
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering
and Communication

MASTER'S THESIS

Brno, 2023 Bc. Viet Anh Phan

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

GENERATION OF IPV6 AND ICMPV6 PACKETS AND
THEIR IMPACT ON THE OPERATION OF NETWORK
DEVICES
GENEROVÁNÍ IPV6 A ICMPV6 PAKETŮ A JEJICH VLIV NA FUNGOVÁNÍ ZAŘÍZENÍ V SÍTI
MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Bc. Viet Anh Phan

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Jan Jeřábek, Ph.D.

BRNO 2023

Date of project
specification:

6.2.2023
Deadline for
submission:

 19.5.2023

Supervisor: doc. Ing. Jan Jeřábek, Ph.D.

doc. Ing. Jan Hajný, Ph.D.

Chair of study program board

Master's Thesis
Master's study program Information Security

Department of Telecommunications
Student: Bc. Viet Anh Phan ID: 243760
Year of
study:

 2 Academic year: 2022/23

TITLE OF THESIS:

Generation of IPv6 and ICMPv6 packets and their impact on the operation of
network devices

INSTRUCTION:

Study the literature on the operation of IPv6, ICMPv6, DHCPv6, NAT64, and DNS64. In addition, study the
problems of generating IPv6 packets using Ostinato software, Linux tools and your own code. Create a virtual
network environment consisting of at least 2 hosts, e.g. in a VMware environment. As part of your thesis, create
two lab scenarios focusing on topics related to IPv6 communication. The first scenario will focus on observing the
behavior of the Windows operating system after receiving different types or sequences of IPv6 packets sent by
a second virtual host. The second scenario will focus on aspects of the host's operation in an IPv6-only (non-
IPv4) environment, with the second host acting as a router and server for the required services. For both
scenarios it will be necessary to work with the generation of the corresponding IPv6 packets. As part of the
thesis, create templates of the relevant packets for the Ostinato software as well as a custom solution for the tool
to generate the relevant packets. The complete specification must be pre-approved by the thesis supervisor. The
created scenarios must be approximately for 2 hours long solution time.

RECOMMENDED LITERATURE:

[1] Kurose, J. F., Ross, K. W., Computer networking: a top-down approach. 7th global ed. Essex: Pearson, 2017,
852 s. ISBN 978-1-292-15359-9.

[2] JEŘÁBEK, J. Pokročilé komunikační techniky. Skriptum FEKT Vysoké učení technické v Brně, 2020. s. 1-180.

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10 / 616 00 / Brno

ABSTRACT
This master thesis is about researching the functioning of IPv6 (Internet Protocol version
6), ICMPv6 (Internet Control Message Protocol version 6), DHCPv6 (Dynamic Host
Configuration Protocol version 6), NAT64 (Network Address Translation 64) and DNS64
(Domain Name System 64) protocols. The research process is carried out by setting up
the network laboratory scenarios, in which stations exchange information via protocols
of IPv6 family. Tools such as self-designed program, Ostinato application and Kali Linux
machine are used to process and generate required types of IPv6 packets in specific
circumstances. The results from the experiment are analyzed in order to provide network
administrators or specialists a more complete understanding of function of IPv6 protocols,
as well as possible vulnerabilities.

KEYWORDS
IPv6, ICMPv6, DHCPv6, NAT64, DNS64, Headers, Security, IPv6 Generator, GNS3,
Cisco, Kali Linux.

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

Author’s Declaration

Author: Bc. Viet Anh Phan

Author’s ID: 243760

Paper type: Master’s Thesis

Academic year: 2022/23

Topic: Generation of IPv6 and ICMPv6 packets
and their impact on the operation of net-
work devices

I declare that I have written this paper independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,
I have not infringed any copyright or violated anyone’s personal and/or ownership rights.
In this context, I am fully aware of the consequences of breaking Regulation S 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

Brno .
author’s signature∗

∗The author signs only in the printed version.

ACKNOWLEDGEMENT

I am extremely grateful to my supervisor, doc. Ing. Jan Jeřábek, Ph.D for his invaluable
advice, continuous support, and patience during my master study. Although there are
huge differences in culture and language, I still receive a lot of ingenious and enthusiastic
help from my supervisor, which gives me huge motivation to do the research work.

Contents

Introduction 21

1 IPv6 Background 22
1.1 IPv6 Address Architecture . 22
1.2 IPv6 Header and Fields . 25
1.3 IPv6 Extension Headers . 26
1.4 Internet Control Message Protocol for IPv6 30

1.4.1 ICMPv6 Message Format . 30
1.4.2 Informational Messages . 31
1.4.3 Error Messages . 34
1.4.4 Stateless Address Auto-Configuration (SLAAC) 36
1.4.5 Multicast Listener Discovery (MLD) 37

1.5 Dynamic Host Configuration Protocol for IPv6 (DHCPv6) 38
1.5.1 Stateless DHCPv6 . 39
1.5.2 Stateful DHCPv6 . 39

1.6 Processes on the road to the IPv6-only 40
1.6.1 Dual-Stack . 40
1.6.2 Tunneling . 41
1.6.3 Protocol Translation . 41

2 Specification about the tools and platforms used 43
2.1 Graphical Network Simulator 3 (GNS3) 43
2.2 Cisco Internetwork Operating System (Cisco IOS) 44
2.3 Python . 44
2.4 Ostinato . 45
2.5 Wireshark . 45
2.6 Kali Linux . 46

3 Designed Network Lab Scenarios and Format of Laboratory Oper-
ations 47
3.1 Network setup of the Scenario 1 . 47
3.2 Network Setup of the Scenario 2 . 49

4 Methods for performing tasks in the network scenario 51
4.1 Designed network toolkit using Python 51
4.2 Application Ostinato . 68

5 Network Lab Scenario 1 with operations and analysis 72
5.1 Multicast address . 72
5.2 Multicast Listener Discovery version 2 (MLDv2) 85
5.3 Fragmentation . 109
5.4 Router Solicitation and Router Advertisement 119
5.5 Neighbor Solicitation and Neighbor Advertisement 140
5.6 Redirect . 154
5.7 Dynamic Host Configuration Protocol version 6 161

Conclusion 175

Bibliography 177

Symbols and abbreviations 182

A Answers to review questions 184
A.1 Multicast address . 184
A.2 Multicast Listener Discovery version 2 (MLDv2) 192
A.3 Fragmentation . 196
A.4 Router Solicitation and Router Advertisement 198
A.5 Neighbor Solicitation and Neighbor Advertisement 203
A.6 Redirect . 205
A.7 Dynamic Host Configuration Protocol version 6 206

B Content of the electronic attachment 212

List of Figures
1.1 Types of IPv6 addresses . 23
1.2 IPv6 Header without Extension . 25
1.3 Format of captured MLD Query packet including Hop-by-Hop Op-

tions Header . 27
1.4 Format of captured MIPv6 packet including Destination Options Header 28
1.5 Format of captured ICMPv6 packets including Routing header 29
1.6 Format of captured ICMPv6 packets including Fragment header . . . 30
1.7 ICMPv6 message format . 31
1.8 Router Advertisement Message Format 32
1.9 Neighbor Advertisement Message Format 33
1.10 Illustration of Path MTU Discovery 35
1.11 MLDv2 Multicast Listener Report message format 38
1.12 DHCPv6 Messages Exchange . 39
1.13 The operation of the DNS64/NAT64 41
2.1 Platform and network topology of GNS3 43
2.2 The working interface of Ostinato . 45
3.1 The testing network topology 1 with address specification (/64 prefix

used in all subnets). 47
3.2 The researched network scenario 2. 49
4.1 Manual page of ping.py tool. 53
4.2 Manual page of fragment_header.py tool. 54
4.3 Manual page of redirect.py tool. 55
4.4 Manual page of mld_query.py tool. 56
4.5 Manual page of mldv2_report.py tool. 57
4.6 Manual page of probe_alive.py tool. 58
4.7 Manual page of detect_new.py tool. 59
4.8 Manual page of neighbor_solicitation.py tool. 60
4.9 Manual page of neighbor_advertisement.py tool. 61
4.10 Manual page of router_solicitation.py tool. 62
4.11 Manual page of router_advertisement.py tool. 63
4.12 Manual page of implant_mtu.py tool. 64
4.13 Manual page of smurf.py tool. 65
4.14 Manual page of dhcpv6_client.py tool. 66
4.15 Manual page of dhcpv6_server.py tool. 67
4.16 Example of selecting the protocols for a DNS query packet. 69
4.17 Example of configuring selected fields (IPv6 in this instance) for a

DNS query packet. 70

4.18 Example of configuring HexDump field (DNS query for A record of
www.vut.cz in this instance) for a DNS query packet. 70

5.1 The network topology for testing Multicast Address. 72
5.2 Launching the ping.py tool for sending the normal Echo Request to

all-nodes multicast address with IPv6 global address as source. 74
5.3 Launching the ping.py tool for sending the normal Echo Request to

all-nodes multicast address with IPv6 link-local address as source. . . 74
5.4 Configuration at the Protocol Selection tab for sending the normal

Echo Request to all-nodes multicast address. 75
5.5 Configuration at the Protocol Data tab for sending the normal Echo

Request to all-nodes multicast address. 76
5.6 Format of malformed ICMPv6 Echo Request in case of link-local ad-

dress after running probe_alive.py tool. 78
5.7 Result after running probe_alive.py tool. 78
5.8 Captured packets in Wireshark after running probe_alive.py tool. . . 79
5.9 Configuration at the Protocol Selection tab for sending the malformed

Echo Request to all-nodes multicast address. 80
5.10 Configuration at the Protocol Data tab for sending the malformed

Echo Request to all-nodes multicast address. 80
5.11 Illustration of Smurf attack using multicast address. 82
5.12 Illustration of Smurf attack using all-nodes multicast address. a)

Using the IPv6 global address of victim. b) Using the IPv6 link-local
address of victim. 83

5.13 Configuration at the Stream Control tab for triggering Smurf attack
to the victim. 84

5.14 The network topology for testing Multicast Listener Discovery version
2. 86

5.15 Captured MLDv2 Report message from PC2 as soon as it boots up. . 88
5.16 Captured MLDv2 Report message from PC1 and PC3 as soon as they

boot up. 89
5.17 Result after running mld_query.py tool to generate MLDv2 General

Query. 90
5.18 Configuration at the Protocol Selection tab for sending the MLDv2

General Query. 92
5.19 Configuration at the Protocol Data tab for sending the MLDv2 Gen-

eral Query. 93
5.20 Captured MLDv2 General Query and its responses. 94
5.21 Captured MLDv2 Report from PC2 after receiving General Query. . . 94

5.22 Captured MLDv2 packets after generate MLDv2 General Query. a)
Maximum Response Delay value is 1 (1/10 second). b) Maximum
Response Delay value is 1000 (1 second). 95

5.23 Information about MLD on the interface g0/0. a) Before sending the
General Query by PC1. b) After sending the General Query by PC1. 96

5.24 Configuration at PC4 for streaming video through multicast address
ff08::db8. 97

5.25 The captured streaming video in PC2. 97
5.26 Captured MLDv2 Report from PC2 after joining the group ff08::db8. 98
5.27 Result after running mld_query.py tool to generate MLDv2 Multicast

Address Specific Query. 99
5.28 Captured MLDv2 Multicast Address Specific Query and its response. 100
5.29 Captured MLDv2 Report from PC2 after receiving Multicast Address

Specific Query. 100
5.30 Result after running mld_query.py tool to generate MLDv2 Multicast

Address and Source Specific Query. 101
5.31 Captured MLDv2 Multicast Address and Source Specific Query and

its response. 101
5.32 Configuration at the Protocol Data tab for sending the MLDv2 Mul-

ticast Address and Source Specific Query. 102
5.33 Captured MLDv2 Report from PC2 after receiving Multicast Address

and Source Specific Query. 102
5.34 Result after running mldv2_report.py tool to flood the router. 103
5.35 Result after running mldv2_report.py tool to remove all listeners

from the multicast group ff08::db8 when R1 is the Querier. 105
5.36 Captured MLDv2 Report for removing all listeners from the multicast

group ff08::db8 and its response. 105
5.37 Result after running mldv2_report.py tool to remove all listeners

from the multicast group ff08::db8 when PC1 is the Querier. 106
5.38 Result after running mld_query.py tool to send Last Listener Query. 107
5.39 Captured MLDv2 Last Listener Query for the multicast group ff08::db8.107
5.40 The network topology for testing Fragmentation. 110
5.41 Captured Ping message with fragments and its response. 111
5.42 Result after running implant_mtu.py tool to implant MTU into the

path PC2-PC4. 112
5.43 Captured packets after running implant_mtu.py tool to implant MTU

into the path PC2-PC4. 112
5.44 Configuration at the Protocol Selection tab for sending Packet Too Big.114

5.45 Configuration at the Protocol Data tab for sending Packet Too Big
(part MTU). 115

5.46 Configuration at the Protocol Data tab for sending Packet Too Big
(part Echo Reply). 116

5.47 Captured packets when sending Echo Request message from PC2 to
PC4 after running implant_mtu.py tool to implant MTU into the
path PC2-PC4. 117

5.48 Illustration of fragmentation using tiny fragments. 117
5.49 Result after running fragment_header.py tool to generate packets

with tiny fragments. 118
5.50 Captured packets after running fragment_header.py tool to generate

packets with tiny fragments. 118
5.51 The network topology for testing Router Solicitation and Router Ad-

vertisement. 120
5.52 Captured Router Solicitation sent from PC2 during Neighbor Discov-

ery procedure. 121
5.53 Captured Router Advertisement sent from R1 during Neighbor Dis-

covery procedure. 121
5.54 Result after running router_advertisement.py tool with Low preference.122
5.55 Captured Router Advertisement sent from PC1 with Low preference. 122
5.56 Configuration at the Protocol Selection tab for sending Router Ad-

vertisement with Low preference. 123
5.57 Configuration at the Protocol Data tab for sending Router Advertise-

ment with Low preference. 124
5.58 Result after running router_advertisement.py tool with Medium pref-

erence. 126
5.59 Configuration at the Protocol Data tab for sending Router Advertise-

ment with Medium preference. 126
5.60 Result after running router_advertisement.py tool with the same pre-

fix as the one from legitimate router R1. 129
5.61 Configuration at the Protocol Selection tab for sending Router Ad-

vertisement with the same prefix as provided by router R1. 129
5.62 Configuration at the Protocol Data tab for sending Router Advertise-

ment with the same prefix as provided by router R1. 130
5.63 Captured Router Advertisement sent from PC1 with the same prefix

as provided by router R1. 130
5.64 Result after running router_advertisement.py tool with the zero value

of lifetime. 132

5.65 Configuration at the Protocol Data tab for sending Router Advertise-
ment with the zero value of lifetime. 132

5.66 Result after running router_advertisement.py tool with the different
prefix than the one from legitimate router R1. 133

5.67 Captured Router Advertisement sent from PC1 with the different
prefix than the one provided by router R1. 134

5.68 Configuration at the Protocol Data tab for sending Router Adver-
tisement with the different prefix than the one provided by router
R1. 134

5.69 Captured Ping messages between PC2 and R2 after sending Router
Advertisement with different prefix than the one provided by R1. . . 135

5.70 Result after running router_advertisement.py tool to implant MTU
and DNS server in Router Advertisement. 136

5.71 Captured Router Advertisement sent from PC1 with with MTU and
DNS server. 136

5.72 Configuration at the Protocol Selection tab for sending Router Ad-
vertisement with MTU and DNS server. 137

5.73 Configuration at the Protocol Data tab for sending Router Advertise-
ment with MTU and DNS server. 138

5.74 Captured Ping message between PC2 and R2 after receiving Router
Advertisement with MTU and DNS server. 139

5.75 The network topology for testing Neighbor Solicitation and Neighbor
Advertisement. 141

5.76 Captured Neighbor Solicitation from PC2 in DAD procedure. 142
5.77 Captured Neighbor Advertisement from PC2 in DAD procedure. . . . 142
5.78 Result after running neighbor_advertisement.py tool to prevent auto-

configuration at PC2. 143
5.79 Captured Neighbor Solicitation and Neighbor Advertisement after

running the neighbor_advertisement.py tool to prevent address auto-
configuration at PC2. 144

5.80 Result after running neighbor_solicitation.py tool to resolve link-
layer address of PC2. a) Target is global address. b) Target is link-
local address. 146

5.81 Captured Neighbor Solicitation after sending Neighbor Solicitation to
resolve the link-layer address of PC2. 147

5.82 Configuration at the Protocol Selection tab for sending Neighbor So-
licitation to resolve link-layer address of PC2. 147

5.83 Configuration at the Protocol Data tab for sending Neighbor Solici-
tation to resolve link-layer address of PC2. 148

5.84 Captured Neighbor Advertisement after sending Neighbor Solicitation
to resolve the link-layer address of PC2. 149

5.85 Captured Neighbor Solicitation and Neighbor Advertisement when
PC2 resolves the link-layer address of PC1. 150

5.86 Illustration of Neighbor Advertisement spoofing attack in the scenario.151
5.87 Result after running neighbor_advertisement.py tool to cause spoof-

ing attack at PC2. 151
5.88 Captured Neighbor Solicitation and Neighbor Advertisement when

PC1 performs spoofing attack on PC2. 152
5.89 The network topology for testing Redirect. 155
5.90 Result after running redirect.py tool to launch Redirect spoofing attack.156
5.91 Captured Redirect sent from PC1. 157
5.92 Configuration at the Protocol Selection tab for sending Redirect. . . . 158
5.93 Configuration at the Protocol Data tab for sending Redirect. 159
5.94 Configuration at the Protocol Data tab for sending Redirect (Redi-

rected Packet). 160
5.95 The network topology for testing Dynamic Host Configuration Pro-

tocol version 6. 161
5.96 Result after running dhcpv6_server.py tool to launch the stateful

configuration. 163
5.97 Captured Solicit after launching stateful DHCPv6 server by PC1. . . 164
5.98 Captured Advertise after launching stateful DHCPv6 server by PC1. 165
5.99 Captured Request after launching stateful DHCPv6 server by PC1. . 166
5.100Captured Reply after launching stateful DHCPv6 server by PC1. . . 167
5.101Result of the dhcpv6_server.py tool before the expiration of the ad-

dress from the stateful configuration. 169
5.102Captured Confirm after launching stateful DHCPv6 server by PC1. . 169
5.103Captured Renew after launching stateful DHCPv6 server by PC1. . . 170
5.104Result after running dhcpv6_server.py tool to launch the stateless

configuration. 171
5.105Captured Advertise after launching stateless DHCPv6 server by PC1. 172
5.106Captured Information-request after launching stateless DHCPv6 server

by PC1. 172
5.107Captured Reply after launching stateless DHCPv6 server by PC1. . . 173
A.1 Result after running the ping.py tool to send normal ICMPv6 Echo

Request from PC1 to PC2 with global unicast address. 186
A.2 Captured ICMPv6 Echo Request after running the ping.py tool to

send normal ICMPv6 Echo Request from PC1 to PC2 with global
unicast address. 187

A.3 Captured ICMPv6 Echo Reply from PC2 after running the ping.py
tool to send normal ICMPv6 Echo Request from PC1 to PC2 with
global unicast address. 187

A.4 Result after running the ping.py tool to send normal ICMPv6 Echo
Request from PC1 to PC2 with link-local unicast address. 188

A.5 Captured ICMPv6 Echo Request after running the ping.py tool to
send normal ICMPv6 Echo Request from PC1 to PC2 with link-local
unicast address. 188

A.6 Captured ICMPv6 Echo Reply from PC2 after running the ping.py
tool to send normal ICMPv6 Echo Request from PC1 to PC2 with
link-local unicast address. 189

A.7 Result after running the smurf.py tool to attack the router R1. 190
A.8 Result after running the smurf.py tool to attack the router R1. 191
A.9 Captured ICMPv6 Echo Request message with unknown option (type

127) in Destination Header. 192
A.10 Result after running the mld_query tool to send the Multicast Ad-

dress and Source Specific Query with random source. 194
A.11 Captured MLDv2 Query after sending the Multicast Address and

Source Specific Query with random source. 195
A.12 Captured MLDv2 Report after sending the Multicast Address and

Source Specific Query with random source. 195
A.13 Result after running the implant_mtu.py tool for implanting MTU

(1270 bytes) to the path PC2-PC4. 197
A.14 Configuration at the Protocol Data tab for sending Packet Too Big

with MTU (1270 bytes). 197
A.15 Configuration at the Protocol Data tab for sending Packet Too Big

with MTU (1270 bytes). 198
A.16 Result after running router_solicitation.py tool from PC1. 199
A.17 Captured Router Solicitation after running router_solicitation.py tool

from PC1. 199
A.18 Result after running router_advertisement.py tool from PC1 to kill

the default router R1. 200
A.19 Captured Router Advertisement after running router_advertisement.py

tool from PC1 to kill the default router R1. 201
A.20 Result after running router_advertisement.py tool with the provided

link-local prefix. 203
A.21 Captured Router Advertisement after running router_advertisement.py

tool with the provided link-local prefix. 204

A.22 Result after running redirect.py tool to restore the first hop to router
R1. 206

A.23 Result of the dhcpv6_server.py tool with the shorter valid lifetime
from the stateful configuration. 208

A.24 Captured DHCPv6 packets after running the dhcpv6_server.py tool
with the shorter valid lifetime from the stateful configuration. 209

A.25 Result of the dhcpv6_server.py tool with the longer valid lifetime
from the stateful configuration. 210

A.26 Captured DHCPv6 packets after running the dhcpv6_server.py tool
with the longer valid lifetime from the stateful configuration. 210

A.27 Result of the dhcpv6_server.py tool before the expiration of the ad-
dress with longer valid lifetime from the stateful configuration. 211

20

Introduction
IPv6 (Internet protocol version 6) is the successor to IPv4, which reached its limit
of available addresses after nearly 45 years with millions of Internet users. A series
of mechanisms such as NAT (Network Address Translation) have been created to
prolong the lifespan of IPv4. However, their complexity and limitation of scalability
have affected the network performance. IPv6 was built upon the functionality of
IPv4. Therefore, IPv6 has inherited the advantages of IPv4, while improving the
disadvantages of its predecessor. These advantages are described below [1].

• IPv6 has leaped from 32 to 128-bit addressing, which has provided a massive
number of addresses (2128 ≈ 3.4x1038) to every host in the world.

• IPv6 has restored the Internet’s end-to-end connection principle and could
eliminate NAT technology.

• The header format of IPv6 has been designed to be efficient by removing some
unnecessary fields and standardizing the size of the packet header to 40 bytes.

• IPv6 has better supported multicast, which is an option of IPv4 addresses,
but the support and popularity are not high.

• IPv6 address has been designed to be completely hierarchical, which provides
optimal packet routing.

• IPv6 has improved the privacy and security since extensions for authentication
and data integrity have been built-in instead of being optional fields in IPv4.

Because the advantages that IPv6 has brought are far superior to IPv4, IPv6
is definitely an indispensable structure of the network system in the near future.
However, there are currently many potential vulnerabilities and risks related to
the IPv6 protocol specification that may occur when operating. Therefore, this
thesis focuses on the design of scenarios that exist in reality, in which there is an
information exchange of specific IPv6 packets. In addition, as part of the thesis,
templates of the relevant packets are created by the Ostinato software, as well as a
custom tool solution for generating the relevant packets.

Chapter 1 explains the knowledge basis of IPv6 including the address architec-
ture, headers, fields and protocols of the IPv6 family. In addition, it also provides
an overview of typical procedures and mechanisms on the road to the IPv6-only.
Chapter 2 covers the used platforms and libraries for constructing laboratory sce-
narios and generating IPv6 packets. In chapter 3, the network setup of scenario
and operations are described in detail. Moreover, in chapter 4, the structure and
usage of the designed program for creating kinds of IPv6 packages, as well as Os-
tinato application, are illustrated thoroughly. Chapter 5 is dedicated to generating
required IPv6 packets with the help of two mentioned methods (the designed toolkit
and application Ostinato). The analysis is included in specific situations.

21

1 IPv6 Background

1.1 IPv6 Address Architecture
The IPv6 address architecture can be specified in RFC 4291[2]. The length of IPv6
address is 128-bit, written in eight blocks of hexadecimal notation. Each block has
the length 16-bit. For example:

2001:db8:abcd:0001:0000:0000:d813:9e63

If there are consecutive zeros in an IPv6 address, it can be written in a simplified
format:

2001:db8:abcd:1:0:0:d813:9e63

In order to make writing addresses containing zero bits easier, the sign "::" is used
to indicate one or more blocks of 16-bit zeros:

2001:db8:abcd:1::d813:9e63

Each IPv6 address is divided into three different parts: site prefix, subnet ID,
interface ID. These three components are identified by the positions of the bits
within every part, as shown in Tab. 1.1.

Tab. 1.1: IPv6 Address Format.

Portion Site prefix Subnet ID Interface ID

Size 48 bits 16 bits 64 bits

Example 2001:db8:abcd:1:1572:f645:d813:9e63/64

2001:db8:abcd 1 1572:f645:d813:9e63

The site prefix is the same as the network portion of IPv4. It is the number
assigned to the site by an ISP. Typically, all computers in the same location will
share the same site prefix. Site prefix is intended for sharing when it recognizes
a specific network and allows that network to be accessible from the Internet. A
common valid prefix has the size 48 bits. The subnet ID is identifier of a link
within a site, which is set by network administrators. It works very similarly to
how subnets work in IPv4 protocol. A typical IPv6 subnet is equivalent to a single
IPv4 subnet. The interface ID is used to identify an IPv6 interface on a subnet.
Within a subnet prefix, it must be unique, and is possible to be auto-configured

22

based on the network interface’s MAC address. EUI-64 (Format Interface Identi-
fiers) is also one of the implemented methods to create this type of interface ID.
Besides, the process of creating interface ID can be randomized using system’s pri-
vacy extension to create a random interface ID and the renewal of IPv6 address
happens after a predefined time interval. In IPv6, the address is written with the
format ipv6 address/prefix length, where the prefix length = length of (site prefix +
subnet ID) is added after the slash to the IPv6 address. As can be seen from the
example above, the IPv6 prefix is 2001:db8:abcd:1::/64, and the IPv6 address is
2001:db8:abcd:1:1572:f645:d81 3:9e63/64.

There are three main types of IPv6 addresses. Within each main type, it is
divided into several categories, which can be seen in Fig. 1.1.

Fig. 1.1: Graphical representation of the basic types of IPv6 addresses and their
affiliation to the three existing types of addresses.[3]

IPv6 unicast address specifies a single interface on an IPv6 device. There are
seven different types of unicast addresses. The global unicast address is globally
unique. It corresponds to the public address of IPv4, which is a type of address that
is widely accessible on the internet, supporting routing and hierarchical address-
ing. The current allocation for global unicast addresses is 2000::/3. The link-local
unicast address is always autoconfigured on the interface of a device, starting with
prefix fe80. The site-local address in the past performed the function as the private
addresses in IPv4 (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16) for address-
ing inside of a site without the need of a global prefix. This kind of address has
been deprecated as not being supported anymore in new implementation RFC 4291.
Due to the deprecation of site-local address, the proper way to work with private
addresses in IPv6 is the unique local addresses fc00::/7 [4]. They are routable in

23

the scope of private network, not in global network. Another type of unicast address
is the loopback address ::1, which is used to send IPv6 packet to itself. The un-
specified address (::) is used to indicate the absence of an address, and must never
be assigned to any node. The IPv4-compatible addresses are used to assist the IPv6
transition. However, these addresses have not been used because the current IPv6
transition does not use these addresses.

IPv6 multicast address identifies a group of interfaces. Packets are sent to mul-
tiple nodes by using this multicast address as the destination. All nodes that are
interested in that multicast information need to join the multicast group first. All
nodes participating in the group will receive this multicast and process it, while other
uninterested nodes are ignored. The space allocation for this address is ff00::/8.
Multicast addresses also have scopes: global, site-local, link-local. In addition, mul-
ticast has two new scopes: organization-local and node-local. One of the most
necessary multicast scopes for IPv6 device are the node-local scope ff01:: and the
link-local scope ff02::. They are all defined by IANA [5]. Solicited-Node multicast
address is defined as the format ff02:0:0:0:0:1:ffxx:xxxx. This address is com-
puted by taking the last 24 bits of the unicast or anycast address and appending
to the prefix above, which results in a multicast address corresponding to a specific
IPv6 address. Tab. 1.2 illustrates these addresses.

Tab. 1.2: IPv6 Addresses assigned to an interface.

Global Routing Prefix 2001:db8:abcd::/48

Subnet ID 0001

Subnet Prefix on the link 2001:db8:abcd:1::/64

MAC address 00:0c:29:17:9c:15

Interface ID (using EUI-64) 020c:29ff:fe17:9c15

Global unicast address (using EUI-64) 2001:db8:abcd:1:20c:29ff:fe17:9c15

Link-local unicast address fe80::20c:29ff:fe17:9c15

All-Nodes multicast address ff02::1

Solicited-Node multicast address ff02::1:ff17:9c15

Besides, the anycast address is also included in IPv6. In this addressing mode,
multiple Hosts are assigned the same anycast IP address. When a node wants to
communicate with another one equipped with anycast IP address, it sends a unicast
message. This message will not be sent to all nodes in the group like multicast
does. Instead, with the help of routing mechanisms, that unicast message is sent

24

to the node, which is the closest to the sender (calculated according to the routing
procedure). However, the use of unicast address is still restricted, it is only assigned
to routers (not IPv6 normal hosts) [6].

1.2 IPv6 Header and Fields
Since IPv6 is the successor, its header design has also been improved to reduce
complexity and increase efficiency much more than IPv4. IPv6 headers consists of
one fixed header and zero or more extension headers. All compulsory information
is stored in the fixed IPv6 header, which has a fixed length header of size 40 bytes
instead of varying from 20 bytes to 60 bytes in IPv4 header. This is convenient
for routers and other network nodes to process the header and forward the packet.
Moreover, the header checksum field is no longer used in IPv6 header because the
checksum is computed on the upper layers such as TCP or UDP [7, 8]. Extension
headers and Payload can carry data up to 65495 bytes. Fig. 1.2 shows the format
of IPv6 datagram header.

0 31

Version Traffic Class Flow Label

Payload Length Next Header Hop Limit

Source Address

Destination Address

Fig. 1.2: IPv6 Header without Extension.

• Version: 4 bits, represents IP version number (= 6 in IPv6).
• Traffic class: 8 bits, performs the same function as the "Type of Service" field

of IPv4. This field is used to represent the priority of the packet, so that each
IPv6 connection point can mark the packet with each data type. For example,
the packet should be transmitted at a fast or normal rate.

• Flow label: 20 bits, is used to designate packets that belong to a certain flow
between the source and the destination, requiring special handling by IPv6
routers. By using this field, the sender of packet can specify a sequence of

25

packets, for example a VoIP voice service packet, into a stream and request a
specific quality for that stream. When a router identifies a traffic stream for
the first time, it remembers that traffic, as well as special handling for that
traffic, and when other traffic of this stream arrives, it will process faster than
processing each packet. Unfortunately, this field is still experimental. So many
hosts and routers set this field to zero when originating a packet, and ignore
the field when receiving a packet[9].

• Payload length: 16 bits, is the length of the IP Payload (potential Extension
Headers and Upper layer data).

• Next Header: 8 bits, specifies the kinds of header right after the IPv6 header.
This can be ICMPv6, TCP, UDP, or it can be an extension header located
between IPv6 header and transport layer header.

• Hop limit: 8 bits, limits the number of hops the packet passes through to
prevent the packet from being routed around the network. This field is the
same as the TTL (Time-To-Live) field of IPv4.

• Source Address: 128 bits, source address of the packet.
• Destination Address: 128 bits, destination address of the packet.

1.3 IPv6 Extension Headers
In IPv4, information regarding extended features (except for authentication, and
encryption that are included in separate format IPSec) is placed in the Options field
of the IPv4 header. IPv6 includes extended features and additional services into a
separate field, called the Extension Header. This optional part locates between the
IPv6 header and the upper-layer header in a packet [10]. The extension headers
are placed one after another in a specified order, each of them has its own field
structure. Usually, the extension headers are handled at the destination. Hop-by-
Hop extension headers are processed at every router that the packet passes through.
Currently, there are six types of header extensions corresponding to the six services
being defined in RFC 8200: Hop-by-Hop Options, Destination Options, Routing,
Fragment, Authentication, and ESP (Encapsulating Security Payload). The first
four Extension Headers are defined by RFC 8200 [10], while the last two are specified
in RFC 4302 [11] and RFC 4303 [12], respectively. Selected types of extension
headers relevant for this thesis are introduced below:

• Hop-by-Hop Options Header is the extension header placed first immedi-
ately after the IPv6 base header. This header is used to specify certain param-
eters at each hop on the packet’s path from source to destination. Therefore,
it will be processed at every router on the packet path. It has the next header
value of 0, and is often used with Router Alert option in the Multicast Listener

26

Discovery message. In particular, the Multicast Listener Discovery protocol
uses the Router Alert option with the Hop-by-Hop Extension Header to enable
multicast packet forwarding. This protocol is applied by routers to discover
and track multicast group membership in IPv6 networks. When a multicast
packet is sent, the Router Alert option is included in its Hop-by-Hop Extension
Header is depicted in the red frame of Fig. 1.3.

Fig. 1.3: Format of captured MLD Query packet including Hop-by-Hop Options
Header

• Destination Options Header is used to carry the optional information,
which is examined only by the destination device. However, if this header is
combined with a routing header, every node on the path will examine this
packet. It has the next header value of 60 and is implemented in conjunction
with Home Address option of the mobile node. Specifically, in terms of mobil-
ity, Destination Option headers can be used to support Mobile IPv6 (MIPv6),
which allows mobile devices to maintain their IP address with the connections
as they move between different networks (using Binding message). The Des-
tination Option headers can be used to provide information about the mobile
device’s location, status, or the Care-of Address to route packets to the mo-
bile device while it is away from its home network, which are illustrated in
the Fig. 1.4. On the other hand, Destination Option Header can be used to

27

conceal communication between two parties by using unused fields within the
headers to transmit data. This technique is often used by attackers to bypass
security measures and avoid detection.

