standardních nejistot krátkodobé stability kmitočtu.

3.1 Model měření krátkodobé stability kmitočtu

V kapitole 1.2 je rozebrán technický údaj nazývaný kmitočtová stabilita. Tu lze vypočítat pomocí absolutní změny Δf , vztažené ke střední (jmenovité) hodnotě kmitočtu $f_{střed}$, uvažované ve zvoleném časovém intervalu Δt . Model měření k určení frekvenční stability kmitočtu je uveden ve vzorci č. (22).

Vzorec pro výpočet frekvenční stability kmitočtu f_{stab} .

$$f_{stab} = \frac{f_{max} - f_{min}}{f_{střed}} \frac{1}{\Delta t}$$
[Hz]
Kde: f_{stab} - kmitočtová stabilita,
 f_{max} - maximální měření frekvence,
 f_{min} - minimální měření frekvence,
 $f_{střed}$ - střední (jmenovitá) měření frekvence,
 Δt - časový interval měření.
(22)

Pro měření je použit univerzální čítač Agilent 53131A [7], umožňující měření přímo f_{max} , f_{min} , $f_{střed}$ a přesné nastavení Δt např. pomocí doby otevření hradla, počtu měření nebo ručním spuštěním.

Univerzální čítač Agilent 53131A umožňuje pomocí nastavení otevření hradla (gate time) s kombinací vnitřní matematické funkce *Stat* (statistika), nastavit čas Δt intervalu měření. Doba otevření hradla je nastavena na 1 sekundu a funkce *Stat* na snímání 60 vzorků, tím vznikl interval dlouhý 1 minutu ($\Delta t = 60$ s). Po uplynutí intervalu Δt matematická funkce *Stat* zobrazí průměry 60 vzorků snímaných frekvencí f_{max} , f_{min} , $f_{střed}$. Interval 60 sekund je zvolen tak, aby vyhovoval intervalu měření krátkodobé stability kmitočtu, pro který musí být čas měření nižší než 100 sekund.

Měření je provedeno a zaznamenáno 10x po sobě, protože pro určení nejistoty typu A není potřeba vypočtenou směrodatnou odchylku násobit korekčním koeficientem k_s .

Samotné měření je provedeno v laboratorních podmínkách a před započetím měření jsou přístroje zapnuty 30 minut předem. Tím se eliminuje teplotní závislost

vnitřních součástek. Seznam měřících přístrojů, které budou použity při měření, je uveden v Tab. č. 8.

Použitý přístroj	Název	Výrobní číslo
Funkční generátor	Agilent 33220A	SAP: 31253/8-0 1009 70283625
Funkční generátor	Hung Chang G305	SAP: 309586-0 1009 70001050
Funkční generátor	Newtronics 200MSP	SAP: 950972-0 1017 70001165
Univerzální čítač	Agilent 53131A	21735

Tab. č. 8: Použité měřicí přístroje

3.1.1 Univerzální čítač Agilent 53131A

Univerzální čítač Agilent 53131A nabízí uživateli mnoho funkcí a rozšíření. Používá technologii zpracování digitálního signálu v reálném čase, to umožňuje velice přesné a rychlé měření žádané veličiny. Umožňuje měření statistiky, minimální, maximální a střední hodnoty, měření v limitních intervalech, měření frekvence, periody, náběžných a sestupných hran, nastavování citlivosti spuštění atd. Pro komunikaci s počítačem je možné použít rozhraní GPIB, SCPI, RS-232. Přední panel čítače je zobrazen na Obr. č. 11 [7].

Obr. č. 11: Univerzální čítač 53131A.

Frakvanční rozenhy	DC	DC to 225 MHz		
Frekvenchi fozsany		1 MHz to 225 MHz (50 Ω)		
	AC	30 Hz to 225 MHz (1 MΩ)		
	DC to 100 MHz	$20 \text{ mV}_{\text{rms}}$ to $\pm 5 \text{ V}$ ac + dc		
Napěťová citlivost (Sinus)	(100-200) MHz	$30 \text{ mV}_{\text{rms}}$ to $\pm 5 \text{ V}$ ac + dc		
	(200-225) MHz	40 mV _{rms} to \pm 5 V ac + dc		
Napěťová citlivost (Pulsy)	4.5 ns to 10 ns	100 mV_{pp} to 10 V_{pp}		
	>10 ns	50 mV _{pp} to 10 V _{pp}		
	Rozsah	± 5.125 V		
Úroveň triggeru	Přesnost	\pm (15 mV + 1% of trigger level)		
	Rozlišení	5 mV		
Impedance	1 ΜΩ, 50 Ω			
Pracovní rozsah teplot	0° C to 55° C			
Rozměry	88.5 mm x 212.6 mm x 348.3 mm			
Hmotnost	3,5 kg			
Rozhraní	GPIB, SCPI, RS-232			

Tab. č. 9: Sledované technické parametry univerzálního čítače Agilent 53131A [7]

3.2 Postup určení standardních nejistot krátkodobé stability kmitočtu

V této kapitole je obecná teorie standardních nejistot měření z kapitoly 2 aplikována na nepřímé měření krátkodobé stability kmitočtu. Vznikne matematický model pro určení kombinované nejistoty $u_c(\bar{f}_{stab})$.

3.2.1 Určení nejistoty typu A

Pro výpočet nejistoty typu A, je třeba určit aritmetické průměry naměřených měřených hodnot f_{max} , f_{min} , $f_{střed}$ viz vzorce č. (23).

Vzorce pro výpočet aritmetického průměru (odhadů) \bar{f}_{max} , \bar{f}_{min} , $\bar{f}_{střed}$.

$$\bar{f}_{max} = \frac{1}{n} \sum_{j=1}^{n} f_{max} \; ; \; \bar{f}_{min} = \frac{1}{n} \sum_{j=1}^{n} f_{min} \; ; \; \bar{f}_{st \check{r}ed} = \frac{1}{n} \sum_{j=1}^{n} f_{st \check{r}ed} \qquad [\text{Hz}]$$
(23)

Kde: n

n	- počet měření,
fmax ,fmin, fstřed	- hodnoty měření f_{max} , f_{min} , $f_{st \check{r} ed}$,
$f_{max}, f_{min}, f_{st \check{r} e d}$	- aritmetické průměry (odhady) \bar{f}_{max} , \bar{f}_{min} , $\bar{f}_{střed}$.

Získané odhady veličin \bar{f}_{max} , \bar{f}_{min} , $\bar{f}_{střed}$ jsou dosazeny společně s naměřenými hodnotami f_{max} , f_{min} , $f_{střed}$ do vzorce pro směrodatnou odchylku, která reprezentuje nejistotu typu A u měřených frekvencí zvlášť viz vzorce č. (24).

Vzorce pro výpočet směrodatné odchylky (nejistoty typu A) $u_A(\bar{f}_{min}), u_A(\bar{f}_{max}), u_A(\bar{f}_{min}) = \sqrt{\frac{\sum_{j=1}^n (f_{min} - \bar{f}_{min})^2}{n(n-1)}}, u_A(\bar{f}_{max}) = \sqrt{\frac{\sum_{j=1}^n (f_{max} - \bar{f}_{max})^2}{n(n-1)}},$ [Hz] (24) $u_A(\bar{f}_{střed}) = \sqrt{\frac{\sum_{j=1}^n (f_{střed} - \bar{f}_{střed})^2}{n(n-1)}}$ Kde: $n - počet měření, - hodnoty měření f_{min}, f_{max}, f_{střed}, - hodnoty měření f_{min}, f_{max}, \bar{f}_{střed}, - aritmetické průměry <math>\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$ viz vzorce č. (23), $u_A(\bar{f}_{min}), u_A(\bar{f}_{max}), u_A(\bar{f}_{střed}) - nejistota typu A odhadu veličin <math>\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}.$

3.2.2 Určení nejistoty typu B

Kde:

Jedná se o nepřímé měření stability kmitočtu a jediným zdrojem nejistoty je univerzální čítač Agilent 53131A, proto je určována pouze jedna maximální odchylka zdroje z_{MAX} pro dílčí odhady frekvencí \overline{f}_{max} , \overline{f}_{min} , $\overline{f}_{střed}$, viz vzorce č. (25).

