
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

LAGRANGIAN TRACKING OF THE CAVITATION BUBBLE
LAGRANGEOVSKÝ MODEL POHYBU KAVITAČNÍ BUBLINY

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

Alvaro Manuel Bossio Castro

SUPERVISOR
VEDOUCÍ PRÁCE

doc. Ing. Pavel Rudolf, Ph.D.

BRNO 2019

ABSTRACT

In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady
flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which
properties of the fluid are computed first by means of Eulerian methods (in this study the
commercial CFD software Ansys Fluent 19 was used) and the trajectory of the bubble is
then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle
moving relative to the fluid, due to the effect of several forces depending on fluid’s pressure
field, fluid’s velocity field and bubble’s radius. Bubble’s radius dynamics, modeled by
Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given
to it. Two study cases are considered. The first one, motivated by acoustic cavitation is
concerned with the response of the bubble’s radius in a static flow under the influence of
an oscillatory pressure field, the second one studies the trajectory of the bubble submerged
in a fluid passing by a Venturi tube and a sharp-edged orifice plate.

Keywords

Cavitation, bubble dynamics, Rayleigh-Plesset equation, ordinary differential equa-
tions, numerical methods for odes.

BIBLIOGRAPHIC CITATION

BOSSIO CASTRO, A. M. Lagrangian tracking of the cavitation bubble. Brno: Vysoké
učení technické v Brně, Fakulta strojního inženýrství, 2019. XY s. Leader diplomové
práce doc. Ing. Pavel Rudolf, Ph.D..

3

DECLARATION

I declare that I have written the master’s thesis Lagrangian tracking of the cavitation
bubble on my own according to the advice of my master’s thesis advisor doc. Ing. Pavel
Rudolf, Ph.D., and using the sources listed in references.

May 31, 2019 Alvaro M. Bossio

5

ACKNOWLEDGEMENTS

I would like to thanks Dr. Pavel Rudolf for his support and his friendly guidance
throughout this thesis, our meetings were always fruitful when I was completely lost and
also when not. I would like to thanks also Dr. Rafaelle D’Ambrossio, from Univaq and
Dr. Libor Čermak, from VUT, for taking the time to discuss the silly ideas of this young
apprentice, their advices on numerical methods for odes helped me a lot.

Alvaro M. Bossio

7

A mi padres por confiar siempre en mí,
y enseñarme a calzar mis zapatos.

y a mi amada Ruth
por enseñarme también a calzar los de los demás.

¡Gracias por estar siempre!

CONTENTS

Contents
1 Introduction 13

2 Cavitation bubble dynamics 15
2.1 Bubble growth and collapse . 15

2.1.1 Assumptions of Rayleigh-Plesset equation 15
2.1.2 Construction of the model . 16
2.1.3 Bubble’s internal pressure . 17
2.1.4 Energy interpretation of the Rayleigh-Plesset equation 18

2.2 Modifications of Rayleigh-Plesset model 19
2.2.1 Herring’s model . 20
2.2.2 Gilmore’s model . 22
2.2.3 Keller’s model . 23

2.3 Bubble’s translation . 24
2.3.1 Added mass effect . 25
2.3.2 Slip/Rocket effect . 25
2.3.3 Drag force . 25
2.3.4 Equation of motion . 26

3 Mathematical background 29
3.1 Ordinary differential equations . 29

3.1.1 Basic definitions . 29
3.1.2 Solvability of initial value problems 31
3.1.3 Stability of initial value problems 32

3.2 Difference equations . 32
3.2.1 Linear difference equations . 33

3.3 Numerical methods for the solution of ODEs 34
3.3.1 Basic definitions . 34
3.3.2 Absolute stability and stiff problems 36
3.3.3 Euler method . 37
3.3.4 Modifications of Euler method . 39
3.3.5 Runge-Kutta methods . 43
3.3.6 Linear multi-step methods . 49
3.3.7 Implementation issues . 57
3.3.8 MATLAB ode suite . 60

4 Study-Case 1: Fixed bubble under an oscillatory pressure 63
4.1 Preliminaries . 63
4.2 Well-posedness analysis of Rayleigh-Plesset equation 64
4.3 Equilibrium points and local behavior . 64
4.4 Linear approximation . 67
4.5 Non-linear dynamics . 70

4.5.1 Preliminaries . 71
4.5.2 Numerical results . 71
4.5.3 Discussion on complete collapsing cases 73

11

CONTENTS

5 Study-Case 2: Bubble in a fluid flowing through a cross reduction 81
5.1 Flow through a Venturi tube . 81

5.1.1 Preliminaries . 82
5.1.2 Well-posedness analysis . 82
5.1.3 Simplifying assumption . 85
5.1.4 Numerical implementation and results 85

5.2 Flow through a sharp-edged orifice plate 91

6 Bibliography 96

7 Appendices 99
7.1 Appendix 1: Code to solve RP and Gilmore equations 99
7.2 Appendix 2: Code for the modified discrete gradient approximation 103
7.3 Appendix 3: Code to compute the trajectory of the bubble 106

12

1. INTRODUCTION

1. Introduction
Cavitation is a well-known phenomenon in fluid mechanics. It is usually described

as the generation of vapor bubbles or cavities in a liquid medium, as a consequence of a
pressure drop below the corresponding vapor pressure at liquid’s temperature [8]. In this
sense, cavitation is not very different from boiling, a phenomenon which is, perhaps, more
familiar, where the vapor generation is driven by a temperature rise above saturation
temperature at liquid’s pressure [3]. Cavitation, however, has an interesting feature:
in engineering applications, the low pressure zones that generate the vapor bubbles are
usually the result of some temporary flow conditions, thus when these bubbles are exposed
again to a higher pressure, they usually experience a violent compression called collapse,
which releases a big amount of energy in the vicinity of the bubble, rising for an extremely
short time the temperature to several thousands of Kelvin and the pressure to several
hundreds of bar [32].

Cavitation is an important phenomenon in fluid engineering since it appears often in
many processes caused by sudden changes in flow conditions, e.g.: when a fluid passes
through a cross section reduction (like in a valve) or after a sudden increase in flow veloc-
ity imposed by, for instance, a ship propeller. In this context cavitation is often seen as
an undesirable phenomenon that should be avoided since it causes several negative effects
including vibrations, noise, considerable loss in efficiency and, in the most severe cases,
erosion on the machinery components (as we can see in Fig. (1.1)) [8]. Despite these
rather problematic effects, many applications have been recently developed using cavi-
tation. Such applications include engineering processes like surface cleaning, biomedical
treatments like kidney stones disintegration or microorganisms elimination, and chemical
processes like sonochemistry and sonoluminiscence [23]. In most of these applications, ul-
trasound generators are used to induce the cavitation on the fluid, reason why the study
of cavitation in this context is usually called acoustic cavitation, in contrast with the
traditional context: hydrodynamic cavitation.

Figure 1.1: Component severely damaged by cavitation. (photograhpy courtesy of Dr.
Pavel Rudolf).

13

With the goal of covering these two interesting manifestations of cavitation, in the
present work we describe the dynamics of a cavitation bubble under two study-cases. In
the first case, the bubble is submerged on a static fluid affected by a uniform oscillatory
pressure field, simulating in this way a simple case of acoustic cavitation. The second
case describes the dynamics of a cavitating bubble submerged in a steadily moving fluid.
To solve these problems a Eulerian-Lagrangian approach is considered, in the first stage
of this approach the dynamics of the fluid (governed by incompressible Navier-Stokes
equations) is solved in a Eulerian fashion while neglecting the presence of bubbles. After
that, bubble’s dynamics is studied under a Lagrangian fashion i.e. the bubble is considered
as a particle moving relative to the fluid, and its trajectory is tracked down. As inputs
for this second stage, pressure and velocity fields just calculated from the fluid dynamics
are needed. This work focuses on the Lagrangian stage. From the mathematical point of
view, we are dealing with the solution of a non-linear system of ODEs, which describe the
evolution of bubble’s radius and kinematics, thus a special attention will be given to the
qualitative study of such system and the selection and implementation of the appropriate
numerical method.

The content of this thesis is therefore organized as follows: Chapter 2 introduces
the main concepts and the mathematical models from bubble dynamics that will be
considered in this work. The first part of this chapter is devoted to bubble’s radius
dynamics, introducing Rayleigh-Plesset equations and its modifications while the second
part is regarded to describe bubble kinetics. Chapter 3 recalls several mathematical results
from general theory of ordinary differential equations and explains how most used ODE
solvers work. A special attention is given to the ODE solvers incorporated in the software
MATLAB, which is used throughout this work. Chapters 4 and 5 described each of the
two study cases mentioned before. Chapter 4 pays special attention to the qualitative
study of Rayleigh-Plesset equation, which is interesting due to its several non-linearities.
Chapter 5, on the other hand, is more interested on the coupled system of Rayleigh-Plesset
equation and bubble’s kinetics.

14

2. CAVITATION BUBBLE DYNAMICS

2. Cavitation bubble dynamics
2.1. Bubble growth and collapse
Cavitation attracted the interest of many researchers already in the nineteenth century, as
can be seen in works like Besant’s (1859) and Parson’s (1893) [8]. However, most authors
seem to agree on giving Lord Rayleigh (1917) the credit for being the first who attempted
to build a mathematical model to describe bubble dynamics.

Rayleigh considered spherical vapor cavities in an incompressible and inviscid fluid
medium under a constant external pressure greater that the inner bubble pressure (as-
sumed also constant). He found that under this model, the bubble would collapse
(R(τ) = 0) in a finite time τ , which is usually called Rayleigh time and depends only
on the difference between external pressure and inner pressure p∞− pB and initial radius
R0. In 1949, Plesset [39] considered Rayleigh’s problem with similar assumptions on a
spherical bubble but now containing some amount of a non-condensable gas. He also in-
cluded surface tension and viscosity in his analysis together with a more general external
pressure source represented by some function of time t, deriving what is known nowadays
as Rayleigh-Plesset equation, which describes the behavior of bubble’s radius with time
under some exciting pressure far from the bubble.

In the following subsection, Rayleigh-Plesset equation will be derived from incom-
pressible Navier-Stokes equations [3, 8]. To see original derivation made by Plesset, based
on flow potential, the reader is referred to [39].

2.1.1. Assumptions of Rayleigh-Plesset equation
Let us consider a spherical bubble of radius R(t) at time t submerged on a liquid medium
far for any other bubble (it can be assumed that is submerged in a infinite liquid medium).
Temperature and pressure in the liquid far from the bubble are denoted by T∞ and p∞(t)
respectively. T∞ is assumed to be known and constant while p∞(t) is a known function
(in general not constant). The liquid is assumed to be incompressible, so density ρ is
constant and uniform, and so is viscosity µ.

Figure 2.1: Spherical bubble in a infinite liquid medium (reproduced from [3])

15

2.1. BUBBLE GROWTH AND COLLAPSE

The size of the bubble is affected by this p∞(t) however its shape is assumed to remain
spherical, therefore we may consider spherical symmetry on the surrounding fluid. Under
this assumption, the problem is transformed into a 1-D problem, where an arbitrary
position in the surrounding liquid may be denoted by its distance from the center of the
bubble r. Velocity, pressure and temperature in this point at time t will be denoted as
u(r, t), p(r, t) and T (r, t) respectively.

Inside the bubble, temperature TB(t) and pressure pB(t) are assumed uniform and
mass and heat transfer through bubble’s interface are neglected.

2.1.2. Construction of the model
The goal of the model is to describe how the bubble’s radius R(t) responses to an exciting
pressure function p∞(t). Knowing function R(t), it can be latter used to determine the
velocity, pressure and temperature fields, u(r, t), p(r, t) and T (r, t) respectively, in the
surrounding liquid.

By the incompressibility of the surrounding fluid and neglecting any mass transfer
through the bubble interface, conservation of mass with spherical symmetry yields:

u(r, t) = R2

r2 Ṙ (2.1)

As Brennen points out, even in the case when some mass transfer is allowed, the previous
expression is still a good approximation in most of the cases. Note that if we allow some
mass transfer through the bubble interface, conservation of mass would give:

u(r, t) =
(

1± ρV (TB)
ρ

)
R2

r2 Ṙ (2.2)

Where the "+" sign indicates vapor condensing and the "−" sign liquid evaporating, and
ρV (TB) stands for the vapor density. Since, in general, ρV << ρ, Eq. (2.2) would give a
similar result as Eq. (2.1) [3].

Consider now Navier-Stokes under spherical symmetry, given by:

− 1
ρL

∂p

∂r
= ∂u

∂t
+ u

∂u

∂r
− νL

(
1
r2

∂

∂r

(
r2∂u

∂r

)
− 2u
r2

)
(2.3)

and substituting u by Eq. (2.1) it can be seen that the viscous term cancels out, yielding:

− 1
ρL

∂p

∂r
= R2

r2 R̈ + 2
(
R

r2 −
R4

r5

)
Ṙ2 (2.4)

This equation coupled with the condition p(r)|r→∞ = p∞ can be integrated leading to the
following expression.

p(r, t)− p∞(t)
ρL

= R̈
R2

r
+ 2Ṙ2

(
R

r
− R4

4r4

)
(2.5)

Note that this is an expression for the pressure field surrounding the bubble. Now, eval-
uating this expression at r = R to get rid of the dependence on the arbitrary point r in
the liquid, gives:

p(R, t)− p∞(t)
ρL

= RR̈ + 3
2Ṙ

2 (2.6)

16

2. CAVITATION BUBBLE DYNAMICS

Now in order to study p(R, t), consider the force balance on the bubble’s interface (as
shown in Fig. (2.2)):

(σrr)r=R + pB(t)− 2S
R

= 0 (2.7)

where σrr is the radial stress tensor component and S is surface tension. Since σrr is given
by:

σrr = −p(r, t) + 2µL
∂u

∂r
(2.8)

The balance given in Eq. (2.7) turns into:

p(R, t) = pB(t)− 4µL
R

Ṙ− 2S
R

(2.9)

Figure 2.2: Balance of pressures on the bubble interface (reproduced from [3])

Finally substituting this expression on Eq. (2.6) we obtain the well-known Rayleigh-
Plesset equation:

pB(t)− p∞(t)
ρL

= RR̈ + 2
3Ṙ

2 + 4µL
ρLR

Ṙ + 2S
ρLR

(2.10)

When neglecting the viscous and surface tension terms, the original result from Rayleigh
[41] is recovered.

2.1.3. Bubble’s internal pressure
To study with more detail the term pB(t), it is necessary to understand a little bit how
cavitation bubbles are initiated. It is usually said that cavitation occurs when liquid’s
pressure falls below vapor pressure. However, already in the nineteenth century it was
shown that liquids in fact can withstand pressures far below vapor pressure, even negative
pressures, with no signs of cavitation. Some experiments have found this limit at −277
bar for water. In order to get this impressive results, a careful treatment on the water is
required, including degassing and over-pressuring it for a long time, without mentioning
the degree of cleanliness in the container which also affects strongly this result [8]. Such
experiments show that pollutants in the liquid medium and the recipient surface have an
important role in the phenomenon of cavitation.

17

2.1. BUBBLE GROWTH AND COLLAPSE

Liquids in engineering applications are far from these laboratory standards and usually
do not have such preliminary treatments. Thus they are expected to have several discon-
tinuities in the liquid medium that will become later the nuclei of the vapor bubbles, this
mechanism is called heterogeneous nucleation. Such discontinuities may be microscopic
pieces of solid, or tiny bubble of other liquids but most of the time are really small bubbles
(of about some micrometers of radius) of some non-condensable gas (usually air). For our
model, we will consider that the nucleus of our bubble is of this type, and therefore the
total pressure of the bubble at time t will the sum of the partial pressures of the vapor
and the gas:

pB(t) = pv(TB) + pg(t) (2.11)

Where pv(TB) is the vapor pressure at temperature TB and pg(t) is the partial pressure
corresponding to the gas present in the initial nucleus. It is usually assumed that this gas
follows a polytropic process with polytropic constant k, so that Eq. (2.11) turns into:

pB(t) = pv(TB) + pg0

(
R0

R

)3k
(2.12)

Where pg0 is the partial pressure of the gas at some reference radius R0. Bubble expansion
is usually assumed isothermal (k = 1) while compression is usually assumed adiabatic
(k = 1, 4 for the case of air) [33, 32]. Substituting this expression in Eq. (2.9) yields:

RR̈ + 3
2Ṙ

2 = pv(TB)− p∞(t)
ρL

+ pg0

ρL

(
R0

R

)3k
− 2S
ρLR

− 4µL
ρLR

Ṙ (2.13)

2.1.4. Energy interpretation of the Rayleigh-Plesset equation
It may be illustrative to note that Rayleigh-Plesset equation can also be seen as an energy
balance, as it will be shown below.

As remarked by Franc & Michel [8], it can be easily verified that, in fact:

R̈R + 3
2Ṙ

2 = 1
2ṘR2

d

dt

(
R3Ṙ2

)
(2.14)

Now, considering that the kinetic energy on the surrounding liquid is:

K(t) =
∫ ∞
R

2πρLr2u(r, t)2dr = 2πρLR3Ṙ2 (2.15)

Thus, using the theorem of work and energy Eq. (2.10) may be written as:

dK(t)
dt

= ~F · ~v|∂V

d

dt

(
2πρLR3Ṙ2

)
=
(
pB − p∞ −

2S
R
− 4µLṘ

R

)
4πR2Ṙ

(2.16)

Where the term in the left hand side represents the rate of change of kinetic energy in
the surrounding liquid and the term on the right hand side represents the power supplied
by the acting forces: pressure difference, surface tension and the damping viscosity, applied
on the boundary.

18

2. CAVITATION BUBBLE DYNAMICS

2.2. Modifications of Rayleigh-Plesset model
Even if Rayleigh-Plesset equation is a simplification, it already exhibits most of the qual-
itative features of more refined models, therefore in most application it may be enough.
In other cases, however, specially when it is desired to study the collapse phase, more
realistic descriptions are required. For this reason, many authors have studied the phe-
nomenon considering more general assumptions like mass and heat transfer, non-spherical
shape and compressibility.

One of the most important assumptions in Rayleigh-Plesset equation is incompress-
iblity of the liquid medium. Unfortunately, experiments show that near to the collapse,
velocities can reach relatively high values (close to the speed of sound c ≈ 1500m/s) mak-
ing this assumption not adequate. Some authors have addressed this problem in different
ways, among these models some of the most relevant are: Herring’s (1949), Gilmore’s
(1952) and Keller’s (1956, 1980).

When considering compressibility in liquids, there are several equations of state, but
in general it is usually assumed that density varies only with pressure. It would be nice
to have some account of how density is actually varying with pressure. For that purpose
let us introduce two new physical quantities: enthalpy (h) and speed of sound (c):

h =
∫ p

p0

dp

ρ(p)
1
c2 = dρ

dp
(2.17)

It is clear that in the incompressible case:

h = p− p0

ρ
c =∞ (2.18)

Using these two new quantities it is possible to get a partial differential equation describing
the dynamics of the fluid surrounding the bubble, such procedure is explained by Franc &
Michel [8]. First, we take the usual expressions for conservation of mass and momentum
in spherical coordinates, given respectively by:

∂ρ

∂t
+ u

∂ρ

∂t
= −ρ 1

r2
∂(r2u)
∂r

(2.19)

∂u

∂t
+ u

∂u

∂t
= −1

ρ

∂p

∂r
(2.20)

and we rewrite them in terms of the new quatities h and c.

∂h

∂t
+ u

∂h

∂t
= −c

2

r2
∂(r2u)
∂r

(2.21)

∂u

∂t
+ u

∂u

∂t
= −∂h

∂r
(2.22)

Now, since we are still assuming spherical symmetry, the velocity field in the liquid should
follow some velocity potential φ(r, t) i.e.

u(r, t) = ∂φ

∂r
(2.23)

19

2.2. MODIFICATIONS OF RAYLEIGH-PLESSET MODEL

As a consequence of conservation of momentum, this potential satisfies Bernoulli’s equa-
tion given by:

∂φ

∂t
+ 1

2u
2 + h = 0 (2.24)

And now replacing this expression in the conservation of mass we get the following hy-
perbolic partial differential equation [8].

∂2φ

∂t2
+ 2u ∂

2φ

∂r∂t
+ u2∂

2φ

∂r2 = c2

r2

∂
(
r2 ∂φ

∂r

)
∂r

(2.25)

Solving this equation is not an easy task, so different authors have made some simplifying
assumptions leading to different models for the bubble growth and collapse. For the case
of Rayleigh-Plesset equation, incompressiblity implies c = ∞ transforming Eq. (2.25)
into Laplace equation (in spherical symmetry):

1
r2
∂(r2 ∂φ

∂r
)

∂r
= 0 (2.26)

Whose solution can be easily verified to be of the form:

φ(r, t) = f(t)
r

(2.27)

If we neglect mass transfer on the boundary we know that:

u(R, t) = ∂φ

∂r
(R, t) = Ṙ(t) =⇒ φ(r, t) = −ṘR

2

r
(2.28)

And using this expression in Bernoulli’s equation (Eq. (2.24)) and the fact that for
incompressible flows h = p−p0

ρ
, we recover Eq. (2.5) and we might continue as in the

previous subsection.

2.2.1. Herring’s model
One of the earliest generalization on Rayleigh’s model was published on 1949 (the same
year that Plesset’s article) by Herring [18], in the frame of a research on underwater
explosions, where p∞ is usually considered constant and the effects of S and µ are negli-
gible. Then, in 1952, a similar result was obtained by Trilling [46], a collegue of Plesset
at Caltech. Herring considered an "almost incompressible" flow, meaning that density
is still assumed constant but speed of sound c∞ is considered finite (but still relatively
large compared with u), which means in practice that all terms in Eq. (2.25) which were
O(u) are neglected. Under this idea, Eq. (2.25) turns into wave equation (in spherical
symmetry), reason why this approach is also called quasi-acoustic:

∂2φ

∂t2
= c2

r2

∂
(
r2 ∂φ

∂r

)
∂r

(2.29)

If we consider only outward waves, this implies that:

φ(r, t) =
f(t− r

c∞
)

r
(2.30)

20

2. CAVITATION BUBBLE DYNAMICS

Therefore;

∂φ

∂t
(r, t) =

f ′(t− r
c∞

)
r

∂φ

∂r
(r, t) = −

f ′(t− r
c∞

)
c∞r

−
f(t− r

c∞
)

r2 (2.31)

In particular for r = R(t):

Ṙ = ∂φ

∂r
(R, t) = −

f ′(t− R
c∞

)
c∞R

−
f(t− R

c∞
)

R2 =⇒ (2.32)

ṘR = − f ′

c∞
− f

R
(2.33)

Differentiating Eq. (2.33) with respect to t we obtain:

Ṙ2 +RR̈ = fṘ

R2 −
(

1− Ṙ

c∞

)(
f ′′

c∞
+ f ′

R

)
(2.34)

We need to find a way of getting rid of f , f ′ and f ′′. For f ′′, we may look at Bernoulli’s
equation (2.24). Recalling that the flow is almost incompressible, it follows:

f ′

R
+ 1

2Ṙ
2 + p− p∞

ρ
= 0 (2.35)

Which can also be differentiated with respect to t, giving:

f ′′

R

(
1− Ṙ

c∞

)
− f ′Ṙ

R2 + ṘR̈ + ṗ

ρ
= 0 (2.36)

Solving for f ′′ here and substituting it in Eq. (2.34) yields:

R̈R + Ṙ2 = fṘ

R2 −
f ′

R
+ RṘR̈

c∞
+ R

c∞

ṗ

ρ
(2.37)

Using Eq. (2.33) to get rid of f , we get:

f ′

R
=
(

1− Ṙ

c∞ + Ṙ

)(
−2Ṙ2 −RR̈

(
1− Ṙ

c∞

)
+ R

c∞

ṗ

ρ

)
(2.38)

Now it comes the key step of Herring’s approach. It may look a little bit arbitrary but
given that we assumed u << c∞, in particular Ṙ = u(R) so we may take Ṙ

c∞+Ṙ ≈
Ṙ
c∞

, and(
Ṙ
c∞

)p
≈ 0 for p > 1 [46], leaving us with:

f ′

R
= −2Ṙ2

(
1− Ṙ

c∞

)
−RR̈

(
1− 2Ṙ

c∞

)
+ R

c∞

ṗ

ρ
(2.39)

As a last step, using Eq. (2.35) to get rid of f ′ we obtain what is known as Herring’s
equation [18, 46, 47]:

RR̈

(
1− 2Ṙ

c∞

)
+ 3

2Ṙ
2
(

1− 4
3
Ṙ

c∞

)
= p(R, t)− p∞

ρ
+ R

c∞

ṗ

ρ
(2.40)

21

2.2. MODIFICATIONS OF RAYLEIGH-PLESSET MODEL

Recalling that p(R, t) is the pressure on the liquid side at r = R, by Eq. (2.9) and Eq.
(2.12), we may consider:

p(R, t) = pv + pg0

(
R0

R

)3k
− 2S

R
− 4µL

R
Ṙ

ṗ(R, t) = −3kpg0

(
Ṙ

R

)(
R0

R

)3k
+ 2S Ṙ

R2 − 4µL
R̈R− Ṙ2

R2

(2.41)

We have to remember that the main assumption was that Ṙ << c∞ thus even if some
compressibility is introduced, the model is still limited for small speeds compared with
speed of sound.

2.2.2. Gilmore’s model
In 1952, Gilmore [12], also from Caltech as Plesset and Trilling, published a sligthly more
general model. Instead of considering the "almost incompressible" case, he considered
general enthalpy functions h(p) 6= p−p∞

ρ
and also speed of sound varying with time and

position, i.e c = c(r, t). The main principle of Gilmore’s model is the use of Kirkwood &
Bethe hypothesis, which states that quantity h+ u2

2 propagate with speed c+ u where c
is the local speed of sound [12, 27]. This means that this quantity satisfies the following
equation:

∂(r(h+ u2

2))
∂t

+ (c+ u)
∂(r(h+ u2

2))
∂r

= 0 (2.42)

Eq. (2.42) is very useful, since it gives the following expression:

r

(
∂h

∂t
+ u

∂u

∂t

)
+ (c+ u)

(
h+ u2

2 + r
∂h

∂r
+ ru

∂u

∂r

)
= 0 (2.43)

From here, it is convenient to rewrite the expression in terms of the so-called material
derivatives D

Dt
, this operator is nothing more than a total derivative with respect to time

along the material particle’s trajectory. It is computed by D
Dt

= ∂
∂t

+ u ∂
∂r
, getting:

r
Dh

Dt
+ ru

Du

Dt
+ (c+ u)

(
h+ u2

2

)
+ cr

(
∂h

∂r
+ u

∂u

∂r

)
(2.44)

To get rid of the remaining partial derivatives we may use conservation of mass and
momentum (Eq. (2.21), Eq. (2.22)), noting that they are equivalent to [12]:

Dh

Dt
= c2

(
2u
r

+ ∂u

∂r

)
Du

Dt
= −∂h

∂r

(2.45)

Substituting these two equations into Eq. (2.44) yields:

r
Dh

Dt

(
1− u

c

)
+ ru

Du

Dt
(u− c) + h(c+ u) + 3

2u
2
(1

3u− c
)

= 0 (2.46)

22

2. CAVITATION BUBBLE DYNAMICS

This equation holds for any r and for any t, so in particular it holds for r = R(t) giving
us what is known as Gilmore’s model [12].

