
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

DETECTION OF API AND ABI COMPATIBILITY IN JAVA

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE Be. TOMÁŠ ROHOVSKÝ
AUTHOR

BRNO 2013

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INFORMATION SYSTEMS

ZJIŠŤOVANÍ API A ABI KOMPATIBILITY V JAVE
DETECTION OF API AND ABI COMPATIBILITY IN JAVA

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Be. TOMAS ROHOVSKY

doc. Dr. Ing. DUŠAN KOLÁŘ,

BRNO 2013

Abstrakt
Tato diplomová práce se zabývá A P I a A B I kompatibilitou Java knihoven. Jsou popsány
typy kompatibility a analyzovány změny A P I , které vedou k zdrojové či binárni nekompati­
bilitě. Dále je provedena analýza existujících nástrojů, které provádějí zjišťování nekompat­
ibility. Vhodný nástroj z předchozí analýzy je vybrán a rozšířen. Na základě rozšířeného
nástroje je vytvořena serverová aplikace, která poskytuje informace o kompatibilitě sle­
dovaných knihoven.

Abstract
This master's thesis deals with A P I and A B I compatibility of Java libraries. Types of
compatibility are described. A P I changes causing source and binary incompatibility are
analyzed. Furthermore, an analysis of existing tools that detect incompatibility was cre­
ated. The suitable tool has been chosen from the previously analyzed tools and extended.
The extended tool is the base of the server application, which provides information about
compatibility of tracked libraries.

Klíčová slova
API , A B I , Java, zpětná kompatibilita, nekompatibilní změny A P I , vývoj A P I , Java kni­
hovny, Maven, Hibernate, Spring

Keywords
API , A B I , Java, backward compatibility, incompatible A P I changes, evolving of A P I , Java
libraries, Maven, Hibernate, Spring

Citace
Tomáš Rohovský: Detection of A P I and A B I Compatibility in Java, diplomová práce, Brno,
FIT V U T v Brně, 2013

Detection of A P I and A B I Compatibility in Java

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Dušana
Koláře

Tomáš Rohovský
June 3, 2013

Poděkování
Tímto bych chtěl poděkovat mému vedoucímu Dušanu Kolářovi za vedení této diplomové
práce. Velké díky patří mému technickému vedoucímu Stanislavu Ochotnickému za cenné
připomínky k implementaci knihovny a serverové aplikace, ale také k obsahu a struktuře
tohoto dokumentu. Chci poděkovat Martině za kontrolu a úpravu jazykové stránky práce.
Obrovské díky patří mé rodině a Ivce za podporu, trpělivost a lásku.

© Tomáš Rohovský, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě infor­
mačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění
autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3
1.1 Motivation 4

2 API and A B I Compatibility in Java 5
2.1 A P I and A B I 5
2.2 A P I Elements and Types of Compatibility 5
2.3 Incompatible changes of A P I 6

2.3.1 Packages 6
2.3.2 Interfaces 7
2.3.3 Interface Fields 8
2.3.4 Interface Methods 8
2.3.5 Classes 9
2.3.6 Class Fields 10
2.3.7 Class Methods and Constructors 10
2.3.8 Class Type Members 10
2.3.9 Generic Types and Methods 10

3 Analysis of Existing Solutions 12
3.1 Testing Library Used as Input 12
3.2 Existing Solutions 12

3.2.1 Clirr 12
3.2.2 Java A P I Compliance Checker 13
3.2.3 SigTest 14
3.2.4 Japi-checker 15

3.3 Evaluation of Existing Solutions 16

4 Analysis and Design 17
4.1 Requirements 17
4.2 The Library 18

4.2.1 Current State 18
4.2.2 Extensions and Improvements 18

4.3 The Server Application 19
4.3.1 Use Cases 19
4.3.2 Space and Time Decisions 19
4.3.3 Cohesion Decisions 20
4.3.4 Server Application Architecture 21
4.3.5 Domain Model 21
4.3.6 Data Source of Libraries 22

5 Implementation 23
5.1 The Library 23

5.1.1 Optimization and Refactoring 23
5.1.2 A P I Model Improvements 24
5.1.3 Parsing of Bytecode 24
5.1.4 Compatibility Detection 27
5.1.5 Instantiating of User Denned API Model Classes 29

5.2 C L I 30
5.3 The Server Application 31

5.3.1 Database Layer 31
5.3.2 Domain Model Layer 33
5.3.3 Data Access Layer 34
5.3.4 Business Layer 35
5.3.5 Presentation Layer 38

6 Experimentation and Optimization 39
6.1 Visibility Limited Parsing 40
6.2 Loading vs. Computing of Comparisons 40
6.3 Choosing of Comparisons to Store 41

7 Requirements and Deployment 42

8 Conclusion 43
8.1 Future extensions 44

2

Chapter 1

Introduction

This master thesis deals with A P I and A B I compatibility and its detection in Java libraries.
Contemporary software development is based on usage of prefabricated components, i.e.
libraries. These libraries provide services to the software applications through an API .

Software libraries are evolved as every software product. The evolution of a library may
result in incompatible A P I and A B I changes, which makes complications to the software
developers using that library when updating to the new version of the library. These compli­
cations can be prevented or minimized by evolving the library A P I according to particular
rules or with the use of tools which detect whether a change causes incompatibility in an
A P I or an A B I . These tools are also very useful for software developers using a library. They
can find the newest library release that is compatible with their version or which library is
consistent in terms of compatible A P I . For these purposes, a centralized system providing
previously mentioned information will be much more suitable.

The second chapter contains explanation on what an A P I and an A B I is. It also contains
a listing which Java elements are part of an A P I and types of compatibility are described.
Incompatible changes are presented.

The third chapter deals with an analysis of existing solutions. A number of existing
solutions detecting incompatible changes is analyzed in several aspects. At the end of the
chapter, it is considered whether to extend and reuse one of the existing tools or to start
from scratch.

In the fourth chapter, the goal of the thesis is set. Then the current state of the library
that will be reused is described and extensions are suggested. A n analysis and design of the
server application which will provide information about compatibility of tracked libraries
follows. The description of the server application use cases is involved. Space and time
decisions are also included. It is considered which approach of cohesion will be suitable.
The architecture of the server application is designed and a domain model is modeled.
Furthermore, it is observed what sources of libraries can be used.

The implementation details of both the library and the server application are described in
the fifth chapter. The optimization and refactoring of the library are included. The changes
in the model of A P I are explained as well as parsing of bytecode to it. Improvements
of compatibility detection are described and newly supported changes are listed. Deeper
implementation details of some more complicated changes are brought. The instantiating
of user defined A P I model classes is depicted. The implementation of the server application
continues after an implementation of CLI . Decisions about used technologies were made.
Then a description of each layer in the multi-layer architecture of the system follows. It
includes these layers: database, domain model, data access, business and presentation.

3

The sixth chapter contains a design of experiments with the server application and a
discussion about the results of the experiments. Based on the results, the system was
optimized.

The requirements of the library and the server system are described together with the
deployment of the system in the seventh chapter.

At the end of the thesis a summary of what was achieved is described. Possible future
improvements are also suggested.

1.1 Motivation

Developers of libraries should know which changes of A P I are compatible or not. The
number of types of incompatible changes is too high to remember them all. A tool which
helps developers to keep A P I compatible or to know what changes affect compatibility is
very helpful.

The information about A P I compatibility is also useful for consumers of the libraries.
Some developers of libraries do not provide information on compatibility between the releases
of their library. The consumers are forced to the approach of iterative „try to build and
change the code if it does not work' when updating to the new release of the library.

Downloading all newer releases of the library and checking the compatibility with the
currently used release of the library is tedious. It is more suitable to have the information
about the compatibility stored in one centralized place, so that many users of the library
could see it. Such a place can be a web information system.

The system can be based on the top of a tool used by developers of libraries for A P I
compatibility detection. The system should be able to detect compatibility without need
of having dependencies of libraries, unlike the tool used by developers of libraries who
have access to the dependencies. The reason is that storing of dependencies would take
disproportionally more space than a tracked library itself.

4

Chapter 2

API and ABI Compatibility in Java

2.1 A P I and A B I
A n application programming interface (API) is an interface that a software application
implements to enable other software applications to interact with it. A P I are implemented
by applications, libraries and operating systems to define how other software can request
services from them. The A P I itself is abstract, it specifies an interface and does not get
involved with implementation details.

An application binary interface (ABI) describes the low-level interface between a com­
puter program and the operating environment.

The difference between an A P I and an A B I is that an A P I is source code based while
an A B I is binary code based. Therefore the source code using a particular A P I can be
compiled with a software application providing that specific A P I . While an A B I allows a
program from one environment supporting that A B I to run without modifications on any
other such environment.

2.2 A P I Elements and Types of Compatibility

Let assume we have a generic component with an A P I , which is maintained by one party.
Other party, or parties, write the client with using of the component. A l l parties need to
understand which elements are part of the component A P I and which are part of internal
structure of the component. The following convention uses the visibility-limiting feature of
Java language to distinguish those Java elements which are considered an A P I [1]:

A P I package - a package that contains at least one A P I class or interface.

A P I class or interface - a public class or interface in an A P I package, or a public or
protected class or interface member declared in or inherited by some other A P I class
or interface.

A P I method or constructor - a public or protected method or constructor either de­
clared in or inherited by an A P I class or interface.

A P I field - a public or protected field either declared in or inherited by an A P I class or
interface.

5

There are three main categories of compatibility:

Source
Source compatibility concerns translating Java source code into class files. In other
words, successful compilation is the basic criteria for source compatibility. Source
compatibility corresponds to A P I compatibility.

Binary
Binary compatibility is preserving the ability to link without error. A change to
a type is binary compatible with (equivalently, does not break binary compatibility
with) preexisting binaries if preexisting binaries that previously linked without error
will continue to link without error [2]. Binary compatibility is equivalent to A B I
compatibility.

Behavioral
Behavioral compatibility includes the semantics of the code that is executed at run­
time. The program does with the same inputs the same or an equivalent operation
under different versions of libraries [3].

A library has compatible A P I if it is source and binary compatible. A library has
compatible A B I if it is binary compatible. So A P I compatibility is more strict than A B I
compatibility.

2.3 Incompatible changes of A P I

In this section, the changes causing incompatibility are described. It is evaluated whether
they break only source compatibility or both source and binary compatibility. Some of the
changes can be incompatible only under certain circumstances depending on the client code.
A severity of these changes is set to warning, other changes are considered to be errors. A n
A P I type means a class, an interface, an enum, or an annotation type.

2.3.1 Packages

Number Change Breaks Severity
P . l Add A P I type Source Warning
P. 2 Delete A P I type Both Error
P. 3 Change public type to non-public Both Error
P.4 Change kind of A P I type Both Error

Table 2.1: Incompatible changes of A P I packages

Change P . l

Import of A P I types can be done with using of wildcard character. Added A P I types can
be incorrectly resolved, because client's code contains classes with the same name. Let us
assume following client's code:

import my.classes.*; // contains Colision

import library.classes.*;

6

Colision c = new ColisionO ;

If class l i b r a r y . classes. Colision is added to the library, the client will not compile
against to the new version of library. The change was considered to be warning because it
should not occur when developers are disciplined and do not use wildcard imports.

