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Abstract 
Image segmentation plays an important role in medical image analysis. Many segmentation algo­

rithms exist. Most of them produce data which are, more or less, not suitable for further surface 

extraction and anatomical modeling of human tissues. In this thesis, a novel segmentation technique 

based on the 3D Delaunay triangulation is proposed. A modified variational tetrahedral meshing 

approach is used to adapt a tetrahedral mesh to the underlying C T volumetric data so that image 

edges are well approximated in the mesh. In order to classify tetrahedra into regions/tissues whose 

characteristics are similar, three different clustering schemes are proposed. Finally, several methods 

for improving quality of the mesh and its adaptation to the image structure are also discussed. 
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Chapter 1 
Introduction 

Medical imaging devices like the Computed Tomography (CT) and the Magnetic Resonance (MRI) 

can be used to inspect patient body from the inside. These imaging devices produce image data 

detailing human anatomy within a scanned patient body part. The medical data obtained as planar 

image slices are mainly used for diagnostic purposes. 

The most frequent way of medical diagnostics is investigation of such slices as grayscale im­

ages. However, the C T / M R I data make possible to explore other ways of medical diagnostics and 

treatment. Modern image data visualization and 3D modeling techniques can be used for design of 

custom-made implants, surgery planning, training, and navigation of surgeons. 

Substantial step of many image understanding methods is the segmentation that separates objects 

(i.e. tissues) in the image. The segmentation plays an important role and provides crucial information 

for subsequent tasks such as tissue recognition, 3D modeling and visualization. 

A novel vector segmentation algorithm based on the 3D Delaunay triangulation is proposed in 

this thesis. Tetrahedral mesh is used to divide a three-dimensional image data into several non-

overlapping regions whose characteristics are similar. Methods for isotropic mesh construction and 

its adaptation to the underlying image structure are presented, so that the final mesh contains larger 

tetrahedra inside image regions while the size decreases close to the region boundaries. 

Applying the vector segmentation a classified mesh whose tetrahedra are grouped into individual 

regions is obtained. Such mesh contains all information necessary to reconstruct geometry of any 

region (~ human tissue). The polygonal surface model can be easily derived. 
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Chapter 2 
Thesis Objectives 

This thesis aims at the anatomical modeling of human tissues and techniques of medical image seg­

mentation suitable for this kind of modeling. Department of Computer Graphics and Multimedia at 

FIT BUT, namely P. Krsek and M. Spanel, cooperates on the research of the anatomical modeling in 

clinical applications [20,39] for many years trying to establishing them in practice. It was important 

to keep in mind that the field of clinical applications is very wide in our case while objectives of this 

thesis were formulated: 

Accurate surface approximation. In case of anatomical modeling, an error between reconstructed 

surfaces of human tissues and a "ground truth" must be minimal to guarantee correctness of 

a planned surgery. Therefore, more attention is given to surface reconstruction methods that 

work directly with volumetric data without any post-processing steps which may increase the 

surface error. 

General algorithm. Because of the wide field of clinical applications, knowledge-based methods 

of tissue modeling which use atlas of human anatomy are not suitable. Besides, in case of trau­

matic injury, most of the knowledge-based methods fail because such events are not present 

in training data. Unfortunately, traumatic injuries are typical incidents when the anatomical 

modeling helps in surgery planning. The goal is to propose a general algorithm, in a certain 

manner, that is not aimed at concrete treatment, tissue type, or situation. 

Real data. Difficulty of the segmentation is the analysis of real C T / M R I data. It is important to 

deal with noise in the imaging process as well as inhomogeneity of the tissues. Some pre­

processing algorithms (noise removal, M R inhomogeneity correction, etc.) as well as robust 

segmentation algorithms must be suggested. 

High-quality surface meshes. Most frequently, anatomical models are used for surgery planning 

and custom-made implants design. However, mesh structure suitable for numerical simula­

tions is necessary for some tasks. Hence, high-quality meshes should be produced by the 

modeling being able to describe interior structure of tissues as well. 

High degree of automation. The goal is to develop segmentation algorithm which wi l l work 

mostly automatically. Minimal manual corrections of the segmentation are required. Because 

manual corrections are always needed, it must be easy to modify the final segmentation. 

2 



Chapter 3 
State of the Art in Anatomical Modeling 

In relation to the geometric modeling of human tissues, all medical image segmentation algorithms 

can be classified into two groups: 

• techniques based on raster segmentation - a pixel value in the segmented image denotes label 

of an image region, or particular tissue type; 

• and vector-based segmentation - region boundaries, and perhaps the internal structure, are 

represented as a set of vector graphic primitives (i.e. lines, curves, polygons, etc.). 

This classification is not very common, however, it makes a good sense in reference to the geo­

metric modeling. 

3.1 Raster-based Segmentation Techniques 

Many 2D/3D segmentation algorithms can be found in the literature (Fuzzy C-means clustering [31], 

Hidden Markov Fields [26], Watershed transform [17], neural networks, etc.). Most of them produce 

segmented raster data, hence an algorithm such as Marching Cubes [25] is applied to reconstruct 

surfaces from the raster segmented data. Further, decimation and smoothing [34] of the model are 

required and may not be elementary. Applied smoothing and decimation methods may not shrink 

significant edges and corners and they must preserve volume of the original model. 

