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Abstract 
 

To obtain novel materials for emerging optoelectronic devices, deeper insight into their 

structure is required. To achieve this, the development and application of new 

diagnostic methods is necessary.  

To contribute to these goals, this dissertation thesis is concerned with local diagnostics, 

including non-destructive mechanical, electrical and optical techniques for examining 

the surface of optoelectronic devices and materials. These techniques allows us to 

understand and improve the overall efficiency and reliability of optoelectronic device 

structures, which are generally degraded by defects, absorption, internal reflection and 

other losses. 

The main effort of the dissertation work is focused on the study of degradation 

phenomena, which are most often caused by both global and local heating, resulting in 

increased diffusion of ions and vacancies in the materials of interest. 

From a variety of optoelectronic devices, we have chosen two representative devices: a) 

solar cells - a large p-n junction device, and b) thin films - substrates for micro 

optoelectronic devices. In both cases we provide their detailed surface characterization. 

For the solar cells, scanning probe microscopy was chosen as the principal tool for non-

destructive characterization of surface properties. This method is described, and both 

positive and negative aspects of the methods used are explained on the basis of literature 

review and our own experiments. An opinion on the use of probe microscopy 

applications to study solar cells is given.  

For the thin films, two interesting, from the stability point of view, materials were 

chosen as candidates for heterostructure preparation: sapphire and silicon carbide. The 

obtained data and image analysis showed a correlation between surface parameters and 

growth conditions for the heterostructures studied for optoelectronic applications. 

The thesis substantiates using these prospective materials to improve optoelectronic 

device performance, stability and reliability. 
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Abstrakt 
 

Chceme-li využít nové materiály pro nová optoelektronická zařízení, potřebujeme 

hlouběji nahlédnout do jejich struktury. K tomu, abychom toho dosáhli, je však nutný 

vývoj a aplikace přesnějších diagnostických metod. 

Předložená disertační práce, jako můj příspěvek k částečnému dosažení tohoto cíle, se 

zabývá metodami lokální diagnostiky povrchu optoelektronických zařízení a jejich 

materiálů, většinou za využití nedestruktivních mechanických, elektrických a optických 

technik. Tyto techniky umožňují jednak pochopit podstatu a jednak zlepšit celkovou 

účinnost a spolehlivost optoelektronických struktur, které jsou obecně degradovány 

přítomností malých defektů, na nichž dochází k absorpci světla, vnitřnímu odrazu a 

dalším ztrátovým mechanismům. Hlavní úsilí disertační práce je zaměřeno na studium 

degradačních jevů, které jsou nejčastěji způsobeny celkovým i lokálním ohřevem, což 

vede ke zvýšené difúze iontů a vakancí v daných materiálech. Z množství 

optoelektronických zařízení, jsem zvolila dva reprezentaty:  

a) křemíkové solární články – součástky s velkým pn přechodem a  

b) tenké vrstvy – substráty pro mikro optoelektronická zařízení.  

V obou případech jsem provedla jejich detailní povrchovou charakterizaci. U solárních 

článků jsem použila sondovou mikroskopii jako hlavní nástroj pro nedestruktivní 

charakterizaci povrchových vlastností. Tyto metody jsou v práci popsány, a jejich 

pozitivní i negativní aspekty jsou vysvětleny na základě rešerše literatury a našich 

vlastních experimentů. Je také uvedeno stanovisko k použití sondy mikroskopických 

aplikací pro studium solárních článků. V případě tenkých vrstev jsem zvolila dva, z 

hlediska stability, zajímavé materiály, které jsou vhodnými kandidáty pro přípravu 

heterostruktury: safír a karbid křemíku. Ze získaných dat a analýzy obrazu jsem našla 

korelaci mezi povrchovými parametry a podmínkami růstu heterostruktur studovaných 

pro optoelektronické aplikace. Práce zdůvodňuje používání těchto perspektivních 

materiálů pro zlepšení účinnosti, stability a spolehlivosti optoelektronických zařízení. 

  

Klíčová slova 
 
Lokální charakterizace, optoelektronika, materiál, křemíkový solární článek, safír, 

karbid křeníku, heterostruktura, tenká vrstva, skenovací sondová mikroskopie, AFM 

mikroskop, SEM, zpracování obrazu, statistická analýza, fraktálová analýza 
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1 INTRODUCTION 
 

1.1 Subject of study 

The subject of the thesis is nondestructive surface characterization of optoelectronic 

devices, both widespread commercial devices (solar cells) and just heterostructures (at 

the material preparation and properties investigation stage). The thesis differs from the 

previous studies in optoelectronics. The subject of the study was chosen in the 

following way: 

- First, the samples, provided by producers of solar cells were studied by SPM and 

SEM. Solar cells were chosen as readily available specimens for measurements 

since their efficiency strongly depends on the quality of the surface, and industry 

demands continuous improvement. This study brings additional information 

about state-of-the-art photovoltaic devices. 

- Then, heterostructure surfaces, prepared as prospective solar cell materials, were 

analyzed. The prepared structures were characterized at each step of fabrication: 

from substrate choice and processing to structure preparation. Stable materials 

with promising properties and proven potential are of great interest for modern 

optoelectronics.  

The aim is to study problems of material surface condition by a nondestructive 

approach; therefore attention in this work is also given to an explanation of the choice 

of method for surface characterization. The metrology plays a role and is considered in 

terms of the description of the surface.  

The most important results could are obtained at the intersection of the fields of science 

and development (Fig.1.1). SPM and SEM are used for qualitative and quantitative 

description of the optoelectronic structures. Using modern characterization approaches, 

the results may influence both the design of new structures and enhance performance of 

existing optoelectronic devices. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Interconnection of fields involved in the thesis. 

Existing 

application 

Modern  

methods of 
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Design, 
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The theoretical and experimental importance of the work is reflected in the interest of 

scientists working on problems of a similar nature: the reference list of this thesis 

reflects only small part of an enormous amount of studies in this field. 

 

1.2 Formulation of the problem 

Today, there is a considerable increase in global energy demands. Use of solar energy 

decreases consumption of nuclear, coal, gas and oil resources. Worldwide solar energy 

capacity in 2015 is approximately 17.5 GW [1], and the market is anticipated to grow in 

the forseable future. This energy can supply different electrical devices or be converted 

to other types of energy, heating, for example, or stored for later use in bataries.  

Gathering solar electric energy is a difficult task and strongly depends on the quality of 

the solar cells employed. Solar cells are produced with a number of different 

technologies: monocrystalline and polycrystalline silicon based technologies; thin films 

solar cells, based on second generation materials such as cadmium telluride, copper 

indium gallium diselenide, and amorphous silicon; multiple junction solar cells based 

on epitaxial III-V compounds; dye-sensitized solar cells; organic solar cells. Progress in 

solar cell technology brings society closer to using clean power. 

Chandra et al. [2] explains the three key characteristics for wide penetration of solar 

energy in everyday life: a) increasing of efficiency of energy conversion, b) improved 

reliability and longer life expectancy, and c) reducing cost. The reduction of materials 

cost and elimination of fabrication process complications are trends for modern 

technologies to provide high production capacity [3]. For example, the authors of [4] 

highlight some of the many advantages of tandem solar cells such as reduced 

thermalization and below-bandgap absorption losses. 

Tandem cells, impurity-band and intermediate-band devices, hot-electron extraction, 

and carrier multiplication, are a few of the so-called “third generation” technologies 

proposed to improve solar cell efficiency [3]. Tandem solar cells represent combinations 

of several layers in one multi-junction stack [3]. They absorb a broader spectrum using 

several heterojunctions and/or light interaction mechanisms. These cells contain 

different materials with varying bandgaps. The wider the variation in bandgaps, the 

wider the spectral range of the cell. Tandem solar cells also reduce some of the 

materials cost while increasing efficiency [4]. 

The complicated structure of tandem solar cells requires scientists to understand the 

properties of the different materials which comprise the various subcells. It is necessary 

to protect the solar cell from ambient conditions and their influence on degradation. For 

this reason the upper layer should have both larger bandgap and superior stability.  In 

this work we investigate materials which are suitable for the upper layers of a tandem 

cell. According to literature review, and as determined by our studies, the surface 

morphology of the layers influences the lattice matching of heterojunctions, impurity 
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concentrations, stresses, and dislocation densities, consequently strongly affecting the 

efficiency of the sub cells.  

In [4] the authors address the current state of tandem solar cell fabrication, such as the 

preparation (epitaxial grown), choice of substrate (expensive Ge or III–V substrates), 

and design structure (large bandgap structures vertically stacked on top of small 

bandgap structures). 

Due to their expense, tandem cells are used for space applications, but as noted in [3] Si 

cell efficiency is low and also Si is susceptible to radiation damage. Presently, GaAs 

based materials are well suited to tandem solar cell technologies.  

Concentrated solar power plants and solar selective coatings stable in air at high 

temperatures demand stable materials with low defect structure, and preferably 

compatible with current electronics fabrication techniques [5]. 

The characteristics of solar cells depends on the influence of radiation. Some types of 

radiation have a damaging effect on the cells. These effects in turn depend on the 

elevation of the solar panel installation (from ground fields up to space orbits). Space 

UV band radiation generally compromises the properties of solar cells. The high energy 

ultraviolet part of the solar spectrum decreases the duration of field operation for 

photovoltaic modules [6]. Transparency of the encapsulating glasses of solar panels 

generally decreases under UV radiation, causing a degredation in performance. One 

approach is the applications of UV reflected coatings and filters to prevent degradation. 

Another approach is preparation and investigation of new prospective materials for 

photovoltaics with superior performance in this spectral range.  

Space radiation also influences the temperature of solar panels, thus a temperature 

stable material should be chosen. For this purpose, the wide bandgap materials provide 

possibilities for design and application of photovoltaic elements. One candidate is 

aluminum nitride (AlN). AlN provides a new technological opportunity for solar cell 

design, especially for tandems solar cells. 

 

1.3 State of the art  

Most modern low-cost solar cells have only one p-n junction. Only the photons with 

higher or equal energy to the bandgap of the absorber can generate current. The use of 

multilayer elements can improve the spectral bandwidth of absorption. A combination 

of different materials with a variation in bandgap obviously will provide lower losses, 

since such elements work with a wider portion of the solar spectrum (Fig.1.2).  

High energy photons are to be absorbed at the upper layers, so it is necessary to situate 

the subcells made from wide bandgap material on the top and other layers with lower 

bandgap towards the bottom of the cell. Obviously, the top material should be stable to 

extreme conditions and transparent to other part of the spectrum.  
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Figure 1.2. Scheme of tandem (multilayer) solar cell. 

 

Design of high efficiency solar cells is important both for earth (autonomic electric 

stations, alternative energy sources) and space (ships, satellites) applications. Solar cells 

provide a considerable fraction of the energy for space vehicles. Solar cells for space 

applications demand a specific design due to the harsh conditions of space exploration. 

The authors of [3] summarize that nanotechnology can improve solar cell quality by 

providing improvements in crystalline semiconductor III–V materials, polymer 

materials, and carbon-based nanostructures. Efficient energy conversion depends on the 

thermodynamic properties of photovoltaic materials and their device structures.  

Silicon is currently the most abundantly used material for solar cell production. 

However, developing solar energy technologies requires new kinds of structured layers. 

A lot of factors should be considered in order to obtain high efficiency solar cells, such 

as the composition of the layers and the optical behavior of light at each layers’ 

interface. Using the proper buffer materials is important. The high resistance multi-layer 

AlN/AlGaN/GaN is often used for Si-based devices, since a thin AlN protective layer 

provides low contact resistance between silicon and subsequent films [7]. 
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Wurtzite structure semiconductor materials are promising for a wide range of optical 

devices (light-emitting devices, solar cells, microsensors, photocatalysts), due to their 

variety in crystal size, orientation and morphology [8]. Their stability at extreme 

conditions has attracted global attention to aluminum nitrate for the implementation of 

high-efficiency nitride photovoltaic devices. AlN is applicable not only to silicon, but 

also to copper-indium-gallium-selenide solar cells as a barrier to improve conversion 

efficiency [9]. 

The focus of reference [10] is solar selective absorbing coatings on the basis of titanium 

and aluminum nitride multilayer structures obtained by magnetron sputtering. 

According to [11] the quasi-solid-state dye-sensitized solar cell with 0.1wt% of AlN in 

gel polymer electrolyte exhibited high power-conversion efficiency. Reference [12] 

describes thin AlN buffer layers prepared on the n-type Si (111) wafers. It caused p-

doping of the Si wafer by Al in-diffusion. On top of the AlN buffer is situated an n-type 

GaN layer.  Thus, a pn-junction occurs with low lattice mismatch. The authors of 

reference [13] discuss thin layers of hydrogenated aluminum nitride as a combined anti-

reflective coating and passivation layer in n-type cells. For photovoltaics, it could be an 

alternative to silicon oxide, silicon nitride and aluminum oxide. 

Compounds based on AlGaN are potentially useful as optical, solar-blind sensors, and 

UV emitters [14]. Aluminum nitride also can be used as a solar coating not only in thin 

film form, but also as a ceramic material, as was described and successfully modeled in 

reference [15]. Nano-AlN composite was reported in [16] as an efficient thermal storage 

material, which can provide thermal energy for utilization when a light source is absent.  