Fig. 1.4: Format of captured MIPv6 packet including Destination Options Header

• Routing Header is responsible for determining the routing path. The source
IPv6 node can use the Routing Header to determine the route that the packet
must go through. The addresses in the list will be used as the destination
address of the IPv6 packet in order and the packet will be sent from one
router to another. The next header value is 43. There are three differ-
ent types of Routing Header: RH0 is used for normal IPv6 packets, RH1
is unused, and RH2 is used by MIPv6 (Mobile IPv6). To be clearer, assum-
ing that a node with IPv6 address 2001:db8:abcd:1:1a4:2296:7e2c:8941
is sending a Ping message (ICMPv6 Echo Request) to the destination node
2001:db8:abcd:3::100. Moreover, the packet has to travel through two in-
termediate nodes (2001:db8:abcd:1::1; 2001:db8:abcd:2::2, respectively).
As shown in Fig. 1.5, after passing through every node on the way, the seg-
ments left is decremented by 1 till it gets 0, which means the packet reaches
at the final destination. Simultaneously, every intermediate node swaps the
address in Destination field of IPv6 Header to the one in the Address field of
Routing Header for sending the message to the next defined node. Since Rout-

28

ing Header may contain multiple intermediate nodes, in which one address can
appear more than once, this leads to the fact that a single packet may be pro-
cessed multiple times (infinite loop in the worst case). Attackers can take
advantage of this feature to exploit the network, and causes Denial of Service.
As having an insecure structure, Routing Header is generally discouraged or
disabled by default in most IPv6 implementations.

Fig. 1.5: Format of captured ICMPv6 Echo packets including Routing Header. a)
Request message sent from source node. b) Request message sent from the first

intermediate hop. c) Request message sent from the second intermediate hop. d)
Reply message sent from destination node.

• Fragment Header carries information to support IPv6 packet fragmenta-
tion and reconstruction. The Fragment Header is used by the IPv6 source
node when sending a packet larger than the Path MTU (Maximum Trans-
mission Unit). It has the next header value of 44. The Fragment Offset,
More Fragments flag, and Identification fields are implemented similarly as
the corresponding fields in IPv4 (depicted in the yellow frame of Fig. 1.6).

RFC 8200 also recommends the order of these Extension Headers in the IPv6
packet as follows: IPv6 header - Hop-by-Hop Options header - Destination Options

29

Fig. 1.6: Format of captured ICMPv6 packets including Fragment Header

header - Routing header - Fragment header - Authentication header - Encapsulating
Security Payload header - Destination Options header - Upper-layer header. Each
extension header should occur at most once, except for the Destination Options (at
most twice).

1.4 Internet Control Message Protocol for IPv6

ICMPv6 has been modified from ICMPv4 version, and plays a mandatory role in
operating IPv6 network. The functions such as Internet Group Management Proto-
col (IGMP) and Address Resolution Protocol (ARP) are incorporated into ICMPv6.
Moreover, ICMPv6 deals with new functionality in IPv6 such as MTU Path Dis-
covery and Neighbor Discovery. ICMPv6 has the next header value of 58, and the
location in IPv6 packet follows the IPv6 header or one of the extension headers that
is defined by the IPv6 Next-header. Other information is defined in RFC 4443 [13].

1.4.1 ICMPv6 Message Format

Fig. 1.7 describes the header structure for all ICMPv6 messages.
• Type - 8 bits, identifies the types of messages. Values with the range from

1 to 127 specify the error messages, while 128-255 is used for informational
messages.

30

• Code - 8 bits, is used to indicate a more specific format of the ICMPv6
message.

• Checksum - 16 bits, check if the data is corrupted in the ICMPv6 header and
parts of the IPv6 header.

• ICMPv6 message, holds different data depending on every specific type of
ICMPv6 messages.

Fig. 1.7: ICMPv6 message format

1.4.2 Informational Messages

Diagnostic Messages

ICMPv6 Echo Request and Echo Reply messages are two basic types of messages
that are used to test the connection. The format of these messages is similar to
that of ICMPv4 version. But ICMPv6 Echo Request has the type value of 128,
ICMPv6 Echo Reply has the value of 129. To diagnose the network status, one
node sends an ICMPv6 Echo Request message to the other node. If the destination
device responds back to the source with an ICMPv6 Echo Reply message, they can
communicate with each other normally.

Neighbor Discovery Protocol

Neighbor Discovery Protocol describes a group of different functions to solve the
problems associated with nodes on a link. It provides functionality for IPv6 address
autoconfiguration, router and neighbor discovery, prefix discovery, address resolu-
tion, duplicate address detection (DAD) and maintaining reachability information
about active neighbors (Neighbor Unreachability Detection). There are five types
ICMPv6 messages defined for Neighbor Discovery Protocol, which is included in the
document RFC 4861 [14].

31

The first ICMPv6 message is Router Solicitation, which has the type value of 133.
It is sent by a node to request routers to generate Router Advertisement message.
By sending Router Solicitation message to all-routers multicast address ff02::2,
the node is able to discover all active routers on the link. Moreover, the link-layer
address of the node is included in the Router Solicitation, so that the present router
will know exactly to which node the Router Advertisement will be sent.

As described above, the Router Advertisement message is sent out in response
to the Router Solicitation message. However, the Router Advertisement is also sent
periodically to the all-nodes multicast address ff02::1 by the router. This type
134 message is not only used to inform the present of router, but also provide infor-
mation about preference (Low, Medium, High), router lifetime, link-layer address
of router, MTU, prefix and flags to destination nodes. The most important part
is the IPv6 prefix, which allows nodes to achieve IPv6 global unicast address for
communication through the Internet. It also notifies the node about the mode of
autoconfiguration (stateful or stateless) through M flag (Managed Address Config-
uration). Furthermore, O flag (Other Configuration) requests nodes to use stateless
configuration, but other information like DNS servers is available through DHCPv6.
H flag (Home agent) is set to support mobility. The format is depicted in Fig. 1.8.

0 31
Type Code Checksum

Cur Hop Limit M
flag

O
flag

H
flag

Prf
flag

Proxy Reserved Router Lifetime

Reachable Time
Retrans Timer

Options

Fig. 1.8: Router Advertisement Message Format

The Options field in Router Advertisement message plays an important role as
it contains the expansion detail of NDP options corresponding to the values of flags
[15]. For example:

• ICMPv6 Option (Source link-layer address): Stores the link-layer address of
the router that provides information to hosts.

• ICMPv6 Option (MTU): Informs the value of MTU on the link.
• ICMPv6 Option (Prefix Information): The provided IPv6 prefix is included in

that field.
• ICMPv6 Option (Recursive DNS Server Option): Contains at least one or

more addresses of DNS servers, which process requests for the website names

32

or URL (uniform resource locator) from users and check the records received
from the authoritative DNS for the IP address associated with that website or
URL.

• ICMPv6 Option (DNS Search List Option): Contains one more more DNS
suffixes that are appended in order to query DNS.

The next pair of ICMPv6 messages is Neighbor Solicitation (type 135) and Neigh-
bor Advertisement (type 136). These messages cover indispensable processes in
IPv6 network. The first process is the link-layer address resolution, which is simi-
lar to ARP protocol in IPv4. The difference is that ARP protocol uses broadcast
link-layer address ff:ff:ff:ff:ff:ff, does not contain any IP header. Whereas, for the
same purpose, Neighbor Discovery protocol take advantage of the solicited-node
multicast address ff02:0:0:0:0:1:ff00::/104 and link-layer multicast address
33:33:xx:xx:xx:xx. For example, node A wants to resolve the link-layer address
of node B, it sends a Neighbor Solicitation message to the solicited-node multicast
address of node B. Node B then replies with a Neighbor Advertisement message,
in which it’s link-layer address is included. There are some flags contained in the
Neighbor Advertisement message, which is depicted in Fig. 1.9.

0 7 8 15 16 31
Type Code Checksum

R flag S flag O flag Reserved

Target Address

Options

Fig. 1.9: Neighbor Advertisement Message Format

• R flag (Router): the node is a router (if set).
• S flag (Solicited): the advertisement is sent in response to a Neighbor Solic-

itation. It is used as a signal to confirm the reachability in NUD (Neighbor
Unreachability Detection).

• O flag (Override): indicates that the node should override the neighbor cache
entry with the information it just gathers.

As mentioned above, Neighbor Unreachability Detection also uses the pair of
messages Neighbor Solicitation/Advertisement. Besides, if two nodes are or have
recently exchanged information, the accessibility is guaranteed without any further

33

testing with NUD. There are five states showing the level of reachability to neigh-
bors: Probe, Delay, Stale, Reachable and Incomplete. By the communication or
after receiving Neighbor Advertisement messages, the neighbor cache entry is auto-
matically updated. After a specific interval, the states of neighbors will change (e.g
from Reachable to Stale), then after a while the cache entries will be deleted.

Another process used by ND is the DAD (Duplicate Address Detection), when
a node needs to verify that there is no other node on the link with the same IPv6
address. For example, node A sends Neighbor Solicitation using the unspecified
source address ::/128 and a destined solicited-node multicast address corresponding
to the IPv6 address it intends to use. If no node responds to the Neighbor Solicitation
from node A, the proposed IPv6 address of node A is unique and is ready to use. If
any node on the link replies with Neighbor Advertisement message, and the target
address is the proposed IPv6 address of node A, the duplicate will exist. Then node
A has to propose another different IPv6 address. In RFC 4861, the source and
destination address follow the table of format Tab. 1.3.

Tab. 1.3: Identification of Neighbor Discovery processes.

Source address Destination address Process

Unicast
Solicited-node multicast Link-layer address resolution

Unicast Neighbor Unreachability Detection

Unspecified
Solicited-node multicast Duplicate Address Detection

All-routers multicast Stateless Address Autoconfiguration

Last but not least, the Redirect Message is an important part of Neighbor Dis-
covery protocol. This message has the type value of 137, is sent by the router to
inform the host about a better first-hop node on the way to the destination. How-
ever, the destination does not have to be the node in different network. The IPv6
address of the best hop is written in the field Target Address. After receiving the
Redirect message from the router, the node updates its routing table and destination
cache. The next packets to that network will be delivered with the new updated
path.

1.4.3 Error Messages

ICMPv6 Error messages are used to report errors happening when dealing with IPv6
packets. The document RFC 4443 defines four types of error messages: Destination
Unreachable, Packet Too Big, Time Exceeded, and Parameter Problem.

34

The first error message is Destination Unreachable, which has the type value of
1. It is generated by the router or a node when the IPv6 packet cannot be delivered
to the destination due to reasons except for congestion. The specific reasons for that
error are mentioned in the Code field of ICMPv6 header. For example, code 0 is
No route to destination, which means that the delivered packet does not match any
defined route. Code 3 Address unreachable informs that the node fails to resolve
the link-layer address corresponding to the destination IPv6 address. Code 4 Port
unreachable means that there is no port process on the destination device for the
UDP packet.

The second error message is Packet Too Big (type ICMPv6 value 2). This mes-
sage is sent by the router when it cannot deliver the IPv6 packet due to the smaller
MTU size on the outgoing link. The message carries the information about the
MTU of the forwarding link to ask the source node to fragment the future packets
with this size. This is used in the Path MTU Discovery [16] that aims to identify the
smallest MTU on the way to the destination by sending packets to the final node
until it gets a response with Packet Too Big message. This process is illustrated in
Fig. 1.10.

Fig. 1.10: Illustration of Path MTU Discovery.

The Time Exceeded message is another error type with the value 3. This message
is sent by the router when it receives a packet with the hop limit value 0, or when the
router decrement a packet’s hop limit to zero. The router then discards the packet
and sends the Time Exceeded message to the source. It solves the problem where the
packet goes around for too long in the network without reaching its destination. In
addition, it also helps avoid time-consuming packet fragmentation and reassembling.

The last error message is Parameter Problem with the type value of 4. That

35

message is sent by either router or host to indicate that it found a problem with a
parameter – datagram field while processing the packet sent by original node. This
kind of ICMPv6 message is only generated when the encountered error is so serious
that the receiver cannot work with and must discard. The problem can be Erroneous
header field encountered with the code value of 0, Unrecognized Next Header type
encountered with the code value of 1 and Unrecognized IPv6 option encountered
(code value of 2).

1.4.4 Stateless Address Auto-Configuration (SLAAC)

This is the autoconfiguration process, which is used by every node on the local
link to generate the IPv6 address for communicating inside and outside the local
network. After connecting to an IPv6 network, the node autoconfigures itself with
a link-local IPv6 address in order to exchange information with other devices in the
local segment. The link-local address is often generated by combing the link-local
prefix fe80::/64 and the random Interface ID. Network devices such as routers
and Linux machines might use EUI-64 method, but Windows machines and other
desktops use random value for generating IPv6 link-local addresses by default.

The node then performs the Duplicate Address Detection procedure to verify
the uniqueness of the proposed address. After getting a unique link-local address,
the node sends a Router Solicitation message to ask all attached routers about the
global routing prefix. The Router Advertisement message, which is described above,
responds to help the node autoconfigure its global IPv6 address. Specifically, the
Router Advertisement message from the router provides the node with the IPv6
prefix for generating, and other information such as router lifetime, flags, MTU,
which is described in the Fig. 1.8. With the gathered IPv6 prefix, the node generates
the rest 64 bits of Interface ID using EUI-64 or privacy extension (constantly random
address, periodically random address) and performs DAD procedure again.

• The M flag (Managed address configuration) is set to value 0 since the node
does not use the DHCPv6 for generating IPv6 address.

• The O flag (Other stateful configuration) can be set to 1 if the node gets
information about DNS server address from the DHCPv6 server. If O flag
value is 0 (M flag is also set to 0), there is not any present DHCPv6 server on
the segment. More detail is explained in RFC 4862 [17].

• The Prf flag (Default Router Preference) can be set from Low, Medium to
High. When there are multiples routers on the link, the node will choose the
one with the highest preference as its default gateway.

36

1.4.5 Multicast Listener Discovery (MLD)

This is a sub-protocol of ICMPv6, which is used by multicast listeners to attach
their multicast addresses at the router. It has the same functionality as IGMP
(Internet Group Management Protocol) in the IPv4 network [18]. Currently, there
are two versions: MLDv1 (similar to IGMPv2) and MLDv2 (similar to IGMPv3).
MLDv2 is the updated version of MLDv1 and is still compatible to the predecessor.
The difference is that MLDv2 provides the functionality of filtering traffic for any
individual source within the multicast group [19]. In the MLD message, the hop-
limit is set to 1, the source address is a valid link-local address and an Router Alert
option in the Hop-by-Hop Options is always present to indicate that the router
should inspect the packet when forwarding the packet even though the packet is not
directly sent to the router.

There are three defined types of messages in MLDv1. The first message is Mul-
ticast Listener Query (type value of 130), which is sent by the multicast router. It is
divided into two subtypes: General Query for asking any multicast address on the
link, and Multicast-Address-Specific for a particular multicast address. After the
MLD querier (MLD router) sends the Query message to all-nodes multicast address
ff02::1, all members of group start a timer length to a random value. The one
that expires first sends the Multicast Listener Report message (the second type of
messages with type value of 131) for the whole group in order to inform the router
about the group they are members or want to receive data. The last message Mul-
ticast Listener Done (type value of 132) is sent by hosts to the all-routers multicast
address ff02::2 for leaving a specific group.

In MLDv2, only two kinds of message are defined: Multicast Listener Query
and Multicast Listener Report v2 (type value of 143). The Query message is then
divided into three types: General Queries, Multicast Address Specific Queries and
Multicast Address and Source Specific Queries. This new feature allows hosts to
select the group they wants to join and the multicast sources they want to receive
data at the same time, which is not possible in version MLDv1. The Report message
is used to perform its inbuilt role and also take on the role of the Multicast Listener
Done in MLDv1. The format of Multicast Listener Report is shown in Fig. 1.11.

The Multicast Address Record field consists of several fields in it:
• Record Type: 8 bits, there are types of record such as MODE_IS_INCLUDE,

MODE_IS_EXCLUDE, CHANGE_TO_INCLUDE_MODE, CHANGE_TO_EXCLUDE_MODE.
Information about every record is explained in [20].

• Number of Sources: 16 bits, defines the number of source addresses in this
record.

• Multicast Address: 128 bits, is the address of a multicast group to which

37

the host is listening.
• Source Address: 128 bits, is the address of a multicast source that the host

wants to get data from.

0 31

Type Code Checksum

Reserved Number of Multicast Address Records

Multicast Address Record (1)

Multicast Address Record (2)

...

Multicast Address Record (n)

Fig. 1.11: MLDv2 Multicast Listener Report message format.

1.5 Dynamic Host Configuration Protocol for IPv6
(DHCPv6)

DHCPv6 protocol is used by DHCP servers to provide configuration parameters such
as IPv6 address to the nodes. DHCPv6 is also called the Stateful Address Autocon-
figuration protocol when comparing with the Stateless Address Autoconfiguration.
There are three primary roles in the system working with DHCPv6: Client, Server
and Relay Agent (if enabled when there is no direct connection between the client
and server). The client uses the multicast address for all DHCP Relay Agent and
Servers ff02::1:2 as the destination address when looking for any DHCP servers
or relay agents on the local link. Besides, the client can also use the destination
address ff05::1:3 for site-local scope. However, as the site-local addresses are now
deprecated, the address ff05::1:3 is no longer applied [21].

To identify the DHCP server and client, DUID (DHCP Unique Identifier) is used.
RFC 3315 defines three ways to generate the DUID. This first one is called DUID
Based on Link-layer Address Plus Time (DUID-LLT), in which DUID is created
using the time value and the link-layer address. This method is recommended for
all general computing devices such as computers, laptops, routers and printers. The
second is DUID Assigned by Vendor Based on Enterprise Number (DUID-EN),
where the enterprise vendor assigns the DUID. The last method is DUID Based on
Link-layer Address (DUID-LL).

38

Fig. 1.12: DHCPv6 Messages Exchange.

Fig. 1.12 depicts the information exchange process between DHCPv6 client and
DHCPv6 server. Firstly, the client sends SOLICIT message to the all DHCP servers
or agents multicast address ff02::1:2 in order to discover any DHCPv6 servers on
the link. If there is any present server on the link, it replies to the client with
ADVERTISE message, in which the proposed IPv6 address, DNS servers or do-
main entries are published. The client then selects one DHCP server and sends
REQUEST message to the multicast address ff02::1:2. Finally, the selected DHCP
server acknowledges the request by responding back REPLY message to the client.
The unselected server (if so) just ignores the REQUEST message from the client.

1.5.1 Stateless DHCPv6

This is a mode of DHCPv6 server, in which there are only two types of DHCPv6
message needed (Information-request and Reply). In this situation, the DHCPv6
server does not provide IPv6 address as the client has already generated the global
unicast address using SLAAC. However, the client still needs other information such
as DNS server address. Therefore, the Information-request is sent by the client to
ask the server about that information. In the Router Advertisement message, the
M flag is set to 0, and the O flag is set to 1. Besides, the L flag (On-link flag) and A
flag (Address Configuration Flag) in the ICMPv6 Option are set to 1 as the client
uses SLAAC.

1.5.2 Stateful DHCPv6

This is a full-option mode of DHCPv6 server. In this mode, a complete process with
four types of DHCPv6 messages (SOLICIT, ADVERTISE, REQUEST and REPLY)

39

is applied. DHCPv6 server provides all information such as IPv6 address, DNS server
address to hosts. Moreover, the server keeps track of the state of each host that it
assigns information. In this situation, the Router Advertisement message has an
essential role like DHCPv6 messages. The router needs to set the default gateway
for the host based on the Router Advertisement packet. It also has to set the flags
in order to inform the client about the dynamic addressing. M flag, O flag and L
flag are all set to value 1, while A flag is set to 0 [22].

1.6 Processes on the road to the IPv6-only

The IPv6 protocol has evolved since IPv4 became widely used and worked well. In
the process of deploying IPv6 address generation on the Internet, there is no way
to eliminate IPv4 immediately, completely replacing it with the new generation of
IPv6. The two generations of IPv4 and IPv6 networks therefore coexist for a very
long time. In development, IPv6 connections take advantage of the existing IPv4
infrastructure. Several transition mechanisms have been applied such as Dual-Stack,
Tunneling and Protocol Translation, which are described in RFC 4213 [23].

1.6.1 Dual-Stack

Dual Stack is the most basic mechanism that allows a network node to simulta-
neously support both IPv4 and IPv6 protocols. This is possible because a Dual
Stack node implements both IPv6 and IPv4 protocols. The Dual Stack node will
communicate using IPv4 protocol with IPv4 hosts and by IPv6 protocol with IPv6
hosts. Due to the operation of both protocols, this network node needs at least one
IPv4 address and one IPv6 address. IPv4 addresses can be configured manually or
through the DHCP mechanism. IPv6 addresses are configured directly or through
the address autoconfiguration capability. Dual stack meets most DNS resolution and
address selection requirements. Otherwise, both internet protocols can coexist on
the data-link layer as the stacks because the Ethertype values of them are different
[8]. For example, when a user connects to a website, resolves the DNS name and gets
a AAAA record, the connection will be established via IPv6. But the Dual-Stack
also brings the drawback since it requires more memory consumption of all devices
due to processing two routing tables. In addition, it requires the need of more IPv4
addresses when expanding the network.

40

1.6.2 Tunneling

Tunneling technology is a method of using the existing infrastructure of the IPv4
network to make IPv6 connections using network devices capable of dual-stack op-
eration at two certain beginning and end points. These dual-stack nodes wrap the
IPv6 packet in an IPv4 packet and transmit it in the IPv4 network at the beginning.
Then they decapsulate the IPv4 packet in order to receive the original IPv6 packet
at the end of the IPv4 transmission. Currently, there several variants of IPv6 tunnel
such as 6in4 (Configured tunnel), 6to4 (Dynamic tunnel) and Teredo tunneling. The
Tunneling enhances the latency of connection as the IPv6 packet is sent through the
tunnel over the IPv4 network first, then need to be processed over the IPv6 network
at the destination.

1.6.3 Protocol Translation

This mechanism is a breakthrough since it has the capability for IPv4-only and
IPv6-only devices to communicate without any problem. To be clearer, IPv6-only
describes a node that has no IPv4 provision and IPv4 is entirely unused by the
network devices. When exchanging information between nodes, this mechanism
dynamically maps IPv4 address to IPv6 address and vice versa. The process is
not as simple as using NAT for IPv4 because many types of messages have to be
converted. Moreover, some kinds of protocols and IPv6 headers cannot be used
when forwarding, UDP checksum have to be recalculated differently and DNSSEC
will not work.[24].

Fig. 1.13: The operation of the DNS64/NAT64.

41

The first translation is the address space. Since IPv4 has smaller space than
IPv6, all IPv4 addresses can be mapped into the IPv6 range. Secondly, the transi-
tion is processed through NAT64 (defined in RFC 6146 [25]) and DNS64 (defined in
RFC 6147 [26]). For example, an IPv6-only node wants to access to a server with
IPv4-only on the internet. The node sends first a DNS query with AAAA record
to the recursive name server running DNS64. The recursive name server forwards
to the authoritative server AAAA query but gets a negative response. So the local
server changes to A record in order to get the response. After that, by using DNS64,
the local server is able to translate A record into AAAA for returning the reply to the
requesting node. Next, the IPv6-only node just sends the packets with the received
IPv6 address as the destination address. The packets get routed to the NAT64 pro-
tocol translator, which sends the packets to the IPv4 destination address and keeps
track of the mapping during connection. The IPv4-only server communicates with
the IPv6-only host through the NAT64 translator node smoothly. The network ar-
chitecture is depicted in Fig. 1.13. In practice, NAT64 and DNS64 are implemented
on one intermediate device rather than dividing into two separate nodes.

42

2 Specification about the tools and platforms
used

2.1 Graphical Network Simulator 3 (GNS3)

GNS3 is software for simulating, configuring, testing and repairing virtual and real
networks. It allows you to create a small topology of a few devices on a laptop, with
devices on multiple servers or in the cloud. Moreover, GNS3 is free and open source
software, so that everyone can download and use easily [27]. Besides, GNS3 has the
same effect as Cisco Packet Tracer but this is a more powerful tool, allowing both
emulation and simulation.

GNS3 includes two programs: GNS3-all-in-one software (GUI) and GNS3 virtual
machine (VM). GNS3-all-in-one is the client part of GNS3 and is the graphical user
interface. It is easy to install all-in-one software on the computer (Windows, MAC,
Linux) and create the topology using this software. For example, Fig. 2.1 shows the
created topology.

Fig. 2.1: Platform and network topology of GNS3.

If user’s device uses GNS3 VM (recommended), he can run GNS3 VM on PC
using virtualization software like VMWare Workstation or Virtualbox, or he can run
GNS3 VM remotely on server using VMWare ESXi or even in the cloud.

43

2.2 Cisco Internetwork Operating System (Cisco IOS)
Cisco IOS is a proprietary operating system that runs on most Cisco System routers,
switches and other devices. It provides a command-line interface (CLI) for network
configuration, management, monitoring, and troubleshooting. There are three IOS
modes [28]:

• User EXEC mode: default mode of IOS CLI when getting login to router or
switch.

• Privileged EXEC mode: can be accessed by executing the enable command
in User EXEC mode. In this mode, user can execute more rights and the
configuration performs at a higher level.

• Global Configuration mode: This mode can be accessed by entering in the
terminal configuration terminal in Privileged Exec mode.

As the network evolves, versions of the Cisco IOS are also improved and perfected
to be compatible with newer hardware devices. This thesis has focused on using two
versions of Cisco IOS for Cisco routers, which are:

• Version 12.4(25d) for Cisco router C3640-A3JS-M, was released in 2010 by
Cisco Systems, Inc. This version can be downloaded on Cisco website through
the link [29].

• Version 15.3(3) for Cisco router C7200-ADVENTERPRISEK9-M, was released
in 2013 by Cisco Systems, Inc. The link to download this version on Cisco
website is [30].

2.3 Python
Python is a programming language created by Guido Van Rossum. Its design be-
gan in the late 1980s and was first released in February 1991. Python has powerful
high-level data structures and a simply effective approach to object-oriented pro-
gramming [31]. Besides, Python has a large number of standard libraries that make
the programming work a lot easier. From the beginning, a lot of Python versions
have been released. However, in general, all users have revolved around two types of
Python 2.x and Python 3.x. Nowadays, Python 2 is no longer in use since Python 3
is becoming the best choice for programmers. It has an easier syntax, is supported
by enormous libraries and can be adapted in lots of fields like Software and Hard-
ware. Within the framework of thesis, Python 3.11.0 is chosen. Besides, there are
two main open-source libraries in Python that are used:

• Scapy: provides a library that allows users to send, sniff, and analyze and
spoof network packets. This capability also allows building tools that can
probe, scan, or attack networks [32].

44

• NumPy: is a Python computer science core library that supports the calcu-
lation of large, multi-dimensional arrays with optimized functions applied to
those multidimensional arrays [33].

2.4 Ostinato

Ostinato is a traffic generator, which can generate many different types of packets
[34]. Moreover, user can craft any arbitrary packet and change any packet field of
any protocol to any value. Besides, Ostinato gives user a friendly GUI when using
this program. Ostinato is available on Windows, Linux, Mac OS X and RaspberryPi.
Ostinato is considered to be a reversed Wireshark. In terms of the thesis, Ostinato
supports many features in IPv6, and ICMPv6. For some headers or fields which are
not available in Ostinato, they can be manually created in the Hex Dump field of
Ostinato.

Fig. 2.2: The working interface of Ostinato.

2.5 Wireshark

Wireshark is a network packet analyzer [35]. This application is used to capture,
analyze and identify network-related problems including: slow connection, dropped

45

packets or unusual access. Through Wireshark, administrators can better under-
stand the network packets running on the system, which will also make it easier to
determine the cause of the error. The most outstanding features of Wireshark are:

• Wireshark is available for UNIX and Windows operating systems.
• This application makes it possible for users to capture packet data directly

from the network interface.
• Being able to open files containing packet data with tcpdump, Wireshark as

well as some other packet capture. programs.
• Displaying packages in great detail.
• Based on different criteria to filter packets.

2.6 Kali Linux
Kali Linux is a Linux distribution developed and maintained by Offensive Security
when it was released in March 2013 [36]. Offensive Security is a well known and
trusted organization in the security world, even certifying security professionals with
some of the most respected certifications available such as: OSCP (Offensive Security
Certified Professional), OSWP (Offensive Security Wireless Professional) and OSEE
(Offensive Security Exploitation Expert). Kali Linux is an operating system that
is widely used in the security field, both by hackers looking to break into systems
and security professionals who want to protect information resources. Kali Linux
provides a lot of tools for security related tasks.

Within the scope of the master thesis, Kali Linux is used as an environment for
designing packet types, sending to certain addresses and probe the network. It is
also used to perform network attacks and functions as routers, switches or servers.

46

3 Designed Network Lab Scenarios and For-
mat of Laboratory Operations

The thesis has focused on designing two network lab scenarios. The first scenario has
been dedicated to describing how the IPv6 addresses have been applied to communi-
cate and the operation of Extension Headers, ICMPv6 and DHCPv6 protocols and
procedures. Besides, the behaviour of Windows operating system after receiving dif-
ferent types or sequences of IPv6 packets sent by the second virtual machine (Kali
Linux) have been analyzed in different situations. The second scenario has been
about the aspects of functioning in an IPv6-only machine (without IPv4), while the
other guests have acted as a router and server of the necessary services.

3.1 Network setup of the Scenario 1

Fig. 3.1: The testing network topology 1 with address specification (/64 prefix
used in all subnets).

The experimental implementation of information exchange using IPv6 packets
is carried out in GNS3 environment, whose virtual network model is depicted in
Fig. 3.1. The network model consists of seven devices, which are described below:

• Two routers R1 and R2: Version 15.3(3) for Cisco router C7200-ADVENTER
PRISEK9-M, was released in 2013 by Cisco Systems, Inc.

• One switch S1: GNS3 built-in Ethernet switch.

47

• Four PCs including: Two Ubuntu machines (PC3 and PC4 4) with version
22.04.1 LTS (Long-term Support), one Kali Linux machine (PC1) with version
2022.3, and one Windows 11 machine (PC2). Three hosts (1, 2 and 3) locate
on the same local network, while host 4 resides on another network.

1 R1(config)#ipv6 unicast-routing
2 R1(config)#ipv6 multicast-routing
3 R1(config)#ipv6 router ospf 1
4 R1(config-rtr)#router-id 1.1.1.1
5 R1(config-rtr)#exit
6 R1(config)#interface GigabitEthernet 0/0
7 R1(config-if)#ipv6 address 2001:db8:abcd:1::1/64
8 R1(config-if)#no shutdown
9 R1(config-if)#ipv6 ospf 1 area 0

10 R1(config-if)#exit
11 R1(config)#interface GigabitEthernet 1/0
12 R1(config-if)#ipv6 address 2001:db8:abcd:2::1/64
13 R1(config-if)#no shutdown
14 R1(config-if)#ipv6 ospf 1 area 0
15 R1(config-if)#exit
16

17 R2(config)#ipv6 unicast-routing
18 R2(config)#ipv6 multicast-routing
19 R2(config)#ipv6 router ospf 1
20 R2(config-rtr)#router-id 2.2.2.2
21 R2(config-rtr)#exit
22 R2(config)#interface GigabitEthernet 0/0
23 R2(config-if)#ipv6 address 2001:db8:abcd:3::1/64
24 R2(config-if)#no shutdown
25 R2(config-if)#ipv6 ospf 1 area 0
26 R2(config-if)#exit
27 R2(config)#interface GigabitEthernet 1/0
28 R2(config-if)#ipv6 address 2001:db8:abcd:2::2/64
29 R2(config-if)#no shutdown
30 R2(config-if)#ipv6 ospf 1 area 0
31 R2(config-if)#exit

Listing 3.1: Configuring SLAAC and routing strategy for the scenario 1 on Cisco
routers R1 and R2.

Router R1 and R2 are the legitimate default routers on their network segments

48

(2001:db8:abcd:1::/64 and 2001:db8:abcd:3::/64, respectively). These two
routers provide Router Advertisement to clients for address auto-configuration. The
PCs from number 1 to number 3 reside on the local link of router R1, while PC4
locates on the network of router R2. All PCs are the clients in the model, and PC1
(Kali Linux) takes on the job of being an attacker in specific situations, which will
be mentioned later.

In mentioned circumstances of the scenario 1, router R1 and R2 are configured as
illustrated in the listing 3.1. From this configuration, the address at every active in-
terface is assigned. At the interface g0/0 of router R1 and R2, Router Advertisement
messages are permitted to allow the procedure SLAAC (Stateless Address Auto-
configuration) on the local link through the command ipv6 unicast-routing. Be-
sides, MLDv2 traffic is also enabled by the command ipv6 multicast-routing.
Moreover, in order to to share information about the routes to reach all destinations
in a network, OSPF (Open Shortest Path First) is chosen to be the routing protocol
of this scenario.

Tab. 3.1 shows the address specification (except for the situation of DHCPv6)
of every device. The configuration of these addresses follows the SLAAC procedure,
in which router R1 and router R2 provide IPv6 prefix to every host on its local
network.

3.2 Network Setup of the Scenario 2

Fig. 3.2: The researched network scenario 2.

In the second scenario, the IPv6-only node (Windows) can be manually config-
ured or with the help of the SLAAC procedure from the router (DNS64/NAT64
node). In terms of the thesis, the IPv6 address, DNS server and DNS domain are
manually set on the IPv6-only node.

49

Tab. 3.1: The address specification of lab devices in the scenario 1.

Device Address Specification Detail

Router R1

Link-layer address (g0/0) ca:01:11:f5:00:08
Link-layer address (g1/0) ca:01:11:f5:00:1c
Link-local IPv6 address (g0/0) fe80::c801:11ff:fef5:8/64
Link-local IPv6 address (g1/0) fe80::c801:11ff:fef5:1c/64
Global-unicast IPv6 address (g0/0) 2001:db8:abcd:1::1/64
Global-unicast IPv6 address (g1/0) 2001:db8:abcd:2::1/64

Router R2

Link-layer address (g0/0) ca:02:12:05:00:08
Link-layer address (g1/0) ca:02:12:05:00:1c
Link-local IPv6 address (g0/0) fe80::c802:12ff:fe05:8/64
Link-local IPv6 address (g1/0) fe80::c802:12ff:fe05:1c/64
Global-unicast IPv6 address (g0/0) 2001:db8:abcd:3::1/64
Global-unicast IPv6 address (g1/0) 2001:db8:abcd:2::2/64

PC1

Link-layer address 00:0c:29:8c:0b:0d
Link-local IPv6 address (ether0) fe80::8ac4:147a:5dfe:a9c6/64

Global-unicast IPv6 address (ether0)
2001:db8:abcd:1:1a4:2296:7e2c:8941/64
2001:db8:abcd:1:2845:dd8a:d12f:c3ff/64

PC2

Link-layer address 00:0c:29:8e:74:ad
Link-local IPv6 address (ether0) fe80::7790:2c2b:9e56:431b/64

Global-unicast IPv6 address (ether0)
2001:db8:abcd:1:36c4:ffc5:c10f:3ce9/64
2001:db8:abcd:1:2816:ed5:a706:70b9/64

PC3

Link-layer address 00:0c:29:2e:dd:97
Link-local IPv6 address (ether0) fe80::6acf:9526:bf92:9de5/64

Global-unicast IPv6 address (ether0)
2001:db8:abcd:1:1f15:4b1c:5478:109/64
2001:db8:abcd:1:a0be:351f:ca:9c7b/64

PC4
Link-layer address 00:0c:29:f3:ca:11
Link-local IPv6 address (ether0) fe80::582f:2896:dca4:6e73/64
Global-unicast IPv6 address (ether0) 2001:db8:abcd:3:31bc:eb00:7509:c9ec/64

Similarly, the IPv4 address, netmask, broadcast, gateway, DNS server and DNS
domain are also created in the IPv4-only web server (Ubuntu). These parameters
are extremely important for the client to get in touch with the web server.