Vzorce pro výpočet nejistoty typu B maximální odchylky zdroje $u_B(\bar{f}_{min}), u_B(\bar{f}_{max}), u_B(\bar{f}_{střed}).$

$$u_B(\bar{f}_{min}) = \frac{z_{MAX}(\bar{f}_{min})}{k}, u_B(\bar{f}_{max}) = \frac{z_{MAX}(\bar{f}_{max})}{k}, u_B(\bar{f}_{st \check{r}ed}) = \frac{z_{MAX}(\bar{f}_{st \check{r}ed})}{k}$$
[Hz] (25)

k	- koeficient rozdělení, podle kterého se
	zdroj nejistot řídí, viz Obr. č. 9 $k = \sqrt{3}$,
$Z_{MAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st \check{r}ed})$	- maximální odchylka zdroje pro $ar{f}_{max},ar{f}_{min},$
	$\bar{f}_{st {r}ed}$, viz vzorec č. (26),
$u_B(\bar{f}_{min}), u_B(\bar{f}_{max}), u_B(\bar{f}_{st \check{r} ed})$	 výpočet nejistoty typu B maximální
,	odchylky zdroje $u_B(\bar{f}_{min}), u_B(\bar{f}_{max}),$
	$u_B(\bar{f}_{st \check{r} ed}).$

Z důvodů vyšší přehlednosti vzorce č. (26) z_{MAX} je rozdělen na z_{AMAX} a z_{BMAX} , tento vzorec je převzat z technické dokumentace k univerzálnímu čítači Agilent 53131A [7], slouží jako předpis k určení maximální odchylky zdroje z_{MAX} .

Jsou v něm zahrnuty chyby vzniklé vnitřní strukturou čítače, které nelze nijak eliminovat a výrobce je povinen takový předpis výpočtu uvést. Hodnoty parametrů se nachází nejčastěji v tabulkách uvnitř technické dokumentace k přístroji [7].

Vzorce pro výpočet maximální odchylky zdroje
$$Z_{MAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed})$$
.
 $Z_{AMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}) = Frekvence \left[\left(\pm TimeBaseError \pm \frac{t_{acc}}{GateTime} \right) \right]$

$$Z_{BMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed}) = Frekvence\left[\pm 2\left(\frac{4\sqrt{t_{res}^2 + (2TriggerError^2)}}{GateTime \cdot \sqrt{NumberofSamples}} + \frac{t_{jitter}}{GateTime}\right)\right]$$

$$Z_{MAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\text{``ed}}) = Z_{AMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\text{``ed}}) + Z_{BMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\text{``ed}}) \quad [\text{Hz}] \quad (26)$$

Kde:	Frekvence TimeBaseError GateTime TriggerError NumberofSample	- postupně dosazujeme hodnoty odhadů $\overline{f}_{max}, \overline{f}_{min}, \overline{f}_{střed},$ - chyba časové základny se skládá z: $\frac{\Delta f}{f} Aging rate + \frac{\Delta f}{f} Temperature + \frac{\Delta f}{f} Line voltage [15]$ Aging date - hodnota kalibrace $3 \cdot 10^{-7} \cdot 12$ měsíců [7], Temperature - $5 \cdot 10^{-6} \cdot \frac{22^{\circ}}{50^{\circ}}$ viz [7], Line voltage - zvlnění síť. napětí (zanedbáme, viz [7]), - otevření hradla čítače (nastaveno 1 s, viz kapitola 3.1), - chyba spouštění (můžeme zanedbat, viz [7]), - počet vzorků při jednom měření: Gate time · Frekvence (Frekvence < 200 kHz), Gate time · 200.000 (Frekvence > 200 kHz).
	t _{jitter} t _{acc} t _{res}	 časová nejistota šumu (50ps, viz [7]), doba náběhu signálu (volím nejhorší případ 300ps, viz [7]), čas kvantovacího kroku (500ps, viz [7]).

Po určení nejistoty typu B maximální odchylky zdroje pro odhady veličin $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$ viz vzorce č. (25) jsou dosazeny získané hodnoty nejistoty typu A, a typu B pro odhady veličin $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$ do vzorce pro určení kombinované nejistoty, viz vzorce č. (27).

Vzorce pro výpočet kombinované nejistoty
$$u_C(\bar{f}_{min}), u_C(\bar{f}_{střed}), u_C(\bar{f}_{max})$$

 $u_c(\bar{f}_{min}) = \sqrt{u_A^2(\bar{f}_{min}) + u_B^2(\bar{f}_{min}), u_C(\bar{f}_{max})} = \sqrt{u_A^2(\bar{f}_{max}) + u_B^2(\bar{f}_{max})},$
 $u_c(\bar{f}_{střed}) = \sqrt{u_A^2(\bar{f}_{střed}) + u_B^2(\bar{f}_{střed})}$
[Hz] (27)

Kde:
$$u_A(\bar{f}_{min}), u_A(\bar{f}_{st\check{r}ed}), u_A(\bar{f}_{max})$$
 - celková nejistota typu A odhadu
veličiny $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed},$
- celková nejistota typu B odhadu
veličiny
 $u_B(\bar{f}_{max}), u_B(\bar{f}_{st\check{r}ed}), u_B(\bar{f}_{max})$ - celková nejistota typu B odhadu
veličiny
 $u_C(\bar{f}_{min}), u_C(\bar{f}_{st\check{r}ed}), u_C(\bar{f}_{max})$ - kombinovaná nejistota odhadu
veličiny $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed},$
- kombinovaná nejistota odhadu
veličiny $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed},$

Jedná se o nepřímé měření stability kmitočtu s jediným zdrojem nejistoty, a to univerzálním čítačem Agilent 53131A. Korelační vazba mezi jednotlivými měřeními je velmi silná (pouze jeden zdroj nejistot), proto korelační koeficient r bude roven 1, viz (18) a kapitola 2.2. Tím se celý výpočet poněkud zkomplikuje a je použit vzorec č. vzorec č. (20), respektive vzorec č. (28).

Vzorec pro určení kombinované nejistoty $u_c(\bar{f}_{stab})$

$$u_{c}^{2}(\bar{f}_{stab}) = \bar{A}_{max}^{2}u_{c}^{2}(\bar{f}_{max}) + \bar{A}_{min}^{2}u_{c}^{2}(\bar{f}_{min}) + \bar{A}_{st\bar{r}ed}^{2}u_{c}^{2}(\bar{f}_{st\bar{r}ed}) + +2 \bar{A}_{max}\bar{A}_{min}u_{c}(\bar{f}_{max})u_{c}(\bar{f}_{min}) + +2 \bar{A}_{min}\bar{A}_{st\bar{r}ed}u_{c}(\bar{f}_{min})u_{c}(\bar{f}_{st\bar{r}ed}) + +2 \bar{A}_{st\bar{r}ed}\bar{A}_{max}u_{c}(\bar{f}_{st\bar{r}ed})u_{c}(\bar{f}_{max})$$
[Hz] (28)

Kde:
$$\bar{A}_{max}, \bar{A}_{min}, \bar{A}_{střed}$$
 - koeficient citlivosti pro odhady veličin $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$
viz vzorce č. (29),(30), (31),
 $u_c(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed})$ - části kombinov, nejistot pro odhady veličin $\bar{f}_{max}, \bar{f}_{min}$

$$u_c(f_{max}, f_{min}, f_{střed})$$
 - casti kombinov. nejistot pro odnady vencin $f_{max}, f_{min}, f_{střed},$
 $u_c^2(\bar{f}_{stab})$ - celková kombinovaná nejistota odhadu stability kmitočtu $u_B(\bar{f}_{stab})$.

nitočtu
$$u_B(f_{stab})$$
.

Citlivostní koeficienty $\bar{A}_{fmax}, \bar{A}_{fmin}, \bar{A}_{fstřed}$ jsou získány parciálním derivováním modelu měření vzorce č. (22) podle jednotlivých veličin odhadů frekvencí $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st \check{r} ed}$, interval délky měření Δt je brán jako konstanta, protože parametr (27). Jednotlivé výpočty parciálních derivací GateTime je zahrnut ve vzorci č. citlivostních koeficientů $\bar{A}_{f_{max}}, \bar{A}_{f_{min}}, \bar{A}_{f_{střed}}$ jsou uvedeny ve vzorcích č.(29),(30), (31).