AlN is also a very interesting material due to its attractive electrical and physical 

properties [17,18]. AlN has high hardness, high electrical resistivity, excellent thermal 

conductivity [19], stability at high temperatures and resistance to corrosive media. It 

could be applied in III-nitride epitaxy as a substrate for fabrication of optoelectronic, 

high-power photonic devices [20] and is currently in competition with sapphire-based 

technologies [21]. Wide bandgap semiconductors provide advantages in photovoltaic 

design. As we reported in [22, 23] the bandgap of solid solutions with silicon carbide 

could be controlled and the required optical properties could be obtained.  

The optical bandgap range provides an opportunity for preparation of structures for 

ultraviolet applications. The results can be applied to the design of optoelectronic 

devices with prescribed light emitting properties for devices used under extreme 

conditions.  

AlN is interesting as an anti-reflection layer due to the combination of its’ thermal and 

optical properties [24]. Its’ solar selective absorption could find a place in solar cells 

preparation. Aluminum nitride is a good substrate of electrical and optoelectronic 

devices, due to high thermal conductivity. Aging experiments show that AlN and Al2O3 

based materials have high thermal stability and are promising in the solar power 

industry [25]. All these properties make AlN a good candidate for surface passivation 
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and antireflective coatings of solar cells, both silicon [26] and A3B5. Use of AlN as a 

passivating layer was also reported in [26].  

Films of AlN deposited on Copper-Indium-Gallium-Selenide solar selective foils are 

suitable as an insulation barrier, and improve crystalline quality of contacts and 

conversion efficiency [9]. AlN is a suitable material for optical coatings or surface 

passivation even better than Si3N4 [27]. The author of [28] brought to our attention that 

further improvement of the fabrication process of AlN films with a high quality is 

necessary. Aluminum nitride/oxide was also suggested for applications as a top layer for 

tandem solar absorbers. Solar absorbance of 0.96 was reached for experimentally 

prepared solar selective absorber coated surfaces on the basis of an aluminum–

aluminum nitride composite [29]. The progress in AlN technologies shows that it is not 

limited by C-UV (ultraviolet C) since Yoshitaka Taniyasu et al. [30] reported a 

fabrication of AlN homojunction LED with an emission wavelength of 210nm. AlN can 

be transparent down to 200nm [31]. Experiments in this field will allow improved 

flexibility in novel solar cells design. 

All mentioned studies were accompanied directly or indirectly by the purpose of finding 

a solution to alternative energy problems, and make aluminum nitride an interesting 

material for energy conversion and storage. The goals of making higher efficiency solar 

cells and reducing the cost of solar energy could be advanced by use of the prospective 

materials studied and giving attention to their morphology. 

 

1.4 Objectives of dissertation  

The study is focused on the local micro- and nano-meter scale optical and electronic 

characterization of optoelectronic materials and structures, including wide-bandgap 

semiconductor films for optoelectronics. All contributions to this emerging field are 

original due to the cutting edge nature of the technology.  

The development of thin films for optoelectronic devices presents challenges of both 

fundamental and empiric character.  For instance, the problem of contacts with systems 

of several materials, e.g. point imperfections, and grain boundaries. All these affect 

diffusion of charges, segregation, recombination, and current transfer. 

These problems should be investigated in combination with the parameters of complete 

devices, including the effects of other materials and their local characteristics. During 

the optoelectronics element formation, it is necessary to study the quality of each layer 

after every step of preparation in order to fully understand the structure, chemical 

composition, optical and electrical properties, and their potential influence on the 

completed device. 

The field of modern microelectronic devices can benefit greatly by the development of 

new material classes, particularly the design of materials which are stable when exposed 

to high-temperatures and radiation. The electrophysical properties of wide-bandgap 
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semiconducting materials such as AlN, GaN, SiC, diamond, and the solid solutions 

(SiC)1-x(AlN)х, make them useful in fabrication of devices for power and microwave 

electronics. These materials are the subject of advanced research for their applications 

to devices for the short-wavelength spectral region (ultraviolet light photoconverters and 

photodetectors, high-temperature laser diodes). AlN is characterized by a wide band-gap 

(Eg = 6.28eV), high values of critical (electrical) breakdown field, and high stability to 

temperature influences and radiation. However, obtaining perfect AlN epilayers is 

difficult because of the absence of epitaxial substrates (of the same material). As a 

consequence, epitaxial deposition is carried out using foreign substrates of other 

materials such as sapphire (Al2O3) and silicon carbide (SiC).  

This choice of substrate is motivated by the fact that the technology for substrate 

formation of Al2O3 and SiC is well developed. Also, these materials satisfy the 

requirements of electro-physical, mechanical, and thermal properties of materials 

suitable for extreme conditions devices. Monocrystalline sapphire is one of the hardest 

oxides, with high hardness at high temperatures, good thermo-physical properties and 

optical transparency. It is chemically resistant to most acids up to 1300K, and to 

hydrofluoric acid (HF) below 600K. These properties make sapphire a good material 

choice when it is necessary to have an optically transparent material in the visible light 

to near-infrared region. 

The quality of prepared structures studied here is evaluated by scanning probe 

microscopy and scanning electron microscopy. 

Optical properties of both Al2O3 and AlN are well studied. Based on the literature 

survey mentioned previously, its exceptional properties could find applications in solar 

cells. But it is still a challenge to prepare AlN films with the required quality and 

properties. Texture of the material surface is one indicator of film quality, and will 

influence efficiency and reliability of the heterostructures. For this reason, the work 

reported here is oriented toward the description of surface morphology using modern 

surface characterization systems. The goal of the work is not only to reveal the basic 

processes of thin films morphology and control, but also to provide perspectives on new 

materials implementation and their possible  application in optoelectronics. 

The choice and preparation of the substrate for individual subcells, as well as the 

deposition and processing techniques used, are important steps that need to be 

optimized in solar cell production. 

The objectives of this study include investigation of:  

1. texture and morphology of solar cell surface layers,   

2. new methods for morphological characterization,   

3.  explanations  for the choice of materials used in heterostructure preparation,  

4. the influence of preparation condition on thin film morphology 

5. a statistical description of morphology characterization. 
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1.5 Organization of thesis 

A short introduction and overview was given above about the current progress in the 

field of solar cells designs and application of prospective materials for optoelectronics. 

Chapters 2 and 3 concern existing problems, possibilities and perspectives of defects 

detection by emerging technologies. Chapter 2 describes two types of microscopy 

suitable for solar cells morphology characterization and their comparison: Atomic force 

microscopy and scanning electron microscopy provide information about surface 

texturization at the micro- and nano-scale and are of interest for nondestructive 

optoelectronic device characterization. Chapter 3 contains nondestructive morphology 

characterization data of silicon and gallium arsenide solar cells, including mathematical 

processing of the results using freely available, shared software. 

Chapters 4-6 represent the core of this thesis and describe the experiments of 

heterostructure preparation and analysis. Chapter 4 demonstrates the advantages of 

plasma etching substrates for cleaning and further deposition of layers. The optimal 

conditions are described and characterized by a number of AFM measurements. Chapter 

5 discusses film preparation, choice of the depostion method and parameters, including 

the substrate near-surface area processing to obtain textured layers. Chapter 6 includes 

statistical and fractal analysis of the data, carried out in collaboration with Prof. Talu 

and his team. This information was also published in our common publication and these 

articles are in the attachments. Finally, the main results are summarized in a discussion 

which includes further suggestions and perspectives on this field of study and 

conclusions. 
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2 MORPHOLOGY CHARACTERIZATION 
TECHNIQUES  

 

This chapter describes two advanced metrological tools for surface study, 

characterization and modification. Considerations of the interaction between the tool 

and the sample allow avoiding the influence of artifacts on the results of scanning  a 

solar cell surface. The usefulness of the methods as applied to solar cells is shown. An 

overview of free software for processing data exported from the instrument software is 

given and the advantages of these resources are demonstrated.  

 

2.1 SEM and AFM surface characterization   

Advanced characterization of optoelectronic devices demands several microscopy 

techniques based on different physical principles with nano- and micro-meter resolution 

in order to locate nanosize features of the device structure. SEM and AFM  are 

promising methods to study solar cell topography that can be used in during fabrication 

to afford fine surface control. These measuring techniques are widespread in the 

scientific and industrial world, and have an important role in the the field of 

optoelectronics. AFM and SEM illustrate surface texturization at micro- and nano-scale, 

and thus are powerful instruments of nanotechnology.  

SEM and AFM are complementary methods, each giving access to different information 

about topography. The  images obtained contain information about the distribution of 

light in the near-surface area. Such studies can contribute towards the improvement in 

efficiency of solar cells, as the surface condition influences the optical properties of the 

cells. Surface condition also affects the reliability of the device. It is thus necessary to 

minimize the formation of defects in every fabrication step. Texturing of a solar cell 

surface is a way to improve light trapping and thereby gain an enhancement in 

efficiency [32]. The properties of materials in the micro- and nano-scale can be 

dominated by the geometry of the surface, and, in such cases, will therefore be a 

function of the dimensions [32]. 

It is possible to extract qualitative and quantitative information about solar cells 

(electrical properties of grain boundaries, nano-scale optical properties and morphology) 

from AFM and SEM data [33]. Based on the scale of modern semiconductor 

technologies, to the nanometer level, there is a demand for SEM and AFM analysis. 

Surfaces and surface phenomena are also of great interest for fundamental physics, 

since the atomic structure of surface atoms is different than for those in the volume of a 

bulk material. One main factor which distinguishes SEM and SPM is the necessity to 

maintain high vacuum in an SEM, while an SPM can be operated at ambient conditions 



Non-destructive local diagnostics of optoelectronic devices 

 

- 24 - 

 

[33]. Combinations of different types of microscopy considerably improves the 

scientific quality of solar cell investigation results [34].  

Both AFM and SEM characterization methods can give important information and 

demonstrate the critical role of surface roughness and feature size distribution. In spite 

of the fact that both methods give findings about surface topography, there is a contrast 

in this information rooted in the different principles of each method, each of which 

could be more applicable to specific types of surface measurements [33]. There are 

plenty of possibilities to find additional information connected to these principles [35], 

for instance, the interaction of an electron beam with the surface provides the possiblity 

to detect secondary electrons, backscattered electrons, X-rays, Auger electrons, 

cathodoluminescence, electron energy-loss, transmitted electrons, and diffracted 

electrons [33]. In turn, interaction of an SPM probe with a surface can give information 

based on the measurement of atomic force, current, magnetism, light emission, etc. 

Combinations of different methods were applied to surface characterization more than 

20 years ago [35], and successfully used since then, providing the benefits of more 

reliable interpretation regarding morphology by exposing the correlation of the data 

obtained by different techniques. 

 

2.2 Scanning electron microscopy (SEM) 

Scanning Electron Microscopy (SEM) measurements are in the range of micro- and 

nano-metrology. SEM has some advantages over AFM when the height and depth of of 

morphological features exceeds the limited range of an AFM. There are a number of 

devices which need to be characterized at both milli-, micro- and nano-scale; while their 

components are designed in milli and micro-scale, nanoscaled morphology influences 

strongly their characteristics and lifetime (e.g. optoelectronic, microelectromechanical, 

microoptoelectromechanical devices) [32]. In some cases [36] AFM seems to be more 

reliable for fine profile characterization.  

Beam parameters define the final resolution and depth of electron interaction with 

surfaces [33]. In comparison to SPM, SEM has quite a large depth of focus. SEM has 

become a widely used tool for imaging and manipulating nanostructures. SEM 

applications are expanded from nanoscience laboratories to many fields of industry 

where micro- and nano-scale control is essential. A focused ion beam, which is quite 

often combined with SEM, is also of great interest in the semiconductor and materials 

science fields [37]. There are many factors that must be taken into account for obtaining 

good images with an SEM: proper sample preparation, elimination of noise and 

undesired effects (spherical aberration, chromatic aberration, diffraction, astigmatism 

[33]), etc.  

 

 



Non-destructive local diagnostics of optoelectronic devices 

 

- 25 - 

 

2.3 Scanning probe microscopy (SPM) 

Scanning probe microscopy (SPM) has better resolution then traditional instruments, 

such as a profilometer or optical microscope [38], and can be adapted to bare and 

untreated surfaces without complicated sample preparations. The results reported in 

reference [39] demonstrate SPM as a powerful tool in III–V semiconductor device 

structure metrology. SPM is one of the best modern methods for studying morphology 

and local properties with high resolution. The method has progressed from a strange and 

unusual scientific tool to widespread way to study surfaces in many applications.  

Progress in SPM has enabled new methods in nanotechnology for structure 

characterization. Since AFM gives both the possibility to watch atomic structure of the 

surface and global information about whole surface, precise information about surface 

details could be extracted with high resolution. Another advantage is the sample will not 

be damaged by exposure to a high energy beam, as could be happen in scanning 

electron or ion methods. There many classes and modifications of SPM, as many 

scanning modes and methods have been invented. Nevertheless, there is still a large 

unstudied potential for the use of SPM for investigation of defects. Most importantly, 

AFM measurements  allow evaluation of surface roughness parameters with a high 

degree of precision.  

 

2.3.1 SPM types 

There are a large number of techniques which rely on the interactions between a sample 

surface and a proximal probe. This interaction defines the type of probe microcopy. As 

a consequene, SPM methods give further insight into a number of morphological 

properties. Alongside topography, SPM can characterize optical, electrical and 

mechanical surface properties, and may find correlations between them. These many 

possibilities to use SPM to characterize devices defines the range of possibilities for 

surface characterization. There are a number of reports that concern application of SPM 

methods to study a wide range of materials, from soft biological samples (cells, 

proteins, DNA, etc.) and polymers [40] to hard diamond containing materials. 

