The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models – Bc. Mikuláš Bankovič
Bc. Mikuláš Bankovič
Master's thesis
The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
Abstract:
Základ. Syntéza medicínskych obrazov je dôležitá na zvýšenie množstva anonymných údajov dostupných pre otvorený výskum, čo má veľký potenciál na urýchlenie pokroku v oblasti medicíny. V generatívnom modelovaní získavajú pravdepodobnostné modely DDPM (Denoising Diffusion Probabilistic Models) stále viac pozornosti, pretože v mnohých prípadoch fungujú lepšie ako predchádzajúce najmodernej3ie generatívne …moreAbstract:
Background. Medical image synthesis is essential to increase the amount of anonymous data available for open research, which holds great potential in accelerating progress in the medical field. In generative modelling, Denoising Diffusion Probabilistic Models (DDPMs) gain more and more attention as they, in many instances, perform better than the previous state-of-the-art, Generative Adversarial Networks …more
Language used: English
Date on which the thesis was submitted / produced: 16. 5. 2023
Identifier:
https://is.muni.cz/th/zlkkm/
Thesis defence
- Date of defence: 21. 6. 2023
- Supervisor: doc. RNDr. David Svoboda, Ph.D.
- Reader: RNDr. David Wiesner
Citation record
ISO 690-compliant citation record:
BANKOVIČ, Mikuláš. \textit{The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models}. Online. Master's thesis. Brno: Masaryk University, Faculty of Informatics. 2023. Available from: https://theses.cz/id/28gj2z/.
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Artificial intelligence and data processing / Machine learning and artificial intelligence
Theses on a related topic
-
Generative Adversarial Networks and Applications in Bioinformatics
Nikita KOLESNICHENKO -
Simulation of Multiple Motile Agents Using Neural Networks
Branislav Ševc -
Detection of Diabetic Retinopathy using Deep Learning and Transfer Learning Techniques with Oversampling to Address Imbalanced Dataset
Teodora RANĐELOVIĆ