
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF INTELLIGENT SYSTEMS

NÁZEV PRÁCE
UNIFIED SOFTWARE DATABASE FOR RPM BASED SYSTEMS

DIPLOMOVÁ PRACE
MASTER'S THESIS

AUTOR PRÁCE JAN ŠILHÁN
AUTHOR

VEDOUCÍ PRÁCE Ing. JAN ZELENÝ,
SUPERVISOR

BRNO 2014

Abstrakt
V GNU/Linuxovém prostředí je nepřeberné množství možností, jak instalovat aplikace.
V dnešní době existuje spousty nástrojů, které mají na starost různé části systému. Linu-
xové distribuce mají hlavního správce balíčků a populární programovací jazyky mají také
vlastního správce balíčků. Všechny tyto nástroje si udržují informace o nainstalovaném
softwaru, a proto si každý z nich spravuje vlastní databázi s redundantními metadaty o
balíčcích. Záměrem této práce je analyzovat úložné prostory, identifikovat případy užití
správců balíčků v distribuci Fedora a následně navrhnout a implementovat jednotnou cen
trální softwarovou databázi na systému.

Abstract
In G N U / L i n u x environment there are many ways of installing software. At this moment we
have multiple tools for managing some specific parts of the system that overlap each other.
Linux distributions have main package management system and the popular programming
languages have also its own package manager. These all have to keep track of installed
software. Thus every package manager maintains its own private database with redundant
package metadata. The motivation of this thesis is to analyze storages and identify common
use cases of package managers on Fedora distribution; design and implement one central
Unified Software Database on the system where all information about packages could be
stored.

Klíčová slova
R P M , Swdb, R P M D B , USD, spávce balíčků, databáze, balíčky, DNF, Yum, PackageKit

Keywords
R P M , Swdb, R P M D B , USD, package management, database, packages, DNF, Yum, Pack
ageKit

Citace
Jan Šilhán: Unified Software Database for R P M Based Systems, diplomová práce, Brno,
FIT V U T v Brně, 2014

Unified Software Database for R P M Based Systems

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Jana Zeleného

Jan Šilhán
May 28, 2014

Poděkování
Rád bych tímto poděkoval firmě Red Hat Czech s.r.o. za poskytnutou podporu.

© Jan Šilhán, 2014.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 3

2 Package management 5
2.1 R P M Packages 6
2.2 Package managers for R P M packages 6

2.2.1 R P M 7
2.2.2 Yum 7
2.2.3 D N F 7
2.2.4 B E E R 7
2.2.5 Yumex 8
2.2.6 PackageKit 8
2.2.7 Gnome Software 8
2.2.8 OSTree 9
2.2.9 Software Collections 9

3 Database In package management Applications 10
3.1 R P M Use Cases 11

3.1.1 R P M D B 11
3.2 B E E R Use Cases 13
3.3 Yum Use Cases 13

3.3.1 SQLite Files Of Createrepo 13
3.3.2 YumDb 16
3.3.3 History database 17

3.4 D N F Use cases 23
3.5 Libsolv 23

3.5.1 Libsolv Use Cases 23
3.5.2 Solv Files Format 23

3.6 PackageKit Use Cases 24
3.7 Gnome Software Use cases 24
3.8 OSTree Use Cases 25

4 General Design Of Unified Software Database 26
4.1 Specifications 26
4.2 Database design scheme 28
4.3 Features 30
4.4 A P I 32
4.5 Overview Of Storage Options 34
4.6 Implementation Details 36

1

USD Testing
5.1 Policy Of Measurements
5.2 Read Performance
5.3 Write Performance
5.4 Erase Performance
5.5 Disk Space Taken
5.6 Summary Of Test Cases

Summary
6.1 The Future Of USD
6.2 Possible Improvements
6.3 Conclusion

USD Future C + + A P I

Chapter 1

Introduction

In GNU/Linux (later only as Linux) environment there are many ways of installing soft
ware. The most common methods are compiling from source code or installing a package.
Package contains metadata about itself, which is useful for a package manager. What a
package manager does is it downloads, sets up and installs the software and all its needed
dependencies. So instead of downloading a dozen source code archives manually and com
piling all of them you can install everything executing one simple command.

At this moment we have multiple tools for managing some specific parts of the system
that overlap each other. Linux distributions have main package management system (R P M ,
Deb, . . .) and the popular programming languages have also its own package manager.
These all have to keep track of installed software. Thus every package manager maintains
its own private database with redundant package metadata that takes additional space on
disk.

The motivation of this thesis is to design and implement one major Unified Software
Database (further referred to as USD) on the system. The aim is not to unify the package
managers but offer them one central place where all information about packages could be
stored. Each of them will have an opportunity to write its own package related data there.
The solution I am trying to find is primary for Fedora and RHEL but simultaneously easily
portable for other Linux distributions.

In this document is made up USD A P I that covers the most common scenarios that
happen during the package installation, upgrade or removal process; based on deep anal
ysis of Fedora package managers' use cases. The implementation of USD will be used in
production, starting with D N F 2.2.3.

In chapter 2 many possibilities of installing applications on R P M system will be covered.
I will go from plain R P M package installation through advanced command line tool for
solving/downloading package dependencies to graphical user interface applications.

The use cases and currently utilized storages in RPM-based package managers that
should USD take into consideration will described in chapter 3. RPMDB, main R P M
database, is introduced in section 3.1.1. Its analysis will be essential for better understand
ing R P M package format. The breakdown of Yum storages in section 3.3.2 will influence
the design of USD most.

The next chapter 4 is all about the design of USD. The requirements for USD from
package managers will be listed in section 4.1. Design scheme resulted from previous anal
ysis will be introduced in section 4.2. The next section (4.3) explains advantages of USD
that comes from redesigning history database and yumdb with extra features added. The
A P I of USD is discussed in section 4.4. Later on wide variety of USD database engine

3

candidates will be compared and one of them selected (section 4.5). Last item (section 4.6)
in this chapter will go through implementation details that occurred during USD build.

