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Chapter 1 

Introduction 

For centuries, scientists have explored the mysteries of our universe. Many of them 
are still hidden from us, but of the mysteries we have already discovered, quantum 
mechanics is perhaps the most fascinating. The quantum world, that is, the world of 
subatomic particles, operates on principles completely different from those to which 
we are accustomed. One of the most interesting phenomena in the quantum world is 
quantum correlations. Especially recently, these have become a valuable resource for 
quantum metrology, cryptography, and secure communication systems. 

In this thesis, we will discuss the younger brother of entanglement - quantum steer­
ing. We will derive a new criterion for genuine tripartite steering and afterward use 
it to detect genuine tripartite steerable states. Quantum correlations are non-intuitive 
phenomena and there are no analogies in classical physics by which we can explain 
them. However, if one wanted to explain steering in a somewhat classical way, one 
might say the following. Imagine you are watching someone driving a car, an ordinary 
unmodified car. Now imagine that, no matter how far away you are, you are capable of 
remotely controlling, or let's say steering, this car without touching the steering wheel. 
Of course, this sounds absurd, because macroscopic objects cannot behave this way 
but subatomic objects can, and this is precisely how steering works. Suppose now that 
two parties share an entangled state. In this situation, one party can "steer" the quan­
tum state of the other party into a different state by making suitable measurements 
on its part of the entangled state. 

Before we begin to explore steering from a physical point of view, it might be useful 
to put the concept into a historical context. The most convenient approach would be 
to start with a well-known article from 1935 by Albert Einstein, Boris Podolsky, and 
Nathan Rosen [1]. The E P R article1 has opened the door for the study of quantum 
correlations. E P R present a thought experiment that uses entanglement to show that 
the quantum-mechanical description of the world is not complete. Entanglement is a 
phenomenon in which two particles are correlated in such a way that a measurement 
of one particle will change the state of the other particle, no matter how far apart 
they are. Why is this mentioned in this thesis and how is it connected to steering? 
Consider two entangled particles, if we measure a property of one particle, then we 
immediately know the corresponding property of the other particle regardless of the 

X E P R is an abbrevia t ion formed from the first letters of the authors ' last names - E ins te in , P o d o l ­
sky, Rosen. Today, this article is usual ly referred to as an " E P R ar t ic le" . However, the or ig inal t i t le 
is " C a n Quantum-Mechanical Description of Physical Reality Be Considered Complete?". 
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distance between them. Steering allows us by measuring the properties of one party 
to change, i.e. to steer, the quantum state of the other party to a different state. The 
resemblance is self-evident as both of these phenomena enable us to remotely control 
quantum states. And given that only pure quantum states for which entanglement, 
steering, and Bell nonlocality coincide were considered at the time, it can be argued that 
the E P R paper concealed a greater treasure than might have been expected back then. 
Erwin Schrödinger responded to the E P R paper in October 19352 [2]. The following is a 
quote directly from this article: "It is rather discomforting that the theory should allow 
a system to be steered or piloted into one or the other type of state at the experimenter's 
mercy in spite of his having no access to it." Although Schrödinger responds with this 
quote to the E P R article that discusses entanglement, one cannot help but notice that 
this sentence can also be applied to steering, and that, moreover, the word "steered" 
is directly used in the text. The term "steering" in fact comes from this quote. 

As already mentioned, for a very long time only pure quantum states were consid­
ered, for which entanglement, steering and nonlocality merge. This has hindered the 
individual correlations from being examined in detail. This didn't change until the 
1980s, most notably in an article by R. Werner in 1989 [3]. Werner's paper studies 
the possibility of constructing a hidden-variable model for entangled mixed quantum 
states involving E P R correlations. This means that there exists a way to explain quan­
tum correlations without the need to take nonlocality into account. We didn't have 
a proper definition of quantum steering until 2007 and it was presented by Wiseman, 
Jones, and Doherty in their two articles [4, 5]. These two papers analyze the three 
named correlations, provide operational and mathematical definitions and establish a 
hierarchy between them. 

Surely it is worthwhile to mention at least a few experiments in which steering 
has been demonstrated. It is noteworthy to mention that steering can be both one­
way and two-way. If we imagine two parties, say, Alice and Bob, then the systems 
can be correlated in such a way that only Alice can steer Bob's system, but not vice 
versa. This is one-way steering. But their systems can be correlated in such a manner 
that it works both ways - two-way steering. The first demonstration of this effect was 
accomplished by Ou et al. in 1992 [6], later in 2008 two-way steering was demonstrated 
[7]. Let us now examine a few experiments in more detail. 

In a 2012 experiment [8] the team of Händchen et al. proposed and experimentally 
demonstrated one-way steering with two-mode squeezed states. They generated a pair 
of entangled photons which were measured subsequently using a combination of half-
waveplates and polarizing beam splitters with the addition of a homodyne detection 
technique that measured quadrature amplitudes to show that only Alice can steer Bob, 
but not vice versa. 

Furthermore, a 2012 article by Wittmann et al. [9], in which a loophole-free E P R 
experiment via quantum steering was achieved. They presented the first loophole-free 
demonstration of E P R steering using polarization-entangled photons shared between 
two distant laboratories. Their experiment simultaneously closed all loopholes: the 
locality loophole and the freedom-of-choice loophole by having a large separation of 
the parties and using fast quantum random number generators, and the fair-sampling 
loophole by using high-efficiency detectors. 

Last, to be mentioned here is a 2020 experiment performed by Wollmann et al. 
[10]. Again, in this experiment, a pair of entangled photons was generated. The 

2 E P R article was publ ished on M a y 15, 1935. 
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photons were then separated and sent to two distant laboratories. The measurement 
was conducted using a combination of waveplates, polarizing beam splitters, and single-
photon detectors. In conclusion, they have experimentally demonstrated steering using 
generalized entropic criteria. 

The experiments listed here are certainly not the only ones of their kind, but it is 
enough to show that steering is an experimentally observable effect. 

Besides the experiments, we should also mention the applications of this phe­
nomenon. One of the areas where steering is exploited is one-sided device-independent 
quantum key distribution (1SDI-QKD) [12]. First of all, let us take a look at what 
quantum key distribution (QKD) is. Q K D is a secure communication method that 
enables two parties, say, Alice and Bob, to create a random secret key at a distance 
that can then be used to encrypt and decrypt messages. The security of such com­
munication is given by the laws of quantum mechanics3. Alice and Bob share two 
channels: a quantum one, which allows them to share quantum signals, and a classical 
one, through which they can send classical messages. Their job is to ensure security 
against an eavesdropper, usually called Eve, which can connect to the quantum channel 
and listen to their exchanges on the classical channel. In standard Q K D (S-QKD or 
simply QKD) , safety is usually established under the condition that Alice and Bob can 
trust the functioning of their preparation and measurement apparatuses. Another kind, 
device-independent Q K D (DI-QKD), can only establish security based on observation 
of violation of Bell inequalities, as we do not trust the measurement apparatuses. Nev­
ertheless, DI-QKD places very demanding requirements on practical demonstrations 
[12]. 

Between S-QKD and DI-QKD lies 1SDI-QKD. The article [12] describes how 1SDI-
Q K D could be used in real life: Imagine that a bank wants to set up secret keys with 
its clients; the bank would invest a lot of money in setting up one trusted measurement 
device, but the clients at the other end of the channel would surely have cheap de­
tection terminals. They later show that the detector efficiency required to implement 
1SDI-QKD is much lower than that of DI-QKD, making it achievable with existing de­
vices. Each of the three types of Q K D corresponds to a different criterion for quantum 
correlations. The S-QKD requires that the observed correlations violate a separabil­
ity criterion (i.e., entanglement is demonstrated), the DI-QKD requires a violation of 
Bell's inequality, and the 1SDI-QKD requires that the correlations violate a steering 
inequality. 

Steering can also be used in subchannel discrimination. This is a protocol for decom­
position of a channel into subchannels and it can also be interpreted as identification 
of which branch of an evolution a quantum system undergoes. Entanglement between 
a probe and an ancilla can help in discriminating different channels. We know that all 
steerable states are entangled, but not all entangled states are steerable. And if the 
measurements are limited to local operations and forward communication (one-way 
L O C C ) , then only the steerable states remain useful [13]. 