Last but not least, NAT64 and DNS64 are also built in the DNS64/NAT64 node
(Kali) to enable the access from client to server through the web browser.

50

4 Methods for performing tasks in the net-
work scenario

There are many tools, languages and methods to create any packet. Within the
scope of the thesis, two methods are proposed:

• Creating a Python toolkit that runs on the Linux console platform. Its great
advantage is the popularity of the Python language which leads to the avail-
ability of a lot of libraries. Also it is very easy to change the structure of the
program source as desired.

• Using the application to generate the packet (the chosen application is Osti-
nato because of its advantages, which have been mentioned in the previous
chapter). However, from time to time, there are some protocols that are not
available out of the Ostinato dialog. These protocols can still be generated by
extracting the hexacode of available packets (which can be obtained from the
Python program above) to reconstruct any packet in the HexDump section of
the application.

4.1 Designed network toolkit using Python

The idea to create this network toolkit comes from the reality that IPv6 has been
and is being widely deployed in the infrastructure facilities of many internet service
providers (ISP) and also content delivery networks (CDN). As a matter of course,
the novelty of IPv6 can pose difficulties for security systems as well as network
analysts in detecting and preventing potential security vulnerabilities or attacks.
The potential threats have prompted the development of tools that can simulate
network attacks. From there, network experts can analyze, acquire experiences,
and take countermeasures to protect the system from service disruption or loss of
information data or unscheduled costs.

To run this toolkit, it is necessary to have Python 3.x and the latest version of
Scapy library (obtained from GitHub link [32]). Scapy is a Python-based packet
manipulation library that allows users to create, send, and capture network packets.
It provides a simple and powerful interface to interact with different layers of net-
work protocols, including Ethernet, IPv6, ICMPv6, DNS (Domain Name System),
TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). Kali
Linux, which is a popular and powerful Linux-based operating system, is used for
sending packets created by this Python network toolkit and capturing messages due
to specific purposes.

51

There are several IPv6 toolkits available that are specifically designed to help
with IPv6 network testing and analysis such as Thc-IPv6 [37], Chiron [38] and Ipv6-
toolkit [39]. These tools have some limitations. For example, when performing
flooding attacks, Thc-ipv6 only has a low packet sending rate per second. This
leads to the fact that it does not really disable victims or make them unresponsive
in many cases. Chiron only runs on the Python 2.7 platform, so it is not widely
used due to lacking many language features, community support, and compatibility
with modern systems today. IPv6-toolkit is probably too complicated in the way of
inserting parameters, which requires users to thoroughly research each detail if they
want to use it properly.

The newly designed network toolkit is planned to fix some weaknesses of above
mentioned tools and provide some additional functionalities in particular cases. The
toolkit is still being further developed and its current source code is available at
https://github.com/vafekt/IPv6-toolkit[40].

At present, this network toolkit is comprised of the following modules, which can
be used for specific purposes such as sending, sniffing, detecting and attacking. In
all tools from the network toolkit, it is compulsory to insert the network interface,
where the packet is sent through:

ping.py

This is the tool that sends ICMPv6 Echo Request messages from specified source
to destination, as depicted in Fig. 4.1. Users are able to define the source and
destination link-layer address of packet with parameter -smac and -dmac. The
source IPv6 address and destination IPv6 address are filled in with parameter -sip
and -dip, respectively. The hop limit of Echo Request is defined through -hlim,
the number of sending packets through -n, the data length through -l and option to
send file through -i. Especially, this tool provides flooding option to cause DoS on
the specified target with command -f. Users can choose between constant (sending
Echo Request using the predefined parameters) and random (sending many Echo
Request with random IPv6 source address and link-layer address). The section
Multicast Address 5.1 describes the usage of this tool in detail.

1 # python3 ping.py eth0 -sip 2001::1 -dip 2002::2 -hlim 64 -l 1000

For instance, for sending an ICMPv6 Echo Request message from IPv6 address
2001::1 to destination 2002::2, the hop limit is 64 and the Payload length is set to
1000, the command is written with the initial code python3 ping.py as depicted
above.

52

https://github.com/vafekt/IPv6-toolkit

Fig. 4.1: Manual page of ping.py tool.

fragment_header.py

This is the tool that sends SYN or ICMPv6 packet with several options of Fragment
Header including Ax atomic fragment (with same id and different id), where A is
the number of Fragment Headers; tiny fragments and overlapping fragments. It is
used for checking abilities to bypass the firewall, as shown in Fig. 4.2. Users are
able to define the source and destination link-layer address of packet with parameter
-smac and -dmac. The source IPv6 address and destination IPv6 address are filled
in with parameter -sip and -dip, respectively. The number of Fragment Headers
can be set with -frag command (1x Fragment Header is defined as -frag 1, and
10x Fragment Headers as -frag 10). The Identifier of the Fragment Header is auto-
matically randomized. If there are more than one Fragment Header, the Identifier
of every Fragment Header can be set to be the same, or different with the switch
-id. The data length can be confirmed with command -l. Besides, to test another
aspect of different operating systems, users are able to choose -tiny (fragments with
smaller size than defined Maximum Transmission Unit) or -overlap (two fragments
partly cover each other). Lastly, this tool provides flooding option to cause DoS on
the specified target with command -f. Users can choose between constant (send-
ing messages using the predefined parameters) and random (sending many falsified

53

messages with random source addresses and link-layer addresses). The section Frag-
mentation 5.3 describes the usage of this tool in detail.

Fig. 4.2: Manual page of fragment_header.py tool.

1 # python3 fragment_header.py eth0 -sip 2001::1 -dip 2002::2 -frag 20 -id
-l 1000→˓

For instance, for sending an ICMPv6 Echo Request message with Fragment
Header from IPv6 address 2001::1 to destination 2002::2, the Identifier is the
same in all Headers and the Payload length is set to 1000, the command is written
with the initial code python3 fragment_header.py as shown above.

redirect.py

This module sends ICMPv6 Redirect message to a victim host, causing it to update
its routing table with a new, incorrect route to a destination host. The flooding
option is also included to cancel the legitimate routing permanently, as depicted in
Fig. 4.3. Users are able to define the IPv6 address of victim with parameter -tip. The
IPv6 address of destination that the victim wants to communicate with is set through

54

command -dip. The original legitimate router that forwards packets from victim
before attack is defined with switch -ort and the new falsified router with switch
-nrt. The link-layer address of this fake router is set through -rmac. This tool also
provides flooding option with parameter -f. Users can choose between constant
(sending messages using the predefined parameters) and random (sending falsified
messages with random IPv6 addresses of the fake router). The section Redirect 5.6
describes the usage of this tool in detail.

Fig. 4.3: Manual page of redirect.py tool.

1 # python3 redirect.py eth0 -tip 2001::1 -dip 2002::2 -ort fe80::a -nrt
fe80::b -rmac 00:0c:29:97:c6:bc→˓

For instance, for redirecting the route of IPv6 address 2001::1 when commu-
nicating with destination 2002::2 from going through the router fe80::a to the
address of new router fe80::b with its link-layer address 00:0c:29:97:c6:bc, the
command is written with the initial code python3 redirect.py as shown above.

mld_query.py

This tool that sends several types of Multicast Listener Discovery (MLD) version 1
or version 2 Query message to discover multicast listeners in the network or pretend
to be the multicast router and taking over the main Querier role. It also has the

55

option of flooding attack to make the specified target or all network unresponsive,
as shown in Fig. 4.4. Users are able to define the source and destination link-layer
address of packet with parameter -smac and -dmac. The source IPv6 address and
destination IPv6 address are filled in with parameter -sip and -dip, respectively.
The multicast address is defined by command -mip and the list of sources sending
data to the multicast group is written with command -src. Other information of the
packet such as Maximum response time, Suppress router-side processing, Querier’s
Robustness value and Querier’s query interval can be entered with the parameter
-mrc, -S, -qrv and -qqic, respectively. The Hop-by-Hop Option with Router Alert
can be added into the packet with -hbh. This tool also has the capability to send
MLDv2 Query message periodically through -p. Lastly, this tool provides flooding
option to cause DoS with parameter -f. Users can choose between constant (sending
MLDv2 Query using the predefined parameters) and random (sending MLDv2
Query with random IPv6 source addresses and link-layer addresses). The section
Multicast Listener Discovery version 2 5.2 describes the usage of this tool in detail.

Fig. 4.4: Manual page of mld_query.py tool.

56

1 # python3 mld_query.py eth0 -v 2 -hbh -mrc 1 -qrv 2 -qqic 125 -p 2

For instance, to send a General Query version 2 message every 2 seconds, with
Router Alert option, the maximum response delay is 1/10 second, the Querier’s
query interval code is 125 and and the Querier’s Robustness value is 2, the packet is
configured as shown above in command with the beginning python3 mld_query.py.

mldv2_report.py

The tool sends Multicast Listener Discovery version 2 (MLDv2) Report message to
inform routers about the multicast groups that have active listeners on a network
segment, add or delete multicast listeners. DoS is included as option flooding attack.
They are illustrated in Fig. 4.5. Users are able to define the source and destination
link-layer address of packet with parameter -smac and -dmac. The source IPv6
address and destination IPv6 address are filled in with parameter -sip and -dip,
respectively.

Fig. 4.5: Manual page of mldv2_report.py tool.

Especially, the Multicast Address Record, which contains the record type (from
1 to 6), multicast address, and sources, must be strictly written in the predefined

57

format with parameter -lmar. Users have to insert three parameters in this record.
Specifically, these parameters are: The type of record, the multicast address and
the sources, which are separated by the sign ";". The number of sending packet is
set through -n. This tool also has the capability to send MLDv2 Query message
periodically through -p. Last but not least, this tool provides flooding option to
cause DoS with command -f. Users can choose between constant (sending MLDv2
Report using the predefined parameters) and random (sending MLDv2 Report with
random falsified addresses and malicious Records). The section Multicast Listener
Discovery version 2 5.2 describes the usage of this tool in detail.

1 # python3 mldv2_report.py eth0 -dip ff02::16 -lmar
"rtype=1;mip=ff0e::bcc1;src=[]"→˓

For example, for sending a MLDv2 Report message to all multicast routers with
type INCLUDE, the multicast address is ff0e::bcc1 and no source, the configura-
tion is shown in the command with the beginning python3 mldv2_report.py.

probe_alive.py

This is the tool that detects active hosts on the attached local link, including their
IPv6 addresses and link-layer addresses. Users can also run this tool intermittently
to know which hosts are active at different times with the parameter -p, as shown in
Fig. 4.7. However, this tool cannot detect any host which silently discards the mal-
formed ICMPv6 Echo Request message (Unknown Option in Destination Header).
The section Multicast Address 5.1 describes the usage of this tool in detail.

Fig. 4.6: Manual page of probe_alive.py tool.

58

1 # python3 probe_alive.py -p 5

For instance, for probing active hosts on the link every 5 seconds, the con-
figuration is shown in command above with the initial code to launch python3
probe_alive.py.

detect_new.py

This is a kind of tool that detects new hosts joining the attached local link based
on Duplicate Address Detection (DAD) process. It is also able to define the interval
lasting this attack with parameter -t, as depicted in Fig. 4.7.

For instance, for detecting any host joining the link within 15 seconds, the con-
figuration is shown in command bellows with the initial code to launch python3
detect_new.py.

Fig. 4.7: Manual page of detect_new.py tool.

1 # python3 detect_new.py eth0 -t 15

neighbor_solicitation.py

This tool sends Neighbor Solicitation message to specified target for resolving link-
layer address and status of that victim, together with option to flood it, as depicted
in Fig. 4.8. The source link-layer and destination link-layer addresses are defined
through parameter -smac and -dmac. The source and target IPv6 addresses are
inserted through -sip and -tip. The IPv6 address of destination, which is usually de-
rived from the target’s address, is set through parameter -dip, and it is actually the
solicited-node multicast address. Lastly, this tool provides flooding option to cause

59

DoS on the specified target with parameter -f. Users can choose between constant
(sending messages using the predefined parameters) and random (sending many fal-
sified messages with random IPv6 source addresses and link-layer addresses). The
section Neighbor Solicitation and Neighbor Advertisement 5.5 describes the usage
of this tool in detail.

For example, for sending a Neighbor Solicitation for resolving the link-layer ad-
dress of host with address fe80::1, the configuration is shown bellows with the
beginning of code python3 neighbor_solicitation.py.

Fig. 4.8: Manual page of neighbor_solicitation.py tool.

1 # python3 neighbor_solicitation.py eth0 -tip fe80::1

neighbor_advertisement.py

This is the tool that answers every Neighbor Solicitation message from a specified
target or all hosts with falsified Neighbor Advertisement messages for spoofing ad-
dress resolution, as depicted in Fig. 4.9. The fake link-layer address that the attacker
answers to the victim is set through the parameter -tmac. The IPv6 address of the
victim can be specified to one target through command -vip. If not defined, the tool
will attack all active hosts on the link. Besides, Flags including R (Router), S (So-
licited) and O (Override) are inserted through parameter -R, -S and -O. Moreover,

60

to perform Man-in-the-middle attack, it is necessary to allow the packet getting
through the attacker (in the situation that the attacker spoofs Neighbor Solicita-
tion messages with his link-layer address) and drop the Redirect messages which are
automatically generated from Linux machine to inform the victim about the true
destination. These things can be set by the prefix -fwd and -red. This tool can also
prevent every host on the local link from auto-configurating its IPv6 addresses due
to Duplicate Address Detection (DAD) procedure with parameter -dad. The inter-
val lasting this attack is set with parameter -t. The section Neighbor Solicitation
and Neighbor Advertisement 5.5 describes the usage of this tool in detail.

For instance, for spoofing every Neighbor Solicitation message sent from the
victim fe80::1 and allowing the packets to go through the attacker, the command
is set with the initial code python3 neighbor_advertisement.py.

Fig. 4.9: Manual page of neighbor_advertisement.py tool.

1 # python3 neighbor_advertisement.py eth0 -tip fe80::1 -R -O -fwd

router_solicitation.py

This tool sends arbitrary Router Solicitation message to specified target, with option
to flood, as depicted in Fig. 4.10. Users are able to define the source and destination

61

link-layer address of packet with parameter -smac and -dmac. The source IPv6
address and destination IPv6 address are filled in with parameter -sip and -dip, re-
spectively. It is also possible to send Router Solicitation periodically with command
-p. Lastly, this tool provides flooding option to cause DoS on the specified target
with parameter -f. Users can choose between constant (sending messages using the
predefined parameters) and random (sending many falsified messages with random
IPv6 source addresses and link-layer addresses). The section Router Solicitation and
Router Advertisement 5.4 describes the usage of this tool in detail.

For instance, to ask for the information of the default router on the local network
every 5 seconds, it is possible by inserting the following command starting with
python3 router_solicitation.py.

Fig. 4.10: Manual page of router_solicitation.py tool.

1 # python3 router_solicitation.py eth0 -dip ff02::2 -p 5

router_advertisement.py

This is the tool that sends arbitrary Router Advertisement message to specified
target with an aim to spoof attack, changing the default router, creating bogus
IPv6 prefix on the link and poisoning the routing entries of target. The option to

62

flood is included to cause DoS on the target, as depicted in Fig. 4.11. Users are able
to define the source and destination link-layer address of packet with parameter -
smac and -dmac. The source IPv6 address and destination IPv6 address are filled
in with parameter -sip and -dip, respectively. The flags in Router Advertisement
messages for indicating the mode of allocating addresses and other information are
set with command -M (Managed Address Configuration), -O (Other Configuration),
-H (Home Agent), -A (Address Configuration) and -prf (Preference). The defined
time related to the router such as router lifetime, reachable time and retrans timer
are defined as -rlt, -rcht and -rtrt. The parameter for autoconfiguration with its
lifetime is inserted with -prefix (the prefix of router), -vlt (valid lifetime) and -plt
(preferred lifetime). The link-layer address of the router is written with parameter
-rmac. Other information such Maximum Transmission Unit (MTU) and Domain
Name System (DNS) server are set in the packet with -mtu and -dns.

Fig. 4.11: Manual page of router_advertisement.py tool.

This tool also has the capability to send Router Advertisement message period-
ically through -p. Last but not least, this tool provides flooding option to cause
DoS with parameter -f. Users can choose between constant (sending Router Ad-
vertisement using the predefined parameters) and random (sending many Router
Advertisement messages with random addresses and malicious additional informa-

63

tion). The section Router Solicitation and Router Advertisement 5.4 describes the
usage of this tool in detail.

For example, for advertising the prefix 2001::/64, the preference of router
is High, the valid lifetime is 100 seconds, and the preferred lifetime is 100 sec-
onds, the configuration is set bellows in the command starting with python3
router_advertisement.py.

1 # python3 router_advertisement.py eth0 -A -pref High -prefix 2001::/64
-plt 100 -vlt 100→˓

implant_mtu.py

This tool implants the Maximum Transmission Unit (MTU) to a specified target,
so the victim can only transfer data up to this defined MTU. However, this tool
only works when the target (with parameter -tip) communicates exactly with the
destination node (with parameter -sip). The MTU is set through -mtu, and is
shown in Fig. 4.12. The section Fragmentation 5.3 describes the usage of this tool
in detail.

For instance, for implanting the MTU value as 1280 to the host with address
2001::1 when communicating with another host 2002::2, it can be inserted as
the command starting with python3 implant_mtu.py bellows. Especially, host
2002::2 does have to a router on the way, which usually sends Packet Too Big
message back to the sender.

Fig. 4.12: Manual page of implant_mtu.py tool.

1 # python3 implant_mtu.py eth0 -tip 2001::1 -sip 2002::2 -mtu 1280

64

smurf.py

This is the tool that triggers smurf attack to flood a specified target, as depicted
in Fig. 4.13. Users are required to provide the IPv6 address of victim with pa-
rameter -tip. The link-layer address of the victim can be set through -tmac and
the data length of packet is set by -l. Lastly, this tool has an option to send mal-
formed ICMPv6 packets through -mf (unknown Option in Destination Header),
which causes Parameter Problem at the receiver. This can increase the chance to
attack nodes which basically ignore the normal ICMPv6 Echo Request messages.
The section Multicast Address 5.1 describes the usage of this tool in detail.

Fig. 4.13: Manual page of smurf.py tool.

1 # python3 smurf.py eth0 -tip 2001::1

For instance, to trigger an amplification attack on the target 2001::1, the con-
figuration is shown above starting with the code python3 smurf.py.

dhcpv6_client.py

This tool performs like a client seeking for IPv6 address and other information from
DHCPv6 server. Moreover, it can kill specified DHCPv6 server or Relay Agent with
enormous falsified DHCPv6 Solicit messages, as depicted in Fig. 4.14. Users are able
to define the source and destination link-layer address of packet with parameter -
smac and -dmac. The source IPv6 address and destination IPv6 address are filled in
with parameter -sip and -dip, respectively. Rapid Commit mode can be set through

65

-rc. The transaction ID for exchange is set by -trid. Besides, there are three options
of Client Identifier including LLT (Link-Layer Time), LL (Link-Layer) and UUID
(Unique Identifier). They can be set with the command -duid. Other information
such as Client’s domain name and Identity Association is able to fill in through -fqdn
and -iaid. This tool also allows to respond with Request message for completing the
leasing procedure by command -req. This tool also has the capability to send Solicit
message periodically through -p. Last but not least, this tool provides flooding
option to cause DoS with parameter -f. Users can choose between constant (sending
Solicit using the predefined parameters) and random (sending many falsified Solicit
messages with random addresses and malicious additional information). The section
Dynamic Host Configuration Protocol version 6 5.7 exploits this tool in detail.

Fig. 4.14: Manual page of dhcpv6_client.py tool.

1 # python3 dhcpv6_client.py eth0 -rc -duid LLT -req

66

For instance, to send a Solicit packet to DHCPv6 server with Rapid Commit,
the Client Identifier as Link-Layer Time and the option to send Request message
after receiving Advertisement from the server, the configuration is set above with
the initial code python3 dhcpv6_client.py.

dhcpv6_server.py

This is the tool that operates as a fake DHCPv6 server, as depicted in Fig. 4.15.
The network prefix for allocating is set with the command -prefix, and the IPv6
address is generated in one of two option including randomizing and deriving from
link-layer address of client. The valid lifetime and preferred lifetime of IPv6 address
can be set with -vlt and -plt. Besides, there are three options of Server Identifier
including LLT (Link-Layer Time), LL (Link-Layer) and UUID (Unique Identifier).
They can be set with the command -duid. An option to allow clients to send unicast
messages to server is inserted as -su. Other information related to the DNS server
can be inserted with command -dns_ip and -domain. The section Dynamic Host
Configuration Protocol version 6 5.7 exploits this tool in detail.

Fig. 4.15: Manual page of dhcpv6_server.py tool.

67

1 # python3 dhcpv6_server.py eth0 -prefix 2001::/64 -ia NA -vlt 100 -plt
100 -dns_ip 2004::8888 -domain thesis.local→˓

For example, when users want to advertise the prefix 2001::/64 to every clients
on the link, the identity association is Non-temporary, the valid lifetime is 100 sec-
onds, the preferred lifetime is 100 seconds, the address of DNS server is 2004::8888
and the domain is thesis.local, the configuration is set as above in the command
starting with python3 dhcpv6_server.py.

Other tools in the networking toolkit such as the tool extension_header.py
covert_channel.py and mldv1_report_done.py can be applied to check the
potential security issues in different systems or informing the router about the status
of listeners in MLD version 1. However, in terms of the thesis, only mentioned tools
above are used to perform tasks. Specifically, in each situation of the scenario, one
or more options are chosen with appropriate input parameters in order to carry out
a specific task. To launch the program properly, users must access to the directory
of the toolkit, choose one of the tools and run it as root. When starting the module,
it is necessary to insert specific parameters (users must define at least the network
interface to use). At any time when needing help, users can run the particular tool
with -help switch for more information.

In general, all the modules of the designed network toolkit have been tested
successfully, including all the tasks performed in the thesis’s network scenario. At the
same time, it has also proven the workability in penetration testing activities, with
advantages over current open-source tools. In the future, this toolkit is continuing
to be developed with more features (types of attack, related options) and to be more
user friendly.

4.2 Application Ostinato

Ostinato software provides a user-friendly approach through GUI (graphic user in-
terface). After booting up the application (this thesis focuses on Ostinato version
1.2), it is needed to select the port from which the user wants traffic to be sent. Then
the user can add a stream by importing existed stream file (*.ostm) or creating a
new stream. This will open the Add Stream Dialog, which is packed with a lot of
options. To design a required packet, the user follows these steps in order:

• On the Protocol Selection tab, there are defined protocols locating at layer
1 (up to layer 5), in which the user can configure the protocols in the desired
packet by clicking on the appropriate radio buttons. However, protocols at

68

Fig. 4.16: Example of choosing the protocols for a DNS query packet.

layer 6 and layer 7 or Extension Headers are not supported by Ostinato. In-
stead, Ostinato provides a framework to write protocol fields, which is called
Hex Dump protocol. For example, if PC1 wants to send a DNS (Domain
Name System) query packet to a given DNS server (2001:4860:4860::8888,
in this instance) for A record of the domain name www.vut.cz, the configu-
ration is performed as depicted in Fig. 4.16. As can be seen, MAC (Media
Access Control) protocol is chosen at layer 1, VLAN untagged, Ethernet II at
layer 2, IPv6 at layer 3, UDP (User Datagram Protocol) at layer 4 and None at
layer 5. DNS protocol is written at Hex Dump in the Payload, so Hex Dump
Protocol is checked.

• On the Protocol Data tab, the user configures the fields for each protocol
that he selects on the Protocol Selection tab. Along with the above example,
the user enters the source and destination link-layer addresses at the Media
Access Protocol field. Then it is necessary to check the Ethernet Type at the
Ethernet II field. In the Internet Protocol ver 6 field, the source IPv6 address
(host 1) and the destination IPv6 address (DNS server) are filled in. Besides, it
is essential to enter the appropriate values of Hop Limit and Payload Length,
which depends on the upper protocols and Payload. Fig. 4.17 depicts that
configuration. In the User Datagram Protocol field, it is compulsory to insert

69

Fig. 4.17: Example of configuring selected fields (IPv6 in this instance) for a DNS
query packet.

Fig. 4.18: Example of configuring HexDump field (DNS query for A record of
www.vut.cz in this instance).

the source port (any value from 1024 to 65353), and the destination port (53
for DNS). The Length and Checksum values are also needed to enter correctly

70

so as to avoid generating malformed packet. Last but not least, unsupported
protocols in Ostinato such as DNS and DHCP are written in the HexDump
field, which is shown in Fig. 4.18.

• On the Stream Control tab, the user chooses whether sending packets or
bursts. If option packets is checked, it is possible to configure the number of
packets to send and the rate of packets (Packets/Sec). If bursts is chosen, the
user is required to define the number of burst and transmitting rate. Finally,
the user can also set up the stream transmission order so that it can either
go to the next stream in the stream list order, or stop transmission right after
running the first stream. After finishing the design, the stream is applied in
corresponding port and can be used for start transmitting the packet.

71

5 Network Lab Scenario 1 with operations
and analysis

5.1 Multicast address
This section focuses on describing how the multicast address works, the way different
types of devices handle multicast packets (especially Windows machines), and the
potential risks involved when multicast traffic is in operation. IPv6 has defined
several types of multicast addresses that are used for different purposes such as
ff02::1 (All-nodes multicast address), ff02::2 (All-routers multicast address),
ff02::16 (MLDv2 reports multicast address), ff0x::/12 (Global scope multicast
address), etc. However, in this section, the multicast address ff02::1 is analyzed
because every IPv6 node has to take part in this multicast address ff02::1, and
its significant impact on the local network. Other solicited-node multicast addresses
and addresses defining multicast group will be discussed in section Multicast Listener
Discovery version 2 (MLDv2) 5.2.

Fig. 5.1: The network topology for testing Multicast Address.

Precondition

To carry out the implementation stages of the multicast address, at the initial step,
all devices are in a powered off state. Then, router R1, R2, and switch S1 are first
started up to activate the address allocation and routing functions, as described

72

in Listing. 3.1. Next, all PCs (from 1 to 4) are turned on and wait for a certain
interval to complete the SLAAC (Stateless Address Auto-configuration) process and
stabilize. The network scenario with address specification is depicted in Fig. 5.1.

Operations and Observation

(a) Sending normal Echo Request message

One of the quickest ways to verify the operation of a multicast address is to send a
standard Ping packet (Echo Request) to this address (in this case, ff02::1). This
is done using the designed network toolkit and the Ostinato application. Both of
them yield the same results.

. Using the designed toolkit
For doing this task, the tool ping.py is chosen from the designed network toolkit.

The user interface of this tool is illustrated in Fig. 4.1. It is also recommended to
launch Wireshark before launching the tool in order to follow and capture the packets
in detail. In this scenario, assuming that PC1 (Kali) sends a normal Ping message
to the all-nodes multicast address, the parameter configuration is shown as below:

• Source address: The IPv6 address of PC1. Either IPv6 global or link-local
unicast address of PC1 can be taken as the source. If the using source
address is a link-local address, then the responding hosts (if any) will use
their own link-local address as the source when answering. The same ap-
plies when using the global address. In case of global address, the global
IPv6 address of PC1 is chosen to be inserted with the following syntax -sip
2001:db8:abcd:1:1a4:2296:7e2c:8941. Similarly, the syntax applied in case
of local address is -sip fe80::8ac4:147a:5dfe:a9c6.

• Destination address: It is written as IPv6 all-nodes multicast address with the
syntax -dip ff02::1.

• Other configuration including the source link-layer address, hop limit, number
of sending packets, data length can be left out since they are automatically set
to the default value. The source link-layer address is derived from the interface
of PC1. The hop limit is set to 255, the number packets is 1 and the value of
data length is 32 (bytes).

After inserting defined parameters into the tool ping.py and launching, the
responses including the IPv6 address and link-layer address are depicted in yellow
frame (from PC3) and blue frame (from router R1). They are depicted in Fig. 5.2
for the situation of global address and in Fig. 5.3 for the situation of local address.

Since captured packets in Wireshark in the two cases have similar structure and
content (the difference is only in the source IPv6 address), only the case if IPv6

73

global address case is illustrated in Fig. 5.2.

Fig. 5.2: Launching the ping.py tool for sending the normal Echo Request to
all-nodes multicast address with IPv6 global address as source.

Fig. 5.3: Launching the ping.py tool for sending the normal Echo Request to
all-nodes multicast address with IPv6 link-local address as source.

. Using the application Ostinato
In case of using Ostinato, on the Protocol Selection tab, the following pro-

tocols are chosen at every layer, while others are kept as the default setting. The
configuration is shown in ref frame of Fig. 5.4:

• Layer 1: MAC

74

• Layer 2: Ethernet II
• Layer 3: IPv6
• Layer 4: ICMP
• Payload: Hex Dump (used for filling Payload data in ICMPv6 Echo Request

message)

Fig. 5.4: Configuration at the Protocol Selection tab for sending the normal Echo
Request to all-nodes multicast address.

On the Protocol Data tab, the configuration is depicted in Fig. 5.5 and others
remain in default setting:

• Media Access Protocol: Source is set in mode Fixed, and the MAC address
is written as 00:0c:29:8c:0b:0d.

• Internet Protocol ver 6: Source is 2001:db8:abcd:1:1a4:2296:7e2c:8941,
and destination is ff02::1. In case of link-local address, the source IPv6
address is fe80::8ac4:147a:5dfe:a9c6.

• Internet Control Message Protocol: Version is ICMPv6, and Type is 128 -
Echo Request.

• HexDump: Payload data is written in hexadecimal format as 61 62 63 64 65
66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64
65 66 67 68 69, which is the sequence of letters in alphabetical order.

On the Stream Control tab, the number of packets is set to 1. Then, the
stream is applied and start to send the packet. The achieved result is totally the
same as the case of using the designed toolkit.

75

Fig. 5.5: Configuration at the Protocol Data tab for sending the normal Echo
Request to all-nodes multicast address.

The generated packet and responses by using Ostinato are totally the same as
the one from the designed toolkit, as shown in Fig. 5.2 and Fig. 5.3. Therefore, it
is not necessary to mention again the output after using Ostinato.

76

After launching one of these methods, Cisco router R1 and PC3 (Ubuntu) reply
to the multicast packet from PC1 (Kali), while PC2 (Windows) and PC4 (Ubuntu)
have no response back. The reason for not replying from PC4 is that multicast
packets within the link-local scope ff02:: have only effect on the local link since
router does not permit any forwarding of packets with Link-local source or destina-
tion addresses to other external links (defined in RFC 4291 [41]). Therefore PC4
cannot answer to this multicast packet as PC4 resides on another network.

In case of PC2 (Windows), this node locates on the same local network with
PC1 (Kali) but does not reply to PC1 either, which leads to the fact that not
all devices respond to the Ping message sent to the multicast address. Specifically,
Windows machine (in this case, Windows 11) does not respond to the IPv6 multicast
Ping message since the network profile rules of Windows operating system prohibit
the response. This behaviour is also defined in RFC 4443 [13] as recommendation
SHOULD, not MUST: "An Echo Reply SHOULD be sent in response to an Echo
Request message sent to an IPv6 multicast or anycast address".

(b) Sending malformed Echo Request message

Since not all nodes respond to the normal ICMPv6 Echo Request sent to multi-
cast address (notably, machines running Windows system often ignore this type of
packet). Therefore, the idea of sending an additional type of packet, which is called
malformed ICMPv6 Echo Request, is implemented. In this packet, an unknown
option of Destination Header is inserted into the IPv6 Header, which makes hosts
unable to process the packet. Then, all hosts need to send a Parameter Problem
response back to the sender for reporting the error. This has been defined in speci-
fication RFC 4884 [42]. As a result, an unusual response with information such as
IPv6 address and MAC address of the destination is sent back.

. Using the designed toolkit
Since there is no separate tool or option to send this single type of malformed

ICMPv6 Echo Request packet, the probe_alive tool is applied. This tool works on
the principle of sending ICMPv6 Echo Request packets to all hosts (via the multicast
address ff02::1) to receive all responses from hosts. The return packet will include
basic information including IPv6 address and link-layer address. From there the
user can determine how many hosts are active in the local network and information
about them.

This tool does not only send normal ICMPv6 Echo Request packets (which can
be ignored by hosts, hence not getting information from them) but also sends mal-
formed packets containing unknown option, which are mentioned above, to increase
efficiency when looking for active hosts on the attached local link. The format

77

of Destination Header including unknown option (for the situation of link-local ad-
dress) is depicted in red frame of Fig. 5.6. The user interface of this tool is described
in Fig. 4.6.

Fig. 5.6: Format of malformed ICMPv6 Echo Request in case of link-local address
after running probe_alive.py tool.

Fig. 5.7: Result after running probe_alive.py tool.

78

For doing this task using the probe_alive tool from designed toolkit, it is only
required to enter the network interface, from which the packets are sent (in this
case, it is eth0 interface of PC1). This tool sends these two types of ICMPv6 Echo
Request messages (normal and malformed) using both IPv6 global and link-local
addresses as source. The result after launching is shown in Fig. 5.7.

All received packets from nodes in the scenario are illustrated in Fig. 5.8. A
description of the contents of the packets including the responses from nodes is
mentioned below.

Fig. 5.8: Captured packets in Wireshark after running probe_alive.py tool.

. Using the application Ostinato
When using Ostinato to perform this task, the configuration is almost similar

to the one of normal ICMPv6 Echo Request. However, a separate field needs to
be added in IPv6 Header to form Destination Header with unknown option inside.
Specifically, on the Protocol Selection tab, the selected protocols and their order
are set using Advanced section. They are: Media Access Protocol (layer 1) -
Ethernet II (layer 2) - Internet Protocol ver 6 (layer 3) - HexDump (Destination
Header with unknown option) - Internet Control Message Protocol - HexDump
(Payload data in ICMPv6 Echo Request). They are described in Fig. 5.9.

On the Protocol Data tab, the Media Access Protocol, Internet Protocol ver
6 and Internet Control Message Protocol are completely the same as the case of
normal ICMPv6 Echo Request. The only fields that are needed to fill is the Desti-
nation Option (used by HexDump) and Payload data (used by HexDump), which
are described as below:

79

• HexDump: Destination Options with one unknown IPv6 Option is inserted
as 3a 00 80 00 00 00 00 00 in hexadecimal format. This field is added
between Internet Protocol ver 6 and Internet Control Message Protocol.