Following chapter cover yumdb and USD benchmarks of read, write and erase opera
tions and total disk space consumption. The summary of these test cases can be seen in
section 5.6.

The last chapter 6 summarize the result of this document, offer ideas for improvement
and outline future of USD.

4

Chapter 2

Package management

Package management is a paradigm of managing software in discrete parts, called pack
ages. It is an unnecessary piece of Linux operating systems and the region where Linux
distributions differs the most.

Packages can be composed of precompiled binary or source code files. Apart from all
the various files, documentation, and configuration information, the more sophisticated
packages can contain metadata, such as the software's name, description of its purpose,
version number, vendor, checksum and a list of dependencies necessary for the software to
run properly in structured format.

Dependencies are one of the most important parts of the package management system. A
dependency occurs when one package depends on another. The package manager ensures
that dependencies are honored when upgrading, installing or removing packages. The
biggest advantage is that each package knows, by defined dependencies, which package
has to be installed before. That way one can install or upgrade the desired application
without manually downloading the required packages. The process during install, upgrade
or removal that mark what package have to be installed or upgraded, is called dependency
solving (depsolving later).

The package management system typically maintains a database of software depen
dencies and version information to prevent software mismatches and missing prerequisites.
Upon successful installation metadata of package is stored. Each package management sys
tem is often linked to one concrete package format they can operate with, thus they have
different local database scheme.

Package management systems are popular between specific programming languages.
Packages are often modules, written in a particular programming language, that are all
saved in the respective directory. Some packages can also be installed globally as a regular
application. Package managers for programming languages are targeted for developers to
set up their projects with all dependencies. Representatives include ruby gems, easy-install,
maven or npm. This category of package managers will not be discussed in this thesis as
they cannot replace R P M tool when most software in Linux is written in compiled languages
like C or C++ and they are bound to certain language they can handle. Moreover, these
tools don't have advanced features of Y u m / D N F like history commands and don't have
groups (packages that could be installed/removed as a whole by group name reference). As
a result, Y u m / D N F have a much more complex database than pip, maven, npm and ruby
gems all together.

5

2.1 R P M Packages
A n R P M Package is described by the spec file, where all the package information is kept.
The package is identified by NEVRA (name, epoch, version, release, architecture). The
Requirements, Provides, Conflicts or Obsoletes dependencies can also be declared in the
spec file. The reldep is a tuple consisting of the type of dependency, package name and
optional signs (=, <=, >=, <, >). The sign can specify the version of dependent package.
Every package can also provide another feature (virtual package), hence the R P M system
is file-based [].

Triggers provide a way for one package to take action when the installed status of
another package changes. A trigger is a script you define in your package's spec file that
gets run by the R P M system when the status of another named package changes [].

2.2 Package managers for R P M packages

The following subsections discuss package managers dealing with R P M packages. At the
lowest level in the package manager's hierarchy (picture 2.1) is the R P M tool that is nec
essary on Red Hat/Fedora platforms. Package managers on top of R P M are adding the
functionality of downloading dependencies or treating a set of packages as a single applica
tion.

Gnome Software

BEER Packa g e Kit OSTree

YUM
hawkey + librepo

l ibsolv

DNF

RPM l ibcomps

Figure 2.1: Package managers hierarchy in RPM-based systems

6

2.2.1 R P M

The Red Hat Package Manager (RPM) is an open packaging system, which runs on Red Hat
Enterprise Linux as well as other Linux and U N I X systems. It is responsible for verification
that installed applications have been installed correctly. The R P M software maintains a
database on the system of all packages that have been installed, and documenting which
files those packages have installed on the system.

For installation, reinstallation or update, all desired packages have to be already on the
file system or the U R L of the package has to be provided. R P M Packages can be found
and eventually downloaded for instance from rpm.pbone.net or rpmfind.net.

2.2.2 Y u m

Yum is a well-known command line automatic updater and package installer/remover for
R P M systems. It automatically computes and downloads dependencies. A l l the hard work
is done in Yum itself, utilizing R P M for pure package set installation. It makes it easier
to maintain groups of packages without having to manually update each one using R P M .
Yum has a plugin interface for adding simple features. It can also be utilized from other
python programs via its module inteface. In Fedora 20 it is considered as deprecated in
favor of DNF.

2.2.3 D N F

D N F (Dandified Yum) is the successor of Yum with the same code base (which is being
reduced) but utilizes the Libsolv library (see 3.5) as the dependency solver. The project
was set up because of hard maintainability of Yum. D N F professes the divide-and-conquer
principle, therefore it relies on many small libraries rather than doing all the stuff itself.
The main goals of the project are:

• using a SAT solver for dependency resolving

• allowing us to eventually use the same solver in R P M too

• strict A P I definition for plugins

• strict A P I definition for extending projects (Anaconda)

• leaner codebase than Yum, allowing for easier maintenance

• better performance and memory footprint.

2.2.4 B E E R

B E E R stands for Better Extension for R P M and is an alternative implementation of up-
dating/buildroot creation and dependency resolving tool written in C. The main aim is to
provide an alternative to Yum, which is very slow and resource wasteful as a native Python
application. B E E R utilizes per-repository package caching, so reinstallation or updating of
chroot is faster. R P M packages are held in local filesystem cache hence they don't need to
be downloaded from web repository repeatedly [13]. The official project repository has not
been touched for three years, though.