Vzorce pro výpočet citlivostních koeficientů $\bar{A}_{fmax}, \bar{A}_{fmin}$ a $\bar{A}_{fstřed}$

$$\bar{A}_{f_{max}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min}}{\bar{f}_{st\check{r}ed}}\frac{1}{\Delta t}\right)}{\partial \bar{f}_{max}} = \frac{1}{\bar{f}_{st\check{r}ed}}\frac{1}{\Delta t} \qquad [-]$$

$$Kde: \quad \bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed} \quad - \text{ odhady naměřených frekvencí } \bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed},$$

$$\Delta t \qquad - \text{ interval délky odečtu hodnot } f_{max}, f_{min}, f_{st\check{r}ed}$$

$$(v \text{ sekundách}),$$

$$\bar{A}_{f_{min}} \qquad - \text{ koeficient citlivosti pro odhad veličiny } \bar{f}_{max}.$$

$$(29)$$

$$\bar{A}_{f_{min}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min}}{\bar{f}_{st\bar{r}ed}}\frac{1}{\Delta t}\right)}{\partial \bar{f}_{min}} = -\frac{1}{\bar{f}_{st\bar{r}ed}}\frac{1}{\Delta t} \qquad [-]$$

$$Kde: \quad \bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\bar{r}ed} \quad - \text{ odhady naměřených frekvencí } \bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\bar{r}ed},$$

$$\Delta t \qquad - \text{ interval délky odečtu hodnot } f_{max}, f_{min}, f_{st\bar{r}ed}$$

$$(v \text{ sekundách}),$$

$$\bar{A}_{f_{min}} \qquad - \text{ koeficient citlivosti pro odhad veličiny } \bar{f}_{min}.$$

$$(30)$$

$$\bar{A}_{f_{střed}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min}}{\bar{f}_{střed}}\frac{1}{\Delta t}\right)}{\partial \bar{f}_{střed}} = \frac{\bar{f}_{max} - \bar{f}_{min}}{\bar{f}_{střed}}\frac{1}{\Delta t} \qquad [-]$$
Kde:
$$\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed} - \text{odhady naměřených frekvencí } \bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed},$$
 Δt

$$- \text{ interval délky odečtu hodnot } f_{max}, f_{min}, f_{střed},$$
(31)
 Δt

$$- \text{ interval délky odečtu hodnot } f_{max}, f_{min}, f_{střed},$$
 Δt

$$- \text{ interval délky odečtu hodnot } f_{max}, f_{min}, f_{střed},$$
 Δt

$$- \text{ koeficient citlivosti pro odhad veličiny } \bar{f}_{střed}.$$

Rozšířená nejistota $U(\bar{f}_{stab})$ je získána dosazením kombinované nejistoty $u_c(\bar{f}_{stab})$ ze vzorce č. (28) a vynásobením koeficientem k_r . Koeficient k_r je zvolen 2 pro získání pravděpodobnosti výskytu reálné hodnoty odhadu veličiny \bar{f}_{stab} ve vzniklém intervalu rovné 95 %.

Vzorec pro výpočet rozšířené nejistoty $U(\bar{f}_{stab})$.

$$\pm U(\bar{f}_{stab}) = k_r u_c(\bar{f}_{stab}) \qquad [Hz]$$
Kde: $u_c(\bar{f}_{stab})$ - kombinovaná nejistota odhadu veličiny (\bar{f}_{stab}) ,
 k_r - koeficient rozšíření $k_r = 2$,
 $U(\bar{f}_{stab})$ - rozšířená nejistota odhadu veličiny (\bar{f}_{stab}) .
(32)

4 REALIZACE MĚŘENÍ A VÝPOČET STANDARDNÍCH NEJISTOT KRÁTKODOBÉ STABILITY KMITOČTU

Měření je realizováno na univerzálním čítači Agilent 53131A dle kapitoly 3.1. Jsou měřeny tři funkční generátory uvedené v kapitole 1.3, vždy pro tři hodnoty kmitočtu (maximální, minimální a kmitočet 1 kHz). Hodnoty krajních rozsahů generátorů jsou zvoleny tak, aby bylo možné diskutovat stabilitu kmitočtu v krajních (kritických) hodnotách. Měření na kmitočtu 1000 Hz je zvoleno kvůli možnosti porovnání jednotlivých funkčních generátorů mezi sebou (každý má jiné frekvenční rozsahy).

Minimální měřený frekvenční rozsah pro univerzální čítač Agilent 53131A je 30 Hz viz Tab. č. 9. Z tohoto důvodu není možné měřit nižší frekvenční rozsahy, i když to všechny použité funkční generátory umožňují. Teplota v laboratoři se při experimentu pohybovala stabilně 22 ± 0.5 °C.

4.1 Tabulky naměřených hodnot krátkodobé stability kmitočtu

V této kapitole je uvedena pouze tabulka naměřených hodnot krátkodobé stability kmitočtu pro funkční generátor Agilent 33220A pro kmitočet 1000 Hz. Zbylé tabulky naměřených hodnot krátkodobé frekvenční stability jsou uvedeny jako přílohy, viz Seznam příloh.

Měření č.	<i>f_{min}</i> [Hz]	<i>f_{střed}</i> [Hz]	f _{max} [Hz]
1	999,989 8834	999,989 8947	999,989 9168
2	999,989 8508	999,989 8395	999,989 8698
3	999,989 7576	999,989 7987	999,989 8253
4	999,989 7612	999,989 7874	999,989 8091
5	999,989 7278	999,989 7441	999,989 7677
6	999,989 6725	999,989 7100	999,989 7280
7	999,989 6582	999,989 6749	999,989 6931
8	999,989 6571	999,989 6818	999,989 6993
9	999,989 6389	999,989 6847	999,989 7129
10	999,989 6303	999,989 6639	999,989 6878

Tab. č. 10: Měření krátkodobé frekvenční stability funkčního generátoru Agilent 33220A (1 kHz)

4.2 Vzor výpočtu standardních nejistot krátkodobé stability kmitočtu

Vzor výpočtu je uveden pro měření krátkodobé stability kmitočtu funkčního generátoru Agilent 33220A při frekvenci 1000 Hz, viz Tab. č. 10. Pro určení standardních nejistot je dosazeno do modelu měření, viz kapitola 3.2.

4.2.1 Určení nejistoty typu A

Pro výpočet nejistoty typu A je nutno dosadit naměřené hodnoty frekvencí f_{max} , f_{min} , $f_{střed}$ do vzorce č. (23).

Výpočet aritmetického průměru (odhadů)
$$\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}.$$

 $\bar{f}_{max} = \frac{1}{n} \sum_{j=1}^{n} f_{max} =$
 $= \frac{1}{10} \sum_{j=1}^{10} 999,9899168 + \dots + 999,9896878 = 999,9897710 Hz$
 $\bar{f}_{min} = \frac{1}{n} \sum_{j=1}^{n} f_{min} =$
 $= \frac{1}{10} \sum_{j=1}^{10} 999,9898834 + \dots + 999,9897238 = 999,9897238 Hz$
 $\bar{f}_{střed} = \frac{1}{n} \sum_{j=1}^{n} f_{střed} =$
 $= \frac{1}{10} \sum_{j=1}^{10} 999,9898947 + \dots + 999,9896639 = 999,9897480 Hz$

Získané odhady veličin \bar{f}_{max} , \bar{f}_{min} , $\bar{f}_{st \check{r}ed}$ jsou dosazeny společně s naměřenými hodnotami f_{max} , f_{min} , $f_{st \check{r}ed}$ do vzorce č. (24).