• HexDump: Payload data is written in hexadecimal format as 41 41 41 41
41 41 41 41 (for example). But users can define any content of this Payload
as it does not influence the behaviour of receiving nodes. This HexDump field
is set after the Internet Control Message Protocol.

Fig. 5.9: Configuration at the Protocol Selection tab for sending the malformed
Echo Request to all-nodes multicast address.

Fig. 5.10: Configuration at the Protocol Data tab for sending the malformed Echo
Request to all-nodes multicast address.

The configuration at the fields Media Access Protocol, Internet Protocol ver 6,
Internet Control Message Protocol and the second HexDump field for Payload are
similar to ones of normal ICMPv6 Echo Request, which are shown in Fig. 5.5. The

80

only significant difference is the first HexDump field for Destination Header with
unknown option, which is depicted in Fig. 5.10.

On the Stream Control tab, the number of packets is set to 1. Then, the
stream is applied and start to send the packet. The achieved result is totally the
same as the case of using the designed toolkit.

From Fig. 5.7 and Fig. 5.8, it is clear that all hosts send messages back to PC1.
Specifically, yellow frame describes the response from PC3 (Ubuntu), red frame from
PC2 (Windows) and blue frame from router R1. Moreover, as shown in Fig. 5.8,
PC3 and router R1 reply to both normal and malformed ICMPv6 Echo Request,
while PC2 only answers the malformed packet. In the terminal, both IPv6 global
and link-local addresses of hosts are shown since this tool automatically uses both
IPv6 global and link-local addresses of PC1 (Kali) to exploit the presence of devices
on the attached link. The malformed ICMPv6 Echo Request message, which causes
responses with Parameter Problem is illustrated in Fig. 5.6.

(c) Potential vulnerabilities of the multicast address

As can be seen from these two types of packets, the main benefit of using the all-
nodes multicast address is that it allows a sender to send a single message to all nodes
on the local network segment with a single multicast transmission. This is much
more efficient than sending a separate unicast message to each individual node on
the network, which would require a separate transmission for each node. Therefore,
it is used for various network management tasks, such as discovering neighboring
nodes, resolving addresses, and sending router advertisements.

However, the way every node (especially Windows) handles with packets sent
to multicast address may result in the Reconnaissance phase, in which the attacker
takes advantage of the local network and find all active hosts including the nec-
essary information such as IPv6 address and MAC address. This information can
be exploited by the attacker in order to perform other attacks or explore security
vulnerabilities. This kind of attack leads to the same consequence as Ping sweep
or similar brute force scans, which are usually applied in IPv4, but being almost
impossible in IPv6. Because conducting this type of scan of all IPv6 addresses is
impractical due to the vast address space of IPv6 subnets, this stage can be carried
out by transmitting ICMPv6 Echo Request messages (or similar packets) to the
all-nodes multicast address.

Besides, there is another weakness of the multicast address that attackers can
take advantage to attack a specific victim (not to find the information of victims
in the previous attack), and is called Smurf attack. Specifically, attacker disguises
as victim (spoofs the victim’s IPv6 address) to send a large number of ICMPv6

81

Echo Request packets to the all-nodes multicast address (ff02::1). All nodes on
the local link will receive the packets and send ICMPv6 Echo Reply packets to the
target, which can cause a network flood (DoS) overwhelming the target system.

Fig. 5.11: Illustration of Smurf attack using multicast address.

As depicted in Fig. 5.11, assuming that PC1 wants to attack PC2, PC1 (Kali)
first fakes the IPv6 address of PC2 since the Reconnaissance attack (shown in Fig. 5.7
or the similar way with Ostinato) has revealed the information of PC2 (Windows).
Then, PC1 sends a lot of ICMPv6 Echo Request messages to ff02::1 in order to
trigger router R1 and PC3 to respond to PC2 with ICMPv6 Echo Reply messages.
With the high rate of sending Request packets/seconds, it results in large number
of Reply messages to the victim and makes PC2 unresponsive.

. Using the designed toolkit
This attack is conducted by the tool smurf.py from the developed toolkit, as

illustrated in Fig. 4.13. The configuration is written as below:
• Interface: This is the network interface where the attacker sends the packets.

In this situation, eth0 is chosen as this interface connects directly with the
network of PC2.

• Target link-layer address: It is the MAC address of the victim (PC2). In this
case, it can be left out since the link-layer address is automatically derived
from the IPv6 address of victim. The syntax is -tmac.

• Target IPv6 address: It is the IPv6 address of the victim (PC2). For the case

82

of global address, the syntax -tip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9 is
applied. For the case of link-local address, -tip fe80::7790:2c2b:9e56:431b.

• Data length: It is set to the default value (1000 bytes), so no configuration is
needed.

• Malformed option: It is the option to send the malformed ICMPv6 Echo
Request message instead of the normal one. This is more effective than normal
packet when the hosts that the attacker indirectly uses to attack PC2 do not
respond to normal packets. Moreover, the existence of Destination Header
with unknown option makes the hosts a little harder to process. However, in
this situation, these borrowed hosts are PC3 (Ubuntu) and router R1 (Cisco),
which answer both types of messages. Thus, this malformed option -mf does
not cause too much change to the result of attack.

Fig. 5.12: Illustration of Smurf attack using all-nodes multicast address. a) Using
the IPv6 global address of victim. b) Using the IPv6 link-local address of victim.

As can be seen from Fig. 5.12, after launching this tool for about 2 minutes,
the percentage of packet loss (shown in application MTR of Kali) when using IPv6
global and link-local address of victim increases quickly and reaches the value of
74.1% and 75.3%, respectively. This does not totally flood the victim, but is sure to
delay the network connection of PC2, probably cancel the address auto-configuration
or address leasing and SSH (Secure Shell) work.

. Using the application Ostinato

83

In the application Ostinato, this attack can also be performed. Firstly, user
generate the multicast address as depicted in Fig. 5.4 and fig. 5.5. Then, on the
Stream Control tab, Burst option is set and the Packets per Burst is inserted
with value: 60000 (it can be set to any value to cause DoS, which depends on the
processing capacity of victim), as depicted in Fig. 5.13.

Fig. 5.13: Configuration at the Stream Control tab for triggering Smurf attack to
the victim.

Review questions

The purpose of the following review questions is to clarify the behaviour of devices
(Cisco, Ubuntu and Windows) when dealing with multicast packets. All answers
are located in the attachment A.1.

Question 1:

Which multicast addresses are PC2 (Windows) and PC3 (Ubuntu) interested in? Do
they all belong to the all-nodes multicast group ff02::1? The following commands
in Linux and Windows can be applied to find the answer:

1 # Linux command in terminal to show the multicast group
2 ip -6 maddr
3
4
5 # Windows command in terminal to show the multicast group
6 netsh interface ipv6 show joins

84

Question 2:

Does PC2 (Windows) respond to the normal ICMPv6 Echo Request packet sent
from PC1 (Kali) to the global unicast address of PC2?
a) What does this packet look like in Wireshark?
b) Show the configuration to generate this packet with the designed toolkit and
Ostinato.

Question 3:

Does PC2 (Windows) respond to the normal ICMPv6 Echo Request packet sent
from PC1 (Kali) to the link-local unicast address of PC2?
a) What does this packet look like in Wireshark?
b) Show the configuration to generate this packet with the designed toolkit and
Ostinato.

Question 4:

Which are the possible attacks with multicast address that can be conducted by
PC1 (Kali) in term of this section? This question is clarified by performing the
following tasks:
a) Repeat the smurf attack using the network toolkit, but this time the victim will
be the router R1.
b) If we manage to overload the router R1, what will be the impact on our network?

Question 5:

For malformed Ping, modify the added Destination header so that it contains an-
other unknown option (e.g. type 127). Using Ostinato, send this packet and see
how the response of the stations on the network will differ from the previous case.
Try sending only from a link-local address.

5.2 Multicast Listener Discovery version 2 (MLDv2)
Multicast Listener Discovery (MLD) is a sub-protocol of ICMPv6 used in IPv6 net-
works to manage multicast group membership. MLDv1 is the original version of
the protocol, which allows devices to join and leave multicast groups on a particular
interface. When a device joins a multicast group, it sends an MLD Report message
to the multicast address associated with that group. When it leaves the group, it
sends an MLD Done message. However, the limitation of MLDv1 is that it does not
support source-specific multicast (SSM), which allows devices to specify the sources

85

from which they want to receive multicast traffic. Therefore, MLDv2 has replaced
MLDv1 to solve the existing problems and provide better support for multicast traf-
fic management in IPv6 networks, making it a more robust and efficient protocol
than MLDv1 [43]. In terms of this thesis, only MLDv2 is considered since this pro-
tocol provides more features and supports all functions of MLDv1. This section is
about describing the behaviour of nodes (including Windows machine) when receiv-
ing and sending different types of MLDv2 messages. The possible vulnerabilities in
MLDv2 operation are also analyzed to help analysts find appropriate solutions.

Precondition

At the initial step, all devices are in a powered off state. Then, router R1, R2, and
switch S1 are first started up to activate the address allocation and routing functions,
as described in Listing. 3.1. Next, all PCs (from 1 to 4) are turned on and wait for
a certain interval to complete the SLAAC (Stateless Address Auto-configuration)
process and stabilize.

Fig. 5.14: The network topology for testing Multicast Listener Discovery version 2.

Moreover, to carry out some tasks, where PC4 plays the role as a source for
streaming multicast traffic to clients (PC1, PC2, PC3), Protocol Independent Mul-
ticast (PIM) is applied [44]. It is a multicast routing protocol used in IPv6 networks
to enable routers to efficiently forward multicast traffic from a source to multiple
receivers across the network. In PIM protocol, the RP (Rendezvous Point) is used

86

as a central point for multicast traffic to be forwarded to all interested receivers in
a specific multicast group. The network scenario is depicted in Fig. 5.14.

1 R1(config)#interface loopback 0
2 R1(config-if)#ipv6 address 2001:db8:abcd:5::1/64
3 R1(config-if)#ipv6 ospf 1 area 0
4 R1(config-if)#exit
5 R1(config)#ipv6 pim rp-address 2001:db8:abcd:4::2
6

7 R2(config)#interface loopback 0
8 R2(config-if)#ipv6 address 2001:db8:abcd:4::2/64
9 R2(config-if)#ipv6 ospf 1 area 0

10 R2(config-if)#exit
11 R2(config)#ipv6 pim rp-address 2001:db8:abcd:4::2

Listing 5.1: Configuring RP (Rendezvous Point) and addresses at loopback interface
on Cisco routers R1 and R2.

In this scenario, router R2 is chosen to be the RP and its address is configured
at the loopback interface. The reason is that using a loopback interface ensures
that the RP IPv6 address is always reachable, regardless of which physical interface
may be down or experiencing issues. This provides an extra level of stability and
availability for the RP. The exact configuration is depicted in the Listing 5.1. After
configuration, it is necessary to check the routing table of router R1 and R2 with
command show ipv6 route for confirming the presence of routing entries to the
RP address, as illustrated in Listing. 5.2.

Operations and observation

After booting up, the MLDv2 messages are immediately applied by all hosts (R1,
PC1, PC2, PC3). Specifically, there are two kinds of behaviour among PCs.

At PC2 (Windows), the interface creates its own unique link-local unicast address
with a prefix of fe80::. During that time, PC2 also receives the prefix provided by
the router R1 in Router Advertisement for performing address auto-configuration.
Thus, it continues to generate global unicast addresses (one is permanent and the
other is temporary as the privacy extension feature is enabled). Then, PC2 joins
the all-nodes and solicited-node multicast groups that correspond to its link-local
address and global address by sending MLDv2 Report messages, as depicted in
Fig. 5.15. This message is first used for Duplicate Address Detection (DAD), in

87

which PC2 verifies the uniqueness of its addresses by asking all members in these
solicited-nodes group with Neighbor Solicitation.

1 R1#show ipv6 route
2 C 2001:DB8:ABCD:1::/64 [0/0]
3 via GigabitEthernet0/0, directly connected
4 C 2001:DB8:ABCD:2::/64 [0/0]
5 via GigabitEthernet1/0, directly connected
6 O 2001:DB8:ABCD:3::/64 [110/2]
7 via FE80::C802:12FF:FE05:1C, GigabitEthernet1/0
8 O 2001:DB8:ABCD:4::2/128 [110/1]
9 via FE80::C802:12FF:FE05:1C, GigabitEthernet1/0

10

11 R2#show ipv6 route
12 O 2001:DB8:ABCD:1::/64 [110/2]
13 via FE80::C801:11FF:FEF5:1C, GigabitEthernet1/0
14 C 2001:DB8:ABCD:2::/64 [0/0]
15 via GigabitEthernet1/0, directly connected
16 C 2001:DB8:ABCD:3::/64 [0/0]
17 via GigabitEthernet0/0, directly connected
18 L 2001:DB8:ABCD:4::2/128 [0/0]
19 via Loopback0, receive

Listing 5.2: The routing table of Cisco routers R1 and R2, respectively (shortened
output).

Fig. 5.15: Captured MLDv2 Report message from PC2 as soon as it boots up.

At PC1 (Kali) and PC3 (Ubuntu), the first MLDv2 Report message is sent with

88

the source address set to unspecified since the IPv6 link-local address of PC1 and
PC3 has not been created yet, as shown in Fig. 5.16. After that, as soon as the link-
local addresses of these two PC2 are generated, the next MLDv2 Report messages
are sent with the valid link-local address instead of the unspecified one ::.

Fig. 5.16: Captured MLDv2 Report message from PC1 and PC3 as soon as they
boot up.

(a) Sending General Query message

First of all, one of the key features of MLDv2 is the ability to query multicast
listeners using a General Query. General Query message is sent out on a specific
interface and asks all hosts on that interface to report their interest in the multicast
group. The router sends the message periodically to ensure that it is always up-
to-date with the current set of listeners. In terms of packet format, General Query
is sent to the all-nodes multicast address ff02::1, the Multicast Address field and
Number of Sources are set to zero.

. Using the designed toolkit
In order to send this type of message with the designed network toolkit, the

mld_query.py tool is selected. The user interface of this tool is shown in Fig. 4.4.
Assuming that PC1 (Kali) sends MLDv2 General Query message, the inserted pa-
rameters are below, with the depicted output in Fig. 5.17:

• Source IPv6 address: -sip fe80::8ac4:147a:5dfe:a9c6. However, it can be
left blank since the tool will automatically generate this address from the
interface. The link-local address is applied since MLDv2 messages are only
reachable on the local network segment. If the global unicast address is used
as the source, this packet should be silently discarded by the receivers [43].

89

Fig. 5.17: Result after running mld_query.py tool to generate MLDv2 General
Query.

• Destination IPv6 address: -dip ff02::1. This is the all-nodes multicast ad-
dress.

• Version of query: Version 2 is selected with command -v 2.
• Router Alert Option: The Hop-by-Hop Option with Router Alert is added

into the MLDv2 Query with parameter -hbh. The Query message might be
ignored by several machines if this option is not included.

• Multicast Address: -mip ::, which is the unspecified address.
• Number of Sources: This is left blank since no sources are included in the

General Query message.

90

• Maximum Response Code: -mrc 1. This parameter determines the maximum
time a multicast router will wait for a listener report to be received from a
host in response to a multicast listener query (expressed in 1/10 second). It
can be set to any value. The larger the value of Maximum Response Code is,
the greater the delay is in receiving the MLDv2 Report. In this situation, the
maximum latency is set to 1/10 second.

• Querier’s Robustness Value: -qrv 2. In case of packet loss, the MLD queries
may need to be retransmitted multiple times. The Querier’s Robustness Vari-
able (QRV) is a parameter that determines the number of times the MLD
querier will retransmit the queries, making the querier more resilient to packet
loss. However, increasing the QRV value also means that the timeout time for
IPv6 multicast groups will be longer. If the QRV value is not equal to zero,
the value of the Robustness Variable used by the Querier will be stored in the
QRV field. The default value is 2, which has been defined in RFC 3810 [43].

• Querier’s Query Interval Code: -qqic 125. This parameter defines the time
period between General Queries. It is set to 125 (equivalent to 125/4 seconds)
in these circumstances, which is the default value.

. Using the application Ostinato
General Query is also generated by Ostinato with the same result. On the

Protocol Selection tab, the selected protocols with their order from the lowest
are: Media Access Protocol (layer 1) - Ethernet II (layer 2) - Internet Protocol ver
6 (layer 3) - HexDump (Hop-by-Hop Option Header with Router Alert) - Multicast
Listener Discovery. These protocols are arranged as depicted in Fig. 5.18.

On the Protocol Data tab, the configuration is illustrated as below, while
others remain in default setting. This is shown in Fig. 5.19:

• Media Access Protocol: Source is set in mode Fixed, and it’s link-layer address
00:0c:29:8c:0b:0d. Destination is written as 33:33:00:00:00:01.

• Internet Protocol ver 6: Source is fe80::8ac4:147a:5dfe:a9c6, destination
is ff02::1, and Next Header is 00 (Type of Destination Options for IPv6, 00
in decimal format).

• HexDump: Hop-by-Hop Option Header with Router Alert is written as 3a 00
05 02 00 00 01 00 in hexadecimal format.

• Multicast Listener Discovery: Message type is set to 130-MLDv2 Query, Max
response time is set to 1, the group address is :: (unspecified). QRV is inserted
as 2 and QQI is equal to 125.

On the Stream Control tab, the number of packets is set to 1. Then, the
stream is applied and start to send the packet. The generated packet works exactly
like the case of using the designed toolkit. After launching in both situations, the

91

General Query with its responses are captured in Fig. 5.20.

Fig. 5.18: Configuration at the Protocol Selection tab for sending the MLDv2
General Query.

The generated packet and responses by using Ostinato are totally the same as
the one from the designed toolkit, as shown in Fig. 5.17 and Fig. 5.20. Therefore,
it is not necessary to mention again the output after using Ostinato.

After launching the mldv2_query.py tool, all nodes (router R1, PC2, PC3) re-
spond to the Query with their own MLDv2 Report messages. They contains informa-
tion about the multicast groups the clients are currently listening to and the sources
from which they are receiving multicast traffic. As depicted in Fig. 5.21, in MLDv2
Report from PC2 (Windows), there are 6 Records of the MODE_IS_EXCLUDE
type, with specific multicast address and no sources. This means PC2 is now
listening to these concrete multicast addresses. The first 3 multicast addresses
(ff02::1:ff56:431b, ff02::1:ff0f:3ce9, and group ff02::1:ffdd:2248) are
actually the solicited-node multicast address of PC2, which it must have interest in
when starting up. They have essential applications for PC2 such as discovering
the presence and link-layer addresses of neighboring nodes in a network, Duplicate
Address Detection and Multicast group management.

Besides, PC2 is in the group ff02::fb, which is used to discover services and
communicate with each other using Multicast Domain Name System version 6

92

Fig. 5.19: Configuration at the Protocol Data tab for sending the MLDv2 General
Query.

(mDNSv6). The multicast address ff02::1:3 is represented for Link-Local Multi-
cast Name Resolution (LLMNR), which enable devices on a local network to resolve
each other’s domain names without relying on a DNS server [45]. Lastly, PC2 is a

93

member of the multicast group ff02::c, which stands for Simple Service Discovery
Protocol (SSDP) [46].

Fig. 5.20: Captured MLDv2 General Query and its responses.

Fig. 5.21: Captured MLDv2 Report from PC2 after receiving General Query.

94

To compare the response time of hosts after receiving a General Query, and to
evaluate the impact of the Maximum Response Delay factor, Fig. 5.22 describes two
MLDv2 Queries. One packet is sent with a Maximum Response Delay value of 1
(1/1000 second), and the other one with a value of 1000 (1 second). This parameter
can be configured with parameter -mrc in the mld_query.py tool of the designed
toolkit or the variable Max Response Time in Protocol Data of application Os-
tinato. Considering PC2 (Windows) as an instance, PC2 has answered the query
from PC1 (Kali) in both circumstances, but in different moment. Concretely, the
time when the first MLDv2 Report has been captured in the first situation (MRC
= 1) is about 0.0017 seconds, which is faster than the situation with MRC = 1000
(0.3914 seconds). Other nodes such as PC3 and R1 have replied at different time,
and tried to be within the defined MRC. However, the the arrival time (0.0017 sec-
ond) exceeds the predefined interval (0.001 second). The reason is that the specified
Max Response Time is too short for every node to reach in time. Thus, nodes only
try to process the coming Query as soon as possible and sends the Report back to
the Querier. Moreover, the packet needs additional time to travel along the network
to the destination, which causes another delay.

Fig. 5.22: Captured MLDv2 packets after generate MLDv2 General Query. a)
Maximum Response Delay value is 1 (1/10 second). b) Maximum Response Delay

value is 1000 (1 second).

After generating Query message, it is discovered that there is a change in the
role of Querier on this network as depicted in Fig. 5.23. The multicast router
R1 (fe80::c801:11ff:fef5) is no longer the Querier since PC1 (with the address
fe80::8ac4:147a:5dfe:a9c6) takes over the querier role due to the querier election
mechanism. Because router R1 receives a Query message from PC1 (Attacker), it
thinks that there is another multicast router (PC1) on the link. Thus, the election
must happen as RFC 3810 [43] has already defined that MLDv2 elects only one
router to be in Querier state, all other routers will be in Non-Querier state. When
the IPv6 address of PC1 is lower than that one of R1, the Querier winner is PC1.
Meanwhile, router R1 sets the Other Querier Present timer. After this timer expires,

95

router R1 will be back to Querier state and start sending Queries. This function of
MLD can lead to a combination of mechanisms to mount an attack, which will be
mentioned later in this section.

Fig. 5.23: Information about MLD on the interface g0/0. a) Before sending the
General Query by PC1 (Attacker). b) After sending the General Query by PC1.

(b) Sending Multicast Address Specific Query message

The second type of MLDv2 Query is Multicast Address Specific message. This
Query is sent by Querier to ascertain if any listeners exist for a particular multicast
address on an attached link.

In this circumstance, PC4 (Ubuntu) is considered to be a source, which streams
a video into the multicast group ff08::db8. This work can be done by using VLC
media player, which is installed on PC4. In this application, users first choose the
Stream... option on Media tab, then add any available video to the selection list
and click the button Stream. Next, the transcoding method need to be inserted
(RTP/MPEG Transport Stream in this case) and click Add. The address is inserted

96

as ff08::db8, which is depicted as Fig. 5.24. The hop limit is set to 3 in order to
travel through router R2, R1 to all hosts on the link (PC1, PC2, PC3).

Fig. 5.24: Configuration at PC4 for streaming video through multicast address
ff08::db8.

Fig. 5.25: The captured streaming video in PC2.

97

PC2 (Windows) is considered to join the multicast group ff08::db8 for watching
this video. This can also be performed by VLC media player on PC2. In this applica-
tion, users are required to choose Open Network Stream... option on Media tab, then
insert the network Uniform Resource Locator (URL) rtp://@[ff08::db8]:5004.
After clicking the button Play, the video starts displaying on the screen of PC2, as
depicted in Fig. 5.25. At that time, PC2 also sends two consecutive MLDv2 Report
messages in order to inform the router that it joins the multicast group ff08::db8.
The content of this packet is captured in Fig. 5.26. The type of Record is Changed
to exclude with no sources and multicast address ff08::db8.

The Multicast Address Specific Query is constituted with the multicast address
and the destination address set to the interested multicast group that Querier wants
to ask. Other parameters are similar to the ones from General Query.

Fig. 5.26: Captured MLDv2 Report from PC2 after joining the group ff08::db8.

. Using the designed toolkit
The mld_query.py tool is still used. Assuming that PC1 (Kali) sends MLDv2

General Query message, the inserted parameters are below, with the depicted output
in Fig. 5.27.

• Source IPv6 address: -sip fe80::8ac4:147a:5dfe:a9c6. However, it can be
left blank since the tool will automatically generate this address from the
interface. The link-local address is applied since MLDv2 messages are only
reachable on the local network segment.

• Destination IPv6 address: -dip ff08::db8. This is the multicast address that
PC2 is now a member when watching the video stream.

• Version of query: Version 2 is selected with command -v 2.

98

• Router Alert Option: The Hop-by-Hop Option with Router Alert is added
into the MLDv2 Query with parameter -hbh. The Query message might be
ignored by several machines if this option is not included.

• Multicast Address: -mip ff08::db8.
• Number of Sources: This is left blank since no sources are included in the

General Query message.
• Maximum Response Code: -mrc 1. In this situation, the maximum latency

is set to 1/10 second.
• Querier’s Robustness Value: -qrv 2. The default value is 2, which has been

defined in RFC 3810 [43].
• Querier’s Query Interval Code: -qqic 125. It is set to 125 (equivalent to 125/4

seconds) in this case, which is the default value.

Fig. 5.27: Result after running mld_query.py tool to generate MLDv2 Multicast
Address Specific Query.

. Using the application Ostinato
MLDv2 Multicast Address Specific Query can also be designed by Ostinato with

the same result as the mld_query.py tool. All selected protocols at Protocol
Selection tab are the same as the case of General Query, as depicted in Fig. 5.18.
On the Protocol Data tab, it is necessary to change the destination address at
Internet Protocol ver 6 from ff02::1 to ff08::db8. The group address at Multicast
Listener Discovery field is written as ff08::db8 instead of ::, as shown in Fig. 5.19.
On Stream Control tab, the number of packets is set to value 1. The stream is
applied and start to send the packet.

After sending the message, the captured Multicast Address Specific Query with
its response are illustrated in Fig. 5.28 and Fig. 5.29.

As can be seen from Fig. 5.28 and Fig. 5.29, only PC2 (Windows) answers the
Query sent from PC1 when asking about the multicast group ff08::db8. The reason
is that currently only PC2 is watching the stream, so in the group ff08::db8 there
is only one listener: PC2. In the Report packet sent to the Querier, PC2 also only
informs the current status of the multicast address ff08::db8, not all the addresses
it belongs to. The current state of PC2 with the multicast address ff08::db8 is

99

EXCLUDE with no sources, which means PC2 is currently listening to the group
ff08::db8.

Fig. 5.28: Captured MLDv2 Multicast Address Specific Query and its response.

Fig. 5.29: Captured MLDv2 Report from PC2 after receiving Multicast Address
Specific Query.

(c) Sending Multicast Address and Source Specific Query message

This last type of MLDv2 Query is Multicast Address and Source Specific Query
message. This Query is sent by Querier to ascertain if any listeners exist for a
particular multicast address from a specified list of sources on an attached link. The
previous situation, in which PC4 (Ubuntu) is the source and the multicast group is
ff08::db8, is still continually applied.

The Multicast Address and Source Specific Query is constituted with the multi-
cast address, the destination address set to the interested multicast group and the

100

list of sources is set to the ones that Querier wants to ask. Other parameters are
similar to the ones from General Query.

. Using the designed toolkit
The mld_query.py tool is still used. Assuming that PC1 (Kali) sends MLDv2

Multicast Address and Source Specific Query message, the inserted parameters are
almost the same as the configuration in Fig. 5.27. The only difference is about the
source, in which users need to insert the IPv6 global address of PC4 (Ubuntu) as:
-src 2001:db8:abcd:3:31bc:eb00:7509:c9ec. The output of the tool is shown in
Fig. 5.30.

Fig. 5.30: Result after running mld_query.py tool to generate MLDv2 Multicast
Address and Source Specific Query.

Fig. 5.31: Captured MLDv2 Multicast Address and Source Specific Query and its
response.

. Using the application Ostinato
Multicast Address and Source Specific Query can be designed by Ostinato with

the same result as the mld_query.py tool. All selected protocols at Protocol
Selection tab are the same as the case of General Query, as depicted in Fig. 5.18.

101

On the Protocol Data tab, the destination address at Internet Protocol ver 6 is
changed from ff02::1 to ff08::db8. The group address at Multicast Listener Dis-
covery field is written as ff08::db8 instead of ::. Especially, the source list is filled
in with the IPv6 global address of PC4 (2001:db8:abcd:3:31bc:eb00:7509:c9ec),
as shown in Fig. 5.32. Last but not least, on Stream Control tab, the number of
packets is set to value 1. The stream is applied and start to send the packet.

Fig. 5.32: Configuration at the Protocol Data tab for sending the MLDv2
Multicast Address and Source Specific Query.

Fig. 5.33: Captured MLDv2 Report from PC2 after receiving Multicast Address
and Source Specific Query.

The generated packet by using the designed toolkit (or Ostinato) and its re-
sponse from PC2 are illustrated in Fig. 5.31 and Fig. 5.33. PC2 (Windows) is the

102

only node, which answers the Query from PC1. In the Report packet sent to the
Querier, PC2 only informs the current status of the multicast address ff08::db8,
not all the addresses it belongs to. The current state of PC2 with the multicast
address ff08::db8 is INCLUDE with the IPv6 address of PC4 as the source, which
means PC2 is currently listening to the group ff08::db8 and getting data from
PC4 (Ubuntu).

(d) Potential vulnerabilities of MLDv2

. Using the designed toolkit to cause MLDv2 Resource Depletion
Besides the undeniable benefits of MLDv2 packets, the attacker can use these

same packets to attack the victim. One of the most popular and effective attacks
is Denial of Service (DoS), where the attacker sends a large number of MLDv2
Reports to overwhelm the multicast router. From there, all network traffic through
the router might be badly influenced or or even worse crashed.

Fig. 5.34: Result after running mldv2_report.py tool to flood the router.

In this kind of attack, the mldv2_report.py tool from network toolkit is cho-
sen. In case of Ostinato, because of generating a lot of random Records inside the
packet, Ostinato is not much suitable for users to perform this task. Therefore,
only the designed toolkit is applied in this case. From PC1 (attacker), an enormous
number of MLDv2 Reports with random addresses and many falsified Records are
sent continuously to the multicast router R1. The option to launch this attack is -f
random, which is depicted in Fig. 5.34.

After launching the attack for 15 seconds, a huge number of Reports with fal-
sified Records have filled the cache of router R1 quickly. The percentage of packet
loss from router R1 rapidly reaches the value of 85.2% because router becomes un-
responsive and packets start being dropped after that. Considering that PC4 is still
streaming and PC2 is currently watching this stream, the video is sure to be jerky,
the image quality will be very low, and may freeze permanently. This greatly affects
viewer comfort, and can lead to economic impact for the broadcasters afterwards.

103

In addition, the influence of the router can lead to many other consequences such
as the exchange of information of the internal network with other networks, address
auto-configuration or address leasing.

. Using the the designed toolkit to cause MLDv2 Listener Removal
The second type of attack related to MLDv2 is called MLD Listener Removal, in

which PC1 (attacker) tricks router R1 to believe that there is no interest anymore
in receiving data from the source (PC4). The influenced host is PC2 (Windows),
which is still currently interested in the video stream from PC4. After the attack,
router R1 is going to stop forwarding the stream to PC2. This attack includes a
sequence of steps in sequential order:

1. Taking over the Querier role of legitimate router R1.
2. Sending a spoofed MLDv2 Report to inform the removal of all listeners in the

multicast group (in this case, ff08::db8 is the concern group).
3. Sending two spoofed MLDv2 Last Listener Query to the router for making it

believe that there are no members on this group anymore.
To trigger this attack, the attacker (PC1) must be the Querier at the initial stage,

as depicted in Fig. 5.23. This stage is extremely important since the legitimate
router R1 can no longer send Query to clients anymore if not being the Querier. To
demonstrate the effect of Querier, let’s skip the first step (taking over Querier role)
and conduct the second step (sending the spoofed MLDv2 Report).

To send MLDv2 Report for removing all listeners in the multicast group with
address ff08::db8, the mldv2_report.py tool is chosen from the network toolkit,
as described in Fig. 4.5. The configuration is set up as below. The format of
generated MLDv2 Report message with its responses is depicted in Fig. 5.35 and
Fig. 5.36.

• Interface: The network interface eth0 is chosen to send the packet from PC1
(attacker).

• Source IPv6 address: It is left blank because the tool can automatically gen-
erate the attacker’s link-local address from the network interface.

• Destination IPv6 address: It is also left blank as the tool by default sets
ff02::16 (all MLDv2-capable routers) as the destination.

• Multicast Address Record: Since this Report message is designed for removing
all listeners in the multicast group ff08::db8, the Record type is set to value
of 3 (CHANGE_TO_INCLUDE), the multicast address is ff08::18 and the sources
list is left blank. Therefore, the syntax for this Multicast Address Record
is written as -lmar "rtype=1;mip=ff08::db8;src=[]" (Every parameter is
separated by the sign ";", as explained in the previous chapter for using the
network toolkit).

104

Fig. 5.35: Result after running mldv2_report.py tool to remove all listeners from
the multicast group ff08::db8 when R1 is the Querier.

Fig. 5.36: Captured MLDv2 Report for removing all listeners from the multicast
group ff08::db8 and its response.

As being Querier, after receiving MLDv2 Report message with the state-change
mode Record (in this case, Changed to include), router R1 sends a General Query
message to discover whether there is any multicast listener on the connected inter-

105

face. Unfortunately, as PC2 is still interested in the multicast group ff08::db8.
Therefore, PC2 sends a Report back to the router to inform that it is still retriev-
ing data from this group (with Exclude mode and multicast address ff08::db8 in
the Record), as depicted in Fig. 5.35 and Fig. 5.36. Router R1 by default sends
the same General Query again with the Suppress Router-Side Processing to check
the presence of listeners, and still gets Report message from PC2 what informs the
interest of multicast address ff08::db8. As a consequence, router R1 asserts that
PC2 is still interested in the address ff08::db8. So R1 continues to allow PC2 to get
stream data from the source PC4 and the attack is failed.

Therefore, it is necessary to perform the first step (Taking over the Querier role).
In this situation, PC1 (attacker) steals the Querier role from legitimate router R1.
This can be done by sending any type of Query messages with the lower IPv6
link-local address than the one of router R1. By default, the link-local address of
PC1 (fe80::8ac4:147a:5dfe:a9c6) is lower than R1 (fe80::c801:11ff:fef5:8).
After sending Query, PC1 becomes the winner, as depicted in Fig. 5.23.

At the second step, MLDv2 Report with an aim to deleting all listeners from
group ff08::db8. The configuration for the tool mldv2_report.py is the same
as above. The output after launching is shown in Fig. 5.37.

Fig. 5.37: Result after running mldv2_report.py tool to remove all listeners from
the multicast group ff08::db8 when PC1 is the Querier.

As can be seen from Fig. 5.37, after sending the specified MLDv2 Report, there
is no response anymore from router R1 and PC2. This can be explained that router
R1 is no longer a Querier, so R1 does not send any Query packets to clients. As
a corollary, since PC2 does not receive any Query, it will not send any Report as
a response back to the router. Thus, the attack can be continued without any
problem.