7

http://rpm.pbone.net
http://rpmfind.net

2.2.5 Yumex

Yumex is a graphical user interface for the Yum package manager. It is a graphical front-end
similar to Synaptic (uses Debian's apt tools). Yumex allows you to install new applications
as well as update or delete existing ones via GUI . Aside from packages, user can manage
repositories and groups. Fedora is the distribution of choice for Yumex, but it can be run
on any distribution that uses Yum. At the time of writing this, Yumex is preparing for
switching from Yum to D N F backend.

Yumex was created with these goals in mind:

• To create a advanced Yum GUI with a lot of features for both the novice and the
advanced users

• To make it easy to update, install and remove application.

• To make it easy to find applications.

• Give the user a choice to see what is going on between behind the curtains.

• To show the power of Yum

• Give the user access to some of the more advanced features of Yum in an easy way.

2.2.6 PackageKit

PackageKit is designed to provide a consistent and high-level front-end for a number of
different package management systems [5]. It is a lightweight daemon, that is creating
unified layer between Graphical front-ends and software management tools like Yum, Zypp,
u R P M i , etc. PackageKit's main features are:

• Boot time security updates

• Allowing unprivileged users to install software in a corporate build

• Opening unknown file formats

• Removing dependencies for files

2.2.7 Gnome Software

In newer releases of Gnome, the Gnome Software application for installing and removing
packages from graphical user interface is present. The concept is similar to Ubuntu Software
Center. In contrast to Yumex, Gnome Software is application-oriented and hides the details
about packages. It presents an application to the user by providing screenshots rather than
package dependencies. Software uses a plugin architecture to separate the frontend from
the technologies that are utilized underneath [4]. Gnome Software's capabilities are:

• View installed applications

• Remove installed applications

• View available application updates

• Install available updates

8

• Find new applications

• Install new applications

• Find an application to handle a specific type of file

• Installed apps and updates should be available when offline

2.2.8 OSTree

OSTree is a tool for managing bootable, immutable, versioned nlesystem trees. It is not
a package system; nor is it a tool for managing full disk images. Instead, it sits between
these two levels, offering a hybrid tree/package model, thus benefiting from the advantages
of both [3].

A fundamental goal of the project is to enhance the ability of existing package systems
like Debian packages or R P M (RPM-OSTree). The mechanism how it works is replicating
base tree via OSTRee and then adding packages on top of it. Unlike other similar projects
(Google ChromeOS autoupdate, Ubuntu Image Based Updates) it is more space efficient
by taking just snapshots (diff of binary files) therefore it doesn't duplicate entire filesystem
of operating system [15].

2.2.9 Software Collections

Software Collections (Scl) was implemented to give users the opportunity to run multiple
versions of the same program. In this case, two directories are not merged into one, but
every application with all its dependencies (together collection of packages) are saved into
one directory located in /opt/scl/<collection of packages>/root. Scl works with R P M
packages. It changes the software installation directory by extending the package spec files
by additional macros. A program within given collection can be run via scl —enable
command <collection of packages>. That will change all system variables to emulate
root path in /opt/'scl/'<collection of packages>/root direction [10].

9

Chapter 3

Database In package management
Applications

In the previous chapter we got acquainted with the overall technologies of package manage
ment systems. Now we will focus on how data are stored in Fedora package managers and
common database operations. Picture 3.1 shows the interaction of package managers and
access to database storages. Note that the picture is cleared of the details how metadata
of available packages are obtained by Yum and DNF.

YUM

Use

Createrepo files

-Use >

Use Use

RPM •Use- RPMDB

IS ~7\

History

History

Use

Use YUMDB

<^ -Use .
YUMDB

PackageKit

Use
Use

Use

DNF •Use- > Hawkey + Libsolv

'Use .Use' Use
V

Solv files

Figure 3.1: Package managers interaction between storages nowadays

10

3.1 R P M Use Cases
As it has been said, R P M check whether dependency of installing package are fulfilled. It
does not read all installed packages, but just the ones it needs for dependency checking and
doesn't download any new package by its own.

Another R P M function is detecting file conflicts, that is what the Basenames index is
for. It does not contain the full path because it has to consider directory aliasing. The
file conflict detection needs the checksums of all files. A l l the checksums need to be stored
then. This action takes the most space of all package related attributes in the database.

R P M is designed to be queried easily, making it possible to search this database to
determine what applications have been installed on the system and to see which packages
have supplied each file on the system.

Here is a comprehensive list of most common R P M actions [19]:

• Find packages:

— find packages based on their N E V R A (either name, name+version, or the entire
N E V R A)

— find packages which have one of specified IDs

— find packages which provide given feature or given basename

— find packages which require given feature

— find packages which conflict with given feature

— find scriptlets (or their owners) triggered by current operation

— find out how many packages are installed

— find packages in given group

— find package based on its hash

— find owner of given file

— find all files sharing given basename

— find files based on their fingerprint

— filtering look-up result set with various parameters (color, list of IDs)

• Inspect given package:

— find out if package provides features it obsoletes

— retrieve package ID

• Other actions:

— install package
— remove package

3.1.1 R P M D B

R P M D B is the main storage maintaining package metadata and is designed in the first
place for R P M needs. That is keeping all the information about installed packages (the
header) and searching fast for a record of certain package by file, group or reldep (Berkeley
D B database part). The header structure contains three parts: header record, one or more

11

header index record structures and data for the index record structures. The header record
identifies this as the R P M header. It also contains a count of the number of index records
and the size of the index record data. Each index record uses a structure that contains a
tag number for the data it has [9].

Whenever you install or remove packages, the R P M system assigns transaction ID to
the set of packages and installed ID to a single package. The transaction ID is a Unix
time stamp. A l l the packages installed at the same time are given the same transaction ID.
This means that you can perform operations on a set of packages, the packages that were
installed together.

In the contrast, installed ID is unique identification of installed package. For reading
from stored header, installed ID is being used.

