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Anotace 

Tato diplomová práce se zabývá předzpracováním dat v rámci AutoML. Důležitou 
součásti tohoto výzkumu je analýza aktuálních AutoML nástrojů, jako TPOT či 
auto-sklearn, které objevily několik nedostatků v oblasti předzpracování dat. Práce 
obsahuje sadu navržených experimentů, které úspěšně řeší nalezené nedostatky. 
Tyto experimenty zahrnují například provedení detekce odlehlých hodnot, sjed­
nocení škál napříč proměnnými pomocí statistických vlastností, či predikce chy­
bějících hodnot na základě průměru různých prediktorů. Pro testování byly zv­
oleny čtyři datasety pro regresní úlohu a čtyři datasety pro klasifikační úlohu. 
Zhodnocení jednotlivých experimentů bylo provedeno s pomocí nově navrženého 
skóru, který penalizoval nevyrovnané výsledky napříč úlohami a datasety. Na 
základě těchto výsledků byla zvolena a otestována kombinace jednotlivých experi­
mentů, jenž dosáhly významného zlepšení oproti referenčním výsledkům. Celková 
zjištění této práce poukazují na důležitost dalšího výzkumu v oblasti automatizo­
vaného předzpracování dat v rámci AutoML. 

Synopsis 

This thesis focuses on data preprocessing as one crucial step of Automated ma­
chine learning (AutoML). Investigation of data preprocessing of the current state-
of-the-art methods is a significant part of this thesis, which identifies flaws in cur­
rent AutoML tools like TPOT or auto-sklearn. Based on results gathered from 
the analysis group of experiments, such as scaling features based on statistical 
properties, imputation as a combination of several methods, outlier detection, 
and others, has been designed. Evaluation of each experiment has been done 
using a score that hardly penalizes imbalanced results across different datasets, 
which were chosen for evaluation (four datasets for regression and four for clas­
sification task). Based on the results of the experiments, a set of the combined 
pipeline has been created and evaluated. The results of this thesis show that these 
experiments can significantly reduce the time and effort required for data pre­
processing while maintaining or improving the resulting models' quality. Results 
suggest automated data preprocessing will be increasingly critical for the future 
of AutoML development. 

Klíčová slova: AutoML, Předzpracování dat, automatizace 

Keywords: AutoML, Data preprocessing, automatization 
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Automated machine learning (AutoML) has been a hot topic in computer sci­
ence for over a decade. Still, the recent release of language models from OpenAI 
company has made the entire AI field a hot topic even outside the computer 
science community and enforced social discussion about automating more and 
more things in our lives. AutoML assumes that particular (or even all) steps in 
machine learning are at least partly heuristics, which could be automated with 
machine computing capabilities. The main idea of AutoML is to use the raw 
power of the machines to iterate over vast numbers of tools and their hyperpa-
rameters without any help from developers. This approach often results in similar 
results as with developers but with much smaller (computation vs. developer) 
costs. Current renowned AutoML solutions can outcompete human developers 
in many machine learning tasks, mentioning the recent ChaLearn completion 
auto-sklearn won recently. [1] 

Machine learning is a set of consecutive tasks like model tuning (hyperparam-
eter search). Still, from a time perspective, the most expensive part of machine 
learning tasks is data preprocessing which also consists of many heuristic tasks, 
like data cleaning, data transformation, outlier detection, and feature engineer­
ing. That is why it is crucial to investigate the current automation in data 
preprocessing, which is the thesis's primary goal. Specifically, design a set of 
experiments, gather a collection of various datasets, and test the experiments 
on a chosen set of datasets with overall improvement across all selected datasets 
in mind. Moreover, in the end, based on the results of experiments, propose 
new techniques that could be regularly used as part of AutoML pipelines. The 
proposed experiments will use the advantage of a combination of different pre­
dictors, which should result in better overall prediction or will present a rule of 
thumb that should improve, for example, data scaling or feature selection. 

The thesis comprises several chapters, with Chapter 2 covering the theoretical 
background. Chapter 3 outlines the analysis of current state-of-art AutoML 
tools. A description of experiments and used datasets is in Chapter 4. Results 
and discussion are presented in Chapter 5. 
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1 Theory 

1.1 Data Min ing 
Humans have collected data for over five thousand years, and its goal is still the 
same - to retrieve valuable information from the data. The main objective of 
every Information System is not to replace humans in their job but to enhance 
their abilities via tools that enable them to do the work on a higher level (and, 
therefore, more efficiently). So AutoML solutions are not the ultimate solution 
to machine learning problems but the tool to solve these problems much more 
efficiently.1 

The technologies themselves are not an answer. They are tools to 
help find an answer. It is no use looking for an answer unless there 
is a question. 

Dorian Pyle 

Data Mining is a set of algorithms that aims to learn hidden information or 
patterns from any given data. [2] 

In 1999 group of engineers, funded by the European Union, created the first 
version of Cross industry process of data mining (CRISP-DM) methodology. 
CRISP-DM became the unofficial standard of Data Mining in the following years 
and nowadays also. [3] CRISP-DM consists of several steps: Business Under­
standing, Data Understanding, Data Preparation, Modelling, Evaluation, and 
Deployment. 

Figure 1: Model of CRISP-DM methodology [4] 

xNot saying whether doing so results in a better or worse world. That is an ethical issue. 
Remarks on this topic on this page are omitted. 
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Business Understanding phase mainly involves deeply understanding busi­
ness needs. It consists of stating business goals and, accordingly, data 
mining goals. Also, create the project plan. 

Data Understanding phase aims to collect and explore the data using ex­
ploratory data analysis (EDA). Most of the time, this phase also involves 
data visualization. 

Data Preparation is the most exciting phase (for this work) for selecting or 
integrating the data (if we have more data sources). It includes formatting 
the data, cleaning the data, and transforming the data. This phase is 
equivalent to the Data preprocessing term coined as this work's main topic. 

Modeling phase involves correctly choosing the algorithm used for the data 
mining (Neural network, Random tree, etc.), selecting validation param­
eters (e.g., error rate), running the algorithm on the test data set, and 
assessing the results. These steps are often repeated several times. 

Evaluation phase evaluates the chosen algorithm on a validation data set and 
interprets the results by checking goals stated in the Business understand­
ing phase (business and data mining goals). 

Deployment is a phase in which the model needs to be deployed to be used 
by users. Nowadays, web application with A P I for calling the model is 
a common approach. [5] 

Relative Effort Spent on Each Data Phase in CRISP-DM 
70 i 1 

Business and data Data Modeling Evaluation Deployment 
Understanding Preparation 

Crisp-DM phase 

Figure 2: Relative effort spent on each CRISP-DM phase [6] 
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1.2 Machine learning 
Machine learning is a subset of the Artificial Intelligence field. It focuses on 
computer programs recognizing complex patterns by learning with only a limited 
subset of data 2 to recognize these patterns in unknown data. Machine learning 
solves various problems, such as image recognition, recommendation systems, 
speech recognition, natural language processing, and general prediction or clas­
sification of unknown data. Machine learning can help to automate tasks and, 
in general, make the world much more efficient. On the other hand, machine 
learning requires a considerable amount of data, and we need to remember that 
machine learning methods have, in (almost) all cases, accuracy lower than 100% 
on all possibly available data (as noted already not often available). [7] 

1.2.1 Machine learning problems 

Machine learning problems can be divided into three issues we aim to solve: 

Supervised learning is learning the correct mapping between the output fea­
ture (target variable) and the rest of the features to build an accurate pre­
diction model (classification or regression). It uses validation and training 
sets, whereas an algorithm is trained on the training set and then evaluated 
on the validation set to test its true quality (often called fitness). 

Unsupervised learning divides unlabeled data into newly discovered struc­
tures based on their similarities. With this approach, we can get new 
insight into the data. However, because the data are not labeled, we can 
not validate the results of Unsupervised data. Typical use is for clustering, 
anomaly detection, and dimensionality reduction. Another way of using 
unsupervised learning is to automatically label vast amounts of data with 
little effort, but we must expect some errors in labeling. 

Reinforcement learning uses an agent to act within the environment. If a ma­
chine learns the data, it gets a reward. If it does not learn, it gets pun­
ishment. The definition of the objective function is critical to motivating 
agents to make their decisions right. Agents want (they are programmed 
this way) to get the highest possible number of rewards and the lowest num­
ber of penalties. So the machine needs to update its behavior based on the 
given responses from the environment to get the best possible outcome. 