Even though the second step is applied for removing all listeners from the mul-
ticast group ff08::db8, PC2 can still get the video stream from the source PC4.
That is because the router only believes that there aren’t any listeners left in the
ff08::db8 group if it receives Last Listener Query messages without any interrupt-
ing Report packets during the The Last Listener Query Interval [43]. The number
of Last Listener Query messages which is sent before router R1 assumes that there
are no listener left for the multicast address, is equal to the value of Robustness

106

Variable. This value is 2 in this circumstance.
However, this type of Query message (Last Listener Query) is especially different

than the other Queries. In this packet, the destination address is the IPv6 unicast
global address of the source instead of the standard multicast address. This feature
has been defined by RFC 3810 [43] that a node is required to receive and handle any
Query having IPv6 destination address with the type (either unicast or multicast)
because this capability can be beneficial for debugging purposes. In terms of this
attack, the IPv6 unicast global address of PC4 (source) is utilized as an exploit to
entirely circumvent the authorized MLD router and communicate directly (for any
desired purpose) with the target (PC4), defined in [47].

Fig. 5.38: Result after running mld_query.py tool to send Last Listener Query.

Fig. 5.39: Captured MLDv2 Last Listener Query for the multicast group ff08::db8.

For sending Last Listener Query for the multicast group ff08::db8, the tool
mld_query.py is applied. The syntax configuration is inserted as below. The
output after running this tool and the format of Last Listener Query packet are
described in Fig. 5.38 and fig. 5.39.

107

• Source IPv6 address: -sip fe80::8ac4:147a:5dfe:a9c6. However, it can be
left blank since the tool will automatically generate this address from the
interface.

• Destination IPv6 address: -dip 2001:db8:abcd:3:31bc:eb00:7509:c9ec.
This is the IPv6 global address of PC4, which is the source of the stream.

• Version of query: Version 2 is selected with command -v 2.
• Router Alert Option: The Hop-by-Hop Option with Router Alert is added

into the MLDv2 Query with parameter -hbh. The Query message might be
ignored by several machines if this option is not included.

• Multicast Address: -mip ff08::db8.
• Number of Sources: This is left blank since no sources are included in the Last

Listener Query message.
• Maximum Response Code: -mrc 1. In this situation, the maximum latency

is set to 1/10 second.
• Querier’s Robustness Value: -qrv 2. The default value is 2, which has been

defined in RFC 3810 [43].
• Querier’s Query Interval Code: -qqic 125. It is set to 125 (equivalent to 125/4

seconds) in this case, which is the default value.
After running two consecutive Last Listener Query packets, the running video

on PC2 immediately stops as a result.

Review questions

The purpose of the following review questions is to clarify the behaviour of devices
when dealing with Multicast Listener Discovery packets. All answers are located in
the attachment A.2.

Question 1:

In which characteristics is MLDv2 superior to MLDv1?

Question 2:

Which devices in the scenario respond to the General Query from router R1?
a) Perform sending General Query by the designed toolkit and Ostinato.
b) Capture the Query together with its answers. Describe the format of these packets
and their content.

108

Question 3:

Which devices in the scenario respond to the Multicast Address Specific Query from
PC1 with the group ff08::db8?
a) Perform sending this Query by the designed toolkit and Ostinato.
b) Capture the Query together with its answers. Describe the format of these packets
and their content.

Question 4:

Which devices in the scenario respond to the Multicast Address and Source Specific
Query with the group ff08::db8 and the sources list contains only the IPv6 address
of PC4 (2001:db8:abcd:3:31bc:eb00:7509:c9ec)?
a) Perform sending this Query by the designed toolkit and Ostinato. Capture the
Query together with its answers. Describe the format of these packets and their
content.
b) How do devices respond to this Multicast Address and Source Specific Query if
the sources list contains the random address (e.g. 2001::bad) instead of the real
source 2001:db8:abcd:3:31bc:eb00:7509:c9ec. Keep in mind that this source
does not actually exist. Verify this by the designed toolkit and Ostinato.

Question 5:

What is the mechanism of querier election?
a) Which link-local address can be set to router R1 to avoid losing the querier role?
b) What address the attacker has to spoof when the legitimate router is having the
link-local address as fe80::1?

5.3 Fragmentation
In IPv6, fragmentation occurs when a packet is too large to be transmitted over
a link with a smaller Maximum Transmission Unit (MTU) size. This can happen
when a packet is sent from a source host with an MTU size larger than the MTU size
of a router or destination host. In this case, the packet is fragmented into smaller
packets that can be transmitted over the link with the smaller MTU size.

Precondition

At the initial step, all devices are in a powered off state. Then, router R1, R2, and
switch S1 are first started up to activate the address allocation and routing functions,
as described in Listing. 3.1. Next, all PCs (from 1 to 4) are turned on and wait for

109

a certain interval to complete the SLAAC (Stateless Address Auto-configuration)
process and stabilize. The network scenario with address specification is depicted
in Fig. 5.40.

Operations and Observation

By default, the MTU of every interface in the network scenario is equal to 1500.
For instance, the defined MTU on the network interface of PC2 (Windows) can
be verified by the command depicted in Listing. 5.3. From PC2, a Ping message
with the Payload size 2000 (larger than MTU 1500) is sent to PC4. The terminal
command is written as ping 2001:db8:abcd:3:31bc:eb00:7509:c9ec -l 2000.

Fig. 5.40: The network topology for testing Fragmentation.

1 C:\Users\User>netsh interface ipv6 show interfaces
2

3 Idx Met MTU State Name
4 --- ------- ------ --------- -----------
5 4 25 1500 connected Ethernet0

Listing 5.3: The specification about network interface of PC2 (shortened output).

As can be seen from Fig. 5.41, the ICMPv6 Echo Request sent from PC2 is
fragmented into two parts by PC2. In the first fragment, Fragment Header indicates
that this packet is not the last fragment with the flag More Fragments set to Yes.

110

Fig. 5.41: Captured Ping message with fragments and its response.

This flag is set to No in the last fragment. After receiving these two fragments
from PC2, PC4 assembles them together to form a complete Echo Request message.
Then PC4 sends its answer back to PC2, and the fragmentation also happens in this
Echo Reply message.

(a) Sending Packet Too Big message

If an IPv6 router receives a datagram that is too large to fit on the next physical
link over which it must be forwarded, it cannot fragment it. The only option is for
the router to discard the datagram and send an ICMPv6 Packet Too Big message
back to the device that sent it. This type of message informs the sender that it
needs to reduce the size of the datagram by fragmentation before sending it again.

On the other hand, Packet Too Big message can be sent by the destination host
(not only routers) to the source during Path MTU Discovery. In particular, to
determine the Path Maximum Transmission Unit (PMTU) in IPv6, the source node
initially assumes that the PMTU is the MTU of its outgoing interface (1500 bytes,
in the case of PC2), and sends out a packet. If there is a PMTU smaller than the
current assumption on the forwarding path, a Packet Too Big message is sent to the
source node, along with the new MTU value. The Packet Too Big message notifies
the source node of the PMTU limitation. Subsequently, the source node updates its
assumption of the PMTU to the newly received MTU value, as described in RFC
8201 [48].

111

However, if the MTU included in Packet Too Big is smaller than the minimum
MTU (1280 bytes) or larger than the default Ethernet MTU (1500 bytes), this packet
will be automatically dropped by the receiver (PC2, in this case).

. Using the designed toolkit
Assuming that PC2 (Windows) wants to send ICMPv6 Echo Request messages

to PC4 (Ubuntu) and the PMTU of this path is initially set to 1500 by default,
the PMTU can be changed to lower value with the use of the implant_mtu.py
tool from the designed toolkit, as depicted in Fig. 4.12. The syntax configuration is
written as below. The output after running this tool is shown in Fig. 5.42.

Fig. 5.42: Result after running implant_mtu.py tool to implant MTU into the
path PC2-PC4.

Fig. 5.43: Captured packets after running implant_mtu.py tool to implant MTU
into the path PC2-PC4.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Target address: It is the IPv6 address of PC2, which is going to change the

MTU. -tip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9 is inserted as the syntax.

112

• Source address: It is the IPv6 address of PC4, which sends Packet Too Big
to PC2 for changing PMTU. In this case, Packet Too Big is actually sent by
PC1 (attacker), but PC1 generates a spoofed Packet Too Big message to make
PC2 believe that it receives this message from PC4. Thus, the syntax is -sip
2001:db8:abcd:3:31bc:eb00:7509:c9ec.

• Maximum Transmission Unit: This is the MTU that PC1 wants to implant
into the path between PC2 and PC4. In this case, MTU is set to the value
1280, with the syntax -mtu 1280.

As can be seen from Fig. 5.43, this tool does not only send Packet Too Big
message, but also a spoofed ICMPv6 Echo Request, which illustrates a Ping message
from PC4 to PC2. This packet is sent to make PC2 (Windows) believe that the path
is clear for ICMPv6 messages to be transmitted in both directions. If not, PC2 will
assume that the destination or the router on the path is blocking ICMPv6 messages
to Packet Too Big and the specified MTU will not be applied by PC2 even though
PC2 still receives this Packet Too Big message.

. Using the application Ostinato
This sequence of packets can also be generated by Ostinato with the same result.

The first packet (ICMPv6 Echo Request) is designed similarly as the created Ping
message in Multicast Address section 5.1. Specifically, on the Protocol Selection
tab, the following protocols are chosen at every layer, while others are kept as the
default setting:

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• ICMPv6 Echo Request: ICMP
• Payload: Hex Dump (used for filling Payload data in ICMPv6 Echo Request

message)
On the Protocol Data tab, the configuration is depicted as below while others

remain in default setting:
• Media Access Protocol: Source is set in mode Fixed, and the MAC address

is written as 00:0c:29:8c:0b:0d.
• Internet Protocol ver 6: Source is 2001:db8:abcd:3:31bc:eb00:7509:c9ec,

and destination is 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9.
• Internet Control Message Protocol: Version is ICMPv6, and Type is 128 -

Echo Request.
• HexDump: Payload data is written in hexadecimal format as 61 62 63 64 65

66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64
65 66 67 68 69, which is the sequence of letters in alphabetical order.

113

On the Stream Control tab, the number of packets is set to 1.
In the second packet (ICMPv6 Packet Too Big), the selected protocols with order

on the Protocol Selection are: Media Access Protocol (layer 1) - Ethernet II (layer
2) - Internet Protocol ver 6 (layer 3) - Internet Control Message Protocol (Packet
Too Big) - HexDump (MTU) - Internet Protocol ver 6 - Internet Control Message
Protocol (Echo Reply) - HexDump (Payload data). They are arranged in Fig. 5.44.

Fig. 5.44: Configuration at the Protocol Selection tab for sending Packet Too Big.

On the Protocol Data tab, the configuration is shown as below while others
remain in default setting, as described in Fig. 5.45 and Fig. 5.46:

• Media Access Protocol: Source link-layer address is set to 00:0c:29:8c:0b:0d,
and the destination link-layer address is set to the link-layer address of PC2
(00:0c:29:8e:74:ad).

• Internet Protocol ver 6: The address of PC4 is set as the source, while the
address of PC2 is set as the destination.

• Internet Control Message Protocol: Type 2-Packet Too Big is chosen. The
version is ICMPv6.

• HexDump: It contains the value of MTU (1280 in this case). The hexadecimal
format for this value is 00 00 05 00.

• Internet Protocol ver 6: The address of PC2 is set as the source, while the
address of PC4 is set as the destination. This is opposite to the first Internet
Protocol ver 6, as it simulates the process when PC2 sends a Ping message to
PC4 and gets a response.

• Internet Control Message Protocol: Type 129-Echo Reply is selected.
• HexDump: It is the Payload data of the Echo Reply message, which can be

written with any random data. In this case the HexDump is set as 00 00 00

114

00 00.
Two packets including the Echo Request and Packet Too Big are applied in the

stream and start to send.
After launching by the designed toolkit or Ostinato, the Path MTU table of PC2

is immediately updated as depicted in Listing. 5.4. The new MTU (1280) is added
into the table with PC4 as the destination, and router R1 is written as the next
hop.

Fig. 5.45: Configuration at the Protocol Data tab for sending Packet Too Big
(part MTU).

After implanting the new MTU (1280) into the path PC2-PC4, the effect is
verified by sending ICMPv6 Echo Request from PC2 to PC4 with the Payload size
1400 bytes, which is smaller than the default Ethernet MTU size (1500 bytes) but
larger than the implanted MTU (1280 bytes). After sending Ping message from PC2
to PC4, the captured packets with its response are depicted in Fig. 5.47. It can be
seen that the Ping message is divided into pieces at PC2 as the size of packet exceeds

115

Fig. 5.46: Configuration at the Protocol Data tab for sending Packet Too Big
(part Echo Reply).

1 C:\Users\User>netsh interface ipv6 show destinationcache
2

3 PMTU Destination Address Next Hop Address
4 ---- ----------------------------------- ----------------------
5 1280 2001:db8:abcd:3:31bc:eb00:7509:c0ec fe80::c801:11ff:fef5:8

Listing 5.4: The specification about destination cache of PC2 (shortened output).

the new limit. However, the response packet from PC4 is not fragmented with the
new value. The reason is that the new PMTU is only applied in one-way path, the
opposite direction is not influenced by the new PMTU and the Reply packet is not
fragmented as a result.

116

Fig. 5.47: Captured packets when sending Echo Request message from PC2 to
PC4 after running implant_mtu.py tool to implant MTU into the path PC2-PC4.

(b) Sending Tiny fragments

As being mentioned in RFC 8200 [10], to ensure proper functioning of IPv6, it
is mandated that all internet links have an MTU of at least 1280 bytes. In case
the link fails to meet this requirement, specific fragmentation and reassembly must
be provided at a lower layer than IPv6. However, RFC 8200 does not offer any
guidance on how IPv6 should manage packets that have a length smaller than 1280
bytes (also known as tiny fragments). Thus, it is necessary to verify if tiny fragments
are accepted by Windows machines (PC2, in this case).

Fig. 5.48: Illustration of fragmentation using tiny fragments.

117

This task is more suitable to be conducted by fragment_header.py tool from
the designed network toolkit, since it is extremely complicated to generate properly
by Ostinato. The user interface of this tool is described in Fig. 4.2.

Fig. 5.49: Result after running fragment_header.py tool to generate packets with
tiny fragments.

Fig. 5.50: Captured packets after running fragment_header.py tool to generate
packets with tiny fragments.

In this situation, it is considered that PC1 (Kali) sends ICMPv6 Echo Request
with tiny fragments to PC2 (Windows). As can be seen from Fig. 5.48, fragmentation
happens even though the Payload size of non-last fragment is smaller than the
minimum MTU.

The configuration to generate these packets is shown below. The output is
depicted in Fig. 5.49.

• Network interface: eth0, which is the interface of PC1 (Kali).

118

• Source IPv6 address: It can be left blank since the tool will automatically
generate the IPv6 address from the interface.

• Destination IPv6 address: -dip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9. This
is the IPv6 global address of PC2.

• Tiny option: -tiny. This option allows the tool to generate packets with tiny
fragments.

As can be seen from Fig. 5.49 and Fig. 5.50, PC2 answers the ICMPv6 Echo
Request from PC1. This means the Windows machine accepts fragments as small
as the following type (64 bytes including 40 bytes IPv6 header, 8 bytes Fragment
Header, 8 bytes ICMPv6 header and 8 bytes Payload data).

Review questions

The purpose of the following review questions is to clarify the behaviour of Windows
device when dealing with fragmentation. All answers are located in the attachment
A.3.

Question 1:

Does the PMTU of the path PC2-PC4 change if it is inserted with the value 1270
(bytes)?
a) Verify this by the implant_mtu.py tool of designed network toolkit and Osti-
nato.
b) Explain the impact after running these tools.

Question 2:

Does the PMTU of the path PC2-PC4 change if it is inserted with the value 1520
(bytes)? Explain the impact.

Question 3:

Does PC2 answer the packets with tiny fragments? Verify this by the network
toolkit.

5.4 Router Solicitation and Router Advertisement

Router Solicitation and Router Advertisement are both part of the Neighbor Discov-
ery Protocol (NDP) in IPv6. They are used to configure and maintain the network,
and to enable communication between devices on the same network segment.

119

Fig. 5.51: The network topology for testing Router Solicitation and Router
Advertisement.

Precondition

To carry out the implementation stages of Router Solicitation and Router Adver-
tisement, at the initial step, all devices are in a powered off state. Then, router
R1, R2, and switch S1 are first started up to activate the address allocation and
routing functions, as described in Listing. 3.1. Next, all PCs (from 1 to 4) are
turned on and wait for a certain interval to complete the SLAAC (Stateless Ad-
dress Auto-configuration) process and stabilize. The network scenario with address
specification is depicted in Fig. 5.51.

Operations and Observation

After booting up and generating a unique link-local address, Router Solicitation is
used by every device (PC2, in this case) to request information about the network,
such as the address of the default gateway or the available prefix. It is sent as an
IPv6 multicast message to the all-routers multicast group (ff02::2). The format
of Router Solicitation is depicted in Fig. 5.52.

Router Advertisement is an application used by a router to advertise information
about the network to other devices. It is sent periodically, or in response to a Router
Solicitation message, as an IPv6 multicast message to the all-nodes multicast group
(ff02::1). The Router Advertisement includes information such as the prefix(es)
available on the network, the address of the default gateway, and other configuration
parameters, as shown in Fig. 5.53 for the case of router R1.

120

Fig. 5.52: Captured Router Solicitation sent from PC2 during Neighbor Discovery
procedure.

Fig. 5.53: Captured Router Advertisement sent from R1 during Neighbor
Discovery procedure.

(a) Sending Router Advertisement for setting the default router

As defined in RFC 4861 [14], after receiving a Router Advertisement message with
Source link-layer address field and non-zero router lifetime, the host should update
its default gateway even if the prefix information is not included. If the source

121

address in Router Advertisement is still not present in Default Router list of client,
a new entry of default router will be created. However, the default router selection is
needed as every host only uses one next-hop router during operation. To verify this
behaviour, it is considered that PC1 (Kali) sends this type of Router Advertisement
to PC2 (Windows) with several levels of preference.

. Using the designed toolkit for Router Advertisement with Low preference
To design Router Advertisement, the router_advertisement.py tool is chosen,

as depicted in Fig. 4.11. The configuration for generating this packet is described
below, with the output after launching the tool in Fig. 5.54. The captured packet
is illustrated in Fig. 5.55.

Fig. 5.54: Result after running router_advertisement.py tool with Low preference.

Fig. 5.55: Captured Router Advertisement sent from PC1 with Low preference.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Source IPv6 address: It can be left blank since the tool will automatically

generate the IPv6 address from the interface.
• Destination IPv6 address: -dip ff02::1. This is the IPv6 all-nodes multicast

address. However, this option can be left blank since the tool will automati-
cally uses this address by default.

• Preference of router: There are three levels of preference from Low, Medium to
High. These names reflect the priority level for routers that send out Router

122

Advertisement. In the first instance, the lowest level is inserted with syntax
-pref Low.

• Router lifetime: It has to be non-zero value. The router lifetime can be left
blank since it is by default inserted as 1800 (seconds).

• Link-layer address of router: This value is included in Source link-layer address
field within Router Advertisement packet. It is also skipped since the tool
automatically generates the link-layer address of PC1 for the compatibility
with the source IPv6 address.

. Using the application Ostinato for Router Advertisement with Low preference
This type of Router Advertisement message can also be generated by Ostinato,

and yields the same result as the router_advertisement.py tool. Specifically,
on the Protocol Selection tab, the following protocols are chosen at every layer,
while others are kept in the default setting, as depicted in Fig. 5.56:

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• ICMPv6 Router Advertisement: ICMP
• Flags and lifetime: HexDump
• ICMPv6 Option (Source link-layer address): HexDump

Fig. 5.56: Configuration at the Protocol Selection tab for sending Router
Advertisement with Low preference.

On the Protocol Data tab, the configuration is shown as below while others
remain in default setting, as described in Fig. 5.57:

• Media Access Protocol: Source link-layer address is set to 00:0c:29:8c:0b:0d,
and the destination link-layer address is set to the link-layer address resolved
from all-nodes multicast address (33:33:00:00:00:01).

• Internet Protocol ver 6: The address of PC1 is set as the source, while the all-
nodes multicast address is set as the destination. The Next Header is written
as 3a (for ICMPv6).

123

Fig. 5.57: Configuration at the Protocol Data tab for sending Router
Advertisement with Low preference.

• Internet Control Message Protocol: Type 134-Router Advertisement is chosen.
The version is ICMPv6.

• HexDump: The value of flag for Low preference is inserted. The router lifetime
is set as 1800 seconds, Reachable time as 30000 milliseconds and Retrans timer
as 0 millisecond.

• HexDump: ICMPv6 Option (Source link-layer address) is inserted with the
link-layer address of PC1.

After setting the number of sending packets to value 1 and applying the stream,
the format of generated Router Advertisement message is shown in Fig. 5.55. The
configuration table of PC2 (Windows) is immediately changed as depicted in List-

124

ing. 5.5.
As can be seen from Listing. 5.5, next to the link-local address of the legiti-

mate default router R1 (fe80::c801:11ff:fef5:8), the link-local address of PC1
(fe80::8ac4:147a:5dfe:a9c6) is added into the network configuration of PC2 as the
default gateway. Nevertheless, PC1 can only use one default-gateway at a time. So
it is necessary to find out which is the real next-hop router for PC2, which can be
done by trace routing the IPv6 address of R2. From Listing. 5.6, it is clear that the
legitimate router R1 is still preferred as the default router. The reason is because
the level of preference that is provided by PC1 is Low. Meanwhile, the priority of
R1 is Medium, which indicates a higher preference for PC2, as depicted in Fig. 5.53.
Therefore, the traffic is directed to the router R1 as a result.

1 C:\Users\User>ipconfig
2

3 Ethernet adapter Ethernet0:
4

5 Default Gateway : fe80::c801:11ff:fef5:8%4
6 fe80::8ac4:147a:5dfe:a9c6%4

Listing 5.5: The network configuration of PC2 after receiving Router Advertisement
with Low preference (shortened output).

1 C:\Users\User>tracert 2001:db8:abcd:3::1
2

3 Tracing route to 2001:db8:abcd:3::1 over a maximum of 30 hops
4

5 1 49 ms 14 ms 13 ms 2001:db8:abcd:1::1
6 2 31 ms 20 ms 14 ms 2001:db8:abcd:3::1
7

8 Trace complete.

Listing 5.6: Result of tracing the path from PC2 to R2 after receiving Router
Advertisement with Low preference.

The question is with what preference level will PC1 take the place of the default
gateway at PC2. This can be tested by sending Router Advertisement packets with
Medium and High level.

125

. Using the designed toolkit for Router Advertisement with Medium preference
This Router Advertisement packet is generated similarly as the one with Low

preference. The only difference is that the preference is changed from -pref Low to
-pref Medium, which is shown in Fig. 5.58.

Fig. 5.58: Result after running router_advertisement.py tool with medium
preference.

. Using Ostinato for Router Advertisement with Medium preference
The same applies to the case of Ostinato. The only difference is at the first

HexDump field, where the flag is changed from the hexadecimal value 18 to 00.
This configuration is shown in Fig. 5.59.

Fig. 5.59: Configuration at the Protocol Data tab for sending Router
Advertisement with Medium preference.

1 C:\Users\User>ping 2001:db8:abcd:3::1
2

3 Pinging 2001:db8:abcd:3::1 with 32 bytes of data:
4 Request timed out.
5 Request timed out.
6 Request timed out.
7 Request timed out.
8

9 Ping statistics for 2001:db8:abcd:3::1:
10 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Listing 5.7: Result of Ping message from PC2 to R2 after receiving Router Adver-
tisement with Medium preference.

After running both of the tools, the network configuration at PC2 is all changed
as another default gateway is added. The configuration is the same as the one shown

126

in Listing. 5.5. However, the communication between PC2 and R2 is interrupted as
depicted in Listing. 5.7.

It seems that the next-hop router is no longer the legitimate router R1, so the
Ping message cannot be forwarded from PC2 to R2. Moreover, it is very likely that
PC1 takes over default router role from R1, but since PC1 is not a router by default,
it cannot allow packets to be forwarded through it. To explicitly determine if PC1 is
the default router, it is necessary to allow packets to be forwarded through PC1 using
the Linux command: sysctl -w net.ipv6.conf.all.forwarding=1 and drop the
Redirect message generated from PC1 for telling PC2 about the real default router:
ip6tables -A OUTPUT -p icmpv6 –icmpv6-type redirect -j DROP.

1 C:\Users\User>tracert 2001:db8:abcd:3::1
2

3 Tracing route to 2001:db8:abcd:3::1 over a maximum of 30 hops
4

5 1 1 ms 1 ms 1 ms 2001:db8:abcd:1:1a4:2296:7e2c:8941
6 2 25 ms 24 ms 7 ms 2001:db8:abcd:1::1
7 3 37 ms 39 ms 39 ms 2001:db8:abcd:3::1
8

9 Trace complete.

Listing 5.8: Result of tracing the path from PC2 to R2 after receiving Router
Advertisement with Medium preference.

As can be seen from Listing. 5.8, PC1 is obviously the default router of PC2. PC1
becomes Man-in-the-middle since all data and information that PC2 transmits out
will go through PC1. Even after router R1 sends the next Router Advertisement
packets to PC2, the transmission continues through PC1 without interruption or
modification. In case of High preference, the same thing will happen when High is
even higher than R1’s Medium.

(b) Sending Router Advertisement with prefix information

This section focuses on how Windows machine processes Router Advertisement with
one of the most important option: Prefix information, which includes the prefix,
valid lifetime of prefix and preferred lifetime of prefix. However, before continuing
the experiment, it is essential to restore the network configuration at PC2, where
PC1 is still currently the default router. Restoration at PC2 can be done by disabling
the network connection and enabling it again. The network configuration should

127

look like Listing. 5.9 after refreshing, where the default gateway list reduces back to
only one address (legitimate router R1).

1 C:\Users\User>ipconfig
2

3 Ethernet adapter Ethernet0:
4

5 IPv6 Address. : 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Temporary IPv6 Address. : 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Link-local IPv6 Address : fe80::7790:2c2b:9e56:431b%4
8 Default Gateway : fe80::c801:11ff:fef5:8%4

Listing 5.9: The network configuration of PC2 after restoration (shortened output).

. Using the designed toolkit with the same prefix in Router Advertisement
As described in the title, a Router Advertisement message is sent by PC1 to

PC2, in which the included prefix in the message is the same as the one provided by
router R1 (2001:db8:abcd:1::/64). Since the address auto-configuration based on
the provided prefix is executed regardless of the preference of router, only Medium
preference is applied in this section.

The configuration for generating this packet is described below, with the de-
scribed output in Fig. 5.60.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Source IPv6 address: It can be left blank since the tool will automatically

generate the IPv6 address from the interface.
• Destination IPv6 address: -dip ff02::1. This is the IPv6 all-nodes multicast

address. However, this option can be left blank since the tool will automati-
cally uses this address by default.

• Preference of router: There are three levels of preference from Low, Medium to
High. These names reflect the priority level for routers that send out Router
Advertisement. In this instance, the medium level is inserted with syntax
-pref Medium.

• Router lifetime: It has to be non-zero value. The router lifetime can be left
blank since it is by default inserted as 1800 (seconds).

• Link-layer address of router: This value is included in Source link-layer address
field within Router Advertisement packet. It is also skipped since the tool
automatically generates the link-layer address of PC1 for the compatibility
with the source IPv6 address.

128

• Prefix: The prefix information including prefix and its subnet mask is inserted.
In this situation, the same prefix as the one from legitimate router R1 is written
with syntax -prefix 2001:db8:abcd:1::/64.

• Valid lifetime: The length expressed in seconds that the prefix is valid for
on-link determination. In this case, it is set to 300 seconds with the syntax
-vlt 300.

• Preferred lifetime: The length expressed in seconds that the auto-configured
address from the prefix is preferred. It should not exceed the valid lifetime.
In this case, it is also set to 300 seconds with the syntax -plt 300.

• Address Configuration flag: This A flag is used to indicate that the host can
apply the included prefix for stateless address auto-configuration. It is set with
syntax -A.

Fig. 5.60: Result after running router_advertisement.py tool with the same prefix
as the one from legitimate router R1.

. Using Ostinato with the same prefix in Router Advertisement
This Router Advertisement message can also be generated with the same output

as the designed network toolkit. Concretely, on the Protocol Selection tab, the
selected protocols with order are: Media Access Protocol (layer 1) - Ethernet II (layer
2) - Internet Protocol ver 6 (layer 3) - Internet Control Message Protocol (Router
Advertisement) - HexDump (flags and lifetime) - HexDump (ICMPv6 Option for
Prefix Information) - HexDump (ICMPv6 Option for Source link-layer address).
This configuration is depicted in Fig. 5.61.

Fig. 5.61: Configuration at the Protocol Selection tab for sending Router
Advertisement with the same prefix as provided by router R1.

129

On the Protocol Data tab, Media Access Control, Internet Protocol ver 6,
Internet Control Message Protocol and the HexDump field for ICMPv6 Option
(Source link-layer address) are inserted similarly as described in Fig. 5.57. Besides,
the HexDump for flags and another HexDump for Prefix information are illustrated
as below, and is shown in Fig. 5.62.

Fig. 5.62: Configuration at the Protocol Data tab for sending Router
Advertisement with the same prefix as provided by router R1.

Fig. 5.63: Captured Router Advertisement sent from PC1 with the same prefix as
provided by router R1.

• HexDump: The value of flag for Medium preference is inserted. The router
lifetime is set as 1800 seconds, Reachable time as 30000 milliseconds and Re-
trans timer as 0 millisecond.

130

• HexDump: ICMPv6 Option (Prefix Information) is filled in with the prefix
2001:db8:abcd:1::/64, the valid lifetime: 300 seconds and the preferred life-
time: 300 seconds.

After running the router_advertisement.py tool or application Ostinato for
generating Router Advertisement message with the prefix 2001:db8:abcd:1::/64,
the captured packet is shown in Fig. 5.63.

The default router of PC2 is immediately changed to PC1 after receiving this
Router Advertisement message, which has been described in the previous section.
On the other hand, no additional global addresses are generated. Instead, the two
IPv6 addresses available (permanent and temporary) at PC2 are updated for their
lifetime according to the value provided by PC1 in the Router Advertisement packet.
This address configuration is described in Listing. 5.10.

1 C:\Users\User>netsh interface ipv6 show addresses
2

3 DAD State Valid Life Pref. Life Address
4 ----------- ---------- ---------- ------------------------
5 Preferred 1h59m59s 4m59s 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Preferred 1h59m59s 4m59s 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Preferred infinite infinite fe80::7790:2c2b:9e56:431b%4

Listing 5.10: Result of the address configuration at PC2 after receiving Router
Advertisement with the same prefix as provided by router R1 (shortened output).

As can be seen from Listing. 5.10, the value of preferred lifetime is changed to 300
seconds (5 minutes), but the valid lifetime is updated with the value of 2 hours. The
reason is that PC2 (Windows) has ignored the valid lifetime when this value is less
than or equal to 2 hours and has set the valid lifetime of the corresponding address
to 2 hours (defined in RFC 4862 [17]). Then, after receiving periodical Router
Advertisement messages from legitimate router R1 with the information about the
prefix, PC2 will update its lifetime related to these addresses again. PC2 still
communicates normally with these IPv6 addresses, but the information exchange
with the external network has to pass through PC1 (Kali) as the default router
(shown in Listing. 5.8).

. Using the designed toolkit with zero value of lifetime
Now the question is how will PC2 communicate if the prefix lifetime value is 0,

will it disappear from the address configuration table and PC2 is prevented from

131

getting data from the external network? This answer can be achieved by sending
the same Router Advertisement as above, but the value of lifetime is set to 0.

With the use of router_advertisement.py tool from the toolkit, only value
at valid lifetime and preferred lifetime are changed from 300 to 0. The configuration
for launching this tool is described in Fig. 5.64.

Fig. 5.64: Result after running router_advertisement.py tool with the zero value of
lifetime.

. Using Ostinato with zero value of lifetime
In Ostinato, it is only necessary to change the value of lifetime in the second

HexDump field (ICMPv6 Option for Prefix Information). Others are kept in previous
setting, as depicted in Fig. 5.61 and Fig. 5.62. The configuration for this HexDump
field is illustrated in Fig. 5.65 as the first red frame is the valid lifetime and the
second one for preferred lifetime.

Fig. 5.65: Configuration at the Protocol Data tab for sending Router
Advertisement with the zero value of lifetime.

After running the designed toolkit or Ostinato, the valid lifetime still remains 2
hours as explained above. However, the preferred lifetime is set to 0 second with
DAD state Deprecated, as depicted in Listing. 5.11.

As a consequence, the network connection of PC2 to the external network (in
this case, R2) is lost because these IPv6 global addresses have been deprecated. This
is shown in Listing. 5.12. This feature can be exploited by the attacker to cause
Denial of Service (DoS) on the victim.

. Using the designed toolkit with the different prefix in Router Advertisement
In this case, a different prefix (2001:db8:abcd:8::/64) is included in Router

Advertisement to analyze the behaviour of Windows machine after receiving. This

132

1 C:\Users\User>netsh interface ipv6 show addresses
2

3 DAD State Valid Life Pref. Life Address
4 ----------- ---------- ---------- ------------------------
5 Deprecated 1h59m59s 0s 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Deprecated 1h59m59s 0s 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Preferred infinite infinite fe80::7790:2c2b:9e56:431b%4

Listing 5.11: Result of the address configuration at PC2 after receiving Router
Advertisement with zero value of lifetime (shortened output).

1 C:\Users\User>ping 2001:db8:abcd:3::1
2

3 Pinging 2001:db8:abcd:3::1 with 32 bytes of data:
4 Request timed out.
5 Request timed out.
6 Request timed out.
7 Request timed out.
8

9 Ping statistics for 2001:db8:abcd:3::1:
10 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Listing 5.12: Result of Ping message from PC2 to R2 after receiving Router Adver-
tisement with zero prefix lifetime.

task is conducted by the router_advertisement.py with the similar configuration
as depicted in Fig. 5.60, while the only difference is at the prefix with syntax -prefix
2001:db8:abcd:8::/64 instead of -prefix 2001:db8:abcd:1::/64. This syntax is
described in Fig. 5.66. The captured Router Advertisement message is shown in
Fig. 5.67.

Fig. 5.66: Result after running router_advertisement.py tool with the different
prefix than the one from legitimate router R1.

133

. Using Ostinato with the different prefix in Router Advertisement
When using the application Ostinato, the configuration is almost the same as

the one with the same prefix depicted in Fig. 5.61 and Fig. 5.62. The only thing
that is needed to change is the prefix in the second HexDump field (ICMPv6 Option
for Prefix information), which is illustrated in Fig. 5.68. It yields the same output
as the designed network toolkit.