R P M is supposed to hold the database write lock for short periods of time, when a new
package header is written into the db, or a header is deleted. There is also the transaction
lock that is held for the complete transaction. Berkeley D B does all of the locking internally.

Berkeley D B is key-value storage utilized for a couple of index databases {Providename,
Conflictname, Obsoletename and Requirename). Those map the name part of a dependency
to a {installed ID, index number of the dependency) tuple. R P M splits name of files,
contained in package, into (dirname, basename) tuples. In the header it is stored as follows:
dirnames (array of strings), dirindexes (array of integers) and basenames (array of strings).

Here is the brief overview of Berkeley D B files listed in /var/lib/rpm/ directory [19]:

• Basenames (B-Tree) - File name (not a path, only a name) is a key and values contain
pairs of {installed ID, basename index). This index is very closely related to Dirnames

• Conflictname (B-Tree) - Name of conflicting package is a key here, pairs of {installed
ID, conflictindex) create values

• Dirnames (B-Tree) - Index containing paths to files listed in Basenames. Path is a
key and values are {installed ID, directory index)

• Group (B-Tree) - Valid name of a group is a key and values are created by couples:
{installed ID, 0)

• Packages (Hash) - Package name is here as a key and values are: {installed ID, 0)

• Providename (B-Tree) - Same as Conflictname for provide tag.

• Provideversion (BTree) - Contains versions of packages listed in corresponding records
of Providename as a value

• Requirename (B-Tree) - Index is corresponding with Conflictname and Providename

• Requireversion (B-Tree) - Index corresponds with Provideversion

• Triggername (B-Tree) - Key is unique name of a package trigger. Values contain
couples of {installed ID, triggerindex)

The main problem with R P M D B is the inability to write application's custom data
there. Thus every package management system has its own separate storage with many
redundant data with regard to the master database.

12

3.2 B E E R Use Cases

B E E R uses Yum repository configuration files to download R P M packages from various
repositories and resolve dependencies between the user-specified packages to be installed.
Since B E E R is a low-level tool, the location of R P M s as well as the desired chroot can be
specified directly on a command line without any need for Yum to be installed.

B E E R utilizes cURL for package downloading and R P M for transaction checks and the
chroot for installation itself. It can be used on any RPM-based Linux OS, mainly on Fedora
Core/Red Hat ones.

This tool is mentioned only for complete enumeration of applications founded in R P M -
based systems. B E E R is not as feature-rich as Yum and so doesn't use any additional
storage. Moreover it is just a dependency solver that is no longer maintained and useless in
the new age of Libsolv (see 3.5). For that reason it will not be entertained in USD design.

3.3 Yum Use Cases

Both Yum and D N F are using YumDb and history database, but not at the same path.
Hence they are not synchronized and don't know about each other's transactions. When
some packages were installed outside of D N F / Y u m for example by PackageKit, they lose
track of these packages. That could lead to showing warnings that the database was altered
by another application or to the inability to run history commands on packages installed in
another way. Note that metadata about all the installed software is always kept in R P M D B
either way.

3.3.1 SQLite Files O f Createrepo

Createrepo, a tool that can create repository in directory, can output also compressed
SQLite database files, that can be fetched by Yum. It stores information used for Yum
dependency solving that is saved during update process in following directory
/var/cache/yum/<arch>/<fedora-version>/<repo-name>/gen/. The most important files
containing package metadata tables are listed below.

• primary_db. sqlite - conflicts, obsoletes, provides, requires, db_info, packages

• filelists_db. sqlite - db_info, packages, filelist

• pkgtags. sqlite - packagetags

• other.db. sqlite - changelog, db_info, packages

There is list of tables from SQLite files. The columns in bold are indexed.

• Conficts, obsoletes and provides tables describes relation between packages. The fields
for all of them are the same.

— name - name of the package

— flags - disjunction of reldep signs (see 2.1)

— epoch - The Epoch tag in R P M is to be utilized only as a last resort. It is
sometimes necessary to use an Epoch to handle upstream versioning changes or
to ease transition from third party repositories [].

13

— version - version of library/application that package represent

— release - release of the package, e.g. operating system where was the package
built, plus hash or id of the build.

— pkgKey - an unique package id in the table

• In requires table all equally named fields from conflict, obsoletes and provides tables
have meaning just as the previous ones:

— name

— flags

— epoch

— version

— release

— pkgKey

— pre - signs whether package is required before installation or not (BuildRequires
or Requires tag in spec file)

• db_info table:

— dbversion - lowest version of Yum's metadata parser required

— checksum - 256 bit hash of all packages

• packages:

— pkgKey
— pkgld - package hash - an unique package identifier across filelist-db and pri

mary-db files

— name

— epoch

— version

— release

— summary - short summary what is the package used for

— description - more detailed information of the package's purpose

— url - usually project's homepage, not direct url for package download

— time_file - package's last modified U T C time

— time_build - U T C time when package was built

— rpmdicense - license of the package

— rpm_vendor - who is responsible for distributing this package (for fedora main
and updates repository that is Fedora Project)

— rpm_group - which category the package belongs to (e.g. texlive package is in
Applications/Publishing)

— rpm.buildhost - commonly the server where was the package built for target
architecture using fedpkg tool

14

— rpm_sourcerpm - name of *.src.rpm package from which was architecture depen
dent package built

— rpmJieader.start - start of rpm header in binary blob used for identification and
verification of package

— rpm_header_end

— rpm_packager - who built the package

— size.package - size of R P M package with spec file and patches

— size_installed - size of all extracted files

— size.archive - size of source archive

— locationJiref - last part of url where the package can be downloaded with con
catenation of location-base

— location_base - Ur l prefix to package download path. If it is empty, repository
url is used

— checksum.type - supported hash algorithms are MD5, SHA1, SHA256, SHA384
and SHA512

files:

— name - absolute file/directory path

— type - could be either "dir" or "file"

— pkgKey

filelist:

— pkgKey

— dirname - name of directory containing package files

— filenames - list of files from dirname separated by ' / '

— filetypes - It is a string of size of total filenames count. It is gaining value 'f' for
file o r ' d ' for directory at the same index position as the filenames string. E.g.
for "script.sh/dir" as filenames is filetypes equal to "fd".

changelog table holds release news.