Výpočet směrodatné odchylky (nejistoty typu A)
$$u_A(\bar{f}_{min}), u_A(\bar{f}_{max}), u_A(\bar{f}_{střed}).$$

 $u_A(\bar{f}_{min}) = \sqrt{\frac{\sum_{j=1}^n (f_{min} - \bar{f}_{min})^2}{n(n-1)}} =$
 $= \sqrt{\frac{\sum_{j=1}^{10} (999,9898834 - 999,9897238)^2 + \dots + (999,9897238 - 999,9897238)^2}{10(10-1)}} = 2,8184 \cdot 10^{-5} Hz$
 $u_A(\bar{f}_{max}) = \sqrt{\frac{\sum_{j=1}^n (f_{max} - \bar{f}_{max})^2}{n(n-1)}} =$
 $= \sqrt{\frac{\sum_{j=1}^{10} (999,9899168 - 999,9897710)^2 + \dots + (999,9896878 - 999,9897710)^2}{10(10-1)}} = 2,5011 \cdot 10^{-5} Hz$ (34)
 $u_A(\bar{f}_{střed}) = \sqrt{\frac{\sum_{j=1}^n (f_{střed} - \bar{f}_{střed})^2}{n(n-1)}} =$
 $= \sqrt{\frac{\sum_{j=1}^{10} (999,989947 - 999,9897480)^2 + \dots + (999,9896639 - 999,9897480)^2}{n(n-1)}} = 2,5557 \cdot 10^{-5} Hz$

10(10-1)

V

4.2.2 Určení nejistoty typu B

Pro určení nejistoty typu B maximální odchylky zdroje $u_B(\bar{f}_{min}), u_B(\bar{f}_{max}), u_B(\bar{f}_{max}), je$ potřeba dosadit do vzorců č. (25), (26) a vypočítat maximální odchylku zdroje z_{MAX} , pro dílčí odhady frekvencí $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$.

Výpočet nejistoty typu B maximální odchylky zdroje
$$u_B(\bar{f}_{min}), u_B(\bar{f}_{max}), u_B(\bar{f}_{střed}).$$

 $u_B(\bar{f}_{min}) = \frac{z_{MAX}(\bar{f}_{min})}{k} = \frac{1.74031 \cdot 10^{-4}}{\sqrt{3}} = 1,0047 \cdot 10^{-4} Hz$
 $u_B(\bar{f}_{max}) = \frac{z_{MAX}(\bar{f}_{max})}{k} = \frac{1.74034 \cdot 10^{-4}}{\sqrt{3}} = 1,0047 \cdot 10^{-4} Hz$
 $u_B(\bar{f}_{střed}) = \frac{z_{MAX}(\bar{f}_{střed})}{k} = \frac{1.74032 \cdot 10^{-4}}{\sqrt{3}} = 1,0047 \cdot 10^{-4} Hz$
(35)

Výpočet maximální odchylky zdroje
$$Z_{MAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed})$$
.
 $Z_{AMAX}(\bar{f}_{min}) = \bar{f}_{min} \left[\left(\pm TimeBaseError \pm \frac{t_{acc}}{GateTime} \right) \right] =$

$$= 999,9897238 \left[\left(\pm \left(12 \cdot 3 \cdot 10^{-7} + \frac{22^{\circ}}{50^{\circ}} \cdot 5 \cdot 10^{-6} \right) \pm \frac{300 \cdot 10^{-12}}{1} \right) \right] =$$

$$= 5,8002 \cdot 10^{-3} Hz$$
(36)

$$Z_{BMAX}(\bar{f}_{min}) = \bar{f}_{min} \left[\pm 2 \left(\frac{4\sqrt{t_{res}^2 + (2TriggerError^2)}}{GateTime \cdot \sqrt{NumberofSamples}} + \frac{t_{jitter}}{GateTime} \right) \right] =$$

$$= 999,9897238 \left[\pm 2 \left(\frac{4\sqrt{(500 \cdot 10^{-12})^2}}{1\sqrt{999,9897238}} + \frac{50 \cdot 10^{-12}}{1} \right) \right] = 2,2649 \cdot 10^{-7} Hz$$
(37)

 $Z_{MAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed}) = Z_{AMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed}) + Z_{BMAX}(\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{st\check{r}ed}) = (38)$ = 5,8002 \cdot 10^{-3} + 2,2649 \cdot 10^{-7} = 5,8005 \cdot 10^{-5} Hz

Poznámka: výpočty pro $Z_{MAX}(\bar{f}_{max})$ a $Z_{MAX}(\bar{f}_{střed})$ se budou lišit pouze v dosazením místo \bar{f}_{min} hodnoty odhadů \bar{f}_{max} a $\bar{f}_{střed}$

$$Z_{AMAX}(\bar{f}_{st\check{r}ed}) = 5,8002 \cdot 10^{-3} Hz \qquad Z_{AMAX}(\bar{f}_{max}) = 5,8002 \cdot 10^{-3} Hz Z_{BMAX}(\bar{f}_{st\check{r}ed}) = 2,2649 \cdot 10^{-7} Hz \qquad Z_{BMAX}(\bar{f}_{max}) = 2,2649 \cdot 10^{-7} Hz Z_{MAX}(\bar{f}_{st\check{r}ed}) = 5,8005 \cdot 10^{-5} Hz \qquad Z_{MAX}(\bar{f}_{max}) = 5,8005 \cdot 10^{-5} Hz$$

Pro určení kombinované $u_C(\bar{f}_{min}), u_C(\bar{f}_{střed}), u_C(\bar{f}_{max})$, je dosazena nejistota typu A $u_A(\bar{f}_{min}), u_A(\bar{f}_{střed}), u_A(\bar{f}_{max})$ a nejistota typu B $u_B(\bar{f}_{max}), u_B(\bar{f}_{střed}), u_B(\bar{f}_{max})$ do vzorce č. (27).

Výpočet kombinované nejistoty
$$u_{c}(\bar{f}_{min}), u_{c}(\bar{f}_{střed}), u_{c}(\bar{f}_{max})$$

 $u_{c}(\bar{f}_{min}) = \sqrt{u_{A}^{2}(\bar{f}_{min}) + u_{B}^{2}(\bar{f}_{min})} = \sqrt{(2,8184 \cdot 10^{-5})^{2} + (5,8005 \cdot 10^{-5})^{2}} =$
 $= 3,34811 \cdot 10^{-3} Hz$
 $u_{c}(\bar{f}_{max}) = \sqrt{u_{A}^{2}(\bar{f}_{max}) + u_{B}^{2}(\bar{f}_{max})} = \sqrt{(2,5011 \cdot 10^{-5})^{2} + (5,8005 \cdot 10^{-5})^{2}} =$
 $= 3,34809 \cdot 10^{-3} Hz$
 $u_{c}(\bar{f}_{střed}) = \sqrt{u_{A}^{2}(\bar{f}_{střed}) + u_{B}^{2}(\bar{f}_{střed})} =$
 $= \sqrt{(2,5557 \cdot 10^{-5})^{2} + (5,8005 \cdot 10^{-5})^{2}} = 3,34809 \cdot 10^{-3} Hz$
(39)

Pro určení kombinované nejistoty $u_c(\bar{f}_{stab})$, jsou výše získané výsledky dosazeny do vzorce č. (28) a citlivostní koeficienty \bar{A}_{fmax} , \bar{A}_{fmin} , $\bar{A}_{fstřed}$ jsou vypočteny dosazením do vzorců č. (29),(30), (31).

$$\begin{aligned} & \text{Výpočet kombinované nejistoty } u_c(\bar{f}_{stab}). \\ & u_c^2(\bar{f}_{stab}) = \bar{A}_{max}^2 u_c^2(\bar{f}_{max}) + \bar{A}_{min}^2 u_c^2(\bar{f}_{min}) + \bar{A}_{střed}^2 u_c^2(\bar{f}_{střed}) + \\ & + 2 \, \bar{A}_{max} \bar{A}_{min} u_c(\bar{f}_{max}) u_c(\bar{f}_{min}) + \\ & + 2 \, \bar{A}_{min} \bar{A}_{střed} u_c(\bar{f}_{min}) u_c(\bar{f}_{střed}) + \\ & + 2 \, \bar{A}_{střed} \bar{A}_{max} u_c(\bar{f}_{střed}) u_c(\bar{f}_{max}) = \\ & = (1,666 \cdot 10^{-5})^2 \cdot (3,34809 \cdot 10^{-3})^2 + \\ & + (-1,666 \cdot 10^{-5})^2 \cdot (3,34811 \cdot 10^{-3})^2 + \\ & + (7,8668 \cdot 10^{-13})^2 \cdot (3,34809 \cdot 10^{-3} \cdot 3,34811 \cdot 10^{-3} + \\ & + 2 \cdot 1,666 \cdot 10^{-5} \cdot (-1,666 \cdot 10^{-5}) \cdot 3,34809 \cdot 10^{-3} \cdot 3,34811 \cdot 10^{-3} + \\ & + 2 \cdot (-1,666 \cdot 10^{-5}) \cdot 7,8668 \cdot 10^{-13} \cdot 3,34811 \cdot 10^{-3} \cdot 3,34809 \cdot 10^{-3} = \\ & = 3,89666 \cdot 10^{-22} \, Hz \end{aligned}$$

$$u_c = \sqrt{u_c^2} = \sqrt{3,89666 \cdot 10^{-22}} = 1,97399 \cdot 10^{-11} Hz$$