3.2 Vector-based Segmentation 

Most widely used vector segmentation methods are based on deformable models [42]. Deformable 

models include curves or solids deformed under influence of external and internal forces derived 

from image characteristics. Numerous researchers have explored application of deformable surface 

models to volumetric medical images [5,24]. A deformable surface model capable of segmenting 

complex internal organs such as the cortex of the brain has been proposed [27]. 

There is also a second type of deformable models - the geometric models, best known is the 

Level-Set method. The level-set segmentation [?, ?] solves the energy based active contours min­

imization problem by the computation of minimal distance curves. In this approach, a curve is 

embedded as a zero level set of a higher dimensional surface. 

3 



4 Chapter 3. State of the Art in Anatomical Modeling 

Original 3D raster data Raster data Vector data 

Figure 3.1: Comparison of the traditional raster-based segmentation (black labeling) and the pro­
posed vector segmentation method (underlined). 

In general, deformable models are robust against noise and boundary gaps. These models are also 

capable of adjusting themselves to significant variability of human anatomy. Main disadvantage is 

that they require manual initialization and interaction during the segmentation. 

3.3 Unstructured Meshing 

A mesh generation [14] aims at tessellation of a bounded 3D domain Q. with tetrahedra. Algorithms 

for 3D mesh generation have been intensively studied over the last years. Basically, three main 

families of algorithms have been described: 

• octree methods [43,44], 

• advancing front methods [19,41], 

• and Delunay-based methods [1,7]. 

Zhang et al. [43] presented an algorithm to extract adaptive and quality 3D meshes directly 

from volumetric image data. In order to extract tetrahedral (or hexahedral) meshes, their approach 

combines bilateral and anisotropic diffusion filtering of the original data, with contour spectrum, 

iso-surface and interval volume selection. 

The isosurface stuffing algorithm [23] was presented that fills an iso-surface with a uniformly 

sized tetrahedral mesh. The algorithm is fast, numerically robust, and easy to implement because, 

like the Marching Cubes, it generates tetrahedra from a small set of pre-computed stencils. A variant 
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Figure 3.2: Results obtained by the approach of Dardenne et al. from artificial discrete data -
rasterized input surface models. Histograms show the distributions of tetrahedron quality in each 
mesh [10]. 

of the algorithm creates a mesh with internal grading. However, the algorithm does not permit 

grading of both surface and interior tetrahedra and has a strong bound on the dihedral angles. 

Variational approaches relying on energy minimization have been presented as a powerful and 

robust tool in meshing. These methods basically define energies that they minimize through vertex 

displacements and/or connectivity changes in the current mesh. Du and Wang [11] propose to gen­

erate meshes that are dual to optimal Voronoi diagrams. The centroidal Voronoi tessellation [12] 

based Delaunay triangulation provides an optimal distribution of generating points with respect to a 

given density function and generates a high-quality mesh. Following Du and Wang, another tetra-

hedral mesh generation algorithm based on centroidal Voronoi tesselation, which takes volumetric 

segmented data as an input, has been presented [10]. The algorithm performs clustering of the orig­

inal voxels. A vertex replaces each cluster and the set of created vertices is triangulated in order to 

obtain a tetrahedral mesh. 

In this thesis, a vector segmentation technique based on the variational tetrahedral meshing 

(VTM) approach, proposed by All iez et al. [1], is presented. The V T M approach uses a simple 

quadratic energy to optimize vertex positions within the mesh and allow for global changes in mesh 

connectivity during energy minimization. This meshing algorithm allows to create graded meshes, 

and defines a sizing field prescribing the desired tetrahedra sizes within the domain. 



Chapter 4 
Background: Tetrahedral Meshing 

Many applications have specific requirements on the size and shape of elements in the mesh. A i m 

of the isotropic meshing is to locate vertices so that the resulting mesh consists of almost regular 

tetrahedra (~ all faces are equilateral triangles). In addition, the element size is close to a prede­

fined size constraint. One of the existing methods to create the points in accordance with the size 

specifications contained, creation of points along the edges [14], wi l l be discussed here. 

(a) (b) 

Figure 4.1: Triangular mesh constructed by the plain incremental method [14] (a) and result of the 
isotropic meshing (b). 

According to [14], control space H(£l) (so called sizing field) is a function hp defined at any 

point P(x,y,z) of space. This function specifies the size of the elements in the mesh. The control 

space can be computed from the data, manually defined, or estimated with respect to the current 

mesh structure in an iterative process. Let AB be an edge having endpoints A and B. Length of the 

edge in the control space metric can be calculated as follows: 

lH{AB) = \ \ A B \ \ ^ ) ^ F \ (4.1) 

where | |AB| | is the real distance between A and B. The size h(P) is the desired length of all the 

edges originating from the point P defined by the control space. The key idea of the algorithm is 

to create new points along existing edges in the triangulation and obtain nearly regular tetrahedra 

having edges of unit length in the control space (= length h in the real space). 