R̈R

(
1− Ṙ

C

)
+ 3

2Ṙ
2
(

1− Ṙ

3C

)
= H

(
1− Ṙ

C

)
+ RḢ

C

(
1− Ṙ

C

)
(2.47)

where C = c(R(t), t) and H = h(R(t), t). In order to perform computations with this
model it is required to know how density varies with pressure. A very used equation of
state for liquids is given by Tait [3, 8, 12], and states:(

ρ

ρ0

)n
= p+B

p0 +B
(2.48)

Where B and n are constants depending on the specific liquid (usual values for water are
B ≈ 3049 bar and n ≈ 7.15). Using this equation and following definitions of h and c
given in Eq. (2.17), we get:

C = c∞

(
p+B

p∞ +B

)n−1
2n

(2.49)

H = 1
ρ∞

n

n− 1 (p∞ +B)
(p+B

p∞ +B

)n−1
n

− 1
 (2.50)

Ḣ = 1
ρ∞

 n

n− 1 ˙p∞

(p+B

p∞ +B

)n−1
n

− 1
+ ṗ (p∞ +B)− ˙p∞ (p+B)

(p∞ +B)

(
p+B

p∞ +B

)−1
n


(2.51)

Here p = p(R, t) and ṗ = ṗ(R, t) and are defined as in Eq. 2.41.

2.2.3. Keller’s model
In 1956, Keller & Kolodner, published a paper addressing the phenomenon of bubble’s
growth and collapse, as part of a research focused on underwater explosions, similar to
Herring’s motivation. In fact, the model obtained by them follows a logic very similar to
that of Herring’s. In 1980, Keller & Miksis, published a generalization of Keller & Kolod-
ner’s model, considering now cavitation bubbles (usually of smaller size than underwater
explosion bubbles), where S and µ have a considerable effect and they included the effect
of some forcing oscillatory pressure source p∞(t).

As detailed by Ohnawa & Suzuki [37], the assumptions of the model are very similar
to Herring’s. It’s assumed that the velocity potential φ(r, t) satisfies wave equation (2.29)
and therefore the deriving process follows the same path as for Herring’s model until we
reach Eq. (2.38). There, instead of performing the cancellations made by Herring, we
substitute f ′ straight from Eq. (2.35) getting Keller and co-workers’s model [21, 22, 37]:

R̈R

(
1− Ṙ

c∞

)
+ 3

2Ṙ
2
(

1− Ṙ

3c∞

)
=
(

1 + Ṙ

c∞

)
p(R, t)− p∞

ρ
+ R

c∞

ṗ(R, t)− ṗ∞
ρ

(2.52)

Where p(R, t) and ṗ(R, t) are defined as before (see Eq. (2.41)).

23

2.3. BUBBLE’S TRANSLATION

2.3. Bubble’s translation
For the purpose of this thesis it is necessary not only to study the behavior of bubble’s
radius with respect to the external pressure, but also to track its trajectory. It is important
to notice that the bubble will be moving relative to an also moving fluid, so in general
the trajectory of the bubble will not follow the streamlines of the fluid. Let us call the
relative velocity ~W (t) = ~VB(t) − ~VL(t), where ~VB represents the absolute velocity of the
bubble, and ~VL, the absolute velocity of the corresponding fluid particle located at the
bubble’s position. This idea is shown in Fig. (2.3)

Figure 2.3: Bubble’s trajectories and streamlines (reproduced from [8])

Along this section, bubbles will be considered as particles acted upon by several forces,
most of these forces will depend on bubble’s radius R and radius rate of change Ṙ so the
system obtained from this study will be coupled with the model considered to describe
bubble’s radius dynamics. As explained by Brennen [3], an approach very often used
when we assume that particles are relatively small and disperse in the liquid medium (as
it is our case), is to compute first the pressure and velocity fields (p(x, t) and u(x, t)) in
the flow ignoring the presence of the particles in a Eulerian fashion, and then to study the
particles motion based on these fields following a Lagrangian procedure. Such approach
will be followed in this thesis.

Consider then Newton’s 2nd law on the bubble, given by:

~FT = mB
~̇VB (2.53)

Where ~FT stands for total force on the bubble, mB is bubble’s mass and ~VB is bubble’s
absolute velocity. The key part here is to describe correctly ~FT . There is a lot of literature
describing the form of ~FT , which depends heavily on Reynolds number Re = 2RWρ

µ
. A

very general expression we can used is the following:

~FT = ~FAM + ~Fg + ~FB + ~FR + ~FD (2.54)

Where:

• ~FAM : Added mass effect, force needed for the bubble to displace the fluid previously
occupying its current position.

24

2. CAVITATION BUBBLE DYNAMICS

• ~Fg: Gravitational force on the bubble, usually neglected since ρb << ρ.

• ~FB: Buoyancy force, result of pressure gradients in bubble’s trajectory.

• ~FR: Slip/Rocket effect, result of the change of volume of the bubble.

• ~FD: Drag force, viscous resistance made by the fluid.

Weight and buoyancy forces are well-known, not the other three, therefore the following
brief (not very rigorous) description intends to capture the main ideas.

2.3.1. Added mass effect
If both bubble and fluid experience different accelerations, then this force can be physically
interpreted as the inertia added to the bubble due to the fact that it has to accelerate a
portion of the fluid to "make room" for itself. It can be shown that, for a spherical bubble,
this force has the form [3]:

~FAM = −M
d~VB
dt
− 3D

~VL
Dt

 = −2
3ρπR

3

d~VB
dt
− 3D

~VL
Dt

 (2.55)

There are, perhaps, two surprising details in this expression, the first is that M here, is
not the whole displaced mass of liquid by the bubble but only half of it, the second one
is the presence of a coefficient for fluid’s acceleration. There can be shown analytically,
unfortunately these two details are not straightforward so we will skip that discussion.
For details the reader is addressed to Brennen [3].

2.3.2. Slip/Rocket effect
Suppose we have a bubble which is varying its radius, assume it is not subject to other
forces, then the total virtual momentum (due to real and added mass) should be conserved

d(MW)
dt

= dM

dt
W +M

dW

dt
= 0 (2.56)

Note that if bubble collapse (dM
d
< 0) then dW

dt
> 0, so the bubble accelerates, this effect

is called Slip/Rocket effect.
This reasoning allows us to think that there should be force compensating this change

of volume and its effect on the added mass, with form:

~FR = ~W
dM

dt
= 2ρπ(~VB − ~VL)R2Ṙ (2.57)

2.3.3. Drag force
To represent the drag force ~FD, which represents the viscous resistance of the surrounding
fluid, the usual form used is the following:

~FD = −CDπR2ρ

2 |W |
~W (2.58)

25

2.3. BUBBLE’S TRANSLATION

Figure 2.4: Dependence of CD with respect to Re (reproduced from [3])

Where CD is called drag coefficient and is heavily non-linearly depending on Reynolds
number, as shown in Fig. (2.4).

We can see in Fig. (2.4) that it is not an easy task to come up with an expression
of CD valid for every Re, so authors have worked on approximations for different regions
of the Re spectrum. In the range between 103 and 105, values around 0, 5 are usually
considered, however near to Re = 105, the coefficient is very sensitive to other properties
of the flow, as it can be seen in the dashed region on Fig (2.4), for Re > 105 values are
usually around 0, 2. For lower Reynolds numbers (Re < 103) more accurate correlations
are needed. In the scale Re < 1 some theoretical expressions are available like Stoke’s or
Oseen’s, however in the range 1 < Re < 103, for the moment we have to rely on empirical
correlations.

A nice summary is given by Yang et al [48], some of available relations suggested by
them and by Brennen [3] are shown in the table below.

Table 2.1: Correlations for drag coefficients CD
Author Formula Applicable Re
Stokes 24

Re Re < 0.4
Oseen 24

Re

(
1 + 3

16Re
)

Re < 2
Klyachko 24

Re

(
1 + 1

6Re
2
3
)

Re < 103

Niansheng-Cheng 24
Re (1 + 0.27Re)0.43 + 0.47

(
1− e−0.04Re0.38

)
Re < 2× 105

2.3.4. Equation of motion
Finally, putting all these forces together (also gravitational and buoyancy force), we may
construct the equation:

mB
d~VB
dt

= mB~g −
4
3ρπR

3~g − 2
3ρπR

3

d~VB
dt
− 3D

~VL
Dt

−
− 2ρπ(~VB − ~VL)R2Ṙ− CDπR2ρ

2 |
~VB − ~VL|(~VB − ~VL) (2.59)

26

2. CAVITATION BUBBLE DYNAMICS

Or in terms of the added mass M = 2
3ρπR

3:

2MρB
ρ

d~VB
dt

= 2MρB
ρ
~g − 2M~g −M

d~VB
dt
− 3D

~VL
Dt

−
− dM

dt
(~VB − ~VL)− CDπR2ρ

2 |
~VB − ~VL|(~VB − ~VL) (2.60)

Where ρB is the average density of the bubble’s content. Now, since in general ρB << ρ,
we can neglect the first two terms and we are left with Hsieh’s equation [8]:

M
d~VB
dt

= −2M~g + 3MD~VL
Dt
− dM

dt
(~VB − ~VL)− CDπR2ρ

2 |
~VB − ~VL|(~VB − ~VL) (2.61)

Or given in terms of R and Ṙ:

R
d~VB
dt

= −2R~g + 3RD
~VL
Dt
− 3Ṙ(~VB − ~VL)− 3

4CD|
~VB − ~VL|(~VB − ~VL) (2.62)

27

3. MATHEMATICAL BACKGROUND

3. Mathematical background
3.1. Ordinary differential equations
Differential equations are mathematical tools widely used by scientists from almost every
field of knowledge. Either in the form of partial differential equations or as ordinary
differential equations, they are a very powerful way of describing a lot of phenomena in
nature. Therefore, it is an important matter in mathematics to define solvability criteria
for differential equation problems, to find properties for different types of problems and to
find methods to get closed form solutions when this is possible, or to construct methods
that allow to get good approximate solutions, when it is not.

3.1.1. Basic definitions
The present work deals mainly with ordinary differential equations and how to solve them
numerically. Therefore, some basic definitions will be provided in this subsection, in order
to establish some common notation. It is assumed, however, that the reader is familiar
with most of the notions:

Definition 3.1.1 An ordinary differential equation (ODE) is an equation involving
derivatives of an unknown function on a single independent variable, i.e.: consider a
function x : I ⊂ R→ Rn depending on t ∈ I and let x(i)(t) be its i-th derivative, then an
ODE is an equation of the form:

F
(
t, x, x′, x′′, . . . , x(k)

)
= 0 (3.1)

Definition 3.1.2 Consider n unknown functions xi : I ⊆ R→ Rd, i = 1, 2, . . . , n then a
system of ODEs is a system of the form:

F1
(
t, x1, x

′
1, . . . , x

(k)
1 , x2, x

′
2, . . . , x

(k)
2 , . . . , xn, x

′
n, . . . , x

(k)
n

)
= 0

F2
(
t, x1, x

′
1, . . . , x

(k)
1 , x2, x

′
2, . . . , x

(k)
2 , . . . , xn, x

′
n, . . . , x

(k)
n

)
= 0

...
Fm

(
t, x1, x

′
1, . . . , x

(k)
1 , x2, x

′
2, . . . , x

(k)
2 , . . . , xn, x

′
n, . . . , x

(k)
n

)
= 0

(3.2)

Remark Note that in Def. (3.1.1), x is actually a n-dimensional vector field defined
over an interval in the real line. Therefore a way of interpreting Eq. (3.1) is as a system
of n ODEs Fi = 0, where Fi is the i-th component of F , with solutions xi : R → R, i =
1, 2, . . . , n.

In fact, we recover the formulation given in Eq. (3.1) by writing:

x = [x1, x2, . . . , xn]T

x(i) = [x(i)
1 , x

(i)
2 . . . , x(i)

n]T , i = 1, 2, . . . , k
F = [F1, F2, . . . , Fn]T

A similar idea can be used in the opposite direction.

29

3.1. ORDINARY DIFFERENTIAL EQUATIONS

Definition 3.1.3 The order of an ODE is the order of the highest derivative appearing
in the equation.

Definition 3.1.4 An ODE of order k is said to be linear if it can be written as a linear
combination of the dependent variable x and its derivatives, with coefficients g, a0, a1, . . . , ak
functions of t, i.e.:

ak(t)x(k) + ak−1(t)x(k−1) + · · ·+ a1(t)x′ + a0(t)x+ g(t) = 0 (3.3)

Otherwise, the ODE is said to be non-linear.

Definition 3.1.5 A solution of the ODE (3.1) in an interval I ⊂ R is a function
u : I → Rn, u ∈ Ck(I) such that F

(
t, u(t), u′(t), u′′(t), . . . , u(k)(t)

)
= 0 is satisfied ∀t ∈ I.

In general, a k-th order ODE, has the form shown in Eq. (3.1), this form is called
implicit form. However, usually it is more convenient (when this is possible) to write it
in the so-called explicit or normal form described as follows:

x(k)(t) = φ
(
t, x, x′, . . . , x(k−1)

)
(3.4)

This form has the advantage that it can be transformed into a system of k first-order
ODEs by performing the following change of variables:

y1(t) = x(t)
y2(t) = x′(t)

. . .

yk(t) = x(k−1)(t)

(3.5)

Which yields the following system,

y′1(t) = y2(t)
. . .

y′k−1(t) = yk(t)
y′k(t) = φ (t, y1(t), y2(t), . . . , yk−1(t))

(3.6)

Or written more compactly as:
y′(t) = f(t, y) (3.7)

with y : I ⊂ R→ Rk and f : I × Rk → Rk defined as:

y(t) =


y1(t)
. . .

yk−1(t)
yk(t)

 , f(t, y) =


y2(t)
. . .
yk(t)

φ (t, y1(t), y2(t), . . . , yk−1(t))

 (3.8)

Throughout this chapter, unless indicated otherwise, system (3.7) will be considered.

30

3. MATHEMATICAL BACKGROUND

3.1.2. Solvability of initial value problems
Solving ODEs, in general, is not an easy task. In the linear case, there exists a very
complete theory which allows to find analytic solutions for several cases. In the non-
linear case, however, the picture is basically upside down: only a few non-linear ODEs
can be solved analytically. In fact, some problems may have several solutions or do not
have solution at all. Being this the general situation, it is desirable, at least, to be certain
that a given problem has solution, to know whether this solution is uniquely defined in a
given interval I, and whether possible errors on input parameters do not affect the solution
"too much". If a problem satisfies these three properties, we usually say the problem is
well-posed.

In general, assuming that I = [a, b], it should be possible to find solutions for Eq.
(3.7) by using fundamental theorem of calculus. These solutions should be of the form:

y(t) = y(a) +
∫ t

a
ϕ(s)ds, ϕ(s) = f(s, y(s)) (3.9)

By constructing this solution, it is already possible to notice that the ODE alone (rep-
resented by f(t, y)) is not enough to uniquely define the solution. Therefore in general
problems like Eq. (3.7) require additional information in the form of y(a) = y0 to define
a specific solution, this is called initial condition.

Definition 3.1.6 The problem of finding a function y(t) differentiable for any t ∈ I,
satisfying

y′(t) = f(t, y) t ∈ I
y(t0) = y0

(3.10)

for some t0 ∈ I, is called an initial value problem (IVP) or Cauchy problem.

Now we would like to define sufficient conditions for existence and uniqueness of solu-
tions for problem (3.10). To this end we have an important result known as Picard-Lindelöf
theorem or Cauchy-Lipschitz theorem [2, 5]:

Theorem 3.1.1 (Picard-Lindelöf theorem) Let f : Ω ⊆ I×Rn → Rn be a continuous
function on any (t, y) ∈ Ω and suppose f satisfies the Lipschitz condition on y, i.e.:
∃L ≥ 0 such that:

||f(t, y2)− f(t, y1)|| ≤ L||y2 − y1||, ∀(t, y1), (t, y2) ∈ Ω (3.11)

Then, for any point (t0, y0) ∈ Ω there exist a unique solution y(t) defined on a neighborhood
of t0 that satisfies the initial value problem (3.10).

This constant L is usually called Lipschitz constant and we can find an estimate of it
by means of the following lemma [19]:

Lemma 3.1.1 Let Ω ⊂ I×Rn compact and convex and let f : Ω→ Rn be a continuously
differentiable function with respect to y, i.e. partial derivatives ∂fi

∂yj
for i, j = 1, 2, . . . , n

are continuous in Ω, then f is Lipschitz continuous in Ω. Moreover, under the euclidean
norm:

L ≤ n max
(t,x)∈Ω
1≤i,j≤n

∣∣∣∣∣∂fi∂xi
(t, x)

∣∣∣∣∣ (3.12)

31

3.2. DIFFERENCE EQUATIONS

3.1.3. Stability of initial value problems
Having ensured existence and uniqueness of the solution, there is another property we
would like our IVP to exhibit. Most of the models in practice are fed with experimental
data. Clearly, this data is subject to errors and we cannot expect our model to be
insensitive to these errors but, at least, we would like that these errors have a "smooth"
effect on the solution, in such a way that small variations on parameters produce small
variations in the solution. This idea is called stability and a way of defining it may be the
following:

Definition 3.1.7 Consider the ODE:

y′(t) = f(t, y;µ) (3.13)

Let u(t) be solution of (3.13) with initial condition u(t0) = u0 and parameters µu and let
v(t) be also solution of (3.13) with initial condition v(t0) = v0 and parameters µv. Then
we say that problem (3.13) is stable if ∀εt > 0 there exist δ0 > 0 and δµ > 0 such that
||u0 − v0|| < δ0 and ||µu − µv|| < δµ implies ||v(t)− u(t)|| < εt,∀t ∈ I

This definition resembles the notion of continuity. In fact it describes some continuity
of the solution with respect to initial condition and with respect to parameters in the
function f . Fortunately, under the same assumptions of theorem (3.1.1), we have the
following result which gives us stability [19, 38]:

Theorem 3.1.2 Consider equation (3.13). Let f : E ⊂ Ω × Rm → Rn, Ω ⊂ I × Rn

f(t, y;µ) be continuous in E and Lipschitz continuous with respect to y and µ. Then
∀(t0, y0, µ0) ∈ E there exists a unique solution y(t; y0, µ0) of the problem:

y′(t) = f(t, y;µ0)
y(t0) = y0

(3.14)

continuous for any (t, y, µ) in a neighborhood of (t0, y0, µ0) ∈ E.
Moreover if we consider u(t) also solution of (3.13) with initial condition u(t0) = u0

and parameter µu, such that ||f(t, y;µ0)− f(t, y;µu)|| ≤ δ, ∀(t, y) ∈ Ω then

||y(t)− u(t)|| ≤ eL|t−t0|||y0 − u0||+
δ

L

(
eL|t−t0| − 1

)
, ∀t0, t ∈ I (3.15)

3.2. Difference equations
As previously commented, non-linear ODEs are very seldom solved by analytical means,
in order to get some information about the solution usually we must rely on numerical
schemes performed with the help of computers. Due to the limitations of computers a
key step on every numerical scheme is to transform our continuum domain into a set of
finite points, this process is called discretization. Difference equations are analogous to
differential equations on discrete variables, so when we try to approximate solutions of
continuous problems on a finite set of points, it is natural that we end up dealing with
difference equations. For this reason it is worth to study some of their properties and the
solution of some simple cases. The results from this subsection are taken from Butcher
(2008) [5].

32

3. MATHEMATICAL BACKGROUND

Definition 3.2.1 Consider a sequence {xn}n ⊂ Rn, then a difference equation is an
equation relating each member of the sequence with some of its predecessors, i.e. For some
k ∈ N

F (xn, xn−1, xn−2, . . . , xn−k) = 0 n ≥ k (3.16)

If the farther predecessor involved in the equation is the k-th predecessor, then we say that
the difference equation (3.16) has order k.

Note that Def (3.2.1) is similar to that of differential equation, therefore many ideas from
differential equations can be used also here. For instance, we can think of explicit form
of Eq. (3.16):

xn = φ(xn−1, xn−2, . . . , xn−k) n ≥ k (3.17)

And again we can write it as:

yn = f(yn−1) n ≥ 0 (3.18)

Where

yn =


xn
xn−1
...

xn−k

 and f(yn−1) =


φ(xn−1, xn−2, . . . , xn−k)

xn−1
...

xn−k

 (3.19)

3.2.1. Linear difference equations
Linear differences equations are quite important in numerical methods. The reason for
that is that even if we are trying to approximate non-linear differential equations, nu-
merical methods usually rely on approximations that assume some kind of linearity and
therefore linear difference equations will usually appear.

Definition 3.2.2 A difference equation is called linear if it can be written as:

yn = Anyn−1 + gn (3.20)

(or equivalently xn = a1nxn−1 + a2nxn−2 + · · ·+ aknxn−k + ψn)

If gn ≡ 0 (or ψn ≡ 0) then we say that the equation is homogeneous.

For simplicity, let us consider the case {xn}n ⊂ R, thus {yn}n ⊂ Rk and An ∈ Rn×k.
Then, the following result is not very difficult to prove:

Theorem 3.2.1 The difference equation (3.20) with initial condition y0 has the unique
solution:

yn =
n∏
i=1

(Ai)y0 +
n∑
i=1

n∏
j=i+1

(Aj)gi (3.21)

There are a couple of interesting special cases that are worth to have at hand:

33

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Homogeneous case Clearly if gn ≡ 0, then the solution is reduced to:

yn =
n∏
i=1

(Ai)y0 (3.22)

Constant coefficient If matrix An ≡ A is a constant matrix ∀n > 0 then we get the
solution

yn = Any0 +
n∑
i=1

(
An−igi

)
(3.23)

For this last case, it would be interesting to know when this solution is bounded or
even when it converges to 0. We can use the following results to get some inside into these
issues:

Theorem 3.2.2 Let A ∈ Rn×n then A is power bounded i.e. ∃c > 0 such that ||An|| <
c;∀n ∈ N if there exist a non-singular matrix S such that ||S−1AS||∞ ≤ 1 or equivalently if
any eigenvalue λ ∈ σ(A) lies inside the close unit disk and those with multiplicity greater
than 1 lie inside the open unit disk.

Theorem 3.2.3 Let A ∈ Rn×n then A is convergent i.e. limn→∞; ∀n ∈ N if there exist a
non-singular matrix S such that ||S−1AS||∞ < 1 or equivalently if any eigenvalue λ ∈ σ(A)
lies inside the open unit disk.

3.3. Numerical methods for the solution of ODEs

3.3.1. Basic definitions
We are trying to find an approximation to y : R→ Rd solution of the initial value problem
(3.10) given by:

y′(t) = f(t, y) t ∈ I
y(t0) = y0

As commented before, to do that, as a first step, we usually consider a discretization of in-
terval I, i.e. a finite set {tn}Nn=0 ⊂ I such that intervals [t0, t1), [t1, t2), . . . , [tN−2, tN−1), [tN−1, tN]
form a partition of I. Our goal is then, to find another finite set {yn}Nn=0 such that
yn ≈ y(tn), n = 0, 1, . . . , N .

Therefore, in general, a numerical method is just a map of the form:

Φf : RN → Rd×N

(t0, t1, . . . , tN) � (y0, y1, . . . , yN)
(3.24)

Clearly this formulation is not very illustrative, since it does not say anything about the
form of mapping Φf . Most of the methods used nowadays, however, do share a common
structure as shown by Ashino et al [1]:

Definition 3.3.1 A numerical method is an equation of the form:

k−1∑
j=0

ajyn+1−j = hnφf (yn+1, tn+1, yn, tn, . . . , yn−k, tn−k), k ≤ n ≤ N − 1, k ≥ 0 (3.25)

34

3. MATHEMATICAL BACKGROUND

There are several ways to classify numerical methods following diverse criteria. The
most basic ones are probably the following two:

• If φf does not depend on yn+1 then we say that the method is explicit, otherwise
we say that it is implicit.

• If k = 0, i.e. φf depends only on points (tn, yn) and (tn+1, yn+1) we call the method
a one-step method, otherwise if k > 0 then we call the method a multi-step
method.

Certainly, for a method to be useful, we require that the approximated solution {yn}n
gets closer to the exact solution as long as we "refine" the discretization. This notion is
called convergence and is defined as follows:

Definition 3.3.2 Method (3.25) is convergent if for any initial value problem (3.10)

lim
h→0
||y(tn)− yn|| = 0, ∀tn ∈ I (3.26)

Where:
h = max

0≤n≤N−1
|tn+1 − tn|

In order to find sufficient conditions that guarantee convergence we need to introduce the
following important notions:

Definition 3.3.3 The local truncation error is defined as the following difference:

τn =
k−1∑
j=0

ajy(tn+1−j)− hnφf (y(tn+1), y(tn), tn, y(tn−1), tn−1, . . . , y(tn−k), tn−k) (3.27)

If τn = Chp+1
n then we say that the method has order p

Definition 3.3.4 Method (3.25) is consistent if for any initial value problem (3.10):

lim
h→0

τn
h

= 0 (3.28)

(Note that any method of order p ≥ 1 is consistent)

Definition 3.3.5 Method (3.25) is zero-stable if for the ODE f(t, y) ≡ 0 and arbitrary
initial condition, we can get only bounded solutions.

Finally, the result that combines all these notions and characterize convergent methods
states:

Theorem 3.3.1 (Lax equivalence theorem) A numerical method is convergent if and
only if is consistent and zero-stable

35

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

3.3.2. Absolute stability and stiff problems
Convergence is the least we can require of a numerical method to be useful, it guarantees
that in the limit our approximations tend to the exact solution. However, in real appli-
cations we cannot reach that limit, as LeVeque [28] says: it is not very helpful to know
that the method will work fine for a stepsize "small enough". It would be nice to be able
to say something for a given finite stepsize h.

Let us consider a linearization of the general problem (3.10) on a neighborhood of
(t0, y0):

y′(t) = f(t0, y0) + ∂f

∂y
(t0, y0)(y − y0) + ∂f

∂t
(t0, y0)(t− t0) (3.29)

Now, if we consider two functions y1(t) and y2(t), both solutions of this problem with
different initial conditions lying in the neighborhood of (t0, y0) and assuming t− t0 small
we get:

y′1(t)− y′2(t) = ∂f

∂y
(t0, y0)︸ ︷︷ ︸

Λ

(y1(t)− y2(t))︸ ︷︷ ︸
e(t)

e′(t) = Λe

(3.30)

We know that the solution of this problem is e(t) = e0e
Λt, so ifRe(λi) ≤ 0, for λi eigenvalue

of Λ, the error |e(t)| between both solutions should remain bounded. We would like our
numerical method to preserve this behavior. This property is known as absolute stability.