1.3 Data preprocessing 
Data preprocessing is the most time-consuming part of machine learning tasks 
(as seen in figure 2), so focusing on automating this can save much time (and, 

2In all reasonable cases, we cannot get all the data due to various reasons, such as they do 
not exist or insufficient memory. 
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therefore, money). If we fully (or almost entirely) automate it, we can save up 
to half the time for developers working on machine learning tasks. 

A l l machine learning uses numerical input only,3 so to use any data as input 
for a machine learning algorithm, we must be able to transform all non-numerical 
data into numerical ones. Also, when it comes to missing data due to errors 
during data acquisition (or other errors in general), we need to be able to respond 
(see 1.3.3 or 1.3.1). Furthermore, we must use the same scale for our existing 
and newly transformed data to avoid unwanted bias in our results (see 1.3.2). 
When we do all the abovementioned, we need to decide which features are useful 
and which are not (see 1.4.2) and whether there are any hidden useful features 
yet unknown to us (see 1.5). 

1.3.1 Outlier detection 

Outlier detection is a set of methods for identifying potential or actual outliers in 
the data. Outliers 4 are the data that differ significantly from the rest. Detecting 
outliers in raw data is problematic because it is often highly subjective (see 
figure 3). There are several approaches can be applied to recognize outliers: 

Statistical approaches use statistical parameters (i.e., mean, median, or stan­
dard deviation), and based on specific criteria (e.g., two standard deviations 
from the mean), we detect outliers (or set their score depending on their 
distance from the mean). 

Distance-based approaches use purely mathematical distances between data 
points with predefined threshold to detect points too far away from other 
points. There are many distance definitions, with most recognized dis­
tances like Manhattan, Euclidian, and Chebyshev. 

Density-based approaches use a predefined neighborhood based on a given 
distance threshold to identify highly dense clusters and then mark lower 
dense clusters as outliers. Of course, points without any cluster are also 
classified as outliers. 

Model-based approaches calculate the likelihood of a point belonging to the 
cluster; if the likelihood is below the threshold and the point does not 
belong to any cluster, it is a detected outlier. The key to this method is to 
identify the data distribution (e.g., normal distribution) and its parameters 
(for normal distribution: standard deviation and mean). 

The result of outlier detection can be either a set of data marked as outliers or 
a parameter for each data regarding their outlier score ("Outlierness"), which 
represents how much each item deviates from the data. 

3 As far as the author knows. 
4We can find numerous other names for outliers like anomalies, deviants, or abnormalities 

in literature. 
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Figure 3: Point A is undoubtedly an outlier in the first graph, but in the second, 
it is highly subjective to tell[8] 

Recognizing true outliers from tolerant noise can be hard (see figure 3). In 
the literature, outliers are divided into weak outliers (noise) and strong outliers 
(actual outliers). We must accept that the process is never accurate and tolerant 
noise can be (and often is) classified as outliers (see figure 4).[8] 

Weak or strong outliers 

Normal data / Inhere Noise Anomalies 

INCREASING OUTLIERNESS S C O R E FROM LEFT TO RIGHT 

Figure 4: Outlier score can mark noise as an outlier, but real outliers (anomalies) 
typically have a higher score than noise [8] 

1.3.2 Scaling 

Scaling is a set of methods that aim to convert all the features into one unified 
scale because different scales of numeric data across features can lead to biased 
and wrong weighting towards features with a larger scale, which we want in the 
general approach to avoid. Standardization includes several methods. There are 
several methods for scaling the data: 

Standardization uses a standard mathematical approach (subtracting by mean 
value and dividing by the standard deviation value of each value), which 
results in Gaussian distribution with a mean of 0 and standard deviation 
of 1. 

MinMax scaling using simple formula newX = X — minXj(maxX — minX) 
where newX is the transformed value, X is the original value, minX is 
the minimum value of the feature across the data set, and maxX is the 



maximum. The resulting range is between 0 and 1. A variant can then 
scale the result up to a given range (e.g., to move values between 1 and 2 
instead of standard 0 and 1). 

Normalization transforms each data (row) into a unit norm (i.e., if we square 
all the elements in the row and sum it, we would get 1). The resulting 
range is between 0 and 1. 

Robust scaling uses an interquartile range and median to calculate a new scale, 
which will be more resistant to outliers in the data. The transformation 
definition is the formula newX — (x — median)/IQR, where newX is 
the final transformed value, x is the original value, and the median is the 
median of the data. IQR stands for Inter Quartile Range which is defined 
as IQR = Q3 — Q1, where Q l is the median of the lower half (i.e., all values 
lower than the median) and Q3 is the median of the higher half (i.e., all 
values higher than the median). 

Maximal absolute value transformation uses a similar approach. Still, with 
only one bound (maximum) where the maximum value will be 1, the rest 
will be set proportionally to its max. See formula newX = X/maxX where 
newX is the transformed value, X is the original value, and maxX is the 
maximum value within the feature. The resulting range is —1 to 1. [9] 

1.3.3 Missing data 

Missing data is typical in datasets, and the reasons for missing values are vast. 
For example, a survey response is Don't know, a lousy sensor, or an error during 
data processing. One way to handle this issue is to ignore the data (see below 
Complete case approach), or we can impute them. Imputation is a set of methods 
to solve the problem of filling in missing values in the datasets. There are several 
ways to approach missing data: 

Complete case approach ignores all rows that have missing values. This can 
lead to biased results if the missing data are not missed randomly. 

Median/Mean/Constant approach fills the missing value with mean value, 
or robust approach fills the value with median or with constant. 

Machine learning approach uses well-known algorithms to impute missing 
data, for example, K N N , autoencoders, or GANs. 

Bayesian optimization models the distribution of missing values and performs 
Bayesian interference. For more detail, see 1.8. 

Choosing options for these techniques is quite complex. [10] 
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1.3.4 Other Transformation data 

Others transformation on our input includes modifying dates, texts, and cat­
egories. Transforming dates involves transforming dates into numerical repre­
sentations like timestamps (or more sophisticated numbers of days or years). 
Well-known external tools like a method of word-to-vec or TF-IDF can use text 
transformation. 

When it comes to categorical transformation, there are two main options 
based on underlying data type (ordinal vs. categorical). We use encoding when 
the underlying data type is ordinal and one-hot encoding when the underlying 
data type is categorical. Encoding assigns to each category a number (with 
ordering in ordinal type in mind), and one-hot encoding will create a new feature 
per category and assigns 1 if a feature is in the category (otherwise, 0). [11] 

1.4 Feature Engineering 
In general, feature engineering is about extracting features from given data. To 
produce a robust model which will do its work as best as possible, we may need 
to lower the dimensions of input data by removing not significant, redundant, 
and unnecessary features, or we can merge certain features into one combined 
feature. Feature engineering is a crucial part of designing data machine learning 
algorithms. [11] 

1.4.1 Feature generation 

For feature generation, we can discuss several methods that can improve our 
model by combining other features (that are then redundant) or by creating 
a new non-linear version of the original feature. There are the following options: 

Polynomial Features generates all the polynomial combinations of original 
features by raising the original features' power and combining them into 
one new feature. We get new non-linear features that can offer exciting 
value in insight into data and, in general, improve our machine learning. 
In practice, algorithms require a polynomial degree parameter, representing 
the maximum power of each original feature in generated combinations. For 
example, if we have two features: a, b, and by using Polynomial Features, 
we can get these combinations for degree 2: [1, a, b, a 2 , ab, b2]. [9] 

Discretization transforms a continuous variable to the ordinal variable or the 
ordinal variable to the binary variable. Ways of choosing the threshold for 
the latter are interquartile range, clustering methods, or constant. 

Dimensionality reduction reduces input data dimension and, by doing that, 
identifies the essential features that can be used as input to any machine 
learning algorithms. For more details, see section 1.5. 
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Kernel methods map the data to higher-dimension space (often with non-
linearity in mind) where linear models can be applied more sufficiently. 
Alternatively, we can map the data into lower-dimension space and, by 
definition, perform dimensionality reduction. For more details, see sec­
tion 1.6. 

1.4.2 Feature selection 

Feature selection is a process of choosing the most competent features that will 
result in the best results if used later within specific machine learning algorithms, 
we would like to know the quality of a feature, but that is generally a complex 
task. So in feature selection, there are several approaches to the problem: 

Statistical approaches use known statistical parameters to determine the qual­
ity of the feature or set of features. We consider variance, the correlation 
between features and output feature (target variable), the chi-squared test, 
and mutual information. 

Wrapper methods use different subsets of features and score them based on 
the quality of the subset. For example, Recursive feature elimination or 
forward/backward feature selection. 

Embedded methods use feature selection in machine learning and use the 
information of the contribution of each feature to the result, discriminating 
the inadequate ones. [12] 

Dimensionality reduction transforms data into lower-dimension while main­
taining as much information as possible. For more details, see 1.5. 