Modifications of specific SPM hardware can be realized provided common demands, 

such as the minimization of mechanical vibration and other sources of noise are 

maintained. 

 

2.3.1.1 Scanning near field optical microscopy (SNOM) 

SNOM has been studied by a large number of scientists for measuring optical properties 

on a subwavelength scale due to the non-destructive nature of the method and the 

capability of simultaneous topographic imaging with a nanometer scale (but 

nevertheless, usually lower than the resolution of SFM) [40]. Even 20 years ago Buratto 
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in [41] wrote “The future for NSOM as a characterization tool in materials science looks 

bright.” SNOM resolution is not limited by diffraction, and is defined by the aperture of 

the scanning probe (50-100 nm) [42], which is situated a few nanometers from the 

sample surface [43].  

Near-field optical microscopy uses a sub-wavelength sized aperture which can 

illuminate the surface. Very sensitive photomultipliers collect the reflected or 

transmitted light [44]. It allows studying of subwavelength structures and defects in 

near-surface area of films and heterojunctions. This method rapidly spread to 

applications in optoelectronics and photovoltaic characterization. There are attempts of 

scientist to use low temperature SNOM (at temperature of liquid nitrogen and liquid 

helium) [45]. 

As noted in [44] it is possible to find additional information about the sample such as 

polarization, spectroscopic, magnetic properties, transparency, optical thickness, 

topography, lateral structure, etc. One example is the widely used (in optoelectronics) 

SiC monocrystal wafer: the defect prolongation is better shown in a SNOM image, 

whereas the scale of the defect is smaller in the AFM image, and it is observed only in 

the surface (Fig. 2.1). 

 

a) 

 

b) 

Figure 2.1. a) AFM image of SiC wafer topography and 

a) SNOM image in reflection of the same area. 

Scanning area of (35 x 35)μm2. 
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2.3.1.2 STM 

Scanning tunneling microscopy (STM) uses the tunneling of electrons between a 

conductive sample and a probe at small distances (10nm). Measurements on the basis of 

tunneling and horizontal scanning were proposed by Binnig et al [46]. STM has better 

resolution compared to other SPM methods and therefore conducting materials often 

show higher resolution data from SPM techniques [47]. The scanning allows imaging 

with high resolution in horizontal direction (lower than 1.0nm) and in vertical direction 

(lower than 0.1nm) which is enough for single atom detection. The limitation of this 

method is in materials choice. The scanning surface should be sufficiently smooth and 

be conductive for making possible tunneling effect between the surface and the probe. It 

is applicable to metals, their solutions and semiconductors [48, 49].  

Using of scanning tunneling microscopy (STM) and spectroscopy (STS) for surface 

investigation excludes data averaging since it has high resolution (0.1Å) and allows 

measuring of physicochemical characteristic of single adsorbed particles, defects and 

nanostructures. At the same time it is difficult to obtain reproducible results in either 

topography or spectrography. This is connected with thermal drift and soiling of the 

probe and changing of charge state of defects. For this reason, drastic improvements in 

STM and STS methods are needed for practical applications [50].  

The main set-up used in this work for scanning probe microscopy is the Ntegra Prima, a 

femtocurrent scanning device (part number ST020NTF) with a thermal stage with 

variable temperature range up to 450K, adequate for investigation of surface structures 

of SiC [50]. Typically used parameters for scanning were: scanning frequency 0.2-

0.5Hz; cutoff frequency of low-pass filter for signal height ADC is 100Hz-300Hz. At 

room temperature, STM-images of the surface of wide bandgap semiconductors are not 

clear and there are a lot of measurement artifacts .Figure 2.2 shows the STM image of 

heated SiC wafer surface. The sufrace area is full of defects caused by broken chemical 

bonds, nevetheless there is a similarity to data of [52] which chematically describes 

atomic sequences (Fig.2.3).    
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Figure 2.2. STM image of SiC monocrystalline wafer [51]. 

 

For comparison we can take a look to [52] where the author describes the position of 

atoms for 2H polytype of SiC (Fig. 2.3): the dots in the corners of hexogon represent 

atoms. The same is observed in figure 2.2, where the peaks of tunnel current noted 

position of the atoms on the surface. 

 

 
Figure 2.3. Separation of polytype and the sequence of the atomic layers of 

moncristalline 2H-SiC [52]. 
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2.3.1.3 Spectroscopy 

Scanning tunneling spectroscopy (STS) is the most well-known SPM tip based 

spectroscopy method, it allows to probe the local electronic density of states, which 

depends on the surface reconstruction, composition and doping in single crystal 

materials (and is more complex in polycrystaline materials) at one point of the sample. 

This is an informative method for the study of contacts or areas of localized states, 

which allows to obtain on-the-spot characteristics. In this case the tip influences a 

certain point of the specimen and acts as a sensor to register the response. There are also 

variations on SPM tip based spectroscopy: force spectroscopy which allows to study 

mechanical properties (Young's modulus, adhesion, hardness), and electrical 

spectroscopy for definition of work function of surface, bond states etc. [48]. 

2.3.1.4 Lithography 

Nanolithography is an important process in the design of nanostructures for electronics 

(for example organic thin-film transistors [53]). SPM lithographic techniques are 

capable of making nanometric scale features [54]. Lithography can be carried out by 

using force or electric interaction between the sample surface and the probe. When the 

tip is in a contact with the surface, structures are created by elastic and plastic 

deformations of the substrate [55] (Fig. 2.4). For electric lithography, modifications are 

achieved by changes in the material conductivity and humidity during AFM 

anodization, which strongly affect the lithography [56] and thus should be controlled. 

 

Figure 2.4. AFM vector lithography on the piece of compact disc (scan area is 6x6 µm2) 
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Since the pressure is dependent on tip area, a sharp tip can easily force its way into the 

surface of a soft material. 

 

2.3.1.5 AFM 

2.3.1.5.1  AFM modes assignment 

The modes of AFM could be distinguished by their dependence on distance between the 

probe and surface. The mode should be chosen considering sample properties (hardness, 

stability to local influence of probe) and the probe (parameters given in product 

specification). The chosen mode also defines further measurement possibilities such as 

local electrical, magnetic, mechanical (indentation, phase distribution) surface 

characterization.  

- Contact mode 

If the probe has direct contact with the sample, actually touching the surface then the 

contact mode is chosen. Obviously this mode is not suitable for soft or easily damaged 

samples. All contact techniques for detection of local elastic properties use tip-sample 

contact stiffness [57].  

- Tapping mode 

Intermittent (semicontact or tapping) mode uses probe oscillations and detect shift of 

oscillation parameters (amplitude, phase, frequency) to detect morphology features. 

Intermolecular interaction forces between the tip and sample [58] are responsible for 

imaging.  

- Non-contact mode 

Non-contact mode is also a dynamic mode and applicable when high attractive forces 

are present [32]. Non-contact atomic force microscopy overcomes limitations of lateral 

resolution of force microscopy [59]. The “probe-sample“ distance depends on time in 

this mode and the distance between the tip and the surface is around 50–150Å [60]. 

 

2.3.1.5.2 Lennard-Jones curve 

Since the distance between probe and the specimen is extremely small (atomic distance) 

the interaction in this system could be described by a Lennard-Jones potential curve 

[61]. This potential combines the attractive van der Waals (long range) and repulsive 

atomic (short range) forces [62] and is shown in Fig. 2.5. 
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Figure 2.5. Lennard-Jones potential curve [32]. 

 

 

2.3.2 Probes 

20 years ago it was noted that the highly individual and even changing characteristics of 

AFM tips interfere with the quality of the surface image [63]. In spite of a lot of studies 

in this field there is still a problem of the proper AFM tip choice. Some classification of 

AFM probes is given in the table 2.1 (according to literature review for today), since 

there is a continuous progress in tip design it cannot be considered as comprehensive. 
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Table 2.1. SPM probes classification 

Type of probe Preparation Properties Application 

W wire probe electrochemical 

etching processes 

low cost, high 

stiffness and 

elastic modulus 

surface topography, 

electrical 

measurements  

Pt wire probe cutting, 

electrochemical 

etching (polishing)  

does not easily 

oxidize  

surface topography, 

electrical 

measurements   

Cantilevers with 

silicon tip 

micromachining  

could be modified 

by FIB  

resonant frequency  

uniform geometry,  

low cost  

surface topography, 

mechanical 

measurements 

Cantilevers on 

nanostructures 

(Whiskers) 

vapor–liquid–solid 

mechanism  

high aspect ratio  surface topography  

Cantilevers with 

conductive probes 

deposition and 

patterning  

conductivity of the 

tip 

surface topography, 

electrical 

measurements 

Cantilevers with 

magnetic probes 

deposition  magnetizability of 

the tip 

surface topography, 

measurements                 

of magnetic 

characteristics 

 

2.3.3 Types of AFM sensors 

There are several technologies to detect mechanical reaction of "tip-sample" system. 

The deflection of a cantilever or changing of its resonance frequency could be realized 

by piezo techniques, optical methods, etc. [48]. The sensors realized on piezo technique 

represent tiny piezoceramic tube with conductive electrode inside. The probe in this 

case could be easily prepared by electrochemical etching. This allows fast preparation 

and sharpening of tips with quite cheap materals such as tungsten wire and hydroxide. 

The optical detection methods realized by a laser-probe / photodiode system. In this 

case the light reflected by the back side of the cantilever is important. The movement of 

the laser beam which is reflected from the probe is registered by a photodiode.  
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2.3.4 Artifacts  

It is necessary to take into consideration the artifacts of SPM measurements which are 

caused by interaction of the device components and the sample. The study of artifacts 

helps to carry out more reliable measurements. Some factors add parasitic information 

to measured data and degrade achievable resolution [32]. These factors present 

difficulties in imaging on the nanoscale and join up signal with parasitic artifact data 

produced by different sources [64]. Below several common scanned probe artifacts are 

discussed. 

 

2.3.4.1 Artifacts caused by probe 

Tip condition, its shape and size affects the AFM image. AFM tips can result in 

distorted images of actual surface geometry [65]. An AFM image is forming serially 

line by line and it limits the speed of microscopy in comparison for example to optical 

techniques [66]. The shape of the probe also influence the scanning image, especially at 

the edges of features (Fig. 2.6, 2.7). Figures 2.6 a 2.7 demonstrate possible false 

imaging cased by obtuse and splited tip (respectively)  

 

 

a) 

        

b) 

 

c) 

Figure 2.6. a) supposed profile, b) tip shapes,  c) possible difference in profile imaging 

[67]. 
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a) 

 

b) 

Figure 2.7. a) Imaging of the broken SNOM probe, b) artifact of edge duplication. (scan 

area is 120x120 µm2) 
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2.3.4.2 Artifacts caused by scanner 

The scanner is the part of an SPM which is responsible for the smallest steps and 

displacement in the scanning process. Drive voltage and the resulting displacement of 

the piezoelectric tube scanner have a non-ideal relation which includes non-linearities, 

hysteresis, creep, cross-coupling between axes [68], aging and drift [69] The inferior 

characteristics of piezoelectric tube scanner limits the quality of AFM measurements 

[38]. There are some possibilities to limit scanner caused artifacts. These methods are 

based on materials choice, construction variation [38, 70], or further correction and 

filtering [71]. In reference [38] a separate the z scanner from the xy scanner was used to 

prevent coupling between xy and z directions, and eliminate background curvature 

artifacts. An ultra-high-precision positioning stage is one of the keys to the next-

generation of nanotechnology [72]. 

 

2.3.4.3 Artifacts caused by surrounding 

To achieve atomic resolution, vibration isolation is essential [73]. The antivibration 

system should be realized for better scanning results. It is easy to note that acoustic 

noise brings its component to the signal, especially if it is sensible at the nanoscale or 

femtocurrent measurements. The SPM and device under test should be protected from 

electrical and electrostatic influence and some shelter could be applied. The temperature 

gradient in ambient also will cause undesired motion of the tiny measuring system 

probe-sample. The attention to the temperature stability should be taken into 

consideration when the sample is heating during the measurements. Thermal drift 

influences STM for heated samples. An example is STM of SiC monocrystal atomic 

resolution images. Heating allows application of STM to semiconductors since it 

increases their conductivity [51]. The influence of noise could be decreased by scanning 

smaller areas of the surface [32]. 

 

2.3.5 Free software possibilities 

Most tools of AFM and SEM measurements are accompanied by user-friendly software 

which provides carrying out measurements and further processing of results. But 

sometimes the most appropriate algorithm for image processing and threshold is absent. 

Such algorithms must be determined for better interpretation of the results [74]. The 

efforts of a number of scientific groups are combined in free software programs such as 

Gwyddion [74], Image J [75] etc. The processing is interesting for both image 

perception improvement and for recognition and calculation of surface structural 

charactiristics (roughness, length of borders between phases, etc). 
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2.4 Using of SEM and SPM in study of solar cells 

Performance improvements of solar cell technology supports microscopy progress. 

AFM and SEM techniques are non-destructive considering solar cells surface 

properties. Lateral resolution of AFM and SEM are the same, but AFM has better depth 

resolution [76] and AFM image Z axis data correspond to actual surface feature high 

and depth. So AFM can be used to zoom in and investigate the features that were found 

by SEM. SEM and SPM methods for characterization of solar cells recently attracted 

great attention. It has been shown that there are usefull insights between cell 

morphology and solar cells properties.  