To be able to exploit steering, we first need to find states that exhibit it; this may 
be done via steering criteria. Moreover, we do not wish to only demonstrate steering 
between two parties, i.e. bipartite steering, but multipartite, where, for example, Alice 
and Bob are joined by Charlie and then perhaps others. Detection of bipartite steering 
let alone multipartite steering is very challenging and deriving such a criterion is no 

3 F o r details on how this security is accomplished, see article [11]. 
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simple task. One of the first criteria can be found in [14]. Many criteria have been 
derived since then, but the vast majority refer to bipartite steering. This implies that 
we require more criteria for multipartite steering. And preferably, for these criteria 
to require minimal knowledge about the measured state - to be the so-called minimal 
criteria. A n example of one of the latest such criteria is given in [16]. This criterion 
is designed to detect genuine multipartite steering (GMS) for which we provide here 
a brief definition: A state contains genuine multipartite steerable correlations if they 
cannot be produced by mixing states with only bipartite steering relative to different 
bipartite splits [15]. Regarding the criteria for GMS, one can say that they represent 
a gap in this field of research. Our criterion might help to fill this gap. We derived 
a criterion that not only does not require complete information about the measured 
state, but moreover is not designed for a specific state, but rather designed to search 
for GMS states. 

1.1 Introduction to quantum mechanics 
This thesis deals with a subject that is grounded in quantum mechanics, therefore we 
start with a brief introduction to quantum theory. Rigorous definitions of the mathe­
matical terms used in this introduction can be found in the Mathematical supplement. 
When writing these fundamental principles of quantum theory, we have used the books 

1.1.1 Postulates of quantum mechanics 
We will first state several postulates. Their structure does not correspond to the 
standard layout, nevertheless, we include everything necessary to grasp the essentials 
of this work. 

Postulate I 

(a) To each quantum system corresponds a separable complex Hilbert space ,W, 
which we call the state space of the system. 

(b) To each state of the considered system corresponds a ray ^ = {A , A 6 C} 4 , 
i.e. a one-dimensional subspace in J$f. 

Postulate II 

a) To each measurable physical quantity, i.e. an observable, of a given system 
corresponds a Hermitian operator A on Jjf. 

b) The possible results of the measurement of A are the eigenvalues of this operator. 
The probability of measuring the eigenvalue a is equal to 

[17, 18]. 

where Pa is a projection operator which projects onto the subspace corresponding 
to the value of a. 

4 U s u a l l y the difference between the ray W and the vector is neglected. 
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c) The expectation value of the results of the measurement is 

(A} = (^\A\^. (1.2) 

The eigenvalues of the Hermitian operator are real numbers and can therefore de­
scribe measurement results that are also real. The eigenvectors of a Hermitian operator 
corresponding to different eigenvalues are orthogonal and form a basis in J$?. With 
each Hermitian operator A of each observable there is associated a set of eigenvalues 
{a} = a (A) (the so-called spectrum of the operator A) and a set of projection opera­
tors {Pa : |a) (a|}, a G cr(A), where these projection operators project onto orthogonal 
subspaces in J$? and decompose the unit (completeness relation) 

£ P a = $ > > < a l = 1 - (1.3) 
a a 

Each Hermitian operator is associated with a measurement described by a set of pro­
jection operators. 

States that are described by a ray (a normalized vector |^)) are called pure states. 
Pure states contain the maximum available information about the state of the consid­
ered system. Not all states are pure, i.e. they cannot be described by a ray. Take a 
look at the following example (see Fig. 1.1). 

1) photon if 
Beam splitter (BS) 

| 0 ) vacuum state 

Figure 1.1: Scheme of a single-photon state. 

A beam splitter (BS) is characterized by transmittance T and reflectance R, where 
T2 + R2 — 1. This state can be described as T 2 |1) (1| + R2 |0) (0|, but it is no longer 
a state vector, i.e. this expression cannot be written as a projector We can 
describe this state by the so-called density matrix 

Density matrix is a Hermitian positive semidefinite matrix with a trace equal to one. 

Postulate III 

a) To each state corresponds some density matrix p on the state space Jf, which 
has the following properties 

p = p\p>0,Tr[p} = l. (1.5) 
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b) The probability of measuring the value of the observable A on the system in the 
state p is given by 

pa = Ti[pPa}. (1.6) 

c) The expectation value of the results of the measurement is 

(A)p = Tr[pi] = Y,Pi (1>i\ A \1>i) = I > < 4 * - (1-7) 
i i 

In general, the density matrix is of the form 

P = Y^Pi\A) (A\, o < Pi < i, J > = L (L8) 

Postulate IV 

If Xi and j»j are Cartesian canonically conjugate variables, then their operators 
satisfy commutation relations 

[xi,pj] = ihSij, [xi,Xj] = \pi,Pj] =0,i = 1,2,...,n. (1.9) 

In the following, we will use operators without the hats (A —> A). 

1.1.2 Uncertainty relations 

Let us introduce operators 

AA = A- (A), AB = B - (5) . 5 (1.10) 

We further introduce the variance 

({AAf) = {{A-{A)f) = {A*)-{A)\ (1.11) 

Consider two non-commutative Hermitian operators A and i? with commutator 
[A,B] = iC, where C is again a Hermitian operator. Take now the product of the 
variances of the operators A, B and we can derive that 6 

( (AA) 2 ) ( (A J B) 2 ) > ||<C>| 2. (1.12) 

If we use the commutation relations for x and p (see Eq. (1.9)), we get the Heisenberg 
uncertainty relation 

<(A*)2>((Ap)2> > ^ . (1.13) 
5 I t is simple to prove that (AA) = (A) - ((A)) = (A) - (A) = 0. 
6 See A p p e n d i x 1 for the derivat ion. 
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1.1.3 Composite systems 
The state space of a composite system consisting of N subsystems is the tensor prod­
uct of the subsystem state spaces, ffl = M{ <g> <8> ••• <8> J&N = ® i l i ^ , 7 supposing 
that the subsystems are mutually distinct. We will discuss here an example of com­
posite systems of two quantum bits (qubits). Consider two qubits with state space 
jff = jffA (g) jffB = C 2 <E> C 2 . From the bases {\0)A, and {|0)B , on in the 
spaces J#A and J#B can be formed a product basis {\i)A , \J)B}I, je{o, i}-

Entangled states of two subsystems are states which are not of the previous form, 
i.e. they cannot be written as \(p)A \4>)B, where \(p)A G J#A and \ip)B G J^B, there­
fore, they are not product states. States that can be written in this way are called 
separable. Let us now take a short detour to the entanglement of mixed states in or­
der to introduce several terms. Local operations and classical communication (LOCC) 
play an important role in the theory of entanglement. A local operation (LO) is any 
operation allowed by quantum mechanics performed locally on one of the subsystems. 
Classical communication (CC) is the communication of classical information that can 
be arbitrarily perfectly copied and read without corruption and which can be perfectly 
discriminated. We say that a quantum state is entangled if it cannot be prepared by 
L O C C operations. The states that can be prepared by L O C C operations are called 
separable and are of the form [3] 

PAB = ^2\PA ®PB-. 

i 

where p^A , p$ are density matrices of subsystems A and B and \ are probabilities. 

1.1.4 Continuous-variable systems 
Consider A^-mode8 quantum system, which posseses a state space ®f=lMi, where 
dim^f = oo. Essential physical quantities, used to describe modes, are the operators 
x and p 9 , which are called amplitude and phase quadrature operators. These two 
quadrature operators satisfy the canonical commutation relation [x, p] — 1 resembling 
the commutation relation for operators of position and momentum (1.9). Both x and 
p have a continuous spectrum, therefore we can call them contiuous variables and we 
can call the respective systems continuous-variable (CV) systems. We now introduce a 
2N x 1 vector of quadrature operators r = (xi, XN, PI, PN)T• The commutation 
relations for this vector can be compactly expressed as 

[Tj,Tk] = i(flN)jk, (1-14) 

where is the so-called symplectic matrix defined as 

^ = © f = 1 J = © f = 1 ( _ ° 1 J ) - (1.15) 

r L e t ( 1 ^ ) } " = ! and {|<Pj)}jLi be the basis of Hi lbe r t spaces M\, respectively, where n, m are 
dimensions of the spaces. T h e n basis of M\ <g> ̂  w i l l be <3> |<^j)}"j™i-

8 W e can th ink of a mode as a d i s t r ibu t ion of the electromagnetic field that is supported by a 
resonator. It can be cal led a mode of the resonator, wh ich is described by some mode funct ion that 
is a solut ion of M a x w e l l ' s equations i n the resonator and thus depends on the shape of the resonator 
mirrors . It has its own frequency, wave vector, and polar iza t ion and does not have to be only i n the 
resonator but can also be i n free space. S i m p l y put , it is any d i s t r ibu t ion of the field into the basis of 
some functions. 