2.3.2 Interfaces

A l l interface fields are public, f i n a l and s t a t i c . A l l interface methods are public and
abstract These facts reduce the count of incompatible changes. Annotation types are a
form of interface.

Number Change Breaks Severity
1.1 Add A P I method Both Error
1.2 Delete A P I method Both Error
1.3 Add A P I field Both Error
1.4 Delete A P I field Both Error
1.5 Contract superinterface set (direct or inherited) Both Error
1.6 Add A P I type member Both Error
1.7 Delete A P I type member Both Error
1.8 Add member to annotation type with no default value Source Error
1.9 Delete member from annotation type (equals to 1.2) Both Error

Table 2.2: Incompatible changes of A P I interfaces

Change 1.8

Adding a member to annotation type breaks source compatibility. The example of annota­
tion type in library:

public ©interface Author {

public String nameO;

}

The annotation can be used in client code as below:

©Owner(name="Arthur Dent")

public class House() { ... }

If the annotation type

©interface Owner {

String name;

String nationality;

}

is changed by adding of the new member in the library, then client code will not compile.
It can be avoided by adding of default value to a new annotation members. So the email
member will be specified as

String email default "earthling";

7

2.3.3 Interface Fields

Number Change Breaks Severity
I F . l Change type of A P I field Both Error
IF.2 Change value of compile-time constant A P I field Both Error

Table 2.3: Incompatible changes of A P I interface A P I fields

Changes IF.2, C F . 2 , C F . 4

Compile-time constant according to [] must be:

• declared final

• primitive type or String

• initialized within declaration

• initialized with constant expression

The example can be:

public s t a t i c f i n a l int ANSWER = 42;

The compile-time constant values are always inlined with Java compilers. If the value of
a compile-time constant field is changed, then pre-existing clients will not see the new value
unless they are recompiled.

2.3.4 Interface Methods

Number Change Breaks Severity
I M . l Change method name Both Error
IM.2 Add or delete formal parameter Both Error
IM.3 Change type of a formal parameter Both Error
IM.4 Change result type Both Error
IM.5 Add checked exceptions thrown Source Error
IM.6 Delete checked exceptions thrown Source Error
IM.7 Change parameter from variable arity to array type Source Error
IM.8 Delete default clause from annotation type member Both Error

Table 2.4: Incompatible changes of A P I interface A P I methods

8

2.3.5 Classes

Number Change Breaks Severity
C . l Add non-abstract and non-static A P I method (if class

is subclassable)
Both Warning

C.2 Add abstract A P I method Both Error
C.3 Add static A P I method (if class is subclassable) Both Warning
C.4 Delete A P I method Both Error
C.5 Add first A P I constructor with arguments Both Error
C.6 Delete A P I constructor Both Error
C.7 Add A P I field (if class is subclassable) Both Error
C.8 Delete A P I field Both Error
C.9 Contract superinterface set (direct or inherited) Both Error

C I O Contract superclass set (direct or inherited) Both Error
C . l l Add A P I type member (if class is subclassable) Both Error
C.12 Delete A P I type member Both Error
C.13 Change non-abstract to abstract Both Error
C.14 Change non-final to final Both Error
C.15 Rename enum constant Both Error
C.16 Delete enum constant Both Error

Table 2.5: Incompatible changes of A P I clases

Changes C . l , C.3

Assume we have the following client's class extending from library's class:

public ClientClass extends APIClass {

protected void hello() {}

}

If the following method is added to APIClass

public void hello() {}

then the client code cannot be recompiled because it is not possible to assign weaker
access privileges to inherited method.

Similarly if the following method is added to APIClass

protected static void hello() {}

then the client code cannot be recompiled since static method cannot be changed to
non-static in the client code.

9

2.3.6 Class Fields

Number Change Breaks Severity
C F . l Change type of A P I field Both Error
CF.2 Change value of compile-time constant A P I field Both Error
CF.3 Decrease access from protected to default or private;

or from public to protected, default, or private
Both Error

CF.4 Change final to non-final (if field is static with compile-
time constant value)

Both Error

CF.5 Change non-final to final Both Error
CF.6 Change static to non-static Both Error
CF.7 Change non-static to static Both Error

Table 2.6: Incompatible changes of A P I class A P I fields

2.3.7 Class Methods and Constructors

Number Change Breaks Severity
C M . l Change method name Both Error
CM.2 Add or delete formal parameter Both Error
CM.3 Change type of a formal parameter Both Error
CM.5 Change result type Both Error
CM.6 Add checked exceptions thrown Source Error
CM.7 Delete checked exceptions thrown Source Error
CM.8 Decrease access from protected to default or private;

or from public to protected, default, or private
Both Error

CM.9 Change non-abstract to abstract Both Error
CM.10 Change non-final to final Both Error
C M . l l Change static to non-static Both Error
CM.12 Change non-static to static Both Error
CM.13 Change parameter from variable arity to array type Source Error

Table 2.7: Incompatible changes of class A P I methods and A P I constructors

2.3.8 Class Type Members

The changes for A P I type members (inner classes, interfaces, enums and annotation types)
are basically the same as for A P I class and interfaces, with the following addition.

Number Change Breaks Severity
C T . l Decrease access from protected to default or private;

or from public to protected, default, or private
Both Error

Table 2.8: Incompatible changes of A P I class A P I type members

2.3.9 Generic Types and Methods

Generic types and methods are these ones which can contain type parameters.

10

Number Change Breaks Severity
G . l Add type parameter (if it has some) Source Error
G.2 Delete type parameter Source Error
G.3 Add, delete, or change type bounds of type parameter Source Error

Table 2.9: Incompatible changes of generic A P I types and A P I methods

11

Chapter 3

Analysis of Existing Solutions

The detection of A P I compatibility between two releases of one Java library is not a new
problem. Some solutions of the problem exist. Most of them are discussed in this section.
The analysis of existing solutions is important for observing of different approaches to the
issue. Another reason is that analyzed tools can be used as the base of the developed system.
We will discuss user interfaces, input, output, features, implementation and incompatible
A P I changes covered by the tools. Only missing detection of changes will be described,
because the list of supported changes would be very long. Numbers of changes refer to the
changes listed in tables in the section 2.3.

3.1 Testing Library Used as Input

A l l tools were tested with the purpose of discovering supported A P I changes. They were
tested with the same input, which is two versions of the testing library. I have created this
library with an effort to cover all A P I incompatible changes. Every tool has a different
output format, thus makes it impossible to create an automatized test. The names of Java
elements were chosen so that they would suggest what change the element would be tested
for. In the analysis of every tool, an example of the output report containing information
about detected A P I changes will be listed. A l l outputs were condensed to the size necessary
for the demonstration.

3.2 Existing Solutions

3.2.1 C l irr

Clirr is an open-source tool written in Java. It is possible to use Clirr from command line
or as Ant target or as Maven plugin. It accepts a set of jar files of the old version and a set
of jar files of the new version of Java library as the input. The output of this tool consists
of messages reporting about A P I changes. One message corresponds to one A P I change.
The message contains severity, the code and description of change. A n example snippet of
output is listed below.

ERROR: 7002: evolvingClasses.Class: Method 'public void deleteMethodO' has been

removed

ERROR: 6001: evolvingClasses.Class\$DeleteEnumConstant: Removed fi e l d BAR

ERROR: 3003: evolvingClasses.NonFinalToFinal: Added final modifier to class

12

ERROR: 2000: evolvingPackages.ChangeGenderCT: Changed from class to interface

ERROR: 1001: evolvingPackages.ChangeToNonPublic: Decreased v i s i b i l i t y of class from

public to package

The output can be printed in plain text as well as in X M L format. Clirr provides an
option to include only classes from specified a package and its sub-packages. It does not
support intersection with a client project.

Clirr is implemented with using of A S M library for parsing of byte code. A n external
library dependent class loader is used for loading of classes. In case that some external
library class is missing in input jars, the program breaks. It is necessary to link all external
libraries by Clirr options.

Clirr does not detect, or detects in wrong way, following incompatible changes:

• Annotations - 1.8, IM.8

• Exceptions - IM.5, IM.6, CM.6, CM.7

• Generics - G . l , G.2, G.3

• Method attributes - CM.9, CM.11, CM.12

• Method variable arguments - IM.7, CM.13

3.2.2 Java A P I Compliance Checker

Java A P I Compliance Checker is an open-source Perl script. The input of this script is
handled by the options for a new and old library release. The input could be specified as
a single jar, many jars, an X M L descriptor including paths to jars, a directory or an A P I
dump. The output report is stored in an H T M L file. This file contains the result of a
test (i.e. whether releases are compatible, percentage of compatibility, how many packages,
classes, methods are affected), added and removed methods, problems with data types and
problems with methods. Every problem has a description of the effect on a client program
that uses the A P I and affected methods of the checked library.

Checker distinguishes between source and binary compatibility. It has options to check
only source or binary compatibility. Checker has option to specify the client Java archive
that should be checked for portability to the new library version. It is possible to dump a
library to specific format, which can be used as an input of the script. The format is hardly
readable by human.

The tool is implemented as a single monolithic script. Definitions of messages, rules,
generation of H T M L output are all in the one file. That approach is not suitable for a future
extension and re-usability is very low.

Java A P I Compliance Checker does not support following incompatibility changes:

• Annotations - 1.8, IM.8

• Generics - G . l , G.2, G.3

13

3.2.3 SigTest

SigTest is a collection of tools written in Java. This collection includes tools to compare
APIs and to measure the test coverage of an A P I . These tools are under G P L license
and thus open source. However, the tools are based on Oracle's commercial SigTest tools
product. Signature Test tool is the most interesting tool of the collection for our purpose.
According to the documentation, SigTest is used to compare the signatures of two different
implementations of the same A P I . This seems to be more general usage than comparison of
two versions of the same library, but in principle it is the same.

The Signature Test tool operates from command line. It can generate a signature file,
which is a text representation of an A P I . The format of the signature file is well designed in
terms of readability by human and parse-ability by computer. A n example is listed below.

CLSS public evolvingClasses. Class<°/
0
0 extends Java.lang.Object>

cons public <init>()

f i d protected int deleteField

innr public final static !enum DeleteEnumConstant

meth public void deleteMethodO

supr evolvingClasses.SuperTypeClass

Signature files or J A R archives can be used as the input for the tool. It is necessary to
include the r t . jar library as an input. This library contains all the compiled class files for
the base Java Runtime Environment. It also needs all the dependencies of the compared
library in input. A P I of both involved dependencies (JRE and depended libraries) are used
for comparison. Comparison without dependencies can be achieved by setting options for
excluding or specifying of particular packages. Two possible formats of an output report are
available - a human-readable format and a machine-readable format. In the human-readable
format, simple A P I changes are not presented as pair of errors („missing element" and „added
element") as in the machine-readable format, but as a single A P I change. The tool has an
option to choose between a binary and a source compatibility mode. Another option allows
to specify a migration compatibility check mode, which is similar to the message report used
in Clirr. The following listing contains an example.