1.5 Dimensionality reduction 
Dimensionality Reduction is mapping a higher-dimension space to a lower di­
mension. The resulting subspace can be kept as our new data (with a lower 
dimension but often worse interpretability), or we can use a lower dimension for 
better visualization. Dimensionality reduction is trying to ease the impact of 
another problem called the dimensionality curse, which causes problems with a 
higher and higher dimension. The data are in these vast dimensionality spaces 
far from each other for every point, leading to very sparse space with problems 
(e.g., distance calculation of points so far away). 

The drawbacks of using dimensionality reduction are, by definition, loss of 
information during reduction. Also, there is much lower interpretability (i.e., 
what each component represents?), and specific methods can be computationally 
expensive. Another critical issue about dimensionality reduction is the correct 
method based on the underlying data (see below ICA and non-gaussian variable). 
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1.5.1 P C A 

One of the most famous dimensionality reduction tools is Principal Component 
Analysis (PCA). Its goal is to explain the maximum variance using the direction 
of the highest variance to choose new dimensions for transformation. P C A , in 
a nutshell, each step calculates the direction of the highest variance, makes this 
direction the new component, and projects all other data onto it (see figure 5 for 
visualization of the concept). This process is repeated until several required 
dimensions are calculated, and all data is transformed into this new coordinate 
system. P C A uses linearity assumption about variables and the importance of the 
highest direction of variance. The resulting components are also orthogonal. [13] 

> f 
Principle Component 

Original Coordinates Mew Rotated Coordinates... 

Figure 5: Concept of change of coordinates within P C A . In the first image, we 
can see our original data. In the second image, we can see the direction of the 
highest variance (the dark blue) and its orthogonal direction (the light blue) 
and (grey) original coordinates. In the last image, we can see the change of 
coordinates to dark and light blue coordinates (also, we can see the original 
coordinates) [14] 

1.5.2 ICA 

Another powerful tool for distinguishing two or more different underlying signals 
in data (e.g., signal separation from data) is Independent Component Analy­
sis (ISA) which was developed to distinguish independent components in non-
gaussian data (gaussian variables would lead to unsatisfactory results) compared 
to other approaches like P C A or factor analysis. The non-gaussian assumption 
leads to the non-sensitivity of linearity, or in other words, invariance to an invert-
ible linear transformation. So if we perform any invertible linear transformation 
before performing ICA, we will get the same results performing ICA on the 
transformed data. ICA has substantial sensitivity to noise, efficiency with more 
significant datasets, required number of independent components. Also, ICA 
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requires non-gaussian assumptions for each component and assumes non-linear 
dependencies between components. [15] 

1.6 Kernel Methods 
Kernel methods are a set of approaches to map the data into higher dimensions 
where the regular linear models can perform better than the original data. These 
methods achieve the non-linear discovery of dependencies in the data because the 
transformation function is often designed to be non-linear. So we can use stan­
dard linear models on the transformed data to discover non-linear dependencies 
within the data. 

Kernel methods map the data into higher-dimensional data but not map­
ping them directly (see section 1.6.1). Kernel functions compute the similarity 
between the points in generated higher dimensional space, not the points them­
selves. Results are stored in the kernel matrix. This approach using a combina­
tion of non-linear transformation and linear model leads to benefits from both. 
We can capture linear and non-linear dependencies without the feature engineer­
ing phase, which can be achieved. Also, kernel approximation methods can be 
pretty efficient because similarity matrix is less resource intensive than comput­
ing actual new higher dimension space (like Polynomial Features, see 1.4.1) or in 
some cases even impossible (see 1.6.1). The critical decision for kernel methods 
is choosing the suitable kernel method. Selecting a good kernel method can lead 
to satisfactory results. Even though the kernel methods are more efficient than 
simple methods like Polynomial Features (see 1.4.1), that does not spare the 
kernel methods a problem with more enormous datasets (or higher dimensions 
in general). With massive datasets, the computation of the similarity matrix 
grows quadratically (0(x2)). 

1.6.1 Kernel Trick 

We can use kernel methods for dimensionality reduction using the so-called kernel 
trick. The kernel trick approaches data not as points in space but as a similar­
ity (or association) between transformed points, so we do not compute actual 
points but only the similarity between them. See below Radial Basis Function, 
which does not compute the mapping from lower to higher dimensional space 
but only the association between the points in the higher dimensional space. Ac­
tual transformation with Radial Basis Function transforms the data into space 
with infinite dimensions, so the computation is even impossible, but calculating 
similarities between points is relatively easy. 

1.6.2 Kernel method algorithms 

Algorithms using the kernel method are, for example, S V M , kernel P C A , and 
Nystroem. 

11 



Support Vector Machines is probably the most famous algorithm using ker­
nel methods. In classification, it works by fitting hyperplanes between 
classes, but because often the data are linearly inseparable, it uses R B F 
kernel to transform data non-linearly. 

Nystroem method approaches the limitation of kernel methods by choosing 
essential points in the data called landmarks and performs kernel methods 
only on the landmarks (so on the subset of the original data), lowering 
the limitation of the big data. Choosing landmarks is a vital task in this 
method. Nystroem method also uses the Radial Basis function as its kernel 
function. [16, 17] 

Kernel P C A is a non-linear modification of P C A using the kernel function, 
which first maps the data into higher-dimensional and then applies regular 
P C A . [18] 

Now we can also look at certain kernel functions: 

Radial Basis function kernel is the most prominent kernel method. It is 
internally used as the default method in S V M and other algorithms. The 
function is following: 

k(x, y) = exp 
2/ 2 

where we can see that the function takes two input points (x and y) 
and computes their actual distance (d(x,y)), and divides that by doubled 
squared parameter / (2/2). The result is then placed into the exponential 
function. [9] 

Polynomial kernel is also a popular kernel method with the following function: 

k(x,y) = (xTy + c0)d 

where x and y are input vectors, and xT is transpose of x. d is the degree 
of the polynomial, and Cq is a non-negative integer. 

Cosine distance is a famous distance measure used, for example, in TF-IDF. 
The function is following: 

T 
/ \ % y 

cosmefx, y) = ———— 
M 2 M 2 

where x and y are input vectors, \x\2 and \y\2 denotes euclidian norm of x 
and y. [9] 
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1.7 Hyperparamter and A u t o M L search space 
A l l the machine learning tasks include hyperparameter tuning, which leads to 
exploring an unknown space to find the best (sometimes) optimal solution. The 
problem is that search space is often huge, and we will never be able to explore all 
the possible options. The challenge for AutoML is even more significant because 
AutoML has to search through possible machine learning algorithms and data 
preprocessing options, which leads to significantly bigger space than in the case 
of machine learning alone. Another issue related to hyperparameter search is 
the local minimum problem (see figure 6). When exploring space, we find the 
best solution in the local area, the local minimum, but not the global minimum. 
We need to find out the global picture, which could suggest where is the correct 
global minimum. The general approach to this problem is to use some heuristics 
which tell us in which direction we should look and also some randomization to 
prevent being trapped in only a local minimum, not the global minimum. 
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Figure 6: Illustrative example of the local minimum problem[19] 

Approaches to explore and find the best possible hyperparameter in the un­
known space are following Bayesian optimization using likelihood based on Gaus­
sian distribution and trade-off between exploration and exploitation, for more 
details, see 1.8 or Genetic algorithms imitating evolution with mathematical 
modeling of terms: natural selection, crossover, and mutation, for more informa­
tion, see 1.9. Other essential but simple approaches are the random approach 
(searching space entirely randomly) or grid search over all possible combinations 
(on a subset of search spaces). Still, these approaches can be used only in small 
spaces. Others, not mentioned in this paper, are Simulated Annealing inspired in 
metallurgy on heating and then cooling material for the best possible features (set 
of hyperparameters) [20] or Particle Swarm Optimization, which imitates moving 
particles (set of hyperparameters) moving in the unknown environment (search 
space) [21] or well-known Gradient-descent methods finding the best solution by 
following the steepest direction from each interest point. 
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1.8 Bayessian optimization 
Bayesian optimization predicts an unknown function that could be expensive to 
evaluate, using the probabilistic Gaussian process to model its most likelihood 
form. It starts by evaluating random samples of the expensive functions and 
using the Gaussian process on the promising points to evaluate. This process is 
repeated until a certain criterion is met (e.g., the optimal set of hyperparame-
ters found or the number of iterations exceeded). Finding interesting points to 
evaluate next is the key to this approach because it balances two approaches: 
exploitation and exploration. Exploitation (or refinement) is the process of sam­
pling points near the current maximums, but if this criterion is preferred, it tends 
to find only local maximums. On the other hand, exploration explores regions 
with higher uncertainty (not yet explored). [22] See figure 7 for an illustrative 
visualization of the concepts mentioned above. 