— pkgKey

— author - author of build, enchantment or bugfix commit

— date - date of commit

— changelog - commit message

packagetags:

— name - package name

— tag - category membership of package (for example: Utility, Application, G T K ,
Security, . . .)

— score - calculate how much application is associated with given tag (ranges from
1 to 10)

15

3.3.2 Y u m D b

Yumdb, also called the database database, is utilized for storing additional package meta
data that couldn't be stored inside R P M D B . It proposes free space for data of Yum and all
Yum's plugins. None of the information stored there is critical to performing its function
but it enhances the user experience and makes it possible to know more about the context
in which a package was installed. For storing additional package related information no
database engine is used. Yumdb take advantage of file system with tree structure based on
unique path for each package according to it is N E V R A - /var/lib/yum/yumdb/p/<checksum>-
<packagename>-<version>-<release>.<architecture>/<keyname> [].

Actually it uses the same key-value principle as Berkeley D B , whereas in this case file
system is doing job of database, the key is represented by path to file and value is stored
as file content.

The disadvantage of the file system as database is that searching is rather slow for
complex queries. Fortunately Yum doesn't use them. This solution has more advantages:

• Each package data are in isolation. If the key for some package is broken, nothing
else should be affected.

• Simple realization with no additional database dependency

• Have interoperability by ability to perform get or set operations from any language
without having to access the Yum A P I (that is what PackageKit silently does).

Here is the list of all required keys (files) stored in package name space:

• from_repo - the name of the repository from which the package was installed

• from_repo_revision - repository, revision or ctime for a local package

• from_repo_timestamp - repository, timestamp or mtime for a local package

• reason - reason for installing this package (user or dep)

• releasever - releasever of the system at the time the package was installed

• installed.by - the loginuid of the user who first installed this package

• changed.by - the loginuid of the user who last installed this package

The optional keys are:

• checksum_data - the value of the checksum for the installed package.

• checksum_type - the type of the checksum for the installed package (md5, shal or
sha256)

• command-line - the command line used to install this package

• group_member - set by Yum if a package was installed as part of a group install

• installonly - not set by Yum, but looked at to see if installonly packages should be
automatically removed

• origin.url - the url that the package was downloaded from

File system storage seems to me like a waste of disk space since every key needs a
separate file. One ext4 block takes a minimum of 4kB regardless of the fact that the file
content is only a few characters long.

16

3.3.3 History database

The reason why Yumdb and the history database are separated is that they hold different
data. Yumdb represents the state of currently installed packages on the system while the
history database maintains a log about transaction sets of installed, removed or updated
packages in a bulk. Even unfinished transactions with all occurred errors are saved. The
history database is crucial for D N F / Y u m history commands (redo states of packages). The
database also incorporates configuration data related to all transactions made. These are
not exactly in the database; rather, they are saved as key-value pairs in plain text in the
/var/lib/DNF/history/<date>/<transaction-id> directory where transactionJd is linked
to a transaction in sqlite. Their relationship is of the cardinality 1:1. There are two
configuration files: config_main (global configuration of package manager) and config_repos
(concatenated configurations of repositories into one string).

The whole history database in D N F is located in /var/lib/dnj'/history/history<date>.sqlite.
Y u m / D N F save snapshots of them time by time. They consist of the following tables and
columns:

• pkg_yumdb - Assigning data from Yumdb to package. Table is made universal to
maintain any key value.

— pkgtupid - identifier of package translated from N E V R A

— yumdb_key - is command-line, from_repo, from_repo_revision, from_repo_timestamp,
installed_by, changed.by, reason or releasever

— yumdb_val

• pkg_RPMDB - Assign data fetched from R P M D B to package. Same concept as in
previous table for any key.

— pkgtupid

— RPMDB_key - could be one of license, reason, url, packager, size, buildtime,
buildhost, sourcerpm, vendor, committer or committime

— RPMDB_va l

• pkgtups - stores basic identification information about package that other tables
references

— pkgtupid - identifier of package

— name - name of the package

— arch - package architecture

— epoch - package epoch

— version - package version

— release - release of the package

— checksum - package checksum

• trans_beg - Transactions that are processed or unfinished transactions. Row is filled
by Y u m / D N F before running R P M ' s transaction for package set.

— timestamp - start of transaction in U T C

17

— RPMDB.version

— loginuid - user who initiated transaction

trans_end - stands for completed transactions

— tid - transaction identifier
— timestamp - end of transaction in U T C

— RPMDB_version

— return.code - result of transaction. If 0 then process was successful otherwise
failed

trans-cmdline - stores command line history

— tid

— cmdline - exact D N F / Y u m command line that triggered transaction

trans_data_pkgs - connecting packages to transaction

— tid
— pkgtupid

— done - column can be T R U E or F A L S E whether package state was accomplished
or not

— state - could be one of (Install, Reinstall, Update, Downgrade, Erase, Rein
stalled, Updated, Downgraded, Obsoleted)

trans_error - logged errors that occurred during transaction

— tid

— msg - error message from R P M

trans_prob_pkgs - packages that run into problems during during Y u m / D N F depen
dency solving

— rpid - ID of problem package

— pkgtupid

— main - could be either T R U E or F A L S E based on whether this package caused
that error.

trans_rpmdb_problems - transaction errors from R P M

— rpid - ID of problem package

— tid - transaction ID

— problem - problem summary message

— msg - more detailed information of error

trans_script_stdout - output from stdout during execution of transaction

— tid - transaction ID

— line - message

18

• trans_skip_pkgs - logged packages that was skipped during transaction

— tid - transaction ID

— pkgtupid - package ID

• trans_with_pkgs - programs that were involved in installation/removal/upgrade trans
action process. That is always ' D N F / Y u m ' and ' R P M ' .