9 F o r s impl ic i ty , from now on we w i l l wri te operators wi thout hats. 
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A special set of states corresponding to C V systems are Gaussian states. 

1.1.5 Gaussian states 
We are still considering the A-mode quantum system. For a single mode, we introduce 
the phase space, which is the space of eigenvalues of the operators x and p. Since the 
eigenvalues of these operators can be any real number, this phase space is equivalent 
to the plane R2 (see Fig. 1.2). 

(a) 00 

Figure 1.2: (a) Phase space of one mode, (b) The depicted Thermal state is a Gaussian 
state. Figure from [19] (the notation of the axes in the figure has been simplified 
compared to the original figure). 

Any state p in phase space may be represented by a Wigner function [20]. We 
will now introduce everything for one mode and then generalize it to A-modes. We 
introduce the Weyl operator1 0 

W(0=e~*T\ (1.16) 

where £ = (£ s , £ P ) T , £x, £p £ R and r = (x, p)T. Let us define the so-called characteristic 
function 

c(o = (w(o) = npw(o}- (i.i7) 
We will perform a Fourier transform of the characteristic function 

1 r°° I T ' 

pcm*) = ̂  J J * P (* - 2 
z + 77 ) = W(r) ( L l 8 ) 2 

resulting in the Wigner function W(r). This can be generalized to the A-mode case: 

W(0 = e~*Tr = I l ^ W i f c i ) , (1.19) 

where Wj(fi) = e _ l& r% £i = (£ S i , £Pi)T'. The following holds 

W ^ ' M O = e^' T^W(r - ft, (1-20) 

i o W ( f ) = W ( f ) • 1 = W ( f ) / ~ \x) (X\dx = e " « -
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where QN is the symplectic matrix. The Wigner motion W(r) for TV modes is equal to 

(2TT; 2 A' 'R2iV 

X 
xN -

N 
P 

x\ 
* 1 + T XM + ) dx\...dx\ 

1.21) 

Gaussian states can be defined as states possessing a Gaussian Wigner function 

( r _ d ) T 7 - i ( r _ d ) 

Gauss \ 
THVdetfr) 

and the corresponding characteristic function is of the form 

CGauss (£) e-ie~tt-ied_ 

;i.22) 

;i.23) 

where 7 is the so-called covariance matrix (CM), also called the matrix of second 
moments, and vector d is so-called vector of first moments. The covariance matrix 7 
has elements 

7ij = {{Art, Ar ,} ) = Tr[p{Arj, Ar,}] = (nr, + r^n) - 2(ri)(rj) (1.24) 

and vector d is defined as di = (n) = Tr[p n]. For a single mode, 7 and d would be as 
follows 

_ / 2((Ax) 2) ({Ax, Ap})\ _ f(x)\ 
7 {({Ax, AP}} 2 ( ( a p ) 2 ) ; ' a ^<p>; • 

The Gaussian state is completely described by a vector of first moments d and a 
covariance matrix 7, however, other states are not. A C M must be bounded in some 
way in order to be a physical C M . More precisely, it must satisfy the uncertainty 
relation [21] 

7 + zfijv>0. (1.26) 

C M 7 of any TV-mode C V state must satisfy this inequality. Note that the inequality 
implies 7 > 0 and conversely, it means that in order for a real symmetrical and strictly 
positive 2N x 2N matrix to be a C M of a physical quantum state it must satisfy 
inequality (1.26). 

1.2 Quantum steering 
Let us now focus on the definition of the main concept of this thesis1 1. A definition 
similar to what can be found in [4, 22, 23] will be given here. Before giving a proper 
definition, let us remind ourselves what steering is. Considering the bipartite case, i.e. 
two parties, we ask whether it is possible for Alice, by her choice of measurement, to 
be able to collapse Bob's system into a different state. 

Two parties, Alice and Bob, share an entangled quantum state PAB- Alice can 
perform various measurements, selecting different measurement settings X and getting 
the results a. We denote the set of measurements which Alice can perform by MA-
For each setting X and result a, Bob will have the unnormalized conditional state p$ 
from a corresponding ensemble Sx = {p~^ : a G c(X)} and the conditional states 
should be of the form 

p{«] =TTA[PAB(J$®tB)l (1.27) 

A n operat ional definit ion of steering is provided i n [5] (page 3, left co lumn) . 
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a 

Figure 1.3: Alice and Bob demonstrating quantum steering. Alice is performing mea­
surement with setting X and result a. Alice's device is untrusted (represented by a 
black box), while Bob uses principles of quantum mechanics to describe measurements 
and is trustworthy. 

where tlx is the P O V M element corresponding to a measurement of the observable 
X and the result a. The set of all Bob's conditional states is known as the steering 
assemblage and it holds that ps = YlAPB?- Note that Bob's unconditional state 
PB = TT[PAB] does not depend on Alice's choice of measurement. In addition, Bob 
believes that the results of the measurements can be described by quantum mechanics 
and he does not trust Alice. Before starting the measurements, Bob asks Alice to 
announce into which ensembles {SX : X e MA} she can steer his state. Bob randomly 
selects one of these ensembles £ x and asks Alice to prepare it, which she does by 
measuring X on her subsystem. She then tells Bob the result of the measurement a. 
which allows Bob to predict which state p"B he has. After many repetitions, they can 
verify that the states p^B are indeed produced. 

Bob can try to explain what has happened in the following way: He might as­
sume that at the beginning, his system was in some local-hidden state o~B with the 
probability p(\). This state would be pulled from a pre-existing ensemble of LHSs 
gLHS _ {p(X)aB}. In that case, Alice's measurement of X and the result a would only 
give Bob additional information about the probability of the conditional states, giving 
him states of the form [4, 23] 1 2 

p(

B

] =p(a\X) J al\p(\\a, X)aB = J al\p(\)p(a\X, \)ax

B. (1.28) 

Both of these two equal expressions have different interpretations. The first expression 
tells us that the probability p(X\a, X) is a Bayesian update 1 3 of the probability p(X) 
after announcing the measurement setting X and the outcome a. Thus, Bob does not 
have to believe that Alice can control his state since the measurement and its outcome 
only gave Bob additional information about the distribution of the states aB. 

1 2 T h e sett ing X is independent of A and can be chosen at w i l l , i.e. p(X,X) = p(X)p(X). W e can 
n T . O V P the emialitv r>(\\n X) - P ^ a ^ - A) P (X, A) _ P(a\X, \)P(X)P(\) _ P(a\X, \)P(\) prove tne equali ty. p(A\a, a j — p { a X ) - p{a\X)P{x) ~ P{a\x)P{x) ~ P{a\x) • 

1 3 W e can write Bayes ' theorem i n the following way: p(\\a, X) = p ( - A ^ a ^ A - > when measuring 
X and gett ing the result a. If we do a Bayes ian update then upon measuring X and gett ing a new 
result a', the i n i t i a l pr ior probabi l i ty p(A) w i l l be equal to the o ld posterior p robabi l i ty p(\\a, X), i.e. 
p(X)=p(X\a, X). 
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The second expression tells us that Alice can try to fool Bob by simulating his 
conditional states p$ by pulling out the states a\ according to the distribution p(X) 
while reporting the results a depending on her knowledge of the measurement setting 
X and the parameter A. However, Bob may not believe that the shared initial state 
was entangled. 

To summarize, if there is a model as in Eq. (1.28), then Bob does not need to 
consider that Alice can control his state to explain the conditional states p^\ This 
state has a so-called local-hidden-state (LHS) model and is thus unsteerable. However, 
if there is no such model, then Bob must accept that Alice is able to influence his state, 
i.e. she is able to steer his state and therefore this state is steerable. 

We can show that there are states in which Alice can steer Bob, but not vice versa. 
Hence steering is an asymmetric correlation. When Alice steers Bob, we denote it 
A —> B and when Bob steers Alice, we denote it B —> A. If Alice can steer Bob and 
Bob can steer Alice, then we denote it A •<-»• B. Let us now simply define the following: 
If A —> B or B —> A then the state is one-way steerable, but if A —> B and B —> A 
(A <->• B) then the state is two-way steerable. 