Fig. 5.67: Captured Router Advertisement sent from PC1 with the different prefix
than the one provided by router R1.

Fig. 5.68: Configuration at the Protocol Data tab for sending Router
Advertisement with the different prefix than the one provided by router R1.

After running one of these tools, two new IPv6 addresses (permanent and tempo-
rary) generated from the prefix 2001:db8:abcd:8::/64 are inserted into the address
configuration of PC2, as depicted in Listing. 5.13. It can be seen that there are to-
tally four IPv6 global addresses registered at PC2. But the question is what global
address PC2 uses to communicate with hosts on the external network.

134

This behaviour is verified by trying to ping from PC2 to R2, which is located
on another network, as shown in Fig. 5.69. As can be seen, the address with the
new prefix 2001:db8:abcd:8::/64 is applied by PC2 when exchanging information
with R2. The reason is that PC1 is the default router, so PC2 also uses the address
generated from the prefix PC1 provides when communicating.

1 C:\Users\User>netsh interface ipv6 show addresses
2

3 DAD State Valid Life Pref. Life Address
4 ----------- ---------- ---------- ------------------------
5 Preferred 29d23h59m59s 6d23h59m59s 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Preferred 6d23h59m59s 23h59m59s 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Preferred 1h59m59s 4m59s 2001:db8:abcd:8:e5b2:9801:ee58:7b9c
8 Preferred 1h59m59s 4m59s 2001:db8:abcd:8:e5e4:b512:dcdb:7347
9 Preferred infinite infinite fe80::7790:2c2b:9e56:431b%4

Listing 5.13: Result of the address configuration at PC2 after receiving Router Ad-
vertisement with the different prefix than the one provided by router R1 (shortened
output).

Fig. 5.69: Captured Ping messages between PC2 and R2 after sending Router
Advertisement with different prefix than the one provided by R1.

Nonetheless, there are no responses from R2 after sending Ping messages. That
is because this address is not actually managed by PC1 (Kali), which has only
the addresses with prefix 2001:db8:abcd:1::/64. If PC1 owns the subnet that
it provides in Router Advertisement message (2001:db8:abcd:8::/64), the Ping

135

between PC2 and R2 will be successful since the communication passes through
PC1.

(c) Sending Router Advertisement with other information

In order to implant the prefix information as well as other information including
MTU assignment and Recursive DNS server, PC1 need to be the default router
toward PC2. The default router selection is based on the reachability, preference
and route cost. Thus, the preference and reachability are the critical factors for PC2
to determine who is the default router. In this section, Medium preference is set to
change the default router at PC2. The same applies to the case of High preference,
so only the case of Medium preference is considered.

. Using the designed toolkit
The configuration for generating this packet is described below, with the de-

scribed output in Fig. 5.70. The captured Router Advertisement packet is shown in
Fig. 5.71.

Fig. 5.70: Result after running router_advertisement.py tool to implant MTU and
DNS server in Router Advertisement.

Fig. 5.71: Captured Router Advertisement sent from PC1 with MTU and DNS
server.

136

• Network interface: eth0, which is the interface of PC1 (Kali).
• Source IPv6 address: It can be left blank since the tool will automatically

generate the IPv6 address from the interface.
• Destination IPv6 address: -dip ff02::1. This is the IPv6 all-nodes multicast

address. However, this option can be left blank since the tool will automati-
cally uses this address by default.

• Preference of router: There are three levels of preference from Low, Medium to
High. These names reflect the priority level for routers that send out Router
Advertisement. In this instance, the medium level is inserted with syntax
-pref Medium.

• Router lifetime: It has to be non-zero value. The router lifetime can be left
blank since it is by default inserted as 1800 (seconds).

• Link-layer address of router: This value is included in Source link-layer address
field within Router Advertisement packet. It is also skipped since the tool
automatically generates the link-layer address of PC1 for the compatibility
with the source IPv6 address.

• MTU: This value is the MTU that PC1 wants to assign to the interface con-
nected to PC2. In this case, it is set to 1300 to verify the effect (-mtu 1300).

• Recursive DNS server: This is the DNS server that supports additional services
in the Internet. This option is usually combined with DHCPv6 through O flag,
as explained in RFC 8106 [49]. In this circumstance, it can still be applied to
observe the behaviour of PC2 with the syntax -dns 2001:4860::8844.

. Using the application Ostinato
This type of Router Advertisement message can also be generated by Ostinato,

and yields the same result as the router_advertisement.py tool. Specifically,
on the Protocol Selection tab, the following protocols are chosen at every layer,
while others are kept in the default setting, as depicted in Fig. 5.72:

Fig. 5.72: Configuration at the Protocol Selection tab for sending Router
Advertisement with MTU and DNS server.

137

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• ICMPv6 Router Advertisement: ICMP
• Flags and lifetime: HexDump
• ICMPv6 Option (MTU): HexDump
• ICMPv6 Option (Recursive DNS Server): HexDump
• ICMPv6 Option (Source link-layer address): HexDump

Fig. 5.73: Configuration at the Protocol Data tab for sending Router
Advertisement with MTU and DNS server.

On the Protocol Data tab, Media Access Control, Internet Protocol ver 6,
Internet Control Message Protocol, the HexDump field for flags and the HexDump
field for ICMPv6 Option (Source link-layer address) are inserted similarly as de-
scribed in Fig. 5.57 and Fig. 5.62. Besides, the HexDump for MTU Option and
another HexDump for Recursive DNS server are illustrated as below, and is shown
in Fig. 5.73.

• HexDump: The value of MTU (1300 bytes) is inserted in ICMPv6 Option
(MTU).

• HexDump: The recursive DNS server with IPv6 address 2001:4860::8844 is
written in ICMPv6 Option (Recursive DNS server).

After running one of these tools, in PC2, the MTU on the interface connected to
the network is immediately changed to the value defined in Router Advertisement
message (1300 bytes). This is shown in Listing. 5.14.

The change in the value of the MTU takes effect immediately when PC2 com-
municates with hosts on the other network (in this case, R2). This is depicted in
Fig. 5.74 when PC2 tries to ping R2 with the larger Payload size (1400 bytes) than
defined MTU (1300 bytes). The command for performing this Ping in PC2 is: ping
2001:db8:abcd:3::1 -l 1400. The fragmentation happens as a result, and it is
applied for all path (not restricted in a specific path like the PMTU).

138

1 C:\Users\User>netsh interface ipv6 show interfaces
2

3 Idx Met MTU State Name
4 --- ---------- ---------- ------------ ---------------------------
5 4 25 1300 connected Ethernet0

Listing 5.14: Result of the MTU at PC2 after receiving Router Advertisement with
specified MTU and DNS server (shortened output).

Fig. 5.74: Captured Ping message between PC2 and R2 after receiving Router
Advertisement with MTU and DNS server.

On the other hand, the IPv6 address of recursive DNS server is also applied
by PC2 even though it cannot be used to resolve queries from PC2, as depicted in
Listing. 5.15. The reason is that this DNS server does not actually exist and PC1
does not own any server either. However, if the recursive DNS server is controlled
by PC1 (attacker), any resolution operation of PC2 will be redirected to another
domain by PC1. This can harm PC2 if PC1 is a malicious attacker.

1 C:\Users\User>netsh interface ipv6 show dnsservers
2

3 Configuration for interface "Ethernet0"
4 DNS servers configured through DHCP: 2001:4860::8844
5 Register with which suffix: Primary only

Listing 5.15: Result of the DNS servers list at PC2 after receiving Router Adver-
tisement with specified MTU and DNS server (shortened output).

139

Review questions

The purpose of the following review questions is to clarify the behaviour of Windows
device when dealing with Router Solicitation and Router Advertisement. All answers
are located in the attachment A.4.

Question 1:

Which devices (R1, PC2, PC3) in the network scenario answer Router Solicitation
sent from PC1?
a) Show how to generate a standard Router Solicitation by using the network toolkit
(router_solicitation.py tool).
b) Capture the generated packet in Wireshark and the possible responses after send-
ing the Router Solicitation message.

Question 2:

a) If the legitimate router R1 has the Medium preference in Router Advertisement,
which level of preference that PC1 need to have in the generated Router Advertise-
ment for taking over the role of default router from R1.
b) Demonstrate the impact on PC2 by using the router_advertisement.py tool
and application Ostinato.

Question 3:

a) Will the legitimate default router (R1) on PC2 be influenced if PC1 sends a
spoofed Router Advertisement message that sets the IPv6 link-local address of R1
as the source, the link-layer address of R1 as the source MAC address, the Medium
preference and the value of router lifetime as 0 second?
b) Demonstrate the impact on PC2 by using the router_advertisement.py tool.

Question 4:

Does PC2 generate IPv6 addresses when PC1 sends Router Advertisement, in which
the prefix is link-local (for example, fe80::/64)? Verify the impact on PC2 by using
the network toolkit router_advertisement.py tool).

5.5 Neighbor Solicitation and Neighbor Advertisement
Neighbor Solicitation (NS) and Neighbor Advertisement (NA) are two important
functions in the IPv6 protocol that are used for the purpose of Neighbor Discov-
ery. Specifically, Address Resolution, Neighbor Unreachable Detection (NUD) and

140

Duplicate Address Detection (DAD) are typical features that are undertaken by
Neighbor Solicitation and Neighbor Advertisement. This section will delve into the
analysis of Windows device’s behaviour when processing these types of messages
and the possible vulnerabilities.

Fig. 5.75: The network topology for testing Neighbor Solicitation and Neighbor
Advertisement.

Precondition

To carry out the implementation stages of Neighbor Solicitation and Neighbor Ad-
vertisement, at the initial step, all devices are in a powered off state. Then, router
R1, R2, and switch S1 are first started up to activate the address allocation and
routing functions, as described in Listing. 3.1. Next, all PCs (from 1 to 4) are
turned on and wait for a certain interval to complete the SLAAC (Stateless Ad-
dress Auto-configuration) process and stabilize. The network scenario with address
specification is depicted in Fig. 5.75.

Operations and Observation

(a) Duplicate Address Detection

Right after booting up every device on the network, Neighbor Solicitation is applied
by the network interface of every node (in this case, PC2 is considered) for Dupli-
cate Address Detection. The Neighbor Solicitation is sent with unspecified IPv6
source address (::) and the solicited multicast address of PC2 as the destination,

141

which is illustrated in Fig. 5.76. This message is sent for ensuring that there is no
IPv6 address conflict when another node may have the same address as the one of
PC2. The address that PC2 wants to check, is displayed in Target Address field of
Neighbor Solicitation.

After a specific interval, since no hosts inform that these proposed addresses
are in use by them, PC2 considers these addresses to be unique and decides to use
them by sending out Neighbor Advertisement to all-nodes multicast address. In
this situation, this message is applied to inform the status of PC2 and confirm the
existence with a unique address, as depicted in Fig. 5.77. However, what happens
in PC2 if a host announces that this address is already in use? This can be easily
verified by using the neighbor_advertisement.py from the network toolkit, as
shown in Fig. 4.9.

Fig. 5.76: Captured Neighbor Solicitation from PC2 in DAD procedure.

Fig. 5.77: Captured Neighbor Advertisement from PC2 in DAD procedure.

. Using the designed toolkit
The configuration for doing this task is described below, with the depicted output

in Fig. 5.78.

142

• Network interface: eth0, which is the interface of PC1 (Kali).
• Option to prevent auto-configuration: This is conducted with syntax -dad, in

which PC1 sends Neighbor Advertisement as the answers to duplicate IPv6
address checking from PC2.

• R flag (set in the configuration): It is the Router flag to indicate that the sender
is the router. This flag is also applied in Neighbor Unreachability Detection
to detect the change in status of router. In this case, R flag is set to increase
the effect of preventing auto-configuration with syntax -R.

• S flag (not set in the configuration): It is the Solicited flag. When enabled,
it signifies that the Neighbor Advertisement was transmitted in reply to a
Neighbor Solicitation. However, it is imperative that the S flag must not
activated in multicast advertisements or in unsolicited unicast advertisements.
So, in this case, S flag is left blank since the destination address of the answer
is all-nodes multicast address.

• O flag (set in the configuration): It is the Override flag, which is used to direct
the advertisement to supplant an existing cache entry and update the cached
link-layer address. This flag is activated with syntax -O.

• Target link-layer address (not used in the configuration): It is the link-layer
address of the host, which sends Neighbor Advertisement. In this case, this
option is left blank since the option -dad automatically generates random
link-layer addresses for inserting into the cache of PC2.

Fig. 5.78: Result after running neighbor_advertisement.py tool to prevent
auto-configuration at PC2.

To conduct this task successfully, it is essential to launch the tool from the
network toolkit neighbor_advertisement.py first. Then, at PC2, the network
adapter is disabled and enabled to activate the address auto-configuration again.

143

As can be seen from Fig. 5.78 and Fig. 5.79, every time PC2 sends out Neighbor
Solicitation (with unspecified address ::) for checking the proposed IPv6 address,
PC1 (attacker) answers with Neighbor Advertisement message for making a conflict
in auto-configuration. This process of checking duplication happens 110 times after
30 seconds and still continues since PC2 does not give up asking for the unique
address.

Fig. 5.79: Captured Neighbor Solicitation and Neighbor Advertisement after
running the neighbor_advertisement.py tool to prevent address auto-configuration

at PC2.

Moreover, even though PC1 succeeds in preventing PC2 from getting the link-
local address, PC2 still has one link-local address in its network configuration. This
is not only the behaviour of Windows machines (PC2, in this case), but also other
types of device such as Linux, with an aim to preventing from the DAD attack.
Specifically, since a link-local address is the minimum required to perform basic
communication functions, PC2 will continue to maintain the link-local address it
establishes regardless of receiving information about address duplication (Neighbor
Advertisement). However, PC2 still follows the DAD process for duplication. That
is demonstrated that it only uses a link-local address for a short period of time,
then changes to another link-local address. This not only helps maintain basic
connections, but does not also violate the DAD process.

In terms of IPv6 global address, PC1 manages to make PC2 believe that there is
another host on the link having these addresses. So, PC2 has to propose IPv6 global
address many times and still cannot get any of them. The network configuration
of PC2 after this attack actually shows no IPv6 global addresses, as depicted in
Listing. 5.16.

As a result, the communication of PC2 in the local network still works while the
connection to the external network is cancelled. The Ping message from PC2 to R1

144

demonstrates the normal connection on the local network, as shown in Listing. 5.17.
Because no IPv6 global addresses are included, a DoS attack is present in PC2.

1 C:\Users\User>ipconfig
2

3 Ethernet adapter Ethernet0:
4

5 Connection-specific DNS Suffix . : localdomain
6 Link-local IPv6 Address : fe80::317a:7702:ff78:1706%4
7 Default Gateway : fe80::c801:11ff:fef5:8%4

Listing 5.16: The network configuration of PC2 after running the tool to prevent
auto-configuration (shortened output).

1 C:\Users\User>ping fe80::c801:11ff:fef5:8
2

3 Pinging fe80::c801:11ff:fef5:8 with 32 bytes of data:
4 Reply from fe80::c801:11ff:fef5:8: time=1ms
5 Reply from fe80::c801:11ff:fef5:8: time=4ms
6 Reply from fe80::c801:11ff:fef5:8: time=9ms
7 Reply from fe80::c801:11ff:fef5:8: time=3ms
8

9 Ping statistics for fe80::c801:11ff:fef5:8:
10 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
11 Approximate round trip times in milli-seconds:
12 Minimum = 1ms, Maximum = 9ms, Average = 4ms

Listing 5.17: Result of Ping message from PC2 to PC4 after running the tool to
prevent auto-configuration.

(b) Sending Neighbor Solicitation message

Neighbor Solicitation is used by a node to resolve the link-layer address of a neighbor
(i.e., a node on the same link). It is similar to the ARP (Address Resolution Pro-
tocol) used in IPv4. When a node wants to communicate with a neighbor but does
not know the link-layer address of this neighbor, it sends an Neighbor Solicitation
message to the solicited-node multicast address of the neighbor. In case of existing
previous communication between two nodes, the Solicitation can also be sent to

145

the unicast address of the target, but with an aim to checking the reachability and
updating the information.

The neighbor then responds with a Neighbor Advertisement message, which
includes its link-layer address. This link-layer address is then used by the node to
communicate with the neighbor.

Before performing this task, it is important to cancel the attack in the previ-
ous section by turning off the neighbor_advertisement.py tool and refresh the
network connection at PC2.

A Neighbor Solicitation message is formally sent to the solicited-node multicast
address corresponding to the target [14]. But it can be also sent to the unicast
address (so-called unicast solicitation) and has the same function as the multicast
solicitation. In this section, a standard Neighbor Solicitation is sent by PC1 to
the solicited-node multicast address of PC2 for resolving the link-layer address of
PC2. The neighbor_solicitation.py tool (described in Fig. 4.8) and application
Ostinato can be taken to perform the task with the same output.

. Using the designed toolkit
The configuration for generating this packet is described as below, with the

output in Fig. 5.80. The generated Neighbor Solicitation is captured in Fig. 5.81.
• Network interface: eth0, which is the interface of PC1 (Kali).
• Target address: This can be the IPv6 global address or link-local address of

PC2. The parameter for inserting the target address is -tip.
• Destination address: The solicited-node multicast address will be automati-

cally generated from the target address if this parameter is left blank.

Fig. 5.80: Result after running neighbor_solicitation.py tool to resolve link-layer
address of PC2. a) Target is global address. b) Target is link-local address.

. Using the application Ostinato
In Ostinato, on the Protocol Selection tab, the following protocols are chosen

at every layer, while others are kept in the default setting, as depicted in Fig. 5.82:

146

Fig. 5.81: Captured Neighbor Solicitation after sending Neighbor Solicitation to
resolve the link-layer address of PC2.

Fig. 5.82: Configuration at the Protocol Selection tab for sending Neighbor
Solicitation to resolve link-layer address of PC2.

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• ICMPv6 Neighbor Solicitation: ICMP
• Reserved field and Target address: HexDump
• ICMPv6 Option (Source link-layer address): HexDump
On the Protocol Data tab, the configuration is shown as below while others

remain in default setting, as described in Fig. 5.83:
• Media Access Protocol: Source link-layer address is set to 00:0c:29:8c:0b:0d.
• Internet Protocol ver 6: The address of PC1 is set as the source, while the

solicited-node multicast address of PC2 is set as the destination. The Next
Header is written as 3a (for ICMPv6).

• Internet Control Message Protocol: Type 135-Neighbor Solicitation is chosen.
The version is ICMPv6.

147

Fig. 5.83: Configuration at the Protocol Data tab for sending Neighbor
Solicitation to resolve link-layer address of PC2.

• HexDump: The reserved field for future use is filled in. Then, the target ad-
dress, which can be the link-local address or global address of PC2 is inserted.
In this case, only the global address is considered since the same applies to
the link-local one.

148

• HexDump: ICMPv6 Option (Source link-layer address) is inserted with the
link-layer address of PC1.

After running one of these tools, PC2 responds to Neighbor Solicitation sent
from PC1. The response includes the status of PC2 through flags (Solicited, and
Override) and the link-layer address of PC2 (00:0c:29:8e:74:ad). The R flag
(Router) is not enabled so PC2 informs that it is not the router of the network. The
S flag (Solicited) is set in the packet since this Neighbor Advertisement is sent in
corresponding to the Neighbor Solicitation from PC1. Lastly, the O flag (Override)
is set to indicate that PC1 should update the existing cache with the link-layer
address of PC2.

The captured Neighbor Advertisement packet from PC2 is illustrated in Fig. 5.84,
and only the case of target’s global address is considered because the same applies
to the case of link-local address.

Fig. 5.84: Captured Neighbor Advertisement after sending Neighbor Solicitation to
resolve the link-layer address of PC2.

1 C:\Users\User>netsh interface ipv6 show neighbors
2

3 Interface 4: Ethernet0
4

5 Internet Address Physical Address Type
6 ----------------------------- ----------------- -----------
7 fe80::8ac4:147a:5dfe:a9c6 00-0c-29-8c-0b-0d Probe
8 fe80::c801:11ff:fef5:8 ca-01-11-f5-00-08 Reachable (Router)

Listing 5.18: The Neighbor Cache entry table of PC2 after sending Neighbor Ad-
vertisement as a response to PC1 (shortened output).

On the other hand, it is also noticed that PC2 also tries to update the link-layer
address of PC1 in a similar way. After answering Neighbor Solicitation from PC1,

149

PC2 adds the IPv6 address and link-layer address of PC1 to the entry table with
the type Probe. This is shown in Listing. 5.18.

Then, PC2 checks the reachability of PC1 by sending a Neighbor Solicitation
to the link-local address of PC1, as shown in Fig. 5.85. Since PC1 actually exists,
it answers the Solicitation message with Neighbor Advertisement, in which all in-
formation related to the link-layer address is included. PC2 gets the answer and
compares to the previous information it processes. As the information completely
matches, PC2 update the status of its neighbor (PC1) in the Neighbor Cache entry
with the type Reachable, depicted in Listing. 5.19.

Fig. 5.85: Captured Neighbor Solicitation and Neighbor Advertisement when PC2
resolves the link-layer address of PC1.

1 C:\Users\User>netsh interface ipv6 show neighbors
2

3 Interface 4: Ethernet0
4

5 Internet Address Physical Address Type
6 ----------------------------- ----------------- -----------
7 fe80::8ac4:147a:5dfe:a9c6 00-0c-29-8c-0b-0d Reachable
8 fe80::c801:11ff:fef5:8 ca-01-11-f5-00-08 Reachable (Router)

Listing 5.19: The Neighbor Cache entry table of PC2 after sending Neighbor Solic-
itation to PC1 (shortened output).

(c) Sending Neighbor Advertisement message

In this task, when PC2 wants to exchange information with PC3. But PC3’s link-
layer address is unknown to PC2, so PC2 must send a Neighbor Solicitation to
PC3 to resolve the address. At that time, PC1 (attacker) responds to a Neighbor
Solicitation message with a spoofed Neighbor Advertisement that contains its own
link layer address. From there, PC1 can disrupt the process of resolving link layer
addresses. In terms of sending spoofed Neighbor Advertisement whenever there is
any Neighbor Solicitation from PC2, the neighbor_advertisement.py tool from
the designed toolkit can be applied.

150

Since PC2 (victim) accepts this Neighbor Advertisement packet, it will start
sending all data link frames to the MAC address of the attacker. If PC1 (attacker)
goes a step further and uses a falsified Neighbor Advertisement message to spoof the
destination node (PC3), it can carry out a Man-in-the-middle attack, which allows
to intercept and read all data transmitted between the two parties involved in the
conversation, as depicted in Fig. 5.86.

Fig. 5.86: Illustration of Neighbor Advertisement spoofing attack in the scenario.

. Using the designed toolkit
The configuration for conducting the attack is described below, with the output

shown in Fig. 5.87.

Fig. 5.87: Result after running neighbor_advertisement.py tool to cause spoofing
attack at PC2.

• Network interface: eth0, which is the interface of PC1 (Kali).
• The victim’s address: This is set to the IPv6 address of the victim (PC2).

However, this option can be left blank when PC1 wants to attack all victims
including PC3 on the local network.

151

• R flag (not set in the configuration): It is the Router flag to indicate that
the sender is the router. This flag is also applied in Neighbor Unreachability
Detection to detect the change in status of router. In this case, R flag is left
blank since PC3 is not the router.

• S flag (set in the configuration): It is the Solicited flag. When enabled, it sig-
nifies that the Neighbor Advertisement was transmitted in reply to a Neighbor
Solicitation. Thus, in this case, S flag is set with syntax -S.

• O flag (set in the configuration): It is the Override flag, which is used to
direct the advertisement to supplant an existing cache entry and update the
cached link-layer address. This flag is activated with syntax -O. This flag
plays an important role in this attack since it helps the attacker replace the
true MAC address of target by the MAC address (provided by the attacker).
Therefore, after the question Neighbor Solicitation from PC2, even though the
true target (PC3) answers PC2 (victim) with its true Neighbor Advertisement,
the legitimate link-layer address is still overridden by the fake link-layer one.

• Target link-layer address: It is the link-layer address of the host, which sends
Neighbor Advertisement. In this case, this option is left blank since the option
the tool automatically generates the link-layer addresses of the sender (PC1).

• Option to forward traffic: It allows the sender (PC1) to forward every packet
(in this case, from PC2 to PC3 through PC1 and vice versa). The syntax for
setting is -fwd.

Fig. 5.88: Captured Neighbor Solicitation and Neighbor Advertisement when PC1
performs spoofing attack on PC2.

In this scenario, when first communicating with PC3, PC2 sends Neighbor So-
licitation message for achieving the link layer address of PC3. The attacker PC1
spoofs the PC2, as the result is described in Fig. 5.87 and Fig. 5.88. With the help

152

of O flag, the Neighbor Advertisement as a response from the true destination (PC3)
does not ruin the attack.

1 C:\Users\User>tracert 2001:db8:abcd:1:1f15:4b1c:5478:109
2

3 Tracing route to 2001:db8:abcd:1:1f15:4b1c:5478:109 over a maximum of
30 hops→˓

4

5 1 23 ms 1 ms 1 ms 2001:db8:abcd:1:1a4:2296:7e2c:8941
6 2 19 ms 29 ms 39 ms 2001:db8:abcd:1:1f15:4b1c:5478:109
7

8 Trace complete.

Listing 5.20: The Trace routing between PC2 and PC3 after being attacked by PC1.

1 # Before the attack
2 C:\Users\User>netsh interface ipv6 show neighbor
3

4 Internet Address Physical Address
5 ------------------------------------ -----------------
6 2001:db8:abcd:1::1 ca:01:11:f5:00:08
7 2001:db8:abcd:1:1a4:2296:7e2c:8941 00:0c:29:8c:0b:0d
8 2001:db8:abcd:1:1f15:4b1c:5478:109 00:0c:29:2e:dd:97
9

10

11 # After the attack
12 C:\Users\User>netsh interface ipv6 show neighbor
13

14 Internet Address Physical Address
15 ------------------------------------ -----------------
16 2001:db8:abcd:1::1 ca:01:11:f5:00:08
17 2001:db8:abcd:1:1a4:2296:7e2c:8941 00:0c:29:8c:0b:0d
18 2001:db8:abcd:1:1f15:4b1c:5478:109 00:0c:29:8c:0b:0d

Listing 5.21: The neighbor cache in PC2 (Windows) before and after the happening
attack (outputs shortened).

The attacker then pretends to be PC3. By allowing the traffic to be forwarded

153

(sysctl -w net.ipv6.conf.all.forwarding=1) in Kali operating system, the at-
tacker now becomes Man-in-the-middle, which means PC2 cannot communicate di-
rectly with PC3 but the PC1 (attacker) will receive the data from PC2 and forward
it to PC3. This change in routing is demonstrated in Listing. 5.20. There is also an
update in the Neighbor Cache entry of PC2, as depicted in Listing. 5.21.

Besides, it is worth noting that this attack can occur in two directions, meaning
that PC1 (the attacker) spoofs PC3 in the opposite direction and pretends to be
PC2. As a result, the entire information exchange process between the two PCs is
completely interfered by the attacker. Similarly, we can use this attack to pretend
to be legitimate default gateway of the network and become Man-in-the-middle for
whole network.

Review questions

The purpose of the following review questions is to clarify the behaviour of Windows
device when dealing with Neighbor Solicitation and Neighbor Advertisement. All
answers are located in the attachment A.5.

Question 1:

a) What is Duplicate Address Detection (DAD) procedure?
b) Does PC2 manage to communicate with other nodes (except for PC3) on the
local network after being attacked by the neighbor_advertisement.py to prevent
auto-configuration? Verify this question by using this tool.

Question 2:

a) Does PC2 have to send Neighbor Solicitation when communicating with a host
on another network (PC4, in this case) for the first time?
b) How do the Neighbor Solicitation and possible Neighbor Advertisement look like?
Verify this question by sending Ping message from PC2 to PC4.

5.6 Redirect
With an aim to inform a host of a more optimal first-hop node on the path to a des-
tination, routers utilize Redirect packets. These Redirect packets not only redirect
hosts to a better first-hop router but can also notify them that the destination is a
neighbor [14]. This section focuses on the behaviour of PC2 (Windows) after per-
forming a Redirect spoofing attack, in which PC1 and PC3 are the attackers. PC2
(Windows) is the victim, who wants to communicate with PC4, normally through

154

router R1, as shown in Fig. 5.89. PC1 (Kali) is the one who sends Redirect to PC2
in order to make PC2 believe that PC3 is a better first-hop than the legitimate
router R1.

Fig. 5.89: The network topology for testing Redirect.

Precondition

To carry out the implementation stages of Redirect, at the initial step, all devices
are in a powered off state. Then, router R1, R2, and switch S1 are first started up
to activate the address allocation and routing functions, as described in Listing. 3.1.
Next, all PCs (from 1 to 4) are turned on and wait for a certain interval to com-
plete the SLAAC (Stateless Address Auto-configuration) process and stabilize. The
network scenario with address specification is depicted in Fig. 5.89.

Operations and Observation

Before conducting the attack, it is important to verify the routing path between
PC2 and PC4. By default, router R1 should be the legitimate default gateway of
PC2, which is shown in Listing. 5.22.

As can be seen, the normal path when PC2 communicates with PC4 is through
router R1, and then through router R2 to the final destination PC4.

In the next step, PC1 (attacker 1) modifies its IPv6 access list by adding a line
that blocks all redirect messages: ip6tables -A OUTPUT -p icmpv6 –icmpv6-type

155

redirect -j DROP. This command helps prevent Kali operation system from au-
tomatically sending Redirect to PC2 for informing about the true first-hop, which
will ruin the attack.

1 C:\Users\User>tracert 2001:db8:abcd:3:31bc:eb00:7509:c9ec
2

3 Tracing route to 2001:db8:abcd:3:31bc:eb00:7509:c9ec over a maximum of
30 hops→˓

4

5 1 34 ms 10 ms 7 ms 2001:db8:abcd:1::1
6 2 27 ms 29 ms 30 ms 2001:db8:abcd:2::2
7 3 60 ms 36 ms 49 ms 2001:db8:abcd:3:31bc:eb00:7509:c9ec
8

9 Trace complete.

Listing 5.22: The Trace routing between PC2 and PC4 before the attack.

PC3 (attacker 2) simply needs to enable the routing property on their machine
by running the command sysctl -w net.ipv6.conf.all.forwarding=1, which
makes PC3 a Man-in-the-middle when PC2 sends the packet through it.

. Using the designed toolkit for sending Redirect
To design Redirect, the redirect.py tool is chosen, as depicted in Fig. 4.3. The

configuration for generating this packet is described below, with the output after
launching the tool in Fig. 5.90. The captured packet is illustrated in Fig. 5.91.

Fig. 5.90: Result after running redirect.py tool to launch Redirect spoofing attack.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Target’s IPv6 address: It is set to the global address of PC2 (victim) because

PC2 will communicate with PC4 (on another network) using this global ad-
dress. In this case, the syntax is -tip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9.

• Destination IPv6 address: -dip 2001:db8:abcd:3:31bc:eb00:7509:c9ec.
This is the IPv6 global address of PC4 (destination).

156

Fig. 5.91: Captured Redirect sent from PC1.

• Original router: Router R1 is the original router, who will be spoofed to tell
PC2 (victim) to change the first-hop. It is written with the following syntax:
-ort fe80::c801:11ff:fef5:8.

• New router: This is the fake first-hop that PC1 wants PC2 to transmit pack-
ets through. The address of PC3 is inserted in this case with syntax -nrt
fe80::6acf:9526:bf92:9de5.

• Link-layer address of new router: The MAC address of the fake router (PC3)
is entered with syntax -rmac 00:0c:29:2e:dd:97.

. Using the application Ostinato for sending Redirect
This Redirect message can also be generated by Ostinato, and yields the same

result as the redirect.py tool. Specifically, on the Protocol Selection tab, the
following protocols are chosen at every layer, while others are kept in the default
setting, as depicted in Fig. 5.92:

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• ICMPv6 Redirect: ICMP
• Reserved field, Target address and Destination address: HexDump
• ICMPv6 Option (Target link-layer address): HexDump

157

• ICMPv6 Option (Redirected header): HexDump
• Redirected Packet (including IPv6 header, ICMPv6 Echo Reply and its Pay-

load): HexDump

Fig. 5.92: Configuration at the Protocol Selection tab for sending Redirect.

On the Protocol Data tab, the configuration is depicted as below while others
remain in default setting. The content of these fields are illustrated in Fig. 5.93 and
Fig. 5.94.

• Media Access Protocol: The MAC source address is written as PC1’s link-layer
address 00:0c:29:8c:0b:0d. The MAC destination address is set to the one
of PC2 (00:0c:29:8e:74:ad).

• Internet Protocol ver 6: Source is fe80::6acf:9526:bf92:9de5, which is
the address of legitimate router R1. The destination is the one of PC2
(2001:db8:abcd:1:36c4:ffc5:c10f:3ce9).

• Internet Control Message Protocol: Version is ICMPv6, and Type is 137 -
Redirect.

• HexDump: This field includes Reserved field, Target address (new router
- PC3) and Destination address (PC4). The link-local address of PC3 is
fe80::6acf:9526:bf92:9de5, and the IPv6 global address of PC4 (final des-
tination) is 2001:db8:abcd:3:31bc:eb00:7509:c9ec.

• HexDump: The second HexDump is set to ICMPv6 Option (Target link-
layer address), which includes the link-layer address of the new router PC3
(00:0c:29:2e:dd:97).

• HexDump: The third HexDump field is set for ICMPv6 Option (Redirected
header), which is shown in Fig. 5.94.

• HexDump: The last HexDump field is set for the content of ICMPv6 Option
(Redirected header), which contains IPv6 header, ICMPv6 Echo Reply and
its Payload for simulating the process of communicating between PC2 and

158

PC4. This part is extremely important because it triggers the sending of the
Redirect message. This is depicted in Fig. 5.94.

Fig. 5.93: Configuration at the Protocol Data tab for sending Redirect.

On the Stream Control tab, the number of packets is set to 1. The stream is
then applied, and starts to send the Redirect message.

After launching one of these tools, it is clear that all packets from PC2 travel
through PC3 on the way to PC4 instead of heading directly to legitimate router
R1, which can be seen in Listing. 5.23. PC3, therefore, can control all the initiated

159

connection and data between PC2 and PC4.

Fig. 5.94: Configuration at the Protocol Data tab for sending Redirect (Redirected
Packet).

1 C:\Users\User>tracert 2001:db8:abcd:3:31bc:eb00:7509:c9ec
2

3 Tracing route to 2001:db8:abcd:3:31bc:eb00:7509:c9ec over a maximum of
30 hops→˓

4

5 1 2 ms 1 ms 1 ms 2001:db8:abcd:1:1f15:4b1c:5478:109
6 2 3 ms 18 ms 17 ms 2001:db8:abcd:2::2
7 3 25 ms 38 ms 28 ms 2001:db8:abcd:3:31bc:eb00:7509:c9ec
8

9 Trace complete.

Listing 5.23: The Trace routing between PC2 and PC4 after the attack.