— tid - transaction ID

— pkgtupid - package ID

Data in the current history database are not saved permanently. They live until a new
package of the same version is installed. After that the attributes and installation data of
the new package replace the current records. Tables pkg_RPMDB and pkg_yumdb from
the history transactions database hold the data for an additional period between package
removal and its re-installation. This is in contrast to rpmdb, where data are deleted after
package removal. Yumdb data last as long as metadata copied to pkg_yumdb. The only
difference is that yumdb data can be changed anytime. Pkgtups items are unique and
permanent because thay are used as references to not-always-present package. The same
will remain in the new concept. The diagram 3.2 shows for how long data persists in
each database for a package installation, removal and reinstallation that happened over a
longer period. These operations weren't executed in one transaction but in three separated
transactions (installation, removal, installation) for a package with the same N E V R A . The
complete database structure can be seen in picture 3.3.

First install removal Second install

RPMDB

transaction
+trans_data_pkgs
+config

yumdb

pkgtups

t ime
Figure 3.2: Data persistence in storages

19

trans_skip_pkgs
tid

pkgtupid

trans cmdline
tid

cmdline

config_repos config_main
key

value
key

value

trans_beg trans_end
tid

timestamp
RPMDB_version

loginuid

tid
timestamp

RPMDB_version
return code

yumdb
nvra

from_repo
from_repo_revision

from_repo_timestamp
reason

releasever
installed_by
changed_by

checksum_data
checksum_type
command_line
group_member

installonly
or iginurl

trans_with_pkgs
tid

pkgtupid line

pkgtups
pkgtupid

name
arch

epoch
version
release

checksum

tid
pkgtupid

done
state

trans error
tid

msg

trans_prob_pkgs
rpid

pkgtupid
main

pkg_RPMDB pkg_yumdb
pkgtupid

RPMDB_key
RPMDB_val

pkgtupid
yumdb_key
yumdb_val

trans_rpmdb_problems
rpid
tid

problem
msg

Figure 3.3: database scheme in Yum and D N F nowadays

20

Historydb A P I

This section enumerates historydb methods to get idea how unnecessary complex it is.
There are not fully described all parameters the function takes.

The historydb python A P I utilized by Yum and D N F is illuminated below:

• class YumHistoryPackage - class holding the reference to package id

— def __init__(self, name, arch, epoch, version, release,

checksum=None, hi story=None) - constructor

— def __le__(self, other) - Compares package attributes in following order: by
architecture, whether is installed or not and eventually by the time of installation.

— def __getattr__(self, attr) - Load rpmdb attributes from the historydb.

— def ui_envra(self) - Returns string representation of the package.

— def envra(self)

— def nevra(self)

— def nvra(self)

— def returnIdSum(self) - Returns checksum of the package from historydb.

— def verCMP(self, other) - Compares two packages by name and version.

• class YumHistoryPackageState(YumHistoryPackage)

— def __init__(self, name,arch, epoch,version,release, state,

checksum=None, history=None) - Prepares package for transaction, i.e. sets
state and mark it as undone.

• class YumHistoryRpmdbProblem(object) - class representing a rpmdb problem that
existed at the time of the transaction

— def __init__(self, history, rpid, problem, text) - constructs package
problem

— def __cmp__(self, other) - Compares YumHistoryRpmdbProblem objects by
message first, then by package id.

— def packages () - Get all YumHistoryPackage objects that caused the same
error within transaction.

• class YumHistoryTransaction - handler for a history transaction

— def __init__(self, history, row) - constructor

— def __cmp__(self, other) - Compares two YumHistoryTransaction objects by
time of the beginning and end of transaction; and by transaction id.

— def getTransWith(self) - get* methods are for accessing tables in relation
with transaction table

— def getTransData(self)

— def getTransSkip(self)

— def getProblems(self)

— def getCmdline(self)

21

— def getErrors(self)

— def getOutput(self)

• class YumMergedHistoryTransaction(YumHistoryTransaction) - class used for
merging transactions together

— def merge(self, obj) - Tries to merge two transaction into one. For example
from pkgA-1 => pkgA-2, pkgA-2 => pkgA-3, pkgB-1 => pkgB-2 and pkgB-2
=> pkgB-1 package transformations becomes pkgA-1 => pkgA-3 and pkgB-1
=> pkgB-1 (reinstall) transformations. When any transaction in path is missing,
no merge is applied.

• class YumHistory - main handler for historydb

— def __init__(self, db_path, yumdb, root='/', releasever=None) - const
ructor

— def close(self) - Properly ends session.

— def pkg2pid(self, po, create=True) - If create is True, inserts new record
into database, otherwise gets package id and checksum from existing row.

— def trans_with_pid(self, pid) - Stick in N E V R A representation of package
managers that initiated transaction.

— def trans_skip_pid (self, pid) - Inserts log of skipped packages in transac
tion.

— def trans_data_pid_beg(self, pid, state) - Inserts record of package change.

— def trans_data_pid_end(self, pid, state) - Mark package transformation
completed.

— def beg(self, rpmdb_version, using.pkgs, t s i s , skip_packages=[],

rpmdb_problems= [] , cmdline=None) - Logs start of the transaction.

— def log_scriptlet_output (self, msg) - Inserts R P M output from stdout
during transaction.

— def end(self, rpmdb_version, return_code, errors=None) - Signs trans
action as done.