Class evolvingClasses.Class

"El.2 - API type removed" :

method public void evolvingClasses.Class.deleteMethodO

Class evolvingClasses.Class\$DeleteEnumConstant

"El.2 - API type removed" :

fie l d public final static evolvingClasses.Class\$DeleteEnumConstant.BAR

Class evolvingClasses.NonFinalToFinal

"E5.14 - Changing class from non-final to final" :

CLASS public evolvingClasses.NonFinalToFinal

Class evolvingPackages.ChangeGenderCI

"E5.12 - Changing class from non-abstract to abstract" :

CLASS public evolvingPackages.ChangeGenderCI

"E5.4 - Removing constructor" :

constructor public evolvingPackages.ChangeGenderCI.<init>()

Class evolvingPackages.ChangeToNonPublic

"El.2 - API type removed" :

CLASS public evolvingPackages.ChangeToNonPublic

14

The Signature Test tool has many other options, for more detailed description see the
documentation [4].

A big advantage of the Signature Test tool is full coverage of A P I changes that cause
incompatibility.

The implementation of SigTest is very large. It has tens of packages and hundreds of
classes. It does not use any third party library for parsing the bytecode, but performs that
on its own. This makes the code more complex, but perhaps more faster.

3.2.4 Japi-checker

Japi-checker is a small open-source library written in Java. A Maven plugin is build above
the library. The plugin is intended to compatibility checking of library developed by user.
That means, it is not easily achievable to check compatibility of third party libraries. Check­
ing is done during a Maven verify stage during the building. A l l the configuration is handled
in pom file. The plugin requires presence of a reference version of library in Maven reposi­
tory as Maven artifact. Artifact details has to be set in the plugin configuration. The library
provides two of input - J A R archive and directory with classes. The compatibility report
is printed to the standard output. It consist of messages describing changes. Each message
includes severity, a class name, in some cases the line of the change and the message text.
A n example is listed below.

[ERROR] evolvingClasses/Class.Java: Could not find method deleteMethod in newer

version.

[ERROR] evolvingClasses/Class.Java: Could not find f i e l d BAR in newer version.

[ERROR] evolvingClasses/methods/Class.java(17): The method nonFinalToFinal has

been made f i n a l , this now prevents overriding.

[ERROR] evolvingPackages/ChangeGenderCI.Java: The interface evolvingPackages/

ChangeGenderCI has been changed into an class

[ERROR] evolvingPackages/ChangeToNonPublic.Java: The v i s i b i l i t y of

the evolvingPackages/ChangeToNonPublic class has been changed from PUBLIC to N0_SC0PE

Features of the plugin are poor. It is only possible to choose rules which will be used for
checking. It does not distinguish source and binary compatibility.

Japi-checker does not detect, or detects in a wrong way, the following incompatible
changes:

• Annotations - 1.8, IM.8

• Field added - 1.3, C.7

• Field attributes - CF.4, CF.5

• Field value - IF.2 CF.2

• Generics - G . l , G.2, G.3

• Method added - 1.1, C . l , C.2, C.3

• Method attributes - CM.9 , C M . 10

• Method variable arguments - IM.7, CM.13

15

Japi-checker implementation is divided into three parts: models, rules and a checker.
Models describe Java elements, rules describe checks of incompatible changes and the checker
puts the previous two parts together. A S M 4.0 library is used for parsing of the bytecode
to model.

3.3 Evaluation of Existing Solutions

Now, we will choose one of them as the most suitable tool for extending and reusing for the
server system. Four tools were analyzed: Clirr, Java A P I Compliance Checker, SigTest and
Japi-checker. A l l of them are open source, so reusing of all is possible.

Only one tool does not have a console interface - Japi-checker. Most of them have a plain
text output, only Java A P I Compliance Checker provides just an H T M L output. SigTest
provides the most features, Java A P I Compliance Checker is also wealthy for features. The
most important features are an option to check binary or source compatibility and specifying
whether the client should be checked for portability to the new library. SigTest is able to
detect the widest range of incompatibilities. At this point, SigTest seems to be a candidate
for extending and reusing. However, in the planned server system we also need to compare
the libraries independently of dependencies. For this reason, SigTest fails as a candidate.
The same applies for Clirr.

Whence it follows that we have only two possibilities - Java A P I Compliance Checker and
Japi-checker. The first named is written in Perl, which is reasonably serious disadvantage,
because the server system will be implemented in Java. Another disadvantage is appearance
of implementation, it will need a huge refactoring. The current output format as H T M L
is inconvenient. The previous consideration suggests that the candidate for extending and
reusing for our system is Japi-checker.

16

Chapter 4

Analysis and Design

4.1 Requirements
The purpose of this thesis is to bring the open source tool detecting A P I backward compat­
ibility which will detect most of incompatibility-introducing changes analyzed in the section
2.3. The tool will allow to choose between binary or source compatibility check. The in­
put of the tool will be J A R archives or directories containing classes. It will be based on
Japi-checker.

Furthermore, the server application using the previous tool will be created. It will
provide information about incompatibility-introducing changes of library releases. This
information will be pre-computed and stored in the database or computed on demand. This
approach will be designed to achieve balance between time and space complexity. The
database will be optimized to store big amount of data.

17

4.2 The Library

4.2.1 Current State

Japi-checker consist of the core part and the Maven plugin part. Only the core part is
interesting for our purpose. The class diagram of the core part with classes split into
packages is on the figure 4.1.

adigm for U M L Community Edition |not for commercial use]

o r g . o b j e c t w e b . a s m

ClassVisitor Met hod Visitor

A A
A

ClassDumper MethodDumper

<<ln t e r f a ce>>
Reporter

TT

MuxReporter

Report

c o m . g o o g l e c o d e . j a p i . checker

<< ln te r f ace>>
ClassDataLoader

Factory

TT

< < I ri te rface > >
ClassDataLoader

TT
D e f a u l t e r s Data

LoaderFactory
DefaultClassData

Loader

Scope

v
A

c o m . g o o g l e c o d e . j a p i . c h e c k e r , mode l

Ja va Item

Abstra ctCIa s s Rea de r

Jar Reader DirectoryReader

RuleHelpers < < I rt te rface > >
Rule

7T

ClassData FeildData MethodData InnerClassData Attribute Data

® ; A
I v :

co m . goog l e code . j ap i . checke r , rules

AIIRules

ClieckFieldC hange
dToFinal

CheckRemoved
Field

Figure 4.1: Class diagram of Japi-checker.

The main class of the core part is BCChecker from the checker package. This class
creates Def aultClassDataLoader for a reference and a new release of a library. This class
loads classes. It uses JarReader or DirecotryReader for reading the classes. The choice
of the reader depends on the type of input. The reader uses ClassDumper for parsing the
bytecode to model. MethodDumper is used by ClassDumper for parsing of methods from the
bytecode. ClassDumper and MethodDumper inherit from third party A S M library which is
used for parsing of the bytecode. When all classes are loaded BCChecker checks backward
compatibility. Each change is stored to the Report class. In the package model, there are
models of Java elements. The package rules contains classes which are used for checking
of incompatibilities. Not all classes are shown in the rules package in the diagram.

4.2.2 Extensions and Improvements

Japi-checker will be extended for a command line interface, because the current Maven
interface is not sufficient. Some developers do not use Maven for building of their libraries.
Moreover users of libraries minded to check compatibility cannot easily use Maven interface.

18

Support to distinguish source and binary compatibility will be implemented. Missing
checks described in the section 3.2.4 will be implemented. The rest of checks will be revised
and eventually changed. New data structures to support type parameters will be created.
The library will be prepared to use in the server application.

4.3 The Server Application

4.3.1 Use Cases

Use cases of the developed application are described in the use case diagram on the figure
4.3.1. Two actors figure in the use case: the user and the administrator. The administrator
inherits user's use cases.

The user can display a list of stored libraries and their releases. The user can check
A P I and A B I compatibility of two releases of a specified library. Another user's use case
is showing of compatibility overview for the particular library, which contains summary of
compatibility between releases in the order as they were released and details of comparisons
between releases. The use case for A P I checking can be extended for an intersection with
a client code in the future. Another future extension can be getting an A P I of a specified
release.

The administrator can manage libraries and their releases. The management of libraries
comprises adding a library, listing libraries, editing library properties and removal of a
library. The management of releases involves adding a release, listing releases, editing
release properties and removal of a release.

Visual Paradigm for UML Community Edition [not for commercial L

Figure 4.2: Use cases diagram of the system.

4.3.2 Space and Time Decisions

Let us assume we have a library having n releases. The count of all compatibility compar­
isons between releases is equal to partial permutation

19

For example, in case of library Struts which has 30 prime releases, it would mean to detect
the compatibility 870 times. Which is relatively high count. The number of comparisons
grows with the number of releases quadratically.

The implication of the previous consideration is storing a large amount of comparison
results. However, a complexity of compatibility detection can be balanced between time
and space. Some comparisons will be computed on demand. The space complexity can
be reduced by storing only backward compatibility comparisons and not storing forward
compatibility comparisons, i.e. comparisons needed when downgrading the library release.
The reason is that downgrading of libraries is not so frequent. Wi th this optimization will be
stored half of all comparisons and space needed for comparisons reduced to approximately
50%.

An algorithm for space and time balancing of comparisons is hard to design at present.
We do not know how much space we need for storing the compatibility report and time
to its computation. It will be discovered by experimentation with the system (described
in the chapter 6). Based on the result of experimentation an algorithm can be designed
and implemented afterwards. A vital factor for balancing complexity will be the size of
changes between libraries. The minimum needed space will be n — 1, where n is a number
of releases. The number represents comparisons between releases as they were released.
As was previously mentioned, it is required for one of the use cases - getting of library's
compatibility overview.

It is important to store data about A P I of libraries. It is so because of balancing of time
and space complexity, but also because of adding of a new library release. Storing a raw
library is a waste of space, because only an A P I is interesting for us. We will store only an
A P I which we will be obtained by parsing of a library.

4.3.3 Cohesion Decisions

There are two approaches how to link the library and the server. The first one is a strict
separation of the library and the server. The second one is close cohesion of them or rather
an integration of the library to the server. For both approaches, we will show adding of a
release, pre-computation of compatibility, getting a pre-computed result about compatibility
and how a computation of the result on demand is proceeded.

In case of strict separation of the library and the server, we need to create an interface
for their communication. This interface would be an A P I dump of release. The A P I dump
will be generated by the library. When adding a release, the server will use the tool to
dump the A P I and store it in the database. A computation of the compatibility will include
loading of A P I dumps from the database and using of them as the input of the library.
Getting pre-computed results will only mean querying for the result and presenting it to
the user. A computation of the result on demand will be handled as loading of A P I dumps
and using them as the input of the library. The result will be returned to the user.

