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A B S T R A C T 

In this thesis, the dynamics of an isolated cavitation bubble submerged in a steady 
flow is studied numerically. A Lagrangian-Eulerian approach is considered, in which 
properties of the fluid are computed first by means of Eulerian methods (in this study the 
commercial C F D software Ansys Fluent 19 was used) and the trajectory of the bubble is 
then computed in a Lagrangian fashion, i.e. the bubble is considered as a small particle 
moving relative to the fluid, due to the effect of several forces depending on fluid's pressure 
field, fluid's velocity field and bubble's radius. Bubble's radius dynamics, modeled by 
Rayleigh-Plesset equation, has a big influence on its kinetics, so a special attention is given 
to it. Two study cases are considered. The first one, motivated by acoustic cavitation is 
concerned with the response of the bubble's radius in a static flow under the influence of 
an oscillatory pressure field, the second one studies the trajectory of the bubble submerged 
in a fluid passing by a Venturi tube and a sharp-edged orifice plate. 
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1. INTRODUCTION 

1. Introduction 
Cavitation is a well-known phenomenon in fluid mechanics. It is usually described 

as the generation of vapor bubbles or cavities in a liquid medium, as a consequence of a 
pressure drop below the corresponding vapor pressure at liquid's temperature [8]. In this 
sense, cavitation is not very different from boiling, a phenomenon which is, perhaps, more 
familiar, where the vapor generation is driven by a temperature rise above saturation 
temperature at liquid's pressure [3]. Cavitation, however, has an interesting feature: 
in engineering applications, the low pressure zones that generate the vapor bubbles are 
usually the result of some temporary flow conditions, thus when these bubbles are exposed 
again to a higher pressure, they usually experience a violent compression called collapse, 
which releases a big amount of energy in the vicinity of the bubble, rising for an extremely 
short time the temperature to several thousands of Kelvin and the pressure to several 
hundreds of bar [32]. 

Cavitation is an important phenomenon in fluid engineering since it appears often in 
many processes caused by sudden changes in flow conditions, e.g.: when a fluid passes 
through a cross section reduction (like in a valve) or after a sudden increase in flow veloc
ity imposed by, for instance, a ship propeller. In this context cavitation is often seen as 
an undesirable phenomenon that should be avoided since it causes several negative effects 
including vibrations, noise, considerable loss in efficiency and, in the most severe cases, 
erosion on the machinery components (as we can see in Fig. (1.1)) [8]. Despite these 
rather problematic effects, many applications have been recently developed using cavi
tation. Such applications include engineering processes like surface cleaning, biomedical 
treatments like kidney stones disintegration or microorganisms elimination, and chemical 
processes like sonochemistry and sonoluminiscence [23]. In most of these applications, ul
trasound generators are used to induce the cavitation on the fluid, reason why the study 
of cavitation in this context is usually called acoustic cavitation, in contrast with the 
traditional context: hydrodynamic cavitation. 

Figure 1.1: Component severely damaged by cavitation, (photograhpy courtesy of Dr. 
Pavel Rudolf). 
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With the goal of covering these two interesting manifestations of cavitation, in the 
present work we describe the dynamics of a cavitation bubble under two study-cases. In 
the first case, the bubble is submerged on a static fluid affected by a uniform oscillatory 
pressure field, simulating in this way a simple case of acoustic cavitation. The second 
case describes the dynamics of a cavitating bubble submerged in a steadily moving fluid. 
To solve these problems a Eulerian-Lagrangian approach is considered, in the first stage 
of this approach the dynamics of the fluid (governed by incompressible Navier-Stokes 
equations) is solved in a Eulerian fashion while neglecting the presence of bubbles. After 
that, bubble's dynamics is studied under a Lagrangian fashion i.e. the bubble is considered 
as a particle moving relative to the fluid, and its trajectory is tracked down. As inputs 
for this second stage, pressure and velocity fields just calculated from the fluid dynamics 
are needed. This work focuses on the Lagrangian stage. From the mathematical point of 
view, we are dealing with the solution of a non-linear system of ODEs, which describe the 
evolution of bubble's radius and kinematics, thus a special attention will be given to the 
qualitative study of such system and the selection and implementation of the appropriate 
numerical method. 

The content of this thesis is therefore organized as follows: Chapter 2 introduces 
the main concepts and the mathematical models from bubble dynamics that will be 
considered in this work. The first part of this chapter is devoted to bubble's radius 
dynamics, introducing Rayleigh-Plesset equations and its modifications while the second 
part is regarded to describe bubble kinetics. Chapter 3 recalls several mathematical results 
from general theory of ordinary differential equations and explains how most used O D E 
solvers work. A special attention is given to the O D E solvers incorporated in the software 
M A T L A B , which is used throughout this work. Chapters 4 and 5 described each of the 
two study cases mentioned before. Chapter 4 pays special attention to the qualitative 
study of Rayleigh-Plesset equation, which is interesting due to its several non-linearities. 
Chapter 5, on the other hand, is more interested on the coupled system of Rayleigh-Plesset 
equation and bubble's kinetics. 
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2. CAVITATION BUBBLE DYNAMICS 

2. Cavitation bubble dynamics 
2.1. Bubble growth and collapse 
Cavitation attracted the interest of many researchers already in the nineteenth century, as 
can be seen in works like Besant's (1859) and Parson's (1893) [8]. However, most authors 
seem to agree on giving Lord Rayleigh (1917) the credit for being the first who attempted 
to build a mathematical model to describe bubble dynamics. 

Rayleigh considered spherical vapor cavities in an incompressible and inviscid fluid 
medium under a constant external pressure greater that the inner bubble pressure (as
sumed also constant). He found that under this model, the bubble would collapse 
(-R(t) = 0) in a finite time r , which is usually called Rayleigh time and depends only 
on the difference between external pressure and inner pressure p^ — ps and initial radius 
RQ. In 1949, Plesset [39] considered Rayleigh's problem with similar assumptions on a 
spherical bubble but now containing some amount of a non-condensable gas. He also in
cluded surface tension and viscosity in his analysis together with a more general external 
pressure source represented by some function of time t, deriving what is known nowadays 
as Rayleigh-Pies set equation, which describes the behavior of bubble's radius with time 
under some exciting pressure far from the bubble. 

In the following subsection, Rayleigh-Plesset equation will be derived from incom
pressible Navier-Stokes equations [3, 8]. To see original derivation made by Plesset, based 
on flow potential, the reader is referred to [39]. 

2.1.1. Assumptions of Rayleigh-Plesset equation 
Let us consider a spherical bubble of radius R(t) at time t submerged on a liquid medium 
far for any other bubble (it can be assumed that is submerged in a infinite liquid medium). 
Temperature and pressure in the liquid far from the bubble are denoted by and p^ (t) 
respectively. is assumed to be known and constant while Pooit) is a known function 
(in general not constant). The liquid is assumed to be incompressible, so density p is 
constant and uniform, and so is viscosity \i. 

u<r,t) 
LIQUID 

F A R F R O M B U B B L E 

QUBBLE SURFACE 

Figure 2.1: Spherical bubble in a infinite liquid medium (reproduced from [3]) 
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2.1. BUBBLE GROWTH AND COLLAPSE 

The size of the bubble is affected by this Pooit) however its shape is assumed to remain 
spherical, therefore we may consider spherical symmetry on the surrounding fluid. Under 
this assumption, the problem is transformed into a 1-D problem, where an arbitrary 
position in the surrounding liquid may be denoted by its distance from the center of the 
bubble r. Velocity, pressure and temperature in this point at time t will be denoted as 
u(r, t), p(r,t) and T(r,t) respectively. 

Inside the bubble, temperature TB(t) and pressure psit) are assumed uniform and 
mass and heat transfer through bubble's interface are neglected. 

2.1.2. Construction of the model 
The goal of the model is to describe how the bubble's radius R(t) responses to an exciting 
pressure function ]?oo(t). Knowing function R(t), it can be latter used to determine the 
velocity, pressure and temperature fields, u(r,t), p(r,t) and T(r,t) respectively, in the 
surrounding liquid. 

By the incompressibility of the surrounding fluid and neglecting any mass transfer 
through the bubble interface, conservation of mass with spherical symmetry yields: 

u{r,t) = *R (2.1) 

As Brennen points out, even in the case when some mass transfer is allowed, the previous 
expression is still a good approximation in most of the cases. Note that if we allow some 
mass transfer through the bubble interface, conservation of mass would give: 

u(r,t)=(l±P-^)^R (2.2) 
\ p J rz 

Where the " + " sign indicates vapor condensing and the " —" sign liquid evaporating, and 
PV{TB) stands for the vapor density. Since, in general, py « p, Eq. (2.2) would give a 
similar result as Eq. (2.1) [3]. 

Consider now Navier-Stokes under spherical symmetry, given by: 

1 dp du ^ du f l d ( 2 d u \ 2u\ 
PL dr dt dr \r2 dr \ dr J r2 J 

and substituting u by Eq. (2.1) it can be seen that the viscous term cancels out, yielding: 

I dp R2 - (R R4\ -2 , „, 
- — / = — R + 2 - - — )R2 2.4 

PL or rz \rz r°) 

This equation coupled with the condition p(r)| r^oo = can be integrated leading to the 
following expression. 

j M M = jg + tf(!^| (2.5) 
pL r \r 4r 4 / 

Note that this is an expression for the pressure field surrounding the bubble. Now, eval
uating this expression at r = R to get rid of the dependence on the arbitrary point r in 
the liquid, gives: 

p ( R , t ) - P o o ( t ) = R k + 3 k 2 ( 2 6 ) 

PL 2 
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2. CAVITATION BUBBLE DYNAMICS 

Now in order to study p(R,t), consider the force balance on the bubble's interface (as 
shown in Fig. (2.2)): 

2S 
{arr)r=R + pB(t) - — = 0 (2.7) 

JrC 
where o~rr is the radial stress tensor component and S is surface tension. Since arr is given 
by: 

du 

arr = -p(r,t) + 2pL — (2.8) 

The balance given in Eq. (2.7) turns into: 
p(R,t)=pB(t)-^R-2^ (2.9) 

& U B B L E 
S U R F A C E 

[<fft),t R 

LIOJID 

VAPOR tGAS 

Figure 2.2: Balance of pressures on the bubble interface (reproduced from [3]) 

Finally substituting this expression on Eq. (2.6) we obtain the well-known Rayleigh-
Plesset equation: 

P»®-P°°® =RR+2-Ri + ^ R + ^ - (2.10) 
PL 3 pLR pLR 

When neglecting the viscous and surface tension terms, the original result from Rayleigh 
[41] is recovered. 

2.1.3. Bubble's internal pressure 
To study with more detail the term ps(t), it is necessary to understand a little bit how 
cavitation bubbles are initiated. It is usually said that cavitation occurs when liquid's 
pressure falls below vapor pressure. However, already in the nineteenth century it was 
shown that liquids in fact can withstand pressures far below vapor pressure, even negative 
pressures, with no signs of cavitation. Some experiments have found this limit at —277 
bar for water. In order to get this impressive results, a careful treatment on the water is 
required, including degassing and over-pressuring it for a long time, without mentioning 
the degree of cleanliness in the container which also affects strongly this result [8]. Such 
experiments show that pollutants in the liquid medium and the recipient surface have an 
important role in the phenomenon of cavitation. 
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2.1. BUBBLE GROWTH AND COLLAPSE 

Liquids in engineering applications are far from these laboratory standards and usually 
do not have such preliminary treatments. Thus they are expected to have several discon
tinuities in the liquid medium that will become later the nuclei of the vapor bubbles, this 
mechanism is called heterogeneous nucleation. Such discontinuities may be microscopic 
pieces of solid, or tiny bubble of other liquids but most of the time are really small bubbles 
(of about some micrometers of radius) of some non-condensable gas (usually air). For our 
model, we will consider that the nucleus of our bubble is of this type, and therefore the 
total pressure of the bubble at time t will the sum of the partial pressures of the vapor 
and the gas: 

pB(t) = pV(TB) + Pg(t) (2.11) 

Where Pv(TB) is the vapor pressure at temperature TB and pg(t) is the partial pressure 
corresponding to the gas present in the initial nucleus. It is usually assumed that this gas 
follows a polytropic process with polytropic constant k, so that Eq. (2.11) turns into: 

( hi \ 
it) ( 2 - 1 2 ) 

Where pgo is the partial pressure of the gas at some reference radius RQ. Bubble expansion 
is usually assumed isothermal {k = 1) while compression is usually assumed adiabatic 
(k — 1,4 for the case of air) [33, 32]. Substituting this expression in Eq. (2.9) yields: 

RR + lie = " ' { T b ) ~ "~(t) + ^ - *L - % ; (2.i3) 
2 pL PL V R J pLR PLR 

2.1 A . Energy interpretation of the Rayleigh-Plesset equation 
It may be illustrative to note that Rayleigh-Plesset equation can also be seen as an energy 
balance, as it will be shown below. 

As remarked by Franc & Michel [8], it can be easily verified that, in fact: 

RR+-R2 = J — ^ - (R3R2) (2.14) 
2 2RR2 dt^ 1 y 1 

Now, considering that the kinetic energy on the surrounding liquid is: 

(•OO 

K(t)= 27rpLr2u{r,t)2dr = 27rpLR3R2 (2.15) 
JR 

Thus, using the theorem of work and energy Eq. (2.10) may be written as: 

dK{t) 
dt 

(2.16) 

Where the term in the left hand side represents the rate of change of kinetic energy in 
the surrounding liquid and the term on the right hand side represents the power supplied 
by the acting forces: pressure difference, surface tension and the damping viscosity, applied 
on the boundary. 
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2. CAVITATION BUBBLE DYNAMICS 

2.2. Modifications of Rayleigh-Plesset model 
Even if Rayleigh-Plesset equation is a simplification, it already exhibits most of the qual
itative features of more refined models, therefore in most application it may be enough. 
In other cases, however, specially when it is desired to study the collapse phase, more 
realistic descriptions are required. For this reason, many authors have studied the phe
nomenon considering more general assumptions like mass and heat transfer, non-spherical 
shape and compressibility. 

One of the most important assumptions in Rayleigh-Plesset equation is incompress-
iblity of the liquid medium. Unfortunately, experiments show that near to the collapse, 
velocities can reach relatively high values (close to the speed of sound c ~ 1500m/s) mak
ing this assumption not adequate. Some authors have addressed this problem in different 
ways, among these models some of the most relevant are: Herring's (1949), Gilmore's 
(1952) and Keller's (1956, 1980). 

When considering compressibility in liquids, there are several equations of state, but 
in general it is usually assumed that density varies only with pressure. It would be nice 
to have some account of how density is actually varying with pressure. For that purpose 
let us introduce two new physical quantities: enthalpy (h) and speed of sound (c): 

, fp dp 1 dp 
h=Lw) c> = d-P

 ( 2 - 1 7 ) 

It is clear that in the incompressible case: 

h = P^Po c = QO (2_18) 
P 

Using these two new quantities it is possible to get a partial differential equation describing 
the dynamics of the fluid surrounding the bubble, such procedure is explained by Franc & 
Michel [8]. First, we take the usual expressions for conservation of mass and momentum 
in spherical coordinates, given respectively by: 

dp ^ dp 1 d(r2u) _ 
dt dt r2 dr 

du du 1 dp , . 

and we rewrite them in terms of the new quatities h and c. 

(2.21) 

(2.22) 

Now, since we are still assuming spherical symmetry, the velocity field in the liquid should 
follow some velocity potential <f>(r, t) i.e. 

u(r,t) = ^ (2.23) 

dh dh 
+ Udt=-

c2 d{r2u) 
~di 

dh 
+ Udt=- r2 dr 

du du dh 
dr 
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2.2. MODIFICATIONS OF RAYLEIGH-PLESSET MODEL 

As a consequence of conservation of momentum, this potential satisfies Bernoulli's equa
tion given by: 

1 + + (2.24, 
And now replacing this expression in the conservation of mass we get the following hy
perbolic partial differential equation [8]. 

^t + 2ul± + u ^ = ld±ll ( 2 . 25) 
dt2 drdt dr2 r2 dr 

Solving this equation is not an easy task, so different authors have made some simplifying 
assumptions leading to different models for the bubble growth and collapse. For the case 
of Rayleigh-Plesset equation, incompressiblity implies c = oo transforming Eq. (2.25) 
into Laplace equation (in spherical symmetry): 

1 d(r 2< dr • 
r2 dr 

Whose solution can be easily verified to be of the form: 

0 (2.26) 

r 
If we neglect mass transfer on the boundary we know that: 

= — (2-27) 

u(R, t) = ^(R, t) = R(t) = • 0(r, t) = (2.28) 

And using this expression in Bernoulli's equation (Eq. (2.24)) and the fact that for 
incompressible flows 
previous subsection. 
incompressible flows h = 2 - ^ a , we recover Eq. (2.5) and we might continue as in the 

2.2.1. Herring's model 
One of the earliest generalization on Rayleigh's model was published on 1949 (the same 
year that Plesset's article) by Herring [18], in the frame of a research on underwater 
explosions, where is usually considered constant and the effects of S and \i are negli
gible. Then, in 1952, a similar result was obtained by Trilling [46], a collegue of Plesset 
at Caltech. Herring considered an "almost incompressible" flow, meaning that density 
is still assumed constant but speed of sound is considered finite (but still relatively 
large compared with u), which means in practice that all terms in Eq. (2.25) which were 
0(u) are neglected. Under this idea, Eq. (2.25) turns into wave equation (in spherical 
symmetry), reason why this approach is also called quasi-acoustic: 

d2^_c2d(r2f) 
dt2 r2 dr 

If we consider only outward waves, this implies that: 

(2.29) 

fit-—) 
(/,(r,t) = — ^ (2.30) 
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2. CAVITATION BUBBLE DYNAMICS 

Therefore; 

86 fit-—) 86 fit-—) fit-—) 
i2L(rA = Ll £2°Z —(r,t) = - — — - — — (2.31) 
8t r 8r c^r r 2 

In particular for r = R(t): 

• 86 / ' ( * - — ) fit-—) 
R = ^(R,t) = - - m

c - ' => (2.32) 
ar Coo i t R 

f f 
RR= -— - ^ (2.33) 

Coo "̂ 
Differentiating Eq. (2.33) with respect to t we obtain: 

M - f - ( l - £ ) ( £ + 9 

We need to find a way of getting rid of / , / ' and / " . For / " , we may look at Bernoulli's 
equation (2.24). Recalling that the flow is almost incompressible, it follows: 

t + I # + = o (2.35) 
R 2 p 

Which can also be differentiated with respect to t, giving: 

Solving for / " here and substituting it in Eq. (2.34) yields: 

- -o fR f RRR Rp , n n n . RR + R2 = J—-J- + + — *: (2.37) 
i t i t Coo ôo P 

Using Eq. (2.33) to get rid of / , we get: 

r = ( l - ^ ) ( - 2 i e - B B ( l - ± ) + * - i ) (2.38) 
R I Coo + R) I \ c ° o / Coop/ 

Now it comes the key step of Herring's approach. It may look a little bit arbitrary but 
it 

Coo +R given that we assumed u « Coo, in particular R = u(R) so we may take — -̂5 ~ —, and 

~ 0 for p > 1 [46], leaving us with: 

£ = (2.39) 
« V Coo/ V Coo/ Coo p 

As a last step, using Eq. (2.35) to get rid of / ' we obtain what is known as Herring's 
equation [18, 46, 47]: 

-/ 2R\ 3 - 2 / 4 R\ p(R,t)-pOQ Rp . . 
RR[1 + -R2 1 = V ' — — + — - 2.40 

V Coo/ 2 \ 3 Coo/ P CooP 
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2.2. MODIFICATIONS OF RAYLEIGH-PLESSET MODEL 

Recalling that p(R,t) is the pressure on the liquid side at r = R, by Eq. (2.9) and Eq. 
(2.12), we may consider: 

p{R,t) =pv + pgo^—J ~^--j^R 

RR-ff ( 2 ' 4 1 ) 

' R? 

We have to remember that the main assumption was that R « CQO thus even if some 
compressibility is introduced, the model is still limited for small speeds compared with 
speed of sound. 

2.2.2. Gilmore's model 
In 1952, Gilmore [12], also from Caltech as Plesset and Trilling, published a sligthly more 
general model. Instead of considering the "almost incompressible" case, he considered 
general enthalpy functions h{p) ^ P~P°° a n d also speed of sound varying with time and 
position, i.e c = c(r,t). The main principle of Gilmore's model is the use of Kirkwood & 

2 
Bethe hypothesis, which states that quantity h + ^ propagate with speed c + u where c 
is the local speed of sound [12, 27]. This means that this quantity satisfies the following 
equation: 

W + * » + ( e + u ) W + * » = 0 (2.42) 
at or 

Eq. (2.42) is very useful, since it gives the following expression: 

/dh du\ , . / u2 dh du\ 

r U + " a ] + ( c + U T + ^ + r * + ™ * J ( 1 

From here, it is convenient to rewrite the expression in terms of the so-called material 
derivatives this operator is nothing more than a total derivative with respect to time 
along the material particle's trajectory. It is computed by = + u-j^, getting: 

Dh Du . u2\ (dh du\ , n A A S 

rDi + rUDi + ^C + U ) { h + Y ) + CT [d-r+UYr) 

To get rid of the remaining partial derivatives we may use conservation of mass and 
momentum (Eq. (2.21), Eq. (2.22)), noting that they are equivalent to [12]: 

Dh _ 2 (2u du\ 
~Di~C \V+d^) ( 2 4 5 ) 

Du _ _dh 
~Dt ~ ~~dr 

Substituting these two equations into Eq. (2.44) yields: 

Dh / u\ Du, x , / x 3 9 / l \ . 4 . 
r— (1 +ru— (u-c) + h(c + u) + -u2 l-u - c = 0 (2.46) 

LJb \ C / i-Jv \ o / 
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2. CAVITATION BUBBLE DYNAMICS 

This equation holds for any r and for any t, so in particular it holds for r = R(t) giving 
us what is known as Gilmore's model [12]. 

- / R\ 3-2f R\ TT R\ RH Rs  

R R [ 1 - c ) + - 2 R [ 1 - Z c ) = H [ 1 - c ) + ^ r [ 1 - C 
(2.47) 

where C = c(R(t),t) and H = h(R(t),t). In order to perform computations with this 
model it is required to know how density varies with pressure. A very used equation of 
state for liquids is given by Tait [3, 8, 12], and states: 

p + B 
Po + B 

(2.48) 

Where B and n are constants depending on the specific liquid (usual values for water are 
B ~ 3049 bar and n ~ 7.15). Using this equation and following definitions of h and c 
given in Eq. (2.17), we get: 

H 1 

p + B 
ra-l 2ra 

n 

H 

n - 1 

n 

-B) 

(Poo + B) 
p + B 

n — 1 Po 

Poo + B f 

ra-l 
p + B \ n 

- 1 

(2.49) 

(2.50) 

»oo + B 1 + 
p(p00 +B) - p'00(p +B) f p + B 

(Poo + B) Poo + B 
(2.51) 

Here p = p(R, t) and p = p(R, t) and are defined as in Eq. 2.41. 

2.2.3. Keller 's model 
In 1956, Keller & Kolodner, published a paper addressing the phenomenon of bubble's 
growth and collapse, as part of a research focused on underwater explosions, similar to 
Herring's motivation. In fact, the model obtained by them follows a logic very similar to 
that of Herring's. In 1980, Keller & Miksis, published a generalization of Keller & Kolod-
ner's model, considering now cavitation bubbles (usually of smaller size than underwater 
explosion bubbles), where S and \i have a considerable effect and they included the effect 
of some forcing oscillatory pressure source Poo (t). 