— def write_addon_data(self, dataname, data) - Writes configuration data to
the file.

— def return_addon_data(self, t i d , item=None) - Returns all configurations
from the file.

— def old(self, tids=[], limit=None,

complete_transactions_only=False) - Return a list of the last transactions.
Note that this includes partial transactions (ones without an end transaction)
by default.

— def last (self, complete_transactions_only=True) - Returns the last full
transaction. Any incomplete transactions do not count if not specified.

— def sync_alldb(self, ipkg) - Synchronize all the data from R P M D B and
yumdb for this installed pkg.

— def search(self, patterns, ignore_case=True) - Search for history trans
actions which contain specified packages. Returns transaction ids.

22

The paths of Yum and D N F are diverging, therefore D N F doesn't take advantage of all the
historydb functionality (namely addons, R P M D B values, . . .) because users no longer need
it. In USD A P I some methods should be more generic and do not add more boilerplate
into the code.

3.4 DNF Use cases

Aside from history database and yumdb, D N F stores additional information in JSON for
mat. The items saved are the repositories that were explicitly marked by user as expired
and groups of packages installed by DNF.

Sqlite files of available packages are not read by D N F directly. D N F queries for packages
through Hawkey (the wrapper for Libsolv). D N F gets the result without any parsing and
computation.

3.5 Libsolv

Libsolv is a fast dependency solver using SAT technology. At present it is included in Zypper
and D N F . This library can handle many package formats including R P M and Deb [16].

One great benefit this library offers, is metadata cache files in Libsolv's own binary
format (files with .solv extension, typically). That is only a small subset of package data
synchronized with master database (R P M D B) . Once in a while Libsolv gets all the proper
ties from a R P M D B by reading headers as a blob. It does not fetch them through R P M A P I
because of its low performance. Libsolv could create solv files from xml files downloaded
by Librepo as well.

3.5.1 Libsolv Use Cases

Typical Libsolv operation figures out what provides required packages. Provides of all
packages, and the other dependency data of many packages needs to be known. It doesn't
make sense to do specific look-ups for single packages. Instead, Libsolv reads the relevant
data of all packages and keeps all the relevant stuff in memory. It creates index structures
in memory for fast dependency look-up by hash.

3.5.2 Solv Files Format

The solv file format is not a database, but a specialized serialization format for dependency
solving. They are light and highly optimized for loading speed. That is why Libsolv is so
fast. At a cost of a few hundred milliseconds, using the solv files reduces repository load
times from seconds to tens of milliseconds.

The purpose of showing solv file is to outline how effectively data can be stored and that
could potentially influence approach of storing data in Unified Software Database. Most of
the file contains dependencies and they need to be unified. To each dependency is assigned
a unique number, same dependency strings get the same number.

Solv file consist of header and five sections. Header contains SOLV signature (4 bytes),
time stamp (when was last synchronization with master database - uint32), following quan
tity of all kinds of data, represented by uint32 type each (ids, package relations, ids of
directories, solvables, keys, schemata, flags, size of ids). The first part contains all relevant

23

strings from in package headers (package names, evr, target architecture, license, applica
tion group, etc.). Solv files are not compressed by any tool, however every single string can
be found there no more than once. References to strings offsets are put into hash table for
faster look-up. The next section contains tuple of three elements (name id, evr id and flags).
Name ids and evr ids are offsets to previously fetched strings. In the third part are offsets
to directory string names. In the next data block are keys to keeping other information
contained in package header. They consist of name, type, size and storage components.
A l l of them are stored as uint32. A key could be type of void, constant, constantid, id,
num, num32, dir, str, binary, idarray, relidarray, dirstrarray, dirnumnumarray, md5, shal,
sha256, fixarray, flexarray or deleted. The remaining sections put schema and data together
for each package.

3.6 PackageKit Use Cases

PackageKit stores information about installed or upgraded packages to Yumdb, namely to
froni-repo, install-by, reason, releasEver and Release Version sections.

Additionally PackageKit owns a separate database for classification application to groups.
That is being used when the user searches for application in specific category. File is located
in /var/cache/PackageKit/groups.sqlite.

PackageKit needs for USD are basically speed requirements. A l l the reads need to
be an order of magnitude faster than the writes, after all, PackageKit spends 99% of the
transactions just reading stuff.

3.7 Gnome Software Use cases

Gnome Software application can utilize PackageKit or OSTree among others as a backend.
Gnome team defined a new data file, which the upstream project can optionally translate
using the same technique as GSetting schemas or Desktop files. Rather than create a new
schema from scratch, it is using a subset of the AppStream metadata proposal []. Applica
tions wishing to have long descriptions, screenshots and other useful things are required to
ship one or more files in /usr/share/appdata/<id>.appdata.xml. Appdata introduces the
following X M L tags to expand application's metadata:

• < id J > - It is the same name as the installed .desktop file for the application.

• < metadata license I > - Tag is indicating the content license that you are releasing
the AppData text file and screenshots under.

• < project-license/ > - Tag is indicating the licenses that you used for the application
and any data or media files used. This is not typically the same as the metadata
license.

• < name/ > - If this tag is omitted, Gnome Software collects the strings from desktop
menu. In some cases it might be required to have a different name in the app-store,
but most appdata.xml files will not need this.

• < summary/ > - This tag could also be skipped when vendor wants to use the same
summary as the one in desktop menu.

24

• < description/ > - The long description is an important part of the file.

• < screenshots/ > - A l l screenshots should have a 16:9 aspect ratio, and should have
a width no smaller than 620px

• < urlj > - Link to the application's homepage.

• < updatecontact/ > - If updatecontact tag is included, a notification email will be
sent when the standard is updated and metadata needs to be modified.