6 
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Let T be a threshold value < 1, for instance 0.1. If IH{AB) < T, the edge is not divided, otherwise 

a new point in the middle of the edge A B is introduced. Both obtained sub-edges are recursively 

tested and divided i f necessary, until we have a sequence of points Qo - Qn such that 

lH(Qi,Qi+i)<T, (4.2) 

where Qo — A and Qn — B. Afterwards, the final set of points dividing the edge AB can be found. 

The smallest index i satisfying the criterion (4.3) is found and the point Qi is introduced to the mesh 

as new vertex. Iterating this process and comparing the sum to the increasing values 2 ,3 , . . . results 

in construction of several new points along the edge. 

X X e ; , e ; + i ) > l (4.3) 
7=0 

Applied to every edge in the current mesh, a large set of points is obtained. This set must be 

filtered to discard all points too close to any other before adding points to the mesh. 

4.1 Variational Meshing 

Many approaches based on energy minimization [1,11,21] have been proposed as a powerful tool in 

meshing. In this thesis, a vector segmentation technique, built upon the V T M approach, is presented. 

A simple minimization procedure alternates two steps [1]: 

• global 3D Delaunay triangulation optimizing connectivity, 

• and local vertex relocation, 

to consistently and efficiently minimize a global energy over the domain. It results in a robust 

meshing technique that generates high quality meshes in terms of minimal dihedral angles. 

To extend the approach to allow isotropic meshing, the sizing field H is introduced. A mass 

density in space can be defined and used in computation of the optimal vertex position. This density 

should agree with the sizing field. All iez et al. use a one-point approximation of the sizing field in a 

tetrahedron and defines the mass density as being l/h3, since the local volume of a tetrahedra should 

be roughly the cube of the ideal edge size. In geometric terms, the optimal position of the interior 

vertex X, in its 1-ring neighbourhood can be expressed as: 

where is the centroid of tetrahedron 7# and Cj is the circumcenter of tetrahedra 7). All iez et al. 

presented a default sizing field robust for a large spectrum of mesh types. Definition of the siz-
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(a) (b) (c) 

Figure 4.2: Results of the proposed vector segmentation method which is based on variational tetra­
hedral meshing approach [1]: surface extracted directly from the tetrahedral mesh (a); histogram of 
minimal dihedral angles on the surface (b); cut through the tetrahedral mesh (c). 

ing field is built on the notion of local feature size that corresponds to the combination of domain 

boundary curvature and thickness as well. 

Sizing field. The local feature size lfs(P) at a point P of domain boundary is defined as the distance 

d(P,Sk(Q.)) to a medial axis £#(£2). The medial axis, or skeleton of the domain, is the locus of all 

centers of maximal balls inscribed in the boundary. Given the local feature size on the boundary, we 

need a controllable way to extrapolate this function to the interior. The function 

hp = min [Kd(S,P)+lfs(S)] (4.5) 

satisfies this criterion [1]. The parameter K controls gradation of the resulting field, K — 0 being the 

uniform case. 



Chapter 5 
Delaunay-based Vector Segmentation 

Based on the introduced principles, the Delaunay-based vector segmentation (shortly VSeg) is pro­

posed as follows: 

1. Data preprocessing - Noise reduction by means of the 3D anisotropic filtering [15]. 

2. 3D edge and corner detection - Candidate vertices lying on region boundaries, meaningful 

edges and corners are located. 

3. Initial Delaunay triangulation - Tetrahedral mesh is constructed from the sampled set of 

candidate vertices by the common Incremental method [14]. 

4. Iterative adaptation - The triangulation is adapted to the underlying image structure by 

means of isotropic edge splitting and variational meshing. 

5. Mesh segmentation - Final classification of tetrahedra into image regions according to results 

of some data clustering method. 

Details of all individual phases of the VSeg segmentation are discussed in next sections. 

5.1 3D Edge and Corner Detection 

The triangulation starts from a set of candidate vertices distributed over the entire image. These 

candidates can be found by various image edge detection algorithms [3,6,30,33] extended to 3D 

space. Because of the complex nature of medical image data, detection of meaningful edges that 

form boundary of desired tissues may be very problematic. Character and strength of edges differ 

between tissues. Moreover, extremely thin and weak edges may be present in the image data. In 

practice, this leads to highly sensitive setting of the edge detector that, unfortunately, results in many 

false detections of "noisy", less meaningful edges. In this thesis, a simple tissue-selective edge 

detection approach is proposed to partially reduce this undesired effect. 

Tissue-selective edge detection. The edge detection is divided into separate steps per concrete 

tissue type. Before the detection starts, the image data are pre-processed using the power-law con­

trast enhancement [16] technique to increase contrast of the desired tissue against all others. Then 

edges of the highlighted tissue are detected. In the end, all found edges from all different tissues are 

9 



10 Chapter 5. Delaunay-based Vector Segmentation 

Contrast enhan. 
(soft tis.) 

D 
Contrast enhan. 
(bone tis.) 

Figure 5.1: Scheme of the tissue-selective edge detection. 

merged together into a single image (see Fig. 5.1). In our experiments, the well known Canny edge 

detector [6] extended to 3D space has been used in each step. 