As detailed by Ohnawa & Suzuki [37], the assumptions of the model are very similar 
to Herring's. It's assumed that the velocity potential <f>(r,t) satisfies wave equation (2.29) 
and therefore the deriving process follows the same path as for Herring's model until we 
reach Eq. (2.38). There, instead of performing the cancellations made by Herring, we 
substitute / ' straight from Eq. (2.35) getting Keller and co-workers's model [21, 22, 37]: 

A R + 3-tf (1-JL) = (1 + A) PAM^ + ( 2 .52) 
\ Coo/ 2 \ 3Coo/ \ Coo J P Coo P 

Where p(R,t) and p(R,t) are defined as before (see Eq. (2.41)). 
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2.3. Bubble's translation 
For the purpose of this thesis it is necessary not only to study the behavior of bubble's 
radius with respect to the external pressure, but also to track its trajectory. It is important 
to notice that the bubble will be moving relative to an also moving fluid, so in general 
the trajectory of the bubble will not follow the streamlines of the fluid. Let us call the 
relative velocity W(t) = Vsit) — VL (£ ) , where VB represents the absolute velocity of the 
bubble, and Vj,, the absolute velocity of the corresponding fluid particle located at the 
bubble's position. This idea is shown in Fig. (2.3) 

Figure 2.3: Bubble's trajectories and streamlines (reproduced from [8]) 

Along this section, bubbles will be considered as particles acted upon by several forces, 
most of these forces will depend on bubble's radius R and radius rate of change R so the 
system obtained from this study will be coupled with the model considered to describe 
bubble's radius dynamics. As explained by Brennen [3], an approach very often used 
when we assume that particles are relatively small and disperse in the liquid medium (as 
it is our case), is to compute first the pressure and velocity fields (p(x,t) and u(x,t)) in 
the flow ignoring the presence of the particles in a Eulerian fashion, and then to study the 
particles motion based on these fields following a Lagrangian procedure. Such approach 
will be followed in this thesis. 

Consider then Newton's 2nd law on the bubble, given by: 

FT = mBVB (2.53) 

Where FT stands for total force on the bubble, is bubble's mass and VB is bubble's 
absolute velocity. The key part here is to describe correctly FT- There is a lot of literature 
describing the form of FT, which depends heavily on Reynolds number Re = 2RWP. A 
very general expression we can used is the following: 

FT = F A M + FG + FB + FR + FD (2.54) 

Where: 

• FAM- Added mass effect, force needed for the bubble to displace the fluid previously 
occupying its current position. 
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—* 
• F G : Gravitational force on the bubble, usually neglected since pb « p. 

• F B : Buoyancy force, result of pressure gradients in bubble's trajectory. 

• FR\ Slip/Rocket effect, result of the change of volume of the bubble. 

• FD' Drag force, viscous resistance made by the fluid. 

Weight and buoyancy forces are well-known, not the other three, therefore the following 
brief (not very rigorous) description intends to capture the main ideas. 

2.3.1. Added mass effect 
If both bubble and fluid experience different accelerations, then this force can be physically 
interpreted as the inertia added to the bubble due to the fact that it has to accelerate a 
portion of the fluid to "make room" for itself. It can be shown that, for a spherical bubble, 
this force has the form [3]: 

P A M = _ M (&> _ 3 £ ^ \ = - W ( ^ - 3 ^ ) (2.55, 

ydt Dt J 3y y dt Dt J K ' 
There are, perhaps, two surprising details in this expression, the first is that M here, is 
not the whole displaced mass of liquid by the bubble but only half of it, the second one 
is the presence of a coefficient for fluid's acceleration. There can be shown analytically, 
unfortunately these two details are not straightforward so we will skip that discussion. 
For details the reader is addressed to Brennen [3]. 

2.3.2. Slip/Rocket effect 
Suppose we have a bubble which is varying its radius, assume it is not subject to other 
forces, then the total virtual momentum (due to real and added mass) should be conserved 

d(MW) dM trdW - H — - = — W + M— = 0 2.56 
dt dt dt v ' 

Note that if bubble collapse ( ^ < 0) then ^ > 0, so the bubble accelerates, this effect 
is called Slip/Rocket effect. 

This reasoning allows us to think that there should be force compensating this change 
of volume and its effect on the added mass, with form: 

,dM 
~dt 

<R = w ^ - = 2pn(VB - VL)R2R (2.57) 

2.3.3. Drag force 
To represent the drag force FD, which represents the viscous resistance of the surrounding 
fluid, the usual form used is the following: 

FD = -CDTTR2^\W\W (2.58) 
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O 
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REYNOLDS NUMBER, WR/v 

Figure 2.4: Dependence of CD with respect to Re (reproduced from [3]) 

Where C d is called drag coefficient and is heavily non-linearly depending on Reynolds 
number, as shown in Fig. (2.4). 

We can see in Fig. (2.4) that it is not an easy task to come up with an expression 
of Cn valid for every Re, so authors have worked on approximations for different regions 
of the Re spectrum. In the range between 103 and 105, values around 0, 5 are usually 
considered, however near to Re = 105, the coefficient is very sensitive to other properties 
of the flow, as it can be seen in the dashed region on Fig (2.4), for Re > 105 values are 
usually around 0, 2. For lower Reynolds numbers (Re < 103) more accurate correlations 
are needed. In the scale Re < 1 some theoretical expressions are available like Stoke's or 
Oseen's, however in the range 1 < Re < 103, for the moment we have to rely on empirical 
correlations. 

A nice summary is given by Yang et al [48], some of available relations suggested by 
them and by Brennen [3] are shown in the table below. 

Table 2.1: Correlations for drag coefficients CD 

Author Formula Applicable Re 

Re 
24 
Re 
24 
Re 
24 
Re 

Stokes 
Oseen 
Klyachko 
Niansheng-Cheng 

| R e 
2' 

;3 
0 + 
( l + i R e 
(1 + 0.27Re) 

0.43 + 0.47 1 - e -0.04Re° 

Re < 0.4 
Re < 2 
Re < 103 

Re < 2 x 105 

2.3.4. Equation of motion 
Finally, putting all these forces together (also gravitational and buoyancy force), we may 
construct the equation: 

dVB . 4 3 ^ 2 3 dVB DVL mB— = mBg - -pnR g - -pnR — - 3 — 

2pn(VB - VL)R2R - CDnR2?-\VB - VL\(VB - VL) (2.59) 
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Or in terms of the added mass M — ^p-irR3: 

2 M ^ = - 2 M g - M ( d ^ - 3°^] -
p dt p \ dt Dt I 

- ^j-(VB - VL) - CDKR2^\VB - VL\(VB - VL) (2.60) 

Where pB is the average density of the bubble's content. Now, since in general pB « p, 
we can neglect the first two terms and we are left with Hsieh's equation [8]: 

= -2Mg + 3 M ^ - ^(VB - VL) - CD7rR2^\VB - VL\(VB - VL) (2.61) 
at Dt at 2 

Or given in terms of R and R: 
—* —* 

R ^ = -2Rg + 3 R ^ - 3R(VB - VL) - ^CD\VB - VL\(VB - VL) (2.62) 
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3. Mathematical background 
3.1. Ordinary differential equations 
Differential equations are mathematical tools widely used by scientists from almost every 
field of knowledge. Either in the form of partial differential equations or as ordinary 
differential equations, they are a very powerful way of describing a lot of phenomena in 
nature. Therefore, it is an important matter in mathematics to define solvability criteria 
for differential equation problems, to find properties for different types of problems and to 
find methods to get closed form solutions when this is possible, or to construct methods 
that allow to get good approximate solutions, when it is not. 

3.1.1. Basic definitions 
The present work deals mainly with ordinary differential equations and how to solve them 
numerically. Therefore, some basic definitions will be provided in this subsection, in order 
to establish some common notation. It is assumed, however, that the reader is familiar 
with most of the notions: 

Definition 3.1.1 An ordinary differential equation (ODE) is an equation involving 
derivatives of an unknown function on a single independent variable, i.e.: consider a 
function x : I C K. —>• W1 depending on t G / and let x^ (t) be its i-th derivative, then an 
ODE is an equation of the form: 

F (t,x,x',x",...,x^k)) = 0 (3.1) 

Definition 3.1.2 Consider n unknown functions xi : / C K. —>• Rd, % — 1, 2 , . . . , n then a 
system of ODEs is a system of the form: 

F\ (t, Xi, Xi, . . . , Xi \ X2-, x2, • • •, x2 \ • • •, x n , x n , . . . , x^ ^ — 0 

F2 (t, Xi, Xi, . . . , Xi \ X2, x2, • • •, x2 \ • • •, x n , x n , . . . , x^ ^ = 0 

Fm (t, Xi, Xi, . . . , Xi , X2, x 2 , . . . , x2 , • • •, x n , x n , . . . , x^n ̂  0 

(3.2) 

Remark Note that in Def. (3.1.1), x is actually a n-dimensional vector field defined 
over an interval in the real line. Therefore a way of interpreting Eq. (3.1) is as a system 
of n ODEs Fi = 0, where Fi is the i-th component of F, with solutions x^ : K. —>• M, i = 
1,2,. 

In fact, we recover the formulation given in Eq. (3.1) by writing: 

x = [ x i , x 2 , . . . ,xn}T  

T(i) _ r J O JA T(i)]T _ 1 9 1, 
X —[^1 ,X2 ...,Xn\ , 4 — 1, Z , . . . , At 

F=[F1,F2,...,Fn}T 

A similar idea can be used in the opposite direction. 
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Definition 3.1.3 The order of an ODE is the order of the highest derivative appearing 
in the equation. 

Definition 3.1.4 An ODE of order k is said to be linear if it can be written as a linear 
combination of the dependent variable x and its derivatives, with coefficients g, ÜQ, ai,..., ak 

functions oft, i.e.: 

ak(t)x(k) + a f c _i(t)x ( f c _ 1 ) H h ai(t)x' + a0(t)x + g{t) = 0 

Otherwise, the ODE is said to be non-linear. 

(3.3) 

Definition 3.1.5 A solution of the ODE (3.1) in an interval I C R is a function 
u : I - ) • Rn, u e Ck{I) such that F (t, u(t), v!(t), u"(t),u^{t)) = 0 is satisfied Vtel. 

In general, a k-th order ODE, has the form shown in Eq. (3.1), this form is called 
implicit form. However, usually it is more convenient (when this is possible) to write it 
in the so-called explicit or normal form described as follows: 

x{k\t) =4>(t,x,x',...,x{k-1)) (3.4) 

This form has the advantage that it can be transformed into a system of k first-order 
ODEs by performing the following change of variables: 

yi(t) = x(t) 
y2(t) = x'(t) 

yk{t) = x^(t) 

Which yields the following system, 

y'i(t)=y2(t) 

y'k-1(t) = yk(t) 
y'k(t) = (f)(t,y1(t),y2(t),...,yk-1(t)) 

(3.5) 

(3.6) 

Or written more compactly as: 

with y : I C R ->• Rk and / : I x 

y'(t) = f(t,y) (3.7) 

defined as: 

y(t) 

' yi(t) ' 

Vk-i(t) 
. Vk(t) . 

f(t,y) 

V2it) 

Vk(t) 
<t> (t,yi(t),y2(t), • • • ,yk-i(t)). 

(3.J 

Throughout this chapter, unless indicated otherwise, system (3.7) will be considered. 
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3.1.2. Solvability of initial value problems 
Solving ODEs, in general, is not an easy task. In the linear case, there exists a very 
complete theory which allows to find analytic solutions for several cases. In the non
linear case, however, the picture is basically upside down: only a few non-linear ODEs 
can be solved analytically. In fact, some problems may have several solutions or do not 
have solution at all. Being this the general situation, it is desirable, at least, to be certain 
that a given problem has solution, to know whether this solution is uniquely defined in a 
given interval J, and whether possible errors on input parameters do not affect the solution 
"too much". If a problem satisfies these three properties, we usually say the problem is 
well-posed. 

In general, assuming that I = [a,b], it should be possible to find solutions for Eq. 
(3.7) by using fundamental theorem of calculus. These solutions should be of the form: 

y(t) = y(a) + f <p(s)ds, <p(s) = f(s, y(s)) (3.9) 
•J a 

By constructing this solution, it is already possible to notice that the O D E alone (rep
resented by f(t,y)) is not enough to uniquely define the solution. Therefore in general 
problems like Eq. (3.7) require additional information in the form of y(a) = yo to define 
a specific solution, this is called initial condition. 

Definition 3.1.6 The problem of finding a function y(t) differentiable for any t E I, 
satisfying 

•<«)-/<«,») t e l 
y{to) = yo 

for some to £ I, is called an initial value problem (IVP) or Cauchy problem. 

Now we would like to define sufficient conditions for existence and uniqueness of solu
tions for problem (3.10). To this end we have an important result known as Picard-Lindeldf 
theorem or Cauchy-Lipschitz theorem [2, 5]: 

Theorem 3.1.1 (Picard-Lindelof theorem) Let f : f2 C I x R " —>• M.n be a continuous 
function on any (t,y) £ Q and suppose f satisfies the Lipschitz condition on y, i.e.: 
3L > 0 such that: 

\\f(t,y2)-f(t,y1)\\<L\\y2-y1\\, V(t , V l ) , (t,y2) £ Q (3.11) 

Then, for any point (t0,2/o) £ & there exist a unique solution y(t) defined on a neighborhood 
of to that satisfies the initial value problem (3.10). 

This constant L is usually called Lipschitz constant and we can find an estimate of it 
by means of the following lemma [19]: 

Lemma 3.1.1 Let Q C I xRn compact and convex and let f : Q —>• Rn be a continuously 
differentiable function with respect to y, i.e. partial derivatives for i,j = 1,2,... ,n 
are continuous in Q, then f is Lipschitz continuous in Q. Moreover, under the euclidean 
norm: 

dft L < n max 
(t,x)&n 
1< i ,j<n 

(3.12) 
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3.1.3. Stability of initial value problems 
Having ensured existence and uniqueness of the solution, there is another property we 
would like our I V P to exhibit. Most of the models in practice are fed with experimental 
data. Clearly, this data is subject to errors and we cannot expect our model to be 
insensitive to these errors but, at least, we would like that these errors have a "smooth" 
effect on the solution, in such a way that small variations on parameters produce small 
variations in the solution. This idea is called stability and a way of defining it may be the 
following: 

Definition 3.1.7 Consider the ODE: 

y'(t) = f(t,y;^ (3.13) 

Let u(t) be solution of (3.13) with initial condition u(to) = UQ and parameters \iu and let 
v(t) be also solution of (3.13) with initial condition v(t0) = v0 and parameters \iv. Then 
we say that problem (3.13) is stable ifWet > 0 there exist S0 > 0 and 8^ > 0 such that 
\\uo ~ vo\ \ < So and WfJ-u ~ HvW < tip implies \ \v(t) — u(t)\ \ < et, Vt G I 

This definition resembles the notion of continuity. In fact it describes some continuity 
of the solution with respect to initial condition and with respect to parameters in the 
function / . Fortunately, under the same assumptions of theorem (3.1.1), we have the 
following result which gives us stability [19, 38]: 

Theorem 3.1.2 Consider equation (3.13). Let f : E C ft x Rm ->• W1, ft C I x W1 

f(t,y;/j,) be continuous in E and Lipschitz continuous with respect to y and \i. Then 
y(t0, y0, fj,0) G E there exists a unique solution y(t; y0, /x0) of the problem: 

y'(t) = f(t,y,iM)) 
y(to) = yo 

continuous for any (t,y,fi) in a neighborhood 0/(^0,2/0,^0) £ E. 
Moreover if we consider u{t) also solution of (3.13) with initial condition u{to) = u0 

and parameter \iu, such that \ \f(t, y; /xo) — f{t, y; a O 11 < S, V(t, y) G Q then 

\\y(t) - u(t)\\ < eL^\\y0 -voW + j- (e L | < - < o 1 - l ) , VtQ,t G I (3.15) 

3.2. Difference equations 
As previously commented, non-linear ODEs are very seldom solved by analytical means, 
in order to get some information about the solution usually we must rely on numerical 
schemes performed with the help of computers. Due to the limitations of computers a 
key step on every numerical scheme is to transform our continuum domain into a set of 
finite points, this process is called discretization. Difference equations are analogous to 
differential equations on discrete variables, so when we try to approximate solutions of 
continuous problems on a finite set of points, it is natural that we end up dealing with 
difference equations. For this reason it is worth to study some of their properties and the 
solution of some simple cases. The results from this subsection are taken from Butcher 
(2008) [5]. 
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Definition 3.2.1 Consider a sequence {xn}n C W"1, then a difference equation is an 
equation relating each member of the sequence with some of its predecessors, i.e. For some 
keN 

F(xn,xn-l,xn-2, • • • ,xn-k) = 0 n > k (3.16) 

// the farther predecessor involved in the equation is the k-th predecessor, then we say that 
the difference equation (3.16) has order k. 

Note that Def (3.2.1) is similar to that of differential equation, therefore many ideas from 
differential equations can be used also here. For instance, we can think of explicit form 
ofEq. (3.16): 

Xn

 = 0(^n-l; Xn-2, • • • , Xn-k) U > k 

And again we can write it as: 

Vn = fiVn-l) 

Where 

Xn 
Xn—1 

Xn—k. 

and f(yn-i] 

n>0 

\Xn— i , Xn—2, • • • • 

%n—l 

%n—k 

Xn—k ) 

(3.17) 

(3.18) 

(3.19) 

3.2.1. Linear difference equations 
Linear differences equations are quite important in numerical methods. The reason for 
that is that even if we are trying to approximate non-linear differential equations, nu
merical methods usually rely on approximations that assume some kind of linearity and 
therefore linear difference equations will usually appear. 

Definition 3.2.2 A difference equation is called linear if it can be written as: 

yn = Anyn_x + 9n (3.20) 

(or equivalently xn = aXnxn-\ + a2nxn-2 H h aknxn-k + ^n) 

If gn = 0 (or ipn = 0) then we say that the equation is homogeneous. 

For simplicity, let us consider the case {xn}n C M, thus {yn}n C M f c and An e M n x f e . 
Then, the following result is not very difficult to prove: 

Theorem 3.2.1 The difference equation (3.20) with initial condition y0 has the unique 
solution: 

yn = f[(At)y0 + J2 II (Aj)9i (3-21) 
i=l i=l j=i+l 

There are a couple of interesting special cases that are worth to have at hand: 
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Homogeneous case Clearly if gn = 0, then the solution is reduced to: 

n 

yn = II(A)yo (3.22) 
i=l 

Constant coefficient If matrix An = A is a constant matrix Vn > 0 then we get the 
solution 

n 
yn = Any0 + '£(An-igi) (3.23) 

i=l 

For this last case, it would be interesting to know when this solution is bounded or 
even when it converges to 0. We can use the following results to get some inside into these 
issues: 

Theorem 3.2.2 Let A G fljnx™ then A is power bounded i.e. 3c > 0 such that \ \An\\ < 
c; Vn G N if there exist a non-singular matrix S such that \ \S~1AS\\OQ < 1 or equivalently if 
any eigenvalue A G cr(A) lies inside the close unit disk and those with multiplicity greater 
than 1 lie inside the open unit disk. 

Theorem 3.2.3 Let A G R n x n then A is convergent i.e. lim^oc,; Vn G N if there exist a 
non-singular matrix S such that \ IS^AS] |oo < I or equivalently if any eigenvalue A G cr(A) 
lies inside the open unit disk. 

3 . 3 . Numerical methods for the solution of ODEs 

3.3.1. Basic definitions 
We are trying to find an approximation to y : M. —>• M.d solution of the initial value problem 
(3.10) given by: 

y'(t) = f(t,y) t e i 

y(to) = yo 
As commented before, to do that, as a first step, we usually consider a discretization of in
terval I, i.e. a finite set {tn}^=0 C / such that intervals [to, h), [t\, £2), • • •, [tjv-2, tjv-i), [ijv-i, 
form a partition of I. Our goal is then, to find another finite set {yn}^=0 such that 
yn ~ y(tn),n = 0 , 1 , . . . , N. 

Therefore, in general, a numerical method is just a map of the form: 

$f : RN ^ R d x N 

ft * * \ ( \ ( 3 - 2 4 ) 

Clearly this formulation is not very illustrative, since it does not say anything about the 
form of mapping $ j . Most of the methods used nowadays, however, do share a common 
structure as shown by Ashino et al [1]: 

Definition 3.3.1 A numerical method is an equation of the form: 

fe-i 
ajVn+i-j = hn4>f(yn+1,tn+1,yn,tn,... ,yn-k,tn_k), k < n < N - 1, k>0 (3.25) 

j=0 
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There are several ways to classify numerical methods following diverse criteria. The 
most basic ones are probably the following two: 

• If (f>f does not depend on yn+1 then we say that the method is explicit, otherwise 
we say that it is implicit. 

• If k = 0, i.e. (f>f depends only on points (tn,yn) and (tn+i, yn+i) we call the method 
a one-step method, otherwise if k > 0 then we call the method a multi-step 
method. 

Certainly, for a method to be useful, we require that the approximated solution {yn}n 
gets closer to the exact solution as long as we "refine" the discretization. This notion is 
called convergence and is defined as follows: 

Definition 3.3.2 Method (3.25) is convergent if for any initial value problem (3.10) 

lim\\y{tn) - yn\\ = 0, Vt„ e I (3.26) 
/l-S-0 

Where: 
h = max \tn+i — tn\ 

0<n<N-l 

In order to find sufficient conditions that guarantee convergence we need to introduce the 
following important notions: 

Definition 3.3.3 The local truncation error is defined as the following difference: 

fe-i 
Tn = UjVitn+l-j) ~ ^n0/(y(*n+l))y(*n),*n,y(*n-l),*n-l, • • • , y{tn-k),tn-k) (3.27) 

3=0 

If Tn = Chv+1 then we say that the method has order p 

Definition 3.3.4 Method (3.25) is consistent if for any initial value problem (3.10): 

lim ^ = 0 (3.28) 
h-^o h 

(Note that any method of order p > 1 is consistent) 

Definition 3.3.5 Method (3.25) is zero-stable if for the ODE f(t,y) = 0 and arbitrary 
initial condition, we can get only bounded solutions. 

Finally, the result that combines all these notions and characterize convergent methods 
states: 

Theorem 3.3.1 (Lax equivalence theorem) A numerical method is convergent if and 
only if is consistent and zero-stable 
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3.3.2. Absolute stability and stiff problems 
Convergence is the least we can require of a numerical method to be useful, it guarantees 
that in the limit our approximations tend to the exact solution. However, in real appli
cations we cannot reach that limit, as LeVeque [28] says: it is not very helpful to know 
that the method will work fine for a stepsize "small enough". It would be nice to be able 
to say something for a given finite stepsize h. 

Let us consider a linearization of the general problem (3.10) on a neighborhood of 
(*o,yo): 

df df 
y'it) = f(t0,y0) + -^(t0,yo)(y - y0) + -^(t0,y0)(t -10) (3.29) 

Now, if we consider two functions yi(t) and y2(t), both solutions of this problem with 
different initial conditions lying in the neighborhood of (to,2/o) and assuming t — to small 
we get: 

df 
y[(t)-y'2(t) = ^-(to,y0) Mt) -y2{t)) 

A 
e'{t) = Ae 

e(t) (3.30) 

We know that the solution of this problem is e(t) = e0eAt, so if Re(Xi) < 0, for Aj eigenvalue 
of A, the error \e(t)\ between both solutions should remain bounded. We would like our 
numerical method to preserve this behavior. This property is known as absolute stability. 

Definition 3.3.6 Consider the solution {yn}n of the problem: 

y'it) = \y, A e C , 
V (3.31) 
y(to) = yo 

computed by a numerical method $(a, <f>f) with a uniform stepsize h. The region of 
absolutely stability of the method is the set of points z = hX G C such that the solution 
{yn}n is bounded. 

If the region of absolutely stability includes the complete left half of the complex plane 
then we say that the method is absolutely stable or A-stable. 

This definition may look a little bit artificial and limited, considering that it is based 
on a very simple test problem. However is much more powerful that it appears, specially 
when dealing with so called stiff problems. Stiffness is a property difficult to define, in 
fact there is no general consent on its definition, however from the practical point of view, 
the main idea is clear: a problem is stiff if can be solved much more efficiently by using 
an A-stable method [2], which is not usual given that these kind of methods have a very 
high computational demand per step. 

According to Gautschi [10], the term stiffness makes reference to the behavior of a 
stiff spring, (i.e. a spring with a large stiffness constant). If such a spring is elongated 
to some initial position and then released, it will return very fast to its equilibrium posi
tion. Mathematically speaking we would say that the differential equation describing its 
dynamics is very stable. 

Indeed, a typical characteristic of stiff problems is that some eigenvalues of its jacobian 
matrix | ^ have negative real parts with relatively large magnitude. Clearly this notion 
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is closely related with absolute stability: if the eigenvalues of the jacobian are negative 
and have large magnitude, a method with small region of absolute stability will require 
extremely small stepsizes to reproduce correctly the strong stability of the problem, which 
implies that much more steps (and calculations) will be performed compared with a A-
stable method [2]. 