Výpočet citlivostních koeficientů $\bar{A}_{fmax}, \bar{A}_{fmin}$ a $\bar{A}_{fstřed}$

$$\bar{A}_{f_{max}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min} 1}{\bar{f}_{st\bar{t}ed} \Delta t}\right)}{\partial \bar{f}_{max}} = \frac{1}{\bar{f}_{st\bar{t}ed} \Delta t} = \frac{1}{999,989748} \frac{1}{60} = 1,666 \cdot 10^{-5} [-]$$

$$\bar{A}_{f_{min}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min} 1}{\bar{f}_{st\bar{t}ed} \Delta t}\right)}{\partial \bar{f}_{min}} = -\frac{1}{\bar{f}_{st\bar{t}ed} \Delta t} = -\frac{1}{999,989748} \frac{1}{60} = -1,666 \cdot 10^{-5} [-]$$

$$\bar{A}_{f_{st\bar{t}ed}} = \frac{\partial \left(\frac{\bar{f}_{max} - \bar{f}_{min} 1}{\bar{f}_{st\bar{t}ed} \Delta t}\right)}{\partial \bar{f}_{st\bar{t}ed}} = \frac{\bar{f}_{max} - \bar{f}_{min} 1}{\bar{f}_{st\bar{t}ed} \Delta t}}{\partial \bar{f}_{st\bar{t}ed}} = \frac{\bar{f}_{max} - \bar{f}_{min} 1}{\bar{f}_{st\bar{t}ed} \Delta t}} = \frac{999,989771 - 999,9897238}{999,989748^2} \frac{1}{60} = -7,8668 \cdot 10^{-13} [-]$$

$$(41)$$

Rozšířená nejistota $U(\bar{f}_{stab})$ je získána dosazením kombinované nejistoty $u_c(\bar{f}_{stab})$ do vzorce č. (32).

Výpočet rozšířené nejistoty $U(\bar{f}_{stab})$. $\pm U(\bar{f}_{stab}) = k_r u_c(\bar{f}_{stab}) = 2 \cdot 1,97399 \cdot 10^{-11} = 3,94799 \cdot 10^{-11} \cong 4 \cdot 10^{-11} Hz$ (42)

Frekvenční stabilita \bar{f}_{stab} je získána dosazením aritmetického průměru (odhadů) $\bar{f}_{max}, \bar{f}_{min}, \bar{f}_{střed}$ do vzorce č. (22).

Výpočet frekvenční stability kmitočtu f_{stab} $\bar{f}_{stab} = \frac{\bar{f}_{max} - \bar{f}_{min}}{\bar{f}_{střed}} \frac{1}{\Delta t} = \frac{999,989771 - 999,9897238}{999,989748} \frac{1}{60} = 7,86675 \cdot 10^{-10} \cong 7,86 \cdot 10^{-10} Hz$ (43)

Zápis hodnoty frekvenční stability s nejistotou $f_{stab} = (0,78 \pm 0,04) \text{ nHz}$

4.3 Tabulky výpočtu standardní nejistoty krátkodobé stability kmitočtu

Hodnoty v bilančních tabulkách jsou vypočteny dle vzoru výpočtu z naměřených hodnot s koeficientem k pro pravděpodobnost rovnoměrného rozdělení ($k = \sqrt{3}$) a zaokrouhleny dle teorie v kapitole 2.3. Naměřené hodnoty jsou uvedeny v přehledných tabulkách jako přílohy.

4.3.1 Bilanční tabulka krátkodobé stability kmitočtu 1000Hz

Tab. č. 11 obsahuje výsledky výpočtu standardních nejistot nepřímého měření stability kmitočtu 1000 Hz pro hodnoty f_{min} , $f_{střed}$, f_{max} , f_{stat} , včetně jejich odhadů a jednotlivých přírůstků nejistot, pro funkční generátory Agilent 33220A, Newtronics 200MSP a Hung Chang G305.

Veličina X _i	Odhad veličiny <i>X_i</i> [Hz]	Standardní nejistota <i>u_c(x̃_i)</i> [Hz]	Koeficient citlivosti <i>A_i</i> [-]	Příspěvek ke standardní nejistotě [Hz]		
	I	Agilent 33220A (1	000 Hz)			
f_{min}	999,9897238	$3,4.10^{-3}$	$-1,7\cdot10^{-5}$	$-5,9\cdot10^{-8}$		
$f_{st \check{r} e d}$	999,9897480	3,4.10-3	$7,9.10^{-13}$	$2,7\cdot 10^{-15}$		
f_{max}	999,9897710	3,4.10-3	$1,7.10^{-5}$	5,9.10-8		
f_{stab}	$7,9.10^{-10}$	$2,1.10^{-11}$	-	-		
Newtronics 200MSP (1000 Hz)						
f_{min}	1019,31366444	$2,9.10^{\circ}$	$-1,7\cdot10^{-5}$	-4,9·10 ⁻⁵		
$f_{st \check{r} e d}$	1038,19159707	$1,9.10^{0}$	1,13.10-6	2,15.10-6		
f_{max}	1085,92202779	$5,9.10^{\circ}$	$1,7.10^{-5}$	10,1.10-5		
f_{stab}	1,07.10-3	5,21·10 ⁻⁵	-	-		
Hung Chang G305 (1000 Hz)						
f_{min}	1000,259572610	$0,46 \cdot 10^0$	$-1,7\cdot10^{-5}$	-7,9·10 ⁻⁶		
$f_{st \check{r} e d}$	1000,458416955	$0,47 \cdot 10^0$	6,9·10 ⁻⁹	3,3.10-9		
f_{max}	1000,669203972	$0,49 \cdot 10^0$	$1,7.10^{-5}$	8,4.10-6		
f_{stab}	6,9·10 ⁻⁶	5,7.10-7	-	-		

Tab. č. 11: Bilanční tabulka výpočtu standardních nejistot nepřímého měření krátkodobé stability na kmitočet 1000 Hz

V Tab. č. 11 jsou uvedeny vypočtené hodnoty pro kmitočet 1000 Hz. Z výsledků je patrné, že nejmenší přírůstek ke standardní nejistotě krátkodobé stability kmitočtu má generátor Agilent 33220A. Citlivostní koeficienty \bar{A}_{fmax} a \bar{A}_{fmin} působí proti sobě a jejich vlivy se téměř navzájem vyruší, proto se kombinovaná nejistota $u_c(f_{stab})$ pohybuje v řádech pHz a generátor Agilent 33220A se, ze zkoumaných generátorů, stává na kmitočtu 1000 Hz bezkonkurenčně krátkodobě kmitočtově nejstabilnější.

U dalších dvou měřených generátorů je situace obdobná, nicméně díky vyššímu kolísání měřených frekvencí (uplatňuje se více nejistota typu A) nelze dosáhnout až takové přesnosti. Při pohledu do tabulky Tab. č. 11 je patrné, že Hung Chang G305 má nižší přírůstek nejistoty řádově µHz, takže je na daném kmitočtu krátkodobě frekvenčně stabilnější než funkční generátor Newtronics 200MSP, u kterého se přírůstek nejistoty pohybuje v řádech desítek µHz.

4.3.2 Bilanční tabulka krátkodobé stability maximálního kmitočtu

Tab. č. 12 obsahuje výsledky výpočtu standardních nejistot nepřímého měření stability maximálního kmitočtu pro hodnoty f_{min} , $f_{střed}$, f_{max} , f_{stat} , včetně jejich odhadů a jednotlivých přírůstků nejistot, pro funkční generátory Agilent 33220A, Newtronics 200MSP a Hung Chang G305.