3D SUSAN corner detector. In order to respect significant features in the volumetric data dur­

ing the meshing, we have modified the Susan corner detector [33] extending its functionality into 

3D space. The Susan {Smallest Univalue Segment Assimilating Nucleus) detector was originally 

developed to locate feature points in 2D images. Analogous to Smith and Brady, the modified 3D 

S U S A N places a spherical mask R over the voxel to be tested (the nucleus). The voxel in this mask 

is represented by v e R. The nucleus is at vo. Every voxel is compared to the nucleus using the 

distance function cv Final response of the S U S A N detector [33] is proportional to ^ Ev,ei? cv,> where 

N is the number of voxels within a spherical mask R used as a normalization factor. If cv is the 

rectangular function, then the previously defined area represents the number of voxels in the mask 

having brightness similar to the nucleus (see [33] for more details). 

5.2 Iterative Adaptation 

Fundamental phase of the proposed segmentation method is adaptation of the tessellation mesh to 

cover the underlying image structure representing the anatomy of human tissues. The following 

three main steps are repeated until the triangulation satisfies some convergence criterion (or just 

several times): 

• Isotropic edge splitting - creation of points along existing edges, 

• Variational meshing - optimization of the tessellation grid by means of vertex moving, 

• Boundary refinement - creation of new vertices along image edges to guarantee that all edges 

are well approximated by the tessellation grid. 



5.2. Iterative Adaptation 11 

During the iterative adaptation, new vertices are gradually introduced to the mesh. The idea is to 

grow the mesh (in the sense of number of vertices) until a predefined limit is reached. A n advantage 

of such progressive concept is that computational expensive operations like vertex removal are not 

necessary. 

Before a new vertex is inserted to the mesh, several constraints are checked - minimal length 

of edges that wi l l arise ( L m ! n ) , minimal dihedral angle inside newly created tetrahedra (ocm ! n), etc. 

In practice, these constraints guarantee that chosen parameters like minimal edge length wi l l be 

satisfied in the final mesh. Moreover, it prevents failures caused by a limited precision of math 

operations. 

Isotropic Edge Splitting 

In this phase, the isotropic meshing algorithm creating new points along existing edges and another 

well known technique of tetrahedral mesh optimization, splitting of maximal/longest edge [14], are 

combined together. Instead of maximal edges, those edges crossing significant image edges are 

divided. A new vertex is inserted to the mesh at the point of intersection of both edges. The whole 

isotropic edge splitting process can be briefly formulated as follows: 

1. Sequentially process every edge AB in the current triangulation Tl: 

• Find all intersection points P, of the edge and image edges. 

• Introduce the sub-edges AP\, P\P2, • • •, PnB in the triangulation. 

• Divide all sub-edges in the sense of isotropic meshing algorithm (Sec. 4). 

2. Filter the set of newly created points to discard vertices too close to any other point respecting 

the control space metric. 

3. Insert points to the mesh Tl —> Tl+l. 
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Figure 5.3: Pseudo-colored slices through the three-dimensional control space prescribing size of 
tetrahedra inside the mesh. Dark values stand for small tetrahedra close to image edges. 

To prevent degradation and over-partitioning of the mesh, the angle between the tetrahedron et 

edge and the image edge e; is computed. The splitting operation is performed only if the angle is 

greater than a given threshold a > 10°. Edges that are almost parallel with an image edge remain 

unchanged. 

Control space. The control space, so called sizing field, prescribes length of edges in the mesh. In 

our case, the control space enforces creation of larger tetrahedra inside image regions and smaller 

ones along region boundaries (image edges). Apparently, definition of the sizing field strongly 

affects quality of the final mesh. The control space H(Q.) can be defined in the same way as the 

sizing field given by Eq. 4.5. However, instead of the conventional domain boundary, we define the 

control space to respect found image edges. Thus, we generate the control space differently: 

1. Estimate distance transform from all detected image edges first. 

2. Find local maxima of the distance transform in order to identify medial axis. 

3. Evaluate local feature size lfs(P) on image edges using inverse distance transform propagating 

value from the medial axis. 

4. Generate control space distributing lfs(P) from edges using the formula (4.5). 

This sizing field (Fig. 5.3) is relative. It describes the inhomogeneity of the required edge length. 

The real edge length is proportional to this relative value, and depending on the prescribed number 

of vertices. Such relative sizing is satisfactory for variational meshing, but it must be normalized 

for the isotropic edge splitting algorithm we use for introducing new vertices into the mesh. The 

normalization is simply given by: 

T 
p P X^—iT' (5.1) 
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where Tavg is the desired average tetrahedron edge size. If the point P lies exactly on an image edge, 

the control space value may be very small. Therefore, the minimal edge length Lmin must be also 

specified in practice. 

Variational Meshing 

The variational meshing phase, alternating connectivity and geometry optimization, is an important 

part of the algorithm. The mesh energy is minimized by moving each interior vertex to its optimal 

position within its 1-ring neighborhood (Fig. 5.5). Further, the energy is minimized by computing 

the 3D Delaunay triangulation of these new sites optimizing the connectivity of vertices. 