The integration approach is bringing the library and the server tightly together. There
is no need to implement support of A P I dumping. Adding a release will mean parsing an
A P I by the server and storing that in the database. A compatibility computation will be
done by loading data from the database, comparison by the server and storing of it in the
database. Getting the pre-computed result is just a database query and retrieval to the
user. A computation of the result on demand means loading two APIs from the database
and a computation of their compatibility and presenting the result to the user.

The second approach in comparison to the first, can result in relatively duplicitous

20

development of both applications, although it means better efficiency in terms or time. We
will choose the second approach, therefore the integration, mainly to reduce the time needed
for an on demand compatibility computation. The business logic of compatibility checking
has to be separated, so duplication of development effort will be avoided.

4.3.4 Server Application Architecture

We can divide the system to the back-end and the front-end. The back-end will be a server
application which contains a database, a data layer and a business layer. The front-end will
contain a presentation layer. The back-end will be only one, whereas there can be more
front-ends. The front-end can be realized as a web interface or a C L I client or a Maven
plugin or other applications communicating with the back-end by a web service. We will
focus on the web interface. Other kinds of front-ends can be created in the future.

4.3.5 Domain Mode l

A class diagram of the domain model is shown on the figure 4.3. There is a class Library,
which matches a tracked library. Class Release abstracts a release of library. The class
implements ClassDataLoader interface that gives it a possibility to be used for loading of
classes. It contains complete structure of classes modeling A P I elements. The class Class
matches A P I types - a class, an enum, an interface, an annotation. It inherits from library's
ClassData and adds only id required for database. Other A P I element classes like F i e l d
of Method are not visible for simplification, but they follows principle of extending library's
model classes used for Class.

Visual Paradigm for UML Lommunity tdi l ion [not for commercial use]

Library
•id : int
•name : String

contains

1

0.
Release

-id : int
-name : String
-date : Date

contains
1

Class
•id : int

com.google .code. jap i .checker

<<lnterface>>
ClassDataLoader

< i n t e r f a c e >>
Reporter

Difference (japi-checker)
-dif ferenceType : DifferenceType
-referenceItem : Javal tem
-newltem : Javaltem
-args : String!]
-source : String

7 ř

between
ReleasesComparison

-id : int
-errorCount : Integer
- w a r n i n g C o u n t : Integer

contains Difference
-id : int

com. google code j ap i .checke r. mode I

> ClassData

Figure 4.3: Class diagram of the domain model.

Information about a comparison of two releases is stored in ReleasesComparison. The
class implements library's interface Reporter that enables to the class to be used as a
container of A P I changes when checking compatibility. The comparison class is associated

21

with the class Difference that extends from the library's class with same name and it adds
only id. The library's Difference is associated with A P I elements in which the A P I change
occurred (fields ref erenceltem and newltem). The association is not realizable in the final
database schema, because it is not possible to refer by one foreign key to more tables that
will be created for each A P I element. This challenge will be solved later (section 5.3.1)

4.3.6 Data Source of Libraries

In order to be the final system usable, it has to contains a lot of data - library releases and
comparisons of them. It is necessary to obtain the releases from somewhere. Such a source
could be version control system repositories and J A R files placed at library's web pages.
The problem of obtaining data from these sources is problematic because of non-uniformity
of sources. Another possibility is to obtain these data from Maven Central repository that
solves this problem.

Maven Central is a repository of open source Java projects. It contains 678 G B of data,
58 121 of libraries and 484 095 of releases at the time of writing of this document [5]. It
was established with the purpose to provide central storage of libraries and to simplify the
dependency management when building.

Maven uses following coordinates to identify a certain version of library:

groupld - unique identifier of the project across all projects. It has to follow the package
name rules. Example: com.googlecode.japi.checker

artifactld - the name of J A R without version. It correspondents to library in our termi­
nology. Example: japi-checker

version - is the version or of J A R . It correspondents to release in our terminology. Exam­
ple: 2.0.0

With the coordinates it is easy to define dependencies of libraries, resolving of their
dependencies and downloading of them all by building tools like Maven, Ivy or Gradle.

22

Chapter 5

Implementation

5.1 The Library
5.1.1 Optimization and Refactoring

The library japi-checker has two use cases that lead to two possibly separate business logics.
The first one is loading of classes and parsing of A P I . The second one is checking an A P I
compatibility. In both parts, there are issues with optimization and integration to third
party applications (including the information system developed in this thesis).

Thinking about integration of a library in the information system, a problem arises when
we want to store parsed A P I elements. It is because loading of classes and parsing of A P I was
done together with checking an A P I compatibility in BCChecker's checking method. The
loading and parsing has been removed from the checking method and let the user of the
library to supply filled model objects on his own. Still using the Def aultClassDataLoader
created by a DefaultClassDataLoaderFactory is the easiest way and thus recommended.
That way of loading was also used in japi-checker-cli described in the section 5.2.

One of the issues with checking in the original library was that for each A P I element all
rules are applied regardless to what type of element it is. A type of element was checked
in each rule class. That way the element type was checked a lot of times redundantly. To
solve this, the process of checking an element type was removed from every rule and all rules
applicable for particular element type were put together in classes ClassRules, FieldRules
and MethodRules.

A similar problem was redundant checking of visibility in each rule. The solution was also
similar, but one thing had to be considered. Although we focus on A P I checking and thus
for public and protected elements, there are cases where elements with lower visibility are
needed or interesting. For example checking the increase or decrease of visibility, checking
of field's serial version UID or checking of transient keyword. However, the last two make
the tool more general than the A P I checker. The solution was moving the visibility checking
from every rule class to one place - in the ClassRules, FieldRules and MethodRules, with
respect to non-API rules.

23

5.1.2 A P I Mode l Improvements

Many improvements in the A P I model were done. The final class diagram is on the figure
5.1

< < E r i L j i 7 i > >
Scope

-name : S t r ing
-value : int

UML Community Editio

F ie ld D a t a
•descr iptor : Str ing
•valLie : S t r ing

javalteivi
-name : S t r ing
-access : int
-v i s i b i l i t y : Scope
- o w n e r : C l a s s D a t a

4

< < I n te rface > >
Parametrized

ClassData
•superName : S t r ing
•interfaces : L i s t<St r ing>
•version : int
•source : S t r ing

1

con ta ins

1 0. .

M e t h o d D a t a
•descr iptor : Str ing
•except ions : L i s t < S t n n g >
•defaultValue : S t r ing
line : int

1

is p a r a m e t r i z e d w i th is pa r ame t r i z ed w i th

0. .*
Type-Parameter

•name : S t r ing
•bounds : l i s t<S t r ing>

Figure 5.1: Class diagram of A P I elements.

Javaltem abstract class, which serves as the parent for A P I elements containing visibility,
was reduced to contain minimum number of fields. Originally, it contained boolean flags
like isAbstract, i s l n t e r f ace, i s S t a t i c and others. A l l these fields were derived from the
integer access attribute from bytecode. Besides that not all flags are relevant for all A P I
elements (classes inheriting from Javaltem), we are losing other information about elements
provided by the access attribute. Furthermore, the price of storing one boolean flag is one
byte, whether the access (which is integer) needs four bytes, but it keeps all the flags. A l l
these flags were substituted with the access field. A desired flag could be evaluated as the
following example for a static flag:

(access & Opcodes.ACC_STATIC) == Opcodes.ACC_STATIC

where Opcodes is the interface provided by A S M that defines the J V M opcodes. Methods
using this evaluation were added to the class instead of the removed flags.

The field defaultValue was added to MethodData due to support of annotation type.
The interface Parametrized denoting a parametrized type was added. It is implemented

by ClassData and MethodData. The collection List<TypeParameterData> typePatrameters

storing type parameters was added to these classes. This collection is accessed and filled
with methods of the Parametrized interface. The class TypeParameterData contains infor­
mation about one type parameter - its name and bounds.

The signature field was removed from ClassData, MethodData and FieldData. The
signature contains the same information as the descriptor plus type parameters. As the
type parameters are stored in newly created data structures during the parsing of bytecode,
which is described in the section 5.1.3, the signature became redundant and thus useless.

5.1.3 Parsing of Bytecode

Several Java libraries have been developed for bytecode manipulation, including B C E L ,
Javassist and A S M . They enable to modify existing classes before the J V M loads them and

24

to define new classes at runtime. A S M has already been used in the library, so it was leaved
as it was.

Unlike other bytecode manipulation libraries, A S M is focused on simplicity of use and
performance. According to the test by [6], it is four times faster than Javassist and almost 8
times faster than B C E L in bytecode generation. However, we are using A S M in an opposite
use case - in bytecode parsing.

The A S M library provides two APIs for generating and transforming compiled classes:
the core A P I provides an event based representation of classes, while the tree A P I provides
an object based representation.

The event based A P I defines a set of possible events and the order in which they must
occur. Each event represents an element of a class, such as its header, a field, a method,
etc. At the object based model, a class is represented with a tree of objects, each object
representing an element of the class. The object based A P I is build on the top of the event
based A P I [].

These two APIs can be compared to the Simple A P I for X M L (SAX) and the Document
Object Model (DOM) A P I for X M L documents.

The event based A P I fits best for our purpose, since we do not need to store all objects
representing the class. One of the core classes of the A P I is the ClassVisitor abstract class.
Each method in this class correspondents to the particular section (class info, field, method,
etc.) in the class file. Simple sections are visited with a single method call whose arguments
describe their content, and which returns void. Sections whose content can be of arbitrary
length and complexity are visited with a initial method call that returns an auxiliary visitor
class. This is the case of the visitAnnotation, v i s i t F i e l d and visitMethod methods,
which return an AnnotationVisitor, a F i e l d V i s i t o r and a MethodVisitor respectively.

The same principles are used recursively for these auxiliary classes. For example, each
method in the F i e l d V i s i t o r abstract class corresponds to the class file substructure of the
same name.

The parsing of sections is done by ClassReader class. This class parses a byte array
conforming to the bytecode and calls the appropriate v i s i t X methods of a given class visitor
for each class section. The code snippet demonstrating parsing of bytecode is in the following
listing.

byte[] bytecode;

reading of bytecode from the class f i l e

ClassDumper v i s i t o r = new ClassDumper();

ClassReader reader = new ClassReader(bytecode);

reader.accept(visitor, 0) ;

The japi-checker visitor class ClassDumper and auxiliary visitor classes can be seen on
the class diagram pictured in figure 5.2. Only essential methods are included in the class
diagram.

Every visitor class has a field to store currently parsed data (clazz, method, item).