Figure 7: Visualization of the concept of exploitation (refinement) vs. explo­
ration 

One of the most practical uses of Bayesian optimization is finding the best 
hyperparameters without running every possible combination (which is unattain­
able even for basic examples). The Gaussian process is a problem essential to 
machine learning and Bayesian optimization. Gaussian process models unknown 
functions between a few observed points assuming Gaussian (normal) distribu­
tion. Imagine we have two (or several more but a finite number of points), and 
we would like to know which function fits our already observed points and all 
other points we still need to explore. The answer is one of an infinity of possible 
functions, and what the Gaussian process does is assume that this model of pos­
sible functions has Gaussian (normal) distribution. As described in figure 8, we 
can see five observed points, and we would like to guess (predict) the underlying 
function, which goes thru all the observations and not yet observed points. In 
the figure, we have three colored functions that fulfill our requirements. Also, 
we can see a grey area representing space with a 95% confidence interval if we 
assume the Gaussian distribution. [23] 

Best solution is 
missed 
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Figure 8: Five observed points and visualization of Gaussian process for fitting 
the known and unknown points [23] 

1.9 Genetic algorithms 
Genetic algorithms are a type of optimization algorithm based on evolutionary 
principles in human genetics. Initially, a specific number of potential solutions 
(called population) are randomly generated and evaluated using the fitness func­
tion. They are ranked based on their fitness value. Then these solutions are 
modified using genetic terms called natural selection, crossover, and mutation. 

Based on their ranking, the best solutions are chosen for the next generation 
(i.e., natural selection). Crossover is done by selecting two or more solutions and 
stochastically (i.e., determined by random chance) combined into new solutions. 
Stochastically chosen configurations are also mutated by modifying each fea­
ture with a minuscule probability. Then this process is repeated until a specific 
criterion is met (e.g., fitness threshold or number of iterations)[24] 

1.10 Curr iculum learning 
Curriculum learning is the machine learning approach that aims to imitate hu­
man knowledge acquisition by feeding basic information first and adding stochas­
tically more complex data. The experiments regarding curriculum learning sug­
gest that it improved learning by shortening the training process to a minimum, 
and decent increases in generalization have also been achieved. It can also achieve 
good results when a non-convex criterion is present because non-convex functions 
often have more local minimums, which can be troublesome (for more details, 
see 1.7). [25] 
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2 Analysis 
This section contains an analysis of state-of-art AutoML solutions: T P O T using 
tree-based pipeline generation with genetic algorithms to search through space 
(see section 1.7), Auto-sklearn using a Bayesian optimization algorithm. 

2.1 T P O T 
Tree-based Pipeline Optimization Tool (TPOT) is an open-source library and one 
of the most popular AutoML libraries these days. T P O T is using an internally 
famous library sci-kit learn. 

2.1.1 Algorithm summary 

Figure 9: Diagram of T P O T machine learning pipeline[26] 

T P O T is traversing the search space thru all the possible combinations of 
data preprocessors, machine learning algorithms (such as Random Forest, Neural 
Network, XGBoost), and its hyperparameters. So it is meant to run for days in 
parallel across several computers (except for the small datasets). If needed, the 
process can be stopped, and T P O T will return its current best result, or it can 
be resumed later. 

Internally T P O T transforms the data (Data cleaning) and then generates 
a huge number of pipelines containing data transformations (see figure 9), which 
together form a tree (hence the Tree-based in the name of T P O T , see figure 
10) and using genetic algorithms (see section 1.9) for finding a best possible 
solution. [26] 
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Figure 10: Example of T P O T pipeline forming a tree[26] 

2.1.2 Data preprocessing 

To properly analyze T P O T , let us investigate the configuration of T P O T . The 
actual configuration can be seen in an appendix in section A , but below is the 
description of the used fields: 

Median imputer is a scikit-learn implementation used by default in T P O T . 
Median imputer is a robust method, which should be more immune to 
outliers than, for example, the mean. 

ZeroCount is a counter of zero and non-zero values per each feature that are 
then added to data as other features. 

OneHotEncoder is the T P O T implementation of One Hot encoding used for 
the transformation of non-numerical data to categorical one (see section 
1.3.4) with a default threshold value of 10, which means that every fea­
ture that has lower unique values than 10 is considered as a categorical 
feature and encode as such. One hot encoder has another parameter called 
minimal_fraction filled with values 0.05, 0.1, 0.15, 0.2, and 0.25 (filled dif­
ferently for each pipeline), representing the minimum fraction used to be 
considered as a categorical feature. For example, suppose the feature has 
one repeated value representing 12% of all values within the feature. It is 
considered and encoded as a categorical feature if the minimum fraction is 
set to 0.1 or lower. 

StandardScaler is a scikit-learn implementation of feature scaling called Stan­
dardization (see section 1.3.2). 

RobustScaler is a scikit-learn implementation of feature scaling Robust scaling 
(see section 1.3.2). 
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MaxAbsScaler is a scikit-learn implementation of feature scaling called Max­
imal Absolute value transformation (see section 1.3.2). 

MinMaxScaler is a scikit-learn implementation of feature scaling called Min-
Max scaling (see section 1.3.2). 

Normalizer is a scikit-learn implementation of feature scaling called Normal­
ization (see section 1.3.2) with a parameter norm with difference metrics: 
11, 12, and max. 

FastICA is the scikit-learn implementation of a variation of the ICA algorithm 
(see section 1.5.2) designed for quick performance with a parameter tol, 
which represents tolerance to convergence. The parameter can be set to 
values from 0,0.05, 0.1, 0.15, . . . ,1. 

P C A is the scikit-learn implementation of a renowned algorithm called P C A 
(see section 1.5.1) with a parameter svd_solver set to randomized and 
a parameter iterated_power set to numbers from 1 to 10. 

RBFSampler is a kernel method (see section 1.6) which uses the Radial Basis 
function kernel, and it is a variant to Random Kitchen Sinks. [9, 27] 

Polynomial Features is the scikit-learn implementation of Polynomial feature 
generation (see section 1.4.1), which has parameters: degree set to 2 corre­
sponding to generate features up to the power of 2, include_bias to false 
which ignores the 1 in the sequence, and interaction_only to false which 
means that sequence will also include mixed features during multiplication. 
It means that the results will be the following: [x,y,xy,x2,y2]. 

Nystroem is a scikit-learn implementation of kernel method Nyostroem (see 
section 1.6.2) with a parameter kernel containing all the kernel functions 
that scikit-learn bears, a parameter gamma which controls the kernel func­
tion with values 0, 0.05, 0.1, 0.15, . . . , 1, and a parameter n_components 
set to values from 1 to 10 which defines the size of a random subset of 
original data that is used for kernel approximation. 

Binarizer is a scikit-learn implementation of Binarizer (see section 1.4.1) which 
transforms feature to binary feature according to threshold parameter with 
values 0, 0.05, 0.1, 0.15, . . . , 1. 

Feature Aglomeration is a scikit-learn algorithm that recursively agglomer­
ates features based on each feature's given metric (affinity) and linkage 
parameters. The parameter linkage defines the distance between sets of 
features and is filled with values euclidean, 11, 12, cosine, manhattan. 
Another parameter called affinity sets the metric and is filled with values 
ward, complete, average. 
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2.2 Auto-sklearn 
Library scikit-learn is a famous library implementing all the basic and standard 
machine learning algorithms. The auto-sklearn algorithm is built on top of the 
famous library scikit-learn (same as TPOT) . Auto-sklearn has won the renowned 
contest ChaLearn AutoML Challenge 2015-2016 and 2017-2018. [1] 

2.2.1 Algorithm summary 

Auto-sklearn uses Bayesian optimization for traversing search space by sampling 
a set of possible combinations of hyperparameters, data preprocessing stages, 
and algorithms. Based on its results, it updates the probabilistic model (see 
section 1.8). 

Auto-sklearn does have default configurations for each of the methods, but by 
default, it uses internal transfer learning methods to apply so far the best config­
urations for each task (i.e., regression or classification) as the start configuration 
of the genetic algorithm used in auto-sklearn. 

Due to the fact that auto-sklearn uses genetic algorithm features described by 
python package ConfigurationSpace, which allows exploring continuous parame­
ter space. For example, gamma parameter in Nyostrem is modeled as a uniformly 
distributed float (continuous) hyperparameter between 3.051 757 812 5 x 10~5 and 
8 values. 