As a general rule, no explicit method can be A-stable, therefore these kind of methods 
are usually called non-stiff. On the other hand, implicit method may be A-stable or at 
least have a very large region of stability, so they are usually referred as stiff methods. 

3.3.3. Euler method 
The simplest numerical method to solve initial value problems was published in 1768 
by Leonhard Euler. The method is based on a very simple idea. Consider the classic 
definition of derivative: 

y'(t) = lim V i t + h ) ~ V { t ) (3.32) 

Since y'(t) = f(t) then for h small enough we have: 

y(t + h)ay(t) + hf(t,y) (3.33) 

Euler method consists precisely in taking this approximation as equality, therefore for 
Un ~ y(tn) we approximate yn+1 by: 

yn+i =Vn + hnf(tn, yn) 0 < n < N - 1 (3.34) 

Local truncation error 

The local error of Euler method can be estimated by expanding a Taylor series around 
y(tn). Assuming that y(t) is regular enough in [£ n,£ n+i] we have: 

y(tn + hn) = y(tn) + hnf(tn, y{tn)) + ^h2

ny"{£) *n < £ < tn+i (3.35) 

If we assume that yn ft* y(tn), then: 

y(tn + hn) ^yn + hnf(tn, yn) +\h2

ny"{£) (3.36) 
v v ' 2. 

Vn + l 

Thus, the following local error estimate is obtained: 

1 
rn = y(t„ + K) - yn+1 w -h2

ny"{£) (3.37) 

Comparing this remainder with definition (3.3.3) we can see that Euler method is a 
method of order p — 1. 
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Global error 

Let us consider now the total error at time tn: 

= (y(*„_i) - yn-i) + hn{f{tn-i,y{tn-i)) - f{tn-i,yn-i)) + rn 

= e„_i + / i„(/( t„_i , y{tn-\)) - f{tn-\, yn-i)) + Tn 

M , 3/(*n,Cn) ^ w . . ( 3 - 3 8 ) 

= e„_i + ft„ — e„_i + rn y{tn-i) <Q< Vn-i 

= 11 + ft„ — I e„_i + r„ 

By theorem (3.2.1) we know the solution of this difference equation, which is given by: 

. - n ( 1 + ^ ) . + £ ( n ( 1 + ^ ) n ) ( 3 , 9 , 

If / is Lipschitz with respect to y then d/fai&O < ^ jf w e a i s o a s s u m e that hn < h and 
rn < h2M, Vn, then we can get the following bound for the global error: 

| |e„|| < e l ' " - < 0 l L ||e0|| + ( e l ' " - < 0 l L - l ) ^ (3.40) 

So, even if the local error behaves like 0(h2), the accumulation of this error through 
several steps produce a global error which behaves like O(h). This accumulation of errors 
is similar in higher order methods (though not so easy to compute), so in general, global 
error e„ ~ 0{hp). 

This has a big impact on the efficiency of the method. For illustration consider, for 
instance, two methods $ p and $ g of orders p and q respectively, with p < q. Suppose that 
for a fixed error tolerance tol, method $ p requires a stesize hp = tf^to this means that 

tol pa Cphp

p = Cp ( ^ r ^ ) P , similar happens with method $ g with tol pa Cq ( ^ ^ ) ? - When 
comparing the number of steps Np and Nq needed for each of these methods to satisfy 
tol, we obtain the relation: 

tol « Cp - Cq {^-J Np^O (7V|) (3.41) 

So if Nq — 103, p — 1 and q = 2, we may end up having Np of the order of 106, while 
if p = 4 and q = 5, Np and JVg may be of the same order. However, if Nq = 108, p = 4 
and q — 5, then iV p may be of the order of 10 1 0. Of course, there are a lot of factors 
affecting the amount of steps needed for a method to satisfy a given tolerance, therefore 
these estimations are very far from been accurate, but it can give an idea about how 
methods of different orders perform for a given problem, and why sometimes it is worth 
it to increase order and sometimes it is not. 

Convergence of Euler method 

We wish to use Lax equivalence theorem (3.3.1) to prove convergence. For that we need 
to verify consistency and zero-stability. Given that the order of Euler method is p = 1, 
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consistency is already satisfied. For zero-stability we need the difference equation yn+i = 
yn to have bounded solutions, the solution of such an equation is clearly constant and 
therefore bounded, hence the method is zero-stable and, by theorem (3.3.1), convergent. 

Absolute stability of Euler method 

Considering the model problem (3.31). Euler method would yield: 

yn+1 = yn + h\yn = (1 + h\)yn (3.42) 

This is a linear homogeneous difference equation with solution yn = (1 + hX)nyo so in 
order to be bounded we required 11 + hX \ < 1 which is equivalent to say that the region 
of absolutely stability is the complex unit disk centered at —1, as shown in Fig. (3.1a). 

3.3.4. Modifications of Euler method 
Euler method is a very simple method, very easy to implement, however it is usually not 
the best option when dealing with actual problems. This is so, mainly due to two reasons: 
the first is its low order, which gives a relative slow speed of convergence as we showed in 
the discussion about global error, and the second is its reduced region of absolute stability, 
which may force the solver to use small stepsize, and therefore to do more computations. 
To solve these issues, several improvements have been developed. 

Implicit Euler method 

One simple way to boost vastly the stability region of Euler method is to consider a 
backward difference instead of a forward difference in the approximation of the derivative, 
i.e.: 

yn+i ~Vn + hf(tn+1, yn+1) (3.43) 
This method is called "implicit" in contrast with the original Euler method which is an 
explicit method, precisely because now yn+\ is implicit in the equation. Since / is in 
general a non-linear equation, to solve for yn+\ we will need to employ some zero-finding 
method like Newton's method or fixed point iteration, which will add an extra cost to the 
method. Despite this apparent drawback the main advantage of this method, common 
to all other implicit methods, is that it has a considerably larger region of absolutely 
stability: Considering the test problem (3.31), implicit Euler (IE) method gives: 

yn+1 =yn + h\yn+1 =>- yn+1 = -—\^yn (3.44) 
1 — hX 

Which gives a bounded solution if |yzrr| < 1 or said in other way, if hX lies outside the 
unit disk centered in 1, as shown in Fig. (3.1b). 

Convergence of implicit Euler method 

Similar to Euler method we may consider a Taylor expansion around y(tn+i): 

y{tn+1 - hn) = y(tn+1) - hnf(tn+1,y(tn+1)) + ^h2

ny"(£) tn<£< tn+1 

y(tn+l) = y(tn) + hnf(tn+l, y(tn+l)) - ^h2

ny"(0 (3.45) 
1 

r„ = y(tn+1) - yn+1 = --h2

ny"{£) 
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3.3. NUMERICAL METHODS FOR THE SOLUTION OF ODES 

(a) Explicit Euler (EE) method (b) Implicit Euler (IE) method 

Figure 3.1: Regions of absolute stability (in gray) of explicit and implicit Euler method, 
(reproduced from [28]). 

So again we get a local truncation error r = Ch2, so this method is also consistent with 
order 1. For zero-stability we get exactly the same situation as for Euler method, so the 
method is also zero-stable and therefore convergent. 

Trapezoidal method 

The previous approach is a big improvement if we need to solve stiff problems, however 
it is still of order 1. In general to solve problem (3.10), we can integrate and get: 

rtn+i 
yn+i=yn+ f(s,y(s))ds (3.46) 

To increase the speed of convergence we must consider different ways of computing this 
integral with a smaller error. Let us recall, for instance, the trapezoidal rule for numerical 
integration [2]: 

[a(s)ds = l-{b - a)(g(b) + g(a)) - 1(6 - a)V'(0. « < £ < *> (3-47) 

If we assume that the difference b — a is small, then we should expect the last term to be 
negligible compared to the first. Following this idea, considering a stepsize small enough, 
we can construct the following scheme: 

yn+i =yn + 7,hn(f(tn, yn) + f(tn+l, yn+i)) (3.48) 

We should verify whether this method is convergent. Zero-stability is easy to check, for 
consistency, the trapezoidal rule already gives us an estimation of the local error: 

Tn = -^h3

ny"'(0, a<i<b (3.49) 

Thus this method is of order p — 2. This means that for a given error tolerance, trapezoidal 
method would get a solution using larger step-size compared with Euler methods, as it is 
shown in Fig. (3.2). 
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Figure 3.2: Global error (error) vs time stepsize (dt) comparison for explicit Euler method 
(EE), implicit Euler method (IE) and trapezoidal method (TR). Problem considered: 
y' = X(y — smut) + ucos(ut), with A = —50, the red line shows the actual error and the 
dashed line represents the slope p — 1 for both Euler method and p = 2 for trapezoidal 
method. It can be seen how for a fixed error of 10~6, trapezoidal method requires a stepsize 
around 15 times larger than the one needed for Euler methods. Also it is interesting to 
see that in the case of explicit Euler method, the error blows up around h — Ax 10~2 due 
to stability limitations (reproduced from [44]). 

Regarding absolute stability, we can implement trapezoidal method on test problem 
(3.31) getting: 

' (3.50) yn+i =Vn + ijh(\yn + \yn+i) 

So 

Vn+l 
1+jhX 
1-lhX, Un (3.51) 

We can easily verify that such difference equation has bounded solutions for any hX < 0, 
so trapezoidal rule is an absolute stable method, as can be seen in Fig. (3.3a). 

If the problem we are dealing with is non-stiff it may not be worth it to implement 
an implicit method. A way of transforming trapezoidal method into an explicit method 
is by making an estimation of yn+\ using Euler method and then using that value in the 
trapezoidal scheme, i.e: 

/ n + l Vn + hf{t Vn 

yn+i = yn + ^Kf(tn, yn) + f(tn+l,yl+l)) 
(3.52) 
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This explicit form of the trapezoidal rule is usually known as Heun's method. It is still 
of order p — 2, however is no longer absolute stable. 

Midpoint methods 

In a similar way that we used trapezoidal rule for numerical integration, we can also use 
midpoint rule to build a different numerical scheme. This integration rule goes: 

l\(s)ds = (b-a)g(^^+j-4(b-afg''(0 a<£<b (3.53) 

So we can think of a scheme like this [2, 44]: 

Vn+i =yn + hnf I tn + —, I (3.54) 

Such method is usually called midpoint method. We can see that this method is implicit 
since yn+i is implicit in / . Convergence for midpoint method can be shown easily in a 
similar way as we did for trapezoidal method. When implementing this method for test 
problem 3.31 in order to test stability we get: 

Vn+i = z ix Vn (3-55) 

Which is th same we got for trapezoidal method, so this method is also A-stable. 
Now, suppose again that we wish to solve a non-stiff problem, so we would like to have 

an explicit implementation of this method. One way may be to follow a 2-stages scheme 
as in Heun's method, but another possibility is to consider more than one time-step. For 
example, if we take 2 steps, we get a 2-step midpoint method of the form: 

yn+1 = yn-X + 2hf(tn,yn) (3.56) 

This method has the advantage that it is of order p = 2 and it needs only one function 
evaluation per step, however on the other side we need to get two initial data y0 and y\ to 
implement it. To study its stability, we apply this method to test problem (3.31) getting: 

Vn+i = Vn-i + 2h\yn (3.57) 

This difference equation can be arranged in the form: 

Yr n+l 
2hX 1 

1 0 Y Y 
J 77, J r n+l 

Vn+1 
Vn 

(3.58) 

The eigenvalues of this matrix are given by Ci,2 — hX + y (hX)2 + 1. It can be shown 
that the only way that such eigenvalues lie in the unit disk is by requiring Re(hX) = 0 
and — 1 < Im(hX) < 1, which means that the region of stability of this method is only 
the segment from — % to % in the complex plane, as shown in Fig. (3.3b). It is interesting 
to see that some methods can have such restricted stability regions, so caution must be 
taken with respect to stability when designing new methods. 

This two methods give an idea of the two main classes of methods availables multi-
stages and multi-steps, the most important representatives of each class are, respectively, 
Runge-Kutta methods and linear multi-step methods. 
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(a) Trapezoidal method (b) Explicit midpoint method 

Figure 3.3: Regions of absolute stability (in gray) of implicit trapezoidal method and 
2-stages midpoint method, (reproduced from [28]). 

3.3.5. Runge-Kutta methods 
Explicit Runge Kutta methods 

We have introduced already one explicit 2-stage method, namely Heun method. This 
method belongs to a whole family of 2-stage explicit methods, all of them of order p = 2. 
The way such family is constructed is the following: The first stage will be always Euler 
method because at the beginning of the step the only information we have is tn and yn. For 
the second stage, we will estimate the derivative at some intermediate point t* = tn + c2h 
using y* = yn + a2\hk\. At the end, we will compute yn+\ by using an Euler-like scheme 
but replacing f(tn,yn) by a "weighted average slope" of the previous stages slopes, given 
by b\ki + b2k2. A l l together it looks like this: 

h = f(tn,yn) 
h = f(tn + c2h,yn + a21hki) 

yn+i =yn + h{biki + b2k2) 

Which can be compactly represented by the so called Butcher's tableau: 

(3.59) 

0 0 
c 2 a2\ 0 

h b2 

Now we have to define these 4 parameters. First, let us set c2 = a2i, condition that 
will simplify things a lot. For the remaining 3 terms we should set their values in such a 
way that we guarantee the order p — 2. To do so, consider that the method described in 
Eq. (3.59) is equivalent to: 

y n + 1 =yn + hhfitn, yn) + b2hf(tn + c2h, yn + a2lhh) (3.60) 

A Taylor expansion of the last term around (tn,yn) would be given by: 

f(tn + c2h, yn + a2lhh) = f + ftc2h + fya2Xhkx + 0(h2) (3.61) 

With / = f(tn,yn), ft = %{tn)yn) and fy = ^(tn,yn). Putting all together we get: 

Vn+i = Vn + hhf + b2h(f + ftc2h + fya21hkit 

= yn + (6i + b2)hf + (/, + fyf)a21b2h2 
(3.62) 
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Recalling that y"(tn) = ft + fyf and comparing Eq. (3.62) with the Taylor series of y(t) 
around tn, we get: 

y(tn + h) = yn+1 + 0(h3) (3.63) 

As long as: 
6i + b2 = 1 

1 (3-64) 
« 2 i h = ~ 

So we can write the whole family in terms of a single parameter b2 = (3 e [0,1] [44]: For 

0 0 
1 

2/3 
1 

2/3 0 
1-/3 ß 

(3 = | we recover Heun's method (explicit trapezoidal) and with /3 = 1 we get a 2-stage 
midpoint method. 

In principle we can follow a similar idea to generate methods of order p, adding s stages 
and trying to match terms in the Taylor expansion until we get a remainder 0(hp+1). 
Unfortunately the process described for order p = 2 gets very complicated incredibly fast 
as we increase orders: for instance, at order p = 3, we have 8 parameters to set, and 4 
conditions to satisfy, for order p = 4, we have 10 parameters to set and 8 conditions to 
satisfy, and for p = 5 we have only 15 parameters and 17 conditions to satisfy, reason 
why solvers of order p = 5 required at least 6 stages. Table (3.1) summarizes the amount 
of conditions to satisfy, parameters needed and minimum number of stages for different 
orders. Note that for order p = 9 and p = 10 we still do not know what are the minimum 
number of stages needed. 

Table 3.1: Number of order conditions, minimum number of stages needed and number 
of parameters needed for Runge-Kutta methods of different orders (reproduced from [44]) 

Order 1 2 3 4 5 6 7 8 9 10 
Conditions 1 2 4 8 17 37 85 200 486 1205 

Min. Stages 1 2 3 4 6 7 9 11 ? ? 

Param. needed 1 3 6 10 21 28 45 66 ? ? 

Despite its order or number of stages all explicit Runge-Kutta solvers share the same 
structure, for an arbitrary s-stages method we have: 

h = f(tn,yn) 
h = f(tn + c 2, yn + ha2ih) 
h = f(tn + c 3, yn + h(a3lh + a3 2/c2)) 

ks = f(tn + cs, yn + /i(a si/ci H h a s s_i/c s_i)) 
yn+l =yn + hthh + b2k2 + ... bsks) 

(3.65) 

Represented by the Butcher's tableau: 
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0 0 
c 2 021 0 
c 3 «32 0 

a s 2 • • • Oss-1 0 
6i 62 . . . bs-i 

Some examples are classical RK3 and RK4 methods (being this last, the one found by 
Runge already in 1895, and the reason why these methods carry his name): 

Table 3.2: Classic Runge-Kutta method of order 3 (RK3) 

0 0 
1 1 0 
2 2 

0 
2 0 2 
3 

0 
3 

1 2 1 
6 3 6 

Table 3.3: Classic Runge-Kutta method of order 4 (RK4) 

0 0 
1 1 0 
2 2 

0 
1 
2 

0 1 
2 

0 
1 0 0 1 0 

1 1 1 1 
6 3 3 6 

Implicit Runge Kutta methods 

A l l previous methods require that matrix A = { q j j } where Q>i^j are taken from Butcher's 
tableau, to be lower triangular in order to keep the explicitness. If we want to consider a 
more general kind of methods, we can allow A to be a full matrix. Clearly at including 
slopes of stages not yet computed in the computation of every stage, the method becomes 
implicit and we will need to solve a system of s non-linear algebraic equations in order to 
get k\,..., ks. A n advantage of these methods is that since more parameters are included 
for the same number of stages, we can expect implicit Runge-Kutta (IRK) methods to 
reach higher orders with less stages than explicit Runge-Kutta methods (ERK), in fact, 
using s stages we can reach up to order p = 2s. Despite that, these methods are still rela
tively expensive and therefore they offer some true advantage only to solve stiff problems 
[5]. * 

In general they have the form: 

h = f(tn + Cih, yn + h(anki + a12k2 H h alsks)) 

ki = f{tn + c2h, yn + h(a2iki + a22k2 H h a2sks)) 

(3.66) 

ks = f{tn + csh,yn + h(asih + as2k2 H h assks)) 

y n + 1 =yn + h{biki + b2k2 + . . . bsks) 

Or equivalently represented by the Butcher's tableau 
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C l a n a12 .. • a l s 

c 2 Ö21 a22 • • • a2s 

cs asi as2 • • 
bi b2 .. . bs 

Implicit Runge Kutta methods are a very wide family of methods. As exposed by 
Kroulikova in her master thesis [25], according to the structure of matrix A they can be 
classified in the following cathegories: 

• DIRK: the acronym stands for Diagonally implicit Runge Kutta, in this family 
of methods matrix A has no non-zero elements above the diagonal (however the 
diagonal may have non-zero entries). 

• SDIRK: stands for Singly Diagonally implicit Runge Kutta, here all the elements 
along the diagonal have the same value. 

• ESDIRK: stands for explicit singly diagonally implicit Runge Kutta, it is almost 
a SDIRK method, but the first row of matrix A is full of zeros. 

• FIRK: stands for full implicit Runge-Kutta, all matrix A is made of non-zero ele
ments. 

A n example of matrix A for the mentioned types can be seen as follows (corresponding 
to 3 stages). 

an 0 0 " " 7 0 0" 
Ö21 Ö22 0 (DIRK) Ö21 7 0 (SDIRK) 
Ö31 «32 « 3 3 . Ö31 «32 7. 

" 0 0 0 " an Ö12 Ö13 

a>2i Ö22 0 (SDIRK) Ö21 Ö22 Ö23 (FIRK) 
.031 «32 « 3 3 . Ö31 «32 Ö33_ 

Some important examples are Radau and Lobatto methods. Among them probably 
the most popular being RadauIIA (s — 3,p — 5), also called Radau5 [44, 5]: 

Table 3.4: Runge-Kutta implicit method RadauIIA (Radau5) 
4-%/6 SS-7V6 296+169^ - 2 + 3 ^ 

10 360 1800 225 
2 9 6 - 1 6 9 ^ 8 8 + 7 ^ -2-3V6 

10 1800 360 225 
1 16-V6 16+Ve 1 

36 36 9 
i6-Ve 16+V6 1 

36 36 9 

Another curious example of IRK methods are the so called Rosenbrock. While a 
typical IRK method must be solved by using some zero-finding method like Newton's 
method or fixed-point iteration, which are iterative methods, so they require a lot of 
function evaluations, in 1963, Rosenbrock proposed a special type of IRK method which 
can be solved in a single iteration [5]. The price to pay is that we use matrix of the form 
W = (I — h'jJ) where J = | ^ is the jacobian matrix of function / , if such jacobian is 
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not expensive to compute, it becomes a very profitable method. A n example is given by 
Butcher as follows, working only for autonomous systems: 

ki = w-lf{Vn) 
k2 = W-lf{yn + h^h) (3.67) 

yn+1 =yn + hk2 

Where: 

W = I - h [ l - ^ ) J J=d-[y (3.68) 

Stability of Runge-Kutta methods 

In order to describe absolute stability let us solve test problem (3.31) with a general 
s-stage Runge-Kutta method, described by the tableau: 

c A 
bT 

As shown by Butcher [5], we obtain: 

k = fit + Cih, yn + hciik) = X(yn + ha^k) => 
k = X(ynl + hAk) 
k = \yn(I - hXAk)'1! =>-

Vn+i = Vn + hbTk 
yn+1 = (1 + hXbT(I - hXAk)-1!^ => 

R(hX) = 1 + hXbT{I - hXAk)-1! 

This function R(hX) is called stability function and we can define the regions of absolute 
stability by S = {hX G C; \R(hX)\ < 1}. The regions of stability of common methods are 
shown in Fig. (3.4). As we can see, for Runge-Kutta methods when we increase the order 
we do not only improve the speed of convergence but also the stability, this is not the 
case with all type of methods. 

Embedded Runge Kutta methods 

Methods discussed so far give no idea on how timesteps {hn}n should be selected. A 
naive approach is to consider a uniform discretization, which simplifies considerably the 
implementation, however it is not very efficient. A better approach should consider longer 
timesteps when the solution is varying slowly and shorter timesteps when it changes more 
rapidly. 

A natural way of adapting timestep is given by the local error estimates. We have 
already seen that local truncation error is a function of timestep hn, therefore if we set 
some error tolerance we should be able to choose a suitable stepsize value that may 
guarantee that the tolerance is maintained. Of course, local truncation error involves also 
some constants that we cannot know in advance, but we can try to get some estimates of 
this local error [5]. 
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Figure 3.4: Regions of absolute stability of explicit Runge-Kutta method of diverse orders 
(reproduced from [5]). 

The approach used by modern solvers is to solve the problem using two methods of 
different order, and to use the difference of their solutions to estimate the truncation 
error. Clearly when dealing with Runge-Kutta methods, if the methods used share some 
common stages, we can save some computations. As an example we can consider the 
methods shown in Table (3.5) and (3.6). The first one was proposed by Fehlberg in 1968, 
and combines a method of order 5 with a method of order 6. The second one was proposed 
by Dormand & Prince in 1980, and combines a method of order 4th and a method of order 
5, this last corresponds to M A T L A B ' s widely used solver ode45. 

Table 3.5: Runge-Kutta-Felhberg method formed by a 5th order method and a 6th order 
method (RKF56) 

0 
1 

3 
i 
5 
1 
0 
1 

0 
1 

5 
361 

_320 1 

M° 
640 31 
3gl 

1408 

0 
16 
75. 

3 
1 4 4 
25 

18 

18 
_5_ 

0 
5 
2 

- 4 
407 

w 
i i 
256 

0 
0 

2816 
1125 
2816 

0 
16 
25 

11 

.160 

0 
55 o 

o 
0 

f 
32 768 

"TT" 
66 

0 
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Table 3.6: Dormand and Prince pair formed by a 4th order method and a 5th order 
method (RK5(4)7M), method implemented in popular M A T L A B ' s solver ode45 

0 
1 

0 
1 

n 
45 

19372 
6561 
9017 
3 i i 8 

384 
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3> 
15 

25360 
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355 
33 

0 
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9 

64448 
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49 
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0 
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!8856 
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-m—i 
757? 

0 
11 

-84- 0 

16695 

1 0 2 
3g3 
(i 10 

tt7 
339200 

±± 0 
84 

187 J _ 
2100 40 

3.3.6. Linear multi-step methods 
We have seen that the general strategy of Runge Kutta methods to gain accurracy is to 
compute several "intermediate slopes" during current step, which requires more function 
evaluations per step, however, once the step integration is over, all these information is no 
longer used. Multi-step methods instead make use of the previous information to increase 
the accuracy, for this reason they may require just a few function evaluations per step to 
obtain high order methods, which makes them relatively "cheap" methods, however usually 
this is counterbalanced with some limitations in terms of absolute stability compared to 
Runge-Kutta methods. 