	1	-		I		
Valičina	Odhad	Standardní	Koeficient	Příspěvek ke		
v encina v	veličiny x _i	nejistota $u_c(\breve{x}_i)$	citlivosti A _i	standardní nejistotě		
Λ_i	[Hz]	[Hz]	[-]	[Hz]		
		Agilent 33220A (20 MHz)			
f_{min}	19999784,819	$0,067 \cdot 10^3$	$-8,3330\cdot10^{-10}$	-5,5812·10 ⁻⁸		
$f_{st \check{r} e d}$	19999785,220	$0,067 \cdot 10^3$	$2,9921 \cdot 10^{-17}$	2,0040.10-15		
f _{max}	19999785,537	$0,067 \cdot 10^3$	8,3300·10 ⁻¹⁰	5,5792·10 ⁻⁸		
f_{stab}	5,9842·10 ⁻¹⁰	$2,1\cdot 10^{-11}$	-	-		
		Newtronics 200MS	P (2 MHz)			
f_{min}	2022800,8276	$0,37 \cdot 10^3$	-8,3·10 ⁻⁹	$-3,1\cdot10^{-6}$		
$f_{st \check{r} e d}$	2022924,2445	$0,35 \cdot 10^3$	$1,22 \cdot 10^{-12}$	4,3.10-10		
f _{max}	2023100,2152	$0,35 \cdot 10^3$	8,3·10 ⁻⁹	2,9.10-6		
f_{stab}	2,5.10-6	1,26.10-7	-	-		
Hung Chang G305 (9,688MHz)						
f_{min}	9615034,0505	$14,4.10^{3}$	-1,8·10 ⁻⁹	-2,6.10-5		
$f_{st \check{r} e d}$	9619843,9924	$13,8\cdot10^{3}$	$1,7.10^{-12}$	2,5.10-8		
f_{max}	9624215,7092	$13,5\cdot 10^3$	$1,8.10^{-9}$	2,5.10-5		
f_{stab}	1,6.10-5	1,1.10-6	-	-		

Tab. č. 12: Bilanční tabulka výpočtu standardních nejistot nepřímého měření krátkodobé stability maximálního kmitočtu

V Tab. č. 12 jsou uvedeny vypočtené hodnoty pro maximální kmitočet, na kterém je generátor schopen správně generovat výstupní signál. Situace je obdobná jako v předchozím měření. Opět je krátkodobě stabilně nejpřesnější generátor Agilent 33220A s kombinovanou nejistotou pohybující se v řádech pHz.

U zbylých je vypočtena nižší kombinovaná nejistota $u_c(f_{stab})$ u funkčního generátoru Newtronics 200MSP, od toho se odvíjí i nižší přírůstek ke standardní nejistotě, který se pohybuje v řádu jednotek µHz. Kdežto u funkčního generátoru Hung Chang G305 se pohybuje v řádu desítek µHz. Z tohoto hlediska je funkčního generátoru Newtronics 200MSP krátkodobě kmitočtově stabilnější.

4.3.3 Bilanční tabulka krátkodobé stability minimálního kmitočtu

Tab. č. 13 obsahuje výsledky výpočtu standardních nejistot nepřímého měření stability maximálního kmitočtu pro hodnoty f_{min} , $f_{střed}$, f_{max} , f_{stat} , včetně jejich odhadů a jednotlivých přírůstků nejistot pro funkční generátory Agilent 33220A, Newtronics 200MSP a Hung Chang G305.

Veličina X _i	Odhad veličiny x _i [Hz]	Standardní nejistota <i>u_c(x̃_i)</i> [Hz]	Koeficient citlivosti A _i [-]	Příspěvek ke standardní nejistotě [Hz]			
		Agilent 33220A	(30 Hz)				
f_{min}	29,999416616	$1,03 \cdot 10^{-4}$	-5,6.10-4	-5,8·10 ⁻⁸			
$f_{st \check{r} e d}$	29,999701255	$1,02 \cdot 10^{-4}$	$1,1.10^{-8}$	1,13.10 ⁻¹²			
f _{max}	29,999995807	$1,02 \cdot 10^{-4}$	5,6.10-4	5,8.0-8			
<i>f</i> stab	3,3.10-7	$1,27 \cdot 10^{-9}$	-	-			
	Newtronics 200MSP (30 Hz)						
f_{min}	30,737857311	3,2.10-2	$-2,5\cdot10^{-4}$	-8,0.10-6			
$f_{st \check{r} e d}$	68,947599930	$4,6.10^{0}$	9,1.10-4	4,2.10-3			
f _{max}	288,221976732	$12,6\cdot10^{0}$	$2,5 \cdot 10^{-4}$	3,2.10-3			
f_{stab}	6,3.10-2	1,5.10-2	-	-			
Hung Chang G305 (30 Hz)							
f_{min}	31,845265272	8,7·10 ⁻¹	$-4,8\cdot10^{-4}$	$-4,2\cdot10^{-4}$			
$f_{st \check{r} e d}$	35,229311366	$1,13 \cdot 10^{0}$	$1,8.10^{-4}$	$2,1\cdot 10^{-4}$			
f _{max}	44,688473148	$6,1.10^{-1}$	$4,8.10^{-4}$	2,9.10-4			
f_{stab}	6,1.10-3	7,2.10-5	-	-			

Tab. č. 13: Bilanční tabulka výpočtu standardních nejistot nepřímého měření krátkodobé stability minimálního kmitočtu

V Tab. č. 13 jsou uvedeny vypočtené hodnoty pro minimální kmitočet, v podstatě jde o minimální kmitočet, který je schopen změřit univerzální čítač Agilent 53131. Situace je obdobná jako při měření na kmitočtu 1000 Hz. Opět je krátkodobě stabilně nejpřesnější generátor Agilent 33220A s kombinovanou nejistotou pohybující se v řádech nHz.

U zbylých dvou generátorů, při bližším zkoumání Tab. č. 13 je zjištěno, že vypočtené hodnoty u funkčního generátoru Newtronics 200MSP jsou o jeden řád vyšší, než u generátoru Hung Chang G305. Z toho plyne, že funkční generátor Hung Chang G305 je krátkodobě kmitočtově stabilnější.

4.3.4 Tabulka srovnání rozšířených nejistot

Z důvodů přehlednosti je uvedena Tab. č. 14 se srovnáním výsledků měření krátkodobé stability kmitočtu f_{stab} i s rozšířenou nejistotou $U(f_{stab})$. Hodnoty v Tab. č. 14 jsou vypočteny z přesných nezaokrouhlených hodnot, protože dle teorie v kapitole 2.3 je povoleno zaokrouhlovat pouze v případě, když se s výsledkem dále matematicky nepracuje.

Měření na kmitočtu 1000 Hz						
Generátor	Jedn	\bar{f}_{stab}	$\cong \bar{f}_{stab}$	$U(\bar{f}_{stab})$	$\cong U(\bar{f}_{stab})$	Repr. výsledku f _{stab}
Agilent 33220A	nHz	0,7867	0,78	0,03948	0,04	$(0,78 \pm 0,04) \text{ nHz}$
Newtronics 200MSP	mHz	1,0693	1,07	0,10202	0,11	$(1,07 \pm 0,11)$ mHz
Hung Chang G305	μHz	6,8241	6,8	1,1299	1,13	$(6,8 \pm 1,13) \mu \text{Hz}$
		Měře	ení při may	kimálním kn	nitočtu	
Agilent 33220A	nHz	0,598	0,59	0,0398	0,04	$(0,59 \pm 0,04)$ nHz
Newtronics 200MSP	μHz	2,467	2,46	0,2508	0,25	$(2,46 \pm 0,25) \mu Hz$
Hung Chang G305	μHz	15,907	15,91	2,1935	2,2	$(15,9 \pm 2,2) \ \mu Hz$
		Měř	ení při mir	iimálním kn	nitočtu	
Agilent 33220A	nHz	321,87	321,9	2,5379	2,6	$(321,9 \pm 2,6)$ nHz
Newtronics 200MSP	mHz	62,241	62,2	1,4349	1,5	$(62, 2 \pm 1, 5) \text{ mHz}$
Hung Chang G305	mHz	6,076	6,07	0,1442	0,15	$(6,07 \pm 0,15) \text{ mHz}$

Tab. č. 14: Srovnání výsledků rozšířených nejistot měření krátkodobé stability kmitočtu jednotlivých generátorů

Z Tab. č. 14 je patrné, že krátkodobě frekvenčně nejstabilnější je generátor Agilent 33200A. Jeho krátkodobá frekvenční stabilita se pohybuje v řádu nHz při všech třech proměřovaných bodech (minimální kmitočet, maximální kmitočet a kmitočet 1000 Hz).