2.2.2 Data preprocessing 

Auto-sklearn is also built on top of sci-kit learn, just like T P O T , so they have 
a lot of algorithms in common. The actual configuration can be found in each 
file in Github repository feature preprocessing folder and Github repository data 
preprocessing folder. Here is a list of possible configurations for feature prepro­
cessing used in auto-sklearn: 

FastICA is the scikit-learn implementation of a variation of the ICA algorithm 
(see 1.5.2) with parameter n_components with possible integer values be­
tween 10 to 2000 (defining possible number of possible independent compo­
nents, see 1.5.2) and algorithm parameter with possible categorical values 
parallel or deflation. And boolean parameter whiten transforms already 
transformed data to a mean of 0 and standard deviation equal to 1 (this 
process is called whitening, hence the name of the parameter). Another 
parameter called fun defines the used function with possible categorical 
values: logcosh, exp, or cube. 

RBFSampler is kernel method (see section 1.6) with usual parameters gamma 
and n_components set to logarithmic sampling. Parameter gamma is set to 
possible float values between 3.051 757812 5 x 10~5 and 8. And parameter 
n_components has integer values between 50 and 10000. 
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Nyostrem sampler is a scikit-learn implementation of kernel efficient method 
Nyostroem (see section 1.6.2) with a similar set of parameters. The pa­
rameter kernel have possible values poly, rbf, sigmoid, cosine, and in 
certain cases (i.e., sparsed and not signed data) chi2. And parameters 
n_components and gamma has the same values as RBFSampler (see above). 
The parameter degree for poly kernel setting its degree with values 2 or 3 
and coefO parameter with float values between —1 and 1 for kernels sigmoid 
and poly. 

FeatureAgglomeration is a scikit-learn algorithm that recursively agglomer­
ates features with the same linkage parameter with values ward, complete, 
average as T P O T . Parameter affinity has values: euclidean, manhattan 
and cosine. Parameter (not in TPOT) pooling_func with possible values 
mean, median, and max denning a function to aggregate or pool features 
in each cluster. 

P C A is the scikit-learn implementation of a renowned algorithm called P C A 
(see section 1.5.1) with different parameters than T P O T . The parameter 
keep_variance can be set to float values between 0.5 and 0.9999, which 
selects the minimum components while retaining (able to explain) at least 
given the variance in the original data. And boolean parameter whiten 
deciding whether to perform whitening. 

Polynomial features is the scikit-learn implementation of Polynomial feature 
generation (see section 1.1.1) with parameters degree set to values 2 or 3 
(contrary to T P O T with only value 2) and parameters interaction_only 
and include_bias with possible values True or False. 

Kernel P C A is a variant of the well-known algorithm P C A which uses the 
kernel trick (see sections 1.6.1) to capture also non-linear dependencies in 
the data. Parameter n_components can be integer value between 10 and 
2000 and kernel parameter with various kernel functions (such as rbf, or 
sigmoid, or cosine, or poly). Parameters gamma, coefO, and degree same 
as RBFSampler (see above). 

Linear SVC is a variant to the well-known method S V M (see section 1.6.2) 
with parameters penalty specifying norm used in penalization set toll, dual 
set to false means solving the primal optimization problem only which is 
preferred in cases when samples > features (which is assumed is almost 
in all cases), loss parameter, for specification of the loss function, set to 
categorical values hinge or squaredhinge. Another parameter tol with 
uniform float values between 1 x 10~5 and 1 x 10 _ 1 for specification of 
toleration of stop criterion. Another parameter fit_intercept set to false, 
which means that the algorithm assumes data is already centered. The 
parameter intercept_scaling is set to 1, meaning no scaling. The parameter 
c is a regularization parameter set to float values between 0.03125 and 
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32768 with logarithmic sampling. And last parameter multi_class set to 
ovr which sets the multi-class strategy to one-vs-rest (the other alternative 
crammer_singer is considered only theoretical due to its consistency, but 
it rarely leads to better results than ovr). 

SelectPercentil is a feature selection method that chooses only features that 
score above a defined threshold. Provided parameter percentil establishes 
the threshold for acceptance of the feature and is filled with float values 
between 1 and 99. The parameter score differs based on the given task. If 
a regression task is present, the score function can be mutual information 
(mutual_info) or f_regression. For a classification task, the score func­
tion can be Chi-squared (chi2, for sparse matrices used as the only option) 
or mutual information (mutual_info) or f_classif (for further info see 
Scikit-learn Documentation). 

Extra Tree Preprocessors is pair (one for the classification task and one for 
the regression task) of feature selection and feature generation algorithms. 
It is a variant of the Random Forest ensemble method. It generates a series 
of decision trees with randomized threshold selection (instead of finding the 
best one in a regular Random Forest) on only a randomly selected subset 
of original data. By doing so, it can identify the best features (feature 
selection) or the best combination of features (feature generation). Extra 
Tree preprocessors have numerous parameters constraining the building of 
trees in Random Forest (e.g., max_depth or max_leaf_nodes) and gen­
eral parameters: criterion setting the split function (gird or entropy). 
n_estimators setting the number of trees in Random forest, bootstrap 
boolean parameter deciding whether to use bootstrapping or not. Boot­
strapping creates unique subsamples of original data with allowed rese-
lecting of the same values (i.e., some data can be used several times, but 
others cannot be used at all). And the last parameter max_Jeatures defines 
several features considered for choosing split in an internal node in a tree. 

Truncated SVD is a variant of the favorite SVD algorithm used for matrix 
factorization. The difference between SVD and truncated SVD is the com­
putation of only top n components (instead of all components). So this 
method has one parameter target_dim with integer values between 10 and 
256. [9, 28] 

And there is a list of data preprocessing used in auto-sklearn: 

Variance threshold is a scikit-learn method to cut off all the features with 
constant values (i.e., variance equal to 0). Auto-sklearn calls this method 
with threshold parameter equal to 0, removing all constant features that 
do not bring any information. 

Balancing is a Python class in auto-sklearn responsible for balancing the data 
by adding appropriate weights - some models require class weights, and 
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some do require sample weights. The difference between those weights is 
when they are used - class weights are used in the loss function. In contrast, 
sample weights assign the weights to the actual data. 

Encoding is also part of auto-sklearn with its implementation of one-hot en­
coding and also ordinal transformation (see section 1.3.4). It also has "no 
encoding" option. 

Category shift is another auto-sklearn implementation of a category shift pro­
cess, which moves the values of each category encoding by a random number 
up or down, creating a new category encoding. This process can be helpful 
when encountering an ordinal feature with an unknown order. 

Categorical imputation in auto-sklearn is used to fill data with the constant 
value derived as a new minimum, so this process sets all missing values to 
a new category interpreted as an unknown class. 

Numerical imputation is a standard implementation of the imputation of 
missing data (see section 1.3.3) with strategy parameter with possible val­
ues mean, median, or most_frequent. 

Minority Coalescer is a method of grouping minority classes into higher classes 
which can increase between-class balance with better and quicker (better 
performance) results. The parameter minimum_Jraction is set to uniform 
float values between 0.0001 and 0.5 with logarithmic sampling. For the 
sake of completeness, there is also a step called "No Coalescence". 

Text encoding is implemented in auto-sklearn with Bag of words (using scikit-
learn implementation called CountVectorizer) and TF-IDF methods (using 
scikit-learn implementation called TfidfVectorizer). 

Text feature reduction is a method that helps to lower the number of features 
that arise after applying text encoding (see above) by calling truncated 
SVD (also see above) with an only parameter n_components set to values 
between 1 and 10000. 

MinMaxScaler is a scikit-learn implementation of feature scaling called Min-
Max scaling (see section 1.3.2). 

Normalizer is a scikit-learn implementation of feature scaling called Normal­
ization (see section 1.3.2) with a parameter norm with difference metrics: 
11, 12, and max. 

Power transformer is a data preprocessing transformation that makes features 
more Gaussian-like. 

Quantile transformer is a scikit-learn algorithm that can be used to transform 
data to uniform or normal distribution with the help of statistical quantiles. 
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The parameter n_quantiles is set to an integer between 10 and 2000, which 
specifies the number of quantiles to be computed. Another parameter 
output_distribution is set to values either uniform or normal. 

StandardScaler is a scikit-learn implementation of feature scaling called Stan­
dardization (see section 1.3.2). 

RobustScaler is a scikit-learn implementation of feature scaling Robust scaling 
(see section 1.3.2). 