A l l boundary vertices are treated differently. In order to identify the current boundary vertices, 

each voxel V/ lying on an image edge is examined. Its nearest vertex Sj in the mesh is located, and the 

distance d(Vj,Sj) as well as the coordinates of Vj (multiplied by the distance d) are accumulated at 

that vertex. To deal with corner points, the distance d is weighted according to the point type. Corner 

points have the weight significantly greater than edge points, thus the closest vertex is attracted 

directly in place of the image corner. Afterwards, vertices with a non-zero distance sum are moved 

to the average value they each have accumulated during the pass over all edge voxels. 

Boundary Refinement 

The boundary refinement increases quality of the mesh in the sense of image edges approximation. 

Similarly to other Delaunay refinement methods, new vertices are added to the mesh to guarantee 

this criterion. In the first step, an algorithm similar to the identification of boundary vertices during 

the variational meshing is applied to locate proper places for new vertices: 

1. Prepare an array of accumulators containing coordinates and distance of the edge point closest 

to each vertex. Initialize the distance to some large value dmax. 

2. For each voxel V/ lying on an image edge: 

(a) Locate its nearest vertex Sj. 

(b) Compare the distance d(Vi,Sj) with the value currently stored in the corresponding ac­

cumulator. 

(c) If the distance is smaller, exchange the values in the accumulator. 

In the second step, all accumulators that contain a distance lower than dmax are investigated. If 

there is a vertex with an accumulated value that is not itself located on an image edge, a new vertex 

is added to the mesh in place of the closest image edge point - the coordinates in the accumulator. 
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5.3 Mesh Segmentation 

Within the mesh segmentation phase, all tetrahedra are classified into individual image regions which 

partially correspond to individual tissues. Every tetrahedron t{ of the mesh is characterized by its fea­

ture vector. Individual features detail image structure of the tetrahedron, and perhaps its close neigh­

borhood. Feature vectors may be grouped by the help of any conventional unsupervised clustering 

technique that classifies feature vectors into a certain number of classes. Actually, three different 

algorithms were used for the unsupervised clustering of feature vectors into image regions: 

• Fuzzy C-means (shortly FCM) algorithm [32], 

• Gaussian Mixture Model optimized by the popular Expectation-Maximization (EM-GMM) 

algorithm [28]. 

• Min-Cut/Max-Flow graph-based algorithm [4]. 

Figure 5.4: Result of the tetrahedral mesh segmentation phase - orthogonal cuts through the classi­
fied mesh. 

First two techniques do not take into account any spatial/global information about the tetrahedra. 

Improvements can be made by incorporating global principles. Viewing the mesh as undirected 

graph, with edges weighted according to the similarity of feature vectors, would allow one to use 

graph algorithms (graph cuts, path-based clustering, etc.) for the segmentation. In this sense, the 

Min-Cut/Max-Flow [4] algorithm is used to cut a graph whose edges are evaluated according to a 

similarity of two adjacent tetrahedra. The similarity of two adjacent tetrahedra (i.e. two feature 

vectors P and Q) can be defined as a distance function in the feature space. Most common choice 

is the Manhattan or the Cosine distance function. A n alternative is the use of simple criterions 

described in Sec. 5.3. 
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Feature Extraction 

In fact, the first two components of a tetrahedron's feature vector are mean pixel value /j(t{) and 

intensity variance o(ti) of voxels inside the tetrahedron. Others may cover image texture/shape 

properties and spatial configuration of adjacent tetrahedra: 

• features derived from gray level co-occurrence matrices [36], 

• histogram of Local Binary Patterns (LBP) [29], 

• wavelet features [2,37], etc. 

The feature extraction is problematic i f a tetrahedron is relatively small, just a few voxels are 

available. 

(a) (b) (c) 

Figure 5.5: Tetrahedra adjacency (a); vertex 1-ring neighborhood (b); and tetrahedron 1-ring neigh­
borhood. 

Agglomerative Merging 

In the vector segmentation scheme, the agglomerative region merging [22] is used to assign non­

classified, small tetrahedra into already known segments. The agglomerative merging starts with a 

partition of the volumetric data into N regions (each region consists of one or more tetrahedra), and 

sequentially reduces the number of regions by merging the best pair of regions among all possible 

pairs in terms of a given criterion. This merging process is repeated until the required number 

of segments is obtained. In practice, performance of this algorithm can be improved by a simple 

weighting of the similarity of two adjacent regions according to the number of voxels in both regions: 

C(ri,rj) = ^^-S(ri,rj). (5.2) 

If the final number of regions is unknown, the stopping criterion for the merging should be a 

ratio between similarities Q _ i (r,-, rj) and Ct (r,-, rj) of last two merged pairs of regions. 
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Similarity Measures 

Let ti and tj be two feature vectors extracted for a group of adjacent tetrahedra, or a single tetrahe­

dron. Similarity measure is a function whose value is greater as the difference between two feature 

vectors decreases. Basic similarity measures are the mean intensity value and statistical test of the 

similarity based on voxel value variance: 

Sp(.rj,ri) = e x p ( - ^ k i - M r f ) , 5 a(r J-,r /) = ĵ̂ p (5-3) 

where the parameter p affects sensitivity of the measure and a(r,) is the variance of intensity in 

the region r,- and o(^ij) is the variance of intensity in a joint region r /Ury. These basic similarity 

measures serve as a merging criterion during the agglomerative merging when small non-classified 

tetrahedra along boundaries are assigned into neighboring segments. 