So far we have only talked about bipartite steering, now let us define tripartite 
steering. We consider three systems 1, 2, 3, and a bipartite split 1|2314. A state is 
steerable in the direction 23 —̂- 1 if it cannot be written as 

where Aj are probabilities. If we are dealing with steering in the direction 23 —> 1, 
then this state is steerable if it cannot be written as the state p(23\ Analogously, we 
will denote states that are steerable in the opposite direction or different bipartition, 
e.g. p"!^23 = O R Pi2-^3 = P^ • This allows us to implement even more generic 
notation. We introduce the set of all subsystems S = {1, 2, 3, 12, 23, 13}, now we can 
denote some general unsteerable state p^\ s G S. The index Q in p^Q indicates that 
the subsystem 1 is trusted and uses quantum mechanics, while the other subsystem is 
untrusted. So, e.g. for p^ the subsystem 23 is untrusted while the other subsystem 
1 is trusted. 

Let us now define the so-called genuine tripartite steering (GTS). A state is one-way 
GTS if it cannot be expressed as 

where A s are probabilities. To be able to easily define two-way GTS, we need to 
introduce a slightly different notation. When discussing two-way tripartite steering, 
we have three possibilities for how to perform it: 1 <->• 23, 2 - H - 13, and 3 <->• 12. They 
can be thought of as a set of ordered pairs B = {(1, 23), (2, 13), (3, 12)}. We can say 
the state is two-way steerable if we cannot write it as p^ns = p^b\ e.g. P i ^ 2 3

 = p*-1023*1. 
Then a state is two-way GTS if it cannot be expressed as 

1 4 T h e nota t ion 1123 means that i t is not specified whether the steering is two-way or one-way nor 
i n which direct ion, but it tells us that we are work ing w i t h the two specific sides. 

(1.29) 

(1.30) 

(1.31) 
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It is generally difficult to construct a LHS model for a given quantum state. There­
fore, various steering criteria have been developed. The criteria typically have the form 
of a multi-mode uncertainty relation involving second-order moments of quadrature op­
erators. In this thesis, we examine such criteria for the three-mode generalization of 
steering. Such criteria already appeared in the literature. For example, a widely used 
criterion of Reid and co-workers [16] is of the following form: 

A O ^ i + h2x2 + h3x3)A(g1p1 + g2p2 + gm) ^ ^ 
> min{\g1h1\,\g2h2 + g3h3\,\g2h2\,\gihl + #3^3U#3^3U#1^1 + 92h2\,} 

where AA denotes standard deviation of quadrature operators Xj or piy hi, gi G R. If 
the inequality is violated, then the state is GTS. Obviously, the standard deviations 
Au and Av use the whole C M . A natural question arises as to whether an even simpler 
criterion can be derived. In this thesis, we answer this question in the affirmative by 
deriving a minimal criterion for GTS. 
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Chapter 2 

Results 

This chapter contains the original results of this thesis. Specifically, we derive the 
anticipated minimal criterion and then show that it is applicable by detecting several 
GTS states. 

2.1 Criterion 
We are going to seek the so-called minimal criterion for genuine three-mode steering. 
The term "minimal" implies that the criterion does not need the knowledge of the entire 
covariance matrix for detection. However, before we proceed to the actual derivation, 
we will add a brief and simple explanation of what we require the minimal criterion to 

2.1.1 Preliminaries for the minimal criterion 
We look for a criterion that will satisfy the following two requirements: 

1. It will use the least number of two-mode reduced CMs. 

2. It will contain the minimum possible number of at most two-mode combinations 
of the quadrature operators. 

Let us consider a state of three modes 1, 2 and 3 with C M 

We are interested in criteria that do not require knowledge of the entire C M . The whole 
matrix is contained in all three marginals 712, 723 and 713, whereas we only want to use 
the least number of marginals that suffice for the detection of steering. The respective 
set of marginal CMs is called a minimal set and for three modes it is given by, e.g. 
{712, 723}- Here we took inspiration from Ref. [24] as well as Ref. [25] where analogous 
criteria were derived for the detection of genuine multipartite entanglement (GME). 
To detect G M E the minimal set of marginal CMs has to contain all modes and the 
marginals have to overlap. The same must hold for GTS and so the marginal CMs are 
of the following form 

fulfill. 

(2.1) 
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( 7 l ^>Vl\ ( 72 ^2Z\ ( r > n \ 

7 1 2 = U 7 j ' 7 2 3 = U 73 J ' ( 2 ' 2 ) 

The minimal set can conveniently be represented by a special sort of graph known as 
a tree (see Fig. 2.1). 

Figure 2.1: The figure on the left is a complete tree with three vertices representing a 
complete set of two-mode marginals CMs {712, 723, 713} of all three modes described 
by full C M 7123. Figure on the right represents the minimal set {712, 723} which is 
equivalent with knowledge of the entire C M 7^3. 

2.1.2 Derivation of the criterion 
The structure of the criterion can be found using a steering witness Z. As G M E states 
[26], GMS states also form a closed convex set, therefore they can be separated using 
a real symmetric positive-semidefinite matrix Z. The separation can be executed by a 
hyperplane Tr[Z7] = 0. 

Figure 2.2: A n image that graphically defines the role of a steering witness Z. By the 
bipartition n\m we mean an arbitrary biparition 1|23, 2113 or 3112 for GTS states. 

We assume for simplicity a block-diagonal witness matrix 

Z = Zx © Zp. (2.3) 
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It can be shown that one can write 

Za = la{la)T,a = x,p, (2.4) 

where la is a lower triangular matrix with strictly positive real diagonal elements. It 
is not difficult to show that 

3 3 
I r [ Z a

7

a ] = T r [ P ( P ) V ] = 2 J ] ( { A [ ( P ) T r ] } 2 > = 2 J ] ( ( A < ) 2 ) = 2UA (2.5) 
i=l i=l 

where £a = (cui, a2, a3)T and u? = Y^j=i ^%aj- The decompositions of Z in Eq. (2.4) i 
j3=\ "3 IS 

the so-called Cholesky decomposition [27]. The two requirements that were mentioned 
in the preliminaries were achieved by considering a partially-blind witness 

'Z? Zf 2 0 \ /Z? 0 0 \ 
Z? 2 Z« Z« ^ r = /« /« 0 . (2.6) 
o z « z j / V ° & 

With the new zero in la representing the missing block w 1 3 , all three-mode combinations 
of quadratures disappear and we get only at most two-mode combinations of quadrature 
operators as can be seen in 

U\ = l\xXi + 1^X2, U\ = l \ \ x 1 + ^32^3; U3 = 3̂3X35 ^ J\ 

u l = lllPl + lllP2, U\ = lP

22p2 + Zf2p3, Ul = Zf3p3-

The quadrature combinations can be conveniently derived directly from a graph (see 
Fig. 2.3). 

l21 f r \ \ l32 

Figure 2.3: A graph of the interaction of three modes, where a — x, p. 

We will search for a criterion in the form of the product condition 

where / ( / z , / p) is some function of the elements of the matrices la from Cholesky 
decomposition of the steering witness and Ua = Y^=i((^u?)2)> 2 = 1, 2, 3, as defined 
in (2.5). Thus we get the quantities Ux and Up that form the left-hand side (LHS) of 
the investigated criterion. 

RHS of the criterion 

Moving to the derivation of the right-hand side (RHS) of the criterion. We will find 
the RHS by finding a lower bound on UXUP for a tripartite steerable state (1.30) or 
(1.31). Consider now three C V systems 1, 2, 3. First, we will find the lower bound for 
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bipartite split 1123. We say that the state is 32 —> 1 steerable if it cannot be written 
as p*-23*1, Eq. (1.29). We first find the lower bound for the general operators 

ux = lfxl + l2x2 + l3x3, 

The derivation is as follows 

(2.9) 

( ( A ^ ) 2 ) p ( 2 3 ) ( ( A ^ ) 2 ) p ( 2 3 ) > £ j % < ( A u * ) % ( W > Y s M i ^ f ) ^ ^ (2-10) 
3 

<[A(/? P l )] 2 > p « + ( [ A ( / ^ 2 + / f p 3 ) ] 2 ) p « } 2 

3 
> 

V fl.Q Pl-Q 

+ y/([A(lSx2 + / f x 3 ) ] 2 ) p « ( [ A f e + /fp 3)] 2) p(or >\niv2 

(2.11) 

(2.12) 

Where inequality 1 follows from the concavity of variance [28] (see Appendix 2), in­
equality 2 was obtained by assuming that it is a product of two norms and then using 
the Cauchy-Schwarz inequality. Inequality 3 again follows from Cauchy-Schwarz in­
equality and to get the last inequality 4 we used the following relations 

( [ A ( ^ 1 ) ] 2 ) ( [ A ( ^ 1 ) ] 2 ) > ^ I W | 2 , ( 2 1 3 ) 

([A(F2x2 + F3x3)]2){[A(F2p2 + /§>3)]2> > 0. 