2.3 Selection of baseline library 
Simple tests to check AutoML tools adoption quality have been performed by 
creating a fresh new environment at Google Colab. T P O T has been successful, 
but the auto-sklearn failed to install. Later, with more investigation into why 
it failed, no reasonable explanation was found, resulting in choosing only T P O T 
for testing. This decision does not invalidate the entire testing process because 
the methods use a similar subset of scikit-learn methods. 

2.4 Summary 
Based on the analysis results in the sections above, we can see that T P O T 
or auto-sklearn performs no outlier detection or organized scale unification of 
features. T P O T does not perform any transformation of non-numerical data 
even. Both tools use entirely various methods for feature selection. Nevertheless, 
all methods mentioned in the analysis are applied without any prior knowledge 
of others. 

23 



3 Implementation 

3.1 Datasets 
The datasets for evaluating experiments have been chosen for various aspects 
of data preprocessing, for example, datasets with vast percentages of missing 
data to test imputation, datasets with non-numerical data to test transformation 
to numerical data, or datasets with a tremendous number of features to test 
feature selection, or datasets with a vast number of rows to tests experiments 
against real-world sized examples. Also, datasets consist of both classification 
and regression tasks (four datasets each). 

Here is the list of chosen datasets with their shortcuts used in the practical 
part (e.g., see below dataset Adult income dataset with its shortcut, denoted in 
bold text, Income which is used in the code and results): 

Boston dataset contains Boston housing data. The dataset should be used for 
predicting (i.e., regression task) the price of houses in the Boston area.[29] 

Bank Marketing dataset containing a series of bank telemarketing data with 
a target variable representing whether the marketer has been successful and 
the client has deposited money in the bank (i.e., classification task).[30] 

Income dataset refers to the Adult income dataset containing data regarding 
household income across the globe with target variable with possible values 
">50k" or "<=50k" (i.e., classification task).[30] 

Ames housing dataset is similar to the Boston housing dataset but contains 
much more information about the property and its location. Same as 
Boston, it is used for a regression task. [31] 

Airquality dataset contains air quality measurements in an Italian city with 
poor air quality (used as a regression task).[30] 

Brazil dataset contains a subset of the original dataset, which merged temper­
ature results and other information across weather stations across Brazil. 
Due to the extensive size of the dataset, the computation complexity is 
high, so for a reason described in section 4.2, only a subset of the dataset 
(100000) has been taken into account (used as regression task).[32] 

Home loan approval is a dataset containing data from private banking compa­
nies with the need to choose whether to loan money to the customer or not 
(i.e., classification task).[33] 

Shootings is a Kaggle dataset containing information about the police shooting 
in the USA. It contains information about each police shooting between 
2015 and 2020 across the USA (used as a classification task).[34] 
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3.2 Methodology 
The experimental process of this paper is the following: 

1. Select datasets (using the selection process described in section 3.1). 

2. Evaluate baseline results on each dataset. 

3. Design experiments (see section 3.3). 

4. Evaluate each experiment on each dataset. 

5. Choose the best combinations of experiments. 

6. Evaluate selected combinations of experiments on each dataset. 

Evaluating baseline results has been performed with the transformation from 
string to numerical value using pandas.factorize, which sets each unique string 
a different number within each feature. This transformation was also available 
to all experiments if needed. 

Setting up a proper validation score to validate the experiment is essential. 
The baseline comparison method is used to measure the quality of the experi­
ment. The score is divided into two cases: either a dataset and experiment have 
performed better than the baseline or worse. In case of better performance: the 
logarithmic (see below for exact formula) function is applied. In other cases, 
the absolute and exponential functions are applied. This score is designed to 
penalize that the experiment performs well on specific datasets and poorly on 
others. The ideal solution would perform better across all datasets (the general 
case). In the section 3.1, there is a description of datasets used to evaluate our 
experiments. These datasets are divided into regression and classification tasks 
(4 datasets in each category). But the scoring is done on relative improvement, 
so it is the same for both tasks (classification and regression). The formula for 
the computation of relative is the following: 

This formula represents the computation of relative improvement against the 
baseline result denoted as base. The res represents the result of our experiment 
performed on this dataset. Then the score is computed using the following 
formula: 

The final score of the experiment is the average score across all datasets. The 
score has been designed to measure overall quality and hardly punish experiments 
that perform superbly on a certain dataset and poorly on another dataset (see 
figure 11). 

impr (base, res) = (base — res)/\base 

log e ( l + impr(base, res)) if impr (base, res) > 0 
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Figure 11: Graph illustrating score function with values —2 to 2 

3.3 Experiments 
In this section, specific experiments are proposed: 

Categorical transformation experiment is a method that leverages known 
rules of thumb when approaching the task of transforming non-numerical 
to numerical with a decision over the nature of the underlying feature 
(categorical or ordinal). 

Curriculum-based experiment uses motivation from human learning that we 
should start from the topic's core and randomly add more complex knowl­
edge. So this experiment leverages the order of data filled in that could 
learn the basic and then the more complex, which could result in better 
generalization (see 1.10). 

Handling of missing values experiment designs a sophisticated imputer for 
missing values by combining results of various imputation tools like K N N 
or median imputer. 

Scaling experiment designs a rule of thumb for using specific standardization 
techniques (i.e., when to use which) to unite the scale of all features to 
prevent unwanted bias in the results towards features with a higher nominal 
value (e.g., numerical age feature vs. categorical education feature). 

Outlier detection experiment creates a standardized way of detecting out­
liers in AutoML by combining results of various outlier detection tools like 
D B S C A N or L O F . 
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Feature selection experiment uses a set of rules to remove features that are 
redundant or contribute poorly to predicting the target variable. It per­
forms statistical checks against the features, like variance, a correlation 
between features, and correlations between features and the target vari­
able. 

3.3.1 Curriculum-based experiment 

The curriculum-based experiment is based on a simple assumption that imitates 
human learning. We first digest less complex information and then add more 
complex information until we master it. This experiment is designed as the 
following process: 

First, calculate the mean or median of the data to get the center. Alterna­
tively, perform linear regression or Polynomial Features transformation and find 
its center. In the case of linear regression, we fit data to the linear regression 
model and take its underlying regression line as the center. In the case of Poly­
nomial Features, we get the space with a higher dimension, so we take only the 
first n of the coordinates of its center, where n is the number of features of the 
original data. After finding the data's center, calculate the Euclidian distance of 
each point to the center. Then apply the Gaussian-like function (see below) to 
these distance values to assign the Gaussian (normal) distribution likelihood of 
the point for each point from the original data. See Gaussian function: 

Where distance is the distance of the point from the center and distances is the 
array of all distances of all points from the center, and var is a function that 
returns variance. Exp function is a regular exponential function. This entire 
function resembles one side of the characteristic bell-shaped Gaussian function 
(see figure 12). 

Then perform random sorting using the calculated likelihood. Based on this 
assumption, data closer to the center are more likely to be sorted at the beginning 
and points far from the center are more likely to be sorted at the end. This 
process provides us with a Curriculum-based approach imitating human learning. 
Of course, Curriculum learning, as initially thought of, was meant to be human-
preprocessed, but this experiment is about getting a reasonable approximation. 
Choosing the right center approximation method is essential to this experiment 
so several methods will be tested separately. 

3.3.2 Categorical transformation experiment 

Categorical transformation experiments are trying to design a rule of thumb for 
a complicated (subjective) decision: whether the string feature resembles the 
categorical or ordinal distribution. Another issue these experiments address is 
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Figure 12: Graph illustrating Gaussian-like function with values 1 to 100 

the explosion of new features in the case of one-hot encoding (categorical case). 
The designed rule of thumb is the following: 

First, we identify features that are not numerical. Then for all those features, 
we get the number of unique values. Suppose the number of unique values of the 
feature is above 10 (hyperparameter of the method called n_unique), then we 
assume the value is ordinal and set a random number for each category. If the 
number of unique values is lower than 10, we assume the data are categorical 
and perform one-hot encoding. Because the one-hot encoding can dramatically 
increase the number of features, we also perform (or not if it is not set hyper­
parameter feature_selection) matrix factorization method (NMF algorithm) on 
only newly created features. If the precision of the matrix factorization is below 
the threshold (also hyperparameter to/), we select the best features based on 
a specific score using SelectKBest from scikit-learn. The default score used is 
A N O V A F-value computed as below: 

(E]=1(y,-m)2/(m-i))  
1 {Tr3=1{y3-y)V{n-m)) 

Where n is the number of rows (observations), m is the number of features 
(groups being compared), yj is jth row, and y is the mean of all observations and 
y~i is mean of all observations in ith feature (group). The result Fi is the score 
computed for ith feature (group). 