In principle, we may consider a general multi-step method given by: 

yn+l = $ ( y n , y n _ i , . . . ,y, n—k ) (3.70) 

Where $ may be any function relating yn and k predecessors, however for convenience 
most of the actually used methods consider only linear forms, which are easier to study 
and implement. Then a linear multi-step method is a method of the form [5]: 

Vn+l = 'Y^aiVn+l-i + hJ2bif(tn+l- ii tn+l- (3.71) 
i=l i=0 

Among this family, the main exponents are Adams methods for non-stiff problems and 
backward differentiation formulae (BDF) for stiff ones. 

Convergence of linear multi-step methods 

As usual, to study convergence the easiest way is to prove consistency and zero-stability. 
For consistency, we will follow the proof of Atkinson et al [2]. Let us recall the definition 
of local truncation error given in Def. (3.3.3), for a linear multi-step method we obtain: 

k k 
rn(y(tn+1)) = y(tn+1) -J^aiVitn+i-i) ~ K^hy'(*n+i-») 

i= l i=0 

Now if we expand y(tn+i) as a Taylor series around tn, we obtain: 

y(t) = E ^ p ^ y ( i ) ( * „ ) + Rk+i Rk+i = C{t - t „ ) f c + V f c + 1 ) ( £ n ) (3.72) 
i=0 l -
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Please note that the truncation error expression is linear, i.e. r(aY + f3W) = ar(Y) + 
(3T(W), so in particular we can write r(y(tn+i)) as: 

r(y(tn+1)) = J2 ^r^r((t - tnY) + r(Rk+1) (3.73) 

To have consistency we need T(y(tn+i)) — 0{tn+i — tn)2, which means that we just need 
to verify r ( ( t n + i — tn)1) = 0 for i = 0 and i = 1: 

• For i = 0: 
k 

r ( ( W i " *n)°) = r ( l ) = 1 - £ aJ = 0 

(3.74) 

E a3 = 1 

• For i = 1: 

fe fc 

i=i i=o 
(3.75) 

Dividing by (tn+x - tn) we get: 

E a i ( ! r i " i _ " A ) + ^ ^ = i ( 3 - 7 6 ) 

If we assume a uniform discretization i.e. / i = — U for any i , then the previous 
condition is reduced to: 

k k 

These two are usually called the consistency conditions. We can easily extend this notion 
to higher terms r((tn+i — tn)p),p > 1 in order to guarantee a certain order p, giving us: 

fc /+ -+ \ p k ft -t\p~l 

Or for a uniform discretization: 

k k 

which are called order conditions. 
For zero-stability, we need to verify that the method provides bounded solutions for 

the differential equation f(t,y) = 0 and arbitrary initial conditions. If this is the case, 
then we are left with: 

yn+i = axyn + a2yn-i H 1- akVn+i-k (3.80) 
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Transforming this expression into matrix form and looking for its eigenvalues we can 
see that this difference equation give bounded solutions as long as the characteristic 
polynomial p(z) defined as [5]: 

p(z) = z

k - axzk~x ak (3.81) 

Has all its roots with multiplicity 1 lying on the closed unit disk and its roots with 
multiplicity greater than 1 lying in the open unit disk. 

Absolute stability of linear multi-step methods 

If we apply a linear multi-step method define by coefficients [a,b] to test problem (3.31) 
we will obtain the following result [5]: 

k k 
yn+1 = aiVn+i-i + h\J2 hyn+i-i (3.82) 

i=l i=0 

Which is the equivalent to: 

P(hX) = (1 - hXbQ)yn+l - (ai + hXbi)yn - (a2 + hXb2)yn-\ (ak + hXbk)yn+1-k = 0 
(3.83) 

We know that the region of stability is given by the set S C C made of all hX 6 C such 
that P(hX) has bounded solutions and such equation has bounded solution if the following 
polynomial has all its roots on the unit disk: 

(1 - hXb0)zk - (ai + hXh)^-1 - (a 2 + hXb2)zk~2 (a* + hXbk) (3.84) 

Now if we define the polynomials: 

a(z) = 1 — a-yz — a2z2 — ... akzk 

o u (3.85) 
b{z) = b0 + bxz + b2z2 + ... bkzk 

We can write the previous equation as: 

a(z) - hXb(z) (3.86) 

A n easy way of knowing the region of absolute stability can now be implemented. It 
is known as the boundary locus method and it consist on transforming the boundary of 
the unit disk in the complex plane into the boundary of the region of stability using the 
previous expression. Let us consider w = eld for theta G [0, 2n] be an element of the 
unit circunference. Now we look for the value of hX such that w is a root of the previous 
equation, i.e. 

a(w) — hXb(w) = 0 =>• 
a(w) (3.87) 

h X = I T T 

And in this way we get very easily a method to draw the boundary of the stability region. 
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Adams methods 

When we introduce the trapezoidal and the midpoint method, we tried to compute y(tn+i] 
by means of the following integral: 

y{t ra+l, Vn + y\t)dt (3. 

Depending on the way we approximate the definite integral we end up with different meth
ods. Adams methods propose the following approach to compute the integral: suppose we 
know several previous values of y'(t), namely y'(tn), y'(tn-i), . . . , y'{tn-k). We may use 
them to construct an interpolating polynomial, and use this polynomial to aproximate 
y'(t) in the integral. We mean: suppose Pkif) is an interpolating polynomial of y'{t) by 
using known values y'(tn), 2 / ' ( £ n - i ) , . . . , y'(tn_k) then: 

y(t 71+1, yn + Pk{t)dt (3.89) 

Now, if we consider that /„ = f(tn, yn) w y'{tn). We can use fn, / „ _ i , . . . , fn-k to construct 
Pk{t). By considering this Pk{t) in Eq. (3.89) we obtain Adams-Bashforth method. 

To construct Pk{t) we make use of lagrangian interpolating polynomials, i.e [10]: 

Pk(t) = X)/» n—k+i^i i(t) = n n—k+j) 

i=0 1=0 V"n-k+i -t n-k+j, 
(3.90) 

Therefore, we can expect that in the end, the method would be a linear combination of 

yn+i = yn + hfn + b2fn-i H \-bkf, n+1—k Jk+1- i(t)dt (3.91) 

For the case where the time interval is uniformly discretized constants hi are well known 
and are shown in Table (3.7), however for most of practical application timesteps must 
be adapted during the integration, and therefore these constants must be computed every 
step. 

Table 3.7: Coefficients and error constants for Adams-Bashforth method with uniform 
discretization (reproduced from [5]). 

k h b2 bs &4 h &6 h bs 
l 
3 l 
2 

2:-! 
2 
4 5 

12 
55 & 3? _ 3 
24 

1901 
24 

1387 
21 
109 6§7 251 

360 
2641 4$0 l 33664°9 95 
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720 
235183 l 5 ? § 4 
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288 
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60480 
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1152169 

20160 
242653 

945 
296053 

20160 
2102243 

2520 
115747 

60480 
32863 5257 

4480 120960 13440 13440 120960 13440 13440 17280 

C 
3X" 

2 
_5_ 
12 

2 5 1 

720 
95 
288 

19087 

_6°Jf7_ 
17280 

1070017 
3628800 

Given that we are talking about interpolation, it may look more adequate to in
clude f ( t n + i , yn+i) in the construction of the interpolating polynomial. Clearly y n + \ is 
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not known yet, therefore this approach is implicit and it is known as Adams-Moulton 
method given by: 

yn+1 = yn + b0fn+1 + bifn + b2fn-i H h bkfn+1-k (3.92) 

Coefficients for the uniform discretized Adams-Moulton method are shown in Table (3.8), 
similar to Adams-Bashforth, in actual implementations coefficients must be computed 
differently for every step. 

Table 3.8: Coefficients and error constants for Adams-Moulton method with uniform 
discretization (reproduced from [5]). 

k bo h b2 h h h h h c 
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6 
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I I 

1 
2 
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0 
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0 
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7 

12 
3 l l 
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5 1 
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11 
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Regarding convergence, we can see that in both methods coefficients {aj}f= 1 are limited 
to a\ = 1, so the first consistency condition is easily verified, for the second we must 
simply verify that Z)jLo bj' = 1- For zero-stability, we obtain the characteristic polynomial 
p(z) = zk — zk~x, with roots z = 0 and z — 1, the second one with multiplicity one, so 
the stability condition is also satisfied. 

Now, regarding absolute stability, we can use boundary locus method to get the regions 
of absolute stability for Adams methods. The plot of theirs regions is shown in Fig. 
(3.5). Please note two details, opposite to Runge-Kutta methods, when we increase the 
order of an Adams methods by increasing the number of steps, the stability is worsened 
considerably, also note that despite being an implicit method Adams-Mouton methods 
are far from being A-stable. 

Predictor-corrector methods 

We can see from Fig. (3.5) that the stability regions for Adams-Bashforth methods goes 
very small as we increase order, in such a way that we may lose the advantage of having 
a high order method because the step-size is limited by stability. On the other hand, 
Adams-Moulton methods have relatively larger region of stability but they are implicit 
methods, so they require some zero-finding method to solve for yn+\. In practice these 
two family of method are seldom used directly. 

A common approach is to use first an Adams-Bashforth method to have a estimation 
Vn+i °f y(tn+i), then a function evaluation f(tn+i,y*+1) is computed, which we finally 
use in an Adams-Moulton method. This type of method is called predictor-corrector 
method, since the Adams-Bashforth method is used as predictor and the Adams-Moulton 
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Figure 3.5: Regions of absolute stability for Adams-Bashforth methods (on the left) and 
for Adams-Moulton methods (on the right) for a number of steps k. (reproduced from 
[I])-

is used as corrector of the method. In the way we described it the general scheme is given 
by: 

k k 
P : Vn+l = a*iVn+l-i + hJ2 bifn+l-i 

i=l i=l 

E: f*n+1 = f(tn+lly*n+1) (3.93) 
k k 

C: yn+1 = J2 diVn+i-i + hJ2 bifn+i-i + hb0f*+1 

i=l i=l 

The acronym PEC stands for (prediction-evaluation-correction) and it one form in which 
this method can be implemented. The notation by this acronym is very useful when in
troducing new variants like PECE, which adds a second evaluation fn+i = f(tn+i,yn+i). 
with the corrected value yn+i to be used in the prediction phase of the next step. Fol
lowing similar ideas we can have also PECEC, PECECE and in general P(EC)m and 
PE(CE)m.The regions of stability of some methods of this type in P E C E mode can be 
seen in Fig. (3.6). 

Another advantage of this form of implementating Adams methods is that it gives us 
an error estimate for free, which can be used to adapt the timestep. This error estimate 
is called Milne device and it is given by [1, 5, 2]: 

en+i = ° P + 1

r ( y w + i - (3.94) 

Where Cp+\ and C*+1 are the error coefficients of Adams-Bashforth and Adams-Moulton 
method respectively. They are listed on Tables (3.7) and (3.8). 

Backwards differentiation formulae 

As we saw in Fig. (3.5), despite being implicit Adams-Moulton methods have a rela
tively restricted region of absolute stability compared with implicit Runge-Kutta methods, 
therefore there are not usually implemented to solve stiff problems. 
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Figure 3.6: Regions of absolute stability of Adams-Bashforth-Moulton methods in P E C E 
mode for different number of steps k (reproduced from [1]). 

For this type of problems, a different approach is considered. Take again equation 
y'(t) = f(t,y). Now, coming back to the simple of idea of implicit Euler method, what if 
instead of integrating the equation we replace y'(t) by a finite difference. 

V f e (y ra+l, 
h f(tn+i,yn+i, (3.95) 

i=l Where is an operator designating a relation among elements of a finite sequence {yi} 
with yn G {yi}k

=1 in such a way that V f c j^"- > ~ y'(tn). There are several ways of defining 
these finite differences, however in our case, knowing preceding values y(tn), y(tn_i), . . . , 
y(tn+i-k) backward differences are the most natural option, yielding Backward differ
ence formulae (BDF) method. Backward differences can be obtained by constructing 
interpolating polynomials Pk(t) satisfying: 

p{tn+i-k) — yn+i-k 

P(tn+l-k+l) — Vn+l-k+1 

Vn 

f(tn+1,p(tn+1)) 

(3.96) 

P(tn) 

P\tn+l) 

Such polynomial con be constructed also with the aid of Lagrange basis polynomials, i.e: 

Pk{t) = yn+i-do{t) + yn+i-k+ih{t) H h yn+ih(t) (3.97) 

Clearly the first k conditions in Eq. 3.96 are automatically satisfied. Imposing the last 
one we obtained: 

Vn+l-k^Qitn+l) + • • • + yn+l-k+i^i(tn+l) + " " " + Vn+l^k^n+l) ~ fifn+lj Vn+l) 

Or, following our general notation for linear multi-step methods [44]: 

Vn+l — X] aiVn+l-i + hbof(tn+i,yn+i) hb0 

ra+l, n+1, 

(3.98) 

(3.99) 
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For the case of uniform discretization the following coefficients are obtained: 

Table 3.9: Coefficients and error constants for Backward differentiation formulae (BDF) 
method with uniform discretization (reproduced from [5]). 

k a 6 bo c 

1 1 
2 

2 2 

TT 22 
12 12 
25 125 
60 10 
137 137 

10 20 20 
147 49 343 

There is an alternative way of obtaining these coefficients, as explained by Soderling 
[44], however it only works for uniform discretization. Let us define first the shift operator: 

Eh

 :y(t)»y(t + h) 

It is not difficult to see that such operator exhibits the following properties: 

• E° = 1 

• Ehl Eh2 = Ehl+h2 

• (E11)-1 = E~h 

With all these properties this operator resembles exponential operator. In fact: 

(hDY 

(3.100) 

JiD E 
i=0 ll 

(3.101) 

With D being the usual differentiation operator. Now, let us note that the 1-step backward 
difference V is given by: 

V : y{t) ~ (y(t) - y{t - h)) 

W = l-E~h { 6 - W 2 ) 

Now using Eq. (3.96) and the previous expression, we can see that hD = — log(l — V ) , 
which interpreted in terms of its power series means that: 

D 
h ^ i 
1 1 i=0 ' 

(3.103) 

And finally we can approximate derivatives by taking a truncation of the previous infinite 
series: 

^ l E - (3-104) 
1 1 i=0 ' 

Therefore an alternative way of defining backward differentiation method is given by: 

(3.105) 
k y i 

—Vn+i = hf(tn+l,yn+l) 
i=0 
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Where V* is defined recursively, for instance: 

V 2 (y„) = V ( V y n ) = V(yn - yn-i) = yn - 2yn_l + yn_2 

Therefore for k = 2, B D F gives: 

(3.106) 

V y „ + i + (Vn+i ~ Vn) + ( — 2 ^ " + l /" 1 ) = hf(tn+l,yn+l) (3.107) 

(3.108) 
4 1 2 

Vn+l = ^Vn ~ T^Vn-l + h-f(tn+l,yn+l/ 

Which coincides with the method obtained by the lagragian interpolating polynomial (see 
Table (3.9)). 

Regarding absolute stability, we can again use boundary locus method to plot the 
regions of absolute stability of the B D F methods, which are shown in Fig. (3.7). Note 
that even if unbounded the stability region of BDF6 is not very convenient, since for a 
relatively small A it may require considerable small h. In practice this method is very 
seldom used, and most solvers implementing B D F methods are limited to order 5. 

Figure 3.7: Regions of absolute stability of Backwards difference methods for different 
orders (reproduced from [2]). 

3.3.7. Implementation issues 
Most of the time, when reviewing the literature about numerical method for ODEs, most 
of the theory and the examples seems to be created upon the assumption that the methods 
follows a uniform discretization. This assumption simplifies things a lot when looking for 
nice theoretial results and makes easier to understand the philosophy of the method. 
However, when we are trying to implement a method for real-applications, this approach 
is usually unacceptably inefficient and a scheme to adapt the stepsize must be considered. 
Addition to the adaptative stepsize, a solver should include a series of additional features 
to make it efficient, robust and attractive to users. Some of this features include, additional 
to stepsize adaptivity, automatic selection of initial stepsize and (specially for multi-step 
methods) a starting phase. 
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Stepsize adaptivity 

Without counting the method itself, this is perhaps the most important part of the im
plementation of a sophisticated O D E solver. Most of modern solvers do the adaptation 
of the stepsize based on error control, i.e. the stepsize is chosen in order to keep the 
error below a prescribed error tolerance. Ideally we would like to control the global error, 
however to get estimates for it is not an easy task, so the local error is usually the one 
which is controlled. 

A n approach that is widely used, specially with Runge-Kutta methods is to solve the 
step using two different methods. The main idea is described nicely by Shampine et at 
[43]. If we want to estimate the local error of a method of order p: 

en+1 = y(tn+l) - yn+i (3.109) 

We can consider a solution y*+l of the same problem computed by a method of order 
q > p. Clearly y(tn+i) — = 0{hq+1). Now coming back to our estimate: 

en+i = y(tn+1) - yn+1 + y*n+1 - y*+1 

= (y*+i - yn+i) + (y(tn+l) - y*n+l) (3.110) 
= (y*n+l - yn+1) + 0(hp+2) 

This way we can estimate the true local truncation error en+\ ~ est = — yn+i, 
assuming that (|/^+1 — yn+i) is of order 0{hp+1). This last means that: 

est = Cnhp+1 + 0(hp+2) (3.111) 

Now the mechanism becomes evident, suppose the error estimate est is too large, i.e est 
> tol, where tol is the prescribed error tolerance so we want to adjust the stepsize to a 
new one h* = ah, then: 

est n e w = Cn{ah)p+1 + 0{{ah)p+2) = ap+1est + 0{{ah)p+2) (3.112) 

If we want est,,™ < tol then we need to choose a such that: 

a < — (3.113) 

And if we fail again, we might continue with this procedure until the we succeed or we 
give up, maybe because we tried too many times or because we reach a stepsize so small 
that is not representable by the computer. If we succeed we might also want to adjust the 
stepsize, to make the computation more efficiently Suppose we will do a new computation 
from tn+i to £ n + i + ah. We can estimate that the error estimate will be as before so again 
we would choose a as in Eq. (3.113). 

In practice, solvers use a safety factor r\ when selecting a to avoid being too close to 
tol, usually 0.9 or 0.8 are good values. Also to avoid abrupt changes on the step size, we 
set upper and lower bounds on a. So in reality solvers compute a by [5]: 

a = max min 77 —- , amax , amin (3.114) 

There are even more sophisticated ways of adapting the stepsize that involve some control 
theory, implementing a discrete PI controller for the error, however common solvers (like 
the ones in Matlab) use the simpler mechanism described above. For more details on the 
PI scheme we refer the reader to Butcher and Soderlind [5, 44]. 
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Selection of initial stepsize 

We have stressed many times the importance of a good scheme to adapt the stepsize and 
given that such scheme is based on the pressumption that modification to the stepsizes will 
be done gradually, the choice of the initial step may have an impact on the overall efficiency 
of the method. There are several very sophisticated methods to choose automatically the 
initial stepsize, here we will study a very simply one, but still used in some modern solvers 
as the ones implemented on M A T L A B . 

The idea of this scheme is described briefly by Glad well et al [13]. We start from the 
idea that if we take a truncated Taylor series to approximate y(to + h) in the neigborhood 
of to, such approximation naturally will be of the form: 

h2 hm 

y*{to + h)= y(t0) + hy'(t0) + -y"(t0) + ••• + ^2/ ( m ) (*o) (3.115) 

The error of such an approximation is clearly: 

Em = y(t0 + h)- y*(t0 + h)= J ^ — y ^ \ t o ) (3.116) 
[m + 1)1 

At the beginning of the integration process we have nothing more that the initial condition 
and we can compute the initial slope f(to,yo), so the only approximation we can do is by 
taking m = 0, then: 

E0 = hof{to,yo) (3.117) 

Now if we may choose such an stepsize in such a way that we get an error less that the 
prescribed tolerance, namely E0 = r/tol, the we have a first guess for the stepsize given 
by: 

h = (3.H8) 
f{to,yo) 

But this is not the stepsize we will use. In principle we are going to employ a method of 
order p > 0 so we are expected to use a smaller stepsize hp. Recall, from our comparison 

i 
of stepsizes for methods of different order, that we expect hp = C ( / i g + 1 ) , so as a rule of 
thumb, we can estimate that our true initial stepsize should be: 

W T ^ V T (3-119) 

Some variants consider a relative error tolerance instead of and absolute error tolerance i.e 
^ = r^tol. which will multiply our result by yo. Of course this scheme has its weaknesses, 
for example if f{to,yo) is small or zero, then the stepsize may become incredibly large. 
To prevent that, we should also set some bounds hmax and hmin, to the selection of the 
stepsize. In spite of these problems, the method is reliable and simple, which makes it a 
good option, even so that it is still used in modern solvers. 

Starting phase 

As we mention before, one of the limitations of multi-step methods is that they require 
more than one initial conditions, which usually cannot be supplied from the beginning. 
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For this reason we need to supply them with a starting phase which computes these require 
initial steps before, implementing the actual method. There are several approaches to this 
problem: 

Probably the most simple approach is to use a Runge-Kutta method of the same order 
or higher to compute the amount of initial points we need. A second option, as proposed 
by Butcher [5] is to set a system of equations representing the integrals from t0 to ti, 
t2, • • •, tk-i obtained from quadrature with nodes on the mentioned points, obtaining 
something like: 

2 / i = 2 / o + h(cwf0 + c n / i H h c i f c _i / f c _i ) 
2/2 = 2/0 + fr(c2o/o + c 2 i / i H h c2fc-i/fc_i) 

(3.120) 

yk-i = 2/0 + h(ck-iofo + C f c - 1 1 / 1 H h Ck-ik-ifk-i) 

This system can be solved using some zero-finding method and in such a way it may be 
compared with implicit Runge-Kutta method. However, probably the most used method 
is to start with a 1-st order method multi-step method, once we have yi, we use a 2-nd 
order method and so on. 

3.3.8. M A T L A B ode suite 
Thoughout this thesis we will implement numerical schemes on M A T L A B . This soft
ware includes a very robust suite of built-in solvers known by the prefix ode. It is a 
package of 8 solvers implementing different methods. Three of them are designed for non-
stiff problems (ode45, ode23 and odellS), four for stiff problems (odel5s, ode23s, ode23t 
and ode23tb) and one special solver is left for implicit differential equations of the form 
F(t,y,y>,...,yW) = 0(odel5i). 