Definition 3.3.6 Consider the solution {yn}n of the problem:

y′(t) = λy, λ ∈ C
y(t0) = y0

(3.31)

computed by a numerical method Φ(a, φf) with a uniform stepsize h. The region of
absolutely stability of the method is the set of points z = hλ ∈ C such that the solution
{yn}n is bounded.

If the region of absolutely stability includes the complete left half of the complex plane
then we say that the method is absolutely stable or A-stable.

This definition may look a little bit artificial and limited, considering that it is based
on a very simple test problem. However is much more powerful that it appears, specially
when dealing with so called stiff problems. Stiffness is a property difficult to define, in
fact there is no general consent on its definition, however from the practical point of view,
the main idea is clear: a problem is stiff if can be solved much more efficiently by using
an A-stable method [2], which is not usual given that these kind of methods have a very
high computational demand per step.

According to Gautschi [10], the term stiffness makes reference to the behavior of a
stiff spring, (i.e. a spring with a large stiffness constant). If such a spring is elongated
to some initial position and then released, it will return very fast to its equilibrium posi-
tion. Mathematically speaking we would say that the differential equation describing its
dynamics is very stable.

Indeed, a typical characteristic of stiff problems is that some eigenvalues of its jacobian
matrix ∂f

∂y
have negative real parts with relatively large magnitude. Clearly this notion

36

3. MATHEMATICAL BACKGROUND

is closely related with absolute stability: if the eigenvalues of the jacobian are negative
and have large magnitude, a method with small region of absolute stability will require
extremely small stepsizes to reproduce correctly the strong stability of the problem, which
implies that much more steps (and calculations) will be performed compared with a A-
stable method [2].

As a general rule, no explicit method can be A-stable, therefore these kind of methods
are usually called non-stiff. On the other hand, implicit method may be A-stable or at
least have a very large region of stability, so they are usually referred as stiff methods.

3.3.3. Euler method
The simplest numerical method to solve initial value problems was published in 1768
by Leonhard Euler. The method is based on a very simple idea. Consider the classic
definition of derivative:

y′(t) = lim
h→0

y(t+ h)− y(t)
h

(3.32)

Since y′(t) = f(t) then for h small enough we have:

y(t+ h) ≈ y(t) + hf(t, y) (3.33)

Euler method consists precisely in taking this approximation as equality, therefore for
yn ≈ y(tn) we approximate yn+1 by:

yn+1 = yn + hnf(tn, yn) 0 ≤ n ≤ N − 1 (3.34)

Local truncation error

The local error of Euler method can be estimated by expanding a Taylor series around
y(tn). Assuming that y(t) is regular enough in [tn, tn+1] we have:

y(tn + hn) = y(tn) + hnf(tn, y(tn)) + 1
2h

2
ny
′′(ξ) tn ≤ ξ ≤ tn+1 (3.35)

If we assume that yn ≈ y(tn), then:

y(tn + hn) ≈ yn + hnf(tn, yn)︸ ︷︷ ︸
yn+1

+1
2h

2
ny
′′(ξ) (3.36)

Thus, the following local error estimate is obtained:

τn = y(tn + hn)− yn+1 ≈
1
2h

2
ny
′′(ξ) (3.37)

Comparing this remainder with definition (3.3.3) we can see that Euler method is a
method of order p = 1.

37

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Global error

Let us consider now the total error at time tn:

en = y(tn)− yn
= (y(tn−1)− yn−1) + hn(f(tn−1, y(tn−1))− f(tn−1, yn−1)) + τn

= en−1 + hn(f(tn−1, y(tn−1))− f(tn−1, yn−1)) + τn

= en−1 + hn
∂f(tn, ζn)

∂y
en−1 + τn y(tn−1) ≤ ζn ≤ yn−1

=
(

1 + hn
∂f(tn, ζn)

∂y

)
en−1 + τn

(3.38)

By theorem (3.2.1) we know the solution of this difference equation, which is given by:

en =
n∏
i=1

(
1 + hi

∂f(ti, ζi)
∂y

)
e0 +

n∑
i=1

 n∏
j=i+1

(
1 + hj

∂f(tj, ζi)
∂y

)
τi

 (3.39)

If f is Lipschitz with respect to y then ∂f(tn,ζn)
∂y

≤ L, if we also assume that hn < h and
τn < h2M, ∀n, then we can get the following bound for the global error:

||en|| ≤ e|tn−t0|L ‖e0‖+
(
e|tn−t0|L − 1

) hM
L

(3.40)

So, even if the local error behaves like O(h2), the accumulation of this error through
several steps produce a global error which behaves like O(h). This accumulation of errors
is similar in higher order methods (though not so easy to compute), so in general, global
error en ≈ O(hp).

This has a big impact on the efficiency of the method. For illustration consider, for
instance, two methods Φp and Φq of orders p and q respectively, with p < q. Suppose that
for a fixed error tolerance tol, method Φp requires a stesize hp = tf−t0

Np
this means that

tol ≈ Cph
p
p = Cp

(
tf−t0
Np

)p
, similar happens with method Φq with tol ≈ Cq

(
tf−t0
Nq

)q
. When

comparing the number of steps Np and Nq needed for each of these methods to satisfy
tol, we obtain the relation:

tol ≈ Cp

(
tf − t0
Np

)p
≈ Cq

(
tf − t0
Nq

)q
=⇒ Np ≈ O

(
N

q
p
q

)
(3.41)

So if Nq = 103, p = 1 and q = 2, we may end up having Np of the order of 106, while
if p = 4 and q = 5, Np and Nq may be of the same order. However, if Nq = 108, p = 4
and q = 5, then Np may be of the order of 1010. Of course, there are a lot of factors
affecting the amount of steps needed for a method to satisfy a given tolerance, therefore
these estimations are very far from been accurate, but it can give an idea about how
methods of different orders perform for a given problem, and why sometimes it is worth
it to increase order and sometimes it is not.

Convergence of Euler method

We wish to use Lax equivalence theorem (3.3.1) to prove convergence. For that we need
to verify consistency and zero-stability. Given that the order of Euler method is p = 1,

38

3. MATHEMATICAL BACKGROUND

consistency is already satisfied. For zero-stability we need the difference equation yn+1 =
yn to have bounded solutions, the solution of such an equation is clearly constant and
therefore bounded, hence the method is zero-stable and, by theorem (3.3.1), convergent.

Absolute stability of Euler method

Considering the model problem (3.31). Euler method would yield:
yn+1 = yn + hλyn = (1 + hλ)yn (3.42)

This is a linear homogeneous difference equation with solution yn = (1 + hλ)ny0 so in
order to be bounded we required |1 + hλ| ≤ 1 which is equivalent to say that the region
of absolutely stability is the complex unit disk centered at −1, as shown in Fig. (3.1a).

3.3.4. Modifications of Euler method
Euler method is a very simple method, very easy to implement, however it is usually not
the best option when dealing with actual problems. This is so, mainly due to two reasons:
the first is its low order, which gives a relative slow speed of convergence as we showed in
the discussion about global error, and the second is its reduced region of absolute stability,
which may force the solver to use small stepsize, and therefore to do more computations.
To solve these issues, several improvements have been developed.

Implicit Euler method

One simple way to boost vastly the stability region of Euler method is to consider a
backward difference instead of a forward difference in the approximation of the derivative,
i.e.:

yn+1 ≈ yn + hf(tn+1, yn+1) (3.43)
This method is called "implicit" in contrast with the original Euler method which is an
explicit method, precisely because now yn+1 is implicit in the equation. Since f is in
general a non-linear equation, to solve for yn+1 we will need to employ some zero-finding
method like Newton’s method or fixed point iteration, which will add an extra cost to the
method. Despite this apparent drawback the main advantage of this method, common
to all other implicit methods, is that it has a considerably larger region of absolutely
stability: Considering the test problem (3.31), implicit Euler (IE) method gives:

yn+1 = yn + hλyn+1 =⇒ yn+1 = 1
1− hλyn (3.44)

Which gives a bounded solution if | 1
1−hλ | < 1 or said in other way, if hλ lies outside the

unit disk centered in 1, as shown in Fig. (3.1b).

Convergence of implicit Euler method
Similar to Euler method we may consider a Taylor expansion around y(tn+1):

y(tn+1 − hn) = y(tn+1)− hnf(tn+1, y(tn+1)) + 1
2h

2
ny
′′(ξ) tn ≤ ξ ≤ tn+1

y(tn+1) = y(tn) + hnf(tn+1, y(tn+1))− 1
2h

2
ny
′′(ξ)

τn = y(tn+1)− yn+1 = −1
2h

2
ny
′′(ξ)

(3.45)

39

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

(a) Explicit Euler (EE) method (b) Implicit Euler (IE) method

Figure 3.1: Regions of absolute stability (in gray) of explicit and implicit Euler method,
(reproduced from [28]).

So again we get a local truncation error τ = Ch2, so this method is also consistent with
order 1. For zero-stability we get exactly the same situation as for Euler method, so the
method is also zero-stable and therefore convergent.

Trapezoidal method

The previous approach is a big improvement if we need to solve stiff problems, however
it is still of order 1. In general to solve problem (3.10), we can integrate and get:

yn+1 = yn +
∫ tn+1

tn
f(s, y(s))ds (3.46)

To increase the speed of convergence we must consider different ways of computing this
integral with a smaller error. Let us recall, for instance, the trapezoidal rule for numerical
integration [2]:∫ b

a
g(s)ds = 1

2(b− a)(g(b) + g(a))− 1
12(b− a)3g′′(ξ), a ≤ ξ ≤ b (3.47)

If we assume that the difference b− a is small, then we should expect the last term to be
negligible compared to the first. Following this idea, considering a stepsize small enough,
we can construct the following scheme:

yn+1 = yn + 1
2hn(f(tn, yn) + f(tn+1, yn+1)) (3.48)

We should verify whether this method is convergent. Zero-stability is easy to check, for
consistency, the trapezoidal rule already gives us an estimation of the local error:

τn = − 1
12h

3
ny
′′′(ξ), a ≤ ξ ≤ b (3.49)

Thus this method is of order p = 2. This means that for a given error tolerance, trapezoidal
method would get a solution using larger step-size compared with Euler methods, as it is
shown in Fig. (3.2).

40

3. MATHEMATICAL BACKGROUND

Figure 3.2: Global error (error) vs time stepsize (dt) comparison for explicit Euler method
(EE), implicit Euler method (IE) and trapezoidal method (TR). Problem considered:
y′ = λ(y − sinωt) + ω cos(ωt), with λ = −50, the red line shows the actual error and the
dashed line represents the slope p = 1 for both Euler method and p = 2 for trapezoidal
method. It can be seen how for a fixed error of 10−6, trapezoidal method requires a stepsize
around 15 times larger than the one needed for Euler methods. Also it is interesting to
see that in the case of explicit Euler method, the error blows up around h = 4× 10−2 due
to stability limitations (reproduced from [44]).

Regarding absolute stability, we can implement trapezoidal method on test problem
(3.31) getting:

yn+1 = yn + 1
2h(λyn + λyn+1) (3.50)

So
yn+1 =

(
1 + 1

2hλ

1− 1
2hλ

)
yn (3.51)

We can easily verify that such difference equation has bounded solutions for any hλ ≤ 0,
so trapezoidal rule is an absolute stable method, as can be seen in Fig. (3.3a).

If the problem we are dealing with is non-stiff it may not be worth it to implement
an implicit method. A way of transforming trapezoidal method into an explicit method
is by making an estimation of yn+1 using Euler method and then using that value in the
trapezoidal scheme, i.e:

y∗n+1 = yn + hf(tn, yn)

yn+1 = yn + 1
2h(f(tn, yn) + f(tn+1, y

∗
n+1))

(3.52)

41

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

This explicit form of the trapezoidal rule is usually known as Heun’s method. It is still
of order p = 2, however is no longer absolute stable.

Midpoint methods

In a similar way that we used trapezoidal rule for numerical integration, we can also use
midpoint rule to build a different numerical scheme. This integration rule goes:∫ b

a
g(s)ds = (b− a)g

(
b− a

2

)
+ 1

24(b− a)3g′′(ξ) a ≤ ξ ≤ b (3.53)

So we can think of a scheme like this [2, 44]:

yn+1 = yn + hnf

(
tn + hn

2 ,
yn + yn+1

2

)
(3.54)

Such method is usually calledmidpoint method. We can see that this method is implicit
since yn+1 is implicit in f . Convergence for midpoint method can be shown easily in a
similar way as we did for trapezoidal method. When implementing this method for test
problem 3.31 in order to test stability we get:

yn+1 =
(

1 + hλ
2

1− hλ
2

)
yn (3.55)

Which is th same we got for trapezoidal method, so this method is also A-stable.
Now, suppose again that we wish to solve a non-stiff problem, so we would like to have

an explicit implementation of this method. One way may be to follow a 2-stages scheme
as in Heun’s method, but another possibility is to consider more than one time-step. For
example, if we take 2 steps, we get a 2-step midpoint method of the form:

yn+1 = yn−1 + 2hf(tn, yn) (3.56)

This method has the advantage that it is of order p = 2 and it needs only one function
evaluation per step, however on the other side we need to get two initial data y0 and y1 to
implement it. To study its stability, we apply this method to test problem (3.31) getting:

yn+1 = yn−1 + 2hλyn (3.57)

This difference equation can be arranged in the form:

Yn+1 =
[
2hλ 1

1 0

]
Yn Yn+1 =

[
yn+1
yn

]
(3.58)

The eigenvalues of this matrix are given by ζ1,2 = hλ +
√

(hλ)2 + 1. It can be shown
that the only way that such eigenvalues lie in the unit disk is by requiring Re(hλ) = 0
and −1 ≤ Im(hλ) ≤ 1, which means that the region of stability of this method is only
the segment from −i to i in the complex plane, as shown in Fig. (3.3b). It is interesting
to see that some methods can have such restricted stability regions, so caution must be
taken with respect to stability when designing new methods.

This two methods give an idea of the two main classes of methods availables multi-
stages and multi-steps, the most important representatives of each class are, respectively,
Runge-Kutta methods and linear multi-step methods.

42

3. MATHEMATICAL BACKGROUND

(a) Trapezoidal method (b) Explicit midpoint method

Figure 3.3: Regions of absolute stability (in gray) of implicit trapezoidal method and
2-stages midpoint method, (reproduced from [28]).

3.3.5. Runge-Kutta methods
Explicit Runge Kutta methods

We have introduced already one explicit 2-stage method, namely Heun method. This
method belongs to a whole family of 2-stage explicit methods, all of them of order p = 2.
The way such family is constructed is the following: The first stage will be always Euler
method because at the beginning of the step the only information we have is tn and yn. For
the second stage, we will estimate the derivative at some intermediate point t∗ = tn + c2h
using y∗ = yn + a21hk1. At the end, we will compute yn+1 by using an Euler-like scheme
but replacing f(tn, yn) by a "weighted average slope" of the previous stages slopes, given
by b1k1 + b2k2. All together it looks like this:

k1 = f(tn, yn)
k2 = f(tn + c2h, yn + a21hk1)

yn+1 = yn + h(b1k1 + b2k2)
(3.59)

Which can be compactly represented by the so called Butcher’s tableau:
0 0
c2 a21 0

b1 b2

Now we have to define these 4 parameters. First, let us set c2 = a21, condition that
will simplify things a lot. For the remaining 3 terms we should set their values in such a
way that we guarantee the order p = 2. To do so, consider that the method described in
Eq. (3.59) is equivalent to:

yn+1 = yn + b1hf(tn, yn) + b2hf(tn + c2h, yn + a21hk1) (3.60)

A Taylor expansion of the last term around (tn, yn) would be given by:

f(tn + c2h, yn + a21hk1) = f + ftc2h+ fya21hk1 +O(h2) (3.61)

With f = f(tn, yn), ft = ∂f
∂t

(tn, yn) and fy = ∂f
∂y

(tn, yn). Putting all together we get:

yn+1 = yn + b1hf + b2h(f + ftc2h+ fya21hk1)
= yn + (b1 + b2)hf + (ft + fyf)a21b2h

2 (3.62)

43

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Recalling that y′′(tn) = ft + fyf and comparing Eq. (3.62) with the Taylor series of y(t)
around tn, we get:

y(tn + h) = yn+1 +O(h3) (3.63)

As long as:
b1 + b2 = 1

a21b2 = 1
2

(3.64)

So we can write the whole family in terms of a single parameter b2 = β ∈ [0, 1] [44]: For

0 0
1

2β
1

2β 0
1− β β

β = 1
2 we recover Heun’s method (explicit trapezoidal) and with β = 1 we get a 2-stage

midpoint method.
In principle we can follow a similar idea to generate methods of order p, adding s stages

and trying to match terms in the Taylor expansion until we get a remainder O(hp+1).
Unfortunately the process described for order p = 2 gets very complicated incredibly fast
as we increase orders: for instance, at order p = 3, we have 8 parameters to set, and 4
conditions to satisfy, for order p = 4, we have 10 parameters to set and 8 conditions to
satisfy, and for p = 5 we have only 15 parameters and 17 conditions to satisfy, reason
why solvers of order p = 5 required at least 6 stages. Table (3.1) summarizes the amount
of conditions to satisfy, parameters needed and minimum number of stages for different
orders. Note that for order p = 9 and p = 10 we still do not know what are the minimum
number of stages needed.
Table 3.1: Number of order conditions, minimum number of stages needed and number
of parameters needed for Runge-Kutta methods of different orders (reproduced from [44])

Order 1 2 3 4 5 6 7 8 9 10
Conditions 1 2 4 8 17 37 85 200 486 1205
Min. Stages 1 2 3 4 6 7 9 11 ? ?

Param. needed 1 3 6 10 21 28 45 66 ? ?

Despite its order or number of stages all explicit Runge-Kutta solvers share the same
structure, for an arbitrary s-stages method we have:

k1 = f(tn, yn)
k2 = f(tn + c2, yn + ha21k1)
k3 = f(tn + c3, yn + h(a31k1 + a32k2))
...

ks = f(tn + cs, yn + h(as1k1 + · · ·+ ass−1ks−1))
yn+1 = yn + h(b1k1 + b2k2 + . . . bsks)

(3.65)

Represented by the Butcher’s tableau:

44

3. MATHEMATICAL BACKGROUND

0 0
c2 a21 0
c3 a31 a32 0
...
cs as1 as2 . . . ass−1 0

b1 b2 . . . bs−1 bs

Some examples are classical RK3 and RK4 methods (being this last, the one found by
Runge already in 1895, and the reason why these methods carry his name):

Table 3.2: Classic Runge-Kutta method of order 3 (RK3)
0 0
1
2

1
2 0

2
3 0 2

3
1
6

2
3

1
6

Table 3.3: Classic Runge-Kutta method of order 4 (RK4)
0 0
1
2

1
2 0

1
2 0 1

2 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Implicit Runge Kutta methods

All previous methods require that matrix A = {ai,j} where ai,j are taken from Butcher’s
tableau, to be lower triangular in order to keep the explicitness. If we want to consider a
more general kind of methods, we can allow A to be a full matrix. Clearly at including
slopes of stages not yet computed in the computation of every stage, the method becomes
implicit and we will need to solve a system of s non-linear algebraic equations in order to
get k1, . . . , ks. An advantage of these methods is that since more parameters are included
for the same number of stages, we can expect implicit Runge-Kutta (IRK) methods to
reach higher orders with less stages than explicit Runge-Kutta methods (ERK), in fact,
using s stages we can reach up to order p = 2s. Despite that, these methods are still rela-
tively expensive and therefore they offer some true advantage only to solve stiff problems
[5].

In general they have the form:

k1 = f(tn + c1h, yn + h(a11k1 + a12k2 + · · ·+ a1sks))
k2 = f(tn + c2h, yn + h(a21k1 + a22k2 + · · ·+ a2sks))
...

ks = f(tn + csh, yn + h(as1k1 + as2k2 + · · ·+ assks))
yn+1 = yn + h(b1k1 + b2k2 + . . . bsks)

(3.66)

Or equivalently represented by the Butcher’s tableau

45

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...
cs as1 as2 . . . ass

b1 b2 . . . bs

Implicit Runge Kutta methods are a very wide family of methods. As exposed by
Kroulíková in her master thesis [25], according to the structure of matrix A they can be
classified in the following cathegories:

• DIRK: the acronym stands for Diagonally implicit Runge Kutta, in this family
of methods matrix A has no non-zero elements above the diagonal (however the
diagonal may have non-zero entries).

• SDIRK: stands for Singly Diagonally implicit Runge Kutta, here all the elements
along the diagonal have the same value.

• ESDIRK: stands for explicit singly diagonally implicit Runge Kutta, it is almost
a SDIRK method, but the first row of matrix A is full of zeros.

• FIRK: stands for full implicit Runge-Kutta, all matrix A is made of non-zero ele-
ments.

An example of matrix A for the mentioned types can be seen as follows (corresponding
to 3 stages). a11 0 0

a21 a22 0
a31 a32 a33

 (DIRK)

 γ 0 0
a21 γ 0
a31 a32 γ

 (SDIRK)

 0 0 0
a21 a22 0
a31 a32 a33

 (SDIRK)

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (FIRK)

Some important examples are Radau and Lobatto methods. Among them probably
the most popular being RadauIIA (s = 3, p = 5), also called Radau5 [44, 5]:

Table 3.4: Runge-Kutta implicit method RadauIIA (Radau5)
4−
√

6
10

88−7
√

6
360

296+169
√

6
1800

−2+3
√

6
225

4+
√

6
10

296−169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

1 16−
√

6
36

16+
√

6
36

1
9

16−
√

6
36

16+
√

6
36

1
9

Another curious example of IRK methods are the so called Rosenbrock. While a
typical IRK method must be solved by using some zero-finding method like Newton’s
method or fixed-point iteration, which are iterative methods, so they require a lot of
function evaluations, in 1963, Rosenbrock proposed a special type of IRK method which
can be solved in a single iteration [5]. The price to pay is that we use matrix of the form
W = (I − hγJ) where J = ∂f

∂y
is the jacobian matrix of function f , if such jacobian is

46

3. MATHEMATICAL BACKGROUND

not expensive to compute, it becomes a very profitable method. An example is given by
Butcher as follows, working only for autonomous systems:

k1 = W−1f(yn)
k2 = W−1f(yn + hγk1)

yn+1 = yn + hk2

(3.67)

Where:
W = I − h

(
1−
√

2
2

)
J J = ∂f

∂y
(3.68)

Stability of Runge-Kutta methods

In order to describe absolute stability let us solve test problem (3.31) with a general
s-stage Runge-Kutta method, described by the tableau:

c A
bT

As shown by Butcher [5], we obtain:

ki = f(t+ cih, yn + haik) = λ(yn + haik) =⇒
k = λ(yn1 + hAk)
k = λyn(I − hλAk)−1

1 =⇒
yn+1 = yn + hbTk

yn+1 = (1 + hλbT (I − hλAk)−1
1)yn =⇒

R(hλ) = 1 + hλbT (I − hλAk)−1
1

(3.69)

This function R(hλ) is called stability function and we can define the regions of absolute
stability by S = {hλ ∈ C; |R(hλ)| ≤ 1}. The regions of stability of common methods are
shown in Fig. (3.4). As we can see, for Runge-Kutta methods when we increase the order
we do not only improve the speed of convergence but also the stability, this is not the
case with all type of methods.

Embedded Runge Kutta methods

Methods discussed so far give no idea on how timesteps {hn}n should be selected. A
naive approach is to consider a uniform discretization, which simplifies considerably the
implementation, however it is not very efficient. A better approach should consider longer
timesteps when the solution is varying slowly and shorter timesteps when it changes more
rapidly.

A natural way of adapting timestep is given by the local error estimates. We have
already seen that local truncation error is a function of timestep hn, therefore if we set
some error tolerance we should be able to choose a suitable stepsize value that may
guarantee that the tolerance is maintained. Of course, local truncation error involves also
some constants that we cannot know in advance, but we can try to get some estimates of
this local error [5].

47

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Figure 3.4: Regions of absolute stability of explicit Runge-Kutta method of diverse orders
(reproduced from [5]).

The approach used by modern solvers is to solve the problem using two methods of
different order, and to use the difference of their solutions to estimate the truncation
error. Clearly when dealing with Runge-Kutta methods, if the methods used share some
common stages, we can save some computations. As an example we can consider the
methods shown in Table (3.5) and (3.6). The first one was proposed by Fehlberg in 1968,
and combines a method of order 5 with a method of order 6. The second one was proposed
by Dormand & Prince in 1980, and combines a method of order 4th and a method of order
5, this last corresponds to MATLAB’s widely used solver ode45.
Table 3.5: Runge-Kutta-Felhberg method formed by a 5th order method and a 6th order
method (RKF56)

0 0
1
6

1
6 0

4
15

4
75

16
75 0

2
3

5
6 −8

3
5
2 0

4
5 −8

5
144
25 −4 16

25 0
1 361

320 −18
5

407
128 −11

80
55
128 0

0 − 11
640 0 11

256 − 11
160

11
256 0 0

1 93
640 −18

5
803
256 − 11

160
99
256 0 1 0

31
384 0 1125

2816
9
32

125
768

5
66 0 0

7
1408 0 1125

2816
9
32

125
768 0 5

66
5
66

48

3. MATHEMATICAL BACKGROUND

Table 3.6: Dormand and Prince pair formed by a 4th order method and a 5th order
method (RK5(4)7M), method implemented in popular MATLAB’s solver ode45

0 0
1
5

1
5 0

3
10

3
40

9
40 0

4
5

44
45 −56

15
32
9 0

8
9

19372
6561 −25360

2187 −64448
6561 −212

729 0
1 9017

3168 −355
33

46732
5247

49
176 − 5103

18656 0
1 35

384 0 500
1113

125
192 -2187

6784
11
84 0

35
384 0 500

1113
125
192 -2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

3.3.6. Linear multi-step methods
We have seen that the general strategy of Runge Kutta methods to gain accurracy is to
compute several "intermediate slopes" during current step, which requires more function
evaluations per step, however, once the step integration is over, all these information is no
longer used. Multi-step methods instead make use of the previous information to increase
the accuracy, for this reason they may require just a few function evaluations per step to
obtain high order methods, which makes them relatively "cheap" methods, however usually
this is counterbalanced with some limitations in terms of absolute stability compared to
Runge-Kutta methods.