28 



3.3.3 Combined imputation experiment 

A combined imputation experiment is based on the assumption that imputation 
is a prediction, and if we use different predictors, the combination of them will 
give the best possible prediction. Also, the more disparity amongst the impu­
tation method approach, the better the combined results. This experiment will 
use several methods to impute missing values and then take their average. We 
have the following methods: 

Median is a robust method using a median to compute missing values. 

K N N is the basic method for imputation taking into account k nearest neighbors 
for computing the missing value. 

Most frequent fills missing values with the most frequent value for each fea­
ture. 

Linear regression is a method that uses other values within the feature for 
interpolating the missing value. 

Mean is another basic method for imputation but is very susceptible to outliers. 

3.3.4 Outlier detection experiment 

The outlier detection experiment assumes that none of the analyzed AutoML 
tools perform any outlier detection, which can cause unnecessarily increased bias 
in the model. This experiment performs various kinds of outlier detection to 
determine the best (or set of the best) outlier detection that should be added into 
AutoML tools to achieve better results by removing detected outliers. The result 
of outlier detection is either taken as the first feasible solution (hyperparameter 
mode set to first) or a combination of each method by either performing essential 
OR function or A N D function on the results from each method (corresponding 
to hyperparameter mode set to and or or) 

3.3.5 Scaling experiment 

The scaling experiment assumes that each feature should have the same (or at 
least similar) scale. In case that features do not have the same scale, the model 
can be biased in the way of features with a higher nominal value (e.g., numerical 
age feature vs. categorical education feature). The scaling experiment scales all 
the features to one unified scale by designing a particular rule of thumb. We 
select the best scaler for each feature based on its underlying distribution using 
statistical tests: The Shapiro-Wilk test for Gaussian (normal) distribution and 
the Fisher-Pearson test for skewness. 

The first case is that all features are Gaussian, so we perform on each feature 
z-score transformation (using StandardScaler). If a feature is skewed, perform 
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Power Transformation before the z-score transformation, which makes the fea­
ture less skewed and more Gaussian-shaped. In case of not performing outlier 
detection (hyperparameter outlier_detection_performed), perform RobustScaler 
first, which is a robust method that scales the data by using IQR (Inter-Quartile 
Range). 

The other case is if not all features are Gaussian, particularly at least one is 
not Gaussian. Then perform the same procedure as in the all-gaussian case for 
each feature that resembles the Gaussian distribution. In case of that feature is 
not a Gaussian and outlier detection has been performed, perform Power Tran-
formation and then z-score transformation. If outlier detection has not been 
performed, perform RobustScaler as the first step of the pipeline. 

3.3.6 Feature selection experiment 

The feature selection experiment is based on the assumption that almost all 
datasets contain information that is essentially useless for the task (e.g., an ID 
of an employee). Feature selection experiment is designed to perform essential 
statistical checks on features. First, it checks whether the variance of each feature 
is at least given minimum (hyperparameter variance_threshold), then if all val­
ues have at least minimum correlation with the target variable (hyperparameter 
target_correlation_threshold). Then it computes a correlation matrix to deter­
mine whether a group of features are not highly correlated with each other. If so, 
select the best from each group (others will be removed). Choosing the groups 
can be expensive since we seek to find maximum cliques in unoriented graphs 
(NP-complete). That is why there is hyperparameter use_clique which can be 
set to False, which means that algorithm will only search for connected com­
ponents due to naive assumption about the transitivity of correlation between 
features. Finding connected components is much easier than finding maximum 
cliques. In most datasets, there is an enormous number of data rows, but the 
number of data columns is often manageable, so finding maximum cliques should 
be all right. 

In the end, P C A decomposition is used when use_pca hyperparameter is 
set, and pca_tol hyperparameter sets the tolerance for the required explained 
variance preserved. 
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4 Summary 
This section contains a summary of the results of the experiments. As noted in 
previous sections, the experiments have been evaluated independently and, after 
that, added as combinations to the final experiments, which were tested again. 
The full results are present on the embedded medium in directories results/score 
or results/raw. 

4.1 Results 
This section contains commentary on the results of all experiments. The follow­
ing list contains commentary results for each experiment with the best score: 

Categorical transformation Experiment has been a neutral or slight im­
provement to the baseline results, which is a success because this process 
step can be used at the beginning of every AutoML pipeline and can trans­
form string representations into numerical ones without any significant loss 
(or even slight improvement). The best score has been achieved by ignoring 
feature selection (hyperparameter feature_selection set to False), which 
was used in the following experiments. When feature selection was used, 
the results were worse but not that much (best score: —0.000158), which 
is why it has also been used for the following experiments (lowering the 
dimension could be more critical than the minuscule loss of precision). 
[Best score: 0.000251] 

Handling of missing values experiment has been successful with the best 
combination of using K N N (with hyperparameter k set to 3) and linear 
regression. This combination has been used in the following experiments. 
[Best score: 0.010480] 

Outlier detection experiment has performed exceptionally well because all 
the tested combinations have positive scores. Also, the results are similar 
(ranging from 0.023325 to 0.044256), so it did not matter much what hy-
perparameters were used. So for efficiency reasons, we chose the best set of 
hyperparameters with eps set to 0.5 and min_samples set to 3 and mode 
set to first, which takes the first feasible solution. 
[Best score: 0.044256] 

Curriculum-based Experiment has been unsuccessful. Findings suggest that 
ordering does not improve the overall prediction but even dramatically 
worsens the results. Results are up to 2.7 times worse than the baseline 
results. Differences between results are minimal, except for the mean cen­
ter, which was far worse than others. This experiment has been removed 
from final combinations due to its unsatisfactory results. 
[Best score: -0.357696] 
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Scaling experiment has been successful with the best score achieved with 
hyperparameters: outlier_detection_performed set to False, tol set to 
0.8, and skewness_threshold set to 0.3. But the similarly good score 
(score: 0.032874) with hyperparameters: outlier_detection_performed set 
to True, skewness_threshold set to 0.5, and tol set to 0.8. Both of those 
combinations have been used for the following experiments. 
[Best score: 0.035104] 

Feature selection experiment has been successful with the best results when 
not performing P C A as the last step. The best hyperparameter combina­
tion were hyperparameters use_pca set to False, use_clique set to True, 
and variance_threshold set to 0.8. 
[Best score: 0.029549] 

After evaluating each experiment, the most promising combinations were chosen 
for the next phase. The curriculum-based experiment has been excluded from 
all combinations for poor results. Below there is a list of final experiments with 
shortcuts for Category transformation (Ci), Category transformation with hy­
perparameter feature_selection set to False (C 2), Handling of missing values ex­
periment (I), Outlier detection experiment (O), Scaling experiment (Si), Scaling 
experiment with hyperparameters tol set to 0.5 and outlier_detection_performed 
set to False, and Feature selection experiment [FS). Results of each combina­
tion ordered by a final score from the most successful to the least successful are 
displayed in table 1. 

Pipeline Score 
C i J ^o^s2 

0.070821 
C i J ^ O ^ Si 0.068948 
c2 J ^o^s2 0.066533 
c2 -)• / -)• O ->• Si 0.063515 

J ^o^s2 ^ F S 0.050890 
c2 J ^o^s2 ^ F S 0.050340 

-)• / -)• O ->• Si ^ F S 0.046943 
c2 J O Si ^ F S 0.046843 

Table 1: Final results 

The final results suggest that the Feature selection phase is ineffective for the 
general case. The best results were achieved without any feature selection. The 
best results achieved an average of 8.5 % improvement to baseline results with 
a final score of 0.070821. Based on findings, outlier detection, combined impu­
tation, and scaling methods are critical but often forgotten steps in AutoML 
pipelines. Altogether results highlight the central theme of this thesis that mod­
ern AutoML tools contain insufficient data preprocessing tools. Furthermore, 
additional research on automated data preprocessing should follow. 
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4.2 Limitations 
Scikit-learn is a popular machine-learning library. Unfortunately, it is not G P U -
efficient, so the popular online services that run machine learning tasks in the 
cloud offer only modern, powerful G P U machines with ordinary CPUs. The 
evaluation of many pipelines in the thesis was done on an ordinary machine 
(MacBook Air with an M l chip), which was time-consuming. Evaluation of 
isolated experiments was for these computations reasons limited to 20 minutes for 
each run of an experiment. Final experiments were evaluated with a maximum 
time limit of 40 minutes. The results could be different if the evaluation were done 
on a more powerful machine allowing much more C P U time for each pipeline. 

Also, the scope of this work was too broad. Even with this thesis's promising 
results, focusing on only one part of data preprocessing might improve AutoML 
tools even more. 