Besides the numerical methods used in every solver, this suite implements several ad
ditional features like mass matrix handling (equations of the form M(t,y)y'(t) = f(t,yj). 
event function handling (to do something when the solution satisfies some "event func
tion") which makes them very versatile and simple to use. Below, we gives a very brief 
description of these solvers, most of the information is taken from Matlab documentation 
[31]. 

ode45 

This is the most popular solver of the suite. In M A T L A B ' s own words: "Most of the 
time ode45 should be the first solver you try" [31]. It is based on Dormand & Prince pair 
(RK5(4)7M) already described on Table (3.6), so it is an embedded Runge-Kutta method 
combining a method of order p = 5 and another method of order p — 4, the integration 
is propagated with the fifth order method and the other method is used to adapt the 
timestep. It is a ideal solver if the problem is non-stiff and the error tolerances are not 
that much stringent. 

ode23 

If the accuracy demands are relatively low, lower order methods could perform well 
enough. This is the case of ode23, which is implements the so called Bogacki & Shampine 
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pair, an embedded Runge-Kutta method consisting of explicit methods of order 2 and 3. 
The method propagates the solution with order p = 3 and the other method is used to 
adapt the timestep. The Butcher's tableau of this method is given by: 

0 
1 
2 

3 
1 
1 

0 
1 
2 

0 
2 

0 
3 
1 
1 

0 
4 
9 

I 
2 1 

odell3 

This method implements a variable order, variable stepsize predictor-corrector (PECE) 
form of Adams-Bashforth-Moulton, using A B as predictor formula and A M as corrector. It 
is more convenient that ode45 if the error demands are relatively large or if the differential 
equation is expensive to compute. 

odel5s 

This method is an improvement of B D F method developed by Shampine & Reichelt 
(1997) [42], referred by them as Numerical differentiation formulae (NDF). The method 
is defined as follows: 

k k j 
—Vn+i = hf(tn+1,yn+1) + nJ2-(yn+i ~ Vn+i) (3.121) 

i=l 1 j=03 

Where y„+i is the initial guess for yn+\, which is usually computed by: 

A = E V V (3.122) 
i=0 

The last term is the key part of this method. Shampine & Reichelt found that with a 
suitable value of K, the area of absolute stability is maximized. The values found by them 
are shown in the following table: 

Table 3.10: Values of K in N D F method for different orders 

Order K 
1 -0.185 
2 -1/9 
3 -0.0823 
4 -0.0415 
5 0 
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ode23s 

This solver employs a Rosenbrock pair of methods of order 2 and 3. Here the solution is 
propagated with the 2nd order method and the 3rd method is used to compute the error 
estimate. The method is computed as follows [42]: 

fo = f(tn,Vn) 
kx = W'^fo + hdT) 
fi = f(tn + 0.5/1, yn + 0.5hk1) 
k2 = W~1(f1-k1) + k1 

yn+1 =yn + hk2 (3.123) 
J2 = f(tn+i,yn+i) 

h = W~\f2 - (6 + V2)(k2 - / i ) - 2(h - f0) + hdT) 
h 

err = -(kx - 2k2 + k3) o 

Where 

ode23t 

W = I-h(—^=|J T « ^ (3.124) 
\2 + V2 dy dt v ; 

This solver implements trapezoidal method together with a "free" interpolant to estimate 
the error [31]. 

ode23tb 

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a 
trapezoidal rule step as its first stage and a backward differentiation formula of order 
two as its second stage. By construction, the same iteration matrix is used in evaluating 
both stages. Like ode23s and ode23t, this solver may be more efficient than odel5s for 
problems with crude tolerances [31]. 

odel5i 

odel5i is a variable-step, variable-order (VSVO) solver based on the backward differenti
ation formulas (BDFs) of orders 1 to 5. odel5i is designed to be used with fully implicit 
differential equations and index-1 differential algebraic equations (DAEs) [31]. 
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4. Study-Case 1: Fixed bubble 
under an oscillatory pressure 

As a first study case we will consider the problem of an oscillatory pressure source on 
a static flow. More precisely, the pressure source we will consider is given by: 

Poc(t) = p0(l + Asm(2irft)) (4.1) 

Clearly, for this case, the problem of bubble translation has trivial solution so we will 
focus on the study of bubble growth and collapse. This problem is strongly motivated by 
applications of acoustic cavitation. 

From the mathematical point of view, there have been several contributions on the 
study of this problem. Some of the earliest ones were made under the approach of dynam
ical systems, as the one presented by Ma & Wang (1962) [30], who used a hamiltonian 
approach to study the qualitative behavior of the solutions for the inviscid case (u = 0) 
with a constant pressure difference pv — p^ > 0. Chang & Chen (1986) [6], extended the 
work of the previous authors by considering the inviscid bifurcation of the more 
general viscous case and studying the qualitative changes in the vicinity of the equilibrium 
points around this bifurcation. In 2008, Hegedus & Kullmann [17] retook most of Chang 
& Chen's ideas and extended it by considering also thermal effects. Funaki et al (2015) 
[9] studied the system, again with constant difference pv — Poo, as part of their attempt of 
describing a stochastic variation of Rayleigh Plesset equation, showing that for pv — p^ 
constant, solutions are globally defined for an arbitrary initial condition. A year later, 
Ohnawa & Suzuki [37] recovered the hamiltonian structure proposed by Ma & Wang to 
construct a numerical method for the viscous case with pv — p^ constant. 

Following a very different motivation, authors like Hakl and co-workers [14, 15, 16] 
(2011 - 2013), Torres [45] (2015), Burra & Zanolin [4] (2016) and Lu et al [29] (2019), 
among others, have also studied the system interested on finding sufficient conditions 
for the existence of periodic solutions for a special type of Lienard equations to which 
Rayleigh-Plesset belongs. 

4.1. Preliminaries 
For this analysis we will consider Rayleigh-Plesset equation which is given by Eq. (2.13): 

RR + ^ 2 = Pv-Poo(t) Pgo (^oV" _ 25 _ AflR 
2 p p \RJ pR p R 

Now, as it is usual with second order ODEs, by taking y = [R, R]T we can turn the 
previous second order O D E into the following system of two first order ODEs: 

Vi = V2 
. = Pv-Poojt) 1 + P90Rf 1 _ 2S 1_ _ 4/x 2/2 _ 3 y | (4.2) 

2 P v\ p yfk+1 p vi p v\ 2 yi 

which we will denote shortly as: 
V = f(t,y) (4.3) 
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4.2. Well-posedness analysis of Rayleigh-Plesset equa
tion 

Let us verify that system (4.2) satisfies all the assumptions of Thm. (3.1.1), namely: 

1. Continuity of / with respect to t and y: f is continuous with respect to t as 
long as Poo(t) is also continuous and f(t,y) is continuous with respect to y\iy\^ 0. 

2. Lipschitz continuity with respect to y: Our aim is to use Lemma (3.1.1) to 
show that / is Lipschitz continuous with respect to y. To do so, we need to compute 
partial derivatives such derivatives are given by: 

dfi = 0 
dyi 

= 0 

dfi = 1 
dy2 

dh Pv ~P~ 

dyi p 
dh 4/x 1 
dy2 P Vi 

(t) 1 , q ; , r,p90Rf 1 2S 1 8py2 3y2

2 

(4.4) 

Vx P yf+2 P Vi P Vi 2 y\ 
y-2 3 
Vi 

These partial derivatives are again continuous as long as Pooit) is continuous and 
yi ^ 0, thus / is Lipschitz continuous in any compact convex domain J x ft, as long 
as the previous conditions are satisfied. Assuming that Pooit) is continuous as it 
is indeed our case, we can be sure that for any initial condition (i? 0, U0) such that 
RQ 7̂  0, there exists a unique solution defined a least locally. 

4.3. Equilibrium points and local behavior 
Let us now study the equilibrium points of system (4.2). Clearly these equilibrium points 
must have the form (Req(t),0), where Req{t) is solution of the equation: 

(Pv -Poo(t))-^- +P90Rf^r1 - 2 5 - ^ - = 0 (4.5) JTLeq neq neq 

Assuming that the bubble was at equilibrium at time t — 0, we have: 

2S f l ^ 

P90 =Po-Pv + -^~ (4.6) 

And assuming that pv « p0 (thus pv — p0 ~ —po), we obtain: 
Asm{2Kft)I% + — (Rf-1 - Rf-1) + Rfq -R3

0

k = 0 (4.7) 
Ait) 

Recall that k is, in principle, a real number, so the zeros of the previous function must be 
approximated numerically. The result is however well known, for A(t) < — 1 (thus Pooit) < 
pv) we have a single equilibrium point Rs, which is a stable focus. For 1 < A(t) < Ac 
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(a) Req/R0 vs A(t) 
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(b) i? e ( ? vs .A(t) for different i?o 

Figure 4.1: Behavior of i ? e g vs A(t) (a) shows a general schematics, (b) shows the actual 
curves for some initial radii RQ. 

(thus pv < Pooit) < p^)a second equilibrium point RU > RS appears, in the form of a 
saddle, and finally for A(t) > Ac, there is no equilibrium point and the system is unstable 
[17]. Fig. (4.1) gives an idea of the previous discussion. For the case of constant p^ a 
nice illustration of the local behavior in each of these three regions is given by Hegedus 
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Sz Kullmann (2008) [17] and is reproduced in Fig. (4.2). Since A(t) is changing with 
time, we need to consider that all these are not the true portraits of the problem we are 
considering, since equilibrium points are constantly moving and their qualitative behavior 
is changing, reason why trying to get an accurate idea of the phase portrait of this system 
without solving it is not an easy task. In fact several authors like Lauterborn & Parlitz 
(1988) [26] and Feng & Leal (1997) [7] have found that depending on parameters this 
system may exhibit a chaotic behavior. 

(c) Poo > Pic 

Figure 4.2: Phase portrait for the case (a) p^ < pv, (b) pv < p^ < p^ and (c) p^ > p\ 
(reproduced from [17]). 

c 
oo 
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4. STUDY-CASE 1: FIXED BUBBLE UNDER AN OSCILLATORY PRESSURE 

4.4. Linear approximation 
It is clear that Rayleigh-Plesset equation, due to its singularities, stands a challenge at 
the moment of looking for an analytical solution. For this reason, several authors have 
considered some linear approximation whenever this is accurate enough. The main idea 
is that if oscillations are "small enough", then we may expect the bubble radius to behave 

linear oscillator, i.e. 
R(t) « R0(l + x(t)) (4.8) 

Where x(t) is a harmonic oscillating function such that \x(t)\ « RQ. Substituting Eq. 
(4.8) into Rayleigh-Plesset equation and neglecting any non-linear terms, x should satisfy 
the following linear Cauchy problem [40]: 

x + 2j3x + UQX = e sm.{ujpt) 
x(0) = 0 (4.9) 

x(0) = 0 

Where, 
, 2/x 2 3kpgo - f PoA 

U ° = —pl% £ = -p-Ri ^ = 2 ? r / ( 4 1 0 ) 

Assuming that u0 > (3, this yields the solution: 

x(t) = Kx sin(^pt) + K2 cos(upt) - e~pt ( (Kx— + K2— J sin(o;JBt) + K2 cos(uBt) 

(4.11) 
With 

w B = \JuJo - (32  

K _ £(uo - U P 

+ (2(3cop)2 (4-12) 

S(2/3UJP) 

(ul - ulf + ( 2 / H ) 2 

V 
There are some cases that may appear interesting to study further, namely: 

• Inviscid case Note that if u = 0, then (3 = 0 and OOB — OJQ. Thus K\ = T J T Z T J S N and 
K2 — 0 and our solution is simplified to: 

x(t) = T^2~—Y\ ( sin(^pt) - — sin(^o0 ) (4-13) [u0 - up) \ bJB / 

Radian frequency uo provides the so-called natural frequency of the bubble fo = 
which for fixed values of po, pv, p, k and S is completely determined by the initial 
radius RQ. We will see that this value has a big relevance in the dynamics of the 
bubble, since in general even if j3 » 0, usually OJB ~ u>o- The values of this natural 
frequencies for some initial radii are given in the table (4.1). 

• External pressure oscillating at natural frequency If oop — UQ, then K\ = 0 
and K2 = —^^i this way the final solution is simplified to: 

x{t) = -|— (e~pt— sm(uBt) + e~pt cos(uBt) - cos(upt) J (4.14) 
2pup \ UJb J 
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4.4. LINEAR APPROXIMATION 

Table 4.1: Natural frequencies fo of bubbles of diverse initial radii RQ 

RQ [pm] /3[rad/s f0[kHz] fß [kHz] fß/ fo 
1 2.00 x 106 4746.04 4735.31 0.9977 
5 8.01 x 104 719.58 719.46 0.9998 
10 2.00 x 104 342.74 342.73 0.9999 
25 3.20 x 103 132.84 132.84 0.9999 
50 8.01 x 102 65.69 65.69 0.9999 
75 3.56 x 102 43.63 43.63 0.9999 
100 2.00 x 102 32,66 32,66 0,9999 

• Inviscid and resonant case If cop = COQ and (3 = 0 then clearly solution 4.11 is not 
defined. In this case we get the solution: 

£ 
x(t) = (sin(^o0 + (^ot) cos(o;ot)) (4-15) 2u0 

We would like to know when this linear approximation is accurate enough, for that we 
should verify when the main assumption |x| << RQ is satisfied. For the purpose of 
this work, parameters p0, pv, p, p, S and k will be considered fixed (specific values are 
given in Table (4.2)). Therefore the maximum value of |x| depends only on parameters 
RQ, f and A , Taking some idea from different research papers made on sonochemistry 
and sonoluminiscence [20, 23, 33, 32, 34] - usual applications of acoustic cavitation-, we 
consider that physically relevant intervals for our parameters are given by the intervals 
shown in Table (4.2) and the dependence of | x | m a z with respect to these parameters is 
shown in Fig. (4.3). 

Table 4.2: Values of fixed and variable parameters considered in this section 

Fixed parameters 
Variable Parameter Value Units 

Po Initial external pressure 101325 Pa 
Pv Vapor pressure 2339.215 Pa 
P Density 998.206 kg/m3 

/ / Viscosity 0.001 Pa • s 
S Surface tension 0.074 N/m 
k Polytropic index 1.4 [-] 

Variable parameters 
Variable Parameter Range Units 

RQ Initial radius 1 - 100 pm 
f Exciting frequency 0 - 1000 kHz 
A Dimentionless amplitude 0 - 5 

These curves tell us, as expected, that this linear approximation is acceptable only 
for small pressure amplitudes, however we can also see that we must be aware of not 
considering exciting frequencies near to the natural frequency of the bubble fo. It is also 
interesting to see that in our interval of interest (0 - 1000 kHz) small bubbles likes 1 or 5pm 
will always have relatively large oscillations, so we can expect a purely non-linear behavior 
for these sizes, therefore this approximation is not enough for them. For large bubbles 
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Maximal amplitude of x vs f for different amplitudes (R n = 1 urn) Maximal amplitude of x vs f for different amplitudes [Ra = 5 urn) 
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(a) RQ = lam 
Maximal amplitude of x vs f for different amplitudes (R = 10 urn) 
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(c) RQ = Wum 
Maximal amplitude of x vs f for different amplitudes (RQ = 50 urn) 
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(b) RQ = 5um 
Maximal amplitude of x vs f for different amplitudes (R n = 25 urn) 
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Exciling frequency - f [kHz] 

(d) RQ = 2ham 
Maximal amplitude of x vs f for different amplitudes (RQ = 100 urn) 
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Exciti ng frequen cy • f [kHz] 

(e) RQ = 50um (f) R0 = lOOum 

Figure 4.3: Curves of | x | m a : r vs / for different amplitudes A and initial radii RQ 

(like 50 or 100um) on the other side, it seems safe enough to use this approximation for 
high exciting frequencies. 

We can easily verify these conclusions by comparing the solutions of the linearized 
Rayleigh-Plesset equation with the full non-linear one, we show some examples in Fig. 
(4.4): for large bubbles with frequencies far from / 0 , we can easily see a remarkable 
correspondence between both solutions. On the other hand, for the other two cases 
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discrepancies are clear: in case (c) frequency is very close to / 0 , therefore we can see 
resonant oscillations in the linear solution, the non-linear solution, however, does not 
seem to reproduce this behavior. In Case (d) we study a small bubble (RQ = lum), 
although frequency is far from f0, which produces a nice linear solution, we can see that 
the true solution is strongly non-linear: 

• 

C.6S5 

C.EE 

: . s s : 

, 0.98 

Z.\i75 

C.E7 

0 .965 

C . 6 : 5 

R n = 100 urn, f = 400 kHz, pa = 2.0265e+00 bar 

Linear 
Full RP-equation -
Linear 
Full RP-equation -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

(a) Ro = lOOum, / = 400kHz, A = 2 
R = 25 urn, f = 150 kHz, pa = 1.0133**00 bar 

Linear 
Full RP-equation . 

M 
/ \ 

< . 

w \ / 
0 0 5 1 1.5 2 2.5 3 3.5 4 4.5 5 

R 0 = 50 um, f = 700 kHz, pa = 5.0663e*00 bar 

(b) RQ = 50um, f = 700kHz, A = 5 
R. = 1 um, f = 500 kHz, pa = 3.039Se+00 bar 

(c) RQ = 25um, f = 150kHz, A = l (d) RQ = lum, f = 200kHz, A = 3 

Figure 4.4: Comparison of linearized Rayleigh-Plesset equation vs Full non-linear 
Rayleigh-Plesset equation 

4.5. Non-linear dynamics 
We have seen that for some combinations of parameters, namely large bubbles and fre
quencies far from natural frequency or small bubbles with small pressure amplitudes, a 
simple linear approach may be accurate enough. For this reason we will focus on the 
remaining cases: small bubbles with not small amplitudes and large bubbles with fre
quencies near natural frequency. Since we expect the solutions of these cases to have 
a proper non-linear behavior, there is little we can do with analytical approaches and 
therefore we must rely on numerical methods. To do that, we will solve system (4.2) 
numerically under several combinations of initial condition RQ and parameters / and A . 
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4.5.1. Preliminaries 
A preliminary step is performed to make the equation dimensionless, as suggested by 
Koch [24], float point numbers are denser around 1 so this procedure, if carried correctly, 
should improve accuracy and efficiency To perform this procedure, we follow suggestions 
from Franc & Michel and Koch [8 , 24]: 

R = RRTef t = ttTef P = PPrei U = UUTef Pany = PanyPref (4.16) 

Where i?ref, £ref, pref, Uref and p r ef are reference values satisfying the following relations: 

Uref = Pref = r̂efPref (4.17) 
r̂ef 

Considering this, other quantities are made dimensionless by: 

fi = pRreiUreiprei S = SRreiU?eiprei / = / - * - <L = }—'L ( 4 . 1 8 ) 

t r ef at t r e f at 

So by defining three of the five initial reference magnitudes we define the whole dimension
less equation which looks exactly the same with the corresponding dimensionless variables: 

Rh+H* = P v - p ~ ® + ^ ( ^ ) " - ^ - ^ (4.19) 
2 p p \ R ) pR p R V ' 

For convenience, we will drop the "tilde" in the rest of this section, but we will always be 
referring to the dimensionless equation. 

The choice of reference parameters usually comes from the physics of the problem. 
Franc & Michel propose the following reference quantities i? r ef = RQ, pTef = Po — Pv and 
for t r e f one of the following: 

r̂ef--P ~ Rox I-2-

r̂ef--ß = 

r̂ef--S = RQ\ / pRo 
1 25 

r̂ef--f = 
1 
/ 

r̂ef--fa = 
1 

" fo 

The suitable choice is the one which makes R and t of the order of unity, considering that 
we will be varying frequency, for most of our computations tref_/ is considered. 

4.5.2. Numerical results 
To solve numerically system (4.2) there is a large offer of numerical methods that we 
can use, as we showed in Chapter 3. The first thing we want to do is to choose the most 
suitable method for this system. In M A T L A B , the offer is reduced to 8 solvers from which 
we have chosen two non-stiff solvers: ode45, an explicit Runge-Kutta method of order 5 
and odellS, a predictor-corrector multistep method of variable order from 1 to 13, and 
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two stiff solvers: ode23s, a Rosenbrock method of order 3 and odel5s, a modified B D F 
method of variable order from 1 to 5. They are compared for several combinations of RQ, 
f and A and the results are shown in Table (4.3). 

Table 4.3: Efficiency comparison of various M A T L A B solvers when applied to Rayleigh-
Plesset equation. Computations are made with a processor: Intel Core i5-7200U 2.5GHz 
with Turbo Boost up to 3.1 GHz, R A M : 8 GB and a G P U : NVIDIA GeForce MX130 
with 2GB. 

ode45 odell3 ode23s odel5s 
Ro / A fevals Time fevals Time fevals Time fevals Time 

[fim] [kHz] ["] ["] [ms] ["] [ms] ["] [ms] ["] [ms] 
1 65425 348.71 14649 438.44 299309 6608.83 11565 1302.71 

20 3* 25885 73.89 4614 78.21 128905 2604.36 6840 452.11 
5* 28519 67.44 5274 76.94 143123 2822.78 6299 390.87 
1 10903 41.19 2832 70.20 110382 2352.76 4629 400.35 

1 500 3 31381 77.32 7182 138.22 213468 4138.19 13769 1055.37 
5 26371 71.78 7637 111.86 181439 3629.07 13665 880.84 
1 8809 37.88 2320 63.45 115464 2430.04 3829 250.26 

1000 3 16201 45.18 5999 89.62 230861 4688.52 11096 702.09 
5 14551 40.46 5236 108.65 205821 4185.63 9425 596.72 
1 16171 82.03 5782 161.96 282942 5631.72 10964 856.12 

20 3 13441 34.55 4744 72.46 205355 4064.66 9154 701.72 
5 20863 52.06 5657 84.03 212026 4085.98 11018 776.62 
1 1099 27.75 - - 40417 926.23 877 89.26 

50 500 3 1417 7.41 - - 54997 1093.44 980 67.57 
5 1555 5.37 - - 60042 1147.75 1017 66.24 
1 1033 5.63 - - 32246 673.68 806 58.04 

1000 3 1279 4.24 - - 46784 908.38 925 62.40 
5 1363 4.84 - - 54160 1323.36 979 76.30 
1 9097 33.09 3262 51.90 159162 2979.41 6552 460.51 

20 3 9301 36.11 3370 67.92 156831 3200.21 6131 385.76 
5 10687 28.72 3930 56.82 173071 3447.63 7002 493.65 
1 1105 5.44 - - 36184 740.07 869 99.64 

100 500 3 1351 4.78 - - 51727 1052.27 978 63.95 
5 1429 4.71 - - 58233 1148.57 1009 67.38 
1 967 3.60 - - 28692 594.87 831 57.25 

1000 3 1177 23.75 - - 41457 798.85 935 58.55 
5 1291 4.79 - - 48727 1367.90 975 72.90 

-: odell3 gives not satisfactory solution for these combinations 
*: Solvers are not able to finish integration for this combination 

We can see in Table (4.3) that at least for the attempted combinations implicit methods 
like ode23s and odel5s, perform far worse that explicit methods like ode45 and odellS, 
so we can be almost sure that the problem is not stiff. In general ode45 performs better 
however it is surprising to see that odell3 does not give satisfactory results for some 
combinations, precisely for those where the system behaves close to a linear oscillator and 
the computational demand is low, probably because the number of steps for these cases 
is very low, and a significant amount of them are computed in the starting phase with 
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low order, however for the most exigent combinations (i? 0 = lum, / = 20kHz, with all 
three pressure amplitudes), it behaves slightly better than ode^5. Regarding these three 
cases, it is interesting to see that any of the 4 solvers is able to complete the integration. 
The plots of some of these combinations are shown in Fig. (4.5). 

4.5.3. Discussion on complete collapsing cases 
The numerical results obtained for combination (R0 = 1/xm, / = 20 kHz, A = 3 and 
A = 5) captured our attention. Mathematically speaking they could imply two things: 
the first possibility is that given the amount of non-linearities present in Rayleigh-Plesset 
equation, typical solvers like the ones tried so far are not suitable to deal with some special 
combination of parameters. However, and this is the second possibility, since we showed 
only local existence of solutions, there is a chance that for some given combination of 
parameters, solutions are not globally defined and they indeed behave as our numerical 
solution suggests, this is reaching R = 0 in finite time. 

Regarding this last possibility, to our best knowledge there is no study answering to the 
basic question on global existence of solutions for the gas-filled bubble under a oscillating 
external pressure. Rayleigh, already in 1917, showed that for a void cavity pv = 0 and 
Pgo = 0 the bubble will collapse in finite time (this time is usually called Rayleigh time). 
Torres [45] shows that in the case of vapor bubbles (pgo = 0) a collapse in finite time may 
also occur. To see it better, let us consider the transformation proposed by Hakl et al 

2 
[14, 15, 16], if R = « s , Rayleigh Plesset equation is transformed into: 

ho(t)u* (4.20) 

6k-1 5(p„-poo(i ) ) 
= — h o = 2p 

(4.21) 
This is special case of a family of second order ODEs called Lienard equations given by 
u + f{u)u + g{u) = h(t, u) which generalize harmonic oscillators. 

Coming back to Eq. (4.20), if we consider a vapor-only bubble (g2 = 0), in a region 
where Poo{t) > pv for a relatively long time (for instance if / is "small") the bubble will 
shrink. During the shrinking, the pressure difference term ho(t)us will lose weight in 
the final acceleration, but the surface tension term -^f is an attractive singularity which 
increasingly pushes the bubble radius R to 0. 

For the gas-filled bubble, the story is slightly different since the gas term — ̂  stands 
as a strong repulsive singularity given that 7 > | for k > | , this gas term becomes larger 
than the attractive singularity represented by the surface tension term when R approaches 
0. However, this argument is not enough to claim that solutions cannot reach R = 0 and 
the truth is that although Rayleigh-Plesset equation as been known for several years, and 
a lot of numerical and experimental research has been done about it, analytical studies 
on the oscillatory driven cases are scarse. Only very recently (in 2015) Funaki et al [9] 
showed that for the case of p^ constant, solutions of system (4.2) are globally defined for 
any initial condition. 