In principle, we may consider a general multi-step method given by:

yn+1 = Φ(yn, yn−1, . . . , yn−k) (3.70)

Where Φ may be any function relating yn and k predecessors, however for convenience
most of the actually used methods consider only linear forms, which are easier to study
and implement. Then a linear multi-step method is a method of the form [5]:

yn+1 =
k∑
i=1

aiyn+1−i + h
k∑
i=0

bif(tn+1−i, tn+1−i) (3.71)

Among this family, the main exponents are Adams methods for non-stiff problems and
backward differentiation formulae (BDF) for stiff ones.

Convergence of linear multi-step methods

As usual, to study convergence the easiest way is to prove consistency and zero-stability.
For consistency, we will follow the proof of Atkinson et al [2]. Let us recall the definition
of local truncation error given in Def. (3.3.3), for a linear multi-step method we obtain:

τn(y(tn+1)) = y(tn+1)−
k∑
i=1

aiy(tn+1−i)− hn
k∑
i=0

biy
′(tn+1−i)

Now if we expand y(tn+1) as a Taylor series around tn, we obtain:

y(t) =
k∑
i=0

(t− tn)i
i! y(i)(tn) +Rk+1 Rk+1 = C(t− tn)k+1y(k+1)(ξn) (3.72)

49

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Please note that the truncation error expression is linear, i.e. τ(αY + βW) = ατ(Y) +
βτ(W), so in particular we can write τ(y(tn+1)) as:

τ(y(tn+1)) =
k∑
i=0

y(i)(tn)
i! τ((t− tn)i) + τ(Rk+1) (3.73)

To have consistency we need τ(y(tn+1)) = O(tn+1 − tn)2, which means that we just need
to verify τ((tn+1 − tn)i) = 0 for i = 0 and i = 1:

• For i = 0:
τ((tn+1 − tn)0) = τ(1) = 1−

k∑
j=1

aj = 0 =⇒

k∑
j=1

aj = 1
(3.74)

• For i = 1:

τ((tn+1−tn)1) = τ(tn+1−tn) = (tn+1−tn)−
k∑
j=1

aj(tn+1−i−tn)−(tn+1−tn)
k∑
j=0

bj = 0

(3.75)
Dividing by (tn+1 − tn) we get:

k∑
j=1

aj
(tn+1−j − tn)
(tn+1 − tn) +

k∑
j=0

bj = 1 (3.76)

If we assume a uniform discretization i.e. h = ti+1 − ti for any i, then the previous
condition is reduced to:

−
k∑
j=1

(j − 1)aj +
k∑
j=0

bj = 1 (3.77)

These two are usually called the consistency conditions. We can easily extend this notion
to higher terms τ((tn+1 − tn)p), p ≥ 1 in order to guarantee a certain order p, giving us:

k∑
j=1

aj

(
tn+1−j − tn
tn+1 − tn

)p
+

k∑
j=0

pbj

(
tn+1−j − tn
tn+1 − tn

)p−1

= 1 (3.78)

Or for a uniform discretization:
k∑
j=1

aj(−j + 1)p + p
k∑
j=0

bj(−j + 1)p−1 = 1 (3.79)

which are called order conditions.
For zero-stability, we need to verify that the method provides bounded solutions for

the differential equation f(t, y) ≡ 0 and arbitrary initial conditions. If this is the case,
then we are left with:

yn+1 = a1yn + a2yn−1 + · · ·+ akyn+1−k (3.80)

50

3. MATHEMATICAL BACKGROUND

Transforming this expression into matrix form and looking for its eigenvalues we can
see that this difference equation give bounded solutions as long as the characteristic
polynomial ρ(z) defined as [5]:

ρ(z) = zk − a1z
k−1 − · · · − ak (3.81)

Has all its roots with multiplicity 1 lying on the closed unit disk and its roots with
multiplicity greater than 1 lying in the open unit disk.

Absolute stability of linear multi-step methods

If we apply a linear multi-step method define by coefficients [a, b] to test problem (3.31)
we will obtain the following result [5]:

yn+1 =
k∑
i=1

aiyn+1−i + hλ
k∑
i=0

biyn+1−i (3.82)

Which is the equivalent to:

P (hλ) = (1− hλb0)yn+1 − (a1 + hλb1)yn − (a2 + hλb2)yn−1 − · · · − (ak + hλbk)yn+1−k = 0
(3.83)

We know that the region of stability is given by the set S ⊂ C made of all hλ ∈ C such
that P (hλ) has bounded solutions and such equation has bounded solution if the following
polynomial has all its roots on the unit disk:

(1− hλb0)zk − (a1 + hλb1)zk−1 − (a2 + hλb2)zk−2 − · · · − (ak + hλbk) (3.84)

Now if we define the polynomials:

a(z) = 1− a1z − a2z
2 − . . . akzk

b(z) = b0 + b1z + b2z
2 + . . . bkz

k
(3.85)

We can write the previous equation as:

a(z)− hλb(z) (3.86)

An easy way of knowing the region of absolute stability can now be implemented. It
is known as the boundary locus method and it consist on transforming the boundary of
the unit disk in the complex plane into the boundary of the region of stability using the
previous expression. Let us consider w = eiθ for theta ∈ [0, 2π] be an element of the
unit circunference. Now we look for the value of hλ such that w is a root of the previous
equation, i.e.

a(w)− hλb(w) = 0 =⇒

hλ = a(w)
b(w)

(3.87)

And in this way we get very easily a method to draw the boundary of the stability region.

51

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Adams methods

When we introduce the trapezoidal and the midpoint method, we tried to compute y(tn+1)
by means of the following integral:

y(tn+1) = yn +
∫ tn+1

tn
y′(t)dt (3.88)

Depending on the way we approximate the definite integral we end up with different meth-
ods. Adams methods propose the following approach to compute the integral: suppose we
know several previous values of y′(t), namely y′(tn), y′(tn−1), . . . , y′(tn−k). We may use
them to construct an interpolating polynomial, and use this polynomial to aproximate
y′(t) in the integral. We mean: suppose pk(t) is an interpolating polynomial of y′(t) by
using known values y′(tn), y′(tn−1), . . . , y′(tn−k) then:

y(tn+1) ≈ yn +
∫ tn+1

tn
pk(t)dt (3.89)

Now, if we consider that fn = f(tn, yn) ≈ y′(tn). We can use fn, fn−1, . . . , fn−k to construct
pk(t). By considering this pk(t) in Eq. (3.89) we obtain Adams-Bashforth method.

To construct pk(t) we make use of lagrangian interpolating polynomials, i.e [10]:

pk(t) =
k∑
i=0

fn−k+i`i(t) `i(t) =
k∏
j=0
i 6=j

(t− tn−k+j)
(tn−k+i − tn−k+j)

(3.90)

Therefore, we can expect that in the end, the method would be a linear combination of
fi:

yn+1 = yn + b1fn + b2fn−1 + · · ·+ bkfn+1−k bk+1−i =
∫ tn+1

tn
`i(t)dt (3.91)

For the case where the time interval is uniformly discretized constants bi are well known
and are shown in Table (3.7), however for most of practical application timesteps must
be adapted during the integration, and therefore these constants must be computed every
step.
Table 3.7: Coefficients and error constants for Adams-Bashforth method with uniform
discretization (reproduced from [5]).

k b1 b2 b3 b4 b5 b6 b7 b8 C
1 1 −1

2
2 3

2 −1
2

5
12

3 23
12 −4

3
5
12 −3

8
4 55

24 −59
24

37
24 −3

8
251
720

5 1901
720 −1387

360
109
30 −637

360
251
720 − 95

288
6 4277

1440 −2641
480

4991
720 −3649

720
959
480 − 95

288
19087
60480

7 198721
60480 −18637

2520
235183
20160 −10754

945
135713
20160 −5603

2520
19087
60480 − 5257

17280
8 16083

4480 −1152169
120960

242653
13440 −296053

13440
2102243
120960 −115747

13440
32863
13440 − 5257

17280
1070017
3628800

Given that we are talking about interpolation, it may look more adequate to in-
clude f(tn+1, yn+1) in the construction of the interpolating polynomial. Clearly yn+1 is

52

3. MATHEMATICAL BACKGROUND

not known yet, therefore this approach is implicit and it is known as Adams-Moulton
method given by:

yn+1 = yn + b0fn+1 + b1fn + b2fn−1 + · · ·+ bkfn+1−k (3.92)

Coefficients for the uniform discretized Adams-Moulton method are shown in Table (3.8),
similar to Adams-Bashforth, in actual implementations coefficients must be computed
differently for every step.
Table 3.8: Coefficients and error constants for Adams-Moulton method with uniform
discretization (reproduced from [5]).

k b0 b1 b2 b3 b4 b5 b6 b7 C
0 1 1

2
1 1

2
1
2 − 1

12
2 5

12
2
3 − 1

12
1
24

3 3
8

19
24 − 5

24
1
24 − 19

720
4 251

720
323
360 −11

30
53
360 − 19

720
3

160
5 95

288
1427
1440 −133

240
241
720 − 173

1440
3

160 −863
640

6 19087
60480

2713
2520 −15487

20160
586
945 − 6737

20160
263
2520 −863

640
275

24192
7 5257

17280
139849
120960 −4511

4480
123133
120960 − 88547

120960
1537
4480 − 11351

120960
275

24192 − 33953
3628800

Regarding convergence, we can see that in both methods coefficients {ai}ki=1 are limited
to a1 = 1, so the first consistency condition is easily verified, for the second we must
simply verify that ∑k

j=0 bj = 1. For zero-stability, we obtain the characteristic polynomial
ρ(z) = zk − zk−1, with roots z = 0 and z = 1, the second one with multiplicity one, so
the stability condition is also satisfied.

Now, regarding absolute stability, we can use boundary locus method to get the regions
of absolute stability for Adams methods. The plot of theirs regions is shown in Fig.
(3.5). Please note two details, opposite to Runge-Kutta methods, when we increase the
order of an Adams methods by increasing the number of steps, the stability is worsened
considerably, also note that despite being an implicit method Adams-Mouton methods
are far from being A-stable.

Predictor-corrector methods

We can see from Fig. (3.5) that the stability regions for Adams-Bashforth methods goes
very small as we increase order, in such a way that we may lose the advantage of having
a high order method because the step-size is limited by stability. On the other hand,
Adams-Moulton methods have relatively larger region of stability but they are implicit
methods, so they require some zero-finding method to solve for yn+1. In practice these
two family of method are seldom used directly.

A common approach is to use first an Adams-Bashforth method to have a estimation
y∗n+1 of y(tn+1), then a function evaluation f(tn+1, y

∗
n+1) is computed, which we finally

use in an Adams-Moulton method. This type of method is called predictor-corrector
method, since the Adams-Bashforth method is used as predictor and the Adams-Moulton

53

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Figure 3.5: Regions of absolute stability for Adams-Bashforth methods (on the left) and
for Adams-Moulton methods (on the right) for a number of steps k. (reproduced from
[1]).

is used as corrector of the method. In the way we described it the general scheme is given
by:

P: y∗n+1 =
k∑
i=1

a∗i yn+1−i + h
k∑
i=1

b∗i fn+1−i

E: f ∗n+1 = f(tn+1, y
∗
n+1)

C: yn+1 =
k∑
i=1

aiyn+1−i + h
k∑
i=1

bifn+1−i + hb0f
∗
n+1

(3.93)

The acronym PEC stands for (prediction-evaluation-correction) and it one form in which
this method can be implemented. The notation by this acronym is very useful when in-
troducing new variants like PECE, which adds a second evaluation fn+1 = f(tn+1, yn+1),
with the corrected value yn+1 to be used in the prediction phase of the next step. Fol-
lowing similar ideas we can have also PECEC, PECECE and in general P (EC)m and
PE(CE)m.The regions of stability of some methods of this type in PECE mode can be
seen in Fig. (3.6).

Another advantage of this form of implementating Adams methods is that it gives us
an error estimate for free, which can be used to adapt the timestep. This error estimate
is called Milne device and it is given by [1, 5, 2]:

εn+1 = Cp+1

C∗p+1 − Cp+1
(yn+1 − y∗n+1) (3.94)

Where Cp+1 and C∗p+1 are the error coefficients of Adams-Bashforth and Adams-Moulton
method respectively. They are listed on Tables (3.7) and (3.8).

Backwards differentiation formulae

As we saw in Fig. (3.5), despite being implicit Adams-Moulton methods have a rela-
tively restricted region of absolute stability compared with implicit Runge-Kutta methods,
therefore there are not usually implemented to solve stiff problems.

54

3. MATHEMATICAL BACKGROUND

Figure 3.6: Regions of absolute stability of Adams-Bashforth-Moulton methods in PECE
mode for different number of steps k (reproduced from [1]).

For this type of problems, a different approach is considered. Take again equation
y′(t) = f(t, y). Now, coming back to the simple of idea of implicit Euler method, what if
instead of integrating the equation we replace y′(t) by a finite difference.

∇k(yn+1)
h

= f(tn+1, yn+1) (3.95)

Where∇k is an operator designating a relation among elements of a finite sequence {yi}ki=1
with yn ∈ {yi}ki=1 in such a way that ∇k(yn)

h
≈ y′(tn). There are several ways of defining

these finite differences, however in our case, knowing preceding values y(tn), y(tn−1), . . . ,
y(tn+1−k) backward differences are the most natural option, yielding Backward differ-
ence formulae (BDF) method. Backward differences can be obtained by constructing
interpolating polynomials pk(t) satisfying:

p(tn+1−k) = yn+1−k

p(tn+1−k+1) = yn+1−k+1

. . .

p(tn) = yn

p′(tn+1) = f(tn+1, p(tn+1))

(3.96)

Such polynomial con be constructed also with the aid of Lagrange basis polynomials, i.e:

pk(t) = yn+1−k`0(t) + yn+1−k+1`1(t) + · · ·+ yn+1`k(t) (3.97)

Clearly the first k conditions in Eq. 3.96 are automatically satisfied. Imposing the last
one we obtained:

yn+1−k`
′
0(tn+1) + · · ·+ yn+1−k+i`

′
i(tn+1) + · · ·+ yn+1`

′
k(tn+1) = f(tn+1, yn+1) (3.98)

Or, following our general notation for linear multi-step methods [44]:

yn+1 =
k∑
i=1

aiyn+1−i + hb0f(tn+1, yn+1), ai = −`
′
k−i(tn+1)
`′k(tn+1) , hb0 = 1

`′k(tn+1) (3.99)

55

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

For the case of uniform discretization the following coefficients are obtained:

Table 3.9: Coefficients and error constants for Backward differentiation formulae (BDF)
method with uniform discretization (reproduced from [5]).

k a1 a2 a3 a4 a5 a6 b0 C
1 1 1 1

2
2 4

3 −1
3

2
3

2
9

3 18
11 − 9

11
2
11

6
11

3
22

4 48
25 −36

25
16
25 − 3

25
12
25

12
125

5 300
137 −300

137
200
137 − 75

137
12
137

60
137

10
137

6 120
49 −150

49
400
147 −75

49
24
49 − 10

147
20
49

20
343

There is an alternative way of obtaining these coefficients, as explained by Söderling
[44], however it only works for uniform discretization. Let us define first the shift operator :

Eh : y(t) � y(t+ h) (3.100)

It is not difficult to see that such operator exhibits the following properties:

• E0 = 1

• Eh1Eh2 = Eh1+h2

• (Eh)−1 = E−h

With all these properties this operator resembles exponential operator. In fact:

Eh = ehD =
∞∑
i=0

(hD)i
i! (3.101)

WithD being the usual differentiation operator. Now, let us note that the 1-step backward
difference ∇ is given by:

∇ : y(t) � (y(t)− y(t− h))
∇ = 1− E−h

(3.102)

Now using Eq. (3.96) and the previous expression, we can see that hD = − log(1 −∇),
which interpreted in terms of its power series means that:

D = 1
h

∞∑
i=0

∇i

i
(3.103)

And finally we can approximate derivatives by taking a truncation of the previous infinite
series:

D ≈ 1
h

k∑
i=0

∇i

i
(3.104)

Therefore an alternative way of defining backward differentiation method is given by:

k∑
i=0

∇i

i
yn+1 = hf(tn+1, yn+1) (3.105)

56

3. MATHEMATICAL BACKGROUND

Where ∇i is defined recursively, for instance:

∇2(yn) = ∇(∇yn) = ∇(yn − yn−1) = yn − 2yn−1 + yn−2 (3.106)

Therefore for k = 2, BDF gives:

∇yn+1 + ∇
2(yn+1)

2 = (yn+1 − yn) +
(
yn+1 − 2yn + yn−1

2

)
= hf(tn+1, yn+1) (3.107)

yn+1 = 4
3yn −

1
3yn−1 + h

2
3f(tn+1, yn+1) (3.108)

Which coincides with the method obtained by the lagragian interpolating polynomial (see
Table (3.9)).

Regarding absolute stability, we can again use boundary locus method to plot the
regions of absolute stability of the BDF methods, which are shown in Fig. (3.7). Note
that even if unbounded the stability region of BDF6 is not very convenient, since for a
relatively small λ it may require considerable small h. In practice this method is very
seldom used, and most solvers implementing BDF methods are limited to order 5.

Figure 3.7: Regions of absolute stability of Backwards difference methods for different
orders (reproduced from [2]).

3.3.7. Implementation issues
Most of the time, when reviewing the literature about numerical method for ODEs, most
of the theory and the examples seems to be created upon the assumption that the methods
follows a uniform discretization. This assumption simplifies things a lot when looking for
nice theoretial results and makes easier to understand the philosophy of the method.
However, when we are trying to implement a method for real-applications, this approach
is usually unacceptably inefficient and a scheme to adapt the stepsize must be considered.
Addition to the adaptative stepsize, a solver should include a series of additional features
to make it efficient, robust and attractive to users. Some of this features include, additional
to stepsize adaptivity, automatic selection of initial stepsize and (specially for multi-step
methods) a starting phase.

57

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

Stepsize adaptivity

Without counting the method itself, this is perhaps the most important part of the im-
plementation of a sophisticated ODE solver. Most of modern solvers do the adaptation
of the stepsize based on error control, i.e. the stepsize is chosen in order to keep the
error below a prescribed error tolerance. Ideally we would like to control the global error,
however to get estimates for it is not an easy task, so the local error is usually the one
which is controlled.

An approach that is widely used, specially with Runge-Kutta methods is to solve the
step using two different methods. The main idea is described nicely by Shampine et at
[43]. If we want to estimate the local error of a method of order p:

εn+1 = y(tn+1)− yn+1 (3.109)
We can consider a solution y∗n+1 of the same problem computed by a method of order
q > p. Clearly y(tn+1)− y∗n+1 = O(hq+1). Now coming back to our estimate:

εn+1 = y(tn+1)− yn+1 + y∗n+1 − y∗n+1

= (y∗n+1 − yn+1) + (y(tn+1)− y∗n+1)
= (y∗n+1 − yn+1) +O(hp+2)

(3.110)

This way we can estimate the true local truncation error εn+1 ≈ est = y∗n+1 − yn+1,
assuming that (y∗n+1 − yn+1) is of order O(hp+1). This last means that:

est = Cnh
p+1 +O(hp+2) (3.111)

Now the mechanism becomes evident, suppose the error estimate est is too large, i.e est
> tol, where tol is the prescribed error tolerance so we want to adjust the stepsize to a
new one h∗ = σh, then:

estnew = Cn(σh)p+1 +O((σh)p+2) = σp+1est +O((σh)p+2) (3.112)
If we want estnew < tol then we need to choose σ such that:

σ <

(
tol
est

) 1
p+1

(3.113)

And if we fail again, we might continue with this procedure until the we succeed or we
give up, maybe because we tried too many times or because we reach a stepsize so small
that is not representable by the computer. If we succeed we might also want to adjust the
stepsize, to make the computation more efficiently. Suppose we will do a new computation
from tn+1 to tn+1 +σh. We can estimate that the error estimate will be as before so again
we would choose σ as in Eq. (3.113).

In practice, solvers use a safety factor η when selecting σ to avoid being too close to
tol, usually 0.9 or 0.8 are good values. Also to avoid abrupt changes on the step size, we
set upper and lower bounds on σ. So in reality solvers compute σ by [5]:

σ = max
min

η (tol
est

) 1
p+1

, σmax

 , σmin
 (3.114)

There are even more sophisticated ways of adapting the stepsize that involve some control
theory, implementing a discrete PI controller for the error, however common solvers (like
the ones in Matlab) use the simpler mechanism described above. For more details on the
PI scheme we refer the reader to Butcher and Soderlind [5, 44].

58

3. MATHEMATICAL BACKGROUND

Selection of initial stepsize

We have stressed many times the importance of a good scheme to adapt the stepsize and
given that such scheme is based on the pressumption that modification to the stepsizes will
be done gradually, the choice of the initial step may have an impact on the overall efficiency
of the method. There are several very sophisticated methods to choose automatically the
initial stepsize, here we will study a very simply one, but still used in some modern solvers
as the ones implemented on MATLAB.

The idea of this scheme is described briefly by Gladwell et al [13]. We start from the
idea that if we take a truncated Taylor series to approximate y(t0 +h) in the neigborhood
of t0, such approximation naturally will be of the form:

y∗(t0 + h) = y(t0) + hy′(t0) + h2

2 y
′′(t0) + · · ·+ hm

m! y
(m)(t0) (3.115)

The error of such an approximation is clearly:

Em = y(t0 + h)− y∗(t0 + h) = hm+1

(m+ 1)!y
(m+1)(t0) (3.116)

At the beginning of the integration process we have nothing more that the initial condition
and we can compute the initial slope f(t0, y0), so the only approximation we can do is by
taking m = 0, then:

E0 = h0f(t0, y0) (3.117)

Now if we may choose such an stepsize in such a way that we get an error less that the
prescribed tolerance, namely E0 = ηtol, the we have a first guess for the stepsize given
by:

h0 = ηtol
f(t0, y0) (3.118)

But this is not the stepsize we will use. In principle we are going to employ a method of
order p > 0 so we are expected to use a smaller stepsize hp. Recall, from our comparison
of stepsizes for methods of different order, that we expect hp = O(h

1
p+1
0), so as a rule of

thumb, we can estimate that our true initial stepsize should be:

hp =
(

ηtol
f(t0, y0)

) 1
p+1

(3.119)

Some variants consider a relative error tolerance instead of and absolute error tolerance i.e
E0
y0

= ηtol. which will multiply our result by y0. Of course this scheme has its weaknesses,
for example if f(t0, y0) is small or zero, then the stepsize may become incredibly large.
To prevent that, we should also set some bounds hmax and hmin, to the selection of the
stepsize. In spite of these problems, the method is reliable and simple, which makes it a
good option, even so that it is still used in modern solvers.

Starting phase

As we mention before, one of the limitations of multi-step methods is that they require
more than one initial conditions, which usually cannot be supplied from the beginning.

59

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

For this reason we need to supply them with a starting phase which computes these require
initial steps before, implementing the actual method. There are several approaches to this
problem:

Probably the most simple approach is to use a Runge-Kutta method of the same order
or higher to compute the amount of initial points we need. A second option, as proposed
by Butcher [5] is to set a system of equations representing the integrals from t0 to t1,
t2, . . . , tk−1 obtained from quadrature with nodes on the mentioned points, obtaining
something like:

y1 = y0 + h(c10f0 + c11f1 + · · ·+ c1k−1fk−1)
y2 = y0 + h(c20f0 + c21f1 + · · ·+ c2k−1fk−1)
...

yk−1 = y0 + h(ck−10f0 + ck−11f1 + · · ·+ ck−1k−1fk−1)

(3.120)

This system can be solved using some zero-finding method and in such a way it may be
compared with implicit Runge-Kutta method. However, probably the most used method
is to start with a 1-st order method multi-step method, once we have y1, we use a 2-nd
order method and so on.

3.3.8. MATLAB ode suite
Thoughout this thesis we will implement numerical schemes on MATLAB. This soft-
ware includes a very robust suite of built-in solvers known by the prefix ode. It is a
package of 8 solvers implementing different methods. Three of them are designed for non-
stiff problems (ode45, ode23 and ode113), four for stiff problems (ode15s, ode23s, ode23t
and ode23tb) and one special solver is left for implicit differential equations of the form
F (t, y, y′, . . . , y(k)) = 0 (ode15i).

Besides the numerical methods used in every solver, this suite implements several ad-
ditional features like mass matrix handling (equations of the form M(t, y)y′(t) = f(t, y)),
event function handling (to do something when the solution satisfies some "event func-
tion") which makes them very versatile and simple to use. Below, we gives a very brief
description of these solvers, most of the information is taken from Matlab documentation
[31].

ode45

This is the most popular solver of the suite. In MATLAB’s own words: "Most of the
time ode45 should be the first solver you try" [31]. It is based on Dormand & Prince pair
(RK5(4)7M) already described on Table (3.6), so it is an embedded Runge-Kutta method
combining a method of order p = 5 and another method of order p = 4, the integration
is propagated with the fifth order method and the other method is used to adapt the
timestep. It is a ideal solver if the problem is non-stiff and the error tolerances are not
that much stringent.

ode23

If the accuracy demands are relatively low, lower order methods could perform well
enough. This is the case of ode23, which is implements the so called Bogacki & Shampine

60

3. MATHEMATICAL BACKGROUND

pair, an embedded Runge-Kutta method consisting of explicit methods of order 2 and 3.
The method propagates the solution with order p = 3 and the other method is used to
adapt the timestep. The Butcher’s tableau of this method is given by:

0 0
1
2

1
2 0

3
4 0 3

4 0
1 2

9
1
3

4
9 0

2
9

1
3

4
9 0

7
24

1
4

1
3

1
8

ode113

This method implements a variable order, variable stepsize predictor-corrector (PECE)
form of Adams-Bashforth-Moulton, using AB as predictor formula and AM as corrector. It
is more convenient that ode45 if the error demands are relatively large or if the differential
equation is expensive to compute.

ode15s

This method is an improvement of BDF method developed by Shampine & Reichelt
(1997) [42], referred by them as Numerical differentiation formulae (NDF). The method
is defined as follows:

k∑
i=1

∇i

i
yn+1 = hf(tn+1, yn+1) + κ

k∑
j=0

1
j

(yn+1 − y(0)
n+1) (3.121)

Where y(0)
n+1 is the initial guess for yn+1, which is usually computed by:

y
(0)
n+1 =

k∑
i=0
∇kyn (3.122)

The last term is the key part of this method. Shampine & Reichelt found that with a
suitable value of κ, the area of absolute stability is maximized. The values found by them
are shown in the following table:

Table 3.10: Values of κ in NDF method for different orders
Order κ

1 -0.185
2 -1/9
3 -0.0823
4 -0.0415
5 0

61

3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES

ode23s

This solver employs a Rosenbrock pair of methods of order 2 and 3. Here the solution is
propagated with the 2nd order method and the 3rd method is used to compute the error
estimate. The method is computed as follows [42]:

f0 = f(tn, yn)
k1 = W−1(f0 + hdT)
f1 = f(tn + 0.5h, yn + 0.5hk1)
k2 = W−1(f1 − k1) + k1

yn+1 = yn + hk2

f2 = f(tn+1, yn+1)
k3 = W−1(f2 − (6 +

√
2)(k2 − f1)− 2(k1 − f0) + hdT)

err = h

6 (k1 − 2k2 + k3)

(3.123)

Where
W = I − h

(
1

2 +
√

2

)
J J ≈ ∂f

∂y
T ≈ ∂f

∂t
(3.124)

ode23t

This solver implements trapezoidal method together with a "free" interpolant to estimate
the error [31].

ode23tb

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a
trapezoidal rule step as its first stage and a backward differentiation formula of order
two as its second stage. By construction, the same iteration matrix is used in evaluating
both stages. Like ode23s and ode23t, this solver may be more efficient than ode15s for
problems with crude tolerances [31].

ode15i

ode15i is a variable-step, variable-order (VSVO) solver based on the backward differenti-
ation formulas (BDFs) of orders 1 to 5. ode15i is designed to be used with fully implicit
differential equations and index-1 differential algebraic equations (DAEs) [31].