4.3 Further work 
In this section, there is a list of topics that could not get into this thesis due to 
its extensive size: 

Data creation is a method that creates synthetic data, which will be pretty in­
teresting in the near future because current state-of-the-art language mod­
els from OpenAI are nearing the limit of all collected human data. This 
barrier can be overcome with the help of synthetic data generation tools. 

G A N is a neural network model that uses two independent neural networks. 
The first generates new data, and the other tries to distinguish between 
newly generated and original data. 

GPU-based algorithms are another set of implementations of known algo­
rithms for AutoML that are GPU-optimized, for example, PyTorch or 
Gluon. 

Complete case approach in missing data handling. In this thesis, we focus on 
the better imputation of missing data. Still, any other following research 
could focus on investigating the underlying distribution of missing data and 
remove all the data with missing values in the case of random distribution. 

Focusing only on the one task might improve the results of this work with 
much more time spent on one of the topics discussed in this thesis (e.g., 
feature selection or outlier detection). 
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Závěr 
Tato diplomová práce si klade za cíl analyzovat aktuální stav předzpracování 
dat v rámci AutoML. Analýza současného stavu nástrojů AutoML z hlediska 
předzpracování dat odhalila několik nedostatků v existujících nástrojích, jako 
například absence detekce odlehlých hodnot nebo chybějící sofistikovaná metoda 
pro sjednocení škál napříč jednotlivými proměnnými. Práce obsahuje soubor ex­
perimentů, které tyto nedostatky řeší. 

Tyto nově navržené experimenty obsahují nástroje pro predikce chybějících 
hodnot na základě různých prediktorů, transfomaci nečíselných hodnot na čí­
selné, stochastické řazení, výběr důležitých proměnných a sofistikované sjedno­
cení škál napříč jednotlivými proměnnými. Práce zároveň obsahuje speciálně na­
vrženou validační metriku, která penalizuje nevyrovnané výsledky napříč úlo­
hami a datasety. Tato metrika byla použita pro ověření kvality experimentů 
porovnávající výsledky vůči referenčním výsledkům. Kombinace jednotlivých ex­
perimentů úspěšně zlepšila aktuální AutoML nástroje, kdy průměrně dosahovala 
o 8,5 % lepších výsledků. 

I když existují jisté omezení této práce, jako například nedostatečný výkon 
zařízení provádějící testovaní experimentů, výsledky jsou natolik významné, že 
podněcují diskuzi na téma dalšího výzkumu automatizovaného předzpracovaní 
dat, jako například využití G A N či metody pro umělé vytváření dat. 

Výsledky této práce ukazují, že hlubší prozkoumávání možností automati­
zovaného předzpracování dat by mohlo významně zlepšit kvalitu nástrojů pro 
AutoML. 
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Conclusions 
This thesis has set a goal of investigating the current state of data preprocessing 
as part of AutoML. The investigation of the current state of AutoML tools from 
the data preprocessing view has revealed several gaps in the existing tools, like 
missing outlier detection phase or appropriate scaling method to unit the scale 
across features. The thesis contains a set of experiments to address these gaps. 

These new experiments contain imputer for missing data, transformer of non-
numerical data, outlier detection, stochastic ordering transformer, feature selec­
tion, and sophisticated scaler. The thesis's newly designed score function has 
been used to validate the quality of experiments against the baseline results 
by penalizing imbalanced results across different tasks and datasets. A set of 
pipelines combining these experiments has successfully improved AutoML tools 
against the baseline results by performing, on average, 8.5 % better across all 
testing datasets. 

However, there are still limitations of the thesis, like limited computation 
power, but still, the findings are significant. There are also new areas to explore, 
such as data generation or usage of GANs in data preprocessing. 

Findings obtained in this thesis suggest that more focus on the data prepro­
cessing part could significantly improve AutoML, but following research in this 
area is required. 
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A TPOT configuration 
This section contains the default configuration as a Python dictionary of T P O T 
with all fields related to data preprocessing. 

# Preprocesssors 
' s k l e a r n . p r e p r o c e s s i n g . B i n a r i z e r ' : { 

' t h r e s h o l d ' : np . arange (0 .0 , 1.01, 0.05) 
}, 

' s k l e a r n . decompos i t i on . Fa s t ICA ' : { 
' t o l ' : n p . a r a n g e ( 0 . 0 , 1.01, 0.05) 

}, 

' s k l e a r n . c l u s t e r . F e a t u r e A g g l o m e r a t i o n ' : { 
' l i n k a g e ' : [ ' w a r d ' , ' c o m p l e t e ' , ' a v e r a g e ' ] , 
' a f f i n i t y ' : [ ' e u c l i d e a n ' , ' 1 1 ' , ' 1 2 ' , 
' m a n h a t t a n ' , ' c o s i n e ' ] 

' s k l e a r n . p r e p r o c e s s i n g . MaxAbsSca le r ' : { 

' s k l e a r n . p r e p r o c e s s i n g . MinMaxSca le r ' : { 

' s k l e a r n . p r e p r o c e s s i n g . N o r m a l i z e r ' : { 
'norm ' : [ ' 11 ' , ' 12 ' , 'max' ] 

}, 

' s k l e a r n . k e r n e l _ a p p r o x i m a t i o n . Nystroem ' : { 
' k e r n e l ' : [ ' rb f ' , ' c o s i n e ' , ' c h i 2 ' , ' l a p l a c i a n ' , 
' p o l y n o m i a l ' , ' p o l y ' , ' l i n e a r ' , ' a d d i t i v e _ c h i 2 ' , 
' s igmoid ' ] , 
'gamma': np . arange (0 . 0 , 1.01, 0 . 0 5 ) , 
' n components ' : range ( 1 , 11) 

}, 

' s k l e a r n . decompos i t i on . P C A ' : { 
' s v d s o l v e r ' : [ ' r andomized '] , 
' i t e r a t e d _ p o w e r ' : r a n g e ( l , 11) 

}, 

' s k l e a r n . p r e p r o c e s s i n g . P o l y n o m i a l F e a t u r e s ' : { 
'degree ' : [2] , 
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' i n c lude bias ' : [ 
' i n t e r a c t i o n o n l y 

[Fa l se ] 
[Fa l se ] 

s k l e a r n . kerne l a p p r o x i m a t i o n . RBFSampler ' : { 
'gamma': np . arange (0 . 0 , 1.01, 0.05) 

s k l e a r n . p r e p r o c e s s i n g . R o b u s t S c a l e r ' : { 

s k l e a r n . p r e p r o c e s s i n g . S t a n d a r d S c a l e r ' : { 

' tpot . b u i l t i n s . OneHotEncoder ' : { 
' m i n i m u m _ f r a c t i o n ' : [ 0 . 0 5 , 0 . 1 , 0 .15 , 0 . 2 , 0 . 2 5 ] , 
' s p a r s e ' : [ F a l s e ] , 
' t h r e s h o l d ' : [10] 

B Contents of the enclosed data media 
dataPreprocessing/ 

Contains all implemented classes used for experiments. 

doc/ 
Contains all files used for generating the thesis using the uniform style of 
K M I PfF U P O L . 

r e s u l t s / 
Contains all results divided into folders: raw, score, other. The raw folder 
contains the raw results of each experiment. The score folder contains 
results with computed scores. The other folder contains all preliminary, 
incorrect, or partial results. 

readme.txt 

Contains written instructions for the reproduction of the thesis results. 

Enclosed data media also includes: 

Baseline.ipynb 
Contains Python code used for evaluating baseline results 
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categorical_preprocessor.ipynb 

combined_imputer.ipynb 

feature_selection.ipynb 

gaussian_scaler.ipynb 

outlier_detection.ipynb 

stochastic_ordering.ipynb 
Contains Python code for evaluating each experiment. 

final_experiments.ipynb 
Contains Python code for evaluating final combinations of experiments. 

requirements.txt 
Contains a list of all dependencies required for running the project 

a i r q u a l i t y / 

ames/ 

bank/ 

boston/ 

b r a z i l / 

home/ 

income/ 
shootings/ 

Contains all data and available description of data for each dataset with 
naming convention described in 3.1 
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Acronyms 
API application programming interface 

AutoML automated machine learning 

C P U central processing unit 

C R I S P - D M cross industry process of data mining 

D B S C A N density-based spatial clustering of applications with noise algorithm 

E D A exploratory data analysis 

GANs generative adversarial networks 

G P U graphics processing unit 

ICA independent component analysis 

IQR inter-quartile range 

K N N k-nearest neighbours algorithm 

L O F local outlier factor algorithm 

P C A principal component analysis 

R B F radial basis function 

S V M support vector machines 

T P O T tree-based pipeline optimization tool 
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