The physical intuition, for the oscillatory driven case, goes also in this same direction. 
Given that the bubble contains some non-condensable gas inside, it is reasonable to think 
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R . = 1 u m . f = 1000 kHz, A = 1 R A = 1 u m , f = 2 0 k H z , A = 5 

' 230 

idt>113 

0 0.5 1 1 5 2 2 5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

(a) RQ = lfim, f = 1000kHz, A = 1 
R_ = 50 urn, f = 500 kHz, A = 5 

0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

(b) RQ = \\xm, f = 20kHz, A = 5 
R . = 100 um, f = 500 kHz, A = 3 

0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

0 0.5 1 1.5 2 2 5 3 35 4 4 5 5 0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

(c) R0 = 50/xm, / = 500kHz, A = 5 
R. = 50 u m , f = 20 kHz , A = 3 

(e) RQ = 20/xm, / = 20kHz, A = 3 

(d) RQ = 100/xm, / = 500kHz, A = 3 
R . = 1 u m , f = 1000 kHz, A = 3 

0 0.5 1 1.5 2 2 5 3 3 5 4 4.5 5 

0 0.5 1 1 5 2 2 5 3 3 5 4 4 5 5 

(f) R0 = lfim, f = 1000kHz, A = 3 

Figure 4.5: Non-Linear oscillations for several combinations. Note that for (b) the solver 
is not able to continue the integration after the first collapse, while for (c) and (d), which 
shows some linear-like behavior, odellS gives a non-satisfactory solution 

that it cannot be compressed infinitely. Another fact that supports this intuition is 
that more realistic models involving liquid's compresibility, like Gilmore's, are able to 
reproduce this collapse without any problem, as we can see in Fig (4.6). 
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2;; 
o 150 

^ 100 
50 / ] / ) / ] / -

0 5 1 1 5 2 2.5 3 3 5 4 4 5 

2 
E n Zi ~ 

T3 -2 

0.5 1 1.5 2 2.5 3 3.5 4 4 5 

E 
§: 2 

'"8 o ' \ / \ / \ / \ / \ ,/ 
( 0.5 1 1.5 2 2.5 3 3.5 4 4 5 

R = 1 um, f =20 kHz. [ja = 3.tl39Se*00 bar 

1 3 2 5 1.33 1.335 1.34 1.345 1 35 

133 1 3 3 5 1 34 1 345 

(a) Gilmore's solution to the problem with 
R0 = lpm, f = 20kHz, A = 3 (b) Detail for interval t G [1.325,1.35]s 

Figure 4.6: Gilmore's solution to the problem with i? 0 = lpm, f = 20kHz, A = 3 

However, the persisting appearing of this "complete" collapse in the numerical solution 
of Rayleigh-Plesset equation for some combinations of parameters, even when computed 
with different methods, should not pass unnoticed. 

We would like to get a lower bound for u in Eq. (4.20), given some initial conditions 
u(to) = uo and u(to) = VQ. For that let us first multiply by u and integrate over [to,t], to 
get the following energy balance: 

to 

.. . ü . 9i 92\ . , . 
u + c— H j - uat 

us us u^J 

2 Juo V T J F W 

ho(t)u5udt 
to 
t 1 ft 4 

ho(t)u^üdt— cu2u~sdt 
to J to 

(4.22) 

T(u) G(u) 

Now, motivated by the case we are interested on, let us assume that the collapse is so 
fast that h0(t) is nearly constant h0(t) ~ h as it appears in Fig. (4.6). On the other 
hand the dissipative term Wj, is only subtracting energy from the system, and therefore 
a lower estimate neglecting it seems to be a safe bound, for this reason and for the sake 
of simplicity let us ignore that term. We are then left with an autonomous hamiltonian 
system, as indicated by Ohnawa & Suzuki [37], with energy function: 

T(u) + G(u) 
^ Juo \us 

92 
ui 

hu5 I du — 0 (4.23) 

Since energy is conserved, at least during this short period of time, we can say that starting 
from and initial condition (u0,u0) close to the collapse, in order to stop the bubble, i.e. 
iii = 0, we require U\ to satisfy the balance: 

T(ÜQ) + G(uQ) 

T(ü0) 

a? 
uo 

_ 92 
— hu5) du 

J 
4 92 ( 

u{ - « o J 1 \ u u{ - « o J 
1 _ ry \ 

(4.24) 
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Looking for validation this equation is used to estimate the minimum radius of a collapse 
which is apparently well represented by the numerical solver, namely the case RQ = 1/im, 
/ = 1000kHz, A = 3, whose behavior was shown already in Fig. (4.5f). We want to study 
the first collapse, occurring approximately at t — 1.28 x 10 _ 6 s and reaching a minimum 
radius of approximately i ? m i n = 4.286 x 10~2/xm. Eq (4.24) is used in this case, from a 
starting point (RQ = 1.206 x 10 _ 1/xm, RQ = —2.722 x 10 3m/s) corresponding to the point 
(UQ,U0) = (5.054 x 10 1 8, -2.852 x 107), and the lower bound m = 3.692 x 10 1 9 is obtained, 
corresponding to the radius i ? m i n = 4.236 x 10~2/xm, which is coherent with the results of 
the numerical solver. 

After this check, Eq. (4.24) is solved numerically also for the case of RQ = 1/im, 
/ = 20kHz, A = 3 that we are interested on, starting from several points near the collapse 
and the apparent lower bound of U\ — A ' 1 V 1 A~M) 

obtained, as shown in Fig. (4.7b). 
6.24 x 10 corresponding to R\ — 2 x 10 am is 

It: 3 ,7B-19 
f:-1.2929-16 
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0.2 0.4 0.6 0.6 1 1 2 1.4 

u -Transformed radius 
(a) Case RQ = lum, f = 1000kHz (b) Case RQ = lum, f = 20kHz 

Figure 4.7: Energy function vs transformed radius u near to the minimum radius U\ 

It is clear that this is a really small number, and there is no doubt why the solver 
may be having problems with it, however, even though this is not a rigorous proof, it 
seems clear that at least under this "fast collapse" assumptions the solution should reach 
a minimum i ? m i n and then "bounce", which may support the hypothesis that solutions for 
this general problem are globally defined for an arbitrary initial condition. 

If it is true that solutions of Rayleigh-Plesset equation with an oscillatory pressure 
field are globally defined for any initial conditions, then we cannot accept the numerical 
results obtained by the previous solvers in these problematic combinations of parameters 
and we should search for a different method. To know what to do, we need to understand 
why the method stops. The message sent by Matlab, when the integration is stopped is 
the following: 

"Warning: Failure at t=6.645779e-05. Unable to meet integration tolerances without 
reducing the step size below the smallest value allowed (2.168404^-19) at time t". 

Meaning that it has reached the minimum allowed stepsize and still the error in the 
step is larger than the error tolerance. Let us recall that the stepsize may be limited by 
accuracy or by stability. Stability does not seems to be the problem here since implicit 
methods are having the same problem. In fact, we studied the how the eigenvalues of the 
jacobian matrix of / are distributed along the integration process by ode45 and, with a 
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magnitude of around 1, they do not seem to require a specially small stepsize to fit in the 
stability region, as we can see in Fig. (4.8). 

(a) Eigenvalues of J = ^ for different times (b) Region of absolute stability of the 
along the integration procedure. Dormand and Prince pair implemented in 

ode45 (reproduced from [1]. 

Figure 4.8: Comparison of the eigenvalues of the jacobian of the problem vs the region of 
stability of the method. Note the difference on scale. 

This clearly indicates that the problems is in accuracy. For this reason higher or
der methods were attempted, like ode87, a free code by Govorukhin V . N . available at 
http://www.math.rsu.ru/mexmat/kvm/matds/, implemented in the fashion of the solvers 
from the M A T L A B ode suite and based on a pair of methods of order 8 and 7, designed 
by Dormand and Prince. It was also attempted to exploit the structure of 2nd order dif
ferential equation by implementing a Runge-Kutta-Nystrom method, a variant specially 
designed for 2nd order equations. A pair proposed by Murua [36] consisting of a pair of 
methods of order 6 and 5 was implemented. However, unfortunately these methods also 
failed at trying to compute the first collapse. 

A n interesting alternative approach is proposed by Ohnawa & Suzuki [37] Called by 
them discrete gradient approximation, it is considered for the case p,^ constant, based 
on the conservation principle exposed before. For the most general variable Poo{t) case, 
however, a more careful strategy to compute the Wa term numerically must be included. 
Ohnawa & Suzuki formulated the conservation principle obtained in Eq. (4.24) starting 
from the remark we did on subsection 2.1.4 about the energy interpretation of Rayleigh-
Plesset equation. Let us recall that Rayleigh-Plesset equation can be also written as in 
Eq. (2.16): 

jt(27rpR3R2) = (pB-p, 

So integrating from t0 to t we get: 

PR3R2 H . . . . (Ro\3k 2S 
— = L X P v - p - { t ) + ^ \ - R ) " i f 
pR3R2 fR ( fR0\3k 2S 

— - I n X ^ - ^ + ^ K l i ) " i f " ' 

2S 
~R 

4/xiT 
~R~ 

4TTR2R 

R2Rdt 

4/xiT 
~R 

R dR pasm(27rft)R2Rdt-

(4.25) 
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4.5. NON-LINEAR DYNAMICS 

We can easily recognize the four terms obtained before. In their work, Ohnawa & Suzuki 
defined the momentum Q = pR3R and formulated the following energy function: 

E(R, Q) = Y^p+ J* P(r)r2dr (4.26) 
v v ' 

G(R) 

Where 

Pir) = ~ (pv-Poo+P90 fff - ^ (4.27) 

This function is nice, because it allows us to rewrite the problem as a gradient system, 
i.e. for y — [R, Q]T we have: 

" 0 1 

-1 -ApiR tl 

This can be easily proven: 

VE (4.28) 

dE dE 3 Q2 / \ o Q 
- ApR—- = - P(R)R2 - Ap-^ 

dR ^ dQ 2 pi? 4 v ' r pR2 

= pR2(RR + 3R2) = Q 

Now, to exploit this gradient structure, a finite difference scheme is proposed as follows. 
For more detailes, the reader is refered to [37]: 

A ^ Rn+1 Rn A Qro+1 Qn 
~ 7 W ~ 7 

^ _ A_9l_ + ~ Q n ^ n + ^ n + l + ^ n + l ) C ( ^ + l ) - G ( i k ) 

d f l " 2PR3 dR~ ^pRlRl+i Rn+i - R n

 1 ' J 

di? Q ^ Qn + Qn+1 

~dQ~p~W~ 2pR3

n+1 

By using this approximations, Eq. (4.28) is transformed into: 

-Rn+l 

K ipRl n+1 
Qn+1 — Qn _ Qn(Pn + R-nRn+1 + Rn+l) _ G(Rn+\) — G(Rn) _ ^ Qn + Qn+1 

/ i n 2pR\Rn+l Rn+i — Rn 2pRn+i 
(4.32) 

which can be solved using some zero-finding method. 
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The modification made by us, to include the effect of the variable Poo(t) lies on the 
computation of G(R): Let us recall that: 

G(t,R) = fRp(r)r2dr 
JRO 

fR ( , N (R0\3*k\ o , 
JRo{Poo(t)-Pv + V - P 9 o { V ) )rdr 

R 
pa sin(27rft(r))r dr + 

Ro 3 

p3*fc 
^ ( i ? 3 ( l - f e ) _ i ? 3 ( l -

3(1 - k) 
(4.33) 

The first term corresponding to the applied energy is not considered in Ohnawa & Suzuki's 
work but it vey important in our current problem, so we decided to approximate it with 
a simple trapezoidal rule as follows: 

pasm(27rft(r)ydr » Y > a s i n ( 2 7 r / t w ) K U n + 1 J U n ) (Rn+1-Rn) = Y > a s i n ^ A ) ^ 
*o i = 0 4 i = 0 4 

(4.34) 
This rather simple approximation gives surprisingly appealing results that can be seen in 
Fig. (4.9) 
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Figure 4.9: Results obtained by the modified discrete gradient approach. Note that no 
scaling was used in this case 

We can see the similarities of our results compared with those produced by Gilmore's 
approximation shown in Fig. (4.6), however our results exhibit much higher bounces after 
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the collapse which may be caused by the neglect of the damping effect due to compress
ibility of Gilmore's model, or maybe due to the low order approximation considered by 
us for the Wa term. This last issue is a clear improvement that could be done to this 
method, similar to the addition of a stepsize control scheme and an explicit implementa
tion. Certainly these issues can be improved in the future. 
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5. Study-Case 2: Bubble in a fluid 
flowing through a cross reduction 

5.1. Flow through a Venturi tube 
In the previous chapter, we have studied the case of a fixed bubble under an oscillatory 
pressure field, which may result more interesting for acoustic cavitation applications. 
Let us now consider a case nearer to hydrodynamic cavitation. We wish to study the 
dynamics of a gas/vapor bubble immersed on a flow passing through a Venturi tube. We 
will consider the Venturi tube studied by Minister on his diploma thesis [35], with the 
following geometry: 

60 55 20 84 110 

o CM 

Figure 5.1: Geometric description of the simulated Venturi tube (all dimensions in mm) 

There are several Eulerian approaches to this problem. These methods consider prop
erties like fraction of vapor or density as functions of time and space, and by solving a 
system of PDEs, they are able to describe the dynamics of the bubble. Therefore, usually 
in these methods we obtain a diffuse zone between the bubble and the surrounding fluid, 
instead of having a clear interface. 

In this work, however, we are interested in a Eulerian-Lagrangian approach. In this 
type of method, we first consider the dynamics of the fluid neglecting the presence of 
bubbles on it, and solve pressure and velocity fields by means of a Eulerian approach 
(usually finite volume method). Once pressure and velocity fields are known, we will 
take that information to compute bubble dynamics based on an O D E system describing 
bubble's radius evolution and Newton's law of motion to study its displacement in a 
Lagrangian fashion, as we described in Chapter 2. This coupling has been implemented 
succesfully among others by Ghahramani et al (2019) [11]. Moreover, these authors 
conclude that Lagrangian methods can give satisfactory results with larger time stepsizes 
and coarser spacial grids than Eulerian methods. 

In our case, we consider a steady flow with the following characteristics: 

Symbol Parameter Value Unit 
Q Volume flow rate 5 x 10" 3 m3/s 

Pout Outlet pressure 101324 Pa 
Pv Vapor pressure 2500 Pa 

Under these flow conditions, our goal is to describe bubble's trajectory for a given 
initial radius and initial position inside the tube. 
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5.1.1. Preliminaries 
As we discuss in Chapter 2, let us recall that bubble's radius R(t) dynamics is governed 
by Rayleigh-Plesset equation (Eq. (2.13)): 

RR + - R 2 - P V ~P°O(QX,QV) , Pg0 fRo\3k 2S AflR 
2 p p \RJ pR p R 

For bubble's kinetics, on the other hand, we are considering Hsieh equation (Eq. (2.62)) 
given by: 

3 
Rvh = -2Rg + 3RvL(qx,qy) - 3R(vB - vL{qx, qy)) - -CD\vB-vL{qx,qy)\{vB-vL{qx,qy)) 

Please note that different from our previous study case, the exciting pressure p^ in 
Rayleigh Plesset equation is now a function of position coordinates (qx,qy) instead of 
time, since we are considering a pressure field in a steady flow. The same occurs with 
fluid velocity VL- We can write it all together as a single system by considering the phase 
variable y = [R, U, qx,qy,vx, vy]T 

R = U 

~ pR pR\Rj pR2 p R2 2 R 
4x = vx 

U 3 CD 
vx = 3vLx(qx,qy) -3—(vx -vLx(qx,qy)) - ~;-^-\vx - vLx(qx, qy)\(vx -vLx(qx,qy)) 

% = vv 
U 3 C 

vy = -2g + 3vLy(qx,qy) - 3-(vy - vLy(qx,qy)) - -^-^-\vy - vLy(qx,qy)\(vy - vLy(qx,qy)) 

(5.1) 
Denoted shortly as: 

y = f(t,y) (5.2) 

For the computation of the drag coefficient CD, we will use the empirical correlation 
proposed by Niansheng-Cheng (see Table (2.1)), which should be valid for Re < 2 x 105, 
and is given by: 

CD = ^ (1 + 0, 27Re) 0 ' 4 3 + 0,47 ( l - e - 0 < 0 4 R e ° ' 3 8 N ) 
Re v ' 

With Reynolds number Re given by: 

Re = MWv-^\\P (5.3) 

5.1.2. Well-posedness analysis 
In a similar way as we did with our previous study-case, we would like to study the well-
posedness of system (5.1). A first observation is that due to the steady state of the flow 
the system is now autonomous, so in order to show its well-posedness, we need to show 
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that f(y) is Lipschitz continuous. It is not such an easy task as before to verify whether 
this function is at least locally Lipschitz, but after some effort we get the jacobian matrix 
| J given by: 

0 1 0 0 0 0 
iu nU 
pR? °R 

0 

1 dpoo 0 
1 

1 dpoo 0 
0 df _ 

OR 
0 

iu nU 
pR? °R 

0 
pR 9qx 

0 
0 
1 

pR dqx 

0 
0 
0 

dy OR R 
dh 
dqx 

dh 
dvx 

dh 
dqy 

dh 
dvy 

0 0 0 0 0 1 
dh 

_dR R 
dh 
dqx 

dh 
dvx 

dh 
dqy 

dh 
8Vy 

(5.4) 

Where: 

OR 
dh 
dR 
dh 
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dh_ 
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dh_ 
8Vy 

dh 
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dh_ 
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dh_ 
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dh_ 
8Vy 
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dRe 
dRe 

Pv Poo 
pR2 

- {3k+ 1) Pg0 

pR2 V R 
Ri 3fc AS U 3 U2  
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AR 
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dCD dRe 
c | dRe dR 

,dvLx 
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U 
R dqx 

3 dCDdRe 
AR dRe dqx ^ "
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Z Jri 
3 dCDdRe 

dqy R dqy AR dRe dqy 

3 dCDdRe 
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AR dRe dv,,, 
U 

3 — (v 
R2^y vLy) + AR2^y 

vx -vLx)\vx -vLx 

3CD, 

3dvLy+3U dvLy 

<'» - VLy)\Vy ~ VLy\ 

3 dCDdRe 
A~R v 

.dCDdRe 
V L ^ ~ V L ^ ^ R 

dqx R dqx 

3 dCp-dRe 
[Vy ~ VLy)\Vy ~VLy\ 

ARlReW^ " VLy)K " ̂  ± llt{Vv " VLv)d^ 
AR dRe dv7 

3dvLy+3U dvLy 3 dCodRe. 3CD, 
dqy ' ~R dqy ARlReWy{Vy " ^ K " ^ 2~R^ vLy) 

dv Ly 
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U 3 dCDdRe, i , 3 CJJ / 

(5.5) 

2 1 (1 + 0.27Re)°- 4 3 + ^ 1 ( 1 + 0 .27Re)-° - 5 7 + 0 .00028576Re-° - 6 2

e - a o 4 I t e 0 

Re 2 

2\\v-vL\\p 
dR P 
dRe 2Rp 
dqi P\\v ~ VL\\ 
dRe 2Rp 
dvi p\\v -vL\\ 

Rc 

dvLx , ,dvLy 
( V X - V L x ) — + (Vy-VLy) ^ 

Vi - VLi 

(5.6) 
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Even in the case when p^, VLX, VLV, VLX and VLV are nice functions, with continuous 
partial derivatives, we can see that there some possible singularities in For instance, 
from Rayleigh-Plesset equation we already know that R = 0 gives problem, but now, also 
zero relative velocity, i.e. W = \\v — VL\\ = 0 seems to be a singularity. In the case of 
Rayleigh-Plesset equation alone, we solved the problem by simply excluding R = 0 from 
our domain, because this was physically meaningful. However there are no reasons to 
think that for some time t, W(t) = \\v(t) — vz,(t)\\ = 0 so this argument is not valid now. 

Let us study then what happens when W —>• 0. If R ^ 0, clearly this implies that Re 
—> 0. Now looking at the partial derivatives we can see that the most problematic terms 
are of the form W2^1 and WICD- First of all, let us note that Wi < W so we know that 
as W —>• 0 the ratio ^ is bounded. Now, let us consider the previous mentioned terms: 

1xr2dCD w 2 / a b c d e - 0 M w 0 3 8 \ 
W —— w W 1 1 1 

1 <9Re 1 \W2 W1-57 W W0-62 J 

^°^{w+w^+^MW°") (5'7' 

which are bounded around W = 0, moreover they go to 0 as well, as can be seen in Fig. 
(5.2). Therefore all the previous partial derivatives are defined for W = 0. This means 

0 1 2 3 4 5 6 7 6 9 10 
Reynolds number - Re j j ' 1 

0 I 1 1 1 1 1 1 1 1 r 

Figure 5.2: Terms R e 2 § f and R e C D vs Re 

that they are continuous and therefore / is Lipschitz continuous with respect to y on any 
compact convex set, not containing R = 0, which, by theorem 3.1.1, is equivalent to say 
that for any initial condition y0 = [i?0, U0, x0, vx0, y0, vy0\T with R ^ 0, system (5.1) has a 
unique solution y(t) defined at least on a neighborhood of t0. 
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5.1.3. Simplifying assumption 
A n assumption that we may do to simplify in some measure system (5.1) is to suppose 
that bubble's trajectory will remain near to the corresponding trajectory of a fluid particle 
on the same initial position. This means that if ip(t) = (qixif), <lLy(t)) describes our fluid 
particle's trajectory, we could use it to parameterize p^, VLX and VLV by: 

Poo(qx,qy) ~p{<f{t)) 
VLx{Qx,Qy) ~ 

pR PR\Rj PR2 p R? 2R 
4x = vx 

U 3 CD 
v'x = 3vLx(t) -3—(vx -vLx(t)) - -;-^-\vx -vLx(t)\(vx -vLx(tj) 

Jri 4 Jri 

% = vv 

U 3 CD Vy = ~2g + 3VLy(t) ~ 3-(Vy ~ VLy(t)) ~ ~ —]Vy ~ VLy(t)\(Vy ~ VLy(t)) 

(5. 

Transforming our input functions from scalar fields on M 2 into functions on M, changing 
our system to: 

R = U 

pv-Poo(t) Pj» (Ro\3k _ 3 £^ 

(5.9) 

This simplification serves mainly a numerical purpose. In this format, input informa
tion requires considerably less memory and the interpolations needed through along the 
integration process can be perform faster. Of course the validity of such assumption shall 
be evaluated later. 

5.1.4. Numerical implementation and results 
For a fluid particle initially in the inlet center (center left side), pressure and velocity 
profiles along its trajectory are computed numerically using ANSYS Fluent 19.1. Flow 
is computed using Reynolds averaged Navier Stokes equations and realizable k-epsilon 
model, discretization is done by finite volumes, segregated approach with S IMPLE algo
rithm. The geometry and equations are adopted for axisymmetric assumption (i.e. 2D 
simulation but with axisymmetric formulation of governing equations). Which provides 
the following results: 

System (5.9) is considered together with the following initial conditions: 

</o 

R0 RQ 

U0 0 
qxo 0 
VxO VLx(0) 

0 
-VV0_ VLy{0). 

(5.10) 

And then it is solved by means of M A T L A B ' s ode suite with solvers ode45, odell3, odel5s 
and ode23s with different initial radius RQ. The implemented code can be consulted in 
the Appendix 3. 
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5.1. FLOW THROUGH A VENTURI TUBE 
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(a) Pressure and velocity profiles along the considered fluid particle 
trajectory 
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t{3) 

(b) Detail of (a) for interval t = [0.05s, 0.06s] 

Figure 5.3: Pressure, axial velocity and radial velocity profiles for the considered fluid 
particle. In (b) we can see a detail of these profiles while the particle is passing through 
the reduced section 

Given that our input data p o o , VLX and viy are obtained from a C F D simulation, they 
are actually a set of discrete points representing continuous functions. In general the 
discretization on time given by the C F D for these three functions will be different from 
the one that will be used inside the O D E solver, so we will be continuously interpolating 
during the integration. The quality of these interpolations will have a big impact on the 
final solution, so the interpolation method should be chose with some care. Also the 
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5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION 

computational cost of these interpolations will have a significant weight on the total cost, 
so an efficient implementation is also important. 