62

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

4. Study-Case 1: Fixed bubble
under an oscillatory pressure

As a first study case we will consider the problem of an oscillatory pressure source on
a static flow. More precisely, the pressure source we will consider is given by:

p∞(t) = p0(1 + A sin(2πft)) (4.1)

Clearly, for this case, the problem of bubble translation has trivial solution so we will
focus on the study of bubble growth and collapse. This problem is strongly motivated by
applications of acoustic cavitation.

From the mathematical point of view, there have been several contributions on the
study of this problem. Some of the earliest ones were made under the approach of dynam-
ical systems, as the one presented by Ma & Wang (1962) [30], who used a hamiltonian
approach to study the qualitative behavior of the solutions for the inviscid case (µ = 0)
with a constant pressure difference pv − p∞ > 0. Chang & Chen (1986) [6], extended the
work of the previous authors by considering the inviscid case as a bifurcation of the more
general viscous case and studying the qualitative changes in the vicinity of the equilibrium
points around this bifurcation. In 2008, Hegedus & Kullmann [17] retook most of Chang
& Chen’s ideas and extended it by considering also thermal effects. Funaki et al (2015)
[9] studied the system, again with constant difference pv− p∞, as part of their attempt of
describing a stochastic variation of Rayleigh Plesset equation, showing that for pv − p∞
constant, solutions are globally defined for an arbitrary initial condition. A year later,
Ohnawa & Suzuki [37] recovered the hamiltonian structure proposed by Ma & Wang to
construct a numerical method for the viscous case with pv − p∞ constant.

Following a very different motivation, authors like Hakl and co-workers [14, 15, 16]
(2011 - 2013), Torres [45] (2015), Burra & Zanolin [4] (2016) and Lu et al [29] (2019),
among others, have also studied the system interested on finding sufficient conditions
for the existence of periodic solutions for a special type of Liénard equations to which
Rayleigh-Plesset belongs.

4.1. Preliminaries
For this analysis we will consider Rayleigh-Plesset equation which is given by Eq. (2.13):

RR̈ + 3
2Ṙ

2 = pv − p∞(t)
ρ

+ pg0

ρ

(
R0

R

)3k
− 2S
ρR
− 4µ

ρ

Ṙ

R

Now, as it is usual with second order ODEs, by taking y = [R, Ṙ]T we can turn the
previous second order ODE into the following system of two first order ODEs:

ẏ1 = y2

ẏ2 = pv − p∞(t)
ρ

1
y1

+ pg0R
3k
0

ρ

1
y3k+1

1
− 2S

ρ

1
y2

1
− 4µ

ρ

y2

y2
1
− 3

2
y2

2
y1

(4.2)

which we will denote shortly as:
ẏ = f(t, y) (4.3)

63

4.2. WELL-POSEDNESS ANALYSIS OF RAYLEIGH-PLESSET EQUATION

4.2. Well-posedness analysis of Rayleigh-Plesset equa-
tion

Let us verify that system (4.2) satisfies all the assumptions of Thm. (3.1.1), namely:

1. Continuity of f with respect to t and y: f is continuous with respect to t as
long as p∞(t) is also continuous and f(t, y) is continuous with respect to y if y1 6= 0.

2. Lipschitz continuity with respect to y: Our aim is to use Lemma (3.1.1) to
show that f is Lipschitz continuous with respect to y. To do so, we need to compute
partial derivatives ∂fi

∂yj
, such derivatives are given by:

∂f1

∂y1
= 0

∂f1

∂y2
= 1

∂f2

∂y1
= −pv − p∞(t)

ρ

1
y2

1
− (3k + 1)pg0R

3k
0

ρ

1
y3k+2

1
+ 2S

ρ

1
y3

1
+ 8µ

ρ

y2

y3
1

+ 3
2
y2

2
y2

1
∂f2

∂y2
= −4µ

ρ

1
y2

1
− 3y2

y1

(4.4)

These partial derivatives are again continuous as long as p∞(t) is continuous and
y1 6= 0, thus f is Lipschitz continuous in any compact convex domain I×Ω, as long
as the previous conditions are satisfied. Assuming that p∞(t) is continuous as it
is indeed our case, we can be sure that for any initial condition (R0, U0) such that
R0 6= 0, there exists a unique solution defined a least locally.

4.3. Equilibrium points and local behavior
Let us now study the equilibrium points of system (4.2). Clearly these equilibrium points
must have the form (Req(t), 0), where Req(t) is solution of the equation:

(pv − p∞(t)) 1
Req

+ pg0R
3k
0

1
R3k+1
eq

− 2S 1
R2
eq

= 0 (4.5)

Assuming that the bubble was at equilibrium at time t = 0, we have:

pg0 = p0 − pv + 2S
R0

(4.6)

And assuming that pv << p0 (thus pv − p0 ≈ −p0), we obtain:

A sin(2πft)︸ ︷︷ ︸
A(t)

R3k
eq + 2S

p0

(
R3k−1
eq −R3k−1

0

)
+R3k

eq −R3k
0 = 0 (4.7)

Recall that k is, in principle, a real number, so the zeros of the previous function must be
approximated numerically. The result is however well known, for A(t) < −1 (thus p∞(t) <
pv) we have a single equilibrium point Rs, which is a stable focus. For 1 < A(t) < Ac

64

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

(a) Req/R0 vs A(t)

(b) Req vs A(t) for different R0

Figure 4.1: Behavior of Req vs A(t) (a) shows a general schematics, (b) shows the actual
curves for some initial radii R0.

(thus pv < p∞(t) < pc∞)a second equilibrium point Ru > Rs appears, in the form of a
saddle, and finally for A(t) > Ac, there is no equilibrium point and the system is unstable
[17]. Fig. (4.1) gives an idea of the previous discussion. For the case of constant p∞ a
nice illustration of the local behavior in each of these three regions is given by Hegedus

65

4.3. EQUILIBRIUM POINTS AND LOCAL BEHAVIOR

& Kullmann (2008) [17] and is reproduced in Fig. (4.2). Since A(t) is changing with
time, we need to consider that all these are not the true portraits of the problem we are
considering, since equilibrium points are constantly moving and their qualitative behavior
is changing, reason why trying to get an accurate idea of the phase portrait of this system
without solving it is not an easy task. In fact several authors like Lauterborn & Parlitz
(1988) [26] and Feng & Leal (1997) [7] have found that depending on parameters this
system may exhibit a chaotic behavior.

(a) p∞ < pv
(b) pv < p∞ < pc∞

(c) p∞ > pc∞

Figure 4.2: Phase portrait for the case (a) p∞ < pv, (b) pv < p∞ < pc∞ and (c) p∞ > pc∞
(reproduced from [17]).

66

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

4.4. Linear approximation
It is clear that Rayleigh-Plesset equation, due to its singularities, stands a challenge at
the moment of looking for an analytical solution. For this reason, several authors have
considered some linear approximation whenever this is accurate enough. The main idea
is that if oscillations are "small enough", then we may expect the bubble radius to behave
as a linear oscillator, i.e.

R(t) ≈ R0(1 + x(t)) (4.8)
Where x(t) is a harmonic oscillating function such that |x(t)| << R0. Substituting Eq.
(4.8) into Rayleigh-Plesset equation and neglecting any non-linear terms, x should satisfy
the following linear Cauchy problem [40]:

ẍ+ 2βẋ+ ω2
0x = ε sin(ωpt)

x(0) = 0
ẋ(0) = 0

(4.9)

Where,

β = 2µ
ρR2

0
ω2

0 =
3kpg0 − 2S

R0

ρR2
0

ε = −p0A

ρR2
0

ωp = 2πf (4.10)

Assuming that ω0 ≥ β, this yields the solution:

x(t) = K1 sin(ωpt) +K2 cos(ωpt)− e−βt
((

K1
ωp
ωB

+K2
β

ωB

)
sin(ωBt) +K2 cos(ωBt)

)
(4.11)

With
ωB =

√
ω2

0 − β2

K1 =
ε(ω2

0 − ω2
p)

(ω2
0 − ω2

p)2 + (2βωp)2

K2 = − ε(2βωp)
(ω2

0 − ω2
p)2 + (2βωp)2

(4.12)

There are some cases that may appear interesting to study further, namely:

• Inviscid case Note that if µ = 0, then β = 0 and ωB = ω0. Thus K1 = ε
(ω2

0−ω2
p) and

K2 = 0 and our solution is simplified to:

x(t) = ε

(ω2
0 − ω2

p)

(
sin(ωpt)−

ωp
ωB

sin(ω0t)
)

(4.13)

Radian frequency ω0 provides the so-called natural frequency of the bubble f0 = ω0
2π ,

which for fixed values of p0, pv, ρ, k and S is completely determined by the initial
radius R0. We will see that this value has a big relevance in the dynamics of the
bubble, since in general even if β >> 0, usually ωB ≈ ω0. The values of this natural
frequencies for some initial radii are given in the table (4.1).

• External pressure oscillating at natural frequency If ωp = ω0, then K1 = 0
and K2 = − ε

2βωp , this way the final solution is simplified to:

x(t) = ε

2βωp

(
e−βt

β

ωB
sin(ωBt) + e−βt cos(ωBt)− cos(ωpt)

)
(4.14)

67

4.4. LINEAR APPROXIMATION

Table 4.1: Natural frequencies f0 of bubbles of diverse initial radii R0

R0[µm] β[rad/s] f0[kHz] fB[kHz] fB/f0
1 2.00× 106 4746.04 4735.31 0.9977
5 8.01× 104 719.58 719.46 0.9998
10 2.00× 104 342.74 342.73 0.9999
25 3.20× 103 132.84 132.84 0.9999
50 8.01× 102 65.69 65.69 0.9999
75 3.56× 102 43.63 43.63 0.9999
100 2.00× 102 32,66 32,66 0,9999

• Inviscid and resonant case If ωp = ω0 and β = 0 then clearly solution 4.11 is not
defined. In this case we get the solution:

x(t) = ε

2ω2
0

(sin(ω0t) + (ω0t) cos(ω0t)) (4.15)

We would like to know when this linear approximation is accurate enough, for that we
should verify when the main assumption |x| << R0 is satisfied. For the purpose of
this work, parameters p0, pv, ρ, µ, S and k will be considered fixed (specific values are
given in Table (4.2)). Therefore the maximum value of |x| depends only on parameters
R0, f and A, Taking some idea from different research papers made on sonochemistry
and sonoluminiscence [20, 23, 33, 32, 34] - usual applications of acoustic cavitation-, we
consider that physically relevant intervals for our parameters are given by the intervals
shown in Table (4.2) and the dependence of |x|max with respect to these parameters is
shown in Fig. (4.3).

Table 4.2: Values of fixed and variable parameters considered in this section

Fixed parameters
Variable Parameter Value Units

p0 Initial external pressure 101325 Pa
pv Vapor pressure 2339.215 Pa
ρ Density 998.206 kg/m3

µ Viscosity 0.001 Pa · s
S Surface tension 0.074 N/m
k Polytropic index 1.4 [−]

Variable parameters
Variable Parameter Range Units

R0 Initial radius 1− 100 µm
f Exciting frequency 0− 1000 kHz
A Dimentionless amplitude 0− 5 [-]

These curves tell us, as expected, that this linear approximation is acceptable only
for small pressure amplitudes, however we can also see that we must be aware of not
considering exciting frequencies near to the natural frequency of the bubble f0. It is also
interesting to see that in our interval of interest (0 - 1000 kHz) small bubbles likes 1 or 5µm
will always have relatively large oscillations, so we can expect a purely non-linear behavior
for these sizes, therefore this approximation is not enough for them. For large bubbles

68

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

(a) R0 = 1µm (b) R0 = 5µm

(c) R0 = 10µm (d) R0 = 25µm

(e) R0 = 50µm (f) R0 = 100µm
Figure 4.3: Curves of |x|max vs f for different amplitudes A and initial radii R0

(like 50 or 100µm) on the other side, it seems safe enough to use this approximation for
high exciting frequencies.

We can easily verify these conclusions by comparing the solutions of the linearized
Rayleigh-Plesset equation with the full non-linear one, we show some examples in Fig.
(4.4): for large bubbles with frequencies far from f0, we can easily see a remarkable
correspondence between both solutions. On the other hand, for the other two cases

69

4.5. NON-LINEAR DYNAMICS

discrepancies are clear: in case (c) frequency is very close to f0, therefore we can see
resonant oscillations in the linear solution, the non-linear solution, however, does not
seem to reproduce this behavior. In Case (d) we study a small bubble (R0 = 1µm),
although frequency is far from f0, which produces a nice linear solution, we can see that
the true solution is strongly non-linear:

(a) R0 = 100µm, f = 400kHz, A = 2 (b) R0 = 50µm, f = 700kHz, A = 5

(c) R0 = 25µm, f = 150kHz, A = 1 (d) R0 = 1µm, f = 200kHz, A = 3
Figure 4.4: Comparison of linearized Rayleigh-Plesset equation vs Full non-linear
Rayleigh-Plesset equation

4.5. Non-linear dynamics
We have seen that for some combinations of parameters, namely large bubbles and fre-
quencies far from natural frequency or small bubbles with small pressure amplitudes, a
simple linear approach may be accurate enough. For this reason we will focus on the
remaining cases: small bubbles with not small amplitudes and large bubbles with fre-
quencies near natural frequency. Since we expect the solutions of these cases to have
a proper non-linear behavior, there is little we can do with analytical approaches and
therefore we must rely on numerical methods. To do that, we will solve system (4.2)
numerically under several combinations of initial condition R0 and parameters f and A.

70

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

4.5.1. Preliminaries
A preliminary step is performed to make the equation dimensionless, as suggested by
Koch [24], float point numbers are denser around 1 so this procedure, if carried correctly,
should improve accuracy and efficiency. To perform this procedure, we follow suggestions
from Franc & Michel and Koch [8, 24]:

R = R̃Rref t = t̃tref ρ = ρ̃ρref U = ŨUref pany = p̃anypref (4.16)

Where Rref, tref, ρref, Uref and pref are reference values satisfying the following relations:

Uref = Rref

tref
pref = U2

refρref (4.17)

Considering this, other quantities are made dimensionless by:

µ = µ̃RrefUrefρref S = S̃RrefU
2
refρref f = f̃

1
tref

d

dt
= 1
tref

d

dt̃
(4.18)

So by defining three of the five initial reference magnitudes we define the whole dimension-
less equation which looks exactly the same with the corresponding dimensionless variables:

R̃ ¨̃R + 3
2

˙̃R2 = p̃v − p̃∞(t̃)
ρ̃

+ p̃g0

ρ̃

(
R̃0

R̃

)3k

− 2S̃
ρ̃R̃
− 4µ̃

ρ̃

˙̃R
R̃

(4.19)

For convenience, we will drop the "tilde" in the rest of this section, but we will always be
referring to the dimensionless equation.

The choice of reference parameters usually comes from the physics of the problem.
Franc & Michel propose the following reference quantities Rref = R0, pref = p0 − pv and
for tref one of the following:

• tref−p = R0
√

ρ
p0−pv

• tref−µ = R2
0

4µ

• tref−S = R0

√
ρR0
2S

• tref−f = 1
f

• tref−f0 = 1
f0

The suitable choice is the one which makes R̃ and t̃ of the order of unity, considering that
we will be varying frequency, for most of our computations tref−f is considered.

4.5.2. Numerical results
To solve numerically system (4.2) there is a large offer of numerical methods that we
can use, as we showed in Chapter 3. The first thing we want to do is to choose the most
suitable method for this system. In MATLAB, the offer is reduced to 8 solvers from which
we have chosen two non-stiff solvers: ode45, an explicit Runge-Kutta method of order 5
and ode113, a predictor-corrector multistep method of variable order from 1 to 13, and

71

4.5. NON-LINEAR DYNAMICS

two stiff solvers: ode23s, a Rosenbrock method of order 3 and ode15s, a modified BDF
method of variable order from 1 to 5. They are compared for several combinations of R0,
f and A and the results are shown in Table (4.3).

Table 4.3: Efficiency comparison of various MATLAB solvers when applied to Rayleigh-
Plesset equation. Computations are made with a processor: Intel Core i5-7200U 2.5GHz
with Turbo Boost up to 3.1 GHz, RAM: 8 GB and a GPU: NVIDIA GeForce MX130
with 2GB.

ode45 ode113 ode23s ode15s
R0 f A fevals Time fevals Time fevals Time fevals Time

[µm] [kHz] [−] [−] [ms] [−] [ms] [−] [ms] [−] [ms]

1

20
1 65425 348.71 14649 438.44 299309 6608.83 11565 1302.71
3∗ 25885 73.89 4614 78.21 128905 2604.36 6840 452.11
5∗ 28519 67.44 5274 76.94 143123 2822.78 6299 390.87

500
1 10903 41.19 2832 70.20 110382 2352.76 4629 400.35
3 31381 77.32 7182 138.22 213468 4138.19 13769 1055.37
5 26371 71.78 7637 111.86 181439 3629.07 13665 880.84

1000
1 8809 37.88 2320 63.45 115464 2430.04 3829 250.26
3 16201 45.18 5999 89.62 230861 4688.52 11096 702.09
5 14551 40.46 5236 108.65 205821 4185.63 9425 596.72

50

20
1 16171 82.03 5782 161.96 282942 5631.72 10964 856.12
3 13441 34.55 4744 72.46 205355 4064.66 9154 701.72
5 20863 52.06 5657 84.03 212026 4085.98 11018 776.62

500
1 1099 27.75 - - 40417 926.23 877 89.26
3 1417 7.41 - - 54997 1093.44 980 67.57
5 1555 5.37 - - 60042 1147.75 1017 66.24

1000
1 1033 5.63 - - 32246 673.68 806 58.04
3 1279 4.24 - - 46784 908.38 925 62.40
5 1363 4.84 - - 54160 1323.36 979 76.30

100

20
1 9097 33.09 3262 51.90 159162 2979.41 6552 460.51
3 9301 36.11 3370 67.92 156831 3200.21 6131 385.76
5 10687 28.72 3930 56.82 173071 3447.63 7002 493.65

500
1 1105 5.44 - - 36184 740.07 869 99.64
3 1351 4.78 - - 51727 1052.27 978 63.95
5 1429 4.71 - - 58233 1148.57 1009 67.38

1000
1 967 3.60 - - 28692 594.87 831 57.25
3 1177 23.75 - - 41457 798.85 935 58.55
5 1291 4.79 - - 48727 1367.90 975 72.90

-: ode113 gives not satisfactory solution for these combinations
*: Solvers are not able to finish integration for this combination

We can see in Table (4.3) that at least for the attempted combinations implicit methods
like ode23s and ode15s, perform far worse that explicit methods like ode45 and ode113,
so we can be almost sure that the problem is not stiff. In general ode45 performs better
however it is surprising to see that ode113 does not give satisfactory results for some
combinations, precisely for those where the system behaves close to a linear oscillator and
the computational demand is low, probably because the number of steps for these cases
is very low, and a significant amount of them are computed in the starting phase with

72

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

low order, however for the most exigent combinations (R0 = 1µm, f = 20kHz, with all
three pressure amplitudes), it behaves slightly better than ode45. Regarding these three
cases, it is interesting to see that any of the 4 solvers is able to complete the integration.
The plots of some of these combinations are shown in Fig. (4.5).

4.5.3. Discussion on complete collapsing cases
The numerical results obtained for combination (R0 = 1µm, f = 20 kHz, A = 3 and
A = 5) captured our attention. Mathematically speaking they could imply two things:
the first possibility is that given the amount of non-linearities present in Rayleigh-Plesset
equation, typical solvers like the ones tried so far are not suitable to deal with some special
combination of parameters. However, and this is the second possibility, since we showed
only local existence of solutions, there is a chance that for some given combination of
parameters, solutions are not globally defined and they indeed behave as our numerical
solution suggests, this is reaching R = 0 in finite time.

Regarding this last possibility, to our best knowledge there is no study answering to the
basic question on global existence of solutions for the gas-filled bubble under a oscillating
external pressure. Rayleigh, already in 1917, showed that for a void cavity pv = 0 and
pg0 = 0 the bubble will collapse in finite time (this time is usually called Rayleigh time).
Torres [45] shows that in the case of vapor bubbles (pg0 = 0) a collapse in finite time may
also occur. To see it better, let us consider the transformation proposed by Hakl et al
[14, 15, 16], if R = u

2
5 , Rayleigh Plesset equation is transformed into:

ü+ c
u̇

u
4
5

+ g1

u
1
5
− g2

uγ
= h0(t)u 1

5 (4.20)

With

c = 4µ
ρ

g1 = 5S
ρ

g2 = 5pg0R
3k
0

2ρ γ = 6k − 1
5 h0 = 5(pv − p∞(t))

2ρ
(4.21)

This is special case of a family of second order ODEs called Liénard equations given by
ü+ f(u)u̇+ g(u) = h(t, u) which generalize harmonic oscillators.

Coming back to Eq. (4.20), if we consider a vapor-only bubble (g2 = 0), in a region
where p∞(t) > pv for a relatively long time (for instance if f is "small") the bubble will
shrink. During the shrinking, the pressure difference term h0(t)u 1

5 will lose weight in
the final acceleration, but the surface tension term g1

u
1
5
is an attractive singularity which

increasingly pushes the bubble radius R to 0.
For the gas-filled bubble, the story is slightly different since the gas term − g2

uγ
stands

as a strong repulsive singularity given that γ > 1
5 for k > 1

3 , this gas term becomes larger
than the attractive singularity represented by the surface tension term when R approaches
0. However, this argument is not enough to claim that solutions cannot reach R = 0 and
the truth is that although Rayleigh-Plesset equation as been known for several years, and
a lot of numerical and experimental research has been done about it, analytical studies
on the oscillatory driven cases are scarse. Only very recently (in 2015) Funaki et al [9]
showed that for the case of p∞ constant, solutions of system (4.2) are globally defined for
any initial condition.

The physical intuition, for the oscillatory driven case, goes also in this same direction.
Given that the bubble contains some non-condensable gas inside, it is reasonable to think

73

4.5. NON-LINEAR DYNAMICS

(a) R0 = 1µm, f = 1000kHz,A = 1 (b) R0 = 1µm, f = 20kHz,A = 5

(c) R0 = 50µm, f = 500kHz,A = 5 (d) R0 = 100µm, f = 500kHz,A = 3

(e) R0 = 20µm, f = 20kHz,A = 3 (f) R0 = 1µm, f = 1000kHz,A = 3

Figure 4.5: Non-Linear oscillations for several combinations. Note that for (b) the solver
is not able to continue the integration after the first collapse, while for (c) and (d), which
shows some linear-like behavior, ode113 gives a non-satisfactory solution

that it cannot be compressed infinitely. Another fact that supports this intuition is
that more realistic models involving liquid’s compresibility, like Gilmore’s, are able to
reproduce this collapse without any problem, as we can see in Fig (4.6).

74

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

(a) Gilmore’s solution to the problem with
R0 = 1µm, f = 20kHz, A = 3 (b) Detail for interval t ∈ [1.325, 1.35]s

Figure 4.6: Gilmore’s solution to the problem with R0 = 1µm, f = 20kHz, A = 3

However, the persisting appearing of this "complete" collapse in the numerical solution
of Rayleigh-Plesset equation for some combinations of parameters, even when computed
with different methods, should not pass unnoticed.

We would like to get a lower bound for u in Eq. (4.20), given some initial conditions
u(t0) = u0 and u̇(t0) = v0. For that let us first multiply by u̇ and integrate over [t0, t], to
get the following energy balance:∫ t

t0

(
ü+ c

u̇

u
4
5

+ g1

u
1
5
− g2

uγ

)
u̇dt =

∫ t

t0
h0(t)u 1

5 u̇dt

u̇2

2︸︷︷︸
T (u̇)

+
∫ u

u0

(
g1

u
1
5
− g2

uγ

)
du︸ ︷︷ ︸

G(u)

=
∫ t

t0
h0(t)u 1

5 u̇dt︸ ︷︷ ︸
Wa

−
∫ t

t0
cu̇2u−

4
5dt︸ ︷︷ ︸

Wd

(4.22)

Now, motivated by the case we are interested on, let us assume that the collapse is so
fast that h0(t) is nearly constant h0(t) ≈ h as it appears in Fig. (4.6). On the other
hand the dissipative term Wd is only subtracting energy from the system, and therefore
a lower estimate neglecting it seems to be a safe bound, for this reason and for the sake
of simplicity let us ignore that term. We are then left with an autonomous hamiltonian
system, as indicated by Ohnawa & Suzuki [37], with energy function:

T (u̇) +G(u) = u̇2

2 +
∫ u

u0

(
g1

u
1
5
− g2

uγ
− hu

1
5

)
du = 0 (4.23)

Since energy is conserved, at least during this short period of time, we can say that starting
from and initial condition (u0, u̇0) close to the collapse, in order to stop the bubble, i.e.
u̇1 = 0, we require u1 to satisfy the balance:

T (u̇0) +G(u0) = T (u̇1) +G(u1)
T (u̇0) = G(u1)

u̇2
0

2 =
∫ u1

u0

(
g1

u
1
5
− g2

uγ
− hu

1
5

)
du

u̇2
0

2 = 5
4g1

(
u

4
5
1 − u

4
5
0

)
− g2

1− γ
(
u1−γ

1 − u1−γ
0

)
− 5

6h
(
u

6
5
1 − u

6
5
0

)
(4.24)

75

4.5. NON-LINEAR DYNAMICS

Looking for validation this equation is used to estimate the minimum radius of a collapse
which is apparently well represented by the numerical solver, namely the case R0 = 1µm,
f = 1000kHz, A = 3, whose behavior was shown already in Fig. (4.5f). We want to study
the first collapse, occurring approximately at t = 1.28 × 10−6s and reaching a minimum
radius of approximately Rmin = 4.286 × 10−2µm. Eq (4.24) is used in this case, from a
starting point (R0 = 1.206× 10−1µm, Ṙ0 = −2.722× 103m/s) corresponding to the point
(u0, u̇0) = (5.054×1018,−2.852×107), and the lower bound u1 = 3.692×1019 is obtained,
corresponding to the radius Rmin = 4.236× 10−2µm, which is coherent with the results of
the numerical solver.