This data are filled during the invocation of visit methods.
Originally, there was only ClassDumper and MethodDumper. I have implemented two

auxiliary visitors AnnotationDumper and TypeParameterDumper to support the annotation

25

Visual Parad ig n ClassVisitor Method Visitor

T"

Annotat ionVisitor

T"

SignatureVisitor

Met hod Dumper Annotat ionDumper
- m e t h o d : M e t h o d D a t a - m e t h o d : M e t h o d D a t a
+ M e t h o d D u m p e r f M e t h o d Data method)
+v J s i tAnnota t inDefa j l t ()

+Annota t i r iDL imper (Me thod Data method)
+vJsit(Strmg name , Ob jec t va lue)

ClassDumper
• loade r : C l a s s D a t a L o a d e r
•clazz : C l ass Data
+ C l a s sDa t a (C l a s sDa t a Loade r loader)
+vis i t (int v e r s i o n , int a ccess , S t r ing name , Str ing s i gna tu re , Str ing supe r , S t r ing ifaces [])
+v is i tSource (S t r ing sou r ce , S t r ing debug)
+v is i tF ie ld (int a ccess , S t r ing name , St r ing desc , S t r ing s i gna tu re , Ob jec t va lue)
+v i s i tMe thod (in t a ccess , S t r ing name , St r ing d e s c , S t r ing s i gna tu re , S t r ing excep t i ons [])
+ ge tC lazz ()

Typ Parameter Dumper
- i tem : Pa ramet r i zed
+ T y p e P a r a m e t e r D u m p e r (P a r a m e t n z e d i tem)
+v i s i t Fo rma lTypePa ramete r (S t r i ng name)
+v i s i tC lassBound()
+v is i t ln te r faceBound()
+v i s i tC l a s sType (S tnng name)

Figure 5.2: Class diagram of visitors.

type and type parameters. Original dumpers had to be changed to support them. A new
instance of AnnotationDumper is created when MethodVisitor 's visitAnnotationDef ault
is called. The annotation dumper is used for obtaining the default value of annotation type's
method i.e. annotation's parameter. Here is an example of such a method:

public ©interface Author {

String name() default "John Doe";

}

TypeParameterDumper is used in ClassDumper's v i s i t and visitMethod methods to
parse type parameters of a class and methods. This dumper calls v i s i t X methods on the
signature of a class or a method. A signature is a descriptor extended for type parameters.
The principle of signature reading is similar to bytecode reading. A n example of parsing of
class's type parameter follows:

i f (signature != null) {

TypeParameterDumper = new TypeParameterDumper(clazz);

Signature reader = new SignatureReader(signature);

reader.accept();

}

A static initialization block (or static initializer) is not a part of A P I so it was ignored
in parsing. It is represented as a method named <clinit> in bytecode.

The naming of Java elements in byte code differs from the naming in source code. Instead
of ., / is used as a separator in bytecode. A l l names were transformed to a source code
naming format before storing to model classes.

The possibility to parse only classes with visibility equal or higher than required - visibil­
ity limited parsing - was implemented. The required visibility is defined in ClassDataLoader.
This feature is intended to save memory. It is useful to reduce the database size in the server
system. The reduction is measured in the section 6.1

Another change was replacing of ClassDumper's field classes, declared as a map, with
the field clazz.

26

5.1.4 Compatibility Detection

The package rules contains classes which all implement Rule interface. Each class provides
implementation of the method

checkBackwardCompatibility(Reporter reporter, Javaltem r , Javaltem n),

where one or more A P I changes are checked. Changes are grouped to rule classes by
their similarity. The reporter is a container for changes, r is the reference A P I element
and n is the new one.

Originally, Reporter contained a method report including these parameters: reference
element, new element, description of change (message) and severity. The message was a
String created by appending literals and variables. Literals together with severity are
constants of particular type of change. Let's call them attributes. If a new attribute is
added (for example if a change causes only source or also binary incompatibility), the A P I
of the method has to change. This approach is disadvantageous. Moreover, if the same
type of change is reported at many places, a duplicate specification of the attribute will be
necessary. This led me to creating of the enumeration type Dif f erenceType with attributes
of change as fields. Each constant in enumeration already has all of the attributes defined.
The enumeration is depicted in the figure 5.3 together with Difference and Severity

classes.

Dif ference
- d i f f e r e n c e T y p e : D i f f e r e n c e T y p e
- r e f e r e n c e I t e m : J a v a l t e m
- n e w l t e m : J a v a l t e m
- a r g s : S t r i ngQ
+ g e t M e s s a g e ()

Figure 5.3: Class diagram with difference.

The method getMessage uses messagePattern and args to create a message for particu­
lar difference. The message is created by getMessage which uses String.format() method
to return a formatted string. The formatting method applies arguments args to the for­
matting string messagePattern. This is the replacement for appending of string literals
and variables.

The list of new rule classes with numbers of changes that are covered and was described
in the section 2.3 follows:

• ChangeKindOfAPIType - P.4

• CheckAddedField - 1.3, C.7

• CheckAddedMethod - 1.1, 1.8, C . l , C.2, C.3

• CheckFieldChangeToFinal - CF.4, CF.5

• CheckFieldChangedValue - IF.2, CF.2

• CheckMethodChangedToAbstract - CM.9

• CheckMethodDefaultValue - IM.8

< < linutr >>

Di f f e renceType
- s e v e r i t y : S e v e r i t y
- J s S o u r c e l n c o m p a t i b l e : b o o l e a n
- m e s s a g e P a t t e r n : S t r i n g

< < E n u m > >
Sever i ty

< < C o n s t a n t > > - E R R O R
< < C o n s t a n t > > - W A R N I N G
< < C o n s t a n t > > - I N F O

27

CheckMethodVariableArity - IM.7, CM.13

• CheckTypeParameters - G . l , G.2, G.3

• ChecklnheritanceChanges - 1.5, C.9, C.10

The rest of the rules was revised and in a few cases corrected. Some of the rules imple­
ment really trivial checking like a comparison of a property. Some of the rules contain more
advanced logic. These are described below.

C heck AddedMet ho d

In this class, five incompatible changes are detected. Three of them are changes in class
methods. They apply only when it is possible to inherit from the class, i.e. if the class is not
final. Namely, these changes are: if an abstract method is added, if a static method is added
or a non-abstract and a non-static method is added. The remaining two changes detected
by CheckAddedMethod relate to interface methods. One of them occurs when an annotation
member is added to an annotation type (which is in fact an interface). The other happens
when a method is added to an ordinary interface.

CheckTypeParameters

This class contains detection of all three kinds of type parameter changes. That means
adding a type parameter, removing a type parameter and changing of type parameter's
bounds. The detecting of adding is actually implemented as checking whether a list with
type parameters has grown or not. Removing of a type parameter occurs when the size of the
type parameter's list has decreased. The detection of type bounds starts with computing of
the minimum from the size of reference type parameters and the size of new type parameters.
Then every type parameter is compared using an overridden equals method. This method
first compares the sizes or bounds. If they differ, the type parameters are not equal. If the
sizes are equal then each bound is compared.

ChecklnheritanceChanges

Former implementation of the japi-checker library did some checking of inheritance. How­
ever, the implementation was not correct or rather not total. ChecklnheritanceChanges
contains detection of super class set contraction and super interface set contraction. The
big role in this checking is played by the method:

List<String> filterAPITypes(ClassDataLoader<?> 1, Collection<String> names)

which takes the names of types and for each name tries to load an equivalent class by
a passed loader. If loading of the class is unsuccessful then the class is from a third party
library which means it is a part of A P I . This class will be returned to other A P I classes. If
loading of the class is successful then its visibility is checked. In case it is higher than the
package visibility, the class is meant to be returned.

Super classes are obtained by ClassData method getSuperClasses () , which returns all
names of all super classes. It searches for super classes with the use of ClassDataLoader's
method fromName. Ideally, the names of super classes are precomputed during the loading
of classes, because searching for super classes takes a lot of time. However, in that case it
would be necessary to implement some advanced loading technique.

28

ClassData contains also method getAHInterf aces() , which retrieves a set of all in­
terfaces. The algorithm has two parts. At first, directly implemented interfaces are added,
then all interfaces directly implemented by super classes are added. When we have such
a set of directly implemented interfaces, the second part can begin, which is obtaining all
indirect interfaces higher in the hierarchy, level by level. It is stated in the following code:

// interfaces for processing i n i t i a l i z e d with direct interfaces

SortedSet<String> inputlnterfaces = new TreeSet<String>(allInterfaces);

// newly found indirect interfaces

SortedSet<String> outputInterfaces = new TreeSet<String>();

// obtaining of indirect interfaces

while (inputlnterfaces.size() != 0) {
for (String interfaceName : inputlnterfaces) {

ClassData iface = this.getClassDataLoader().fromName(interfaceName);

i f (iface != null) {

outputInterfaces.addAll(iface.getInterfaces());

}
}
// preparation for the next iteration

// remove a l l interfaces, which have been already collected

outputInterfaces.removeAll(allInterfaces);

inputlnterfaces.clear();

// newly found indirect interfaces as a new input

inputInt erf ace s.addAl1(outputInterf aces);

// add new interfaces to the result set

alllnterfaces.addAll(outputlnterfaces);

outputInterfaces.clear();

}

Having all the previous methods, it is easy to check contraction of a super class set or of an
interface set. A method f indAPITypes is applied for the reference and the new set obtained
by getSuperClasses or getAHInterfaces. Afterwards, it is detected whether the new
set contains all elements from the reference set. If positive, nothing happens, otherwise a
change is reported.

5.1.5 Instantiating of User Denned A P I Mode l Classes

The information system, which will use this library, will use a database to persist A P I
elements. The classes of A P I elements have to contain an id. The A P I model classes from
this library are not sufficient. There are more options how to solve this problem. We will
discuss them now.

The first idea which can come to mind, is to put all values required in the information
system's model to the model of the library, so actually there will be only one model of A P I
elements. It is definitely not a good solution, because the library will be influenced by the
information system.

One option is to create model classes in the information system, which extend classes
from the library and add columns required for the database (at least an id). These model
classes will be instantiated and fulfilled from library's A P I elements received after the pars-

29

ing. This solution requires traversal of library's A P I elements and forwarding their values
to newly instantiated objects. This way a lot of time and space will be consumed.

Similar solution to the previous one is to create a wrapper class for each A P I element
class from the library, which will contain an instance of the class from the library. In
other words composition will be used instead of inheritance. But still a lot of time will be
consumed during the traversal over all the objects from the library.

Another option is to instantiate objects from required classes directly in the library.
There are two ways how to achieve that. The first one is to use one of the bytecode
manipulation libraries described in the section 5.1.3 to modify classes of the library in an
information system. The second one is the use of reflection. Specifically to use either:

T Class.newlnstance()

or combination of

Constructor<T> Class.getConstructor(Class<?>... parameterTypes)

T Constructor.newlnstance(Object... initargs)

The method newlnstance() creates a new instance represented by Class object using
the default constructor. Method newlnstance (Object. . . initargs) uses the constructor
represented by Constructor object to create and initialize a new instance of the construc­
tor's declaring class, with the specified initialization parameters. This suits us more, because
constructors with all required arguments are defined in the library's models.

I have decided to instantiate the required object directly in the library with the use of
reflection. Manipulation of an existing class could be good as well and maybe faster but
from the point of view that we are creating a library, it is more suitable not to use it.
Because users of this library would have to deal with bytecode manipulation library, which
requires some knowledge. In case of using reflection they will have a straightforward way to
parse A P I to objects to objects instantiated from required classes.