Note that the second inequality is bound only by zero, this is because 23 is an untrusted 
system and thus we don't know if it is a quantum system, all we can say is that it is 
greater than zero, which distinguishes it from the lower bound for the G M E criterion. 
Repeating the same argumentation for the other steering directions we get the lower 
bounds summarized in Tab. 2.1. 

direction lower bound 

23 -»• 1 > \ m ? 

12 ^ 3 > \ \ m ? 

13 ^ 2 > \ \ m 2 

1 -»• 23 — I 1^2 + ^ 3 P 
3 ^ 12 > + m 2 

2 ^ 13 > i \ i f i p + m 2 

Table 2.1: Table of lower bounds for all different steering bipartitions and directions. 

Summarizing previous results we see that a given three-mode state p i 2 3 is 23 —> 1 
steerable, if it violates the following inequality 

( ( A ^ ) 2 ) ( 2 3 ) ( ( A ^ ) 2 ) ( 2 3 ) > 5>(A« x ) i (A«") i > I > ( A « x ) i , f l ( A « p ) i , f l * CI23--
i i 

(2.14) 
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where C ^ ' 2 3 represents the lower bound and the notation C j ' 2 3 means that 23 —> 1 and 
therefore that we consider split 1|23 and the trusted system is system 1. We generalize 
this notation for a general bipartite split and direction. Recall that in Section 1.2 we 
introduced the set of ordered pairs B. We can also use it as a set of all bipartite splits 
B = {(1|23), (2| 13), (3|12)} = {ft, ft, ft}, i.e. its elements will be ft G B, i = 1, 2, 3. 
If we take ft, then we are dealing with the split 1|23 and thus the trusted subsystem 
can be either subsystem 1 or 23 depending on the steering direction. We denote I if 
the trusted subsystem is 1 and II if it is 23, then for some general bipartite split ft 
we have I = 1, 2 or 3 and II = 13, 13 or 12. From now on we will use the following 
identification: C f 1 = C^23, Cjj = C^3

23 and so on. 

The state pi23 is one-way tripartite steerable in the bipartite split ft G B (in arbi­
trary direction) if the inequality 

( ( A ^ ) 2 ) f t ( ( A ^ ) 2 ) f t > max{Cg, C*} (2.15) 

is violated, i.e. if it is steerable in one arbitrary direction. The state pi23 is two-way 
tripartite steerable in the bipartite split ft G B if the inequality 

( ( A ^ ) 2 ) f t ( ( A ^ ) 2 ) f t > min{Cg, C * } (2.16) 

is violated, i.e. if it is steerable in both directions. Now, the state p i 2 3 will be one-way 
GTS if the following inequality 

({Aux)2)({Aup)2) > A f t max{Cf), C f } > min max{Cfj, C f } (2.17) 
ft s b ft 

is violated. And the state pi23 is two-way GTS if inequality 

((Aux)2)((Aup)2) > A f t max{Cg , C f } > min min{Cf), C f } (2.18) 
ft s b ft 

is violated. 
Let us now return to our minimal criterion. The LHS of our criterion is 

[ W = ^ ( ( A < ) 2 ) < ( A ^ ) 2 > , (2.19) 

where u\ and uP- are operators defined in Eq. (2.7). This gives us the sum of nine 
expressions ((Ati^) 2)((Ati^) 2), i, j = 1, 2, 3 that have a lower bound for each of the 
bipartite splits 

U*TP = {[A(FnXl + r21x2)]2)([A(lp

llPl + lp

lP2)]2) + {[A(FnXl + F21x2)}2)-
•([A(lp

2p2 + lp

2p3)}2) + ([A(FnXl + lx

21x2)]2}([A(lp

sPs)]2} + ... . 1 • j 

The lower bounds are summarized in Tab. 2.2. 
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expression 02 A 
Cn Ci Cn Ci 

i = l , j = l ( M i ) 2 (^21^21) (^21^21) ( M l ) 2 0 (̂ 11̂ 11 + ^21^21) 

z = l , j = 2 0 (^21^22) (^21^22) 0 0 (^21^22) 

i = l , j = 3 0 0 0 0 0 0 
i = 2,j = l 0 (^22^21)2 (^22^2l)2 0 0 (^22^21)2 

t = 2,j = 2 0 /IX IP , IX IP \2 
lf22f22 ^ f32f32j 

/ix IP \2 lf22f22j (ix IP \2 lf32f32j /ix IP \2 lf32f32j /ix IP \2 lf22f22j 
i = 2,j = 3 0 (̂ 32̂ 33) 0 (̂ 32̂ 33) (̂ 32̂ 33) 0 
i = 3,j = l 0 0 0 0 0 0 
i = 3,3 = 2 0 (IX IP \2 lf33f32J 0 /ix IP \2 lf33f32J (ix IP \2 lt33f32J 0 
% = 3, j = 3 0 /IX IP \2 0 /ix IP \2 lf33f33J /ix IP \2 0 

Table 2.2: Table of all lower bounds for all nine expressions = 4{(Aux)2) {(AuP)2) 
for all bipartite splits {ft, ft, ft} = {(1123), (2| 13), (3| 12)}. 

Let us introduce the quantities CPj and Ln which will be equal to the sum of the 
individual columns in the Tab. 2.2, e.g. 

rPi _ /ix ip \2 
'-II ~ I ' l l ' l l J : 

= (^21^2l)2 + (̂ 21̂ 22)2 + (^22^2l)2 + (̂ 22̂ 22 + ^32^32)2 + (̂ 32̂ 33)2 + (̂ 33 ̂ 32)
 2 + (̂ 33^33)2; 

and so on. We can now finally write down the final form of our criterion. The state 
P123 is one-way GTS if the inequality 

UXUP > ^min{max[£f , £?)], max[£? 2 , max[£f , Cn}} = (2.21) 

is violated and the state is two-way GTS if the inequality 

UXUP > ^min{min[£f , Cn], m i n [ £ ? , min[£? 3 , Cn}} = TZ^ (2.22) 

is violated. 

2.2 Detection of genuine multipartite steering 
After deriving the criterion, the time has come to test it. Our task is to find states 
with GTS detectable by our minimal criterion. In this section, we will use the term 
steerable in the sense of genuine tripartite steerable. 

2.2.1 Detection method 
First, let us have a look at the detection method. We already know that by using 
CMs we can represent all correlations of Gaussian states, which we will utilize in this 
chapter. Prior to presenting the results in each section, we will always explain how we 
obtained the CMs. Allow us to mention once again that we do not need knowledge of 
the entire C M to apply our minimal criterion. Once we obtained a C M , we optimize 
our criterion over the parameters Z£- (a = x, p; i, j — 1, 2, 3) to find the minimum 
value of the difference between LHS and RHS of the criterion. If this minimum is 
negative, then the state is steerable. For this difference we introduce the notation 

23 



= UXUP — for one-way steering and = UXUP — for two-way steering. 
In addition, for the sake of simplicity, the minimization of parameters Ifj was restricted 
to the interval [—1,1]. To improve the process of searching for the minima, we used an 
optimization method called RandomSearch method [29, 30], which works by generating 
a set of random initial points and using a local optimization method from each one of 
the initial points and then converges to a local minimum. The only problem is that it 
takes much longer to find the minimum when using the RandomSearch method. 

To find steerable states, we used two methods to obtain CMs exhibiting GTS - ran­
dom generation of numerical matrices and deriving them from a linear-optical scheme. 

2.2.2 Numerical three-mode covariance matrices 
In this subsection, we will analyze steering in a hundred "randomly" generated genuine 
tripartite entangled (GTE) C M s 1 . Tab. 2.3 shows the number of times steering was 
detected by our criterion for these CMs. 

one-way two-way 
Number of states 91 0 

Table 2.3: Number of one-way and two-way steerable states detected by our criterion 
from 100 G T E CMs. 

/ 

For illustration, we present and discuss one of these numerical CMs which reads 
explicitly as 

10.76 
0 

28.15 
0 

-45.42 
0 \ 

4.88 
0 

10.76 
0 

-16.66 
0 

0 
6.59 

0 
-11.55 

0 
-5.60 

0 
-11.55 

0 
23.45 

0 
11.77 

-16.66 
0 

-45.42 
0 

74.15 
0 

(2.23) 

0 \ 
-5.60 

0 
11.77 

0 
5.97 ) 

The matrix (refeqmcmnum) is a C M obtained as follows: We rounded elements of a 
C M 2 to two decimal places. However, the rounded did not satisfy the uncertainty 
principle 

l n u m + iVtN > 0, (2.24) 

indicating that it was no longer a C M . We can correct the fact that the eigenvalues 
of the rounded matrix contained negative numbers by adding the smallest negative 
eigenvalue rounded to the appropriate number of decimal places (for us to two decimal 
places). Thus we get the matrix 7 „ u m + |A| • 1, where A = mmEig{'jnum + iQN}}.This 
matrix is our C M in Eq. (2.23) for which we have verified that all eigenvalues are 
positive. We then tested whether this C M violates our criterion, i.e. whether it is GTS 
C M . You can find the values of D-> and in the Tab. 2.4. 