After this check, Eq. (4.24) is solved numerically also for the case of R0 = 1µm,
f = 20kHz, A = 3 that we are interested on, starting from several points near the collapse
and the apparent lower bound of u1 = 6.24× 10−30 corresponding to R1 = 2× 10−6µm is
obtained, as shown in Fig. (4.7b).

(a) Case R0 = 1µm, f = 1000kHz (b) Case R0 = 1µm, f = 20kHz
Figure 4.7: Energy function vs transformed radius u near to the minimum radius u1

It is clear that this is a really small number, and there is no doubt why the solver
may be having problems with it, however, even though this is not a rigorous proof, it
seems clear that at least under this "fast collapse" assumptions the solution should reach
a minimum Rmin and then "bounce", which may support the hypothesis that solutions for
this general problem are globally defined for an arbitrary initial condition.

If it is true that solutions of Rayleigh-Plesset equation with an oscillatory pressure
field are globally defined for any initial conditions, then we cannot accept the numerical
results obtained by the previous solvers in these problematic combinations of parameters
and we should search for a different method. To know what to do, we need to understand
why the method stops. The message sent by Matlab, when the integration is stopped is
the following:

“Warning: Failure at t=6.645779e-05. Unable to meet integration tolerances without
reducing the step size below the smallest value allowed (2.168404e-19) at time t”.

Meaning that it has reached the minimum allowed stepsize and still the error in the
step is larger than the error tolerance. Let us recall that the stepsize may be limited by
accuracy or by stability. Stability does not seems to be the problem here since implicit
methods are having the same problem. In fact, we studied the how the eigenvalues of the
jacobian matrix of f are distributed along the integration process by ode45 and, with a

76

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

magnitude of around 1, they do not seem to require a specially small stepsize to fit in the
stability region, as we can see in Fig. (4.8).

(a) Eigenvalues of J = ∂f
∂y for different times

along the integration procedure.
(b) Region of absolute stability of the
Dormand and Prince pair implemented in
ode45 (reproduced from [1].

Figure 4.8: Comparison of the eigenvalues of the jacobian of the problem vs the region of
stability of the method. Note the difference on scale.

This clearly indicates that the problems is in accuracy. For this reason higher or-
der methods were attempted, like ode87, a free code by Govorukhin V.N. available at
http://www.math.rsu.ru/mexmat/kvm/matds/, implemented in the fashion of the solvers
from the MATLAB ode suite and based on a pair of methods of order 8 and 7, designed
by Dormand and Prince. It was also attempted to exploit the structure of 2nd order dif-
ferential equation by implementing a Runge-Kutta-Nystrom method, a variant specially
designed for 2nd order equations. A pair proposed by Murua [36] consisting of a pair of
methods of order 6 and 5 was implemented. However, unfortunately these methods also
failed at trying to compute the first collapse.

An interesting alternative approach is proposed by Ohnawa & Suzuki [37] Called by
them discrete gradient approximation, it is considered for the case p∞ constant, based
on the conservation principle exposed before. For the most general variable p∞(t) case,
however, a more careful strategy to compute the Wa term numerically must be included.
Ohnawa & Suzuki formulated the conservation principle obtained in Eq. (4.24) starting
from the remark we did on subsection 2.1.4 about the energy interpretation of Rayleigh-
Plesset equation. Let us recall that Rayleigh-Plesset equation can be also written as in
Eq. (2.16):

d

dt

(
2πρR3Ṙ2

)
=
(
pB − p∞ −

2S
R
− 4µṘ

R

)
4πR2Ṙ

So integrating from t0 to t we get:

ρR3Ṙ2

2 =
∫ t

t0

(
pv − p∞(t) + pg0

(
R0

R

)3k
− 2S

R

)
R2Ṙdt

ρR3Ṙ2

2 −
∫ R

R0

(
pv − p0 + pg0

(
R0

R

)3k
− 2S

R
− 4µṘ

R

)
R2dR =

∫ t

t0
pa sin(2πft)R2Ṙdt−

∫ t

t0

4µṘ
R

R2Ṙdt

(4.25)

77

4.5. NON-LINEAR DYNAMICS

We can easily recognize the four terms obtained before. In their work, Ohnawa & Suzuki
defined the momentum Q = ρR3Ṙ and formulated the following energy function:

E(R,Q) = Q2

2ρR3 +
∫ R

R0
P (r)r2dr︸ ︷︷ ︸
G(R)

(4.26)

Where
P (r) = −

(
pv − p∞ + pg0

(
R0

r

)3k
− 2S

r

)
(4.27)

This function is nice, because it allows us to rewrite the problem as a gradient system,
i.e. for y = [R,Q]T we have:

ẏ =
[

0 1
−1 −4µR

]
∇E (4.28)

This can be easily proven:
∂E

∂Q
= Q

ρR3 = Ṙ (4.29)

∂E

∂R
− 4µR∂E

∂Q
= 3

2
Q2

ρR4 − P (R)R2 − 4µ Q

ρR2

= ρR2

3
2Ṙ

2 −
P (R) + 4µṘ

R

ρ


= ρR2(RR̈ + 3Ṙ2) = Q̇

(4.30)

Now, to exploit this gradient structure, a finite difference scheme is proposed as follows.
For more detailes, the reader is refered to [37]:

Ṙ ≈ Rn+1 −Rn

hn
Q̇ ≈ Qn+1 −Qn

hn
∂E

∂R
= −3

2
Q2

ρR3 + dG

dR
≈ −

Q2
n(R2

n +RnRn+1 +R2
n+1)

2ρR3
nR

3
n+1

+ G(Rn+1)−G(Rn)
Rn+1 −Rn

∂E

∂Q
= Q

ρR3 ≈
Qn +Qn+1

2ρR3
n+1

(4.31)

By using this approximations, Eq. (4.28) is transformed into:

Rn+1 −Rn

hn
= Qn +Qn+1

2ρR3
n+1

Qn+1 −Qn

hn
= Q2

n(R2
n +RnRn+1 +R2

n+1)
2ρR3

nR
3
n+1

− G(Rn+1)−G(Rn)
Rn+1 −Rn

− 4µRn
Qn +Qn+1

2ρR3
n+1

(4.32)
which can be solved using some zero-finding method.

78

4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE

The modification made by us, to include the effect of the variable p∞(t) lies on the
computation of G(R): Let us recall that:

G(t, R) =
∫ R

R0
P (r)r2dr

=
∫ R

R0

(
p∞(t)− pv + 2S

r
− pg0

(
R0

r

)3∗k)
r2dr

=
∫ R

R0
pa sin(2πft(r))r2dr + p0 − pv

3 (R3 −R3
0) + S(R2 −R2

0)− pg0R
3∗k
0

3(1− k)(R3(1−k) −R3(1−k)
0)

(4.33)
The first term corresponding to the applied energy is not considered in Ohnawa & Suzuki’s
work but it vey important in our current problem, so we decided to approximate it with
a simple trapezoidal rule as follows:
∫ R

R0
pa sin(2πft(r))r2dr ≈

n∑
i=0

pa sin(2πftn)(Rn+1 +Rn)2

4 (Rn+1−Rn) =
n∑
i=0

pa sin(2πfti)
R2
i+1 −R2

i

4
(4.34)

This rather simple approximation gives surprisingly appealing results that can be seen in
Fig. (4.9)

Figure 4.9: Results obtained by the modified discrete gradient approach. Note that no
scaling was used in this case

We can see the similarities of our results compared with those produced by Gilmore’s
approximation shown in Fig. (4.6), however our results exhibit much higher bounces after

79

4.5. NON-LINEAR DYNAMICS

the collapse which may be caused by the neglect of the damping effect due to compress-
ibility of Gilmore’s model, or maybe due to the low order approximation considered by
us for the Wa term. This last issue is a clear improvement that could be done to this
method, similar to the addition of a stepsize control scheme and an explicit implementa-
tion. Certainly these issues can be improved in the future.

80

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

5. Study-Case 2: Bubble in a fluid
flowing through a cross reduction

5.1. Flow through a Venturi tube
In the previous chapter, we have studied the case of a fixed bubble under an oscillatory
pressure field, which may result more interesting for acoustic cavitation applications.
Let us now consider a case nearer to hydrodynamic cavitation. We wish to study the
dynamics of a gas/vapor bubble immersed on a flow passing through a Venturi tube. We
will consider the Venturi tube studied by Münster on his diploma thesis [35], with the
following geometry:

Figure 5.1: Geometric description of the simulated Venturi tube (all dimensions in mm)

There are several Eulerian approaches to this problem. These methods consider prop-
erties like fraction of vapor or density as functions of time and space, and by solving a
system of PDEs, they are able to describe the dynamics of the bubble. Therefore, usually
in these methods we obtain a diffuse zone between the bubble and the surrounding fluid,
instead of having a clear interface.

In this work, however, we are interested in a Eulerian-Lagrangian approach. In this
type of method, we first consider the dynamics of the fluid neglecting the presence of
bubbles on it, and solve pressure and velocity fields by means of a Eulerian approach
(usually finite volume method). Once pressure and velocity fields are known, we will
take that information to compute bubble dynamics based on an ODE system describing
bubble’s radius evolution and Newton’s law of motion to study its displacement in a
Lagrangian fashion, as we described in Chapter 2. This coupling has been implemented
succesfully among others by Ghahramani et al (2019) [11]. Moreover, these authors
conclude that Lagrangian methods can give satisfactory results with larger time stepsizes
and coarser spacial grids than Eulerian methods.

In our case, we consider a steady flow with the following characteristics:
Symbol Parameter Value Unit

Q Volume flow rate 5× 10−3 m3/s
pout Outlet pressure 101324 Pa
pv Vapor pressure 2500 Pa

Under these flow conditions, our goal is to describe bubble’s trajectory for a given
initial radius and initial position inside the tube.

81

5.1. FLOW THROUGH A VENTURI TUBE

5.1.1. Preliminaries
As we discuss in Chapter 2, let us recall that bubble’s radius R(t) dynamics is governed
by Rayleigh-Plesset equation (Eq. (2.13)):

RR̈ + 3
2Ṙ

2 = pv − p∞(qx, qy)
ρ

+ pg0

ρ

(
R0

R

)3k
− 2S
ρR
− 4µ

ρ

Ṙ

R

For bubble’s kinetics, on the other hand, we are considering Hsieh equation (Eq. (2.62))
given by:

R ~̇vB = −2R~g+ 3R ~̇vL(qx, qy)− 3Ṙ(~vB −~vL(qx, qy))−
3
4CD|~vB −~vL(qx, qy)|(~vB −~vL(qx, qy))

Please note that different from our previous study case, the exciting pressure p∞ in
Rayleigh Plesset equation is now a function of position coordinates (qx, qy) instead of
time, since we are considering a pressure field in a steady flow. The same occurs with
fluid velocity ~vL. We can write it all together as a single system by considering the phase
variable y = [R,U, qx, qy, vx, vy]T

Ṙ = U

U̇ = pv − p∞(qx, qy)
ρR

+ pg0

ρR

(
R0

R

)3k
− 2S
ρR2 −

4µ
ρ

U

R2 −
3
2
U2

R

q̇x = vx

v̇x = 3v̇Lx(qx, qy)− 3U
R

(vx − vLx(qx, qy))−
3
4
CD
R
|vx − vLx(qx, qy)|(vx − vLx(qx, qy))

q̇y = vy

v̇y = −2g + 3v̇Ly(qx, qy)− 3U
R

(vy − vLy(qx, qy))−
3
4
CD
R
|vy − vLy(qx, qy)|(vy − vLy(qx, qy))

(5.1)
Denoted shortly as:

ẏ = f(t, y) (5.2)

For the computation of the drag coefficient CD, we will use the empirical correlation
proposed by Niansheng-Cheng (see Table (2.1)), which should be valid for Re < 2× 105,
and is given by:

CD = 24
Re (1 + 0, 27Re)0,43 + 0, 47

(
1− e−0,04Re0,38)

With Reynolds number Re given by:

Re = 2R||v − vL||ρ
µ

(5.3)

5.1.2. Well-posedness analysis
In a similar way as we did with our previous study-case, we would like to study the well-
posedness of system (5.1). A first observation is that due to the steady state of the flow
the system is now autonomous, so in order to show its well-posedness, we need to show

82

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

that f(y) is Lipschitz continuous. It is not such an easy task as before to verify whether
this function is at least locally Lipschitz, but after some effort we get the jacobian matrix
∂f
∂y

given by:

∂f

∂y
=



0 1 0 0 0 0
∂f2
∂R
− 4µ
ρR2 − 3U

R
− 1
ρR

∂p∞
∂qx

0 − 1
ρR

∂p∞
∂qx

0
0 0 0 1 0 0
∂f4
∂R

−3 (vx−vLx)
R

∂f4
∂qx

∂f4
∂vx

∂f4
∂qy

∂f4
∂vy

0 0 0 0 0 1
∂f6
∂R

−3 (vy−yLy)
R

∂f6
∂qx

∂f6
∂vx

∂f6
∂qy

∂f6
∂vy


(5.4)

Where:
∂f2

∂R
= −pv − p∞

ρR2 − (3k + 1) pg0

ρR2

(
R0

R

)3k
+ 4S

ρ

U

R3 + 3
2
U2

R2

∂f4

∂R
= 3 U

R2 (vx − vLx) + 3
4
CD
R2 (vx − vLx)|vx − vLx| −

3
4R(vx − vLx)|vx − vLx|

dCD
dRe

∂Re
∂R

∂f4

∂qx
= 3∂v̇Lx

∂qx
+ 3U

R

∂vLx
∂qx

− 3
4R

dCD
dRe

∂Re
∂qx

(vx − vLx)|vx − vLx| ±
3
2
CD
R

(vx − vLx)
∂vLx
∂qx

∂f4

∂vx
= −3U

R
− 3

4R
dCD
dRe

∂Re
∂vx

(vx − vLx)|vx − vLx| ±
3
2
CD
R

(vx − vLx)

∂f4

∂qy
= 3∂v̇Lx

∂qy
+ 3U

R

∂vLx
∂qy

− 3
4R

dCD
dRe

∂Re
∂qy

(vx − vLx)|vx − vLx| ±
3
2
CD
R

(vx − vLx)
∂vLx
∂qy

∂f4

∂vy
= − 3

4R
dCD
dRe

∂Re
∂vy

(vx − vLx)|vx − vLx|

∂f6

∂R
= 3 U

R2 (vy − vLy) + 3
4
CD
R2 (vy − vLy)|vy − vLy| −

3
4R(vy − vLy)|vy − vLy|

dCD
dRe

∂Re
∂R

∂f6

∂qx
= 3∂v̇Ly

∂qx
+ 3U

R

∂vLy
∂qx

− 3
4R

dCD
dRe

∂Re
∂qx

(vy − vLy)|vy − vLy| ±
3
2
CD
R

(vy − vLy)
∂vLy
∂qx

∂f6

∂vx
= − 3

4R
dCD
dRe

∂Re
∂vx

(vy − vLy)|vy − vLy|

∂f6

∂qy
= 3∂v̇Ly

∂qy
+ 3U

R

∂vLy
∂qy

− 3
4R

dCD
dRe

∂Re
∂qy

(vy − vLy)|vy − vLy| ±
3
2
CD
R

(vy − vLy)
∂vLy
∂qy

∂f6

∂vy
= −3U

R
− 3

4R
dCD
dRe

∂Re
∂vy

(vy − vLy)|vy − vLy| ±
3
2
CD
R

(vy − vLy)

(5.5)
With:
dCD
dRe = − 24

Re2 (1 + 0.27Re)0.43 + 2.7864
Re (1 + 0.27Re)−0.57 + 0.00028576Re−0.62e−0.04Re0.38

∂Re
∂R

= 2||v − vL||ρ
µ

∂Re
∂qi

= − 2Rρ
µ||v − vL||

(
(vx − vLx)

∂vLx
∂qi

+ (vy − vLy)
∂vLy
∂qi

)
∂Re
∂vi

= − 2Rρ
µ||v − vL||

(vi − vLi)

(5.6)

83

5.1. FLOW THROUGH A VENTURI TUBE

Even in the case when p∞, vLx, vLy, v̇Lx and v̇Ly are nice functions, with continuous
partial derivatives, we can see that there some possible singularities in ∂f

∂y
. For instance,

from Rayleigh-Plesset equation we already know that R = 0 gives problem, but now, also
zero relative velocity, i.e. W = ||v − vL|| = 0 seems to be a singularity. In the case of
Rayleigh-Plesset equation alone, we solved the problem by simply excluding R = 0 from
our domain, because this was physically meaningful. However there are no reasons to
think that for some time t, W (t) = ||v(t)− vL(t)|| = 0 so this argument is not valid now.

Let us study then what happens when W → 0. If R 6= 0, clearly this implies that Re
→ 0. Now looking at the partial derivatives we can see that the most problematic terms
are of the form W 2

i
∂CD
∂Re and WiCD. First of all, let us note that Wi ≤ W so we know that

as W → 0 the ratio Wi

W
is bounded. Now, let us consider the previous mentioned terms:

W 2
i

∂CD
∂Re ≈ W 2

i

(
a

W 2 + b

W 1.57 + c

W
+ de−0.04W 0.38

W 0.62

)

WiCD ≈ Wi

(
e

W
+ f

W 0.57 + ge−0.04W 0.38
)

(5.7)

which are bounded around W = 0, moreover they go to 0 as well, as can be seen in Fig.
(5.2). Therefore all the previous partial derivatives are defined for W = 0. This means

Figure 5.2: Terms Re2 ∂CD
∂Re and ReCD vs Re

that they are continuous and therefore f is Lipschitz continuous with respect to y on any
compact convex set, not containing R = 0, which, by theorem 3.1.1, is equivalent to say
that for any initial condition y0 = [R0, U0, x0, vx0, y0, vy0]T with R 6= 0, system (5.1) has a
unique solution y(t) defined at least on a neighborhood of t0.

84

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

5.1.3. Simplifying assumption
An assumption that we may do to simplify in some measure system (5.1) is to suppose
that bubble’s trajectory will remain near to the corresponding trajectory of a fluid particle
on the same initial position. This means that if ϕ(t) = (qLx(t), qLy(t)) describes our fluid
particle’s trajectory, we could use it to parameterize p∞, vLx and vLy by:

p∞(qx, qy) ≈ p(ϕ(t))
~vLx(qx, qy) ≈ ϕ̇(t)

(5.8)

Transforming our input functions from scalar fields on R2 into functions on R, changing
our system to:

Ṙ = U

U̇ = pv − p∞(t)
ρR

+ pg0

ρR

(
R0

R

)3k
− 2S
ρR2 −

4µ
ρ

U

R2 −
3
2
U2

R

q̇x = vx

v̇x = 3v̇Lx(t)− 3U
R

(vx − vLx(t))−
3
4
CD
R
|vx − vLx(t)|(vx − vLx(t))

q̇y = vy

v̇y = −2g + 3v̇Ly(t)− 3U
R

(vy − vLy(t))−
3
4
CD
R
|vy − vLy(t)|(vy − vLy(t))

(5.9)

This simplification serves mainly a numerical purpose. In this format, input informa-
tion requires considerably less memory and the interpolations needed through along the
integration process can be perform faster. Of course the validity of such assumption shall
be evaluated later.

5.1.4. Numerical implementation and results
For a fluid particle initially in the inlet center (center left side), pressure and velocity
profiles along its trajectory are computed numerically using ANSYS Fluent 19.1. Flow
is computed using Reynolds averaged Navier Stokes equations and realizable k-epsilon
model, discretization is done by finite volumes, segregated approach with SIMPLE algo-
rithm. The geometry and equations are adopted for axisymmetric assumption (i.e. 2D
simulation but with axisymmetric formulation of governing equations). Which provides
the following results:

System (5.9) is considered together with the following initial conditions:

y0 =



R0
U0
qx0
vx0
qx0

vy0


=



R0
0
0

vLx(0)
0

vLy(0)


(5.10)

And then it is solved by means of MATLAB’s ode suite with solvers ode45, ode113, ode15s
and ode23s with different initial radius R0. The implemented code can be consulted in
the Appendix 3.

85

5.1. FLOW THROUGH A VENTURI TUBE

(a) Pressure and velocity profiles along the considered fluid particle
trajectory

(b) Detail of (a) for interval t = [0.05s, 0.06s]
Figure 5.3: Pressure, axial velocity and radial velocity profiles for the considered fluid
particle. In (b) we can see a detail of these profiles while the particle is passing through
the reduced section

Given that our input data p∞, vLx and vLy are obtained from a CFD simulation, they
are actually a set of discrete points representing continuous functions. In general the
discretization on time given by the CFD for these three functions will be different from
the one that will be used inside the ODE solver, so we will be continuously interpolating
during the integration. The quality of these interpolations will have a big impact on the
final solution, so the interpolation method should be chose with some care. Also the

86

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

computational cost of these interpolations will have a significant weight on the total cost,
so an efficient implementation is also important.

Gautschi (2012) [10] gives a detailed discussion of the most common interpolation
methods based on polynomials. High order polynomials usually have very good accuracy
in the interior of the interval but they have large errors on the edges of the interval,
so usually it is better to use an interpolant made of piecewise polynomial of low order,
usually the most popular subroutines use cubic polynomials since they are smooth enough
to give nice plots. In MATLAB, there are two functions implementing different methods
of interpolation both based on cubic piecewise polynomials: pchip - which stands for
piecewise cubic hermite interpolating polynomial- and spline, which uses cubic splines.
The main difference is that splines are by definition C2, while cubic hermite polynomials
are required only to be C1 Hermite polynomials conforms a large family, therefore there
are several ways of defining hermite polynomials on the same interval. In MATLAB the
function pchip is designed to preserve the "shape" of the data, so it is not as smooth as
spline, but it will not have any strange overshoot when the data is changing fast. Fig.
5.4 shows a comparison of both interpolation methods on our input data.

(a) Comparison of both interpolating functions
in the interval t = [0.05s, 0.06s] (b) Detail of (a) for interval t = [0.052s, 0.054s]

Figure 5.4: Comparison of both interpolating functions pchip and spline on intervals (a)
t = [0.05s, 0.06s] and (b) t = [0.052s, 0.054s].

Based on the previous discussion the command spline is chosen. The reason is that
since we have to deal with v̇Lx and v̇Ly in our system, we would like this functions to be
as smooth as possible. Now, a key step to make the procedure efficient is to compute the
corresponding piecewise polynomials for p∞(t), vLx(t), vLy(t), v̇Lx(t) and v̇Ly(t), before
solving the ode. Once these interpolants are computed, we just need to call them into
the function handle representing our system. Functions are approximated by using the
command spline itself p∞(t), vLx(t) and vLy(t), for the derivatives v̇Lx(t) and v̇Ly(t) we
can use the derivatives of the interpolants by using the command fnder -which stands for
function derivative. An idea in pseudocode of the construction of the interpolants is given
as follows:
t ← importdata(timegrid.txt) % Import time grid
p ← importdata(pressure.txt) % Import pressure data
vx ← importdata(vel-x.txt) % Import axial velocity data
vy ← importdata(vel-y.txt) % Import radial velocity data

87

5.1. FLOW THROUGH A VENTURI TUBE

pp ← spline(t,p) % Construction of interpolant for the pressure
vxp ← spline(t,vx) % Construction of interpolant for the axial vel
vyp ← spline(t,vx) % Construction of interpolant for the radial vel
dvxp ← fnder(vxp) % Derivative of the interpolant for the axial vel
dvyp ← fnder(vyp) % Derivative of the interpolant for the radial vel

The elements "pp", "vxp", "vyp", "dvxp" and "dvyp" are special structures in MATLAB
which can be evaluated by using the command ppval. This command can be used to
evaluate an interpolant on an arbitrary number of points.

These interpolants can now be included in system (5.1) to approximate p∞(t), vLx(t),
vLy(t), v̇Lx(t) and v̇Ly(t) and we can use any ode solver to compute the solution y(t). As
an assessment on the stiffness of the problem, system (5.1) was solved with solvers ode45,
ode113, ode23s and ode15s and their performances are compared in Table (5.1) and Fig.
(5.5).

Table 5.1: Computational cost comparison of the integration of system 5.1 for different
initial radius and different solvers of MATLAB ode suite

ode45 ode113 ode23s ode15s
R0 fevals Time fevals Time fevals Time fevals Time

(µm) (-) (s) (-) (s) (-) (s) (-) (s)
100 1232767 166.28 598265 87.55 13283071 2395.66 848272 212.22
75 887737 130.54 418843 66.97 8385931 1596.18 538191 131.49
50 886771 127.19 507740 50.38 6223904 834.53 608981 89.60
25 1237075 177.64 773267 103.24 3448173 364.67 941510 134.62
10 2366731 186.48 1129779 109.92 2450593 224.97 2198281 320.65
5 4041181 312.46 2303499 215.61 2617773 245.74 3340953 467.64
4 4973413 386.72 2918896 261.05 2742356 244.43 1300892 184.07
3 7302223 569.27 3988358 369.58 2898983 270.79 1683570 237.05
2 10033903 845.97 6266722 653.24 3234000 363.94 74917 13.49
1 21078100 3026.66 14202488 2146.86 4662932 454.38 52094 8.10

According to Table 5.1 and Fig. 5.5, ode113 seems to be the most efficient solver for
system 5.1 when R0 ≥ 5µm. For R0 < 5µm, implicit solvers exceed the performance of
the explicit solvers, for which the computation cost grows exponentially, which clearly
indicate that system 5.1 becomes stiff for small bubble sizes.

To have an idea of the behavior of the bubbles the obtained results for different initial
radii are shown in Fig. (5.6), (5.7), (5.8) and (5.9). The behavior is relatively similar
for different initial sizes, with damped oscillation of very high frequency on R, vx and vy,
however small bubbles oscillate with significantly smaller amplitude and their oscillations
are damped much faster. Axial velocity behave in a similar way, which smaller oscillations
for the smaller bubbles, and for the y-position we can see that smaller bubbles are lifted
in less measure, causing them to keep closer to the trajectory of the corresponding fluid
particle. According to Fig. (5.9), the assumption we did on the trajectory of the bubble
seems to be acceptable, specially for small bubbles.