Fields of Constructor type were added to all dumper classes where new classes are
instantiated. Setting of these fields was handled in constructors of dumper classes.

5.2 C L I

I have created CLI which is in a separate Maven module. It requires two arguments as
input - a reference and a new release to check. It checks binary and source compatibility
by default. This behavior can be changed to check only binary compatibility by using -bin
parameter. This C L I contains two classes CLIReporter implementing Reporter interface,
and Main where parameters are processed, libraries are parsed and a report is printed.

30

5.3 The Server Application

When writing a complex web application, starting from scratch is out of the question.
Instead of implementing the persistence layer directly with J D B C , some Object-relational
mapping (ORM) framework can serve. Many solutions exist, the most common ones are
DataNucleus, EclipseLink, Hibernate, iBatis and OpenJPA. I have decided to use Hibernate
as the most widely used Java O R M framework.

Another thing is Java framework for a web application architecture. Enterprise Jav-
aBeans (EJB) or Spring Framework come to consideration here. Both provide transaction
management, integration with persistence and security. Both use dependency injection to
simplify configuration and integration of heterogeneous systems. E J B is a standard whereas
Spring Framework is not. To deploy and run E J B , J E E application server can be used.
Alternatively, a standalone container such as OpenEJB can be used. Despite that, Spring
can be used in a web server such as Apache Tomcat, which is more lightweight. Because of
that, I have chosen Spring Framework.

The last technological consideration is choosing of Model View Controller framework
(MVC) . Various M V C frameworks such as Struts, JSF and Web Work can be plugged into
Spring [8]. It also provides its own solution - Spring M V C . I have chosen Spring M V C as
the easiest one to integrate and use with Spring.

The web application structure is divided into the following packages:

• or g. fedor apro j ect. j api .checker. web

• controller - controllers and forms

• dao - Data Access Object (DAO) interfaces

• impl - D A O implementation

• model - model classes

• service - service interface and implementation

• utils - utilities

5.3.1 Database Layer

MySQL database was used in the system. Database scheme is more or less transformation
of library model classes and server application model classes. However, some issues arise in
the transformation. The E R diagram is on the figure 5.4

31

Vi j j r . l Pr/adigm tar library t d l I I C ' n >°< °:> (i m p l e m e n t e d j n t e r f a c e
id

J name
integei(4)

varchar(45)
J name mteger (255)

dassjd \nteger(4)
j list_index mteger(4)

5

type_parameter_bound
u name

type_parameter_id
^ listjndex

varchar (25S)
i n t e g e r s
integer(4)

^ library.release > f clas* ~\

id integer(4) id integei(4)

J name varchar(45) name varcharf.255)
J date date ^ access integer(4)

Hbraryjd integer(4) J SLiperName varchar(255)
^ version mteger(4)
J source varchar(255) (JJ

i 4 iibrary_release_id i n t e g e r s)

4 0 C X

type_ parameter
id integei(4)

J name varchar(5)
+^method_id integer(4)
^|^C/3ss_icr \nteger(4) [JJ]

f releases_comparison
id integei(4)

j error_coLint mteger(4)
^ warning_count integer(4)

reference_release_id integer (4)
new release id \nteger(4)

i

$
difference

Of i d
integer(4)

J referencejd integer(4)
J new_id integer(4)
j element_type varchar(l)
^ new_element_type varchar(l) GS

^ difference_type integer(4)
re!ease_ com pcirison_ id \nteger(4)

i? id integer(4)

n a m e va rchar (255)
^ access integer(4)
j d e s c r i p t o r varchar (2BB)
PJ valuft varc l ia r (lOOO)
C-j ctass_id integer(4)

V

arg ument ^ value varchar(1000)
C X difference_id in(egeff4J

^ l i s t _ i n d e x integer(4)

i r id integer(4)

J name integer (2BB)
^ access integer(4)
J d e s c r i p t o r varchar(GOO)
J va lue varchar (2SS)
^ l ine integer(4)

dassjd integer(4)

t h r o w i n g _ e x c e pt ion

31

J name varchar (2BB)
methodjd integer(4)

^ l i s t _ i n d e x integer(4)

Figure 5.4: Database scheme.

The Difference class contains field referenceltem and newltem. These fields can
contain instances of arbitrary classes extending Javaltem. The problem is how to transform
that matter of fact to a database, because a foreign key can only refer to a single table.

A straight forward solution can be adding foreign keys with possibility to be null for
every A P I element - tables class, f i e l d and method. Three times more columns than fields
will be needed.

More complicated solution is to create table for Javaltem class itself - java_item. The
foreign keys in difference table will refer to the java_item table. However this brings
additional overheads with composing of object from two tables.

A flag column that will indicate concrete element (table) can be added to the difference
table. This solution requires smallest interventions to the database model, so it was chosen.

Type varchar was used for strings, because it is intended for variable-length strings.
Unused space is not padded with white spaces as in case of the char. The maximum length
of varchars was estimated taking into account ordinary maximum lengths and modified as
necessary during the testing on the real data.

Indexes were created on the columns in dependence on the queries executed on the
database. Namely indexes were created in the date and name columns of release table and
in the name column of library table.

32

5.3.2 Domain Mode l Layer

As it was already mentioned, Hibernate framework was used for O R M mapping. A persistent
class (entity) has to be connected with a database table and its properties have to be
connected with a database column in Hibernate. Framework provides two possible ways to
map objects to database tables - using X M L or annotations. Most of the domain classes
in an information system inherit from library's classes [9]. The properties from library's
classes cannot be annotated so X M L mapping is the only feasible solution.

We will demonstrate basic mapping on the Library class.

<class name="Library" table="library"> (1)

<id name="id" type="int"> (2)
<column name="id" />

<generator class="increment" />

</id>

<property name="name" type="string"> (3)

<column name="name" />

</property>

<bag name="releases" inverse="true" lazy="true" (4)

fetch="select" cascade="save-update, delete">

<key>

<column name="library_id" not-null="true" />

</key>

<one-to-many class="Release" />

</bag>

</class>

The declaration of mapping between Library class and library table is on line 1. Each
entity has to have an id defined. Line 2 is doing that. Class's property id is mapped to
the column id with an incremental generator defined. The property declaration on line 3
is similar to id. The last and the most interesting declaration is the collection declaration
on line 4. The property releases declared as a list in the Java class is mapped through
the foreign column l i b r a r y _ i d to releases of the library loaded to Release class. There, a
way is defined how elements of collection are loaded - with lazy attribute, fetching strategy
with fetch and enabling operations to be cascaded to child entities - with cascade.

Hibernate requires the presence of a constructor with zero arguments in persistent
classes. Therefore against the rule, that a program using a library should not influence
the library, zero argument constructors were added to the classes. It is not possible to
instantiate these classes with zero constructors, because they are protected.

The enum Dif ferenceType is not persistent, but we need an information about what
type of difference. Hibernate provides declaration of property as enum type:

<property name="diff erenceType">

<column name="difference_type"/>

<type name="org.hibernate.type.EnumType">

<param name="enumClass">

com.googlecode.japi.checker.DifferenceType

</param>

</type>

</property>

33

Hibernate provides any mapping for mapping of one "foreign key" that can refer to one
of multiple tables. The ref erenceltem field is mapped as:

<any name="referenceltem" meta-type="string" id-type="int" lazy="true">

<meta-value value="C" class="Class"/>

<meta-value value="F" class="Field"/>

<meta-value value="M" class="Method"/>

<column name="element_type"/>

<column name="reference_id"/>

</any>

Unfortunately a bug was found in the implementation of mapping. The problem is that
referred elements are always eagerly fetched. Specifying of fetching to be lazy does not work.
This leads to useless loading of many data.

5.3.3 Data Access Layer

The data access layer is based on Hibernate Session interface. A Session is used to get a
physical connection with the database. The main function of the Session is to offer create,
read and delete operations for instances of mapped entity classes. Operations have to be
surrounded with a transaction. At the beginning beginTransactionO has to be called on
the session object. At the end of the transaction, commit () i s called. If an exception is
thrown by the Session, the transaction must be rolled back.

The Data Access Object (DAO) pattern was used for the data access layer. D A O is an
object that provides an abstract interface to a database or other persistent storage. The
advantage of using it is separation the two layers that can know nothing about each other.
The class diagram with DAOs is depicted in image 5.5.

« I n t e r f a c e »
Library DAO

TT

<<lnterface>>
Release DAO

TT

use] <<lnterface>>
ReleasesComparisonDAQ

LibraryDAQImpI
+save(Library library)
+firidAIIO
+findByld(irit id)
+firidWitriReleasesByld(int id)
+delete(Library library)

ReleaseDAOImpI
+save(Release release)
+firidAII()
+findByld(irit id)
+firidWitriClassesByld(irit id)
+findPrevious(Release release)
+fir idNext(Release release)
+delete(Release release)

ReleasesComparisonDAQImpI
+save(ReleasesCompar ison compar ison)
+findByReleaseslds(List ids)
+findByReleasesIdsfint r, int n)
+delete(int r, int n)

Figure 5.5: Data access objects.

For each meaningful entity a separated D A O was created, so the interfaces LibraryDAO,
ReleaseDAO, ReleasesComparisonDAO were created. Implementations of the interfaces can
differ depending on the used D B M S . Methods of the interfaces are contained only in the
implementations for simplicity.

The contained implementations all work on Hibernate, which already provides an ab­
straction above different D B M S . However, it is not obligatory to use this abstraction. Hiber­
nate enables three ways of querying by native SQL, by Hibernate Query Language (HQL)

34

or by Criteria A P I . H Q L and Criteria A P I provide previously mentioned abstraction above
different D B M S . H Q L is similar to SQL, but H Q L is object-oriented and understand notions
like inheritance, polymorphism and association. Criteria is an alternative to HQL. Queries
are build dynamically using an object-oriented A P I , rather than building query strings.

A l l DAOs contain save methods for saving or updating objects in the database. Methods
f indAll return all objects without any restrictions, whereas methods f indByld return only
one object with the specified id. Methods delete remove an object from the database.

There are some special methods. LibraryDAO has the method f indWithReleasesByld
for retrieving the library with its releases. Analogically, the method f indWithClassesByld
in the ReleaseDAO returns the release with its classes. This D A O also contains f indPrevious
and findNext which retrieve the previous and the next release according to the date of a
passed release. The D A O for comparisons provides two overloaded versions of the method
f indByReleasesIds. The first one, which requires a list of release ids, returns compar­
isons between these releases. The second one requires only two release ids and returns one
comparison between the releases.

Creating a new connection to the database for each user may consume a lot of time.
Connection pooling solves the problem. A number of shared database connections is main­
tained in a cache. Each time a user needs a connection, it is obtained from the pool. When
the user does not need it, it is returned back to the pool. This enhances the performance
of commands executed on the database. The D B C P connection pool was used in the de­
veloped system. Many parameters can be configured in this connection pool. For example
the initial number of connections that are created when the pool is started, the maximum
number of active/idle connections and the minimum number of idle connections in the pool.
The default values were sufficient.