Gautschi (2012) [10] gives a detailed discussion of the most common interpolation 
methods based on polynomials. High order polynomials usually have very good accuracy 
in the interior of the interval but they have large errors on the edges of the interval, 
so usually it is better to use an interpolant made of piecewise polynomial of low order, 
usually the most popular subroutines use cubic polynomials since they are smooth enough 
to give nice plots. In M A T L A B , there are two functions implementing different methods 
of interpolation both based on cubic piecewise polynomials: pchip - which stands for 
piecewise cubic hermite interpolating polynomial- and spline, which uses cubic splines. 
The main difference is that splines are by definition C2, while cubic hermite polynomials 
are required only to be C1 Hermite polynomials conforms a large family, therefore there 
are several ways of defining hermite polynomials on the same interval. In M A T L A B the 
function pchip is designed to preserve the "shape" of the data, so it is not as smooth as 
spline, but it will not have any strange overshoot when the data is changing fast. Fig. 
5.4 shows a comparison of both interpolation methods on our input data. 

15 
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J 5 
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Axial velocity 
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Figure 5.4: Comparison of both interpolating functions pchip and spline on intervals (a) 
t = [0.05s, 0.06s] and (b) t = [0.052s, 0.054s]. 

Based on the previous discussion the command spline is chosen. The reason is that 
since we have to deal with vLx and VLV in our system, we would like this functions to be 
as smooth as possible. Now, a key step to make the procedure efficient is to compute the 
corresponding piecewise polynomials for Pooit), VLx(t), VLy{t), VLx{t) and VLy(t), before 
solving the ode. Once these interpolants are computed, we just need to call them into 
the function handle representing our system. Functions are approximated by using the 
command spline itself Pooif), VLX(t) and v^yit), for the derivatives VLx{t) and VLy(t) we 
can use the derivatives of the interpolants by using the command fnder -which stands for 
function derivative. A n idea in pseudocode of the construction of the interpolants is given 
as follows: 

% Import time grid 
% Import pressure data 
% Import axial velocity data 
% Import radial velocity data 

t <— importdata(timegrid.txt) 
p <— importdata(pressure.txt) 
vx «— importdata (vel-x.txt) 
vy «— importdata (vel-y.txt) 
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5.1. FLOW THROUGH A VENTURI TUBE 

pp <— spline(t,p) 
vxp «— spline(t,vx) 
vyp <— spline(t,vx) 
dvxp «— fnder(vxp) 
dvyp «— fnder(yyp) 

The elements "pp", "vxp 

% Construction of interpolant for the pressure 
% Construction of interpolant for the axial vel 
% Construction of interpolant for the radial vel 
% Derivative of the interpolant for the axial vel 
% Derivative of the interpolant for the radial vel 

dvxp" and "dvyp" are special structures in M A T L A B 
which can be evaluated by using the command ppval. This command can be used to 
evaluate an interpolant on an arbitrary number of points. 

These interpolants can now be included in system (5.1) to approximate p^(t), vz,x(t), 
vLy{t), VLxit) and VLyit) and we can use any ode solver to compute the solution y(t). As 
an assessment on the stiffness of the problem, system (5.1) was solved with solvers ode45, 
odellS, ode23s and odel5s and their performances are compared in Table (5.1) and Fig. 
(5.5). 

Table 5.1: Computational cost comparison of the integration of system 5.1 for different 
initial radius and different solvers of M A T L A B ode suite 

ode45 odell3 ode23s odelös 
RQ fevals Time fevals Time fevals Time fevals Time 

(urn) (-) (s) (-) (s) (-) (s) (-) (s) 
100 1232767 166.28 598265 87.55 13283071 2395.66 848272 212.22 
75 887737 130.54 418843 66.97 8385931 1596.18 538191 131.49 
50 886771 127.19 507740 50.38 6223904 834.53 608981 89.60 
25 1237075 177.64 773267 103.24 3448173 364.67 941510 134.62 
10 2366731 186.48 1129779 109.92 2450593 224.97 2198281 320.65 
5 4041181 312.46 2303499 215.61 2617773 245.74 3340953 467.64 
4 4973413 386.72 2918896 261.05 2742356 244.43 1300892 184.07 
3 7302223 569.27 3988358 369.58 2898983 270.79 1683570 237.05 
2 10033903 845.97 6266722 653.24 3234000 363.94 74917 13.49 
1 21078100 3026.66 14202488 2146.86 4662932 454.38 52094 8.10 

According to Table 5.1 and Fig. 5.5, odellS seems to be the most efficient solver for 
system 5.1 when RQ > Bum. For RQ < Bum, implicit solvers exceed the performance of 
the explicit solvers, for which the computation cost grows exponentially, which clearly 
indicate that system 5.1 becomes stiff for small bubble sizes. 

To have an idea of the behavior of the bubbles the obtained results for different initial 
radii are shown in Fig. (5.6), (5.7), (5.8) and (5.9). The behavior is relatively similar 
for different initial sizes, with damped oscillation of very high frequency on R, vx and vy. 
however small bubbles oscillate with significantly smaller amplitude and their oscillations 
are damped much faster. Axial velocity behave in a similar way, which smaller oscillations 
for the smaller bubbles, and for the y-position we can see that smaller bubbles are lifted 
in less measure, causing them to keep closer to the trajectory of the corresponding fluid 
particle. According to Fig. (5.9), the assumption we did on the trajectory of the bubble 
seems to be acceptable, specially for small bubbles. 

88 



5. STUDY-CASE 2: BUBBLE IN A FLUID FLOWING THROUGH A CROSS REDUCTION 
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Figure 5.5: Computational time for different initial radius and different solvers 
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Figure 5.6: Radius dynamics of the bubble for different initial radii 
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Figure 5.7: Axial position dynamics for different initial radii. 
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Figure 5.8: Radial position dynamics for different initial radii. 
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Trajectory of the bubble vs trajectory of the fluid 
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Figure 5.9: Trajectory of bubbles of diverse initial radii. 

5.2. Flow through a sharp-edged orifice plate 
Another simulation is carried for a liquid flowing through a sharp-edged orifice plate, as 
the one describe in Fig. (5.10). 

200 
'////////////////////////////, 

Figure 5.10: Geometric description of the orifice plate installation (All dimentions in mm) 
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5.2. FLOW THROUGH A SHARP-EDGED ORIFICE PLATE 

Flow conditions are shown in the table below: 

Symbol Parameter Value Unit 
Inlet velocity 2.534 m/s 

Pout Outlet pressure 36324 Pa 
Pv Vapor pressure 3540 Pa 

As done before for the Venturi tube, pressure and velocity fields are computed using 
ANSYS Fluent 19.1. Flow is computed using Reynolds averaged Navier Stokes equa
tions and realizable k-epsilon model, discretization is done by finite volumes, segregated 
approach with S IMPLE algorithm. The geometry and equations are adopted for axisym-
metric assumption (i.e. 2D simulation but with axisymmetric formulation of governing 
equations). We are interested this time with the behavior of a bubble located initially in 
position (qx — 0, qy — y ) , with D being the diameter of the pipeline, i.e. in the upper 
part of the flow. The profiles for pressure and velocity fields along this trajectory are 
shown below: 

• i;'1 Pressure 

Axial velocity 

t(a) 
Radial velocity 

0.12 

0.12 

0.12 

Figure 5.11: Pressure and velocity profiles along the trajectory of a fluid particle starting 
at the upper position of the pipeline. 

A comparison on the computational cost is also performed for this case, giving us the 
results shown in Table (5.2) and Fig. (5.12). We can see from there, that also in this case, 
odellS seems to be the most efficient option for most of the larger bubble sizes, however 
somewhere between RQ = 5um and 10 am the system becomes definitely stiff. 

The description of the dynamics are given in Fig. (5.13), (5.14), (5.15) and (5.16). 

92 



Table 5.2: Computational cost comparison of the integration of system 5.1 for different 
initial radius and different solvers of M A T L A B ode suite. Computations are made with 
a processor: Intel Core i5-7200U 2.5GHz with Turbo Boost up to 3.1 GHz, R A M : 8 GB 
and a G P U : NVIDIA GeForce MX130 with 2GB. 

ode45 odell3 ode23s odel5s 
fevals Time fevals Time fevals Time fevals Time 

(um) (-) (s) (-) (s) (-) (s) (-) (s) 
100 177235 29.16 115281 27.28 1115736 304.28 133484 44.98 
75 211525 48.96 131325 40.04 1221180 312.33 147874 64.61 
50 297601 62.20 182938 42.03 1585803 345.26 215838 72.34 
25 422443 46.51 312494 55.78 1119443 220.32 355506 114.21 
10 1682329 167.11 460845 110.73 1171334 254.26 871280 300.28 
5 1682329 321.51 929034 216.12 1467694 318.02 178799 59.24 
1 889009 967.36 5892956 754.07 3066117 335.79 68694 10.39 
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Figure 5.13: Radius dynamics of the bubble for different initial radii 
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Figure 5.14: Axial position dynamics of the bubble for different initial radii 
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Figure 5.15: Radial position dynamics of the bubble for different initial radii 
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7. APPENDICES 

7. Appendices 
7.1. Appendix 1: Code to solve RP and Gilmore equa

tions 

1 funct ion sol = mainV5(Ro, free ,pa, solver ,graphs) 
2 Wo MAIN OODE: Code to solve Ray le igh -P le s se t equation and Gilmore ' s 

equation 
:>, %Use of sca l ing , implementation of severa l solvers and both models RP and 
4 %Gilmore. Computation of eigenvalues for s t i f fness a n a l y s i s . 
5 i f nargin==0 
(i Ro=le—6; frec=20e3; pa = 3; solver="ode45 "; graphs = t rue; 
7 end 

9 %Fixed Parameters 
i n pv = 2339.215 
n rho = 998.206 
12 S = 73.736e-3 
13 k = 1.4; 
14 v isc=0.001; 
is B=3.049e8 ; 

approx 3000 bar) 
16 n = 7.15; 

approx 7) 
17 c _ i n f = 1500; 
18 
i 9 % I n i t i a l condi t ions and time i n t e r v a l 
20 pinf0=101325; 

away 
21 %dRo=-380.6842; 

m/ s ) 
22 %to = 6.3700e-5; 
23 dRo=le—9; to=0; 
24 Req=Ro; 
25 pgo=pinf0 — pv + 2*S/Req; 
26 
27 %Outside forc ing pressure type 
28 fo = sqrt ((3*k*pgo— 2*S/Ro)/rho) / (2* pi *Ro) ; 

bubble 
29 pa = pa*pinfO ; 

f i e l d (only type=2) 
30 free r = f r e c / f o ; 
:u tf=5/free ; 
32 
33 %Scal ing of the system 
34 scale_system = 0; 
35 switch scale_system 
36 case 0 %Control 
37 scale_R = 1; 
38 scale_t = 1; 
39 scale rho = 1; 
40 scale_U = 1; 
41 scale_p = 1; 
42 case 1 %t—p 

%Vapor pressure (Pa) 
%Density of the f l u i d (kg/m^3) 
%Surface tension (N/m) 
%Poly t rop ic index (d iment ionless ) 
%Dynamic v i s c o s i t y (Pa*s) 
%Constant B from Tait ' s state equation ( 

%Constant n from Tait ' s state equation ( 

%Speed of sound in water (m/s) 

er v a l 

%pressure (Pa) at t = 0 in the l i q u i d far 

% I n i t i a l v e l o c i t y of growth of the bubble ( 

% I n i t i a l time of the s imula t ion (s) 

% I n i t i a l pressure of the gas bubble (Pa) 

%Natural frequency of the 

%Amplitude (Pa) for the s i n u s o i d a l pressure 

%Fina l time of the s imula t ion (s) 
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43 scale_R = Ro; 
44 scale rho = rho ; 
45 scale p = pinfO — pv; 
46 scale_U = sqrt ( sca le_p /sca le_rho ) ; 
47 scale_t = s ca l e_R/ sca l e_U; 
48 
4!) case 2 %t—v 
so scale_R = Ro; 
s i scale_t = R o ^ 2 / ( 4 * v i s e ) ; 
52 scale p = abs(pinfO — pv) ; 
53 scale_U = sca l e_R/ sca l e_ t ; 
54 scale_rho = sca le_p / ( sca le_U*sca le_U) ; 
55 
56 case 3 %t—S 
57 scale_R = Ro; 
58 scale_t = Ro*sqrt (rho*Ro/(2*S)) ; 
59 scale p = abs(pinfO — pv) ; 
60 scale_U = sca l e_R/ sca l e_ t ; 
61 scale_rho = sca le_p / ( sca le_U*sca le_U) ; 
62 
63 case 4 %t —f 
64 scale_R = Ro; 
65 scale_t = 1/ free ; 
H f i scale_p = abs(pinfO — pv) ; 
67 scale_U = sca l e_R/ sca l e_ t ; 
68 scale_rho = sca le_p / ( sca le_U*sca le_U) ; 
69 
70 case 5 %t — fo 
71 scale_R = Ro; 
72 scale_t = 1/ fo ; 
73 scale_p = abs(pinfO — pv) ; 
74 scale_U = sca l e_R/ sca l e_ t ; 
75 scale_rho = sca le_p / ( sca le_U*sca le_U) ; 
76 end 
77 
78 pv = pv / sca l e_p ; 
79 pinfO = p infO/sca le_p ; 
so pgo = pgo/scale_p ; 
s i pa = pa /sca le_p; 
82 B=B/scale_p ; 
83 rho = rho /sca le_rho ; 
84 S = S/ (sca le_U*scale_U*scale_rho*sca le_R) ; 
85 vise = vise / ( sca le_U*sca le_rho*sca le_R) ; 
86 c inf=c inf/scale U ; 
87 Ro=Ro/scale_R; 
88 Req=Req/ scale_R ; 
89 dRo=dRo/ sca le_U; 
90 to=to/sca le_t ; 
91 tf=tf / s c a l e _ t ; 
n2 frec=frec * scale_t ; 
93 
94 %Solving the system 
95 re l tol=le—9; %Relat ive tolerance 
•id abstol=le—9; %Absolute tolerance 
H7 options=odeset ( ' Re lTo l ' , r e l t o l , ' A b s T o l ' ,abs tol , ' Stats ' , ' on ' ) ; 
98 
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<j<j tspan = [to t f ] ; 
100 xO = [Ro dRo ] ; 
101 

n)2 fpr intf(" \n Gilmore ' s model solver V5 . 0 : \ n 
\n ' ) i 

103 tcompStart = t i c ; 
104 switch solver 
105 case 'ode45 ' 
106 sol=ode45 (@rp_equation , tspan , xO , op t i ons ) ; 
i n ? case 'ode87 ' 
108 sol=ode87 (@rp_equation , t span, xO , op t i ons ) ; 
109 

110 

case ' o d e l l 3 ' 
sol=odel 13 ( @rp_equation , t span, xO, op t i ons ) ; 

i n case ' o d e l 5 s ' 
112 sol=odel5s (@rp_equation , t span, xO, op t i ons ) ; 
113 case ' ode23s ' 
114 sol=ode23s (@rp_equation , t span, xO, op t i ons ) ; 
u s end 

sol . s tats . time = toe (tcompStart) ; 
fpr intf(" \n\n") 

116 

117 

118 

119 

120 

%Rescaling 
% s o l . x=sol .x*sca le_ t ; 

1 2 1 % s o l . y=[scale_R 0; 0 scale_U ] * s o l . y; 
122 

123 for i =1: length ( sol . x)—l 
124 e i g e n ( i , : ) = eigenRP ( sol . x( i ) , so l . y (: , i ) ) ; 
125 i f ( e i g e n ( i , l ) > 0 &fe e i g e n ( i , 2 ) > 0) 
126 s3 ( i ) = 0; 

else 127 

128 s 3 ( i ) = abs (min ( eigen ( i , 1) , eigen ( i , 2) )) * ( sol . x ( i +1)— sol . x ( i ) ) ; 
129 end 
130 e igen( i , : )=e igen( i ,:) * ( s o l . x ( i + l ) — s o l . x ( i ) ) ; 
131 end 
132 sol . s t i f f i n d e x = s3 ; 
133 s o l . p i n f = pinfO + p a * s i n ( 2 * p i * f r e c . * s o l . x ) ; 
134 

135 save ( ' r esu l t s . mat ' ) 
136 

137 %Plo t t ings 
138 i f graphs 
139 f igure 
w o subplot (3 ,1 ,1) 
141 plot ( sol . x , sol . y (1 , : )) ; 
142 x l a b e l ( ' t / t _{ ref } ') ; 
143 y l a be l ( ' R / R _ 0 ' ) ; 
144 t i t l e ( s p r i n t f ("R_0 = %g um, f = %g kHz, pa = %.4d bar " ,Ro*scale_R*le6 , free 

/ s c a l e _ t *le— 3, pa*scale_p*le— 5)) 
145 ax i s ( [0 i n f — in f i n f ] ) 
146 

147 subplot (3,1 ,2) 
148 plot ( sol . x , sol . y (2 ,:) ) ; 
149 x l a b e l ( ' t / t _ { ref } ' ) ; 
150 y l abe l ( 'dR/U_{ ref } : ) ; 
151 ax i s ( [0 i n f —inf i n f ] ) 

101 



7.1. APPENDIX 1: CODE TO SOLVE RP AND GILMORE EQUATIONS 

153 subplot (3 ,1 ,3) 
154 plot ( sol . x (1: end —1) , s3 ) 
155 plot ( sol . x ,( pinfO + pa* sin (2* pi * free * sol . x ) ) ) 
156 %xlabel ( ' t / t _ { r e f } ') ; 
157 y l abe l ( ' | \ lambda | ') ; 
iss y l abe l ( ' p_ \ i n f ty ( t ) /p_{ r ef } ') 
i 5 H % a x i s ( [ 0 i n f —inf i n f ] ) 
160 

K i i f igure 
io2 plot ( eigen ) 
163 y l abe l ( ' \ lambda ') 
104 % 

105 f igure 
166 subplot ( 2 , 1 , 1 ) 
107 plot ( sol . x , so l . y (1 , : )) ; 
168 x l a b e l ( ' t / t _ { ref } ') ; 
leg y l abe l ( ' R / R _ 0 ' ) ; 
170 t i t l e ( s p r i n t f ("R_0 = %g urn, f = %g kHz, pa = %.4d bar " ,Ro*scale_R*le6 , free 

/ s c a l e _ t *le— 3, pa*scale_p*le—5)) 
171 axis ([0 5 0 i n f ]) 
172 subplot (2 ,1 ,2) 
173 plot ( sol . x (1: end —1) , s3 ) 
174 x l a b e l ( ' t / t _ { ref } ' ) ; 
175 y l abe l ( ' | \ lambda | *h ' ) ; 
176 ax i s ( [0 5 —inf i n f ] ) 
177 % 

178 f igure 
179 plot ( s o l . y ( l ,:) , s o l . y ( 2 , : ) ) 
180 x l a b e l ( ' R ' ) 
181 y l abe l ( ' dR ' ) 
182 end 
183 

184 Wo GILMORE'S MODEL 
185 funct ion dxdt = f gilmore (t ,x) 
186 

187 %Some p re l iminary funct ions to solve the ODE system 
iss p in f = pinfO + pa* sin (2* pi * fre c * t) ; 
189 dpinf = pa*2* pi * f r ec * cos (2* pi * f r ec * t) ; 
190 p= pv + pgo* (Ro/x (1) ) ̂ (3*k) — 4* vise *x ( 2 ) / x (1) — 2 * S / x ( l ) ; 
191 dp= -3*k*pgo*(Ro/x( l ) )~(3*k) * ( x ( 2 ) / x ( l ) ) + 2*S*x (2) / ( x (1) ~2) + 4 * v i s c * ( x ( 2 ) 

/ x ( l ) T 2 ; 
192 %dp= -3*k*pgo*(Ro/x( l ) ) ^ ( 2 * k ) * R o * ( x ( 2 ) / x ( l ) ^ 2 ) + 2*S*x (2) / (x (1) ~2) + 4*visc 

* ( x ( 2 ) / x ( l ) ) ^ 2 ; 
193 H= l / r h o * n / ( n - l ) * ( p i n f + B ) *(((p+B) / ( pinf+B)) ~ ( ( n - 1 ) / n ) - 1 ) ; 
194 dH= l / r h o * ( n / ( n - l ) * d p i n f *((( p+B)/( pinf+B) ) ~( (n-1) /n) - 1) + . . . 
195 ((p+B)/(pinf+B) ) ~ ( - l / n ) *(dp*( pinf+B) - dpinf *(p+B) ) / ( pinf+B) ) ; 
196 0= c_inf*((p+B) / (pinf+B) ) ((n-1) / (2*n) ) ; 
197 

198 %The ODEs system 
199 dx ld t = x (2) ; 
2uu dx2dt = (H*(l + x ( 2 ) / C ) + x ( l ) * d H / C * ( l - x ( 2 ) / C ) - 3/2* (x (2) ) ^ 2 * (1 - x ( 2 ) 

/ (3*C)) ) / . . . 
201 ((1 - x ( 2 ) / C ) * ( x ( l ) + 4* v i s c / ( r h o * C ) *((p+B)/(pinf+B) ) ~ ( - l / n ) ) ) ; 
202 dxdt = [dx ld t ; dx2dt ] ; 
203 

204 end 
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205 Wo Rayleigh — Plesset equation 
206 funct ion dxdt = rp_equation (t ,x) 
207 
208 %Some pre l iminary funct ions to solve the ODE system 
209 p inf = pinfO + pa* sin (2* pi * free *t) ; 
210 

211 %The ODEs system 
212 dx ld t = x (2) ; 
213 dx2dt = (pv— p i n f ) / ( x ( l ) *rho) + . . . 
214 pgo / ( rho*x( l ) ) * (Req /x ( l ) )~(3*k) - 1 .5*(x(2) )~2 /x ( l ) - . . . 
215 2*S / ( rho* (x ( l ) )~2) - 4* vise *x (2) / (rho * (x (1) ) ~2) ; 
216 dxdt = [dx ld t ; dx2dt ] ; 
217 
218 end 
219 
220 Wo Linear Rayleigh—Plesset equation 
221 funct ion dxdt = l i n _ r p _ e q (t , x) 
222 

223 b = 4* v i s e / ( rho*Req^2) ; 
224 c = (3*k*pgo — 2*S/Req)/(rho*Req~2) ; 
22r> d = —pa /(rho*rho *Req^2) * s i n ( 2 * p i * f r e c * t ) ; 
226 
227 %The ODEs system 
228 dx ld t = x (2) ; 
229 dx2dt = d — b*x(2)— c * x ( l ) ; 
230 dxdt = [dx ld t ; dx2dt ] ; 
231 
232 end 
233 
234 Wo Eigenvalues of Rayleigh—Plesset 
23r, funct ion eigen = e igenRP( t ,x ) 
236 p inf = pinfO + pa* sin (2* pi * free *t) ; 
237 
238 j 1 = 0; 
239 j2 = 1; 
240 j3 = —(pv—pinf) / (x (1) ^2* rho ) — . . . 
241 (3*k+ l )*pgo / ( rho*x( l )~2)* (Ro /x ( l ) )~ (3*k) + 1.5 * (x (2 ) /x (1 ) )~2 +. . . 
242 2*S / ( rho* (x ( l ) )~3) + 8* vise *x (2) / (rho * (x (1) ) ~3) ; 
243 j4 = - 4* vise / ( r ho* (x ( l ) )"2) - 3*(x (2) /x(1) ) ; 
244 
245 t r = j 1 + j 4 ; 
246 det = j l * j 4 — j 2 * j 3 ; 
247 eigen = 0. 5 * [ tr+sqrt ( t r^2 — 4*det) tr— s q r t ( t r ^ 2 — 4*det) ] ; 
248 end 
249 end 

7.2. Appendix 2: Code for the modified discrete gra
dient approximation 

1 funct ion resu l t s = m a i n V l l Q 
2 Wo MAIN CODE: Code implementing the Hamil tonian and d i sc re te gradient 

approximation 
3 Ro=le—6; frec=20e3; pa = 3; 
4 
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%Vapor pressure (Pa) 
%Density of the f l u i d (kg/m~3) 
%Surface tension (N/m) 
%Poly t rop ic index (d iment ionless ) 
%Dynamic v i s c o s i t y (Pa*s) 
%Constant B from Tait ' s state equation ( 

%Constant n from Tait ' s state equation ( 

%Speed of sound in water (m/s) 