Surface Extraction 

Once the mesh is properly segmented, surface of any region can be easily extracted. A l l tetra­

hedra through the mesh are traversed looking for boundary faces that forms surface of the desired 

region. Boundary faces can be intuitively identified as faces between two different regions. The 

extracted surface is closed and its mosaic conforms to the chosen parameters of the meshing. After 

the extraction, small isolated parts of the surface may be filtered to obtain a single closed surface 

if required. Moreover, to avoid artifacts that rarely appear on the surface, the final surface can be 

filtered for sharp spikes (Fig. 5.6). 



Chapter 6 
Experimental Results 

The vector segmentation was mainly designed for segmentation of volumetric medical images to­

wards anatomical modeling of fundamental tissues (i.e. soft and bone tissue) and their surfaces. In 

order to evaluate precision, advantages and disadvantages of this method, number of experiments on 

real medical C T data, as well as on artificial volumetric data, were carried out. 

6.1 Surface Accuracy 

In case of the anatomical modeling, an error between reconstructed surfaces of human tissues and 

a "ground truth" must be minimal to guarantee correctness of a planned surgery. The following 

evaluation of the surface accuracy compares surfaces produced by the vector segmentation algorithm 

against ones made by the traditional Marching Cubes (MC) method followed by mesh smoothing 

and mesh decimation steps. Since the smoothing is crucial for overall precision of the surface, two 

standard approaches were tested: 

• Taubin's smoothing algorithm [34] that maintains the volume of the mesh (MC+Taubin), 

• H C algorithm [40] that preserves sharp edges and corners in the mesh (MC+HC). 

The M C algorithm produces very large meshes. Hence, after the smoothing, the Quadric Edge 

Collapse decimation algorithm, a variant of the well known edge collapse algorithm based on quadric 

error metric proposed by Michael Garland and Paul Heckbert [13], was used to reduce size of the 

mesh - the number of triangles. This re-meshing technique, as well as both the utilized smoothing 

methods, are implemented in the MeshLab [9] tool which is de facto standard in the area of meshing. 

Artificial volumetric data of basic solids such as rectangular solid, cylinder, cone, semi-sphere, 

pyramid and the Stanford bunny were generated for the testing. A n idea of this measurement is 

to rasterize a solid into 3D raster, reconstruct surfaces from obtained volumetric data, and evaluate 

error between the reconstruction and the original surface. 

A n error between reconstructed surface and the original model is estimated using the Metro [8] 

tool. The approximation error between two meshes is defined as the distance between corresponding 

sections of the meshes. In the following testing, the mean distance, maximum distance and quadratic 

mean (i.e. root mean square - R M S ) error between the two meshes are presented as measures of the 

surface accuracy. 

17 
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Figure 6.1: Histograms of the surface approximation error for two meshes with a different level of 
detail (number of faces) - the bunny model. 

Fig. 6.1 shows histograms of error distribution for surface models of different level of detail as 

returned by the Metro tool. Apparently, the VSeg method outperforms both the smoothing-based 

methods. However, the difference is more evident for smaller meshes. Direct meshing of volu­

metric image data seems to be more accurate approach then post-processing methods smoothing 

reconstructed surfaces without any relationship to the original image data. 

Fig. 6.2 illustrates the overall mean approximation error and the maximal error depending on 

the number of faces in the mesh. The same behaviour as with the bunny model can be seen. The 

VSeg method outperforms the smoothing-based methods for smaller meshes up to 20k faces. As the 

number of faces increases, the mean error of the VSeg method grows too. For meshes larger the 35k 

faces, the surface approximation error exceeds the error of the M C + H C method. 

The question is why the performance decreases with the increasing number of faces? The answer 

lies in the iterative adaptation of the mesh to the underlying image structure. To obtain a more 

detailed surface, the minimal allowed edge length L m ! n must be decreased. However, the resolution 

of the raster data is limited. Decreasing the L m ! n down to the real size of a single voxel causes the 

relocation of vertices along image edges to not perform optimally. 

Analogous to the previous discussion, explanation of the large maximal error in meshes pro­

duced by the vector segmentation is the matter of the meshing process itself. The isotropic meshing 

generates high quality meshes with almost regular tetrahedra. Therefore, close to the sharp surface 

edges, the final mesh approximates the surface very roughly because of the limitation of tetrahedra 

shape and also the chosen minimal edge length (Fig. 6.3). 
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Figure 6.2: Overall surface approximation error - whole set of test models. 