Při měření minimálního kmitočtu generátor Newtronics 200MSP dosáhl o řád nižší přesnosti rozšířené nejistoty kmitočtové stability než Hung Chang G305. U obou

generátorů se standardní nejistota stability kmitočtu se pohybuje v řádu mHz. Při měření maximálního kmitočtu je krátkodobě kmitočtově stabilnější generátor Newtronics 200MSP, nicméně zaostával na měření kmitočtu 1000 Hz, kde je vypočtena nejistota kmitočtové stability o tři řády vyšší než u generátoru Hung Chang G305.

V technické dokumentaci od výrobce se bohužel neuvádí parametr krátkodobé stability kmitočtu. Výrobce uvádí pouze dlouhodobou stabilitu kmitočtu vztaženou nejčastěji k 90 dnům nebo jednomu roku. Z tohoto důvodu nelze provést srovnání získaných standardních nejistot a stabilit kmitočtu s výrobcem.

ZÁVĚR

Cílem bakalářské práce bylo prostudovat sledované technické parametry funkčních generátorů a blíže je popsat. Bylo nezbytné popsat i problematiku standardních nejistot měření, ze které vychází vytvořený matematický model pro vyhodnocení nejistot krátkodobé stability kmitočtu. Dále byl proveden experiment měření spolu s aplikací vytvořeného modelu.

V části práce popisující technické parametry funkčních generátorů byly uvedeny funkční generátory, na kterých se realizuje experiment měření krátkodobé stability kmitočtu. Pro vytvoření modelu vyhodnocení standardních nejistot bylo nutné napsat literární rešerši s teorií standardních nejistot měření. Vytvořený matematický model vychází ze zákona o šíření nejistot a byl sestaven ze znalostí získaných z literární rešerše. Měření krátkodobé stability kmitočtu bylo provedeno za pomocí univerzálního čítače Agilent 53131A na funkčních generátorech Agilent 33220A, Newtronics 200 MSP a Hung Chang G305. Kvůli rozdílným frekvenčním rozsahům proměřovaných generátorů byly měřeny tři kmitočty v intervalu jedné minuty (minimální kmitočet, maximální kmitočet a kmitočet 1000 Hz). Změřené hodnoty jsou v tabulkách, které byly na konci práce zařazeny do příloh.

Pro názornost aplikování vytvořeného modelu určení nejistot měření krátkodobé stability kmitočtu byl uveden vzor výpočtu. Získané výsledky jsou zapsány v bilančních tabulkách. Pod každou bilanční tabulkou se nachází stručné zhodnocení dosažených výsledků.

Dle očekávání lze určit jako krátkodobě kmitočtově nejstabilnější funkční generátor Agilent 33220A, protože se jeho rozšířená nejistota krátkodobé stability kmitočtu pohybovala v řádech nHz. U funkčního generátoru Hung Chang G305 byla zaznamenána nejvyšší odchylka při měření maximálního kmitočtu, kde se nejistota krátkodobé stability kmitočtu lišila o tři řády oproti funkčním generátoru Newtronics 200 MSP. Na minimálním kmitočtu byl méně kmitočtově stabilní funkční generátor Newtronics 200 MSP, nicméně oproti generátoru Hung Chang G305 se hodnota rozšířené nejistoty lišila pouze o jeden řád. Při zhodnocení dosažených výsledků na všech třech proměřovaných bodech lze soudit, že kmitočtově stabilnější byl funkční generátor Hung Chang G305.

Do budoucna by se práce dala rozšířit o měření jiných funkčních generátorů nebo delšího časového intervalu než jedna minuta, čímž by se jednalo o dlouhodobé měření stability kmitočtu nebo o automatizování celého procesu měření a vyhodnocení standardních nejistot pomocí programu LabVIEW.

LITERATURA

[1] B&K Precision Corporation. Function & Arbitrary Waveform Generator Guidebook. *bkprecision.com* [online], © 2016 [cit. 2016-03-22]. Dostupné z: http://www.bkprecision.com/support/downloads/function-and-arbitrary-waveform-generator-guidebook.html.

[2] KROUPA, V. F. Direct digital frequency synthesizers. New York: Institute of Electrical and Electronics Engineers, c1999. ISBN 0780334388

[3] DRESLER T. Přímá číslicová syntéza kmitočtu (DDS - Direct Digital Synthesis). *Redakce HW serveru* [online]. *3. Březen, 2001, 0:00.* [cit. 2016-3-22]. Dostupné z: http://vyvoj.hw.cz/teorie-a-praxe/dokumentace/prima-cislicova-synteza-kmitoctu-dds-direct-digital-synthesis.html.

[4] Boston University. Agilent 33220A 20 MHz Waveform Generator [online]. May 2007, number 33220-90002, Edition 4. [cit. 2016-3-22] Dostupné z: http://www.bu.edu/eng/courses/ek307/documents/agilent33220.pdf.

[5] GIGA Elecronics. Protek G305, Sweep Function Generator [online]. [cit. 2016-3-22], Dostupné z: http://www.gigatest.net/hungchang/protek-g305.htm.

[6] Technická dokumentace: *Funkční generátor Newtronics 200MSP*, Dostupné ve školní laboratoři.

[7] Agilent technologies. Agilent 53131A/132A/181A Counters, Data Sheet [online], number 5990-6283EN. [cit. 2016-4-5]. Dostupné z: http://cp.literature.agilent.com/litweb/pdf/53131-90055.pdf

[8] HODER K., KOHL L. *Měření kmitočtu a časového intervalu*, 1997. Dostupné ve školní laboratoři.

[9] KRYSTALY. Názvy, definice, charakteristiky. *krystaly.cz* [online], © 2010 [cit. 2016-3-22]. Dostupné z: http://www.krystaly.cz/cs/Produkty/Oscilatory/Definice

[10] BUREAU INTERNATIONAL DES POIDS ET MESURES. JCGM 100:2008: Evaluation of measurement data - Guide to the expression of uncertainty in measurement GUM [online]. © JCGM 2008 [cit. 2016-3-29], Dostupné z: www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf

[11] PALENČAR, R., VDOLEČEK, F., HALAJ, M. Nejistoty v měření I: *Vyjadřování nejistot* [online]. Automa 2001, č. 7-8, str. 50-54 [cit. 2016-3-29]. Dostupné z: http://automa.cz/download/au070150.pdf

[12] PALENČAR, R., VDOLEČEK, F., HALAJ, M. Nejistoty *v měření II: Nejistoty přímých měření* [online]. Automa 2001, č. 10, str. 52-56 [cit. 2016-3-29]. Dostupné z: http://automa.cz/download/au100152.pdf

[13] PALENČAR, R., VDOLEČEK, F., HALAJ, M. Nejistoty v měření III [online].
Automa 2001, č. 12, str. 28-33 [cit. 2016-3-29]. Dostupné z: http://automa.cz/download/au120128.pdf

[14] NĚMEČEK, P. *Nejistoty měření*. Praha: Česká společnost pro jakost, 2008. Kvalita, quality, Qualität. ISBN 978-80-02-02089-9

[15] Understanding Frequency Counter Specifications: *Application Note 200-4*[online], © 1997, May 1997 [cit. 2016-5-3], Dostupné z: http://leapsecond.com/hpan/an200-4.pdf

SEZNAM PŘÍLOH

Seznam tištěných příloh:

Příloha 1a	Příloha 1a Tab. č. 15: Měření krátkodobé frekvenční stability funkčního
	generátoru Agilent 33220A (20 MHz)
Příloha 1b	Příloha 1b Tab. č. 16: Měření krátkodobé frekvenční stability funkčního
	generátoru Agilent 33220A (30 Hz)
Příloha 1c	Příloha 1c Tab. č. 17: Měření krátkodobé frekvenční stability funkčního
	generátoru Newtronics 200MSP (1 kHz)
Příloha 1d	Příloha 1d Tab. č. 18: Měření krátkodobé frekvenční stability funkčního
	generátoru Newtronics 200MSP (2 MHz)
Příloha 1e	Příloha 1e Tab. č. 19: Měření krátkodobé frekvenční stability funkčního
	generátoru Newtronics 200MSP (30 Hz)
Příloha 1f	Příloha 1f Tab. č. 20: Měření krátkodobé frekvenční stability funkčního
	generátoru Hung Chang G305 (1 kHz)
Příloha 1g	Příloha 1g Tab. č. 21: Měření krátkodobé frekvenční stability funkčního
C	generátoru Hung Chang G305 (9,688 MHz)
Příloha 1h	Příloha 1h Tab. č. 22: Měření krátkodobé frekvenční stability funkčního
	generátoru Hung Chang G305 (30 Hz)