The quantitative analysis of the surface morphology defines the differences between the 

samples. Morphology of solar cells could be well studied by scanning electron 

microscope. Mendis et el. noted that electron microscopy is vital for characterizing the 

microstructure/morphology of solar cells and dedicate the review to this field [77]. SEM 

images provides information that cannot be found by optical devices and it has 

sufficient depth of field. Cross sectional views made by SEM can show the nature of 

shunts in solar cells p-n junctions. SEM is very usefull for characterization of the solar 

cells surface microstructure [78]. The non-destructive nature of SEM makes it 

interesting for scanning electron acoustic microscopy for study of morphological 

defects of polycrystalline solar cells [78]. 

Surface elements should be large enough for the processing and measuring. In case of 

SEM it is gray scale range, in case of AFM these are borders, texture, features good 

enough to be scanning by probe. AFM use image coloration for better perception.  

Electrical scanning probe microscopy uses conductive probes and describes the 

electrical function of materials [79] and it could serve to measure the photoinduced 

current in solar cells. Electric measurements using conductive probes provides 

observation of solar cells contact area [79]. 

Сonductive atomic force microscopy (C-AFM) characterization GaAs/Ge solar cells has 

revealed influence of structural defects known as antiphase domains to homogeneity in 

the conductivity of the layer [79]. Bulk hetero-junction solar cell could be investigated 

by these method to study photogenerated charge separation along with other optical-

electric characteristics [80]. Sensitive to ambient photovoltaic materials samples such as 

polymer solar cell could be studied in an inert atmosphere [81].  

Use of KPFM (Kelvin Probe Force Microscopy) for solar cells allows studying of 

individual grain boundaries which play a role in defect states, as seen with spatially 

resolved measurements [82] and microelectrical characterizations in junctions [83], to 

observe changes of surface potential, which originated from the photovoltaic effect, and 

voltage distribution along the cross-section of an operating solar cell [84]. Illuminated 

Kelvin Probe Force Microscopy also reveals interlayer electric fields in bulk 

heterojunction solar cells [85]. 
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Use of AFM for study of morphology and surface quality is an important field of 

physics of surfaces, as there are growing demands for micro- and nano-structure 

diagnostics, since surface roughness in micro and nanoscale influences physical (from 

mechanical up to electrical) and chemical properties. AFM allows investigation of the 

interface length between the domains of donor and acceptor in polymer solar cells by 

the phase image [86]. 

There is a relation between the statistical surface parameters and properties of the 

optoelectronic materials surface [87], since performance stability is related to structure 

and morphology. Detailed wafer characterization results are a useful and important 

contribution in photovoltaic materials growth and structures preparation [87]. 
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3 SOLAR CELLS TOPOGRAPHY 
CHARACTERIZATION 

This chapter is devoted to the description of solar cell topography and choice of the 

method for surface study. It is important because the surface condition can predefine the 

behavior of both a heterojunction and the efficiency of a device. A detailed description 

of solar cell morphology is given in this chapter. The impact of surface structure to solar 

cells performance, including the description of hydrophobic and self-cleaning 

surfaceswhose transparency and reflective properties  are essential to the design of solar 

panels. 

 

3.1 Types of solar cells 

A solar cell could be classified on the basis of different characteristics: by size, by the 

method of preparation, by the basic material, by price, etc. The choice of material 

depends on the area of application. For example, polymer solar cells are mechanically 

flexible, light and cheap [87], but have inferier properties for space applications due to 

meteoric erosion, thermal impulse, and radiation hardness [88]. For space applications, 

a multi-junction architecture are typically used. Tandem solar cells prepared by pulsed 

magnetron sputtering and RF magnetron sputtering were reported in [89].  

The combination of different band gap materials (according to current literature) allows 

using a larger fraction of the solar spectrum (Fig. 3.1). It is well known that portions of 

the solar spectrum are absorbed by the upper layers of the atmosphere, such as short 

wave UV radiation. However, consideration of wide band gap semiconductors will help 

to use even this part of the sun‘s energy for devices which work above the ozone layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://ru.wikipedia.org/w/index.php?title=%D0%A2%D0%B5%D1%80%D0%BC%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D1%83%D0%B4%D0%B0%D1%80&action=edit&redlink=1
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Figure 3.1. Some semiconductor materials and bandgaps which find their optoelectronic 

application in different light wave range. 

 

 

3.2  Role of solar cells surface characterization  

For optoelectronic device fabrication it is necessary to study every layer during 

heterostructure preparation. Study [90] emphasizes that surfaces and interfaces are a key 

problem in the solar cell manufacturing process. Efforts to increase surface absorption 

and the fraction of absorbed light within the active layers, improving light scattering at 

the interfaces, and reducing losses should also include the study of surface texture [90, 

91, 92]. 
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Surface texturing (roughness) is often used to minimize reflection losses, and is 

important for solar cells. Improving the performance of solar cells without significantly 

increasing their cos tis an important goal: texturing reduces reflectance of silicon solar 

cells from 35% to 11% with minimal added cost [93]. Micro- and nano-scale surface 

morphology plays an essential role in the properties of electronic materials.  The smaller 

dimension is considered to have a larger influence on the surface condition. 

The wide adoption of texturing solar cell layers motivated a lot of studies in this field, 

both theoretical and experimental. Light losses are huge when the optical system 

consists of elements with high refractive indexes. The photocurrent is strongly 

dependent on texturation, as was theoretically and experimentally shown by Dmitruk et 

al [94].  

There are a number of factors that influence solar cell performance: interfaces between 

different layers, grain boundaries, and point defects due to production processes belong 

to these factors. Topography influences also contact formation, which was found and 

statistically described in [95] for silicon solar cells. Light trapping ability, as noted in 

[96], can be improved by the increased effective path length of scattered light resulting 

from textured films.  

Textured substrates can be used in order to increase the light path within the absorber 

layer [97]. Surface texture has a critical influence on optical and electrical properties 

[97, 98]. There are a number of methods to create appropriate texturing, such as: 

application of nanostructures, vapor–liquid–solid growth of structures, dry etching, 

lithography, chemical wet etching [98], and variation of parameters in electrochemical 

film deposition [99]. Yang et al. [97] reported a deposition of solar cells on a modulated 

surface textured glass substrate and explained that the structure with smoother peaks 

showed higher performance, due to a lower density of defects. Argon plasma-etching 

treatment can smooth rough surface morphology, which is sometimes necessary for 

high-performance solar cells [100]  

The dependence of thin film solar cell performance on surface preparation and 

processing was studied in reference [101]. Even the substrate roughness has a large 

influence on the properties of the solar cell junction from which they are prepared [102].  

Multicrystalline silicon solar cells are cheaper and have good conversion efficiency 

[98]. But Zeman et al. noted in reference [103] that “while the use of randomly textured 

morphologies is at present the standard approach to achieve efficient scattering inside a 

solar cell, scattering of light from periodic textures such as diffraction gratings is an 

alternative way to manipulate light inside the solar cell.” The effect of different periodic 

substrate textures on electrical properties of a a-Si:H/μc-Si:H solar cells was analyzed 

by simulation in [104]. The light distribution, reflection and dependence on shape of the 

solar cell surface can be described by geometrical optics [105].  

Improvement of solar cell performance can also be achieved by using select materials as 

intermediate reflectors and choice of layers thickness [106]. Morphology also influences 
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the electrical characteristics of photovoltaic structures in the spectral range from UV to 

IR [107] both at the surface and in the interplay of the layers [108]. Increasing the 

absorption and decreasing reflection is possible by using pyramidal structured surfaces. 

Acids or alkalines are usually used for to form pyramids on Si solar cell surfaces [109]. 

Modeling of solar cells provides optimization of the strucuture, identification of the 

optimal operating point, losses, influences of temperature, angles of light radiation and 

shading [110] (since in case of shading, solar cells can act as loads without power 

generation [111]). Optical 2-D and 3-D modeling of a-Si:H/μc-Si:H solar cells 

considered in reference [112] shows the textures that can improve optical properties and 

increase the short-circuit current density of the bottom cell by 97.6 %. Random nano-

textured interfaces are essential for light scattering modeling of thin films solar cells 

[112] Many programs for solar cell modeling were developed in universities and 

research institutes, they are mostly free for download and the core of these programs are 

Poisson‘s equation and the continuity equations for electrons and holes [113]. Such a 

model is used in reference [114], which predicts the dependency of short circuit current 

on bulk heterostructure solar cell device parameters. 

 

3.3  Solar cells surface texture 

Surface texturing (roughness) is often used to minimize reflection, and is important for 

solar cells. The performance of solar cells demands improvements: only the texturing 

reduces reflectance of silicon solar cells from 35% to 11% [93]. The sizes and shapes of 

surface morphology play an essential role in behavior and properties of materials in 

micro and nanoscale. The smaller dimension is considered the larger is influence of the 

surface condition. 

Demands of texturing layers caused a lot of studies in this field both theoretical and 

experimental. Light losses are huge when the optical system consists of elements with 

high reflective indexes. The photocurrent depends on texturation, as it was theoretically 

and experimentally proved by Dmitruk et al [94].  

There are a number of textural factors that influence solar cells performance: interface 

of different layers, grain bounderies, point defects of production belong to these factors. 

Topography influences also the contact formation which was found and statistically 

described in [95] for silicon solar cells. Light trapping ability as noted in [96] could be 

improved by the prolonged effective path length of the scattered light and textured films 

could be applied for this purpose.  

Textured substrate could be used in order to increase the light path within the absorber 

layer [97]. Surface texture has a critical influence to optical and electrical performance 

[97, 98]. There are a number of methods to create appropriate texturing such as: 

application of nanostructures, vapor–liquid–solid growth of structures, dry etching, 

lithography, chemical wet etching [98], variation of parameters in electrochemical films 
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deposition [99]. Yang et al. [97] reported a deposition of solar cells on a modulated 

surface textures glass substrate and explained that the structure with smoother peaks 

shows the higher performance due to lower amount of defects. Argon plasma-etching 

treatment makes smoother rough surface morphology what sometimes is necessary for 

high-performance solar cells [100]  

The dependence of thin film solar cell performance on surface preparation and 

processing was studies in [101]. Even the substrate roughness for the solar cell junction 

preparation has a large influence on the properties [102].  

Multicrystalline silicon solar cells are cheaper and have good conversion efficiency 

[98]. But Zeman et al. noted in [103] that “while the use of randomly textured 

morphologies is at present the standard approach to achieve efficient scattering inside a 

solar cell, scattering of light from periodic textures such as diffraction gratings is an 

alternative way to manipulate light inside the solar cell.” 

Effect of different periodic substrate textures on electrical properties of a a-Si:H/μc-

Si:H  solar cell was analyzed by simulation in [104]. The light distribution, reflection 

and dependence on shape of the solar cell surface could be described by geometrical 

optics [105].  

Improvement of performance can also be achieved by using some materials as 

intermediate reflectors and choice of layers thickness [106]. 

Morphology influences the electrical characteristics of the photovoltaic structures in 

spectral range from UV up to IR [107] both for surface and the interplay of the layers 

[108]. 

Increasing of absorption and decreasing of reflection is possible by using of pyramidal 

structures. Acids or alkalines are usually used for pyramids formation on the Si solar 

cells surface [109]. 

Modeling of solar cell provides optimization of the scheme, definition of the optimal 

working point, losses, influences of temperature, angles of light radiation and shading 

[110] (since in case of shading solar cell can work as loads without power generation 

[111]). Optical 2-D and 3-D modeling of a-Si:H/μc-Si:H  solar cells considered in [112] 

shows the textures that can surpass optical properties and increase the short-circuit 

current density of the bottom cell to 97.6 %. Random nano-textured interfaces are really 

essential at light scattering modeling of thin films solar cells [112]  

A lot of programs for solar cells modeling were developed in universities and research 

institutes, they are mostly free for download and the core at these programs are Poisson 

equation and continuity equations of electrons and holes [113]. Such the model in [114] 

exhibits the dependency of short circuit current on bulk heterostructure solar cell 

preparation parameters. 
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3.4 Hydrophobicity and self-cleaning of surface 

A study of textured morphologies is also motivated by the need to improve the self-

cleaning and hydrophobic properties of solar cell surfaces, to reduce the influence of 

weather agents, while simultaneously absorbing the maximum range of of the solar 

spectrum [115, 116]. Hydrophobic and hydrophilic surfaces can be characterized by the 

angle between the site of a water drop and the surface, the so-called contact angle (Fig. 

3.2). Hydrophobic and antireflective disordered sub-wavelength silicon structures with 

surfaces prepared by dry plasma etching are one very promising technology for Si-based 

solar cells [117].  

 

 

a) 
 

b) 

Figure 3.2. a) Hydrophobic surface (angle > 90°), b) hydrophilic surface (angle < 90°). 

 

Environmental erosion can change optical properties of the surface of a solar cell, 

therefore cleaning is essential [118]. Some structures found in nature demonstrate such 

outstanding integrated optical and mechanical properties of surface they have inspired 

solar cell designs. An example of such a structure, which exhibits near perfect light 

absorptivity, was used as template for solar cells by Wang Zhang et al [119] and Di 

Zhang et al [120]. Further possibilities for optical structures based on bio-inspired 

topographies are reviewed in references [121, 122]. A variety of surface structures [32] 

demonstrate hydrophobicity (Fig. 3.3) and hence self-cleaning of the surface; these 

structures are applicable in different fields due to interconnected dependence of surface 

condition, optical quality and mechanical stability. These structures could be described 

by statistical instruments [123] and could be random, regular or quasi-regular.  
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a) 

 

b) 

Figure 3.3. a) Demonstration of hydrophobic surfaces in nature (left: butterfly wing, 

right: peacock feather), b) Polycrystalline silicon solar cell and GaAs solar cells with a 

drop of water on the cell surface. 