5 %Fixed Parameters 
e pv = 2339.215; 
7 rho = 998.206; 
s S = 73.736e-3; 
9 k = 1.4; 

in v isc=0.001; 
n B=3.049e8 ; 

approx 3000 bar) 
12 n = 7.15; 

approx 7) 
13 c _ i n f = 1500; 
14 
ir, % I n i t i a l condi t ions and time i n t e r v a l 
io pinfO =101325; %pressure (Pa) at t = 0 in the l i q u i d far 

away 
17 dRo=0; % I n i t i a l v e l o c i t y of growth of the bubble ( 

m/ s ) 
is to=0; % I n i t i a l time of the s imula t ion (s) 
i n Req=le—6; 
20 pgo=pinf0 — pv + 2*S/Req; % I n i t i a l pressure of the gas bubble (Pa) 
21 

22 %Outside forc ing pressure type 
23 fo = sqrt ((3*k*pgo —2*S/Ro)/rho)/(2* pi*Ro) ; %Natural frequency of the 

bubble 
%Amplitude (Pa) for the s i n u s o i d a l pressure 24 pa = pa* pinfO ; 

f i e l d (only type=2) 
free r = f ree / fo ; 25 

26 t f = 5/free ; %Fina l time of the s imula t ion (s) 

28 %Scal ing of the system 
29 scale_system = 0; 
30 switch scale_system 
31 case 0 
32 scale_ _R = i ; 
33 scale _t = i ; 
34 scale rho = i ; 
35 scale_ _U = i ; 
36 scale. _P = i ; 
37 case 1 
38 scale_ _R = Ro; 
39 scale _t = 1/free ; 
40 scale rho = rho ; 
41 scale_ _U = Ro* free ; 
42 scale. _P = scale_U*scale 
43 
44 case 2 
45 scale_ _R = Ro; 
40 scale rho = rho ; 
47 scale. _P = pinfO — pv; 
48 scale_ _U = sqrt (scale_p 
49 scale _t = scale_R / scale 
50 
51 case 3 
52 scale_ _R = Ro; 
53 scale _t = 1/free ; 
54 scale. _P = abs(pinf0 — 
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55 s c a l e U = s c a l e R / s c a l e _ t ; 
56 scale rho = scale_p / ( scale_U*scale_U) ; 
57 
58 case 4 
59 scale_R = Ro; 
60 scale_t = 1/ fo ; 
in scale p = abs(pinf0 — pv) ; 
62 scale_U = sca l e_R/ sca l e_ t ; 
63 scale rho = sca le_p / ( sca le_U*sca le_U ) ; 
64 end 
65 
66 pv = pv / sca l e_p ; 
67 pinfO = p infO/sca le_p ; 
68 pgo = pgo/scale_p; 
69 pa = pa/scale p ; 
To B=B/scale_p ; 
r i rho = rho /sca le_rho ; 
72 S = S/ (sca le_U*scale_U*scale_rho*sca le_R) ; 
73 vise = v i se / ( sca le_U*sca le_ rho*sca le_R) ; 
74 c inf=c inf/scale U ; 
7,-, Ro=Ro/scale_R; 
76 Req=Req/scale_R ; 
7 7 dRo=dRo/ scale_U ; 
7 ^ to=to/sca le_t ; 
7!) t f = t f / s c a l e _ t ; 
so f rec=frec*scale_t ; 
81 
82 % I n i t i a l i z a t i o n 
83 N = 200000; 
84 h = ( t f - t o ) / N ; 
ss y = [Ro, dRo*rho*Ro~3]; 
36 t = [ to ] ; 
87 
88 %Main loop 
89 done = false ; 
90 while -done 
91 yold = y(end ,:) ; 
92 t o ld = t (end) ; 
g i Rold = yold (1) ; 
94 Qold = yold (2) ; 
95 
96 U = @(y) (-pv+pinf0 ) * (y ( l )~3 - Ro~3)/3 - pgo*Req~(3*k) * (y (1) ~(3*( 1 - k ) ) - Ro 

~ ( 3 * ( l - k ) ) ) / ( 3 * ( l - k ) ) + . . . 
97 S*(y( l )~2 - Ro^2) + pa*sin (2* pi * free * to ld ) *(Rold + y(1) )*(y(1)~2 - Rold~2) 

/ 4 ; 
98 phi = @(ynew) [ynew(l) - Rold - h*(Qold + ynew (2) ) / (2* rho*ynew (1) ~3) , ynew 

(2) - Qold - h*(Qold~2*(Rold~2 + Rold*ynew(l) + ynew (1) ~2) / (2* rho* Rold 
~3*ynew (1) ~3) — .. . 

99 (U(ynew) — U( yold ))/(ynew (1) - Rold) - 4* vise *Rold*( Qold + ynew (2) ) / (2*rho* 
ynew(l)~3)) ]; 

100 ynew = fsolve (phi , yold*1.01) ; 
101 
102 tnew = to ld + h; 
us y = [y; ynew]; 
104 t = [ t ; tnew ] ; 
105 

105 
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106 i f tnew >= t f 
i n ? done = true ; 
108 end 
109 end 
no 

i n %Ending 
112 r e su l t s . t = t ; 
113 r e su l t s .R = y ( : ,1) ; 
i n r e s u l t s . d R = y ( : ,2) . / ( rho*y (: , 1 ) . ~ 3 ) ; 
115 

116 % P l o t t i n g 
117 f igure 
us subplot (3 ,1 ,1) 
119 plot (t ,y (: ,1) ) ; 
120 x l a b e l ( ' t (s) ') 
121 y l a be l ( 'R (m) ') 
122 

123 subplot (3 ,1 ,2) 
124 plot (t ,y (: ,2) ) ; 
125 x l a b e l ( ' t (s) ') 
120 y l abe l ( MR (m/s) ') 
127 

128 subplot (3 ,1 ,3) 
129 plot (t , pinfO + pa* sin (2* pi * free * t ) ) ; 
130 x l a b e l ( ' t (s) ') 
131 y l a b e l ( ' p _ \ i n f t y (Pa) : ) 
132 end 

7.3. Appendix 3: Code to compute the trajectory of 
the bubble 

1 funct ion resu l t s = main fullV6 (Ro, solver , graphs ) 
2 %%> M A M OODE: Combination of study of bubble growth and col lapse and i t s 

equations of motion 
3 % Number of i n t e r p o l a t i o n s are reduced by computing an 
4 % approximating piecewise polynomial and convining both systems 

into one. 
r , % De r iva t ives computed using funct ion fnder . 
6 i f (nargin==0) 
7 Ro=le—6; solver="odel5s graphs = t rue; 
8 end 
9 

10 %Fixed Parameters 
11 % pv = 2500; 
12 pv = 3540; 
is rho = 998.206; 
i i S = 73.736e-3; 
is k = 1.4; 
le v isc=0.001; 
17 B=3.049e8 ; 

approx 3000 bar) 
is 11 = 7.15; 

approx 7) 
19 c _ i n f = 1500; 

%Vapor pressure (Pa) 
%Vapor pressure (Pa) 
%Density of the f l u i d (kg/m~3) 
%Surface tension (N/m) 
%Poly t rop ic index (d iment ionless ) 
%Dynamic v i s c o s i t y (Pa*s) 
%Constant B from Tait ' s state equation ( 

%Constant n from Tait ' s state equation ( 

%Speed of sound in water (m/s) 
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-9.81; %Acce le ra t ion of g rav i ty (m/s~2) 

22 %Import Outside pressure and v e l o c i t y f i e l d s 
23 patm = 101324; %Atmospheric pressure (Pa) 
24 P = imp ort data ( ' p r e s s u r e 2 . t x t ' ) ' ; 
25 P = P + [ zeros (1 , length ( P ( l , : ) ) ) ; patm* ones (1 , length (P (1 , : ) ) ) ] ; % 

Convert ion from gauge pressure to absolute pressures 
pO = P ( 2 , l ) ; 

vx = importdata ( ' vel_x2 . txt ') ' ; 
%vx = vx + [zeros ( l , l e n g t h ( v x ( l , : ) ) ) ; 5 * o n e s ( l , l e n g t h ( v x ( l , : ) ) ) ] ; 

2(. 

27 

28 

29 

30 

31 vy = importdata ( ' v e l_y2 . txt ') ' ; 
32 

33 %Estimation of approximating polynomials 
34 pp = sp l ine ( P ( l ,:) ,P(2 ,:) ) ; 
35 dpp = fnder(pp); 
36 vxp = s p l i n e ( v x ( l ,:) , vx (2 ,:) ) ; 
37 dvxp = fnder(vxp) ; 
ss vyp = sp l ine ( v y ( l ,:) ,vy (2 , : ) ) ; 
39 dvyp = fnder(vyp) ; 
40 

4 i % I n i t i a l condi t ions and time i n t e r v a l 
42 dRo=0; % l n i t i a l v e l o c i t y of growth of the bubble ( 

m/ s) 
43 xo=0; % I n i t i a l p o s i t i o n in the h o r i z o n t a l 

coordinate (m) 
44 v x o = v x ( 2 , l ) ; % I n i t i a l v e l o c i t y in the h o r i z o n t a l 

coordinate (m/s) 
45 yo=25e—3; % l n i t i a l pos i t i on in the v e r t i c a l 

coordinate (m) 
46 v y o = v y ( 2 , l ) ; % l n i t i a l v e l o c i t y in the v e r t i c a l 

coordinate (m/s) 
47 t o = P ( l , l ) ; % I n i t i a l time of the s imula t ion (s) 
48 t f=P ( l , end ) ; %Fina l time of the i n t e g r a t i o n (s) 
49 Req=Ro; %Equi l ib r ium radius (m) 
so pgo=pO — pv + 2*S/Req; % l n i t i a l pressure of the gas bubble (Pa) 
51 

52 %Solving the system 
53 re l to l=le— 6; %Relat ive tolerance 
54 abstol=le—9; %Absolute tolerance 
55 options=odeset ( ' Re lTo l ' , r e l t o l , ' A b s T o l ' , abstol , 'S ta t s ' , ' on ' ) ; 
56 

57 tspan = [to t f ] ; 
58 xO = [Ro dRo xo vxo yo vyo ] ; 
59 

60 fpr intf(" \n Gilmore ' s model solver V5 . 0 : \ n 
\ n ' ) i 

61 tcompStart = t i c ; 
switch solver 
case 'ode45 ' 
sol=ode45 (@rp_equation , tspan , xO, op t i ons ) ; 

case ' o d e l ö s 

(.2 

63 

(14 

65 case ' o d e l l 3 ' 
66 sol=odel 13 ( @rp equation , t span, xO, op t i ons ) ; 
67 

68 sol=odel5s (@rp_equation , t span, xO, op t i ons ) ; 
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(.<J 

73 

70 

71 

72 

case 'ode23s ' 
sol=ode23s (@rp_equation , tspan , x O , o p t i o n s ) ; 
end 
sol . s tats . time = toe (tcompStart) ; 
f p r in t f (" \n \n ") 

74 

75 %Output handling 
76 r e s u l t s . t = s o l . x ; 
77 r e s u l t s . R = s o l . y ( l , : ) ; 
78 r e s u l t s . dR = s o 1 . y (2 ,:) ; 
79 r e s u l t s . x = s o 1 . y (3 ,:) ; 
so r e s u l t s , dx = s o 1 . y (4 ,:) ; 
si r e s u l t s . y = s o 1 . y (5 ,:) ; 
82 r e s u l t s , dy = s o 1 . y (6 ,:) ; 
83 r e s u l t s . s t a t s = s o l . s t a t s ; 
84 

85 % %Computations of Reynolds number, Cd and independent forces 
86% Re = zeros ( l , l e n g t h ( v x ( l , : ) ) ) ; 
8 7 % C d = z e r o s ( l , l e n g t h ( v x ( l , : ) ) ) ; 
88% rp = pchip ( sol . x , sol . y (1 ,:) ) ; 
89% drp = pchip ( sol . x , so l . y (2 ,:) ) ; 
90% dxp = pchip ( sol . x , so l . y (4 ,:) ) ; 
9i % dyp = pchip ( s o l . x , s o l . y (6 ,:) ) ; 
9 2 % for i =1: length (vx (1 ,:) ) 
93 % vfx = vx (2 , i ) ; 
94 % vfy = vy (2 , i ) ; 
95 % dvfx = dvx(2 , i ) ; 
96 % dvfy = dvy (2 , i ) ; 
97 % r=ppval (rp , vx (1 , i ) ) ; 
98 % dr=ppval (drp , vx (1 , i ) ) ; 
99 % dx = ppval (dxp , vx (1 , i ) ) ; 

ioo% dy = ppval (dyp , vx (1 , i ) ) ; 
i o i % R e ( i ) = 2* rho *norm ([ dx—vfx , dy—vfy ]) * r / v i s e ; 
K .2 % i f Re ~= 0 
1 0 3 % C d ( i ) = ( 2 4 / R e ( i ) ) * ( l + 0.27*Re( i ) ) ~(0.43) + .47*(1 - exp(-0.04*Re( i ) 

104 % else 
105 % C d ( i ) = 0; 
106 % end 
107 % end 
ins % r e s u l t s . R e = Re; 
io9 % r e s u l t s . C d = Cd; 
no 

i n %Computation of the f l u i d pa r t i c l e 's t r a j ec to ry 
112 xf = zeros (1 , length (vx (1 , : ) ) ) ; 
113 yf = zeros ( l , l e n g t h ( v x ( l , : ) ) ) ; 
114 for i =1: length (vx (1 ,:) )—1 
us slope = ( v x ( 2 , i + l ) + v x ( 2 , i ) ) / 2 ; 
116 x f ( i + l ) = x f ( i ) + slope * (vx (1 , i+1) — v x ( l , i ) ) ; 
117 end 
us for i =1: length (vy (1 ,:) )—1 
no slope = ( v y ( 2 , i + l ) + v y ( 2 , i ) ) / 2 ; 
120 y f ( i + l ) = yf ( i ) + slope * ( v y ( l , i+1) - vy (1 , i ) ) ; 

. 38) ) ; 

121 end 
122 

123 Wo P l o t t i n g s 
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124 i f graphs 
125 %Plot for radius dynamics 
126 f igure 
127 subplot (3 ,1 ,1) 
128 plot ( sol . x , sol . y (1 , : )) ; 
129 x l a b e l ( ' t [ s ] : ) ; 
130 y l abe l ( 'R [m] : ) ; 
131 axis ([0 t f 0 i n f ]) 
132 % ' axis ([0.05 .06 0 i n f ]) 
133 t i t l e (" Radius dynamics") 
134 subplot (3 ,1 ,2) 
135 plot ( sol . x , sol . y (2 ,:) ) ; 
136 x l a b e l ( ' t [ s ] : ) ; 
137 y l abe l ( 'dR [m/s ] ') ; 
138 ax i s ( [0 t f —inf i n f ] ) 
139 % ' axis ([0.05 .06 - i n f i n f ]) 
w o subplot (3 ,1 ,3) 
141 plot ( sol . x , ppval (pp , s o l . x ) ) 
142 x l a b e l ( ' t [ s ] : ) ; 
us y l a b e l ( ' p _ \ i n f t y ( t ) [Pa] ' ) 
144 ax i s ( [0 t f —inf i n f ] ) 
1 4 5 % ' axis ([0.05 .06 - i n f i n f ] ) 
146 

147 

148 %Plot for x pos i t ions 
i4H f igure 
150 subplot (3 ,1 ,1) 
151 plot ( sol . x , sol . y (3 ,:) ) ; 
152 x l a b e l ( ' t [ s ] : ) ; 
153 y l abe l ( 'x [m] : ) ; 
154 ax i s ( [0 t f —inf i n f ] ) 
1 5 5 % axis ([0.05 .06 - i n f i n f ] ) 
156 ti11 e (" H o r i z o n t a l p o s i t i o n dynamics") 
157 subplot (3 ,1 ,2) 
158 plot ( sol . x , sol . y (4 ,:) ) ; 
159 x l a b e l ( ' t [ s ] : ) ; 
160 y l abe l ( ' vx [m/s ] ') ; 
161 ax i s ( [0 t f —inf i n f ] ) 
162 % ' axis ([0.05 .06 - i n f i n f ]) 
163 subplot (3 ,1 ,3) 
164 plot ( so l . x , p p v a l (vxp , so l . x ) ) 
165 x l a b e l ( ' t [ s ] : ) ; 
166 y l abe l ( 'v_{f_x} [m/s ] ') 
167 ax i s ( [0 t f —inf i n f ] ) 
168 % ' axis ([0.05 .06 - i n f i n f ]) 
169 

170 

171 %Plot for y—positions 
172 f igure 
173 subplot (3 ,1 ,1) 
174 plot ( sol . x , sol . y (5 ,:) ) ; 
175 x l a b e l ( ' t [ s ] : ) ; 
176 y l abe l ( 'y [m] : ) ; 
177 ax i s ( [0 t f —inf i n f ] ) 
1 7 8 % ax i s ( [0 .05 .06 - i n f i n f ] ) 
179 t i t l e (" V e r t i c a l pos i t i on dynamics") 
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180 subplot (3 ,1 ,2) 
181 plot ( sol . x , so l . y (6 ,:) ) ; 
182 x l a b e l ( ' t [ s ] : ) ; 
183 y l a be l ( ' vy [m/s ] ') ; 
184 ax i s ( [0 t f —inf i n f ] ) 
1 8 5 % ' axis ([0.05 .06 - i n f i n f ] ) 
186 subplot (3 ,1 ,3) 
i s ? plot ( sol . x , ppval (vyp , sol . x ) ) 
188 x l a b e l ( ' t [ s ] : ) ; 
189 y l a be l ( 'v_{f_y} [m/s] ') 
iHo ax i s ( [0 t f —inf i n f ] ) 
191 % ' axis ([0.05 .06 - i n f i n f ]) 
192 

193 %Trajectory 
194 f igure 
195 plot ( so l .y (3 ,:) , sol .y (5 ,:) , x f ,yf)%,[0 60 115 125 209 319] * 1 e - 3 , [26.5 26.5 

10 10 26.5 2 6 . 5 ] * l e - 3 , " — k " , [0 60 115 125 209 319] * 1 e - 3 , [26.5 26.5 10 
10 26.5 2 6 . 5 ] * - l e - 3 , " — k " , [ 0 319],[0 0 ] , " - - k " ) 

i9« legend (" Bubble "," F l u i d " )%,"Ventur i tube") 
197 t i t l e (" Trajectory of the bubble vs t r a j ec to ry of the f l u i d " ) 
198 %axis ([0 i n f -40 4 0]) 
199 

200 % %Reynolds Number 
201 % figure 
202 % plot ( v x ( l ,:) ,Re) 
203 % t i 11 e (" Reynold ' s number vs time") 
204 % %Contr ibut ions of forces 
205 % f igure 
206 % subplot (2 ,1 ,1) 
207 % p l o t ( v x ( l , : ) , relFamx , v x ( l , : ) , r e l F r e x , vx (1 ,:) , r e l F d x ) ; 
208 % legend ("Added mass" ," Rocket effect " ," Drag force") 
209 % subplot (2 ,1 ,2) 
210 % plot (vx (1 ,:) , relFamy , vx (1 ,:) , re lFrey , vx (1 ,:) , r e l F d y , vx (1 ,:) , 

r e lFb) ; 
2 1 1 % legend ("Added mass" ," Rocket effect " ," Drag force "," Buoyancy ") 
212 end 
213 

214 %% GILMORE' S MODEL 
215 funct ion dxdt = f gilmore (t ,x) 
216 %Some p re l iminary funct ions re la ted with Gilmore ' s model. 
217 p inf = ppval ( p p , t ) ; 
218 dpinf = ppval (dpp , t) ; 
219 p= pv + pgo* (Req/x (1) ) ̂ (3*k) — 4* vise *x (2) / x (1) — 2 * S / x ( l ) ; 
220 dp= -3*k*pgo*(Req/x( l ) )~(3*k) *(x(2) / x ( l ) ) + 2 * S * x ( 2 ) / ( x ( l ) ~2) + 4*v i sc*(x 

( 2 ) / x ( l ) ) - 2 ; 
221 B= l / r h o * n / ( n - l ) * ( p i n f + B ) *(((p+B)/( pinf+B)) ~ ( ( n - l ) / n ) - 1 ) ; 
222 dH= l / r h o * ( n / ( n - l ) * d p i n f *(((p+B)/(pinf+B) ) ~ ( ( n - l ) / n ) - 1) + . . . 
223 ( (p+B) / (p inf+B))~( - l /n )*(dp*(p inf+B) - dp in f*(p+B)) / (p in f+B)) ; 
224 0= c _ i n f *((p+B) / (pinf+B) ) ((n-1) / (2*n) ) ; 
225 

226 %Some p re l iminary funct ions re la ted with Motion of the bubble. 
227 vfx = ppval (vxp , t) ; 
228 vfy = ppval (vyp , t) ; 
229 dvfx = ppval (dvxp , t) ; 
230 dvfy = ppval (dvyp , t) ; 
231 Re = 2*rho*norm ([x (4)— vfx,x(6)— vfy ]) *x ( 1 ) / v i s e ; 
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232 i f Re ~= 0 
233 Cd = (24 /Re)*( l + 0.27*Re) ~(0.43) + .47*(1 - exp (-0.04*Re~.38)) ; 
234 else 
235 Cd = 0; 
236 end 
237 

238 %The ODEs system 
239 dx ld t = x (2) ; 
24.) dx2dt = (H*(l + x (2 ) /C) + x ( l ) * d H / C * ( l - x ( 2 ) / C ) - 3/2* (x (2) ) ~2* (1 - x(2) 

/ (3*C)) ) / . . . 
241 ((1 - x ( 2 ) / C ) * ( x ( l ) + 4* v i s c / ( r h o * C ) *((p+B)/(pinf+B) ) ~ ( - l / n ) ) ) ; 
242 dx3dt = x (4) ; 
243 dx4dt = 3*dvfx - 3*x(2)*(x(4) - v f x ) / x ( l ) - (3/4) *Cd*abs (x (4 ) -vfy) * (x ( 4 ) -

v f y ) / x ( l ) ; 
244 dx5dt = x (6) ; 
245 dx6dt = — 2*g + 3*dvfy — 3*x(2)*(x(6) — v f y ) / x ( l ) — (3/4) *Cd* abs (x (6)—vfy ) * ( 

x ( 6 ) - v f y ) / x ( l ) ; 
246 

247 dxdt = [dx ld t ; dx2dt; dx3dt; dx4dt; dx5dt; dx6dt ] ; 
248 end 
249 

250 Wo Rayleigh —Plesset equation 
251 funct ion dxdt = rp equation (t ,x) 
252 %Some p re l iminary funct ions for Rayleigh —Plesset equation 
253 p in f = p p v a l ( p p , t ) ; 
254 

255 %Some p re l iminary funct ions re la ted with Motion of the bubble. 
256 vfx = ppval (vxp , t) ; 
257 vfy = ppval (vyp , t) ; 
258 dvfx = ppval (dvxp , t) ; 
259 dvfy = ppval (dvyp , t) ; 
260 Re = 2* r ho* norm ([ x (4)— vfx , x (6)— vfy]) *x (1) / v i s e ; 
261 i f Re ~= 0 
262 Cd = (24 /Re)*( l + 0.27*Re) ~(0.43) + .47*(1 - exp(-0.04*Re~.38)) ; 
263 else 
264 Cd = 0; 
265 end 
266 

267 %The ODEs system 
268 dx ld t = x (2) ; 
269 dx2dt = (pv— p i n f ) / ( x ( l ) *rho) + pgo / (rho*x (1) ) * (Req/x (1) ) ̂ (3*k) —... 
270 1.5*(x(2) ) ~ 2 / x ( l ) - 2*S / ( rho* (x ( l ) )~2) - 4* vise *x (2) / (rho * (x (1) ) ~2) ; 
271 dx3dt = x (4) ; 
272 dx4dt = 3*dvfx - 3*x(2)*(x(4) - v f x ) / x ( l ) - (3/4) *Cd*abs (x (4 ) -v fx) * (x ( 4 ) -

v f x ) / x ( l ) ; 
273 dx5dt = x (6) ; 
274 dx6dt = —2*g + 3*dvfy — 3*x(2)*(x(6) — v f y ) / x ( l ) — (3/4) *Cd* abs (x (6)—vfy ) * ( 

x ( 6 ) - v f y ) / x ( l ) ; 
275 

276 dxdt = [dx ld t ; dx2dt; dx3dt; dx4dt; dx5dt; dx6dt ] ; 
277 

278 end 
279 end 
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