88

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

Figure 5.5: Computational time for different initial radius and different solvers

Figure 5.6: Radius dynamics of the bubble for different initial radii

89

5.1. FLOW THROUGH A VENTURI TUBE

Figure 5.7: Axial position dynamics for different initial radii.

Figure 5.8: Radial position dynamics for different initial radii.

90

5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION

Figure 5.9: Trajectory of bubbles of diverse initial radii.

5.2. Flow through a sharp-edged orifice plate
Another simulation is carried for a liquid flowing through a sharp-edged orifice plate, as
the one describe in Fig. (5.10).

Figure 5.10: Geometric description of the orifice plate installation (All dimentions in mm)

91

5.2. FLOW THROUGH A SHARP-EDGED ORIFICE PLATE

Flow conditions are shown in the table below:
Symbol Parameter Value Unit

vin Inlet velocity 2.534 m/s
pout Outlet pressure 36324 Pa
pv Vapor pressure 3540 Pa

As done before for the Venturi tube, pressure and velocity fields are computed using
ANSYS Fluent 19.1. Flow is computed using Reynolds averaged Navier Stokes equa-
tions and realizable k-epsilon model, discretization is done by finite volumes, segregated
approach with SIMPLE algorithm. The geometry and equations are adopted for axisym-
metric assumption (i.e. 2D simulation but with axisymmetric formulation of governing
equations). We are interested this time with the behavior of a bubble located initially in
position (qx = 0, qy = D

2), with D being the diameter of the pipeline, i.e. in the upper
part of the flow. The profiles for pressure and velocity fields along this trajectory are
shown below:

Figure 5.11: Pressure and velocity profiles along the trajectory of a fluid particle starting
at the upper position of the pipeline.

A comparison on the computational cost is also performed for this case, giving us the
results shown in Table (5.2) and Fig. (5.12). We can see from there, that also in this case,
ode113 seems to be the most efficient option for most of the larger bubble sizes, however
somewhere between R0 = 5µm and 10µm the system becomes definitely stiff.

The description of the dynamics are given in Fig. (5.13), (5.14), (5.15) and (5.16).

92

Table 5.2: Computational cost comparison of the integration of system 5.1 for different
initial radius and different solvers of MATLAB ode suite. Computations are made with
a processor: Intel Core i5-7200U 2.5GHz with Turbo Boost up to 3.1 GHz, RAM: 8 GB
and a GPU: NVIDIA GeForce MX130 with 2GB.

ode45 ode113 ode23s ode15s
R0 fevals Time fevals Time fevals Time fevals Time

(µm) (-) (s) (-) (s) (-) (s) (-) (s)
100 177235 29.16 115281 27.28 1115736 304.28 133484 44.98
75 211525 48.96 131325 40.04 1221180 312.33 147874 64.61
50 297601 62.20 182938 42.03 1585803 345.26 215838 72.34
25 422443 46.51 312494 55.78 1119443 220.32 355506 114.21
10 1682329 167.11 460845 110.73 1171334 254.26 871280 300.28
5 1682329 321.51 929034 216.12 1467694 318.02 178799 59.24
1 889009 967.36 5892956 754.07 3066117 335.79 68694 10.39

Figure 5.12: Computational time for different initial radius and different solvers

5.2. FLOW THROUGH A SHARP-EDGED ORIFICE PLATE

(a) Radius dynamics of the bubble for different
initial radii (b) Detail in interval t ∈ [0.075, 0.110]s.

Figure 5.13: Radius dynamics of the bubble for different initial radii

(a) Axial position dynamics of the bubble for
different initial radii (b) Detail in interval t ∈ [0.075, 0.110]s.

Figure 5.14: Axial position dynamics of the bubble for different initial radii

(a) Radial position dynamics of the bubble for
different initial radii (b) Detail in interval t ∈ [0.075, 0.110]s.

Figure 5.15: Radial position dynamics of the bubble for different initial radii

94

Figure 5.16: Trajectory of bubbles for diverse initial radii.

6. Bibliography
[1] Ashino, R., Nagase, M., and Vaillancourt, R. Behind and Beyond the

MATLAB ODE Suite. Computers and Mathematics with Applications 40 (2000),
491–512.

[2] Atkinson, K., Han, W., and Stewart, D. Numerical Solution of Ordinary
Differential Equations. John Wiley & Sons, Ltd, 2009.

[3] Brennen, C. E. Cavitation and bubble dynamics. Oxford University Press, 1995.

[4] Burra, L., and Zanolin, F. Non-singular solutions of a Rayleigh-Plesset equation
under a periodic pressure field. Journal of Mathematical Analysis and Applications
435, 2 (2016), 1364–1381.

[5] Butcher, J. C. Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons, Ltd, 2008.

[6] Chang, H.-C., and Chen, L.-H. Growth of a gas bubble in a viscous fluid. Physics
of Fluids 29, 11 (1986), 3530.

[7] Feng, Z. C., and Leal, L. G. Nonlinear Bubble Dynamics. Annual Review of
Fluid Mechanics 29, 1 (1997), 201–243.

[8] Franc, J. P., and Michel, J. M. Fundamentals of Cavitation, vol. 76. Kluwer
Academic Publishers, 2005.

[9] Funaki, T., Ohnawa, M., Suzuki, Y., and Yokoyama, S. Existence and
uniqueness of solutions to stochastic Rayleigh-Plesset equations. Journal of Mathe-
matical Analysis and Applications 425, 1 (2015), 20–32.

[10] Gautschi, W. Numerical Analysis, 2nd ed. Birkhäuser, 2012.

[11] Ghahramani, E., Arabnejad, M. H., and Bensow, R. E. A comparative
study between numerical methods in simulation of cavitating bubbles. International
Journal of Multiphase Flow 111 (2019), 339–359.

[12] Gilmore, F. R. The growth or collapse of a spherical bubble in a viscous compress-
ible liquid. California Institute of Tech Engineering Report No. 26-4 26, 4 (1952),
1–40.

[13] Gladwell, I. Automatic selection of the initial step size for an ODE solver. 175–
192.

[14] Hakl, R., Torres, P. J., and Zamora, M. Periodic solutions of singular second
order differential equations: Upper and lower functions. Nonlinear Analysis, Theory,
Methods and Applications 74, 18 (2011), 7078–7093.

[15] Hakl, R., Torres, P. J., and Zamora, M. Periodic solutions to singular second
order differential equations: the repulsive case. Topological Methods in Nonlinear
Analysis 39 (2012), 199–220.

96

6. BIBLIOGRAPHY

[16] Hakl, R., and Zamora, M. Periodic solutions to the Liénard type equations with
phase attractive singularities. Boundary Value Problems 2013 (2013), 1–20.

[17] Hegedűs, F., and Kullmann, L. Rayleigh-Pleset Equation Stability Analysis.
Gépészet, May (2008), 29–30.

[18] Herring, C. Theory of the pulsations of the gas bubble produced by an underwater
explosion. Underwater explosion research (1949).

[19] Hu, J., and Li, W.-p. Theory of Ordinary Differential Equations Existence ,
Uniqueness and Stability (Lecture Notes). Hong Kong University of Science and
Technology, 2004.

[20] Kanthale, P., Ashokkumar, M., and Grieser, F. Sonoluminescence, sono-
chemistry (H2O2 yield) and bubble dynamics: Frequency and power effects. Ultra-
sonics Sonochemistry 15, 2 (2008), 143–150.

[21] Keller, J. B., and Kolodner, I. I. Damping of underwater explosion bubble
oscillations. Journal of Applied Physics 27, 10 (1956), 1152–1161.

[22] Keller, J. B., and Miksis, M. Bubble oscillations of large amplitude. The
Journal of the Acoustical Society of America 68, 2 (1980), 628–633.

[23] Kerabchi, N., Merouani, S., and Hamdaoui, O. Depth effect on the inertial
collapse of cavitation bubble under ultrasound: Special emphasis on the role of the
wave attenuation. Ultrasonics Sonochemistry 48, May (2018), 136–150.

[24] Koch, M. Numerical modelling of cavitation bubbles with the Finite Volume method.
Master thesis, 2014.

[25] Kroulíková, T. Runge-Kutta methods. Master thesis, Brno University of Technol-
ogy, 2017.

[26] Lauterborn, W., and Parlitz, U. Methods of chaos physcis and their applica-
tions to acoustics. Acoustical Society of America 84, December (1988), 1975–1993.

[27] Leighton, T. Cavitation Inception and Fluid Dynamics. In The Acoustic Bubble.
1994, ch. Chapter 2, pp. 67–128.

[28] LeVeque, R. Chapter 7: Absolute Stability for Ordinary Differential. In Finite
Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007.

[29] Lu, S., Guo, Y., and Chen, L. Periodic solutions for Liénard equation with
an indefinite singularity. Nonlinear Analysis: Real World Applications 45, 11271197
(2019), 542–556.

[30] Ma, J. T. S., and Wang, P. K. C. Effect of Initial Air Content on the Dynamics
of Bubbles in Liquids. IBM Journal, October (1962), 2–4.

[31] Mathworks. Matlab R2018b User’s Guide. 2018.

97

[32] Merouani, S., Ferkous, H., Hamdaoui, O., Rezgui, Y., and Guemini, M.
A method for predicting the number of active bubbles in sonochemical reactors.
Ultrasonics Sonochemistry 22 (2015), 51–58.

[33] Merouani, S., Hamdaoui, O., Rezgui, Y., and Guemini, M. Energy anal-
ysis during acoustic bubble oscillations: Relationship between bubble energy and
sonochemical parameters. Ultrasonics 54, 1 (2014), 227–232.

[34] Merouani, S., Hamdaoui, O., Rezgui, Y., and Guemini, M. Computer sim-
ulation of chemical reactions occurring in collapsing acoustical bubble: Dependence
of free radicals production on operational conditions. Research on Chemical Inter-
mediates 41, 2 (2015), 881–897.

[35] Münster, F. Numerické řešení dynamiky kavitační bubliny. Master thesis, Vysoké
učení technické v Brně, 2018.

[36] Murua, A. Runge-Kutta-Nyström methods for general second order ODEs with
application to multi-body systems. Applied Numerical Mathematics 28, 2-4 (1998),
387–399.

[37] Ohnawa, M., and Suzuki, Y. Mathematical and Numerical Analysis of the
Rayleigh-Plesset and the Keller Equations. InMathematical Fluid Dynamics, Present
and Future, vol. 183. Springer, 2016, ch. 7, pp. 3–4.

[38] Perko, L. Equations and Dynamical Systems. Springer, 2000.

[39] Plesset, M. S. The dynamics of cavitation bubbles. Journal of Applied Mechanics
(1949), 277–282.

[40] Plesset, M. S., and Prosperetti, A. Bubble Dynamics and Cavitation. Annual
Reviews in Fluid Mechanics (1977), 1–17.

[41] Rayleigh, L. On the pressure developed in a liquid during the collapse of a spherical
cavity. Philosophical Magazine Series 6 34, 200 (1917), 94–98.

[42] Shampine, L. F., and Reichelt, M. W. The Matlab ODE Suite. 1–22.

[43] Shampine, Lawrence F; Gladwell, I.; Thompson, S. Solving ODEs with
Matlab. Cambridge University Press, 2003.

[44] Söderlind, G. Numerical Methods for Differential Equations: An introduction to
Scientific Computing. Springer, 2017.

[45] Torres, P. J. Mathematical Models with Singularities. Atlantis Press, 2015.

[46] Trilling, L. The collapse and rebound of a gas bubble. Journal of Applied Physics
23, 1 (1952), 14–17.

[47] Vokurka, K. Comparison of Rayleigh’s , Herring’s , and Gilmore’s Models of Gas
Bubbles. Acta Acustica united, January 1986 (1986).

[48] Yang, H., Fan, M., Liu, A., and Dong, L. General formulas for drag coefficient
and settling velocity of sphere based on theoretical law. International Journal of
Mining Science and Technology 25, 2 (2015), 219–223.

98

7. APPENDICES

7. Appendices
7.1. Appendix 1: Code to solve RP and Gilmore equa-

tions

1 f unc t i on s o l = mainV5(Ro , f r e c , pa , s o lve r , graphs)
2 %% MAIN CODE: Code to s o l v e Rayleigh−P l e s s e t equat ion and Gilmore ’ s

equat ion
3 %Use o f s ca l i ng , implementation o f s e v e r a l s o l v e r s and both models RP and
4 %Gilmore . Computation o f e i g enva lu e s f o r s t i f f n e s s a n a l y s i s .
5 i f narg in==0
6 Ro=1e−6; f r e c=20e3 ; pa=3; s o l v e r="ode45 " ; graphs = true ;
7 end
8

9 %Fixed Parameters
10 pv=2339.215; %Vapor p r e s su r e (Pa)
11 rho =998.206; %Density o f the f l u i d (kg/m^3)
12 S=73.736e−3; %Sur face t en s i on (N/m)
13 k=1.4; %Po ly t rop i c index (d iment i on l e s s)
14 v i s c =0.001; %Dynamic v i s c o s i t y (Pa∗ s)
15 B=3.049 e8 ; %Constant B from Tait ’ s s t a t e equat ion (

approx 3000 bar)
16 n=7.15; %Constant n from Tait ’ s s t a t e equat ion (

approx 7)
17 c_inf =1500; %Speed o f sound in water (m/ s)
18

19 %I n i t i a l c ond i t i on s and time i n t e r v a l
20 p in f0 =101325; %pre s su r e (Pa) at t = 0 in the l i q u i d f a r

away
21 %dRo=−380.6842; %I n i t i a l v e l o c i t y o f growth o f the bubble (

m/ s)
22 %to=6.3700e−5; %I n i t i a l time o f the s imu la t i on (s)
23 dRo=1e−9; to=0;
24 Req=Ro ;
25 pgo=p in f0 − pv + 2∗S/Req ; %I n i t i a l p r e s su r e o f the gas bubble (Pa)
26

27 %Outside f o r c i n g pr e s su r e type
28 f o = sq r t ((3∗ k∗pgo−2∗S/Ro) / rho) /(2∗ pi ∗Ro) ; %Natural f requency o f the

bubble
29 pa = pa∗ p in f0 ; %Amplitude (Pa) f o r the s i n u s o i d a l p r e s su r e

f i e l d (only type=2)
30 f r ec_r = f r e c / fo ;
31 t f =5/ f r e c ; %Fina l time o f the s imu la t i on (s)
32

33 %Sca l i ng o f the system
34 scale_system = 0 ;
35 switch scale_system
36 case 0 %Control
37 scale_R = 1 ;
38 sca l e_t = 1 ;
39 sca le_rho = 1 ;
40 scale_U = 1 ;
41 scale_p = 1 ;
42 case 1 %t−p

99

7.1. APPENDIX 1: CODE TO SOLVE RP AND GILMORE EQUATIONS

43 scale_R = Ro ;
44 sca le_rho = rho ;
45 scale_p = p in f0 − pv ;
46 scale_U = sqr t (scale_p/ sca le_rho) ;
47 sca l e_t = scale_R/scale_U ;
48

49 case 2 %t−v
50 scale_R = Ro ;
51 sca l e_t = Ro^2/(4∗ v i s c) ;
52 scale_p = abs (p in f 0 − pv) ;
53 scale_U = scale_R/ sca l e_t ;
54 sca le_rho = scale_p /(scale_U∗ scale_U) ;
55

56 case 3 %t−S
57 scale_R = Ro ;
58 sca l e_t = Ro∗ s q r t (rho∗Ro/(2∗S)) ;
59 scale_p = abs (p in f 0 − pv) ;
60 scale_U = scale_R/ sca l e_t ;
61 sca le_rho = scale_p /(scale_U∗ scale_U) ;
62

63 case 4 %t−f
64 scale_R = Ro ;
65 sca l e_t = 1/ f r e c ;
66 scale_p = abs (p in f 0 − pv) ;
67 scale_U = scale_R/ sca l e_t ;
68 sca le_rho = scale_p /(scale_U∗ scale_U) ;
69

70 case 5 %t−f o
71 scale_R = Ro ;
72 sca l e_t = 1/ fo ;
73 scale_p = abs (p in f 0 − pv) ;
74 scale_U = scale_R/ sca l e_t ;
75 sca le_rho = scale_p /(scale_U∗ scale_U) ;
76 end
77

78 pv = pv/ scale_p ;
79 p in f0 = p in f 0 / scale_p ;
80 pgo = pgo/ scale_p ;
81 pa = pa/ scale_p ;
82 B=B/ scale_p ;
83 rho = rho/ sca le_rho ;
84 S = S/(scale_U∗ scale_U∗ sca le_rho ∗ scale_R) ;
85 v i s c = v i s c /(scale_U∗ sca le_rho ∗ scale_R) ;
86 c_inf=c_inf / scale_U ;
87 Ro=Ro/scale_R ;
88 Req=Req/scale_R ;
89 dRo=dRo/scale_U ;
90 to=to / sca l e_t ;
91 t f=t f / sca l e_t ;
92 f r e c=f r e c ∗ sca l e_t ;
93

94 %Solv ing the system
95 r e l t o l=1e−9; %Re la t i v e t o l e r an c e
96 ab s t o l=1e−9; %Absolute t o l e r an c e
97 opt ions=odeset (’ RelTol ’ , r e l t o l , ’ AbsTol ’ , absto l , ’ S ta t s ’ , ’ on ’) ;
98

100

7. APPENDICES

99 tspan=[to t f] ;
100 x0=[Ro dRo] ;
101

102 f p r i n t f("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n Gilmore ’ s model s o l v e r V5 . 0 : \n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \n ") ;

103 tcompStart = t i c ;
104 switch s o l v e r
105 case ’ ode45 ’
106 s o l=ode45 (@rp_equation , tspan , x0 , opt ions) ;
107 case ’ ode87 ’
108 s o l=ode87 (@rp_equation , tspan , x0 , opt ions) ;
109 case ’ ode113 ’
110 s o l=ode113 (@rp_equation , tspan , x0 , opt ions) ;
111 case ’ ode15s ’
112 s o l=ode15s (@rp_equation , tspan , x0 , opt ions) ;
113 case ’ ode23s ’
114 s o l=ode23s (@rp_equation , tspan , x0 , opt ions) ;
115 end
116 s o l . s t a t s . time = toc (tcompStart) ;
117 f p r i n t f("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ")
118

119 %Resca l ing
120 % so l . x=s o l . x∗ sca l e_t ;
121 % so l . y=[scale_R 0 ; 0 scale_U]∗ s o l . y ;
122

123 f o r i =1: l ength (s o l . x)−1
124 e igen (i , :) = eigenRP (s o l . x (i) , s o l . y (: , i)) ;
125 i f (e i g en (i , 1) > 0 && e igen (i , 2) > 0)
126 s3 (i) = 0 ;
127 e l s e
128 s3 (i) = abs (min (e i gen (i , 1) , e i g en (i , 2))) ∗(s o l . x (i +1)−s o l . x (i)) ;
129 end
130 e igen (i , :)=e igen (i , :) ∗(s o l . x (i +1)−s o l . x (i)) ;
131 end
132 s o l . s t i f f i n d e x = s3 ;
133 s o l . p i n f = p in f0 + pa∗ s i n (2∗ pi ∗ f r e c .∗ s o l . x) ;
134

135 save (’ r e s u l t s . mat ’)
136

137 %Plo t t i n g s
138 i f graphs
139 f i g u r e
140 subp lot (3 , 1 , 1)
141 p lo t (s o l . x , s o l . y (1 , :)) ;
142 x l ab e l (’ t /t_{ r e f } ’) ;
143 y l ab e l (’R/R_0 ’) ;
144 t i t l e (s p r i n t f ("R_0 = %g um, f = %g kHz , pa = %.4d bar " ,Ro∗ scale_R∗1e6 , f r e c

/ sca l e_t ∗1e−3, pa∗ scale_p ∗1e−5))
145 ax i s ([0 i n f − i n f i n f])
146

147 subp lot (3 , 1 , 2)
148 p lo t (s o l . x , s o l . y (2 , :)) ;
149 x l ab e l (’ t /t_{ r e f } ’) ;
150 y l ab e l (’dR/U_{ r e f } ’) ;
151 ax i s ([0 i n f − i n f i n f])
152

101

7.1. APPENDIX 1: CODE TO SOLVE RP AND GILMORE EQUATIONS

153 subp lot (3 , 1 , 3)
154 p lo t (s o l . x (1 : end−1) , s3)
155 p lo t (s o l . x , (p in f 0 + pa∗ s i n (2∗ pi ∗ f r e c ∗ s o l . x)))
156 %x labe l (’ t /t_{ r e f } ’) ;
157 y l ab e l (’ | \ lambda | ’) ;
158 y l ab e l (’p_\ i n f t y (t) /p_{ r e f } ’)
159 %ax i s ([0 i n f − i n f i n f])
160

161 f i g u r e
162 p lo t (e i gen)
163 y l ab e l (’ \ lambda ’)
164 %
165 f i g u r e
166 subp lot (2 , 1 , 1)
167 p lo t (s o l . x , s o l . y (1 , :)) ;
168 x l ab e l (’ t /t_{ r e f } ’) ;
169 y l ab e l (’R/R_0 ’) ;
170 t i t l e (s p r i n t f ("R_0 = %g um, f = %g kHz , pa = %.4d bar " ,Ro∗ scale_R∗1e6 , f r e c

/ sca l e_t ∗1e−3, pa∗ scale_p ∗1e−5))
171 ax i s ([0 5 0 i n f])
172 subp lot (2 , 1 , 2)
173 p lo t (s o l . x (1 : end−1) , s3)
174 x l ab e l (’ t /t_{ r e f } ’) ;
175 y l ab e l (’ | \ lambda |∗h ’) ;
176 ax i s ([0 5 − i n f i n f])
177 %
178 f i g u r e
179 p lo t (s o l . y (1 , :) , s o l . y (2 , :))
180 x l ab e l (’R ’)
181 y l ab e l (’dR ’)
182 end
183

184 %% GILMORE’ S MODEL
185 f unc t i on dxdt = f_gi lmore (t , x)
186

187 %Some pre l im inary func t i on s to s o l v e the ODE system
188 p in f = p in f 0 + pa∗ s i n (2∗ pi ∗ f r e c ∗ t) ;
189 dp in f = pa∗2∗ pi ∗ f r e c ∗ cos (2∗ pi ∗ f r e c ∗ t) ;
190 p= pv + pgo ∗(Ro/x (1)) ^(3∗k) − 4∗ v i s c ∗x (2) /x (1) − 2∗S/x (1) ;
191 dp= −3∗k∗pgo ∗(Ro/x (1)) ^(3∗k) ∗(x (2) /x (1)) + 2∗S∗x (2) /(x (1) ^2) + 4∗ v i s c ∗(x (2)

/x (1)) ^2 ;
192 %dp= −3∗k∗pgo ∗(Ro/x (1)) ^(2∗k) ∗Ro∗(x (2) /x (1) ^2) + 2∗S∗x (2) /(x (1) ^2) + 4∗ v i s c

∗(x (2) /x (1)) ^2 ;
193 H= 1/ rho∗n/(n−1)∗(p i n f+B) ∗ (((p+B) /(p in f+B)) ^((n−1)/n)−1) ;
194 dH= 1/ rho ∗(n/(n−1)∗ dp in f ∗ (((p+B) /(p in f+B)) ^((n−1)/n) − 1) + . . .
195 ((p+B) /(p in f+B))^(−1/n) ∗(dp∗(p i n f+B) − dp in f ∗(p+B)) /(p in f+B)) ;
196 C= c_inf ∗ ((p+B) /(p in f+B)) ^((n−1)/(2∗n)) ;
197

198 %The ODEs system
199 dx1dt = x (2) ;
200 dx2dt = (H∗(1 + x (2) /C) + x (1) ∗dH/C∗(1 − x (2) /C) − 3/2∗(x (2)) ^2∗(1 − x (2)

/(3∗C))) / . . .
201 ((1 − x (2) /C) ∗(x (1) + 4∗ v i s c /(rho∗C) ∗ ((p+B) /(p in f+B))^(−1/n))) ;
202 dxdt = [dx1dt ; dx2dt] ;
203

204 end

102

7. APPENDICES

205 %% Rayleigh−P l e s s e t equat ion
206 f unc t i on dxdt = rp_equation (t , x)
207

208 %Some pre l im inary func t i on s to s o l v e the ODE system
209 p in f = p in f0 + pa∗ s i n (2∗ pi ∗ f r e c ∗ t) ;
210

211 %The ODEs system
212 dx1dt = x (2) ;
213 dx2dt = (pv−p in f) /(x (1) ∗ rho) + . . .
214 pgo /(rho∗x (1)) ∗(Req/x (1)) ^(3∗k) − 1 . 5∗ (x (2)) ^2/x (1) − . . .
215 2∗S/(rho ∗(x (1)) ^2) − 4∗ v i s c ∗x (2) /(rho ∗(x (1)) ^2) ;
216 dxdt = [dx1dt ; dx2dt] ;
217

218 end
219

220 %% Linear Rayleigh−P l e s s e t equat ion
221 f unc t i on dxdt = lin_rp_eq (t , x)
222

223 b = 4∗ v i s c /(rho∗Req^2) ;
224 c = (3∗k∗pgo −2∗S/Req) /(rho∗Req^2) ;
225 d = −pa/(rho∗ rho∗Req^2)∗ s i n (2∗ pi ∗ f r e c ∗ t) ;
226

227 %The ODEs system
228 dx1dt = x (2) ;
229 dx2dt = d − b∗x (2)− c∗x (1) ;
230 dxdt = [dx1dt ; dx2dt] ;
231

232 end
233

234 %% Eigenva lues o f Rayleigh−P l e s s e t
235 f unc t i on e igen = eigenRP (t , x)
236 p in f = p in f0 + pa∗ s i n (2∗ pi ∗ f r e c ∗ t) ;
237

238 j 1 = 0 ;
239 j 2 = 1 ;
240 j 3 = −(pv−p in f) /(x (1) ^2∗ rho) − . . .
241 (3∗k+1)∗pgo /(rho∗x (1) ^2) ∗(Ro/x (1)) ^(3∗k) + 1 . 5∗ (x (2) /x (1)) ^2 + . . .
242 2∗S/(rho ∗(x (1)) ^3) + 8∗ v i s c ∗x (2) /(rho ∗(x (1)) ^3) ;
243 j 4 = − 4∗ v i s c /(rho ∗(x (1)) ^2) − 3∗(x (2) /x (1)) ;
244

245 t r = j1 + j4 ;
246 det = j1 ∗ j 4 − j 2 ∗ j 3 ;
247 e igen = 0 . 5 ∗ [t r+sq r t (t r ^2 − 4∗ det) tr−s q r t (t r ^2 − 4∗ det)] ;
248 end
249 end