Seznam elektronických příloh na CD:

Elektronická verze práce - Šmoldas_Michal_Bakalářská_Práce_2016.pdf

Měření č.	f_{min} [Hz]	f _{střed} [Hz]	f_{max} [Hz]
1	19 999 787,140	19 999 787,779	19 999 788,215
2	19 999 786,030	19 999 786,438	19 999 786,836
3	19 999 785,360	19 999 785,709	19 999 785,992
4	19 999 784,741	19 999 785,229	19 999 785,562
5	19 999 784,717	19 999 784,963	19 999 785,249
6	19 999 784,098	19 999 784,603	19 999 784,879
7	19 999 784,054	19 999 784,492	19 999 784,779
8	19 999 784,015	19 999 784,385	19 999 784,692
9	19 999 784,042	19 999 784,393	19 999 784,686
10	19 999 783,992	19 999 784,210	19 999 784,480

Příloha 1a. - Tab. č. 15: Měření krátkodobé frekvenční stability funkčního generátoru Agilent 33220A (20 MHz)

Příloha 1b. - Tab. č. 16: Měření krátkodobé frekvenční stability funkčního generátoru Agilent 33220A (*30 Hz*)

Měření č.	f_{min} [Hz]	$f_{st \check{r} ed}$ [Hz]	f_{max} [Hz]
1	29,999 508 590	29,999 734 937	29,999 975 740
2	29,999 460 750	29,999 689 010	30,000 040 770
3	29,999 388 210	29,999 680 752	29,999 952 160
4	29,999 451 530	29,999 701 866	29,999 963 460
5	29,999 374 030	29,999 705 091	29,999 981 660
6	29,999 333 850	29,999 674 847	30,000 035 530
7	29,999 409 400	29,989 710 312	30,000 075 280
8	29,999 343 500	29,999 666 044	29,999 998 700
9	29,999 435 600	29,999 673 840	29,999 969 760
10	29,999 460 700	29,999 775 850	29,999 965 010

Měření č.	f_{min} [kHz]	f _{střed} [kHz]	f_{max} [kHz]
1	1 011,975 315 600	1 026,012 497 900	1 046,503 637 900
2	1 008,085 857 000	1 030,381 636 590	1 071,069 308 600
3	1 009,686 001 100	1 036,817 145 300	1 082,934 974 400
4	1 020,196 373 800	1 037,626 171 640	1 097,816 988 200
5	1 028,162 838 600	1 041,015 182 560	1 085,131 960 100
6	1 021,532 326 900	1 039,017 121 750	1 076,884 366 900
7	1 009,637 331 500	1 040,422 499 350	1 091,021 098 700
8	1 023,867 334 300	1 041,104 185 400	1 096,656 576 400
9	1 032,893 177 100	1 046,829 737 030	1 096,005 209 400
10	1 027,100 088 500	1 042,689 793 160	1 115,196 157 300

Příloha 1c. - Tab. č. 17: Měření krátkodobé frekvenční stability funkčního generátoru Newtronics 200MSP (1 kHz)

Příloha 1d. - Tab. č. 18: Měření krátkodobé frekvenční stability funkčního generátoru Newtronics 200MSP (2 MHz)

Měření č.	f_{min} [Hz]	fstřed [Hz]	f_{max} [Hz]
1	2 021 433,871 900	2 021 677,836 380	2 021 863,194 800
2	2 023 904,612 100	2 023 740,693 160	2 023 904,594 600
3	2 024 309,927 400	2 024 418,998 040	2 024 552,417 400
4	2 023 979,110 500	2 024 153,798 740	2 024 349,639 900
5	2 023 612,766 200	2 023 711,457 550	2 023 837,608 900
6	2 023 183,547 700	2 023 415,470 260	2 023 564,197 500
7	2 022 738,650 100	2 022 850,570 750	2 022 941,931 700
8	2 021 710,796 300	2 021 976,466 190	2 022 583,220 500
9	2 021 606,948 100	2 021 723,807 240	2 002 179,363 300
10	2 021 528,045 800	2 021 573,346 490	2 021 611,713 200

Měření č.	f_{min} [Hz]	f _{střed} [Hz]	f_{max} [Hz]
1	30,536 708 200	82,246 834 750	301,470 601 700
2	30,617 423 340	67,416 793 770	298,516 077 810
3	30,688 702 770	53,674 627 440	266,329 719 800
4	30,725 429 690	58,821 906 550	339,139 148 110
5	30,753 925 290	54,864 432 590	258,989 650 100
6	30,776 426 460	75,799 810 090	302,912 302 200
7	30,789 016 080	61,921 083 030	233,565 285 600
8	30,815 311 900	83,312 577 510	321,131 345 700
9	30,831 132 940	55,697 927 380	227,776 216 600
10	30,844 496 430	95,720 006 190	332,389 419 700

Příloha 1e. - Tab. č. 19: Měření krátkodobé frekvenční stability funkčního generátoru Newtronics 200MSP (30 Hz)

Příloha 1f. - Tab. č. 20: Měření krátkodobé frekvenční stability funkčního generátoru Hung Chang G305 (1 kHz)

Měření č.	f_{min} [kHz]	f _{střed} [kHz]	f_{max} [kHz]
1	1 002,941 175 400	1 003,240 427 720	1 003,582 769 900
2	1 001,764 190 400	1 001,969 697 210	1 002,279 163 700
3	1 001,152 080 800	1 001,463 036 230	1 001,688 491 200
4	1 000,687 344 200	1 000,793 396 720	1 000,993 087 700
5	1 000,388 647 800	1 000,515 474 310	1 000,734 226 600
6	999,890 899 400	1 000,164 854 010	1 000,399 710 500
7	999,825 126 800	1 000,085 018 850	1 000,225 290 100
8	998,839 713 900	998,924 267 370	999,024 020 100
9	998,792 724 500	998,887 584 400	998,960 025 120
10	998,313 822 900	998,540 412 730	998,805 254 800

Měření č.	f_{min} [Hz]	$f_{st \check{r} e d}$ [Hz]	f_{max} [Hz]
1	9 683 800,3500	9 687 625,0083	9 688 971,4880
2	9 673 203,0630	9 676 066,2422	9 681 314,8340
3	9 653 540,8630	9 655 557,7239	9 659 385,8290
4	9 621 921,6620	9 629 838,0196	9 635 557,1910
5	9 620 711,9360	9 624 772,1512	9 626 023,0510
6	9 610 463,3360	9 614 232,8440	9 618 904,3300
7	9 595 336,0620	9 598 639,6383	9 602 520,6520
8	9 566 697,2930	9 579 823,8945	9 588 736,4390
9	9 565 086,9430	9 568 703,3116	9 571 934,5110
10	9 559 578,9970	9 563 181,0908	9 568 808,7670

Příloha 1g. - Tab. č. 21: Měření krátkodobé frekvenční stability funkčního generátoru Hung Chang G305 (9,688 MHz)

Příloha 1h. - Tab. č. 22: Měření krátkodobé frekvenční stability funkčního generátoru Hung Chang G305 (30 Hz)

Měření č.	$f_{min} [\mathrm{Hz}]$	$f_{st \check{r} e d}$ [Hz]	f_{max} [Hz]
1	29,714 200 800	30,266 979 819	40,318 582 520
2	30,214 640 210	35,316 161 661	45,320 123 260
3	30,225 870 840	33,877 257 690	43,432 500 530
4	30,219 317 110	32,247 639 928	46,255 368 380
5	30,223 448 490	30,474 267 524	44,980 474 930
6	30,233 202 830	35,545 581 854	45,325 889 830
7	30,235 749 300	36,117 447 289	47,251 059 720
8	35,851 618 490	39,414 738 200	45,216 291 880
9	35,598 708 090	38,977 802 404	43,377 645 320
10	35,935 896 560	40,055 237 291	45,406 795 110