 

In summary, geometrical factors of solar cell surface morphology play a role in the 

contact angle between the surface and liquid [124]. The efforts of scientists and 

engineers to find a suitable template for optoelectronic devices which take inspiration 

from nature once again show the importance of morphology and surface condition in 

structures preparation for optoelectronics application. 

 

3.5 Topography characterization 

In the following experiments we have used two types of microscopy (SEM and AFM) 

for evaluation and measurement of substrates, thin films and solar cell surfaces micro-

geometry. SEM allowed to study large areas of the solar cells with considerable surface 

roughness (more than 10µm) and AFM was carried out on relatively smooth areas, but 

is truly 3D measurement. Currently, probe methods are more applicable for studying 

solid materials surfaces. SPM is a 3D surface morphology technique that provides 

quantitative information about surfaces, and characterizes roughness of the surface, and 
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sizes of morphological features, such as grains. Numerical evaluation of the 

morphology allows statistical estimates of surface roughness. 

 

3.5.1 SEM and AFM of polycrystalline solar cells 

 

Figure 3.4. SEM of polycrystalline solar cell. 

 

Multicrystalline solar cell performance depends on the types of grain boundaries 

present, as some of them reduce the cells efficiency. Deflections in surface morphology 

could be caused by mechanical stress between solar cell layers. This stress affects 

electron mobility and diffusion length, band structure, and surface passivation. Both 

SEM (Fig. 3.4) and AFM (Fig. 3.5) types of microscopy are suitable for characterization 

of polycrystalline solar cells, the elements of texture are well distinguished even without 

any special preparation of the sample.  

 

 

 

 

 



Non-destructive local diagnostics of optoelectronic devices 

 

- 46 - 

 

 

a) 

 

b) 

 

c) 

Figure 3.5. AFM of polycrystalline solar cell: a) 2D image, b) 3D image, c) 3D image 

of smaller area. 

 

Figures 3.5 a-c show topography of polycristalline solar cell. The scale at figure 3.5a 

shows real values of the highs and depths of the surface features. These features are 

presented with different magnification in figures 3.5 b and 3.5 c. They are differently 

oriented silicon graines, which also contain impruties and defects.  

 

3.5.2 AFM of GaAs solar cells 

The sample of GaAs cells exhibited smoother topography. For this reason the AFM, 

which has higher magnification, was suitable for scanning the surface (Fig. 3.6). 

Furthermore, in this case it was quite useful to apply semi-contact error mode for better 

perception of the surface features (Fig. 3.7). The measured AFM data generates an array 

(image) of the investigated topographic data and allows fast access to valuable data. 



Non-destructive local diagnostics of optoelectronic devices 

 

- 47 - 

 

 

a) 

 

b) 

 

c) 

 

Figure 3.6. AFM of GaAs solar cell: a) 2D image, b) 3D image,  

c) 3D image of smaller area 

 

Figures 3.6 a-c show topography of commersionaly available solar cell on the basis of 

GaAs. The high of surface featrures is about 25-30 nm (Fig. 3.6 a). Figures 3.6 b, c 

present topography of different scan areas (8x8) µm and (3.5x3.5) µm correspondingly. 

Decreasing of scan area allows obtaining of higher resolution and makes visible smaller 

features of the surface. 
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Figure 3.7. Semi-contact error mode image of GaAs solar cell. 

 

3.5.3 Processing of the topographic images 

Statistical processing of AFM images provides statistical information about topography. 

An analysis was carried out using our AFM data for AlN films in cooperation with 

Talu´s group. In reference [91] the authors studied the aspect ratio effect on the 

reflectance and noted that higher aspect ratios provide advantages. Optimized periodic 

textures can surpass optical properties of random textures [90]. Fractal analysis allows 

to quantify morphological variance, and identify the links between the fractal dimension 

and the physical processes. Edges of grains influences recombination, current, and 

diffusion, and should be studied in combination with local characteristics. Slopes, holes, 

heights, valleys, scratches, and contact areas influence the light wave behavior at the 

near surface area. Such structures traps light waves and change the direction of their 

propagation. AFM and SEM images can be thresholded to get information for 

evaluation of discrete areas with certain levels within a given range. An example which 

was carried out for both a polycrystalline and monocrystalline solar cell is shown in 

figure 3.8. ImageJ software [75] was used for evaluating geometrical elements (areas, 

sizes, lengths) [42] of the topography.  
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a)                                                                    b) 

Figure 3.8.  a) Polycrystalline and b) monocrystalline solar cell image thresholding, 

demonstrating geometrical features of the topography. 

 

In the case of solar cells, statistical parameters such the volume fracture parameter give 

a measure of materiál properties. By these well known microscopy methods it is 

possible to obtain both qualitative and quantitative measures of a surface. Qualitative 

data include the distribution of the values at the surface and quantitative their precise 

values. Texture is a measure of surface roughness. Watershed segmentation is helpful 

when it is necessary to divide and to count the texture features. This is a really 

interesting method when surface elements are barely recognized, for example in the 

case where image quality is lacking.  

This method receives its‘ name because of lines which divide topography elements. 

They look like the channels where water trickles down from the peaks of features. But 

this method is not suitable for overlayed features or to extremely rough morphology. A 

comparison of wave characteristics of light with moving water waves allows a good 

description of surface topography. As in the case of water waves, interference, 

reflection and transmission depend on the feature sizes of the sample. 

The morphology of grains (roundness and sphericity) is important in textural 

characterization. Watershed segmentation (Fig. 3.9) was applied here to grain boundary 

detection in the texture of the solar cells. This helps to carry out statistical analysis and 

optical texture determination. A large fraction of trapped light and charges lay inside 

separated phases and defects in morphology. 
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a)                                                                  b) 

Figure 3.9. Watershed segmentation of the surface topography of a) polycrystalline and 

b) monocrystalline solar cells. 

 

These figures show organization of silicon graines in the material The shape of grain 

borders are similar in monorcristalline solar cell (Fig. 3.9 b) and are quite various in 

polycrystalline sollar cell (Fig. 3.9 a). 

These processing methods are conducive to the realization of better morphology. The 

choice of method should be adapted to the specifics of the sample. The right choice of 

devices, methods and modes for a given field of science is important for measurement 

results.   

 

3.6 Contacts to solar cell 

Shadow effect due to metal contacts reduces solar cell performance [125] and limits  

semiconductor absorption [126]. The efficiency of energy conversion strongly depends 

on the total and local fractions [127]. Metal contact design is still one avenue for 

improving the cell efficiency. Optimization (choice of geometry) of both front and back 

solar cell contact design can help to achieve beneficial electrical properties, maximize 

current collection, and minimize the series resistance [128]. 

In this part of solar cell fabrication, SEM analysis plays a very important role which is 

shown by a number of studies, such as: investigations at the metal-semiconductor 

interface in screen printed metal contacts, characterization of solar cell metallization 

processes, surface morphology before and after processing of contacts [129,130]. 

Because of the limitations of AFM mentioned above, SEM is more suitable for contact 

studies. SEM imaging provides good quality information about layer structure and 

contact quality. 
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a) 

 

b) 

Figure 3.10. Metallic contacts to a) polycrystalline solar cell and b) to GaAs solar cell. 

 

Figures 3.10. give information about size and shape of the metallic contacts. Figure 

3.10a shows the contact from the surface of the polycrystalline solar cells. Figure 3.10b 

shows the contact to GaAs solar cells and from face side. Both images show 

homogenious of the contact along the surface and presence of defect area.
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4 LOCAL TOPOGRAPHY OF 
OPTOELECTRONIC SUBSTRATES 
PREPARED BY DRY PLASMA ETCHING 
PROCESS  

 

In this chapter the etch rate of silicon carbide and aluminum oxide were studied as a 

function of the angle of etching material and flow of plasma. Al2O3 and SiC are 

important materials in the design of optical and electronic devices and the topography of 

the wafers has a large influence on the device quality. Argon was used for the dry 

etching of Al2O3 and SiC wafers. The wafer slope for highest obtained etch is obtained. 

Atomic force microscopy was used for good morphology control of etched wafers. 

Statistical and correlation analysis was applied to estimate the surface condition. 

Interferometry allowed to control etching rate. This chapter is based on the paper 

published in reference [B1]. 

 

4.1 Dry etching 

Generally used chemical wet etching is an isotropic etching and selective grain-

boundary etching, but it seems to be inappropriate for preparation of thin film 

structures. Here a dry etching is a more desirable method. Dry etching means the 

removal of material from a rough surface by bombardment of ions resulting in a 

reproducible, uniform smooth surface (Fig.4.1). Simple sputtering is non-selective 

elimination of surface atoms due to plasma-induced non-reactive gas ions which 

vertically impinge on the surface of the substrate without any method to control the etch 

print. The anisotropy is a typical quantity of importance for dry etching.  

 

 
Figure 4.1. Dry plasma etching of the surface. 
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A choice of etching processing depends on the nature of the material and the required 

characteristics of the treated surface. Chemical etching provides removal of material 

from all directions, while physical etching allows precise size control of the processing 

area. As opposed to chemical etching the physical treatment does not leave the products 

of the reaction at the surface. There are a number of physical etching techniques useful 

in semiconductor technologies. Dry etching was considered as a wet etching 

replacement as far back as the last century [131]. 

The well etched surface should be characterized by an appropriate profile: reduction of 

polishing defects, impurities and defects. Nevertheless it is necessary to reckon with 

some surface changing under the influence of ionized atoms of noble gas. Plasma 

etching is applicable in the case of materials where overcoming a strong bond energy 

between the component atoms is necessary. Plasma treatment could also be considered 

as a method for surface modification in semiconductor technology. Such a study was 

reported by A. Schneider as random surface texturing for photovoltaic applications 

[132]. 

Shape, structure and size of topographic features are a significant consideration for 

optoelectronic semiconductor structure design. Some roughness of wafer morphologies 

could be observed because of damage produced by the ion bombardments with 

excessive energy, but it provides both more flexibility because of anisotropy of the 

process and better reproducibility of the results. 

 

4.2 Materials choice 

The quality of substrate is very important for optical heterostructure preparation. It 

should be smooth and clean. It has to be sufficiently electrically, thermally and 

mechanically stable. Composition and morphology should be suitable for the 

application. Defective substrates lead to heterostructure properties variation. For 

optoelectronic devices it may lead to local heating and further damage. 

Substrates of wide band gap materials find their application in optoelectronic devices. 

As noted in [133] optical applications demand the mean surface roughness from λ/10 

down to λ/20 of the wavelength used. Physical and chemical properties of silicon 

carbide and sapphire provide are suitable for a range of electronic and optoelectronic 

devices such as light emitting diodes, lasers and transistors. They are optically 

transparent in visible light and have attractive thermal properties. SiC and Al2O3 have a 

number of physical, chemical and mechanical properties that make them attractive for 

optical applications in extreme environments [134-136].  

One of the motivations for our material choice was the study of Dong-Won Kang et al. 

[137], where Al2O3 was described as an antireflection layer to decrease reflection loss in 

silicon thin film solar cells. Aluminum oxide is used as a solar absorber material in 

combination with metal, these coatings are represented by multilayer stacks [138]. 

Silicon carbide (SiC) is an indirect, wide band gap semiconductor, and sapphire an 
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insulator presently a prospective material for semiconductor heterostructures used in 

high power, high frequency, and high temperature optoelectronic applications.  

Sapphire is aluminium oxide (Al2O3) in the purest form with no porosity or grain 

boundaries, making it theoretically dense. The combination of favourable chemical, 

electrical, mechanical, optical, surface, thermal, and durability properties make sapphire 

a preferred material for high performance system and component designs. These 

materials have a perfect combination of properties which make them conform as good 

and well-founded replacements to standard materials for optoelectronics. For these 

reasons the substrate materials processing are of interest and this studies results are 

useful for improving heterostructures preparation. 

High-quality substrate preparation is an important procedure which is necessary for 

subsequently manufactured heterostructures. The task of dry etching of these materials 

is relevant because of the limited possibilities of their chemical etches. Hence, surface 

morphology and etching rate of the dry etched substrates are important parameters.  

4.3 Experimental results 

Plasma etching is possible either by physical sputtering or by etching of chemical 

reagents. In order to have purely physical etching argon plasma was used (Fig.4.2). A 

standard vacuum deposition system was used. The experiment was carried out at argon 

atmosphere at pressure 3÷4·10-2 Pa for 10 min. The substrates were initially prepared by 

ultrasonic cleaning. The substrates of SiC and Al2O3 were processed by discharge rate 

150 mA in the ion source and voltage varying from 3 kV up to 6 kV. Since these 

materials have a relatively high resistance, a radio frequency field was applied. The 

substrates were initially prepared by ultrasonic cleaning.  

 

 

Figure 4.2. Scheme of physical dry-etching device. 
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The tilt angle between etched substrate and defocused beam of argon ions is a very 

important parameter of investigation because it also makes differences in the process 

results (Fig. 4.3). The inspiration for this experiment was taken from the study from 

[139] where authors noted that tilting optimize the radial uniformity. 

 

 

 

 

Figure 4.3 Demonstration of the angle dependent cleaning. The slope of the substrate 

influences the trajectory and amount of etched material from the surface. 