Review questions

The purpose of the following review questions is to clarify the behaviour of Windows
device when dealing with Redirect. All answers are located in the attachment A.6.

Question 1:

What is the function of Redirect packet?
a) Which content is present in a standard Redirect message?
b) Demonstrate by using the redirect.py tool and Ostinato. Capture the Redirect
message and analyze the format of the packet.

160

Question 2:

a) Which configuration is applied in order to restore the first hop of PC2 back to
the legitimate router R1?

b) Demonstrate by using the redirect.py tool.

5.7 Dynamic Host Configuration Protocol version 6

DHCPv6 is a protocol that enables configuration for clients on the same link as the
server or relay agent. Through DHCPv6, a device can receive addresses assigned
by the server and other pertinent configuration details conveyed through options.
Additional configuration information can be incorporated into DHCPv6 by defining
new options. Moreover, DHCPv6 can be used to provide configuration options
without offering addresses or prefixes. This is referred to "stateless DHCPv6", as
it does not require the server to keep track of any state. Mechanisms needed to
support stateless DHCPv6 are considerably simpler than those required for stateful
DHCPv6, as defined in [50]. This section will dig into the two states of DHCPv6
(stateless and stateful) together with the behaviour of PC2 (Windows).

Fig. 5.95: The network topology for testing Dynamic Host Configuration Protocol
version 6.

161

Precondition

To carry out the implementation stages of Neighbor Solicitation and Neighbor Ad-
vertisement, at the initial step, all devices are in a powered off state. Then, router
R1, R2, and switch S1 are first started up to activate the address allocation and rout-
ing functions, as described in Listing. 3.1. Next, all PCs except for PC2 (Windows)
are turned on and wait for a certain interval to complete the SLAAC (Stateless Ad-
dress Auto-configuration) process and stabilize. The network scenario with address
specification is depicted in Fig. 5.95.

Operations and Observation

In terms of this section, PC1 plays the role of DHCPv6 server that provides clients
(especially PC2) the information such as addresses, DNS servers and domain. To
perform these tasks, the designed toolkit is a better choice since it is much compli-
cated to create a DHCPv6 server in Ostinato.

(a) Stateful DHCPv6

. Using the designed toolkit for being a DHCPv6 server
For having the stateful configuration, the dhcpv6_server.py tool is applied

with the following syntax. The user interface of this tool is described in Fig. 4.15,
with the output shown in Fig. 5.96.

• Network interface: eth0, which is the interface of PC1 (Kali).
• The prefix information: This include the prefix and the subnet mask that the

server defines. In this task, the prefix 2001:db8:abcd:1::/64 is chosen with
the parameter -prefix 2001:db8:abcd:1::/64. It can be realized that the
chosen prefix is the same as the one from the legitimate router R1 during
SLAAC procedure. It is possible to choose other prefixes without any differ-
ence in operation. However, in terms of this task, the same prefix as the one
of router R1 is inserted because the address allocation from PC1 (DHCPv6
server) and R1 is completely independent even though they have the same
prefix.

• The type of allocated address: It is possible to define what type of the addresses
that PC1 assigns to PC2. The option between random (the generated address
is completely random) and MAC address (the generated address is based on
the link-layer address of client) can be chosen. In this situation, this parameter
can be left blank to turn on the random option.

• The Identity association applied to the leased address: This field carries the as-
sociated address, unique identifier and the time interval for contact and leasing.

162

Users are able to choose Non-temporary option or Temporary option, but the
Non-temporary option is more preferred by lots of operation systems. Thus,
this option can be left blank to turn on Non-temporary mode automatically.

• Valid lifetime: It is the valid lease length of the address that DHCPv6 server
provides. 300 (seconds) is the value that PC2 assigns with the syntax -vlt
300. This lifetime is suitable for users to observe the change when expiration
happens.

• Preferred lifetime: It is the preferred lease length of the address that DHCPv6
server provides. 300 (seconds) is the value that PC2 assigns with the syn-
tax -plt 300. This lifetime is suitable for users to observe the change when
expiration happens.

• DNS server: The IPv6 address of DNS server (in this case, 2001::1002) is
written as -dns_ip 2001::1002.

• Domain: The domain name is is inserted with syntax -domain thesis.local,
for instance.

Fig. 5.96: Result after running dhcpv6_server.py tool to launch the stateful
configuration.

After completing all necessary parameters and launching the tool, PC2 is turned
on to observe the effect of DHCPv6 server (PC1). Then, PC2 starts to communicate
with the DHCPv6 server, as depicted in Fig. 5.96.

As can be seen, right after booting up, PC2 sends Solicit message to discover
any DHCPv6 server on the network, as shown in Fig. 5.97.

In this message, to indicate the duration (0 millisecond, in this case) of its
attempts to complete the ongoing DHCPv6 message exchange, the client (PC2)
incorporates an Elapsed Time option.

163

Fig. 5.97: Captured Solicit after launching stateful DHCPv6 server by PC1.

Next, the Client Identifier is included to carry the DHCP Unique Identifier
(DUID) to identify PC2 in messages where the client needs to be identified. The
type of DUID for PC2 is DUID Based on Link-Layer Address Plus Time (DUID-
LLT), in which the link-layer address of PC2 is combined with the time value. This
is the time when the DUID is generated. Besides, the Identity Association for Non-
temporary Address is chosen by PC2. the DHCPv6 Client Fully Qualified Domain
Name (FQDN) option is to facilitate the mission: PC2 (client) updates the AAAA
Resource Records (RRs), while the PC1 (server) updates the PTR Resource Records
(RRs). The Vendor Class is present in Solicit message to specify the vendor respon-
sible for producing the hardware on which PC2 is operating. Last but not least, all
requests from PC2 except for the allocating address are specified in Option Request

164

field, which contains its desire (typically, DNS recursive name server and Domain
Search List).

Fig. 5.98: Captured Advertise after launching stateful DHCPv6 server by PC1.

As soon as receiving the Solicit message from PC2 (client), an Advertise mes-
sage (depicted in Fig. 5.98) is sent out from PC1 (server) in order to inform PC2
about the DHCPv6 server’s available configuration options and to offer the client a
lease for the IPv6 address. Specifically, besides the transaction ID and Identifiers,
PC1 inserts the offered IPv6 address (2001:db8:abcd:1:3cf2:5ee9:463a:57cd),
its valid lifetime (300 seconds) and preferred lifetime (300 seconds) into IA Address
option of Identity Association. Moreover, PC1 also responds to optional requests
from PC2 by advertising the DNS server with address 2001::1002, and the domain
(thesis.local).

If PC2 receives several Advertise messages from servers, it will store the informa-
tion about each server such as the preference value, advertised addresses and other
information. Then, PC2 will select an Advertise message that suits it the best.
However, in this situation, there is only one server (PC1), and the information that
PC1 provides is suitable for PC2’s request. Therefore, PC2 (client) accepts the offer
from PC1 (server), and send a Request message (illustrated in Fig. 5.99) to claim

165

this request. Because PC2 selects PC1 to be its server, each information in the
Request message is the same as the one of Advertise packet from PC1. Typically,
the IPv6 address for leasing is 2001:db8:abcd:1:3cf2:5ee9:463a:57cd. The valid
lifetime of this address is 300 seconds, the value of preferred lifetime is 300 seconds.
The detail of DNS recursive name server and Domain search list are not included in
this packet, but this information is requested and accepted by PC2.

Fig. 5.99: Captured Request after launching stateful DHCPv6 server by PC1.

Lastly, PC1 (server) confirms the Request message from PC2 (client) with a
Reply, which is depicted in Fig. 5.100. All information including the leased IPv6
address with its lifetime, DNS server, and domain entry are acknowledged and in-
serted in this packet. After that, PC2 can use all the assignment from PC1 during
communication.

After completing the negotiation with PC1 (server), the network configuration
of PC2 is immediately updated as shown in Listing. 5.24. It can be seen that
there are three IPv6 global addresses in the table. Apart from the IPv6 address
2001:db8:abcd:1:3cf2:5ee9:463a:57cd that is offered by PC1 (server), these two

166

other addresses are auto-configured based on the Router Advertisement from legit-
imate router R1. They also follow the prefix 2001:db8:abcd:1::/64 but do not
depend on the instruction and assignment from PC1 (server). On the other hand,
the domain used for DNS suffix is applied as depicted (thesis.local).

Besides, the leasing length of the allocated address is illustrated in Listing. 5.25,
which demonstrates that not only the preferred lifetime but also the valid lifetime
is applied in PC2. Moreover, the DNS server is also written in the DNS Cache of
PC2, as shown in Listing. 5.26.

Fig. 5.100: Captured Reply after launching stateful DHCPv6 server by PC1.

Especially, it is worth noticing that the leased IPv6 address is usable and PC2
can use this address for communicating with the external network. This is because
this IPv6 address 2001:db8:abcd:1:3cf2:5ee9:463a:57cd belongs to the subnet
that actually exists and is controlled by the legitimate router R1. In case of DNS
server and the domain, they are applicable when being actually controlled by PC1
rather than being created virtually.

Now, the question is how will PC2 handle when its leased IPv6 address expires.
As soon as the leasing time reaches a third of the lifetime, in the terminal of the
dhcpv6_server.py (shown in Fig. 5.101), it can be seen that PC2 (client) sends
a Confirm packet to the server in order to serve the purpose of verifying whether

167

1 C:\Users\User>ipconfig
2

3 Ethernet adapter Ethernet0:
4

5 Connection-specific DNS Suffix . : thesis.local
6 IPv6 Address. : 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
7 IPv6 Address. : 2001:db8:abcd:1:3cf2:5ee9:463a:57cd
8 Temporary IPv6 Address. : 2001:db8:abcd:1:2816:ed5:a706:70b9
9 Link-local IPv6 Address : fe80::7790:2c2b:9e56:431b%4

10 Default Gateway : fe80::c801:11ff:fef5:8%4

Listing 5.24: The network configuration of PC2 after the stateful DHCPv6 negoti-
ation (shortened output).

1 C:\Users\User>netsh interface ipv6 show addresses
2

3 DAD State Valid Life Pref. Life Address
4 ----------- ---------- ---------- ------------------------
5 Preferred 29d23h59m59s 6d23h59m59s 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Preferred 6d23h59m59s 23h59m59s 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Preferred 4m59s 4m59s 2001:db8:abcd:1:2d7f:286d:48e0:c3c0
8 Preferred infinite infinite fe80::7790:2c2b:9e56:431b%4

Listing 5.25: Result of the address configuration at PC2 after the stateful DHCPv6
negotiation (shortened output).

1 C:\Users\User>netsh interface ipv6 show dnsservers
2

3 Configuration for interface "Ethernet0"
4 DNS servers configured through DHCP: 2001::1002
5 Register with which suffix: Primary only

Listing 5.26: Result of the DNS servers list at PC2 after the stateful DHCPv6
negotiation (shortened output).

the PC2 has relocated to a different link or is still connected to the DHCPv6 server

168

Fig. 5.101: Result of the dhcpv6_server.py tool before the expiration of the
address from the stateful configuration.

Fig. 5.102: Captured Confirm after launching stateful DHCPv6 server by PC1.

(PC1). The content of Confirm message is described in Fig. 5.102. Then, PC1
(server) answers the Confirm message with a Reply for indicating the existence and
status of the server. From now on, PC2 continues to use all parameters provided by
server since it knows that the server is still alive.

169

Once the leasing time reaches 50% of the lifetime, in order to prolong the lifetimes
of the leases assigned to the IAs and obtain new addresses or delegated prefixes for
IAs, PC2 sends a Renew message to PC1 (server) that initially assigned the leases.
This event is shown in Fig. 5.101, and the Renew packet is illustrated in Fig. 5.103.

Fig. 5.103: Captured Renew after launching stateful DHCPv6 server by PC1.

PC1 (server) checks all the parameters in the Renew message from PC2, and
responds to PC2 with a Reply message, as depicted in Fig. 5.101. With this Reply,
PC1 extends the lifetime, and confirms all allocated parameters in order to maintain
the configuration at PC2. The format of this packet is totally the same as the one
in Fig. 5.100.

After all, it is also noticed that DHCPv6 server (PC1) is still able to provide
service to PC2 (client) even though there is an absence of Router Advertisement
from PC1 (described in RFC 4862 [17]). These two procedures SLAAC and DHCPv6
are applied in a separate way. However, if the legitimate router wants to disable
stateless auto-configuration, then sets the M (Managed address configuration) flag

170

and O (Managed address configuration) flag, PC1 (DHCPv6 server) will fully take
control of PC2’s configuration.

(b) Stateless DHCPv6

. Using the designed toolkit for being a DHCPv6 server
In the stateless configuration, except for the address, PC1 (server) provides the

client information about DNS server and domain suffix. The dhcpv6_server.py
tool is still a suitable tool for performing this task. The syntax for launching is
similar to the stateful configuration. The only difference is that the prefix and
lifetime are not allowed to be inserted in the tool, as shown in Fig. 5.104.

Before running the toolkit, PC2 (Windows) is required to shut down. In the
dhcpv6_server.py tool, the configuration is written as below. After launching
the tool, PC2 is turned on to see the output, which is depicted in Fig. 5.104.

• Network interface: eth0, which is the interface of PC1 (Kali).
• DNS server: The IPv6 address of DNS server (in this case, 2001::1002) is

written as -dns_ip 2001::1002.
• Domain: The domain name is is inserted with syntax -domain thesis.local,

for instance.

Fig. 5.104: Result after running dhcpv6_server.py tool to launch the stateless
configuration.

As can be seen, PC2 normally detects the available DHCPv6 servers by sending
Solicit message, which looks like the packet in Fig. 5.97. PC1 responds to the Solicit
with Advertise packet, as shown in Fig. 5.105. The difference of this Advertise packet
from that of the stateful case is the non-existence of Identity Association for Non-
temporary Address. The reason is that DHCPv6 server does not provide addresses
in the stateless mode. The other fields in this Advertise are totally the same as the
one in stateful configuration.

After receiving the Advertise packet from PC1, PC2 processes the information
inside the message and figures out that it can only obtain information including

171

about DNS server, domain entry but not addresses. As a consequence, PC2 switches
to the stateless mode and sends Information-request message to the server instead
of a Request. The format of Information-request is described in Fig. 5.106, and it
is noticed that there is no IA Address option in this packet.

Fig. 5.105: Captured Advertise after launching stateless DHCPv6 server by PC1.

Fig. 5.106: Captured Information-request after launching stateless DHCPv6 server
by PC1.

Lastly, PC1 confirms the negotiation with PC2 by sending back the Reply
message to PC2, as shown in Fig. 5.107. After completion, DNS server address
2001::1002 and the domain suffix thesis.local are applied to PC2.

172

Fig. 5.107: Captured Reply after launching stateless DHCPv6 server by PC1.

Review questions

The purpose of the following review questions is to clarify the behaviour of Win-
dows device when dealing with Dynamic Host Configuration Protocol version 6. All
answers are located in the attachment A.7.

Question 1:

In the task performed for the stateful DHCPv6, the preferred lifetime and the valid
lifetime have the same value with an aim to to simplifying the process of borrowing
addresses. However, is that applicable in practice?
a) If not, which type of lifetime has a longer duration.
b) Describe the process of DHCPv6 when the type of lifetime with shorter duration
expires.

Question 2:

Try using a different prefix provided by DHCPv6 server than the available one in
the given network from a legitimate router R1 (2001:db8:abcd:1::/64). Apply
the dhcpv6_server.py tool for solving the task.
a) Verify that PC2 will use the address according to the specified prefix and therefore,
it has addresses from several different ranges. Besides, it is essential to observe the
behaviour of PC2 when the value of valid lifetime (200 seconds) is smaller than the
one of preferred lifetime (400 seconds).

173

b) Verify that PC2 will use the address according to the specified prefix and there-
fore, it has addresses from several different ranges. Besides, it is essential to observe
the behaviour of PC2 when the value of valid lifetime (400 seconds) is greater than
the one of preferred lifetime (200 seconds).

174

Conclusion
The master thesis described in detail the origin, and different scopes about the IPv6
specifications. Besides, it also pointed out some possible vulnerabilities when oper-
ating system. Scenarios have been designed to outline IPv6 operations in practice,
as well as security risks. In particular, several methods including self-designed pro-
gram and available application have been applied to design different types of IPv6
packets. These tools explained how the procedures in IPv6 work. Moreover, this
thesis has helped network administrators and specialists have a more specific view
at the structure and role of IPv6, from which they can analyze, test and update
the running software or hardware to work more efficiently and securely in the IPv6
environment.

Two specific tools were applied to solve every task in the scenario. The first
one was the designed network toolkit, which has been created by the author of
the master thesis to perform different kinds of problem in IPv6. This toolkit was
initially aimed to conduct penetration testing for helping network experts analyze,
acquire experiences, and take countermeasures to protect the system from service
disruption or loss of information data or unscheduled costs. In terms of the master
thesis, 19 tools in the network toolkit were launched with the instruction in every
situation (aspect in IPv6) such as Multicast address, Multicast Listener Discovery,
Neighbor Discovery Protocol, Dynamic Host Configuration Protocol, etc to simulate
the function of these protocols and observe the behaviour of different types of device
when working. The second tool, which was used, was the Ostinato software. It
offered a user-friendly graphical user interface (GUI). It was also able to design a
required packet, but users must follow the instruction provided by this software step
by step.

On the other hand, each tool from the designed network toolkit in Python had a
specific focus, but at the same time they could be widely applicable. Only the basic
use of these tools was shown in the thesis. According to the description of the tools
and their help dialog, a whole range of other tests, attacks and analyses of networks
with the IPv6 protocols could be implemented.

In many cases, great attention was paid to the use of the Ostinato software.
This powerful tool has many advantages, but it cannot be compared to the created
toolkit, which has significantly greater variability, as well as the ability to automate
procedures or facilitate the connection of individual scripts. Specifically, the origi-
nal direction of thesis was primarily focused on Ostinato, but over time it became
increasingly advantageous to use custom tools, which, for example, make it possi-
ble to work with the continuity of multiple transmitted messages or with different
reactions of the other party to the sent packets, which is difficult to achieve in Os-

175

tinato. Therefore, the master thesis was modified during its execution, with more
focus on custom Python tools. The created toolkit was extensively tested. However,
details about the code are not a part in the text version of the master thesis. Basic
description about the toolkit is included in Appendix B.

The main work focused on conducting in turn every task related to aspects in
IPv6 network. They were all performed in the first designed scenario. It described
how multicast addresses has operated, how various devices (particularly Windows
machines) have handled multicast packets, and the potential risks associated with
the use of multicast traffic. Besides, this chapter also aimed to explain how nodes
(including Windows machines) have behaved when sending and receiving different
types of Multicast Listener Discovery messages. Additionally, potential vulnerabili-
ties in the operation of Multicast Listener Discovery were analyzed to aid analysts
in finding suitable solutions. Important problems related to Fragmentation, Router
Solicitation, Router Advertisement, Neighbor Solicitation, Neighbor Advertisement,
Redirect, Dynamic Host Configuration Protocol version 6 were also performed in
detail to analyze all aspects with possible vulnerabilities during IPv6 implementa-
tion.

The original assignment for this master thesis included creating a scenario for
an IPv6-only network. In agreement with the thesis supervisor, the assignment was
modified in the course of the solution and it was agreed that this part would not
be part of this thesis. During the solution of the first part, where a lot of attention
was paid to a number of topics (Multicast, MLD, NS, NA, RS, RA, Redirect, etc),
so many topics were developed and in such depth that it was no longer required to
solve the second scenario with IPv6-only.

I successfully presented my partial results of the master thesis the 29th year
of the student conference STUDENT EEICT 2023, where I took 3rd place in the
Network Security, Cryptography, Services, and Technologies section.

In the future, numerous aspects of IPv6 will be thoroughly analyzed and investi-
gated. As such, there is a growing need to understand the technical details of IPv6
and its implementation, as well as its potential security implications. This analy-
sis will likely cover a wide range of topics, including addressing, routing, protocol
behavior, security mechanisms, and network management. By gaining a deeper un-
derstanding of IPv6, network experts can better optimize and secure their networks,
enabling more efficient and reliable communication.

176

Bibliography
[1] IPv6 Overview [online]. [cit. 21. 10. 2022]. Dostupné z URL:

<https://www.juniper.net/documentation/us/en/software/junos/
routing-overview/topics/concept/routing-protocols-ipv6-overview.
html>.

[2] IP Version 6 Addressing Architecture [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc4291.html>.

[3] JEŘÁBEK, J. Pokročilé komunikační techniky. Skriptum FEKT Vysoké učení
technické v Brně 2022, s.1-174.

[4] IPv6 Unique-local [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://4sysops.com/archives/>.

[5] IPv6 Multicast [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.iana.org/assignments/ipv6-multicast-addresses/
ipv6-multicast-addresses.xhtml#node-local>.

[6] Architectural Considerations of IP Anycast [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc7094#section-2.2>.

[7] IPv6 Header [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.tutorialspoint.com/ipv6/ipv6_headers.htm>.

[8] WEBER, J. IPv6 Security Test Laboratory. (Master). Ruhr-University Bochum,
Germany. 2013.

[9] IPv6 Flow Labels [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc2460#section-6>.

[10] IPv6 Extension Headers [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc8200#section-4>.

[11] IP Authentication Header [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc4302>.

[12] IP Encapsulating Security Payload (ESP) [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc4303>.

177

https://www.juniper.net/documentation/us/en/software/junos/routing-overview/topics/concept/routing-protocols-ipv6-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-overview/topics/concept/routing-protocols-ipv6-overview.html
https://www.juniper.net/documentation/us/en/software/junos/routing-overview/topics/concept/routing-protocols-ipv6-overview.html
https://www.rfc-editor.org/rfc/rfc4291.html
https://4sysops.com/archives/
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml#node-local
https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml#node-local
https://www.rfc-editor.org/rfc/rfc7094#section-2.2
https://www.tutorialspoint.com/ipv6/ipv6_headers.htm
https://www.rfc-editor.org/rfc/rfc2460#section-6
https://www.rfc-editor.org/rfc/rfc8200#section-4
https://www.rfc-editor.org/rfc/rfc4302
https://www.rfc-editor.org/rfc/rfc4303

[13] Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://datatracker.ietf.org/doc/html/rfc4443#section-2>.

[14] Neighbor Discovery for IP version 6 (IPv6) [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://datatracker.ietf.org/doc/html/rfc4861>.

[15] IPv6 Router Advertisement Flags Option [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc5175.html>.

[16] Path MTU Discovery for IP version 6 [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc8201>.

[17] IPv6 Stateless Address Autoconfiguration [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc4862>.

[18] Internet Group Management Protocol, Version 3 [online]. [cit. 21. 10. 2022].
Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc3376>.

[19] Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast
Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast
[online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://datatracker.ietf.org/doc/html/rfc4604>.

[20] Changes in MLDv2 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://support.huawei.com/enterprise/en/doc/EDOC1100138684/
f465c53c/changes-in-mldv2>.

[21] Deprecating Site Local Addresses [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc3879>.

[22] Basic Transition Mechanisms for IPv6 Hosts and Routers [online].
[cit. 21. 10. 2022]. Dostupné z URL:
<https://www.networkacademy.io/ccna/ipv6/stateful-dhcpv6>.

[23] Stateful DHCPv6 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc4213#section-2>.

[24] HAGEN, S. IPv6 Essentials, Second Edition. O’Reilly Media, Inc., 2006.

178

https://datatracker.ietf.org/doc/html/rfc4443#section-2
https://datatracker.ietf.org/doc/html/rfc4861
https://www.rfc-editor.org/rfc/rfc5175.html
https://www.rfc-editor.org/rfc/rfc8201
https://www.rfc-editor.org/rfc/rfc4862
https://www.rfc-editor.org/rfc/rfc3376
https://datatracker.ietf.org/doc/html/rfc4604
https://support.huawei.com/enterprise/en/doc/EDOC1100138684/f465c53c/changes-in-mldv2
https://support.huawei.com/enterprise/en/doc/EDOC1100138684/f465c53c/changes-in-mldv2
https://www.rfc-editor.org/rfc/rfc3879
https://www.networkacademy.io/ccna/ipv6/stateful-dhcpv6
https://www.rfc-editor.org/rfc/rfc4213#section-2

[25] Stateful NAT64: Network Address and Protocol Translation from IPv6 Clients
to IPv4 Servers [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc6146>.

[26] DNS64: DNS Extensions for Network Address Translation from IPv6 Clients
to IPv4 Servers [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc6147>.

[27] GNS3 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.gns3.com/>.

[28] Cisco IOS overview [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://study-ccna.com/cisco-ios-overview/>.

[29] Cisco IOS C3640 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.cisco.com/c/en/us/td/docs/ios/12_2/12_2x/12_2xl/
release/notes/rn3600xl.html?dtid=osscdc000283>.

[30] Cisco IOS C7200 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.cisco.com/c/en/us/support/routers/
7200-series-routers/series.html?dtid=osscdc000283#
~tab-documents>.

[31] Python language [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.python.org/>.

[32] Scapy [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://scapy.net/>.

[33] NumPy [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://numpy.org/>.

[34] Ostinato [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://ostinato.org/>.

[35] Wireshark [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.wireshark.org/>.

[36] Kali Linux [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.kali.org/>.

[37] THC-IPv6 [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<http://www.thc.org/thc-ipv6/>.

179

https://www.rfc-editor.org/rfc/rfc6146
https://www.rfc-editor.org/rfc/rfc6147
https://www.gns3.com/
https://study-ccna.com/cisco-ios-overview/
https://www.cisco.com/c/en/us/td/docs/ios/12_2/12_2x/12_2xl/release/notes/rn3600xl.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/td/docs/ios/12_2/12_2x/12_2xl/release/notes/rn3600xl.html?dtid=osscdc000283
https://www.cisco.com/c/en/us/support/routers/7200-series-routers/series.html?dtid=osscdc000283#~tab-documents
https://www.cisco.com/c/en/us/support/routers/7200-series-routers/series.html?dtid=osscdc000283#~tab-documents
https://www.cisco.com/c/en/us/support/routers/7200-series-routers/series.html?dtid=osscdc000283#~tab-documents
https://www.python.org/
https://scapy.net/
https://numpy.org/
https://ostinato.org/
https://www.wireshark.org/
https://www.kali.org/
http://www.thc.org/thc-ipv6/

[38] Chiron [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.secfu.net/tools-scripts/>.

[39] Ipv6-toolkit [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.kali.org/tools/ipv6-toolkit/>.

[40] IPv6 Generator [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://github.com/vafekt/IPv6-toolkit>.

[41] IP Version 6 Addressing Architecture [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc4291.html>.

[42] Extended ICMP to Support Multi-Part Messages [online]. [cit. 21. 10. 2022]. Dos-
tupné z URL:
<https://www.rfc-editor.org/rfc/rfc4884>.

[43] Multicast Listener Discovery Version 2 (MLDv2) for IPv6 [online].
[cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc3810>.

[44] Protocol Independent Multicast - Sparse Mode (PIM-SM) [online].
[cit. 21. 10. 2022]. Dostupné z URL:
<https://datatracker.ietf.org/doc/rfc7761/>.

[45] Link-Local Multicast Name Resolution (LLMNR) [online]. [cit. 21. 10. 2022].
Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc4795.html>.

[46] Simple Service Discovery Protocol [online]. [cit. 21. 10. 2022]. Dostupné z URL:
<https://www.miralishahidi.ir/resources/Simple_Service_
Discovery_Protocol.pdf>.

[47] MLD Security draft-vyncke-pim-mld-security-01 [online]. [cit. 21. 10. 2022].
Dostupné z URL:
<https://datatracker.ietf.org/doc/html/draft-vyncke-pim-mld-security>.

[48] Path MTU Discovery for IP version 6 [online]. [cit. 21. 10. 2022]. Dostupné
z URL:
<https://www.rfc-editor.org/rfc/rfc8201#section-5.2>.

[49] IPv6 Router Advertisement Options for DNS Configuration [online].
[cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc8106>.

180

https://www.secfu.net/tools-scripts/
https://www.kali.org/tools/ipv6-toolkit/
https://github.com/vafekt/IPv6-toolkit
https://www.rfc-editor.org/rfc/rfc4291.html
https://www.rfc-editor.org/rfc/rfc4884
https://www.rfc-editor.org/rfc/rfc3810
https://datatracker.ietf.org/doc/rfc7761/
https://www.rfc-editor.org/rfc/rfc4795.html
https://www.miralishahidi.ir/resources/Simple_Service_Discovery_Protocol.pdf
https://www.miralishahidi.ir/resources/Simple_Service_Discovery_Protocol.pdf
https://datatracker.ietf.org/doc/html/draft-vyncke-pim-mld-security
https://www.rfc-editor.org/rfc/rfc8201#section-5.2
https://www.rfc-editor.org/rfc/rfc8106

[50] Dynamic Host Configuration Protocol for IPv6 (DHCPv6) [online].
[cit. 21. 10. 2022]. Dostupné z URL:
<https://www.rfc-editor.org/rfc/rfc8415.html>.

181

https://www.rfc-editor.org/rfc/rfc8415.html

Symbols and abbreviations
IPv6 Internet Protocol version 6

NAT Network Address Translation

RFC Request for Comments

MAC Medium Access Control

EUI-64 Extended Unique Identifier 64

IANA Internet Assigned Numbers Authority

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over IP

ICMPv6 Internet Control Message Protocol version 6

TTL Time To Live

ESP Encapsulating Security Payload

MTU Maximum Transmission Unit

IGMP Internet Group Management Protocol

ARP Address Resolution Protocol

DAD Duplicate Address Detection

NUD Neighbor Unreachability Detection

NDP Neighbor Discovery Protocol

RA Router Advertisement

RS Router Solicitation

NA Neighbor Advertisement

NS Neighbor Solicitation

DNS Domain Name System

SLAAC Stateless Address Auto-Configuration

182

DHCPv6 Dynamic Host Configuration Protocol version 6

MLD Multicast Listener Discovery

DUID DHCP Unique Identifier

GNS3 Graphical Network Simulator-3

VM Virtual Machine

IOS Internetwork Operating System

CLI Command-line Interface

GUI Graphical User Interface

183

A Answers to review questions

A.1 Multicast address

Question 1:

Which multicast addresses are PC2 (Windows) and PC3 (Ubuntu) interested in? Do
they all belong to the all-nodes multicast group ff02::1? The following commands
in Linux and Windows can be applied to find the answer:

1 # Linux command in terminal to show the multicast group
2 ip -6 maddr
3

4

5 # Windows command in terminal to show the multicast group
6 netsh interface ipv6 show joins

✓. Answer:
In PC2 (Windows), Listing. A.1 shows the multicast groups that PC2 is inter-

ested in (shortened output):

1 C:\Users\User>netsh interface ipv6 show joins
2

3 Interface 4: Ethernet0
4

5 Scope References Last Address
6 ---------- ---------- ---- ---------------------------------
7 0 0 Yes ff02::1
8 0 1 Yes ff02::c
9 0 1 Yes ff02::fb

10 0 1 Yes ff02::1:3
11 0 1 Yes ff02::1:ff0f:3ce9
12 0 1 Yes ff02::1:ffdd:2248
13 0 1 Yes ff02::1:ff56:431b

Listing A.1: The list of multicast groups that PC2 (Windows) joins (shortened
output).

184

As can be seen, PC2 is now listening to these concrete multicast addresses.
The first group PC2 joins is the all-nodes multicast address (ff02::1). The last
three multicast addresses (ff02::1:ff56:431b, ff02::1:ff0f:3ce9, and group
ff02::1:ffdd:2248) are actually the solicited-node multicast address of PC2, which
it must have interest in when starting up. They have essential applications for PC2
such as discovering the presence and link-layer addresses of neighboring nodes in a
network, Duplicate Address Detection and Multicast group management. Besides,
PC2 is in the group ff02::fb, which is used to discover services and communicate
with each other using Multicast Domain Name System version 6 (mDNSv6). The
multicast address ff02::1:3 is represented for Link-Local Multicast Name Reso-
lution (LLMNR), which enable devices on a local network to resolve each other’s
domain names without relying on a DNS server [45]. Lastly, PC2 is a member of
the multicast group ff02::c, which stands for Simple Service Discovery Protocol
(SSDP) [46].

In PC3 (Ubuntu), Listing. A.2 shows the multicast groups that PC3 is interested
in (shortened output):

1 ubuntu@client:~$ ip -6 maddr
2 1: ether0
3 inet6 ff02::1
4 inet6 ff02::1:ff78:109
5 inet6 ff02::1:ff92:9de5

Listing A.2: The list of multicast groups that PC3 (Ubuntu) joins (shortened out-
put).

It is clear that PC3 is currently a member the all-nodes multicast group ff02::1.
Besides, it also joins the solicited-node multicast addresses (ff02::1:ff78:109 and
ff02::1:ff92:9de5) for performing procedures within Neighbor Discovery Proto-
col.

From Listing. A.1 and Listing. A.2, PC2 and PC3 are all members of the multi-
cast group ff02::1.

Question 2:

Does PC2 (Windows) respond to the normal ICMPv6 Echo Request packet sent
from PC1 (Kali) to the global unicast address of PC2?
a) What does this packet look like in Wireshark?

185

b) Show the configuration to generate this packet with the designed toolkit and
Ostinato.

✓. Answer:
With the help of ping.py tool from the network toolkit, the parameter configu-

ration for sending a normal Ping from PC1 to the global unicast address of PC2 is
shown as below. The output is depicted in Fig. A.1.

• Source address: The global IPv6 address of PC1 is chosen to be inserted with
the following syntax -sip 2001:db8:abcd:1:1a4:2296:7e2c:8941.

• Destination address: It is written as the IPv6 address of PC2 with the syntax
-dip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9.

• Other configuration including the source link-layer address, hop limit, number
of sending packets, data length can be left out since they are automatically set
to the default value. The source link-layer address is derived from the interface
of PC1. The hop limit is set to 255, the number packets is 1 and the value of
data length is 32 (bytes).

Fig. A.1: Result after running the ping.py tool to send normal ICMPv6 Echo
Request from PC1 to PC2 with global unicast address.

By using the application Ostinato, this packet can be generated similarly as
the case of multicast address, which has been described above. On the Protocol
Selection tab, the following protocols are chosen at every layer, while others are
kept as the default setting.

• Layer 1: MAC
• Layer 2: Ethernet II
• Layer 3: IPv6
• Layer 4: ICMP
• Payload: Hex Dump (used for filling Payload data in ICMPv6 Echo Request

message)
On the Protocol Data tab, the configuration is described below, while other

options remain in default setting:
• Media Access Protocol: Source is set in mode Fixed, and the MAC address

is written as 00:0c:29:8c:0b:0d.