6.2 Mesh Quality 

The original V T M approach produces well shaped tetrahedra inside the domain. However, poorly 

shaped tetrahedra and slivers may appear close to the boundary. Unfortunately, the same problem 

appears in case of the VSeg meshing method. Meshes in Fig. 6.4 are colored according to the quality 

of tetrahedra. Clearly, the quality of tetrahedra decreases as getting closer to the boundaries - the 

red shading moves towards blue. Even thought the embedded sliver elimination algorithm removes 

a large number of poorly shaped tetrahedra, it does not ensure that all slivers wi l l be successfully 

eliminated. Hence, this aspect of the presented VSeg technique remains open and wi l l be addressed 

in the future. A smallest dihedral angle should be guaranteed. Recently, J. Tournois [35] has pre­

sented a new modification of the original V T M algorithm that particularly solves this problem and 

produces almost sliver free meshes. 

Fig. 6.5 compares surfaces extracted from tetrahedral meshes (the VSeg method) against surfaces 

obtained from the M C + H C method. Contrast between both methods is evident. The VSeg approach 

itself produces well shaped triangles along the entire surface, and moreover size of triangles is auto­

matically adjusted according to a local complexity of the surface. 
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Figure 6.3: Error distribution on the reconstructed surface. The mean error of the VSeg method 
(a) over the entire surface is lower then the error of M C + H C method (b). On the other hand, the 
maximum error is larger along the sharp edges. 

6.3 Mesh Segmentation 

The mesh segmentation phase was tested on several C T data sets having resolution mostly 512x512 

pixels per slice and its results were compared against manually annotated data - the ground truth. 

Here, I would like to thank to 3Dim-Laboratory s.r.o. company for providing part of the test data. 

Ground truth. Manual segmentation of medical images is a very complicated task. Not unfre-

quently, the segmentation made by different people varies. Every expert has his own view of the 

data and the correct segmentation. In order to quantify this phenomenon, one of the datasets were 

segmented by four different experts. Tab. 6.1 summarizes the obtained results. A n important issue 

is that the average error between two manual segmentations of the same data is about 0.96, mea­

sured by the F-measure of goodness which is described below. Occasionally, the error grows up (the 

F-measure decreases under) 0.92. 
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Soft/Bone tis. M a n l Man2 Man3 Man4 
M a n l - 0.921 0.965 0.896 
Man2 0.974 - 0.949 0.971 
Man3 0.993 0.979 - 0.922 
Man3 0.978 0.979 0.982 -

Table 6.1: Difference between manual segmentations of the same dataset provided by four experts. 
The F-measure of goodness was calculated for soft tissues and hard tissues (i.e. bones). 

F-measure. Many sophisticated measures of segmentation accuracy can be found in the litera­

ture [18]. A n often used measure of segmentation goodness is the F-measure [38]. The F-measure 

combines recall r and precision p with an equal weight in the equation of the form: 

* " ^ P = ^ r , r = - ^ - (6.1) 
r + p Tp + Fp Tp + F„ 

where p is the number of correctly labeled voxels (so called true positives Tp) divided by the total 

number of voxels labeled as belonging to the same region. The recall r is defined as the number 

of true positives divided by the total number of elements that actually should belong to the positive 

class. A perfect score of the F-measure is 1, in the worst case the measure is equal to 0. 

Meshing Segmented Data 

Without too much effort, the Delaunay-based segmentation can be applied to already segmented 

data. Fig. 6.6 shows an error between the obtained mesh and the segmented volumetric data. The 

F-measure rates how precisely the mesh approximates the original data. To compare this difference, 

all tetrahedra are rasterized into the volume data of the same size as the original one. 
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Figure 6.6: Surface reconstruction error when meshing already pre-segmented data. The red line 
implies the error observed when several people labeled a same C T dataset (see Tab. 6.1). 

Figure 6.7: Surfaces reconstructed from pre-segmented data. In the red areas of the surface, small 
anatomical structures are weakly approximated because their size is relatively small compared to a 
prescribed minimal edge length. 

Results show that the error depends on initial setting of the meshing, it generally grows for 

meshes with larger tetrahedra. However, if adequate meshing parameters were chosen, the value is 

almost the same as the error, or variations, produced by different people when segmenting a same 

dataset (Tab. 6.1). In practice, large portion of this error is caused by limitations of the meshing 

process. A l l image structures smaller than the chosen minimal edge length LOT,„ are lost. The mesh 

cannot approximate structures so small (Fig. 6.7). 

Segmentation of Medical C T Data 

In the last experiment, three different unsupervised clustering techniques (FCM, GMM+EM and 

Min-Cut/Max-Flow) were applied to meshes in order to classify tetrahedra into individual re­

gions/segments. Fig. 6.8 recapitulates results of the mesh segmentation. A l l clustering techniques 

are able to distinguish soft tissue. When compared to the manual segmentation, the VSeg method 

provides precise segmentation of the same quality as the voxel-based F C M clustering of the orig­

inal image data. The segmentation error of soft tissues is comparable to the variation of manual 

segmentation of the same dataset by different individuals. 