 

4.4 Etching rate 

Light interference is a useful and important tool for surface characterization. The Linnik 

interferometer is easy to operate and allows measuring of topography imperfections 

(width and depth of holes, scratches, etc.) with accuracy comparable to the wavelength. 

In order to use this method a part of the sample was isolated from plasma by shield. As 

a result of interferometric measurement, it was found that the maximum of etching rate 

is at the 40o tilt (Fig. 4.4). For the measurement we used this quantity. 
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a) 

 

 

Figure 4.4. a) Scheme of wafer position to argon flow,                                                                          

b) angular dependence of the sputtering rate of Al2O3 and SiC. 

 

4.5 Atomic force microscopy 

Atomic force microscopy (AFM) is a direct method for measurement of the surface 

topography and the data can be used to calculate the surfaces statistical characteristics. 

It helps that AFM is a nondestructive testing of the surface, indicating even tiny changes 

in topography. The scanner used was a 120 µm x 120 µm NTEGRA Prima microscope 

(NT-MDT). The tapping mode was used for scanning. The NSG01 DLC cantilevers, 

with typically 6 nm curvature radii were used. Figures 4.5 and 4.6 show the behavior of 

the topography before and after ion etching. The images show the decreasing of the 
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surface roughness of the studied substrates. The comparison of Figures 4.5 and 4.6 also 

shows the reduction in the number of major irregularities of mechanical treatment. 

 

 
 

Surface topography and horizontal profile of Al2O3 with following characteristics: 

Scan area 50x50µm, 

Max – 251 nm, 

Root Mean Square – 8nm. 

a) 
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Surface topography and horizontal profile of Al2O3 with following characteristics: 

Scan area 50x50µm, 

Max - 16nm, 

Root mean square - 1nm. 

b) 

 

Figure 4.5 Surface topography and horizontal profile of Al2O3 a) before, and b) after  

dry etching. 
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Surface topography and horizontal profile of silicon carbide  

with following characteristics: 

Scan area 5x5µm, 

Max – 15.9516nm, 

Root Mean Square – 1.57007nm. 

a) 
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Surface topography and horizontal profile of silicon carbide  

with following characteristics: 

Scan area 5x5µm, 

Max - 13nm, 

Root Mean Square - 1nm. 

b) 

 

Figure 4.6. Surface topography and horizontal profile of SiC  

a) before and b) after dry etching. 

 

 

Captions of figures 4.5 and 4.6 contain experimental parametes: Scan area, Max, Peak-

to peak and Root mean square. They define the square of the image, maximum high at 

the scanned area, the quadratic mean correspondingly. 
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4.6 Influence of processing electrical parameters   

SiC wafer etched with 20° slope were used for demonstration of morphology behavior 

during the etching (Fig. 4.7). Surface roughness defines one charachteristic of the 

substrates. The AFM data of a surface is a complex representation for morphology 

characterization. Height-height correlation functions provides considerable information 

about topography (such as estimation of correlation areas, sizes of grains and holes, and 

the character of their distribution) in a compact form. The results show the correlation 

length increasing with increasing potential above 3 kV. This is caused by an increasing 

characteristic distance, after which the correlation is lost between the topographic 

features. 

The results here perform comparison of the etch rates Al2O3 and SiC. These materials 

have a wide range of optoelectronic applications. Cleaning of the substrate and 

consequent preparation of the heterostructure could be combined in one process cycle 

using this technology. Variation of the etching parameters allows to find the conditions 

of substrate processing which will satisfy performance requirements. 

The different AFM images show the decreasing of the surface roughness of the studied 

substrates. Processed substrates were studied by interferometry to define the etch depth, 

and by atomic force microscopy to study the topography and statistical analysis of 

surface roughness. The interferometry reveals the dependence of etch rate on the angle 

between the substrates and defocused beam of argon ions. It is also shown in select 

small scale images that the surface damage occurs after the substrate treatment. But the 

more common large area surface topography indicates a decreasing roughness. In the 

case of stable materials, physical etching is a good alternative to chemical etching: it 

provides uniformity, reproducibility and could be more suitable in comparison to wet 

etching. 
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Figure 4.7 a. SiC wafer, etched on 20o slope at 3 kV (morphology, heights histogram, 

correlation curve). 

Scan area 50x50µm. 

Root mean square 8nm 

Roughness average  6nm 
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Figure 4.7 b. SiC wafer, etched on 20o slope at 3kV (morphology, heights histogram, 

correlation curve). 

Scan area 5x5µm. 

Root mean square 9nm 

Roughness average 7nm 
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Figure 4.7 c. SiC wafer, etched on 20o slope at 3kV (morphology, heights histogram, 

correlation curve). 

Scan area 1x1µm. 

Root mean square 6nm 

Roughness average 5nm 
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Figure 4.7 d. SiC wafer, etched on 20o slope at 4kV (morphology, heights histogram, 

correlation curve). 

Scan area 50x50µm. 

Root mean square, RMS 8 nm 

Roughness average 6nm 

 



Non-destructive local diagnostics of optoelectronic devices 

 

- 66 - 

 

 
 

 
 

 
 

Figure 4.7 e. SiC wafer, etched on 20o slope at 4kV (morphology, heights histogram, 

correlation curve). 

Scan area 5x5µm. 

Root mean square, RMS 9nm 

Roughness average 7nm 
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Figure 4.7 f. SiC wafer, etched on 20o slope at 4kV (morphology, heights histogram, 

correlation curve). 

Scan area 1x1 µm. 

Root mean square 6nm 

Roughness average 5nm 
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Figure 4.7 g. SiC wafer, etched on 20o slope at 5kV (morphology, heights histogram, 

correlation curve). 

Scan area 50x50µm. 

Root mean square 7nm 

Roughness average 5nm 
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Figure 4.7 h. SiC wafer, etched on 20o slope at 5kV (morphology, heights histogram, 

correlation curve). 

Scan area 5x5µm. 

Root mean square 7nm 

Roughness average 6nm 
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Figure 4.7 i. SiC wafer, etched on 20o slope at 5kV (morphology, heights histogram, 

correlation curve). 

Scan area 1x1 µm. 

Root mean square 4.278nm 

Roughness average 3.442nm 

 

 

Figures 4.7 a-i containes information about morphology, heights histogram, correlation 

lengh. Root mean square and average roughness are wide usefull statistical values.  
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4.7 Dry etching in optoelectronics 

Adoption of new materials and technologies creates environmental challenges in the 

field of solar cell production. Researchers in materials science as well as industry often 

use plasma technologies for surface modification. The technologies based on ion 

etching texturing of Si wafers mentioned in [140] are of great interest for large-area 

monocrystalline silicon solar cell production. Ion etching is a promising texturing 

process for solar cell preparation since in comparison with wet etching it has a larger 

reduction on light reflection. Dry etching process could be used as noted by authors of 

[10] in combination with e-beam or nano-imprint lithography, they demonstrate in their 

study Si subwavelength structures with water contact angle of 113.2o and the average 

reflectance of 2.5%. 

Deep reactive ion etching of highly doped Ge-Si alloys which can find a place in solar 

cells application was carried out in [141].  Even black silicon, which represents a good 

anti-reflective coating for a commercially viable solar cell, could be prepared through 

etching [142]. Power conversion efficiency enhancement of III–V solar cells with TiO2 

subwavelength structures were obtained using a dry etching process [143]. It is also 

known that the crystal structure of the plasma-treated TiO2 films for dye-sensitized solar 

cells are much clearer [144]. It was noted in [145] that in case of etching of indium zinc 

oxide (Transparent conducting oxide for optoelectronic application) the Ar ions 

determine the etch rate and etch profile. It is shown in reference [146] that “different 

processing recipes result in different final grating structures”. 

The importance of angle control in preparation of photocatalytic films is underlined by 

Michalcik in [147] “The variation of the incident angle enables formation of 

nanostructured films with oriented columnar structures”. AFM measurements are often 

used for estimation of topography and other parameters (autocorrelation length of the 

surface) before and after plasma etching [148]. 

 

http://www.hindawi.com/12571408/
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5 PREPARATION OF THIN FILMS BY 
MAGNETRON SPUTTERING 

 

Aluminum nitride layers prepared on sapphire substrates are examined. The substrate 

surface was treated by dry plasma etching. The morphology of aluminum nitride thin 

films was studied by atomic force microscopy. Lateral force atomic force microscopy 

was used to study the morphology heterogeneity. The dependence of film morphology 

on the formation conditions has been defined. Some information in this chapter was 

described in [A1] 

 

5.1 Substitution of the material and method choice 

5.1.1 Aluminum nitride 

Study and development of prospective materials is relevant from the technological point 

of view and is very important from an economical point of view. The research in this 

field is focused on the development of novel materials with superior properties allowing 

the fabrication of devices with improved performance.  

Aluminum nitride (AlN) is a direct wide band gap semiconductor with combined 

properties of high electrical resistivity and high thermal conductivity. Structure and film 

texture of AlN has attracted much attention due to its unique properties and the wide 

range of application of this material. Obviously, nitride semiconductors show properties 

that can not be found in traditional semiconductors. Materials like silicon and gallium 

arsenide do not have a large enough band-gap for devices designed for the short-wave 

spectrum range. Therefore, research of AlN manufacturing processes is a remarkable 

necessity in the field of optoelectronics. The problem which one meets in AlN thin 

layers manufacturing is the absence of suitable epitaxial substrates of the identical 

material. Hence the other materials such as sapphire (Al2O3) and silicon carbide (SiC) 

are used for the growth of AlN. 

5.1.2 Magnetron sputtering 

There is a number of appropriate methods for thin film growth like sublimation, 

sputtering, organometallic vapor phase epitaxy, plasma-enhanced, molecular beam 

epitaxy, etc. Magnetron sputtering is wide-spread method for thin film deposition. 

Uniform coatings of this type are necessary in many fields of science and engineering, 

e.g., in microelectronics, and optical industries (thin film sensors, photovoltaic thin 

films in solar cells, metallic cantilevers and interconnection, etc.). A technological task 

for research is to find a source material for layer deposition from the target. The 

deposition begins when the discharge in material occurs (Fig. 5.1). The collision of gas 
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ions with the target causes extractions of near-surface atoms, molecules and clusters 

from the source material, and these particles form the thin film on the substrate. 

 
Figure 5.1. Scheme of magnetron sputtering proces (El – particles of sputtering 

material, RG – reactive gas which bring chemical component to the deposited layer, Ar 

– argon, which often used as inert gas for target sputtering, e – electrons). 

 

5.1.3 Magnetron sputtering in optoelectronics 

applications 

It is noted in [149] that 80–85% of optical reflectivity is determined by the quality 

(adhesion, optical and mechanical properties) of the films, and that and rf and DC 

magnetron sputtering are successfully used for deposition. High power impulse 

magnetron sputtering could be used for preparation of the anti-reflection SiO2 coatings 

for a-Si:H thin film solar cells and LEDs [150]. Multilayer optical coatings could be 

prepared by reactive magnetron sputtering for spectral filtering of solar radiation. This 

method of sputtering in reactive gas ambient is promising for the deposition of CIGS 

absorber films for thin film solar cells [151]. 

Heterostructures and textured surfaces for solar cells applications could be successfully 

employed in direct current magnetron reactive sputtering. Dye-sensitized solar cell 

preparation by DC magnetron sputtering was described in [152] and application of 

Al2O3 by means of magnetron sputtering (since it has stronger dye adsorption and light 

absorption) was described in [153]. Zinc oxide (ZnO:Al) transparent conductive oxide 

(TCO) thin films obtained by this method and its optical superior properties, as well as 

dependence of structural, electrical, and optical properties  on the process parameters is 

mentioned in references [154, 155, 156].  Lin et al [14] reported about pulsed DC 

magnetron sputtering of molybdenum doped zinc oxide thin films on glass substrates: 

“after the thin film was deposited, the wet etching process with 0.5 wt.% HCl and 33 
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wt.% KOH solutions was conducted on the specimens to obtain the ideal light trapping 

structure for thin film solar cells”. 

The front side of tandem solar cells should answer the condition of transmittance from 

UV up to IR range, and such films were prepared via pulsed DC magnetron sputtering 

on glass substrates [157]. Magnetron rf sputtering technique can be used for indium tin 

oxide (ITO) thin film preparation for a-Si:H/c-Si heterojunction  solar cells as front 

contact or anti-reflection coating [158]. Zhang et al carried out DC magnetron 

sputtering of tungsten doped zinc oxide (WZO) thin films on glass substrates at various 

substrate temperatures [159], and the results looks similar to our study since authors 

noted that  “As the substrate temperature increases, the crystallinity of WZO thin films 

gets deteriorated and the surface becomes even smooth”. Temperature-accelerated 

dynamics [160] influences the scale of the surface topography.  

Magnetron sputtering allows preparation of materials with surface topographies which 

could not be achieved by other methods (because of metastable compound phases [161]) 

for better light scattering and trapping. Summarizing that written above, we can note 

that magnetron sputtering in all its modifications is a promising method with good 

parameter control and reproducibility of results. 

 

5.2 Deposition of aluminum nitride films 

5.2.1 Description of set-up 

A standard vacuum deposition system was used with two ring-type magnetrons and an 

ion source. There is a substrate heater, a reactor of rf-activated nitrogen plasma, and gas 

flow regulators. The main parts of the deposition process are the crystalline substrate, 

which has to satisfy requirements of deposition of epitaxial growth on it, and a source of 

the desired product. Fabrication of high-quality thin films is a complicated and 

multiparametric problem. The main operating parameters are  

a) crystal-lattice orientation of the substrate,  

b) deposition rate defined by gas supersaturation, and  

c) gas-dynamic behavior of the reactor.  