When the system runs a long time without user requests, an exception was thrown.
This problem occurred because no opened connection was in the pool. Setting the minimal
number of idle connections and the initial number of connections, which is zero by default,
could be the solution. However, a better solution is to check whether the valid connection
is in the pool, because the system is not used so often (at least at the beginning) to have
some opened connections permanently. The validationQuery had to be configured to a
select statement which returns at least one row, so SELECT 1 was used.

5.3.4 Business Layer

A l l data access objects and BCChecker are encapsulated in the class CheckerServicelmpl
that is an implementation of CheckerService. The class diagram of the service is on figure
5.6. Only methods from the implementation of the service are visible to simplify the image.

As you can notice from the names of service's methods, many of them are just encapsu­
lated DAOs methods, although there are methods with more complicated business logic as
well.

One of them is createLibraryFromArtif act (Artifact a r t i f a c t) . This method co­
operates with Maven Central repository through R E S T A P I . At first it obtains a list of all
versions of the artifact. Then it downloads all the versions and stores them temporarily. It
creates a library for the artifact and persists it in the database. The downloaded artifact
versions are one by one parsed, stored in the database and removed from the disk.

The parseAPI(Release release, F i l e f i l e) uses read(URI uri) method to parse a
file to release.

The system should provide compatibility overview of a library which means compar-

35

V i sua l P a r a d i g m for « I n t e r f a c e » I
CheckerService

• n [not for c o m m e r c i a l use]
p-ibraryDAO"

7T
Checkerservicelmpl

+createLibraryFromArtifact(Art i fact artifact)
+createLibrarie5FromArtifacts(List artifacts)
+saveLibrary(Library library)
+findLibraries()
+findLibraryByld(int id)
+findLibraryWithReleaseByld(int id)
+deletel_ibrary(Library libraries)
+ parseAPI(Release release, File file)
+save Re I ease (Re lease release)
+saveReleaseWithComparison(Release release)
+findReleaseByld(int id)
+findReleaseWitriClassesByld(int id)
+deleteRelease(Release release)
+checkBackwardCompatibi l i ty (Release r, Release n)
+f indReleasesComparisonsByLibrary(L ibrary library)
+f indReleasesCompansor i (int r, int ri)

LibraryDAOImpI ReleaseDao

7T
ReleaseDAOImpI ReleasesComparisunDAO

ReleasesComparisonDAOImpI

BCChecker

Figure 5.6: The service class encapsulates DAOs.

isons across the releases as they were released. So the comparisons between the releases
could be stored in the database instead of their computation which takes some time. The
method saveReleaseWithComparison(Release release) is exactly doing that. It uses
ReleaseDAO's methods f indPrevious and f indNext to find the previous and the next re­
lease. If the previous release or the next one is in the database, the comparison between the
found release and the currently stored release is computed and stored. If both the previous
and the next release are found (the release is inserted between them), then the comparison
between them is removed.

Analogically to the method for creating a release, the method deleteRelease (Release
release) removes the comparison when removing the release and it creates a new compar­
ison. The new comparison is created only if the removed release had the previous and the
next release.

The method findReleasesComparison(int referenceld, int newld) tries to find a
precomputed comparison in the database. In case of failure it computes a comparison and
returns it.

A layer of controllers is one level above the previously described service layer. A con­
troller provides access to the application behavior defined by service layer and interprets user
input and transforms it into a model that is presented to the user by the view. Controllers
are defined by annotations in Spring framework.

©Controller

class LibraryController {

ORequestMapping(value = "/admin/libraries", method = RequestMethod.GET)

public String showLibraries(Model model) {

Collection<Library> results = this.checkerService.findLibraries();

model.addAttribute("libraries", results);

return " l i b r a r i e s / l i s t " ;

}
>

36

The ©Controller annotation indicates that a class has a role of controller. Requests
are mapped to methods with ORequestMapping annotation. The method name is optional.
The mapping parameter value serves for defining of U R L and the method parameter is
used to define an H T T P method of request (most commonly one of G E T , POST, P U T
or D E L E T E) . The model parameter of the method is used to pass data to the view. The
mapped method returns the path to the JSP file that will be showed as the view.

Four controllers were created in the system, see figure 5.7. The first two controllers
handle ordinary user requests: AccessController that manages requests for logging in
and logging out and CheckerController that handles requests for showing libraries, their
compatibility overviews and checking of releases' compatibility. The second two controllers
are used to arrange administrator requests: LibraryController for managing libraries and
ReleaseController that is used for management of releases.

AĹcessCúMlrolieľ n m u n i t y Ed i t i on [not 1

+ login()
+ logi nFai lure()
-FlogoutSuccessO

LibraryController
+ in i t lmportFromArt i factsFormO
+ process I mportFromArt i factsFormO
+ initCreat ionFormO
+ processCreat ionformO
-1-showLibranesO
-1-showLibraryO
+ initUpdateForm()
+ processUpdateForm()
+delete()

.heckerServi^elmpI

ReleaseController
- taskExecu to r : TaskExecutor
+ initCreationForm()
+ proces sCreat ionFormO
+ initUpdateForm()
+ proces sUpdateFormO
+showRelease()
+delete()

w
Releasee reationTask

-release : Release
-tmpFile : File
+run()

CheckerController
•1-showLibranesO
+s howLi braryCompati bi lityO
+ in i tCheckir igFormO
+ processCheckingForm()
+s howCo m pari so n()

Thread

Figure 5.7: The controllers use the service.

Methods on the figure lack arguments to clarify it. Methods named initXXXForm are
used to initialize forms and mapped to G E T requests. Storing of objects in the database
is done by methods named processCreationForm that are mapped to POST requests.
Updating of database records is handled by methods processUpdateForm. These methods
are mapped to P U T requests. Methods prefixed with show are intended to present data and
mapped to G E T request. Eventually, delete methods are mapped to D E L E T E request and
they execute deletion of records from the database.

Method processCreationForm in ReleaseController is used to create a new release
from an uploaded J A R file. At first, the file is stored temporarily. Then, parsing and storing
of release in thread is processed, so the user does not have to wait on page and can continue
working. The dummy release is stored in the database to make the user feel like the release
was added immediately. The thread processing is implemented with the use of Spring's
TaskExecutor that provides abstractions for asynchronous execution of tasks. The executor
executes each submitted task using one of several pooled threads. It has a method execute
that requires the task to execute. The class for a task was named ReleaseCreationTask
and it inherits from Thread class. The class contains an implementation of run method
where parsing of a file, storing in the database and removing the temporary file is done.
In case of failure during creating a new release, the dummy release is deleted as well as a

37

temporary file.
Authorization and authentication is implemented with the use of Spring Security frame­

work. A l l the configuration is in the file security-conf ig.xml.
The system needs only one authenticated user - an administrator, other users accesses

the system without logging in. The administrator's configuration includes credentials and a
role - ROLE_ADMIN. A password is hashed with SHA algorithm, but it can be easily changed
to another one. The hash of the password is stored directly in the configuration file that is
not accessible through the internet due to the restrictions of a web container.

Authorization is also configured in the same configuration file as authentication. Au­
thorization is set to allow access to all resources (images, CSS, JavaScript, etc.) and all
pages except URLs prefixed with /admin/. A l l pages behind these URLs are protected with
authentication.

5.3.5 Presentation Layer

The presentation layer is based on Java Server Pages (JSP). JSP is high-level abstraction
of Java servlets. It is translated into the servlets at runtime. JSP allows to define H T M L
in combination with Java code. It supports Expression Language (EL), used to access data
and functions in Java objects. A n example of E L for obtaining a value of property name from
object library is ${library .name}. It is possible to compose a web content by importing
one JSP to another using <jsp: include page="fragment. js"/>. It was used for importing
menu or head tags to the page.

Writing an extensive Java code in JSP might become confusing. Thus a classical tech­
nique called scriptlet was not used: <% . . . %>. I have used Java Standard Tag Library
(JSTL) instead, which is a JSP tag library. JSTL has support for common, structural tasks
such as iteration and conditionals. The examples of tags are <c:out> for printing evaluated
expressions, <c: i f > for conditional evaluation of body if the supplied condition is true and
<c: choose> for mutually exclusive conditions.

Except the JSTL, Spring and Spring form tag libraries were also used. The u r l tag
was used from Spring library. It creates URLs with support for URI template variables and
H T M L / X M L escaping. The Spring-Form library comes with form and input tags with data
binding ability. This form tag library is integrated in Spring Web M V C , giving the tags
access to the command object and reference data a controller deals with. Tags used from
the form tag library are for example: form, input, select, errors.

Spring Security Tag Library served for checking whether user has a particular role, so
that the page content could be customized. The tag with the ability is authorize. It was
used for displaying menu links according to the role.

JavaScript and jQuery were used to provide good user experience. For example, when a
user displays a form, the first input is focused. If the user selects a file to be uploaded when
creating a release, the name of the file is automatically filled. A component datepicker
from jQuery UI was used for selecting a date in an interactive calendar showing on focus to
date input.

Furthermore, Dandelion DataTables component was used. This component allows to
use jQuery's DataTables component in Java/JEE based applications. It offers features like
sorting columns, searching a table, column filtering and styling.

38

Chapter 6

Experimentation and Optimization

It was experimented with the system with the purpose to optimize time and space complex­
ity. The experimentation was done in the system with the following configuration: Intel
i5-254M 2.6 GHz 64-bit architecture, 8 G B R A M , Fedora 18, kernel 3.8.11-200.fcl8, Java
1.7.0_19 (OpenJDK), MySQL 5.5.31. The first thing what had to be considered was the
input data. The following libraries were chosen from Maven repository:

Groupld Artifactld Count of versions Size [MB]
commons-lang commons-lang 12 2.1
joda-time joda-time 16 8.5
org.javassist javassist 6 4.0
junit junit 20 3.7
org.codehaus.plexus plexus-utils 52 11.5
org.slf4j slf4j-api 39 0.8

145 30.6

A l l the libraries are intended for different purposes, created by various developers and
of different size.

The database size in all the experiments was measured with variations of the following
SQL select:

SELECT table_schema "Data Base Name",

sum(data_length + index_length) / 1024 / 1024 "Data Base Size in MB",

FROM information.schema.TABLES

WHERE table_schema = "japi-checker-web"

GROUP BY table_schema;

Time consumption was measured with the Java method System.nanoTimeO, that was
put around the measured block of code (typically a method body).

long start = System.nanoTime();

// measured block of code

double elapsedTimelnSec = (System.nanoTimeO - start) * 1.0e-9;

39

6.1 Visibil i ty Limited Parsing
The first experiment is used to measure the space of data in the database and the time of
parsing and storing of releases. The database was empty before the experiment. However,
it still took a space of 0.45 M B . Except the size of the whole database, the size of elements
(tables class, method, field, etc.) and the size of comparisons (tables release_comparison,
difference, argument) was measured. Comparisons between releases in the order as were
released were stored. That for example means that 11 comparisons were stored for commons-
lang that contains 12 releases. The time of parsing (service's methods parseAPI and storing
saveReleaseWithComparison) of releases was also measured.

