Bc. Mikuláš Bankovič

Master's thesis

The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models

The Synthesis of Medical CT Data Using Generative Adversarial Networks and Diffusion Models
Abstract:
Základ. Syntéza medicínskych obrazov je dôležitá na zvýšenie množstva anonymných údajov dostupných pre otvorený výskum, čo má veľký potenciál na urýchlenie pokroku v oblasti medicíny. V generatívnom modelovaní získavajú pravdepodobnostné modely DDPM (Denoising Diffusion Probabilistic Models) stále viac pozornosti, pretože v mnohých prípadoch fungujú lepšie ako predchádzajúce najmodernej3ie generatívne …more
Abstract:
Background. Medical image synthesis is essential to increase the amount of anonymous data available for open research, which holds great potential in accelerating progress in the medical field. In generative modelling, Denoising Diffusion Probabilistic Models (DDPMs) gain more and more attention as they, in many instances, perform better than the previous state-of-the-art, Generative Adversarial Networks …more
 
 
Language used: English
Date on which the thesis was submitted / produced: 16. 5. 2023

Thesis defence

  • Date of defence: 21. 6. 2023
  • Supervisor: doc. RNDr. David Svoboda, Ph.D.
  • Reader: RNDr. David Wiesner

Citation record

Full text of thesis

Contents of on-line thesis archive
Published in Theses:
  • světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatiky

Masaryk University

Faculty of Informatics

Master programme / field:
Artificial intelligence and data processing / Machine learning and artificial intelligence