Not the worse results occur in case of bone segmentation from the head3 dataset. The VSeg 
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Figure 6.8: Overall segmentation error of the VSeg method. Three alternative clustering methods 
(FCM, GMM+EM and Min-Cut/Max-Flow) are compared to the straight FCM clustering of volu­
metric data (voxel FCM). 

method still produces quite good results. However, the measured error of the bone tissue segmen­

tation significantly grows (i.e. value of the F-measure decreases) for the second dataset. Only the 

graph-based Min-Cut/Max-Flow algorithm provides reasonable results. Because the method takes 

spatial image structure more into account, results of this graph method overcomes other techniques. 

Due to the thickness of the cortical bone and regarding resolution of C T data, very thin edges 

are present in the image data which are practically undetectable by conventional edge detection 

techniques without more knowledge of the data. Therefore, such kind of (non)edges is not well 

approximated during the meshing process which causes more errors in the final mesh segmentation. 

This nature of some medical C T data is also one of the reasons to allow manual corrections of the 

mesh segmentation. 

6.4 Runtime Statistics 

Basic runtime statistics can be found in Fig. 6.9. The measurement was divided into four stages: 

preprocessing of input data (i.e. anisotropic filtering), initialization of the meshing (the edge and 

corner detection; generation of the control space), iterative adaptation of the mesh, and the mesh 

segmentation. A l l phases take approximately 25 — 50 minutes on a standard PC with Intel Core2Duo 

2.54GHz processor depending on a concrete size of the data and specific parameters of the meshing 

algorithm. 

1.00 

0.90 
CD 
US 0.80 
CD 

I 0.70 

ü- 0.60 

0.50 

1.00 

0.90 
CD 
3 0.80 
CD 

I 0.70 

0.60 

0.50 

1 
1 1 III! 

Soft tis. Bone tis. 

Soft tis. Bone tis. 



2 4 Chapter 6. Experimental Results 

K=0.8, Tavg=30 

K=1.2, Tavg=30 

K=2.0, Tavg=30 

K=0.8, Tavg=50 

K=1.2, Tavg=50 

K=2.0, Tavg=50 

10 15 20 
Runtime [min] 

25 30 

Average Runtime 
Statistics 

Preprocessing 
Initialization 
Meshing 
Segmentation 

35 

Figure 6.9: Runtime statistics of the VSeg method for different meshing setup. 

In fact the runtime of the vector segmentation is not very impressive. In comparison with tradi­

tional surface reconstruction techniques like the M C algorithm (+ subsequent smoothing), the VSeg 

method loses. These techniques are able to reconstruct surfaces in a much less time - just about 

minutes. However, such comparison is a bit unfair. Beside the surface, the VSeg method produces 

more comprehensive representation of the data - tetrahedral mesh - which may be useful for many 

other tasks. A i m of the thesis was to prove the concept of volumetric data segmentation based on 

Delaunay meshing. Not much attention was paid to the optimization of the implementation. 



Chapter 7 
Conclusions 

This paper presents a technique for segmentation of volumetric medical images aimed at surface 

reconstruction of fundamental human tissues (i.e. bone and soft tissues). This technique of vector 

segmentation is based on the 3D Delaunay triangulation. Tetrahedral mesh is used to partition the 

volumetric data. Such direct meshing of volumetric image data appears to be more accurate approach 

then traditional techniques which start with a surface extraction followed by the decimation and 

smoothing without any relationship to the original image data. Nevertheless, the idea of the vector 

segmentation has several other advantages. 

A more effective representation of the image structure is obtained which approximates the orig­

inal raster data. The mesh representation decreases complexity of the subsequent segmentation 

because of processing a reduced number of tetrahedra instead of a large number of voxels. 

The proposed vector segmentation can be successfully used for surface reconstruction of desired 

tissues, as well as for meshing of the interior structure of the tissues for the numerical simulation. 

Obtained results show that the current concept works very well for certain C T data and is applicable 

to anatomical modeling of a human skull or soft tissues (i.e. craniectomy in case of traumatic brain 

injury). For the purpose of plain surface reconstruction from an already pre-segmented data, the 

VSeg method produces surfaces of more than reasonable quality and can be used as is. 

However, several inconveniences can be still found in the method that are not very favourable 

from the practical point of view. Even thought the quality of reconstructed surfaces is sufficient for 

many applications, the quality of produced tetrahedral meshes is not as good as it could be. Slivers 

still appear close to region boundaries. 

Another disadvantage is the edge detection step which is crucial for precise approximation of 

image boundaries. The proposed tissue-selective edge detection works well for selected C T data. 

However, many parameters of the detection must be tuned to provide desirable results for other type 

of C T data. The edge detection limits potential application of the method in other research fields 

when different kind of volumetric data is used. Theses aspects of the proposed vector segmentation 

technique should be addressed in the future work. 
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3 2 Sample Results 

Input dataset: CT-knees; meshing parameters: K — 1.5, Tavg — 30mm, and Lmi„ — 1.0mm. 

138883 vertices, 136266 faces 



3 3 

Input dataset: CT-head3; meshing parameters: K = 1.5, Tavg — 50mm, and L m ! n = 1.5mm. 

87833 vertices, 176318 faces 
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Input dataset: CT-pelvis3; meshing parameters: K — 1.5, Tavg — 50mm, and Lmi„ — 1.5mm. 

105758 vertices, 211320 faces 