186

• Internet Protocol ver 6: Source is 2001:db8:abcd:1:1a4:2296:7e2c:8941,
and destination is 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9.

• Internet Control Message Protocol: Version is ICMPv6, and Type is 128 -
Echo Request.

• HexDump: Payload data is written in hexadecimal format as 61 62 63 64 65
66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64
65 66 67 68 69, which is the sequence of letters in alphabetical order.

After running one of these tools, the result is totally identical (shown in Fig. A.2).
PC2 answers the ICMPv6 Echo Request sent from PC1, which is depicted in Fig. A.3.

Fig. A.2: Captured ICMPv6 Echo Request after running the ping.py tool to send
normal ICMPv6 Echo Request from PC1 to PC2 with global unicast address.

Fig. A.3: Captured ICMPv6 Echo Reply from PC2 after running the ping.py tool
to send normal ICMPv6 Echo Request from PC1 to PC2 with global unicast

address.

187

Question 3:

Does PC2 (Windows) respond to the normal ICMPv6 Echo Request packet sent
from PC1 (Kali) to the link-local unicast address of PC2?
a) What does this packet look like in Wireshark?
b) Show the configuration to generate this packet with the designed toolkit and
Ostinato.

✓. Answer:
Using the ping.py tool in the network toolkit, the ICMPv6 Echo Request sent

from PC1 (Kali) to the link-local unicast address of PC2 is generated in a similar
way to the case of global unicast address. The only difference is inserting the source
and destination address, which is described below. The output after running is
shown in Fig. A.4.

• Source address: The global IPv6 address of PC1 is chosen to be inserted with
the following syntax -sip fe80::8ac4:147a:5dfe:a9c6.

• Destination address: It is written as the IPv6 address of PC2 with the syntax
-dip fe80::7790:2c2b:9e56:431b.

Fig. A.4: Result after running the ping.py tool to send normal ICMPv6 Echo
Request from PC1 to PC2 with link-local unicast address.

Fig. A.5: Captured ICMPv6 Echo Request after running the ping.py tool to send
normal ICMPv6 Echo Request from PC1 to PC2 with link-local unicast address.

188

In Ostinato, is is only needed to change the source and destination address in
Internet Protocol ver 6 section from the global to the link-local ones. The specific
configuration is mentioned below:

• Internet Protocol ver 6: Source is fe80::8ac4:147a:5dfe:a9c6, and destina-
tion is fe80::7790:2c2b:9e56:431b.

After launching one of these tools, the generated ICMPv6 Echo Request packet
is the same in two cases, as depicted in Fig. A.5. PC2 also responds to this Ping
message with an ICMPv6 Echo Reply, as shown in Fig. A.6.

Fig. A.6: Captured ICMPv6 Echo Reply from PC2 after running the ping.py tool
to send normal ICMPv6 Echo Request from PC1 to PC2 with link-local unicast

address.

Question 4:

Which are the possible attacks with multicast address that can be conducted by
PC1 (Kali) in term of this section? This question is clarified by performing the
following tasks:
a) Repeat the smurf attack using the network toolkit, but this time the victim will
be the router R1.
b) If we manage to overload the router R1, what will be the impact on our network?

✓. Answer:
The possible attacks with multicast address that can be conducted by PC1 (Kali)

in this section is:
• Reconnaissance attack: The attacker scans all active stations on the network.

189

• Smurf attack: A type of denial-of-service (DoS) attack that can be carried out
using the Ping utility. In a smurf attack, an attacker sends a large number
of ICMPv6 Echo Requests (Ping) to a network’s multicast address, using a
spoofed source IPv6 address. The all-nodes multicast address causes the re-
quests to be forwarded to all devices on the network, resulting in a flood of
traffic that can overwhelm the target network’s resources.

In case of the smurf attack with the router R1 as the target, the IPv6 global
address of router R1 is inserted with the syntax -tip 2001:db8:abcd:1::1 in the
smurf.py tool. The link-local address of router R1 can also be applied without any
difference at the impact. Other configuration is the same as the cases mentioned
in the section above. The output with the percentage of packet loss is described in
Fig. A.7.

Fig. A.7: Result after running the smurf.py tool to attack the router R1.

1 C:\Users\User>ping 2001:db8:abcd:3::1
2

3 Pinging 2001:db8:abcd:3::1 with 32 bytes of data:
4 Destination net unreachable.
5 Request timed out.
6 Request timed out.
7 Request timed out.
8

9 Ping statistics for 2001:db8:abcd:3::1:
10 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Listing A.3: Result of Ping message from PC2 to R2 after the router R1 is flooded.

After running the attack for about 20 seconds, the rate of packet loss increases
rapidly and reaches 94.2%. The router R1 is fully overloaded and becomes unre-
sponsive. This leads to a variety of network issues such as intermittent internet con-
nectivity, SSH session. Moreover, IPv6 address cannot be leased if using DHCPv6.

190

For instance, after the attack, PC2 cannot communicate with R2, which locates on
the external network. This is shown in Listing. A.3.

Question 5:

For malformed Ping, modify the added Destination header so that it contains an-
other unknown option (e.g. type 127). Using Ostinato, send this packet and see
how the response of the stations on the network will differ from the previous case.
Try sending only from a link-local address.

✓. Answer:
When using Ostinato to perform this task (unknown option with type 127),

the configuration is almost similar to the one of malformed ICMPv6 Echo Request
with unknown option (type 128). Specifically, on the Protocol Selection tab, the
selected protocols and their order are set using Advanced section. They are: Media
Access Protocol (layer 1) - Ethernet II (layer 2) - Internet Protocol ver 6 (layer 3)
- HexDump (Destination Header with unknown option) - Internet Control Message
Protocol - HexDump (Payload data in ICMPv6 Echo Request).

Fig. A.8: Result after running the smurf.py tool to attack the router R1.

On the Protocol Data tab, the Media Access Protocol, Internet Protocol ver
6 and Internet Control Message Protocol are completely the same as the case of
normal ICMPv6 Echo Request. The only fields that are needed to fill is the Desti-
nation Option (used by HexDump) and Payload data (used by HexDump), which
are described as below:

• HexDump: Destination Options with one unknown IPv6 Option (type 127) is
inserted as 3a 00 7f 00 00 00 00 00 in hexadecimal format. This field is
added between Internet Protocol ver 6 and Internet Control Message Protocol.
Users only need to change two octets (80 00) from the unknown IPv6 option
(type 128) to 7f 00 for the type 127. This is shown in Fig. A.8.

• HexDump: Payload data is written in hexadecimal format as 41 41 41 41
41 41 41 41 (for example). But users can define any content of this Payload
as it does not influence the behaviour of receiving nodes. This HexDump field
is set after the Internet Control Message Protocol.

191

After sending this ICMPv6 malformed Echo Request (depicted in Fig. A.9), there
is not any node answering this packet. This can draw a conclusion that stations
can only recognize or process a specific number of unknown options in Destination
Header. The types such as the option (type 127), which may be reserved or undefined
in the profile rule of operation systems, are usually ignored and silently discarded
by these machines.

Fig. A.9: Captured ICMPv6 Echo Request message with unknown option (type
127) in Destination Header.

A.2 Multicast Listener Discovery version 2 (MLDv2)

Question 1:

In which characteristics is MLDv2 superior to MLDv1?

✓. Answer:
MLD version 2 (MLDv2) is an improvement over MLD version 1 (MLDv1), and

it has several advantages over the earlier version:
• MLDv2 supports Source-Specific Multicast, which allows hosts to receive mul-

ticast traffic only from specific sources rather than from any source.
• MLDv2 is more robust than MLDv1 because it includes mechanisms for de-

tecting and recovering from packet loss and other errors.

192

• MLDv2 is designed to be compatible with IGMPv3, which is the multicast
protocol used in IPv4 networks. This allows for easier integration of IPv6
networks with existing IPv4 networks.

Question 2:

Which devices in the scenario respond to the General Query from router R1?
a) Perform sending General Query by the designed toolkit and Ostinato.
b) Capture the Query together with its answers. Describe the format of these packets
and their content.

✓. Answer:
All devices including PC1, PC2 and PC3 respond to the General Query from

the router R1. The reason is that R1 is the multicast querier on the local network
(2001:db8:abcd:1::/64), and all these PCs belong to this subnet.

The General Query can be created by the mld_query.py tool or application
Ostinato with the same output. The result after running the network toolkit is
depicted in Fig. 5.17, while the configuration with Ostinato is shown in Fig. 5.18
and Fig. 5.19.

Router R1, PC2 and PC3 answer this General Query (from PC1) with their own
MLDv2 Report. The format of generated MLDv2 General Query and its responses
are illustrated in Fig. 5.20 and Fig. 5.21.

Question 3:

Which devices in the scenario respond to the Multicast Address Specific Query from
PC1 with the group ff08::db8?
a) Perform sending this Query by the designed toolkit and Ostinato.
b) Capture the Query together with its answers. Describe the format of these packets
and their content.

✓. Answer:
Once PC2 joins the multicast group ff08::db8 for getting the data from the

stream, it will respond to the Multicast Address Specific Query from PC1 with the
group ff08::db8.

The Multicast Address Specific Query can be created by the mld_query.py
tool or application Ostinato with the same output. The result after running the
network toolkit is depicted in Fig. 5.27, while the configuration with Ostinato is
shown in Fig. 5.32.

193

PC2 answers this Multicast Address Specific Query (from PC1) with its MLDv2
Report. The format of generated MLDv2 Multicast Address Specific Query and its
responses are illustrated in Fig. 5.28 and Fig. 5.29.

Question 4:

Which devices in the scenario respond to the Multicast Address and Source Specific
Query with the group ff08::db8 and the sources list contains only the IPv6 address
of PC4 (2001:db8:abcd:3:31bc:eb00:7509:c9ec)?
a) Perform sending this Query by the designed toolkit and Ostinato. Capture the
Query together with its answers. Describe the format of these packets and their
content.
b) How do devices respond to this Multicast Address and Source Specific Query if
the sources list contains the random address (e.g. 2001::bad) instead of the real
source 2001:db8:abcd:3:31bc:eb00:7509:c9ec. Keep in mind that this source
does not actually exist. Verify this by the designed toolkit and Ostinato.

✓. Answer:
After PC2 joins the multicast group ff08::db8 for getting the data from the

source (PC4), it will respond to the Multicast Address and Source Specific Query
from PC1 with the multicast group ff08::db8 and the source (PC4).

The Multicast Address and Source Specific Query can be created with the help
of mld_query.py tool or application Ostinato with the same output. The result
after running the network toolkit is depicted in Fig. 5.30, while the configuration
with Ostinato is shown in Fig. 5.32.

PC2 answers this Multicast Address and Source Specific Query (from PC1) with
its MLDv2 Report. The format of generated MLDv2 Multicast Address and Source
Specific Query and its responses are illustrated in Fig. 5.31 and Fig. 5.33.

Fig. A.10: Result after running the mld_query tool to send the Multicast Address
and Source Specific Query with random source.

194

In case of the random source (2001::bad), this type of Query is also designed
in a similar way. Users only need to replace the old source (PC4, which is currently
streaming the video) 2001:db8:abcd:3:31bc:eb00:7509:c9ec by the new source
2001::bad. The output after running the tool is shown in Fig. A.10.

After launching the toolkit or application Ostinato, the captured generated
packet with its response is illustrated in Fig. A.11 and Fig. A.12

Fig. A.11: Captured MLDv2 Query after sending the Multicast Address and
Source Specific Query with random source.

Fig. A.12: Captured MLDv2 Report after sending the Multicast Address and
Source Specific Query with random source.

195

As can be seen, PC2 still responds to the Multicast Address and Source Specific
Query that is sent with the random source (2001::bad). The reason is that PC2 is
the member of concrete group ff08::db8, but allows to receive the data from any
source without any restriction. Therefore, PC2 will answer the Specific Query with
any source without caring if it exists or not.

Question 5:

What is the mechanism of querier election?
a) Which link-local address can be set to router R1 to avoid losing the querier role?
b) What address the attacker has to spoof when the legitimate router is having the
link-local address as fe80::1?

✓. Answer:
In IPv6, the MLD querier election is the process by which a single router on a

link is elected as the querier responsible for sending the MLD queries. This is done
to ensure that only one router is responsible for sending queries to avoid unnecessary
traffic and avoid duplicate packets. The election is based on the IPv6 address, with
the router with the lowest IPv6 address being elected as the querier.

In order to avoid being taken over, the IPv6 link-local address of legitimate router
R1 need to be the lowest on the local network (usually fe80::1).

However, the attacker can still take over the querier role of legitimate router R1
(with link-local address fe80::1) if it sets the link-local address to fe80::. This is
indeed the lowest link-local address.

A.3 Fragmentation

Question 1:

Does the PMTU of the path PC2-PC4 change if it is inserted with the value 1270
(bytes)?
a) Verify this by the implant_mtu.py tool of designed network toolkit and Osti-
nato.
b) Explain the impact after running these tools.

✓. Answer:
The PMTU of the path PC2-PC4 does not change when the value 1270 (bytes)

is inserted in Packet Too Big for sending. This is because 1270 (bytes) is smaller
than the minimum MTU (1280 bytes). Thus, PC2 will ignore this Packet Too Big
packet, and nothing is changed in the PMTU entry.

196

When using the implant_mtu.py tool of designed network toolkit, the con-
figuration is almost similar to the one of the previous cases. It is only needed to
change the MTU to the new value 1270, as shown in Fig. A.13.

Fig. A.13: Result after running the implant_mtu.py tool for implanting MTU
(1270 bytes) to the path PC2-PC4.

In Ostinato, the first HexDump field in Packet Too Big message, which is located
between the Internet Control Message Protocol (for Packet Too Big) and the Internet
Protocol ver 6 (for Echo Reply part in Packet Too Big message). The configuration
is depicted in Fig. A.14.

The format of generated packets by one of these tool is shown in Fig. A.15.

Fig. A.14: Configuration at the Protocol Data tab for sending Packet Too Big with
MTU (1270 bytes).

Question 2:

Does the PMTU of the path PC2-PC4 change if it is inserted with the value 1520
(bytes)? Explain the impact.

✓. Answer:
The PMTU of the path PC2-PC4 does not change when the value 1520 (bytes)

is inserted in Packet Too Big for sending. This is because 1520 (bytes) is greater
than the default Ethernet MTU (1500 bytes). Thus, PC2 will ignore this Packet
Too Big packet, and nothing is changed in the PMTU entry.

Question 3:

Does PC2 answer the packets with tiny fragments? Verify this by the network
toolkit.

197

Fig. A.15: Configuration at the Protocol Data tab for sending Packet Too Big with
MTU (1270 bytes).

✓. Answer:
PC2 respond to the ICMPv6 Echo Request with tiny fragments. The generated

packet is described in Fig. 5.49 with the help of the fragment_header.py tool.
The format of designed packets are shown in Fig. 5.50.

A.4 Router Solicitation and Router Advertisement

Question 1:

Which devices (R1, PC2, PC3) in the network scenario answer Router Solicitation
sent from PC1?
a) Show how to generate a standard Router Solicitation by using the network toolkit
(router_solicitation.py tool).
b) Capture the generated packet in Wireshark and the possible responses after send-
ing the Router Solicitation message.

✓. Answer:
Only router R1 responds to Router Solicitation from PC1 because PC2 and PC3

are not the routers. Router R1 answers this Router Solicitation with its own Router
Advertisement, in which the information about the router is included.

The configuration for generating this packet using the router_solicitation.py
is described below, with the described output in Fig. A.16. The captured Router

198

Solicitation is shown in Fig. A.17, while the response (Router Advertisement) from
R1 is totally identical to the one of Fig. 5.53.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Source IPv6 address: It can be left blank since the tool will automatically

generate the IPv6 address from the interface.
• Destination IPv6 address: -dip ff02::2. This is the IPv6 all-routers multicast

address. However, this option can be left blank since the tool will automat-
ically uses this address by default. On the other hand, the destination IPv6
address can be set as the unicast address. If this unicast address indicates
the real router, there will be the response. Otherwise, no stations reply this
Router Solicitation.

Fig. A.16: Result after running router_solicitation.py tool from PC1.

Fig. A.17: Captured Router Solicitation after running router_solicitation.py tool
from PC1.

Question 2:

a) If the legitimate router R1 has the Medium preference in Router Advertisement,
which level of preference that PC1 need to have in the generated Router Advertise-

199

ment for taking over the role of default router from R1.
b) Demonstrate the impact on PC2 by using the router_advertisement.py tool
and application Ostinato.

✓. Answer:
In this situation, the preference at PC1 needs to be from the level Medium

(to level High). The selection of default router also depends on the reachability.
However, this type of factor between PC1 and R1 is almost similar since they are
all located on the local network and all active. This behavior is demonstrated in the
previous section with the help of the network toolkit and application Ostinato.

Question 3:

a) Will the legitimate default router (R1) on PC2 be influenced if PC1 sends a
spoofed Router Advertisement message that sets the IPv6 link-local address of R1
as the source, the link-layer address of R1 as the source MAC address, the Medium
preference and the value of router lifetime as 0 second?
b) Demonstrate the impact on PC2 by using the router_advertisement.py tool.

✓. Answer:
With the help of router_advertisement.py tool, the Router Advertisement

with described parameters is designed as below. The output after launching is shown
in Fig. A.18. The captured Router Advertisement is illustrated in Fig. ??.

Fig. A.18: Result after running router_advertisement.py tool from PC1 to kill the
default router R1.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Source IPv6 address: It is set to the address of router R1 with syntax -sip

fe80::c801:11ff:fef5:8.
• Destination IPv6 address: -dip ff02::1. This is the IPv6 all-nodes multicast

address. However, this option can be left blank since the tool will automati-
cally uses this address by default.

• Preference of router: There are three levels of preference from Low, Medium to
High. These names reflect the priority level for routers that send out Router

200

Advertisement. In this instance, the medium level is inserted with syntax
-pref Medium.

• Router lifetime: In this case, it is set to value of 0 (-rlt 0).
• Link-layer address of router: This value is included in Source link-layer address

field within Router Advertisement packet. The link-layer address of router R1
is inserted as -rmac ca:01:11:f5:00:08.

Fig. A.19: Captured Router Advertisement after running router_advertisement.py
tool from PC1 to kill the default router R1.

After launching the designed toolkit, the network configuration at PC2 is imme-
diately influenced. There is no longer any default router at PC2, which can be seen
in Listing. A.4.

1 C:\Users\User>ipconfig
2

3 Ethernet adapter Ethernet0:
4

5 IPv6 Address. : 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Temporary IPv6 Address. : 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Link-local IPv6 Address : fe80::7790:2c2b:9e56:431b%4
8 Default Gateway :

Listing A.4: The network configuration of PC2 after receiving Router Advertisement
with zero lifetime of router (shortened output).

Thus, the default router R1 is absolutely eliminated (killed) from PC2, and the

201

network connectivity to the Internet from PC2 is cancelled (depicted in Listing. A.5
when PC2 communicates with PC4). However, when the legitimate router R1 sends
the periodical Router Advertisement to PC2, the default gateway is then restored
and the problem is automatically solved.

1 C:\Users\User>ping 2001:db8:abcd:3:31bc:eb00:7509:c9ec
2

3 Pinging 2001:db8:abcd:3:31bc:eb00:7509:c9ec with 32 bytes of data:
4 PING: transmit failed. General failure.
5 PING: transmit failed. General failure.
6 PING: transmit failed. General failure.
7 PING: transmit failed. General failure.
8

9 Ping statistics for 2001:db8:abcd:3:31bc:eb00:7509:c9ec:
10 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),

Listing A.5: Result of Ping message from PC2 to PC4 after running the tool to
eliminate the default router.

Question 4:

Does PC2 generate IPv6 addresses when PC1 sends Router Advertisement, in which
the prefix is link-local (for example, fe80::/64)? Verify the impact on PC2 by using
the network toolkit router_advertisement.py tool).

✓. Answer:
Similarly to the case of IPv6 global same prefix (analyzed in the section above

with the prefix 2001:db8:abcd:1::/64, PC2 will not auto-configure another IPv6
link-local address from the provided prefix fe80::/64. The original link-local ad-
dress at PC2 is not changed or updated, and still remains the validity. However,
other parameters such as the preference and flags in the Router Advertisement
definitely influence the behaviour of PC2 even though there is no change in the
configuration of link-local address.

To verify the impact with the help of router_advertisement.py tool, the
following configuration is considered, with the depicted output in Fig. A.20.

• Source IPv6 address: It can be left blank since the tool will automatically
generate the IPv6 address from the interface.

202

• Destination IPv6 address: -dip ff02::1. This is the IPv6 all-nodes multicast
address. However, this option can be left blank since the tool will automati-
cally uses this address by default.

• Preference of router: There are three levels of preference from Low, Medium to
High. These names reflect the priority level for routers that send out Router
Advertisement. In this instance, the medium level is inserted with syntax
-pref Medium.

• Prefix: The prefix information including prefix and its subnet mask is inserted.
In this situation, the link-local prefix is written with syntax -prefix fe80::/64.

• Valid lifetime: The length expressed in seconds that the prefix is valid for
on-link determination. In this case, it is set to 300 seconds with the syntax
-vlt 300.

• Preferred lifetime: The length expressed in seconds that the auto-configured
address from the prefix is preferred. It should not exceed the valid lifetime.
In this case, it is also set to 300 seconds with the syntax -plt 300.

• Address Configuration flag: This A flag is used to indicate that the host can
apply the included prefix for stateless address auto-configuration. It is set with
syntax -A.

Fig. A.20: Result after running router_advertisement.py tool with the provided
link-local prefix.

A.5 Neighbor Solicitation and Neighbor Advertise-
ment

Question 1:

a) What is Duplicate Address Detection (DAD) procedure?
b) Does PC2 manage to communicate with other nodes (except for PC3) on the
local network after being attacked by the neighbor_advertisement.py to prevent
auto-configuration? Verify this question by using this tool.

✓. Answer:
Duplicate Address Detection (DAD) is a procedure used in IPv6 networks to

ensure that an IPv6 address is unique before it is assigned to a network interface. The

203

Fig. A.21: Captured Router Advertisement after running router_advertisement.py
tool with the provided link-local prefix.

purpose of DAD is to prevent duplicate addresses from being assigned to different
network interfaces, which could cause communication problems and other issues on
the network.

The DAD procedure works by having a device send out an ICMPv6 Neighbor
Solicitation message with the tentative IPv6 address it wants to use as the target ad-
dress. If another device on the network is already using that address, it will respond
with an ICMPv6 Neighbor Advertisement message indicating that the address is
already in use.

If no response is received within a certain amount of time, the device can assume
that the address is not in use and can be assigned to the network interface. If a
response is received indicating that the address is already in use, the device must
select a new address and repeat the DAD procedure until a unique address is found.

In this attack described in the scenario, PC2 is unable to communicate with
hosts on the external network, as shown in Listing. 5.17. However, it can manage
to communicate with nodes on the local network since the link-local address of PC2
still exist and is active.

Question 2:

a) Does PC2 have to send Neighbor Solicitation when communicating with a host
on another network (PC4, in this case) for the first time?
b) How do the Neighbor Solicitation and possible Neighbor Advertisement look like?
Verify this question by sending Ping message from PC2 to PC4.

204

✓. Answer:
When PC2 wants to communicate with a host on another network (PC4) for

the first time, it sends a Neighbor Solicitation message to determine the link-layer
address of the next-hop router (R1) that will forward its packets to the destination.

The Neighbor Solicitation message from PC2 is used to resolve the IPv6 address
to the corresponding link-layer (MAC) address of the router. The node includes the
IPv6 address of the router in the "target address" field of the Neighbor Solicitation
message, and the router responds with a Neighbor Advertisement message that
contains its link-layer address.

A.6 Redirect

Question 1:

What is the function of Redirect packet?
a) Which content is present in a standard Redirect message?
b) Demonstrate by using the redirect.py tool and Ostinato. Capture the Redirect
message and analyze the format of the packet.

✓. Answer:
In IPv6, the Redirect function is used by routers to inform hosts about better

paths to a destination. When a host sends a packet to a destination via a router,
the router may determine that there is a better path to the destination, and it can
use the Redirect function to inform the host of the better path.

The Redirect function is used to reduce network congestion and improve network
efficiency by allowing hosts to choose better paths to destinations. When a host
receives a Redirect message from a router, it updates its routing table with the new
information and uses the better path for subsequent packets.

This packet is generated by the redirect.py tool (shown in Fig. 5.90) or by
application Ostinato (shown in Fig. 5.92, Fig. 5.93 and Fig. 5.94). The captured
Redirect in Wireshark is described in Fig. 5.91.

Question 2:

a) Which configuration is applied in order to restore the first hop of PC2 back to
the legitimate router R1?
b) Demonstrate by using the redirect.py tool.

✓. Answer:

205

In order to return the role of first hop of PC2 back to the legitimate router R1, it
is only needed to swap the value of the original router and the new router (between
PC3 and R1). Other parameters except for the link-layer address of the new router
are remained.

• Network interface: eth0, which is the interface of PC1 (Kali).
• Target’s IPv6 address: It is set to the global address of PC2 (victim) because

PC2 will communicate with PC4 (on another network) using this global ad-
dress. In this case, the syntax is -tip 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9.

• Destination IPv6 address: -dip 2001:db8:abcd:3:31bc:eb00:7509:c9ec.
This is the IPv6 global address of PC4 (destination).

• Original router: Now, PC3 is the original router (not R1 anymore). Therefore,
it is written with the following syntax: -ort fe80::6acf:9526:bf92:9de5.

• New router: This is the first-hop that PC1 wants PC2 to transmit pack-
ets through. The address of R1 is inserted in this case with syntax -nrt
fe80::c801:11ff:fef5:8.

• Link-layer address of new router: The MAC address of the legitimate router
(R1) is entered with syntax -rmac ca:01:11:f5:00:08.

Fig. A.22: Result after running redirect.py tool to restore the first hop to router
R1.

After launching the tool, as depicted in Fig. A.22, the communication is imme-
diately updated. Router R1 returns its role as the first hop of PC2. PC3 is now no
longer the Man-in-the-middle.

A.7 Dynamic Host Configuration Protocol version 6

Question 1:

In the task performed for the stateful DHCPv6, the preferred lifetime and the valid
lifetime have the same value with an aim to to simplifying the process of borrowing
addresses. However, is that applicable in practice?
a) If not, which type of lifetime has a longer duration.

206

b) Describe the process of DHCPv6 when the type of lifetime with shorter duration
expires.

✓. Answer:
The validity of an address on an interface is determined by its valid lifetime,

which is the duration it can remain available and functional. On the other hand,
the preferred lifetime refers to the intended period of full utilization of the address
on the interface, which should not exceed the address’s valid lifetime. Normally, the
valid lifetime is much longer than the preferred lifetime.

The process of Confirm and Renew is performed similarly to the described case
above. However, it is only applied for the preferred lifetime is about to expire (not
valid lifetime). If the leased address on PC2 is not renewed with this procedure,
this address still exists in the network configuration until the valid lifetime expires,
but is not active anymore. The reason is that PC2 sets this address to the type
Deprecated. After the valid lifetime is over, PC2 will terminate the leased IPv6
address.

Question 2:

Try using a different prefix provided by DHCPv6 server than the available one in
the given network from a legitimate router R1 (2001:db8:abcd:1::/64). Apply
the dhcpv6_server.py tool for solving the task.
a) Verify that PC2 will use the address according to the specified prefix and therefore,
it has addresses from several different ranges. Besides, it is essential to observe the
behaviour of PC2 when the value of valid lifetime (200 seconds) is smaller than the
one of preferred lifetime (400 seconds).
b) Verify that PC2 will use the address according to the specified prefix and there-
fore, it has addresses from several different ranges. Besides, it is essential to observe
the behaviour of PC2 when the value of valid lifetime (400 seconds) is greater than
the one of preferred lifetime (200 seconds).

✓. Answer:
Apart from the prefix 2001:db8:abcd:1::/64, users can set any prefix they

want. For instance, the prefix 2001:db8:abcd:8::/64 is applied in this situa-
tion. Other information such DNS server and domain is remained as the example
(2001::1002 for DNS server, thesis.local for the domain).

In case of shorter valid lifetime (200 seconds), the configuration is shown as
below.

• Network interface: eth0, which is the interface of PC1 (Kali).

207

• The prefix information: This include the prefix and the subnet mask that the
server defines. In this task, the prefix 2001:db8:abcd:8::/64 is chosen with
the parameter -prefix 2001:db8:abcd:8::/64.

• Valid lifetime: It is the valid lease length of the address that DHCPv6 server
provides. 200 (seconds) is the value that PC2 assigns with the syntax -vlt
200.

• Preferred lifetime: It is the preferred lease length of the address that DHCPv6
server provides. 400 (seconds) is the value that PC2 assigns with the syntax
-plt 400. This lifetime is greater than the valid lifetime in order to observe
the difference in function.

• DNS server: The IPv6 address of DNS server (in this case, 2001::1002) is
written as -dns_ip 2001::1002.

• Domain: The domain name is is inserted with syntax -domain thesis.local,
for instance.

Fig. A.23: Result of the dhcpv6_server.py tool with the shorter valid lifetime from
the stateful configuration.

After running the tool, as depicted in Fig. A.23, it can be seen that the negoti-

208

ation procedure is not successful. The preferred lifetime provided by PC1 (server)
has a longer duration than the valid lifetime, which violates the profile rule of PC2
(client). Therefore, PC2 silently ignores all Advertisement messages from PC1 every
time it discovers the available the server through Solicit packets. As a consequence,
PC2 does not have any IPv6 address from PC1. The captured packets are illustrated
in Fig. A.24.

Fig. A.24: Captured DHCPv6 packets after running the dhcpv6_server.py tool
with the shorter valid lifetime from the stateful configuration.

In case of longer valid lifetime (400 seconds), it is only needed to swap the value
between the valid lifetime and preferred lifetime in the configuration. Specifically,
the valid lifetime is inserted as -vlt 400, and the preferred lifetime is set as -plt
200. The output after launching this tool is shown in Fig. A.25.

As can be seen, PC2 succeeds in getting an IPv6 global address from PC1.
These four DHCPv6 messages (Solicit, Advertise, Request, Reply) demonstrate the
successful negotiation between PC2 and PC1. The captured DHCPv6 packets are
almost similar to the described example in the section Dynamic Host Configuration
Protocol version 6 5.7, which are shown in Fig. A.26. The only difference is IPv6
address in Identity Association option, where PC2 gets an IPv6 address generated
from the different range (2001:db8:abcd:8:7ca7:cb30:e297:ac54).

209

The network configuration of PC2 is now updated with three IPv6 global ad-
dresses, as depicted in Listing. A.6.

Fig. A.25: Result of the dhcpv6_server.py tool with the longer valid lifetime from
the stateful configuration.

Fig. A.26: Captured DHCPv6 packets after running the dhcpv6_server.py tool
with the longer valid lifetime from the stateful configuration.

When the leasing lifetime reaches 50% of preferred lifetime, PC2 sends a Renew
message to DHCPv6 server for the lifetime extension. PC1 (server) first verifies the

210

client’s identity using the client identifier option in the Renew message. Then. it
checks the lease time remaining for the client’s assigned IPv6 address and sends a
Reply message to the client with a confirmation of the renewal, as illustrated in
Fig. A.27. From now on, the leased address continues to be active on PC2.

1 C:\Users\User>netsh interface ipv6 show addresses
2

3 DAD State Valid Life Pref. Life Address
4 ----------- ---------- ---------- ------------------------
5 Preferred 29d23h59m59s 6d23h59m59s 2001:db8:abcd:1:36c4:ffc5:c10f:3ce9
6 Preferred 6d23h59m59s 23h59m59s 2001:db8:abcd:1:2816:ed5:a706:70b9
7 Preferred 6m39s 3m19s 2001:db8:abcd:8:7ca7:cb30:e297:ac54
8 Preferred infinite infinite fe80::7790:2c2b:9e56:431b%4

Listing A.6: Result of the address configuration at PC2 after the stateful DHCPv6
negotiation with longer valid lifetime (shortened output).

Fig. A.27: Result of the dhcpv6_server.py tool before the expiration of the address
with longer valid lifetime from the stateful configuration.

211

B Content of the electronic attachment
The electronic attachment contains the network toolkit, which has been designed for
testing and attacking IPv6 networks. It provides various tools that can be used to
scan, fingerprint, and exploit vulnerabilities in IPv6 networks. The network toolkit is
available on GitHub with the link https://github.com/vafekt/IPv6-toolkit[40]. The
structure of this toolkit (up to the time of the latest version 09/05/2023) is described
as below. The instruction about the usage of every single tool is mentioned in the
chapters above.

/..root of the attached archive
toolkit list of tools in the network toolkit

covert_channel.py
detect_new.py
dhcpv6_client.py
dhcpv6_server.py
extension_header.py
fragment_header.py
implant_mtu.py
mld_query.py
mldv1_report_done.py
mldv2_report.py
neighbor_advertisement.py
neighbor_solicitation.py
ping.py
probe_alive.py
redirect.py
router_advertisement.py
router_solicitation.py
routing_header.py
smurf.py
validate_parameters.py.................constructed library for the toolkit

212

https://github.com/vafekt/IPv6-toolkit

	Introduction
	IPv6 Background
	IPv6 Address Architecture
	IPv6 Header and Fields
	IPv6 Extension Headers
	Internet Control Message Protocol for IPv6
	ICMPv6 Message Format
	Informational Messages
	Error Messages
	Stateless Address Auto-Configuration (SLAAC)
	Multicast Listener Discovery (MLD)

	Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
	Stateless DHCPv6
	Stateful DHCPv6

	Processes on the road to the IPv6-only
	Dual-Stack
	Tunneling
	Protocol Translation

	Specification about the tools and platforms used
	Graphical Network Simulator 3 (GNS3)
	Cisco Internetwork Operating System (Cisco IOS)
	Python
	Ostinato
	Wireshark
	Kali Linux

	Designed Network Lab Scenarios and Format of Laboratory Operations
	Network setup of the Scenario 1
	Network Setup of the Scenario 2

	Methods for performing tasks in the network scenario
	Designed network toolkit using Python
	Application Ostinato

	Network Lab Scenario 1 with operations and analysis
	Multicast address
	Multicast Listener Discovery version 2 (MLDv2)
	Fragmentation
	Router Solicitation and Router Advertisement
	Neighbor Solicitation and Neighbor Advertisement
	Redirect
	Dynamic Host Configuration Protocol version 6

	Conclusion
	Bibliography
	Symbols and abbreviations
	Answers to review questions
	Multicast address
	Multicast Listener Discovery version 2 (MLDv2)
	Fragmentation
	Router Solicitation and Router Advertisement
	Neighbor Solicitation and Neighbor Advertisement
	Redirect
	Dynamic Host Configuration Protocol version 6

	Content of the electronic attachment