-1.8 • 10" 2 inconclusive 

Table 2.4: Differences D_> and D++ C M (2.23). By the term inconclusive, we mean 
that it is not two-way steerable and is so small (of order 1 0 - 1 8 and less) that it 
does not need to be specified. 

l r T h e procedure of generating these C M s is described i n the article [25]. 
2 See A p p e n d i x 3 for the or ig ina l unrounded ma t r i x 
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For the C M (2.23) we also include a table of values of the optimization parameters 
Ifj for one-way steering (see Tab. 2.5). 

1.1 Value % Value 
IX 

'11 
- 1 1 

JX 
l21 0.375 jp 

l21 0.492 
JX 
l22 0.769 JP 

l22 -0.512 
JX 
F32 0.471 JP 

F32 1 
JX 
L33 0.001 JP 

lZ2 0.001 

Table 2.5: The values of the optimization parameters Ifj rounded to three decimal 
places for the C M (2.23). 

The values for /f3 and /f3 were 10~8 and 10~6 respectively and using these we 
obtained the difference D_> = —1.751 • 10~2. To avoid having such small numbers in 
the table, we set these two values to 10~3 and then tested again how strongly would 
the C M violate our criterion. The result was —1.749 • 10~2, so we can see that changing 
such small parameters to larger ones (but still relatively small) hardly changes the 
violation. We then tried rounding the original matrix (3.11) to one decimal place and 
then repeated the process, but this C M no longer violated the criterion and thus is not 
a GTS. 

2.2.3 General three-mode state 
After discussing numerical CMs, we can move on to the derivation of analytical CMs 
violating our GTS criterion. In Fig. 2.4 we present the linear-optical scheme generating 
the states (see Appendix 4 for the derivation of CMs). The scheme produces five free 
parameters that we can optimize, which gives us the freedom to search for steerable 
states. 

Now, the task is to find parameters from the scheme in Fig. 2.4 for which there 
would exist GTS states. A l l the different CMs given by the different parameters were 
tested for both one-way steering and two-way steering, but since none of the states 
were two-way steerable according to our criterion, we will not comment further on 
two-way steering. Thus, in the following, we will only discuss one-way steering and the 
respective difference will be simply denoted as = D. 

Let us now move on to presenting the results. Tab. 2.6 contains the values of the 
parameters that define the different regions of the GTS states. 
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*1 

P2 Pi 

Figure 2.4: The linear-optical circuit consists of three squeezed-vacuum states (grey 
ellipses) with three different squeezing parameters r i , r 2 , r 3 and two beam splitters 
(black rectangles) with two different transmissivities T 1 2 , T 1 3 . The Xj and Pi are the 
two orthogonal quadrature operators of the three spatially separated optical modes. 
The depicted local coordinate systems pi, Xi are used for indication of the orientation 
of the squeezing ellipses. 

Region T l 3 r 2 r 3 

I 2 
3 

1 
2 [1.0, 1.9] [1.5, 2.0] 0.25 

II 11 
20 V 3 [1.2, 2.0] [1.4, 2.0] 0.10 

III 2 
3 

1 7 • 
U ' 10 J 

1.30 1.50 [0.05, 0.40] 

IV fl 
V 2 L5' 10 J 1.50 1.50 [0.05, 0.50] 

Table 2.6: Table of parameters defining the three regions of GTS states. The parame­
ters that are given by an interval are the free parameters over which we optimized the 
criterion. The step with which the free parameters were increasing was 0.05 and that's 
a step we will use throughout this section. 

The parameters of the scheme with the strongest violation of the criterion for each 
region, i.e. with least D, are summarized in Tab. 2.7. 

Region T l 2 T l 3 r i r 2 r 3 
D 

I 2 
3 

1 
2 

1.05 1.50 0.25 -3.4 • 10" -2 

II 11 
20 

l~2 
V 3 2.00 2.00 0.10 -3.1 • 10" -2 

III 2 
3 

y 
20 

1.30 1.50 0.15 -1.1 • 10" -2 

IV fl 
V 2 

1 
2 1.50 1.50 0.05 -1.7-10--2 

Table 2.7: The parameters with the strongest violation of the criterion and correspond­
ing D. 

We have also depicted all these regions graphically. The graphs can be found in 
Figs. 2.5-2.8. 
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(b) 

Figure 2.5: Dependence of the difference D on the squeezing parameters r-y and r2 for 
the region I. 

From Fig. 2.5 one can see that this region is full of GTS states, i.e. states that 
violate our criterion. From Fig. (a) we see that the violation of the criterion reaches 
values over —0.03, which for us is so far the strongest observed violation of our criterion. 
It is evident from both figures that for increasing parameters ry and r2 the difference 
D is decreasing, i.e., the violation of our criterion is becoming larger. The strongest 
distortion of our criterion occurred in this region. 

(b) 
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Figure 2.6: Dependence of the difference D on the squeezing parametres ry and r2 for 
the region II. 

In Fig. 2.6 we observe similar behavior as in Fig. 2.5. Although the transmissivity 
Xi2 and T 1 3 and squeezing parameter r 3 are defined differently, we optimized over the 
same parameters ry and r2 as in region I. In region I, however, there was only one 
unsteerable state, whereas in region II there are considerably more unsteerable states. 
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Moreover, the difference D does not go as low as in region I, which can also be seen 
from the table of the strongest violations (Tab. 2.7). Although it is not that low, it 
still reaches values over —0.03 in some locations. 

(b) 

Figure 2.7: Dependence of the difference D on the squeezing parametres T 1 3 and for 
the region III. 

Fig. 2.7 depicts a completely different dependence than the previous two, as we 
optimized over different parameters. From graph (a) one can clearly see that the 
difference D only reached values slightly over —0.01, which is rather weak and it makes 
it the weakest of the four regions. The strongest violations of our criterion occurred 
for T 1 3 e [0.4, 0.5]. 

(b) 

D.S 

Figure 2.8: Dependence of the difference D on the squeezing parametres X13 and for 
the region IV. 

Since we optimized over the same two parameters, region IV in Fig. 2.8 resembles 
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region III. In this region, however, we achieved lower differences D compared to Region 
III. The strongest violations and thus lowest differences D were observed for T13 e 
[0.4, 0.55] and r 3 G [0.05, 0.2]. 
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Chapter 3 

Conclusion 

One could say that the minimal criteria for genuine multipartite steering form a gap 
in this field of research. Therefore, in this thesis, we have derived such a criterion for 
detecting genuine tripartite steering. Our criterion is a so-called minimal criterion, 
more precisely it does not require knowledge of the entire covariance matrix. Our 
criterion was not designed for a specific state, but for searching for GTS states. We 
have demonstrated that our criterion is able to detect these states by finding multiple 
regions of GTS states. However, several questions remain open. These include two-
way steering and finding of a state exhibiting a stronger violation of the presented 
criterion, generalization of the criterion to more than three modes, and exploration 
of the possibility to find a partially blind steering witness using positive-semidefinite 
programming. Another interesting question is whether one may also have a Gaussian 
state whose genuine multipartite steering can be detected from the minimal set of its 
unsteerable two-mode marginal CMs. 
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Mathematical supplement 

To ensure that this thesis is complete, we also include a mathematical supplement. 
Specifically, this appendix includes definitions of metric and normalized vector spaces, 
Hilbert space, operators, and working with operators, along with other terms relevant 
to this thesis. We will refer to some of the following definitions throughout the text. 
The theory was compiled with the help of notes written during the course of study and 
books [31, 32]. 

I. Vector spaces 

Definition 1 (Vector space). Vector space V is a set of elements (vectors) closed with 
respect to the operations of vector addition and multiplication of vectors by a number 
(scalar). Every two vectors |it),|i>) G V 1 and two numbers a, b G C must satisfy: 

1. \u) + \v) = \v) + \u), 

2. \u) + \0) = \u) (existence of zero vector), 

3. a(\u) + \v)) = a \v) + a \u), 

4. 1 \u) = \u) (existence of identity element of scalar multiplication), 

5. (a + b) \u) = a \u) + b \u), 

6. a(b \u)) = (ab) \u), 

7. 0 \u) — 0 (existence of zero element of scalar multiplication). 