The ionizing efficiency can be improved by use of a magnetic field, so ions are 

generated relatively far from the target and the probability of energy loss is high in 

ordinary planar diode systems. The magnetic field lines cross the lines of electric field. 

The mechanism of the device is based on the braking of electrons in the crossed 

magnetic and electric fields. Thus the trajectory of an electron in a magnetron device 

changes under simultaneous effect of electric and magnetic fields. Electrons appear out 

of the cathode as a result of ionization, and consequently they are localized above the 

surface of the sputtering material. Electrons are trapped by magnetic field which makes 

them move on cycloidal path, and also by electric field repulsion from cathode to anode. 

As a result, the probability and number of electron collisions with argon molecules, and 
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consequently the ionization, sharply increases. Ionization rate varies in the deposition 

area because of inhomogeneity of electric and magnetic fields in the near-cathode 

region. A maximum of ionization then occurs in the area where the magnetic lines are 

perpendicular to electric-field lines, and the minimum is obtained in an area in which 

the field directions are parallel. So, the localization of plasma at the near-cathode 

surface allows to get significantly greater ion current density at lower pressure and 

hence provides a high sputtering rate. 

 

5.2.2 Substrate choice and processing 

In spite of all the advantages of this method, there are a lot of features to investigate yet. 

One of them is the choice of the source with convenient target material, and its 

formation and preparation. The target is supposed to be without pores and hollows in 

order to avoid local melting and sprinkling of the material as there is high power at the 

small area of the target. So, a high-purity aluminum target was used in this study.  

Substrate preparation includes dry etching and nitration by nitrogen implantation into 

the sapphire substrate (0001 orientation), with subsequent high-temperature annealing at 

1400-1600K in a nitrogen atmosphere. The average resistance-type heater was used for 

preheating of the substrate during the structure formation. The main condition of 

construction and making of the heater is to ensure a non-gradient thermal field on the 

surface of the substrate, and regulation and maintenance at a given temperature. Water-

cooled air-tight feed-through terminals of the heater are in the wall of the vacuum 

chamber. The temperature should be chosen according to some necessary prerequisites 

for material properties, constructive features and requirements to the structure of the 

film, method of deposition, etc. The substrate heater is on a rotator-carrousel and it is 

possible to use it as a heating radiation or for prior degassing of the vacuum chamber. 

 

5.3 Influence of process parameters on film morphology  

One of the most important parameters of the deposition process is the temperature of the 

deposited films. Surface temperature is connected to adhesion strength, surface 

structure, and level of residual coating stress. By changing the deposition surface 

temperature, it is possible to change the structure of films and thus their mechanical and 

electro-physical properties. Adhesive strength increases with the temperature growth. 

5.3.1 AFM of the surface 

The morphology of the deposited layers was examined by atomic force microscopy.  

The statistical distribution of heights is show in figure 5.2. 
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                                  a) 

 

                                  b) 

 

c) 

Figure 5.2. Height histogram for the AlN samples morphology obtained at a) 1000K,                     

b) 1300K and c) 1500K. 

 

Lateral force microscopy (LFM) was used to measure the AlN film morphology with 

nanometers precision (Fig. 5.3). LFM measures frictional forces on a surface. By 

measuring the “twist” of the cantilever, rather than merely its deflection, one can 

qualitatively determine areas of higher and lower friction [162]. The temperature should 

be chosen according to some necessary prerequisites for material properties, 

constructive features and requirements to the structure of film, method of deposition, 

etc. LFM allows the imaging of heterogeneities in materials, thin films or monolayers at 

high spatial resolution. Furthermore, LFM is increasingly used to study the frictional 

properties of nanostructures and nanoparticles [163]. I used it to obtain more presise 

images of the films surface, edges and borders of surface features. 
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a) 

 

 

b) 

 

 

 

c) 

 

Figure 5.3. Morphology of AlN samples obtained at a) 1000K, b) 1300K and c) 1500K. 

 

 

 

 

 

 

 

 

 

 

 



Non-destructive local diagnostics of optoelectronic devices 

 

- 78 - 

 

5.3.2 SEM of the structure 

The heterostructure of (0001)AlN/(0001)Al2O3 was produced and its scanning electron 

microscopy (SEM Quanta 200 from FEI) image is in figure 5.4.  

 

Figure 5.4. SEM image of the aluminum nitride layer on sapphire substrate in cross-

section. 

 

This measurement shows the occurrence of AlN film on the Al2O3 substrate. It means 

that the typical AlN growth occured. There are crystalline columnar grains of AlN there 

in the image of cross-section analysis image. They have flat tops and not sharp shown 

faceting of the surface.  
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6 AFM IMAGING AND CHARACTERIZATION OF 
TOPOGRAPHY 

 

This chapter is based on the paper which was published in Applied Surface Science 

journal [A2]. It is about AFM imaging and characterization of 3D surface morphology 

of AlN epilayers on sapphire substrates prepared by magnetron sputtering. Due to the 

effect of temperature changes on the epilayer’s surface during the fabrication, surface 

morphology is studied by combination of atomic force microscopy (AFM) and fractal 

analysis methods. Both methods are useful tools that may assist manufacturers in 

developing and fabricating AlN thin films with optimal surface characteristics. 

Moreover, they provide different yet complementary information to that offered by 

traditional surface statistical parameters. This combination is used for the first time for 

measurement on AlN epilayers on sapphire substrates, and provides the overall 3D 

morphology of the sample surfaces (AFM imaging), and reveals the existence of self-

similar and fractal characteristics in the surface morphology (fractal analysis). 

 

6.1  Study of aluminum nitride topography 

6.1.1 Role of surface analysis 

Because of the growing interest in thin film engineering in modern manufacturing 

technology, different imaging and characterization techniques such as atomic force 

microscopy, scanning tunneling microscopy, transmission electron microscopy, 

secondary electron microscopy and optical imaging techniques, as well as diffraction 

techniques (electron, atom, light and X-ray scattering), have been extensively used to 

investigate the surface roughness of thin films.  

The quantitative characterization of surface morphology of thin films is important due 

their electrical, optical, tribological and chemical properties, which depend on the 

surface morphology. In the last few decades, Atomic Force Microscopy (AFM) of thin 

films surface topography has been developed as a useful research tool for exploring the 

surface morphological features of thin films in the area of surface engineering. 

Two main approaches may be distinguished to investigate the 3D surface roughness of 

thin films: statistical and fractal descriptions. The fractal geometry proposed by 

Mandelbrot, may be used to describe the surface morphology and complexity of 

irregular microstructures, whose complex geometry cannot be characterized by 

traditional Euclidean geometry. 

The irregularities of thin films surfaces are not homogeneously distributed, and 

differences in thin films effective 3D surface roughness values have been observed at 

different magnifications. The topography of 3D surfaces adds a new level of 
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understanding to nanotribology processes, such as adhesion, contact formation, friction 

of adsorbed layers, seen on an atomic level. Conventionally, a 3D rough surface is 

assumed to be a random process, to exhibit fractal characteristics, which can be 

characterized by fractal parameters that are independent of the scale of the roughness. 

The 3D surface topography of thin films possess only statistical self-similarity, which 

takes place only in a restricted range of spatial scales. 

The fractal dimension Df (the main distinctive attribute of a fractal object) describes 

how the fractal object occupies the metric space to which it belongs. In the case of 3D 

surfaces, the fractal dimension indicates how much the fractal surface fills the 3D 

volume. Generally, the fractal dimension Df of a surface is a non-integer value within 

the range 2 ≤ Df ≤ 3, where Df  = 2 (for ideally smooth surfaces) and Df= 3 (for rough 

surfaces that occupy all available volume). An increasing value of Df indicates a higher 

level of fractality, a more irregular shape of the surface roughness. In addition, a fractal 

surface maintains the characteristics of continuity, non differentiability and self-

similarity of the structure. Different studies suggest a correlation between the different 

surface roughness parameters and the fractal dimension Df . 

The fractal analyses does not depend on the experimental and methodological 

parameters involved in the AFM measurements, such as: measurement system, diversity 

of samples, image acquisition, type of image, image processing, fractal analysis 

methods including the algorithm and specific calculation used etc.. 

 

6.1.2  Materials and methods 

Three different structures of AlN epilayers deposited on sapphire Al2O3 substrates under 

three different substrate temperatures (T = 1000, 1300 and 1500 K) were studied. A 

standard vacuum deposition system with two ring-type magnetrons and an ion source 

were used for the experiments. The apparatus is equipped with a substrate heater, which 

ensures a non-gradient thermal field on the surface of the substrate, a reactor of HF-

activated nitrogen plasma, and gas flow regulators.  

Crystalline substrates which satisfy requirements for epitaxial deposition, and the 

sources required for the desired product are the main components of the deposition 

process. The target should be without pores and hollows in order to avoid local melting 

and sprinkling of the material as there is high power in the small area of the target. A 

high-purity aluminum target was used in this study. A substrate preparation includes dry 

etching and nitration by nitrogen implantation into the sapphire substrate (0001 

orientation), with subsequent high-temperature annealing at 1400-1600 K in a nitrogen 

atmosphere. X-ray fluorescence was used for elemental analysis of the sapphire 

substrates after nitration (PHI 5500 ESCA, Physical Electronics). As we reported 

elsewhere [A1], there is a gradually decreasing nitrogen concentration with sputter 

depth. The presence of the nitridization sapphire layer provides a good condition for 
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subsequent growth of AlN epilayers in the (0001) plane. Before a deposition of AlN 

epilayers at different temperatures, Al2O3 substrates were treated by dry plasma etching. 

The Scanning Probe Microscope system, an NTEGRA Prima (NT-MDT, Russia) with 

optical viewing system and its own software, Nova were used for measurement and for 

AFM data visualization of the morphology of the deposited layers. AFM analysis was 

carried out in contact mode over different surface areas. For tapping mode, a silicon 

cantilever, Model NSG01 DLC (AFM «Golden» Silicon Probes) with the following 

nominal specifications: resonant frequency 150 kHz, force constant 5.1N/m, length 

125µm, width 30µm and thickness 2µm was used. The tip specifications were: 

tetrahedral shape, height 14µm, tip curvature radius 6nm, and cone angle at the apex 7°-

10°. For AFM contact mode a silicon cantilever, Model FMG01 (AFM «Golden» 

Silicon Probes) with the following nominal specifications: resonant frequency 60kHz, 

force constant 3N/m, length 225 µm, width 32 µm and thickness 2.5 µm was used. The 

tip specifications were: tetrahedral shape, height 14 µm, curvature radius 6 nm, and 

cone angle at the apex 7°-10°. 

Fractal analysis of the stereometric files was conducted based on our original algorithm 

(in MATLAB software R2012b, MathWorks, Inc.), which consists of fractal scaling (in 

many approximation steps) of the surface measured with an AFM. In our study, for 

these surfaces the best method of fractal analysis uses morphological envelopes [164]. 

An analysis of the stereometric files was conducted based on the original algorithm (in 

Matlab), which consists in fractal scaling (in many approximation steps) of the surface 

measured with an AFM. For an AFM file by selecting every 105th, 70th, 42nd, 35th, 

30th, 21st, 15th, 14th, 10th, 7th, 6th, 5th, 3rd, 2nd and 1st measuring point, the whole 

area measured, 15 scalings of the surface were obtained, thus approximating its real 

appearance. A change of measured density is a form of surface scaling required during 

fractal analysis. The entire algorithm is described in [165]. 

6.1.3 Atomic force microscopy 

The fractal dimension is the basic concept of the systems description for which 

symmetric scaling takes place. This means self-similarity of the element under 

consideration at a variable magnification scale. A magnified view of one part of the 

surface not too precisely reproduces its whole image but has the same qualitative 

appearance. No real fracture surface profiles has, therefore, strictly self-similar 

properties. Thus, a surface description with the application of a single dimension is not 

possible. A segmental character of a doubly log-log plot shows that the fracture surface 

is characterized by more than one fractal dimension. Since the fracture surface does not 

exhibit a form of a purely self-similar fractal, the self-similarity is local only. The 

surface irregularity distribution changes depending on the analysed region, e.g. 

concentration of large surface irregularities occurs only in a few places and 

concentration of small irregularities, in many places. 
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All sample images were acquired by Scanning Probe Microscope NTEGRA Prima (NT-

MDT, Russia) at a scan rate of 1 Hz with a 256×256 pixels image definition over 

different square areas. All measurementswere performed immediately after layer 

formation in the same laboratory, at room temperature (296 ± 1K) and 65 ± 1% relative 

humidity. The measurements were repeated four times for each sample on different 

reference areas, to validate the reproducibility of these features. The temperature should 

be chosen according to some necessary prerequisites for material properties. 

Representative topographic images (AFM contact mode) of the AlN epilayers on the 

sapphire substrate obtained at T =1000, 1300 and 1500 K, for scanning a square area of 

5 µm x 5 μm, are shown in figure 6.1. 