7.2. Appendix 2: Code for the modified discrete gra-
dient approximation

1 f unc t i on r e s u l t s = mainV11 ()
2 %% MAIN CODE: Code implementing the Hamiltonian and d i s c r e t e g rad i en t

approximation
3 Ro=1e−6; f r e c=20e3 ; pa=3;
4

103

7.2. APPENDIX 2: CODE FOR THE MODIFIED DISCRETE GRADIENT APPROXIMATION

5 %Fixed Parameters
6 pv=2339.215; %Vapor p r e s su r e (Pa)
7 rho =998.206; %Density o f the f l u i d (kg/m^3)
8 S=73.736e−3; %Sur face t en s i on (N/m)
9 k=1.4 ; %Po ly t rop i c index (d iment i on l e s s)

10 v i s c =0.001; %Dynamic v i s c o s i t y (Pa∗ s)
11 B=3.049 e8 ; %Constant B from Tait ’ s s t a t e equat ion (

approx 3000 bar)
12 n=7.15; %Constant n from Tait ’ s s t a t e equat ion (

approx 7)
13 c_inf =1500; %Speed o f sound in water (m/ s)
14

15 %I n i t i a l c ond i t i on s and time i n t e r v a l
16 p in f0 =101325; %pre s su r e (Pa) at t = 0 in the l i q u i d f a r

away
17 dRo=0; %I n i t i a l v e l o c i t y o f growth o f the bubble (

m/ s)
18 to=0; %I n i t i a l time o f the s imu la t i on (s)
19 Req=1e−6;
20 pgo=p in f0 − pv + 2∗S/Req ; %I n i t i a l p r e s su r e o f the gas bubble (Pa)
21

22 %Outside f o r c i n g pr e s su r e type
23 f o = sq r t ((3∗ k∗pgo−2∗S/Ro) / rho) /(2∗ pi ∗Ro) ; %Natural f requency o f the

bubble
24 pa = pa∗ p in f0 ; %Amplitude (Pa) f o r the s i n u s o i d a l p r e s su r e

f i e l d (only type=2)
25 f r ec_r = f r e c / fo ;
26 t f = 5/ f r e c ; %Fina l time o f the s imu la t i on (s)
27

28 %Sca l i ng o f the system
29 scale_system = 0 ;
30 switch scale_system
31 case 0
32 scale_R = 1 ;
33 sca l e_t = 1 ;
34 sca le_rho = 1 ;
35 scale_U = 1 ;
36 scale_p = 1 ;
37 case 1
38 scale_R = Ro ;
39 sca l e_t = 1/ f r e c ;
40 sca le_rho = rho ;
41 scale_U = Ro∗ f r e c ;
42 scale_p = scale_U∗ scale_U∗ sca le_rho ;
43

44 case 2
45 scale_R = Ro ;
46 sca le_rho = rho ;
47 scale_p = p in f0 − pv ;
48 scale_U = sqr t (scale_p/ sca le_rho) ;
49 sca l e_t = scale_R/scale_U ;
50

51 case 3
52 scale_R = Ro ;
53 sca l e_t = 1/ f r e c ;
54 scale_p = abs (p in f 0 − pv) ;

104

7. APPENDICES

55 scale_U = scale_R/ sca l e_t ;
56 sca le_rho = scale_p /(scale_U∗ scale_U) ;
57

58 case 4
59 scale_R = Ro ;
60 sca l e_t = 1/ fo ;
61 scale_p = abs (p in f 0 − pv) ;
62 scale_U = scale_R/ sca l e_t ;
63 sca le_rho = scale_p /(scale_U∗ scale_U) ;
64 end
65

66 pv = pv/ scale_p ;
67 p in f0 = p in f 0 / scale_p ;
68 pgo = pgo/ scale_p ;
69 pa = pa/ scale_p ;
70 B=B/ scale_p ;
71 rho = rho/ sca le_rho ;
72 S = S/(scale_U∗ scale_U∗ sca le_rho ∗ scale_R) ;
73 v i s c = v i s c /(scale_U∗ sca le_rho ∗ scale_R) ;
74 c_inf=c_inf / scale_U ;
75 Ro=Ro/scale_R ;
76 Req=Req/scale_R ;
77 dRo=dRo/scale_U ;
78 to=to / sca l e_t ;
79 t f=t f / sca l e_t ;
80 f r e c=f r e c ∗ sca l e_t ;
81

82 %I n i t i a l i z a t i o n
83 N = 200000;
84 h = (t f − to) /N;
85 y = [Ro , dRo∗ rho∗Ro^3] ;
86 t = [to] ;
87

88 %Main loop
89 done = f a l s e ;
90 whi le ~done
91 yold = y(end , :) ;
92 t o ld = t (end) ;
93 Rold = yold (1) ;
94 Qold = yold (2) ;
95

96 U = @(y) (−pv+p in f0) ∗(y (1) ^3 − Ro^3) /3 − pgo∗Req^(3∗k) ∗(y (1) ^(3∗(1−k)) − Ro
^(3∗(1−k))) /(3∗(1−k)) + . . .

97 S∗(y (1) ^2 − Ro^2) + pa∗ s i n (2∗ pi ∗ f r e c ∗ t o ld) ∗(Rold + y (1)) ∗(y (1) ^2 − Rold^2)
/4 ;

98 phi = @(ynew) [ynew (1) − Rold − h∗(Qold + ynew (2)) /(2∗ rho∗ynew (1) ^3) , ynew
(2) − Qold − h∗(Qold^2∗(Rold^2 + Rold∗ynew (1) + ynew (1) ^2) /(2∗ rho∗Rold
^3∗ynew (1) ^3) − . . .

99 (U(ynew) − U(yold)) /(ynew (1) − Rold) − 4∗ v i s c ∗Rold ∗(Qold + ynew (2)) /(2∗ rho∗
ynew (1) ^3))] ;

100 ynew = f s o l v e (phi , yold ∗1 . 01) ;
101

102 tnew = to ld + h ;
103 y = [y ; ynew] ;
104 t = [t ; tnew] ;
105

105

7.3. APPENDIX 3: CODE TO COMPUTE THE TRAJECTORY OF THE BUBBLE

106 i f tnew >= t f
107 done = true ;
108 end
109 end
110

111 %Ending
112 r e s u l t s . t = t ;
113 r e s u l t s .R = y (: , 1) ;
114 r e s u l t s .dR = y (: , 2) . / (rho∗y (: , 1) . ^3) ;
115

116 %Plo t t i ng
117 f i g u r e
118 subp lot (3 , 1 , 1)
119 p lo t (t , y (: , 1)) ;
120 x l ab e l (’ t (s) ’)
121 y l ab e l (’R (m) ’)
122

123 subp lot (3 , 1 , 2)
124 p lo t (t , y (: , 2)) ;
125 x l ab e l (’ t (s) ’)
126 y l ab e l (’dR (m/ s) ’)
127

128 subp lot (3 , 1 , 3)
129 p lo t (t , p in f 0 + pa∗ s i n (2∗ pi ∗ f r e c ∗ t)) ;
130 x l ab e l (’ t (s) ’)
131 y l ab e l (’p_\ i n f t y (Pa) ’)
132 end

7.3. Appendix 3: Code to compute the trajectory of
the bubble

1 f unc t i on r e s u l t s = main_fullV6 (Ro , so lve r , graphs)
2 %% MAIN CODE: Combination o f study o f bubble growth and c o l l a p s e and i t s

equat ions o f motion
3 % Number o f i n t e r p o l a t i o n s are reduced by computing an
4 % approximating p i e c ew i s e polynomial and conv in ing both systems

in to one .
5 % Der iva t i v e s computed us ing func t i on fnder .
6 i f (narg in==0)
7 Ro=1e−6; s o l v e r="ode15s " ; graphs = true ;
8 end
9

10 %Fixed Parameters
11 % pv=2500; %Vapor p r e s su r e (Pa)
12 pv=3540; %Vapor p r e s su r e (Pa)
13 rho =998.206; %Density o f the f l u i d (kg/m^3)
14 S=73.736e−3; %Sur face t en s i on (N/m)
15 k=1.4; %Po ly t rop i c index (d iment i on l e s s)
16 v i s c =0.001; %Dynamic v i s c o s i t y (Pa∗ s)
17 B=3.049 e8 ; %Constant B from Tait ’ s s t a t e equat ion (

approx 3000 bar)
18 n=7.15; %Constant n from Tait ’ s s t a t e equat ion (

approx 7)
19 c_inf =1500; %Speed o f sound in water (m/ s)

106

7. APPENDICES

20 g=−9.81; %Acce l e r a t i on o f g rav i ty (m/ s ^2)
21

22 %Import Outside p r e s su r e and v e l o c i t y f i e l d s
23 patm = 101324; %Atmospheric p r e s su r e (Pa)
24 P = importdata (’ p r e s su re2 . txt ’) ’ ;
25 P = P + [ze ro s (1 , l ength (P(1 , :))) ; patm∗ ones (1 , l ength (P(1 , :)))] ; %

Convertion from gauge p r e s su r e to abso lu t e p r e s su r e s
26 p0 = P(2 ,1) ;
27

28 vx = importdata (’ vel_x2 . txt ’) ’ ;
29 %vx = vx + [z e ro s (1 , l ength (vx (1 , :))) ; 5∗ ones (1 , l ength (vx (1 , :)))] ;
30

31 vy = importdata (’ vel_y2 . txt ’) ’ ;
32

33 %Estimation o f approximating polynomia l s
34 pp = sp l i n e (P(1 , :) ,P(2 , :)) ;
35 dpp = fnder (pp) ;
36 vxp = sp l i n e (vx (1 , :) , vx (2 , :)) ;
37 dvxp = fnder (vxp) ;
38 vyp = sp l i n e (vy (1 , :) , vy (2 , :)) ;
39 dvyp = fnder (vyp) ;
40

41 %I n i t i a l c ond i t i on s and time i n t e r v a l
42 dRo=0; %I n i t i a l v e l o c i t y o f growth o f the bubble (

m/ s)
43 xo=0; %I n i t i a l p o s i t i o n in the ho r i z on t a l

coo rd inate (m)
44 vxo=vx (2 , 1) ; %I n i t i a l v e l o c i t y in the ho r i z on t a l

coo rd inate (m/ s)
45 yo=25e−3; %I n i t i a l p o s i t i o n in the v e r t i c a l

coo rd inate (m)
46 vyo=vy (2 , 1) ; %I n i t i a l v e l o c i t y in the v e r t i c a l

coo rd inate (m/ s)
47 to=P(1 , 1) ; %I n i t i a l time o f the s imu la t i on (s)
48 t f=P(1 , end) ; %Fina l time o f the i n t e g r a t i o n (s)
49 Req=Ro ; %Equi l ibr ium rad iu s (m)
50 pgo=p0 − pv + 2∗S/Req ; %I n i t i a l p r e s su r e o f the gas bubble (Pa)
51

52 %Solv ing the system
53 r e l t o l=1e−6; %Re la t i v e t o l e r an c e
54 ab s t o l=1e−9; %Absolute t o l e r an c e
55 opt ions=odeset (’ RelTol ’ , r e l t o l , ’ AbsTol ’ , absto l , ’ S ta t s ’ , ’ on ’) ;
56

57 tspan=[to t f] ;
58 x0=[Ro dRo xo vxo yo vyo] ;
59

60 f p r i n t f("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n Gilmore ’ s model s o l v e r V5 . 0 : \n
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− \n ") ;

61 tcompStart = t i c ;
62 switch s o l v e r
63 case ’ ode45 ’
64 s o l=ode45 (@rp_equation , tspan , x0 , opt ions) ;
65 case ’ ode113 ’
66 s o l=ode113 (@rp_equation , tspan , x0 , opt ions) ;
67 case ’ ode15s ’
68 s o l=ode15s (@rp_equation , tspan , x0 , opt ions) ;

107

7.3. APPENDIX 3: CODE TO COMPUTE THE TRAJECTORY OF THE BUBBLE

69 case ’ ode23s ’
70 s o l=ode23s (@rp_equation , tspan , x0 , opt ions) ;
71 end
72 s o l . s t a t s . time = toc (tcompStart) ;
73 f p r i n t f("−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n\n ")
74

75 %Output handl ing
76 r e s u l t s . t = s o l . x ;
77 r e s u l t s .R = s o l . y (1 , :) ;
78 r e s u l t s .dR = s o l . y (2 , :) ;
79 r e s u l t s . x = s o l . y (3 , :) ;
80 r e s u l t s . dx = s o l . y (4 , :) ;
81 r e s u l t s . y = s o l . y (5 , :) ;
82 r e s u l t s . dy = s o l . y (6 , :) ;
83 r e s u l t s . s t a t s = s o l . s t a t s ;
84

85 % %Computations o f Reynolds number , Cd and independent f o r c e s
86 % Re = ze ro s (1 , l ength (vx (1 , :))) ;
87 % Cd = ze ro s (1 , l ength (vx (1 , :))) ;
88 % rp = pchip (s o l . x , s o l . y (1 , :)) ;
89 % drp = pchip (s o l . x , s o l . y (2 , :)) ;
90 % dxp = pchip (s o l . x , s o l . y (4 , :)) ;
91 % dyp = pchip (s o l . x , s o l . y (6 , :)) ;
92 % fo r i =1: l ength (vx (1 , :))
93 % vfx = vx (2 , i) ;
94 % vfy = vy (2 , i) ;
95 % dvfx = dvx (2 , i) ;
96 % dvfy = dvy (2 , i) ;
97 % r=ppval (rp , vx (1 , i)) ;
98 % dr=ppval (drp , vx (1 , i)) ;
99 % dx = ppval (dxp , vx (1 , i)) ;

100 % dy = ppval (dyp , vx (1 , i)) ;
101 % Re(i) = 2∗ rho∗norm ([dx−vfx , dy−vfy]) ∗ r / v i s c ;
102 % i f Re ~= 0
103 % Cd(i) = (24/Re(i)) ∗(1 + 0.27∗Re(i)) ^ (0 . 43) + .47∗ (1 − exp (−0.04∗Re(i)

^ .38)) ;
104 % e l s e
105 % Cd(i) = 0 ;
106 % end
107 % end
108 % r e s u l t s . Re = Re ;
109 % r e s u l t s .Cd = Cd;
110

111 %Computation o f the f l u i d pa r t i c l e ’ s t r a j e c t o r y
112 xf = ze ro s (1 , l ength (vx (1 , :))) ;
113 yf = ze ro s (1 , l ength (vx (1 , :))) ;
114 f o r i =1: l ength (vx (1 , :))−1
115 s l ope = (vx (2 , i +1) + vx (2 , i)) /2 ;
116 xf (i +1) = xf (i) + s l ope ∗(vx (1 , i +1) − vx (1 , i)) ;
117 end
118 f o r i =1: l ength (vy (1 , :))−1
119 s l ope = (vy (2 , i +1) + vy (2 , i)) /2 ;
120 yf (i +1) = yf (i) + s l ope ∗(vy (1 , i +1) − vy (1 , i)) ;
121 end
122

123 %% Plo t t i n g s

108

7. APPENDICES

124 i f graphs
125 %Plot f o r rad iu s dynamics
126 f i g u r e
127 subp lot (3 , 1 , 1)
128 p lo t (s o l . x , s o l . y (1 , :)) ;
129 x l ab e l (’ t [s] ’) ;
130 y l ab e l (’R [m] ’) ;
131 ax i s ([0 t f 0 i n f])
132 % ax i s ([0 . 0 5 . 06 0 i n f])
133 t i t l e (" Radius dynamics ")
134 subp lot (3 , 1 , 2)
135 p lo t (s o l . x , s o l . y (2 , :)) ;
136 x l ab e l (’ t [s] ’) ;
137 y l ab e l (’dR [m/ s] ’) ;
138 ax i s ([0 t f − i n f i n f])
139 % ax i s ([0 . 0 5 . 06 − i n f i n f])
140 subp lot (3 , 1 , 3)
141 p lo t (s o l . x , ppval (pp , s o l . x))
142 x l ab e l (’ t [s] ’) ;
143 y l ab e l (’p_\ i n f t y (t) [Pa] ’)
144 ax i s ([0 t f − i n f i n f])
145 % ax i s ([0 . 0 5 . 06 − i n f i n f])
146

147

148 %Plot f o r x p o s i t i o n s
149 f i g u r e
150 subp lot (3 , 1 , 1)
151 p lo t (s o l . x , s o l . y (3 , :)) ;
152 x l ab e l (’ t [s] ’) ;
153 y l ab e l (’ x [m] ’) ;
154 ax i s ([0 t f − i n f i n f])
155 % ax i s ([0 . 0 5 . 06 − i n f i n f])
156 t i t l e (" Hor i zonta l p o s i t i o n dynamics ")
157 subp lot (3 , 1 , 2)
158 p lo t (s o l . x , s o l . y (4 , :)) ;
159 x l ab e l (’ t [s] ’) ;
160 y l ab e l (’ vx [m/ s] ’) ;
161 ax i s ([0 t f − i n f i n f])
162 % ax i s ([0 . 0 5 . 06 − i n f i n f])
163 subp lot (3 , 1 , 3)
164 p lo t (s o l . x , ppval (vxp , s o l . x))
165 x l ab e l (’ t [s] ’) ;
166 y l ab e l (’v_{f_x} [m/ s] ’)
167 ax i s ([0 t f − i n f i n f])
168 % ax i s ([0 . 0 5 . 06 − i n f i n f])
169

170

171 %Plot f o r y−po s i t i o n s
172 f i g u r e
173 subp lot (3 , 1 , 1)
174 p lo t (s o l . x , s o l . y (5 , :)) ;
175 x l ab e l (’ t [s] ’) ;
176 y l ab e l (’ y [m] ’) ;
177 ax i s ([0 t f − i n f i n f])
178 % ax i s ([0 . 0 5 . 06 − i n f i n f])
179 t i t l e (" Ve r t i c a l p o s i t i o n dynamics ")

109

7.3. APPENDIX 3: CODE TO COMPUTE THE TRAJECTORY OF THE BUBBLE

180 subp lot (3 , 1 , 2)
181 p lo t (s o l . x , s o l . y (6 , :)) ;
182 x l ab e l (’ t [s] ’) ;
183 y l ab e l (’ vy [m/ s] ’) ;
184 ax i s ([0 t f − i n f i n f])
185 % ax i s ([0 . 0 5 . 06 − i n f i n f])
186 subp lot (3 , 1 , 3)
187 p lo t (s o l . x , ppval (vyp , s o l . x))
188 x l ab e l (’ t [s] ’) ;
189 y l ab e l (’v_{f_y} [m/ s] ’)
190 ax i s ([0 t f − i n f i n f])
191 % ax i s ([0 . 0 5 . 06 − i n f i n f])
192

193 %Trajec tory
194 f i g u r e
195 p lo t (s o l . y (3 , :) , s o l . y (5 , :) , xf , y f)% , [0 60 115 125 209 319]∗1 e−3 , [26 .5 26 .5

10 10 26 .5 26 . 5]∗1 e−3,"−−k " , [0 60 115 125 209 319]∗1 e−3 , [26 .5 26 .5 10
10 26 .5 26.5]∗ −1 e−3,"−−k " , [0 3 1 9] , [0 0] ,"−−k ")

196 l egend (" Bubble " , " Flu id ")% , " Venturi tube ")
197 t i t l e (" Tra jec tory o f the bubble vs t r a j e c t o r y o f the f l u i d ")
198 %ax i s ([0 i n f −40 40])
199

200 % %Reynolds Number
201 % f i g u r e
202 % plo t (vx (1 , :) ,Re)
203 % t i t l e (" Reynold ’ s number vs time ")
204 % %Contr ibut ions o f f o r c e s
205 % f i g u r e
206 % subplot (2 , 1 , 1)
207 % plo t (vx (1 , :) , relFamx , vx (1 , :) , re lFrex , vx (1 , :) , re lFdx) ;
208 % legend ("Added mass " , " Rocket e f f e c t " , " Drag f o r c e ")
209 % subplot (2 , 1 , 2)
210 % plo t (vx (1 , :) , relFamy , vx (1 , :) , re lFrey , vx (1 , :) , relFdy , vx (1 , :) ,

re lFb) ;
211 % legend ("Added mass " , " Rocket e f f e c t " , " Drag f o r c e " , " Buoyancy ")
212 end
213

214 %% GILMORE’ S MODEL
215 f unc t i on dxdt = f_gi lmore (t , x)
216 %Some pre l im inary func t i on s r e l a t e d with Gilmore ’ s model .
217 p in f = ppval (pp , t) ;
218 dp in f = ppval (dpp , t) ;
219 p= pv + pgo ∗(Req/x (1)) ^(3∗k) − 4∗ v i s c ∗x (2) /x (1) − 2∗S/x (1) ;
220 dp= −3∗k∗pgo ∗(Req/x (1)) ^(3∗k) ∗(x (2) /x (1)) + 2∗S∗x (2) /(x (1) ^2) + 4∗ v i s c ∗(x

(2) /x (1)) ^2 ;
221 H= 1/ rho∗n/(n−1)∗(p i n f+B) ∗ (((p+B) /(p in f+B)) ^((n−1)/n)−1) ;
222 dH= 1/ rho ∗(n/(n−1)∗ dp in f ∗ (((p+B) /(p in f+B)) ^((n−1)/n) − 1) + . . .
223 ((p+B) /(p in f+B))^(−1/n) ∗(dp∗(p i n f+B) − dp in f ∗(p+B)) /(p in f+B)) ;
224 C= c_inf ∗ ((p+B) /(p in f+B)) ^((n−1)/(2∗n)) ;
225

226 %Some pre l im inary func t i on s r e l a t e d with Motion o f the bubble .
227 vfx = ppval (vxp , t) ;
228 vfy = ppval (vyp , t) ;
229 dvfx = ppval (dvxp , t) ;
230 dvfy = ppval (dvyp , t) ;
231 Re = 2∗ rho∗norm ([x (4)− vfx , x (6)− vfy]) ∗x (1) / v i s c ;

110

7. APPENDICES

232 i f Re ~= 0
233 Cd = (24/Re) ∗(1 + 0.27∗Re) ^(0 . 43) + .47∗ (1 − exp (−0.04∗Re^ .38)) ;
234 e l s e
235 Cd = 0 ;
236 end
237

238 %The ODEs system
239 dx1dt = x (2) ;
240 dx2dt = (H∗(1 + x (2) /C) + x (1) ∗dH/C∗(1 − x (2) /C) − 3/2∗(x (2)) ^2∗(1 − x (2)

/(3∗C))) / . . .
241 ((1 − x (2) /C) ∗(x (1) + 4∗ v i s c /(rho∗C) ∗ ((p+B) /(p in f+B))^(−1/n))) ;
242 dx3dt = x (4) ;
243 dx4dt = 3∗dvfx − 3∗x (2) ∗(x (4) − vfx) /x (1) − (3/4) ∗Cd∗abs (x (4)−vfy) ∗(x (4)−

vfy) /x (1) ;
244 dx5dt = x (6) ;
245 dx6dt = −2∗g + 3∗dvfy − 3∗x (2) ∗(x (6) − vfy) /x (1) − (3/4) ∗Cd∗abs (x (6)−vfy) ∗(

x (6)−vfy) /x (1) ;
246

247 dxdt = [dx1dt ; dx2dt ; dx3dt ; dx4dt ; dx5dt ; dx6dt] ;
248 end
249

250 %% Rayleigh−P l e s s e t equat ion
251 f unc t i on dxdt = rp_equation (t , x)
252 %Some pre l im inary func t i on s f o r Rayleigh−P l e s s e t equat ion
253 p in f = ppval (pp , t) ;
254

255 %Some pre l im inary func t i on s r e l a t e d with Motion o f the bubble .
256 vfx = ppval (vxp , t) ;
257 vfy = ppval (vyp , t) ;
258 dvfx = ppval (dvxp , t) ;
259 dvfy = ppval (dvyp , t) ;
260 Re = 2∗ rho∗norm ([x (4)− vfx , x (6)− vfy]) ∗x (1) / v i s c ;
261 i f Re ~= 0
262 Cd = (24/Re) ∗(1 + 0.27∗Re) ^(0 . 43) + .47∗ (1 − exp (−0.04∗Re^ .38)) ;
263 e l s e
264 Cd = 0 ;
265 end
266

267 %The ODEs system
268 dx1dt = x (2) ;
269 dx2dt = (pv−p in f) /(x (1) ∗ rho) + pgo /(rho∗x (1)) ∗(Req/x (1)) ^(3∗k) − . . .
270 1 . 5∗ (x (2)) ^2/x (1) − 2∗S/(rho ∗(x (1)) ^2) − 4∗ v i s c ∗x (2) /(rho ∗(x (1)) ^2) ;
271 dx3dt = x (4) ;
272 dx4dt = 3∗dvfx − 3∗x (2) ∗(x (4) − vfx) /x (1) − (3/4) ∗Cd∗abs (x (4)−vfx) ∗(x (4)−

vfx) /x (1) ;
273 dx5dt = x (6) ;
274 dx6dt = −2∗g + 3∗dvfy − 3∗x (2) ∗(x (6) − vfy) /x (1) − (3/4) ∗Cd∗abs (x (6)−vfy) ∗(

x (6)−vfy) /x (1) ;
275

276 dxdt = [dx1dt ; dx2dt ; dx3dt ; dx4dt ; dx5dt ; dx6dt] ;
277

278 end
279 end

111

	Introduction
	Cavitation bubble dynamics
	Bubble growth and collapse
	Assumptions of Rayleigh-Plesset equation
	Construction of the model
	Bubble's internal pressure
	Energy interpretation of the Rayleigh-Plesset equation

	Modifications of Rayleigh-Plesset model
	Herring's model
	Gilmore's model
	Keller's model

	Bubble's translation
	Added mass effect
	Slip/Rocket effect
	Drag force
	Equation of motion

	Mathematical background
	Ordinary differential equations
	Basic definitions
	Solvability of initial value problems
	Stability of initial value problems

	Difference equations
	Linear difference equations

	Numerical methods for the solution of ODEs
	Basic definitions
	Absolute stability and stiff problems
	Euler method
	Modifications of Euler method
	Runge-Kutta methods
	Linear multi-step methods
	Implementation issues
	MATLAB ode suite

	Study-Case 1: Fixed bubble under an oscillatory pressure
	Preliminaries
	Well-posedness analysis of Rayleigh-Plesset equation
	Equilibrium points and local behavior
	Linear approximation
	Non-linear dynamics
	Preliminaries
	Numerical results
	Discussion on complete collapsing cases

	Study-Case 2: Bubble in a fluid flowing through a cross reduction
	Flow through a Venturi tube
	Preliminaries
	Well-posedness analysis
	Simplifying assumption
	Numerical implementation and results

	Flow through a sharp-edged orifice plate

	Bibliography
	Appendices
	Appendix 1: Code to solve RP and Gilmore equations
	Appendix 2: Code for the modified discrete gradient approximation
	Appendix 3: Code to compute the trajectory of the bubble