Definition 2 (Linear independence). A set of vectors \u\), \u2), ...,\UN) G V is said to 
be linearly independent, if there exists scalars c i , c 2, c^ G C, such that the linear 
combination of the vectors YliLi c« \ui) = 0 if and only if c\ = c 2 = ... = c^ = 0. 

A vector space is TV-dimensional if it contains TV linearly independent vectors. We 
shall call a vector space infinite-dimensional if for every natural number TV we can find 
N linearly independent vectors. 

Definition 3 (Ray). A set of vectors a \u) with arbitrary a ^ O and fixed \u) ^ 0 will 
be called a ray. 

Definition 4 (Linear span). Consider a set of vectors S = The set of all 
linear combinations of vectors from S is denoted by span(S') and is called the linear 
span. 

Definition 5 (Basis). A set of vectors such that the vectors are linearly 
independent and their span(5') = V, is called a basis. 

l r T h e nota t ion of vectors |w),|i>) is cal led bra-ket nota t ion or D i r a c nota t ion, \u) is cal led ket-vector 
and \u)^ = {u\ is cal led bra-vector. 
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II. Metric space 

Definition 6 (Metric space). Metric space is an ordered pair ( M , p) where M is a 
set and p is a metric on M. A metric is a mapping p : M x M —> R̂ " that has the 
following properties V |x) , |y), |z) G M : 

!• pO) , \v)) > °> , \y)) = ° i f a n d o n l y i f \x) = \v), 
2. p( |x) , |y))=p( |y) , |x)) , 

3- P(\X), \y)) + P(\y), \Z)) > P(\X), \Z)) (triangle inequality). 

Definition 7 (Convergence in metric spaces). Consider a metric space (M, p) and 
a sequence of vectors {\un)}n£^. We say that the sequence \un) converges to \u) for 
n —> oo, if 

limp{\un), = 0. 

III. Normed linear space 

Definition 8 (Normed linear space). Normed linear space or simply normed space is 
an ordered pair (V, ||-||) where V is a vector space and ||-|| is a norm. A norm is a 
mapping ||-|| : V —> Kg that has the following properties V \x) , \y) G V: 

1. |||x)|| > 0, |||x)|| = 0 if and only if \x) = 0, 

2. ||a |x)|| = \a\ • \\\x)\\ Va G C . 

3- Ilk) + | y ) l l< l l k ) l l + llly)ll-

A norm induces a metric, such that p(\x), |y)) = |||x) — |y)||. This implies that a 
norm preserves the properties of a metric. 

Definition 9 (Generalized triangle inequality). V | x ) , \y) G V it holds that 

lll*>-|y>ll > l lll*>ll-llly>ll I-

Definition 10 (Convergence in normed spaces). Consider a normed vector space 
(V, ||-||) and a sequence of vectors {|x n)} n eiM. We say that the sequence \xn) con­
verges to \x) for n —> oo, if 

lira |||a:n)|| — |||x)|| = 0. 

Definition 11 (Cauchy sequence). A sequence {|a;n)}neN is said to be Cauchy sequence 
if 

Ve > 0 3 n 0 G N such that Vm, n > n 0 || |x„) — |x m ) | | < e. 

Every convergent sequence is a Cauchy sequence. The opposite statement is true 
only in finite-dimensional spaces. A space in which every Cauchy sequence is convergent 
is called complete. A complete normed vector space is called a Banach space. 

Definition 12 (Scalar (inner) product). Scalar product is a mapping (-|-) : V x V —> C 
that has the following properties Vx, y, z G V: 
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1. (x\y)* = (y\x) (for complex vector space, for real vector space (x\y) = (y\x))2 

2. (x\ay) = a (x\y) Va 6 C . 

3. (x + y\z) = (x\z) + (y\z), 

4. (x\x) > 0, (x\x) = 0 if and only if \x) = 0. 

Properties of the scalar product include: 

1. |||x)|| = y/(x\x), 

2. two vectors are orthogonal if (u\v) =0, 

Definition 13 (Cauchy-Schwarz inequality). Vx,y G V 

I (a;|y) | < y/(x\x) y/(y\y) = \\\x)\\ • \\\y)\\. 

A complete normed linear space (Banach space) with a scalar product is called a 
Hilbert space. 

IV. Hilbert space 

Definition 14 (Separable Hilbert space). A Hilbert space J$? in which there exists an 
orthonormal basis consisting of countably many vectors is called separable. 

Let Jif be the Hilbert space and (l^i)} its base. Then any vector \u) can be written 
as 

i 
where q = (ipi\u), Ci G C. 

Definition 15 (Linear manifold). A set of vectors i l is called a linear manifold if any 
linear combination of a (finite number of) vectors of i l is again an element of i l . If the 
linear manifold is complete, we refer to it as a subspace. 

Definition 16 (Dense linear manifold). A linear manifold i l is dense in space J$? if 
for each vector \if) G M' there exists a sequence of vectors {\<f>n) G i l} such that 

Urn |0„) = . 

V. Operators 

Definition 17 (Operator). An operator is a mapping A : V —> V that assigns every 
|^) to some i.e. \if) —> We write = A\ip). A n operator has a domain 
T>(A) and a range 1Z(A). 

In the following we will only discuss operators on the Hilbert space J$f. 
2 T h e star * denotes a complex conjugate. 
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Definition 18 (Addition and multiplication of operators). Operator C will be called 
the sum of operators A and B C — A + B if V 

C\1p) = A\1p) + B\1p). 

Similarly, we can define the multiplication of operators C = AB; V 

C\1p) = A\1p) + B\1p). 

Specifically A2 = AA and likewise, we can define higher powers. 

Multiplication of operators is not commutative, i.e. AB ^ BA, we therefore imple­
ment the following definition. 

Definition 19 (Commutator and anticommutator). A n operator [A,B] = AB — BA 
will be called commutator and an operator {A,B} = AB + BA will be called anticom­
mutator. If the commutator is equal to zero, then the operators commute 

The properties of the commutator include 

1. [A,B] = -[B,A], 

2. [A,B + 6\ = [A,B] + [A,6\, 
3. [A,BC] = [A,B}C + B[A,C}. 

Definition 20 (Linear operator). A n operator A is linear if V , \ip2) £ ^{A), 
Va, b e C 

A{a\ip1)+b\ip2)) = aA\1p1)+bA\1p2). 

Definition 21 (Bunded operator). A n operator A is bounded if 3 c > 0 such that 
y\i>)eV(A) 

u m\ <c\\m\\. 
The infimum of the numbers c is called the norm of the operator A and is denoted 

by \\A\\. In finite-dimensional spaces, every operator is bounded. 

Definition 22 (Symmetric operator). A n operator A is symmetric if 

Aifa\ = (Mi 

V , \ip2) e V(A) dense in M>. 

A bounded symmetric operator is called a Hermitian operator. 

Definition 23 (Adjoint operator). Let A be an operator with dense domain T>(A) in 
Jtf?. Then there exists an (Hermitian) adjoint operator A^ 3 such that 

(v>i | i ty 2 ) = (Mi\h) 

VIVi>, \<h) e V(A)- It holds that 

= \\A% (it)t = A , (A + B)^ = i t + B\ (ABY = flUt. 
3 T h e dagger denotes H e r m i t i a n adjoint. For matrices, the H e r m i t i a n adjoint stands for A* = (A*)T. 
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Definition 24 (Self-adjoint operator). A n operator A is self-adjoint if A — A*. 

For bounded operators, the terms symmetric, Hermitian and self-adjoint are equiv­
alent. 

Definition 25 (Positive definitive operator). We say that a self-adjoint operator is 
positive definite if V 

( ^ | i | ^ ) > 0 . 

Definition 26 (Inverse operator). If to an operator A there exists an operator A-1 

such that 

AA-1 = A-1 A = 1 

we call it the inverse operator. For inverse operators the following is true 
(A-1)-1 = A, ( i " 1 ) 1 " = ( i t ) " 1 , ( A B ) " 1 = B~lA-\ 

Definition 27 (Unitary operator). A n operator U for which holds T>(U) = Jff and 
= W is called unitary. 

For any unitary operator U, the following holds 

which means that the scalar product is invariant with respect to unitary transforma­
tions. 