 

 

 

                          a) 

 

 

                           b) 

 

                                                                  c) 

 

Figure 6.1. AFM images (contact mode) of AlN epilayers on the sapphire substrate 

obtained at a) 1000K, b) 1300K and c) 1500K.Scanning area of (5 x 5)μm2. The vertical 

range of the displayed data (in nanometres [nm]) and the color bar are shown on the 

right side of the AFM images. 
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6.1.4 Fractal analysis of surface roughness 

The AFM data from measured AlN epilayers were consequently processed using the 

proposed fractal analysis method. The depth histograms associated with Figs. 6.1 a-c of 

the AlN layers on sapphire substrates obtained at three different substrate temperatures 

(1000 K, 1300 K and 1500 K), are shown in the corresponding Figs. 6.2 a-c. It enables 

to observe the density of the distribution of the data points on the surface. The vertical 

axis of the histograms is graduated in depths: the horizontal axis is graduated in % of 

the whole population. For fractal analyses we used Mountains Map® 7 Software 

(Digital Surf, Besançon, France) [166]. We insert our data in this software and after 

processing the data we obtained the corresponding results. The Abbott-Firestone curve 

presents the bearing ratio curve, i.e. for a given depth, the percentage of the material 

traversed in relation to the area covered. This function is the cumulating function of the 

amplitude distribution function. The lower horizontal axis represents the bearing ratio 

(in %), and the vertical axis represents the depths (in the measurement unit). 

 

 
a) 

 
b) 

 

 
c) 

 

Figure 6.2. The depth histogram for theAlN epilayers on sapphire substrates obtained at:                 

a) 1000K, b) 1300K and c) 1500K. The Abbott-Firestone curve (red). 

 

The graph of the calculated volume for surfaces (Vε) drawn as a function of the scale (ε) 

(size of the structuring elements) associated with Figs. 6.2, a-c of the AlN layer on the 

sapphire substrate obtained at 1000K, 1300K and 1500K, are shown in Figs. 6.3 a-c. 
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The fractal dimension is calculated from the slope of one of the two regression lines that 

corresponds best (i.e. the one out of the two regression lines whose correlation 

coefficient is nearer to 1 for a profile and nearer to 2 for a surface). Table 6.1 presents a 

summary of the fractal dimensions Df, for scanning square areas of (5×5)μm2, for AlN 

epilayers on sapphire substrates obtained at: a) 1000K, b) 1300K and c) 1500K. 

 

Table 6.1. The fractal dimensions Df, for scanning square areas of (5×5)μm2 of AlN 

epilayers on sapphire substrates deposited at: a) 1000K, b) 1300K and c) 1500K.  

 

No. Samples at temperature Df 

1 1000 K 2.29 ± 0.0001 

2 1300 K 2.42 ± 0.0001 

3 1500 K 2.66 ± 0.0001 

 

 
a) 

 
b) 

 

 
c 

Fig. 6.3. Enclosed volume for AlN epilayers on sapphire substrates deposited at:           

a) 1000K, b) 1300K and c) 1500K. The fractal dimension is obtained from the slope(s) 

of the graphs. 

 

The 3D surfaces of all the AlN samples (Fig. 6.1) are covered by nanoasperities (nano 

scaled protrusions and cavities which have irregular shapes, different sizes and 
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separations) and a specific distribution due to the preparation processes, which is 

evident for the entire magnification range. This structural pattern is an indirect 

indication of the fractal nature of the microstructure. A statistically significant 

difference (P < 0.05) was found for all fractal dimensions Df. A comparison of the 

fractal dimensions Df for the three films studied are summarized in Table 1. The applied 

method retrieves values of the fractal dimensions Df (all with average ± standard 

deviation) commensurate with the surface roughness of the thin films.  

 

6.1.5 Statistical analysis of morphological features 

Stach et al [A3] reported the statistical characterization of the described above 

topography structures. The graphical study of volume parameters (surface): Vmp, Vvc, 

Vmc & Vvv parameters based upon the Abbott curve calculated on the basis of AFM 

data of the surface associated with Figs. 6.1 (a-c), are shown in Fig. 6.4.  
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a) 

 
b) 

 
c) 

 

Figure 6.4. Face of AFM 3D images (left side) and graphical study of volume 

parameters (right side): Vmp, Vvc, Vmc & Vvv parameters based upon the Abbott curve 

calculated on the surface. Two bearing ratio thresholds are defined (using the vertical 

bars that are drawn with dotted lines). By default, these thresholds are set at bearing 

ratios of 10 % and 80 %. The first threshold, p1 (default: 10 %), is used to define the cut 

level c1 (and p2 defines c2, respectively). AlN epilayer on the sapphire substrate 

obtained at: a) 1000K, b) 1300K and c) 1500K. [A3] 
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a) 

 
 b)  

 
c) 

 

Figure 6.5. The height-height correlation function. AlN epilayer on the sapphire 

substrate obtained at: a) 1000K, (Correlation lengths: Lx = 319nm, Ly = 356nm);                                    

b) 1300K, (Correlation lengths: Lx = 317nm, Ly = 212nm); c) 1500K,                            

(Correlation lengths: Lx = 224nm, Ly = 81.5nm). [A3] 

 

The Abbote curve characterizes the quality and cleanliness of the surface. It shows the 

dependence of the features‘ area in dependence on its height (depth). Thus this curve is 

a well suited way to estimate the dependence of nano-geometry on the conditions of the 

surface preparation. 

The correlation length, being the measure of irregularity, decreases with increasing of 

the substrate temperature during the deposition. 

 

6.1.6 Discussion 

In this study we have used sapphire substrates for deposition since Al2O3 has electro-

physical, mechanical, and thermal properties which are suitable for extreme conditions 

devices. Dry etching and nitridization of a sapphire substrate were carried out before the 

sputtering of an Al target. Nitridization of the near-surface sapphire layer provides a 

good condition for subsequent growth of AlN epilayers in the (0001) plane. The 

morphology and structural investigations were executed on each step of the film 
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formation. Effectiveness of dry etching is proved by examining themorphology of the 

Al2O3 substrates after etching. X-ray fluorescence analysis revealed the successful 

nitridization of the substrate near the surface of the films. The AlN epilayers on the 

sapphire substrate surface of all samples appeared relatively smooth, with very fine 

nanoasperities spread on the surface due to the preparation processes.  

The data of Fig. 6.1 shows the distribution of nanoasperities, but fractal analysis gives 

information about self-similarity of the films surface. If many samples are examined, 

the fractal dimension will be more robust compared to simply looking at the statistical 

roughness parameters, since it is more intelligence and comprehensive in comparison to 

statistical parameters in case of fractal nature of the surface. 

The fractal analysis in correlation with the AFM data information opens a new avenue 

for both characterization and direct prediction of surface properties of AlN thin films. 

To our knowledge, this is the first fractal analytical study of surface roughness of AlN 

epilayers on sapphire substrates prepared by magnetron sputtering in current literature. 

The fractal analysis reveals the existence of self-similar and fractal characteristics in the 

surface morphologies which are reliable metrics of surface roughness and possibly other 

physical properties of AlNepilayers. 

The result of this study is an experimental method for better fabrication of AlN thin 

films. Their surface morphologies obtained from AFM images were subjected to fractal 

analysis to quantitatively investigate their structural properties. In addition, the fractal 

nature of the AlN thin films real surface was investigated and the fractal dimensions Df 

can be used as a quantitative factor to estimate the of degree of fractality and to 

understand their 3D roughness. The presented results show that fractal dimensions 

include important surface topography information and can be used to investigate the 

AlN thin film surfaces. Our results suggest that AlN thin film surface morphology gets 

textured with an increase in temperature of the Al2O3 substrate, and can be tailored to 

feature particular morphologies. The obtained values are in agreement with the ones 

obtained in [A1], confirming the overall quality of the data reduction procedure. We 

have also demonstrated that the AlN thin films are fractal in nature. 

 

 

6.2 Characterization of surface failure of solar cells by 

AFM data processing  

 

Fractal techniques and statistical analysis are useful tools for fracture-surface 

characterization. The geometry of solar cells could be quantitively described by these 

methods. For qualitative description, scanning electron microscopy (Fig. 6.6) and 

atomic force microscopy (Fig.6.7) could be used. In case of optoelectronics devices the 

topography influences the wave length, intensity and direction of light.  
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Figure 6.6. SEM of monocrystalline silicon solar cell. 

 

  
a) b) 

Figure 6.7. a) AFM image of the solar cell area without surface defects, b) histogram of 

heights distribution. 

 

  
a) b) 

Figure 6.8. a) AFM image of the solar cell area without surface defects, b) histogram of 

heights distribution. 
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The fractal analysis carried out by Gwyddion program [74] showed that the dimension 

of the defected area (2.21) is higher than the fractal dimension of the area without defect 

(2.13). The uncertainty could be caused by measurement conditions. Figures 6.7. b and 

6.8 b give the maximum highs 25 nm for both areas. But fractal dimension (Fig. 6.7 a 

and 6.8 a) differs. This approaching explains the surface behavior dependence on its 

cosmetic appearance. Use of electron and force microscopy allows obtaining precise 

data about the samples‘ topography.  The statistical analysis shows the distribution of 

micro and  nanoasperities (valleys, peaks) and the fractal analysis gives information 

about the topography.  
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CONCLUSION 

Current optoelectronic technologies demand a detailed analysis at the nanoscale level. 

In spite of a long history of research, surface investigations are still one of the most 

important fields to study. This is explained by the continuously decreasing size and 

scale of devices. 

It is possible to note the following fields of this thesis contribution:  

1. Measurements in micro- and nano-scale (survey and argumentation of SEM and 

AFM application in optoelecronics). 

2. Solar cells study (review and description of the morphology impact to improving 

the quality and efficiency of solar cells). 

3. Materials for optoelectronics (study and choice of process parameters for 

heterostructures preparation). 

The text of thesis is organized into three parts. The first part contains investigation of 

surface morphology of solar cells. The most powerful existing methods for surface 

investigation are described. The second part is dedicated to heterostructure preparation, 

including processing of substrate material. In the third part, the mathematical processing 

of results are presented, kindly provided by Prof. Talu and his group.  

My own contribution in every chapter is following. 

The chapter 1 substantiates the necessity of coating, buffer and active layers using wide 

band gap semiconductors especially in space conditions. It transmits the wide range of 

the solar spectrum (above UV) and can be used as active layer for UV radiation. It 

explains the remaining AlN solar cell development in significant focus. My contribution 

in this part is the analysis of the studies concerned the topic of dissertation, definition of 

problems and subjections of its solution.  

Currently, microscopes find an application in almost every field of study. The 

applications of AFM and SEM for precision metrology are reviewed in chapter 2. The 

personal contribution is AFM and SEM measurements of the samples, processing of 

images and preparation of papers.  

The chapter 3 presents the comparison of SEM and AFM imaging of commercially 

available solar cell morphology and possibilities to provide not only average, but 

precise local data processing. I asked some companies to provide me with samples of 

the commercial solar cells. Some of them kindly helped me and sent the samples. I 

performed the microscopic measurements and analysis of results to show the 

importance of the such kinds of complete device investigation. 

The chapters 4 and 5 concern technological processes of heterostructures preparation. 

The main attention is given to the topography of substrates and prepared films since it is 

closely connected to optical reflection, transmission, scattering. All experiments were 
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carried out by myself (measurements) or with my direct participation (samples 

preparation). 

The chapter 6 describes processing of the topography data and reveals further 

information about the topography imperfections.  My aim was to provide explanation of 

the fractal and statistical analysis made in collaboration with Prof. Talu and explain the 

connection between parameters. 

The scientists which took part in this work are presented as co-authors of the articles. 

The results were published in articles listed in Appendix 1, also they were presented and 

discussed in national and international conferences. There are three citations of author 

in IF journals. 

A large amount of references were used to prove and substitute the choice of methods 

and interpretation of results. The count of the studies in this field confirms the interest 

of scientists in the characterization and design methods for optoelectronics. In spite of 

the modern character of this work it has already made a lot of successful attempts in the 

field of preparation of prospective materials for optoelectronics, as well as in diagnostic 

of the optoelectronics devices. 
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RECOMMENDATIONS FOR FUTURE WORK 

There are several fields to work for improvement of photovoltaic device performance. It 

includes researches from fundamental studies up to applications. Combination of optical 

and electrical measurements will provide an explanation of defect nature, so the optical 

and electron features measured by noise spectroscopy, local photo- and electro-

luminescence and near-field techniques, as well as a correlation of results in far- and 

near-field brightness vs. applied voltage and frequency with noise spectral density will 

be useful to estimate the quality and reliability of optoelectronic devices.  

It is possible to note the following perspectives: 

1. The design of methods for manufacturing of operational optoelectronic and 

photonic structure samples with superior parameters.  

2. Established choice of the materials and the parameters for the structures 

formation. 

3. Evaluating of the prepared structures quality by scanning probe microscopy and 

scanning electron microscopy. 

4. Further theoretical study of the interaction probe-sample – near-field distribution 

of electromagnetic field and measurement of the refractive index local contrast in 

materials with nanostructured features. 

5. SPM probes etching and structures defects passivation by focused ion beam with 

consequent control of mechanical, electrical and optical properties of probes and 

proceeded structures. 

6. STM, AFM and SNOM analysis of thin film layer structure before and after 

aging. Optoelectronic and photonic devices aging and lifetime estimation.  

The measurement systems play an important role to right estimation of the device 

component quality. With the use of a novel SPM and SEM microscopes, the more 

advanced study of different aspects of nanostructured optoelectronic and photonic 

materials and devices will be possible.  

Interfacial problems and solutions, application of wide-band-gap semiconductors and 

nanostructures in optoelectronic and photonic devices, aging, degradation mechanisms 

and reliability of devices are still of special interest. 
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