Stored elements D B [MB] Elem. [MB] Comp. [MB] Parse [s] Save [s]
A l l elements 31.97 30.81 1.06 2.04 308.71
A P I elements 22.27 21.17 1.00 1.53 215.76

If all Java elements are stored in the database, it takes even more space than J A R
files. Storing only A P I elements means 31.29% reduction of the memory. Visibility limited
parsing was considered as very useful, so it will be present in the system in the following
experiments.

6.2 Loading vs. Computing of Comparisons

The goal of this experiment is to find what time is needed for loading of precomputed
comparisons and for their computation on demand that comprises loading of releases and
computation of their comparison.

The bug in any mapping described in the section 5.3.2 causes loading of elements associ­
ated to differences. The bug would have influence on the result of the experiment, so it was
resolved by commenting out any mapping in the Hibernate mapping file. As a consequence,
the source file of change is not present in the comparison report.

Several pairs of releases were chosen for the experimentation. These were mostly pairs
with high number of differences because of low time needed for computing.

Reference New Load. C . [s] Load. R. Comp. C. [s] Diff.
commons-lang-2.3 2.4 0.0714 3.66 0.0283 133
javassist-3.16.1-GA 3.17.0-GA 0.2294 5.41 0.0378 361
javassist-3.14.0-GA 3.15.0-GA 0.0022 5.22 0.0160 2
joda-time-1.6.2 2.0 0.1252 6.16 0.0301 200
junit-4.9 4.10 0.0059 2.33 0.0189 11

Loading of the precomputed comparisons is much faster than computation of them.
The time of loading depends on the number of differences. The average loading speed of
differences is 1301.22 differences/s. The average computing speed of differences is 23.28
differences/s. However, this speed does not depends to much on the number of differences.
It rather depends on the size of A P I elements that have to be loaded before comparison.
So loading of precomputed comparisons is at least 55.89 times faster. Actually this number
would be much higher, but pairs with high number of differences were mostly chosen for the
experiment. That means storing of comparisons is very desired.

40

6.3 Choosing of Comparisons to Store

Storing of all comparisons is the most efficient approach how to obtain comparisons in terms
of time. The question is what space is required for doing of that.

The average space needed for storing of one release is equal to fraction of total size of
comparisons and number of comparisons. If we rely on the data measured in the experiment
described in section 6.1 the average space needed for storing of release is = 0.0072 M B .

Count of all comparisons can be computed:

V " p f 12! 16! 6! 20! 39! 52!
2^ F{ra, 2) " (1 2 _ 2) , + (1 6 _ 2) , + (6 _ 2) , + (2 0 _ 2)| + (39 _ 2) i + (5 2 _ 2) i " 4 9 1 b '

where Ic is count of libraries and rc is count of releases. So the memory needed for
storing of all comparisons is 4916 * 0.0072 = 35.39 M B . It can be reduced to approximately
half (17.70 MB) by storing of backward compatibility comparisons only, as was described
in the section 4.3.2. This number is even much lower than space needed for storing of A P I
elements which is 21.17. The real number would be with high probability much more higher,
since releases between that several releases were released differ in A P I more than a release
from the previous release (comparisons between these releases were used in the calculation).

Algorithm choosing releases for creating of backward comparisons was implemented for
this experiment, with the motivation of achieving relatively low memory requirements of
comparisons, advised by the previous calculation. So the real memory consumption can be
measured and consequently validated the calculated one. The following table contains total
size of the database, size of A P I elements, size of comparisons, count of comparisons and
time required for storing of the data.

Choosing alg. D B [MB] Elem. [MB] Comp. [MB] Comp. Save [s]
Linear comp. 22.27 21.17 1.00 139 215.76
Backward comp. 56.61 21.17 35.34 2458 345.45

As we have expected the real size of comparisons is higher than the calculated one,
two times higher. In case of storing backward comparisons is needed 35.34 times more
space for comparisons than in case of storing linear comparisons. Choosing algorithm has
to be considered in dependence on the available means whom the production environment
disposes. The algorithm choosing releases linearly was set as default.

41

Chapter 7

Requirements and Deployment

The library and the server system requires Java compiler and Maven for building. Both of
them require Java for running. The server system additionally needs MySQL Server.

The final system was deployed to OpenShift. The demonstration can be found on the
link: h t tps : / / japichecker- t rohovsky.rhcloud.com. OpenShift is a cloud computing
platform as a service (PaaS) product from Red Hat. The service runs on the open-source
software OpenShift Origin. Git can be used to deploy web applications. The application
is deployed every time when changes are pushed to the Git repository. Besides Java, the
service supports also Perl, PHP, Python, Ruby and Node.js. Supported databases are
MySQL, PostgreSQL, MongoDB. OpenShift provides both automatic and manual scaling
of the resources by adding instances of the application. The limits per application are 1 G B
of storage and 512 M B of memory. Which is quite low for a production version, but it is
enough for the demonstration.

It is possible to use source code deployment or deployment of precompiled project. When
a Java source code is pushed to the repository, it is automatically built with Maven and the
compiled W A R file is deployed to the web server. In case of precompiled project deployment,
the W A R file is pushed to the repository. I have tried both, but W A R deployment was more
suitable because of the need to include a modified japi-checker, which is still not in the
Maven repository, so in the case of source code deployment it had to be installed to the
local Maven repository.

42

https://japichecker-trohovsky.rhcloud.com

Chapter 8

Conclusion

Changes causing incompatibility on an A P I and an A B I level were analyzed and described
in the section 2.3. Less evident changes were practically verified. Existing solutions for
detecting A P I and A B I compatibility were analyzed. The tools were tested with the purpose
of finding which detection of incompatible changes is supported.

One of the analyzed tools was chosen - japi-checker. Extensions and improvements of
this library were proposed. I have implemented a basic C L I which had been missing. The
A P I model and parsing of bytecode were improved as well as compatibility detection. The
library's functionality was extended to distinguish between source and binary compatibility.
Missing detection of incompatible changes was implemented. It includes incompatibilities
caused by adding a field or a method, changing field's final attribute or value, making a
method abstract or changing its value, changing method's variable arity parameter to an
array type. Furthermore, detection of incompatibilities related to type parameters was
provided. Already implemented rules were revised and in some cases changed or entirely
replaced. A n example is detection of inheritance changes or changes of A P I type.

The server application which provides information about incompatibilities was designed
and implemented. The server application is based on previously implemented library for
detection of incompatibilities, Hibernate and Spring framework. The algorithm of balancing
space and time complexity was suggested in analysis and implemented. Maven Central
repository is used as the source of libraries. They can be imported through a web interface.

The final server application was experimented. Three experiments were done with the
goal to measure space and time complexity and optimize them. The first experiment showed
the advantage of storing only A P I elements, space requirements are then reduced by 31.29%.
The second experiment showed that loading of precomputed comparisons is 55.89 times
faster than its computation on demand. The result of the previous experiment leads to
implementing of an algorithm that stores 50% comparisons. The system was experimented
with presence of the algorithm. The size of stored comparisons was 35.34 times higher and
it was even 1.67 times higher than the size of stored A P I elements. That is quite high, so
the previous algorithm was set as default.

The library, or more specifically the C L I build above the library, has already found its
users. The server application is still in the phase of demonstration because of high memory
requirements and absence of relevant free hosting, but it has a potential to become the place
where Java developers will first come when they want to upgrade libraries they use.

43

8.1 Future extensions
Many future extensions can be done in the library and the server application. The library
can be extended to be able to detect compatibility with knowledge of a client code. This
feature can also be used in the server application. Data in the server application are currently
filled manually by an administrator. When the new version of tracked library is released,
the administrator has to add the new release manually. Scanning of data source of libraries
(Maven Central) and automatic downloading of newly released versions of libraries would
solve the problem. Another very useful extension is providing the server system A P I to
other systems, for example with using REST.

The server application could be tested with the use of some other D B M S like PostgreSQL.
It would also be interesting to try some NoSQL database. It could be an optimization of
time complexity when storing a big amount of data. Having parsed APIs of many libraries
gives an opportunity to find some useful data about how the APIs are designed. Some
advanced data analysis can be done above the stored APIs.

44

Bibliography

[1] J im de Riviers. Evolving Java-based APIs. Retrieved January 2, 2013, from
h t tp : / /wik i . ec l ipse .o rg /Evolv ing_Java-based_APIs , 2009.

[2] James Gosling et al. The Java Language Specification. Chapter 13. Binary
Compatibility. Retrieved November 2, 2012, from
h t tp : / /docs .o rac le .com/ j avase/specs / j Is /se7/html/ j Is -13 .h tml , 2012.

[3] Joseph D. Darcy. Kinds of Compatibility: Source, Binary, and Behavioral. Retrieved
January 3, 2013, from
h t t p s : / / b logs .o r ac l e . com/da rcy / en t ry /k inds_o fcompa t ib i l i t y , 2008.

[4] Oracle and/or its affiliates. Sigtest User's Guide. Retrieved January 1, 2013, from
h t tp : / /docs .orac le .com/ javame/ tes t - too ls / s ig tes t /2_2/h tml / index .h tml ,
2011.

[5] Sonatype Inc. Maven Central Repository. Retrieved May 18, 2013, from
ht tp: / /search.maven.org/ , 2013.

[6] Dennis Sosnoski. Classworking toolkit: Generics with A S M . Retrieved May 15, 2013,
from http: / /www.ibm.com/developerworks/java/l ibrary/j-cwt02076/index.html,
2006.

[7] Eric Bruneton. A S M 4.0 A Java bytecode engineering library. Retrieved March 15,
2013, from http://download.forge.objectweb.org/asm/asm4-guide.pdf, 2006.

[8] Rod Johnson et al. Spring Framework Reference Documentation. Retrieved May 17,
2013, from h t tp : / / s t a t i c . sp r ingsource .Org / sp r ing /docs/3 . 2 .x /
spring-framework-reference/htmlsingle/ , 2013.

[9] The Hibernate Team. Hibernate Reference Documentation. Retrieved May 17, 2013,
from ht tp: / /docs. jboss.org/hibernate/orm/4.2/manual/en-US /html_single/ ,
2013.

45

http://wiki.eclipse.org/Evolving_Java-based_APIs
http://docs.oracle.com/j
https://blogs.oracle.com/darcy/entry/kinds_ofcompatibility
http://docs.oracle.com/javame/test-tools/sigtest/2_2/html/index.html
http://search.maven.org/
http://www.ibm.com/developerworks/java/library/j-cwt02076/index.html
http://download.forge.objectweb.org/asm/asm4-guide.pdf
http://static.springsource.Org/spring/docs/3.2.x/
http://docs.jboss.org/hibernate/orm/4.2/manual/en-US/html_single/