Definition 28 (Projection operator). A bounded operator P satisfying P = pt = P2 

is called a projection operator. If Pi is a projection operator, so is operator P 2 = 1 —Pi , 
while P1 + P2 = t and A A = 0. 

If {|ai)}ili is an orthonormal basis in Jf, then the operators p = |OJ) (aj|, z = 
l,2,...,iV, are projectors onto one-dimensional subspaces spanned by vectors |OJ ) . We 
can write 

It holds that 

p.p. = { pi = pu for i = j, 
|aj) (oi|a_j) (oj| = 0, for z ^ j, because. (fli\aj) = 0 «-1 j 

The projectors p , P,- for z 7̂  j project onto orthogonal subspaces. It further applies 3 

that 
N N 

z~2pi = z^2 \ai) (ai\ =t-
i=l i=l 

which is the so-called completness relation. 

Definition 29 (Eigenvalues and eigenvectors). Let the following hold for a non-zero 
vector 

A \ipa) = a \ipa), 

then we call a the eigenvalue of operator A and \ipa) the eigenvector corresponding to 
the eigenvalue of a. If there are multiple independent vectors satisfying the equation 
above, we say that the eigenvalue of a is degenerate. 
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The eigenvalues of a Hermitian operator are real numbers and its eigenvectors 
(corresponding to different eigenvalues) are orthogonal and form a basis in . 

Definition 30 (Matrix representation of operators). Let {J^i)} be an orthonormal 
basis in M ' . A Hermitian operator can be represented by a Hermitian matrix 

A = tAt = j2 \A) &i\A &i\ = Yl Aa i ^ ) ' 

where Aij = (ipi\A\ipj) are matrix elements of operator A in {|^)}-representation. 
Thus, we can write 

i 

Assume now that the eigenvectors of the operator A form a basis in J$? and let {| 
be that basis. Then using the equation from the Def. 29 we get 

Aij &idij. 

where Oj are eigenvalues of operator A and Sij is Kronecker delta. Therefore, we say 
that an operator is expressed in its own representation by a diagonal matrix whose 
diagonal elements are represented by its eigenvalues. We can then write 

A = J2aJ \<Pj) {<PjI = a^r-
j j 

where Pj is the projection operator onto the one-dimensional subspace defined by the 
vector \tpj) and the equation represents spectral decomposition of operator A. 

Definition 31 (Trace). Let us consider an orthonormal basis {J^i)} in J4f. Then the 
trace of an operator A is defined as 

Tr[i] = 
i 

The trace has the following important properties: 

1. if A = A\ then Tr[A] is real, 

2. Tr[ai] = aTr[i], a e C, 

3. T r [ i + B] = Tr[A] + Tr[B], 

4. Tr[AB] = TT[BA\. 

The trace of an n x n square matrix A is defined as 

Tr[A] = ^2aü = au + a2 + ... + 
=1 

Definition 32 (Pauli matrices). Pauli matrices are a set of 2x2 complex, Hermitian, 
unitary matrices 

0 1\ A) - A A 0 
G r \i o r ( J y \i o ),CTz vo - i 

with the following properties 

°l = °l = °l = 1, det(^) = - 1 , Tr[at] = 0 

and each has eigenvalues —1 and +1. Together with the unitary matrix 1, the Pauli 
matrices form an orthogonal basis on J$? = C2. 
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Appendix 1 

Derivation of uncertainty relation 

We start with the product of the two variances 

((AA)2)((AB)2} = M (A - (A))(A - (A)) |^> (B - (B))(B - (B)) |^>. (3.1) 

The second expression is the multiplication of two scalar (inner) products, which means 
we can write it as a multiplication of two norms: 

M (A-(A))(A-(A)) |̂ > |̂ > = | | (AA) M | | 2 | | ( A £ ) |^ ) | | 2 . (3.2) 

Now we can use Cauchy-Schwarz inequality from Def. 13: 

\\(AA) m\2\\(AB) m 2 > I M AAAB |̂ > | 2 , (3.3) 

where 

A A A 5 = ^ ( A A A B — ABAA + A A A 5 + ABAA) = ^([AA,AB] + {AA,AB}), (3.4) 

which is equal to \{iC + {AA,AB}). This implies that 

| AAAB ty) |2 = i ( i C1̂ > + { A A , A 5 } |^>. (3.5) 

This gives us the uncertainty relation 

((AAf)((ABf) > 1(|(C7> + \({AA,AB})\)2, (3.6) 

however, since \{{AA,AB})\ > 0, we can write 

((AAf)((ABf) > i | ( C ) | 2 . (3.7) 
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Appendix 2 

Concavity and convexity 

Figure 3.1: Graph of a concave and convex function. Purple function is convex and 
blue function is concave. 

The function is convex on interval [xi, x2] if for any p G [xi, x2] and X\ ^ x2 

f(pXl + (1 - p)x2) < f(Xl) + (1 - p)f(x2), (3.8) 

and the function is concave on interval [xi, x2] if for any p G [xi, x2] and X\ ^ x2 

f(pXl + (1 - p)x2) > f(Xl) + (1 - p)f{x2). (3.9) 

Concavity of variance. Variance of mixture of states is mixture of the variances 
of those states. Mathematically: 

( ( A A ) 2 ) E ^ p W > J > ( ( A A ) V ) . (3.10) 
i. 

Proof. 

i i 
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We can add 0 = - EiPM)% + EiPM)%-

= E ^ 2 > « - ( E * W - E * w i + E * w i = 
i i i i 

Combining the first and third terms gives us the first term in the next equation. 

= 5 > < ( 2 L 4 ) V + 5><i4>l - £ f t ^ > l ) 2 > (*) 
i i i 

We have to prove that J2iPi(A)% ~ (Y.iPi(A)2

Pl)2 > °- W e c a n a d d HjPj = 1 : 

\(EpjY,*M2» -*Y,n(A)«Y,pM)«+E» E f t W = 
j i i j i j 

= \Y,PiPj((A)2

Pi - mPM)Pi + = \ J2PiPA{A)Pi + (A)Pjr > o. 

This means that 

(*)>5><(Ai4)V> 
i 

which proves concavity of variance. • 
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Appendix 3 

The original unrounded matrix is 

/ 4.86812 0 10.7584 0 -16.6549 0 \ 
0 6.58222 0 -11.5541 0 -5.59959 

original _ 10.7584 0 28.1417 0 -45.4207 0 
l n u m ~ 0 -11.5541 0 23.4418 0 11.7653 ' 

-16.6549 0 -45.4207 0 74.1426 0 
\ 0 -5.59959 0 11.7653 0 5.96321 / 

(3.11) 
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Appendix 4 

We will at least partially discuss how we can derive the final covariance matrix from 
the scheme in Fig. 2.23. The individual inputs (modes), i.e. squeeze-vacuum states, 
are described by matrices Si determined by the corresponding squeeze parameter r\ 

Si 
,2ri 

0 
o . 

- 2 r i ) >*->2 

- 2 r 2 

0 
0 

3 2 r 2 

- 2 r 3 

0 
0 

3 2 r 3 

(3.12) 

That in which exponent is the minus sign is determined by the shape of the squeezed-
vacuum state, i.e. in which quadrature the state is squeezed. If we look at the Fig. 
2.4, we can see that the state squeezed in p will be described by a matrix of the form 
Si and the state squeezed in x will be described by a matrix of the form S2 and S3. 
The matrices Si of all three modes can be written into single matrix 

S = Si © S2 © S3 

(e2^ 0 0 0 0 0 \ 
0 e - 2 r i 0 0 0 0 
0 0 e - 2 r 2 0 0 0 
0 0 0 e 2 r 2 0 0 
0 0 0 0 e - 2 r 3 0 

V 0 0 0 0 0 e 2 ^ ) 

(3.13) 

Beam splitters (BS) are described by matrices determined by the trasmissivities Ty 
and they always describe an interaction of two modes i, j (therefore the two columns 
of the remaining mode always contain only 0 and 1) 

BSi = 

BS2 = 

/ T12 0 v / i - T 2

2 0 0 o\ 
0 Tl2 0 v / i - T 2

2 0 0 
v / i - 1 1 2 0 Tu 

0 0 0 
0 - v / i - 112 0 Tu 0 0 
0 0 0 0 1 0 

\ 0 0 0 0 0 1) 

/ T13 0 0 0 0 - Ti% 0 \ 
0 T13 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 

v / i - 0 0 0 T13 0 
\ 0 - v / i - 113 0 0 0 T13 ) 

(3.14) 

The final covariance matrix is of the form 73 = BS2 • BSi • S • BSf • BS2. 
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