• < project .group/ > - The project-group tag identifies your project with a specific
upstream umbrella project. Known values include G N O M E , K D E , X F C E , M A T E
and L X D E .

3.8 OSTree Use Cases

With OSTree one can utilize any build system he/she likes by exporting filesystem into it on
a build server. OSTree repository can be therefore exported and shared via static H T T P .
Each workstation can be synchronized by running ostree admin upgrade command. The
new content will be put into newly created root directory that will replace the old one after
reboot. This provides fully atomic upgrades. Any changes made to /etc are propagated
forwards, and all local state in /var is shared [3].

OSTree saves snapshots of packages installed on your system like C V S and maintains
Yum configuration in J S O N files as well. This tool's purpose is completely different from
applications mentioned above and its database is very specific. The data stored are not sin
gle package metadata but rather a collection of files installed including U N I X permissions.
It will not be considered anymore in the rest of the document.

25

Chapter 4

General Design Of Unified
Software Database

This chapter introduces the general design scheme and A P I of USD that bases itself on the
previous chapter about storages used by package managers nowadays. I will go through the
additional requirements and features that USD should support. Last but not least I will
cover the database structure and database engine candidates.

My purpose is to make a consistent storage with a convenient A P I that could be used
easily by any package manager. Rewriting package managers to utilize USD is not part of
my job. The rise of USD will extend over several epochs so that applications could accustom
little by little to small changes when every release will take over a new portion of data.

The first milestone (the USD part covered in this thesis) will be merging yumdb and
the history database (see 4.1). The current database holds many redundant data and is
missing some critical information (reason field in transactions). The new yumdb will slightly
integrate with the history database, making it possible to execute more complex queries.
This way we can save the world from having another package handler. From the user's point
of view, all fields from trans_data_pkg, pkgtups and yumdb will be able to be accessed in the
same manner. Note: this phase is mainly focused on D N F but still considering PackageKit
and Yum. The design will be as much general as possible and not bound to R P M package
type.

4.1 Specifications

As has been said, USD should be one central database on the system that will be used
by all package managers. It should be able to process multiple transactions from different
sources of packages. Moreover, each program can utilize USD as an application-related
data storage with no modification made in USD source code.

There is a list of key points (mostly from R P M) that should be kept in mind regarding
the central database. Note that they contradict one another - one can't be fully accom
plished without sacrificing the others.

• Primary R P M database (Packages) must remain to allow for verification of the signa
tures. That means allowing some redundancy. On the other hand fields not needed
by majority of programs don't have to be stored in USD. They can be only referenced
by installed ID but fully accessible from USD A P I .

26

Use

Createrepo files

Use

"Use

Use- - > RPMDB
•

7^

" -Use . . .

A
Use

'/
DNF

I 4

PackageKit

Use

Use

•Use- Hawkey + Libsolv

..Use'

_ server repository

Use
V

Solv files

Figure 4.1: Package managers interaction between storages after the first USD's milestone

• Concurrency issues need to be considered. Traditional one writer or many readers
scheme doesn't really cut it as people (and various applications and daemons) expect
queries to work while system is being updated or software installed.

• USD has to be able to survive execution of chroot() command R P M uses when in
stalling packages. External on-demand started db server process would have the
benefit of being immune to chroot.

• Schema upgradability needs to be planned for the storage from start. For that reason
choosing the right storage engine is critical.

• The fact that R P M is written in C and uses exact interface to R P M D B have to be
kept in mind.

I will try to a find compromise between a tool for storing general packages and one
more oriented for speed. There are performance demands from PackageKit. Cold cache
measurements can be up to 800ms in all cases, but for starting Gnome Software this would
be ideally following:

• Getting the origin (the source the package was either installed from, or last installed
from) of 2500 packages: 400ms

• Getting the origin of one single package: 40ms

27

• Setting the origin,uid,dep/user,any-other-required-data of 200 packages: 2000ms

• Setting the origin,uid,dep/user,any-other-required-data of 1 package: 200ms

• Getting the transaction data (i.e. when installed/removed and every time the package
was updated) of one package: 50ms

To avoid name conflicts when multiple applications write data to the same field and
each of them expects the field to gain different types of value, the name of the field should
have the prefix of the application that creates it to make the key unique.

USD can be accessible from cli. That will be used primarily for general information
purpose by system administrators and package manager application developers. It will be
focused on printing stats and removing necessary fields rather than querying database for
a particular package. That is going to be the purpose of USD's C/C++/Python API that
will have an object-oriented design.

As was seen in the analysis previously, package management programs tend to search
record by special value and these values were indexed in SQLite files. There should be also
support for creating custom indexes.

4.2 Database design scheme

There is a list of tables and fields in which the new concept differs from the current solution.
The whole refactored database scheme is in picture 4.2:

• Trans skip-pkgs and trans-RPMDB_problems records are not read or written within
D N F thus can be ignored in new database design.

• Trans-beg and trans-end should be a single record that will be updated when a trans
action is completed.

• Trans-comandline is related to the entire transaction so there is no need to duplicate
it for each trans.datajpkg. It could be an attribute of new transaction table as their
relationship is of cardinality 1:1.

• There is no need to duplicate data from yumdb to pkg.yumdb table. The records
needed to be logged forever will be moved to transaction. The other fields will remain
in yumdb only.

• Trans-error and transscriptstdout hold the same data, they could be merged and
distinguished by a type flag.

• The critical information that should stay the same (reason and group) will be moved
to trans-datajpkg. Together with transaction records, these will remain on the system
forever - as long as Y u m / D N F does.

• Pkgtup will hold package identifier (N E V R A for R P M packages) in name field and
type flag to discriminate between wide variety of package types. The other fields will
be no longer used.

• Trans-data-pkg should store a pair of packages that are in relation instead of two
separate package transaction records. We will log package transformation instead

28

of the exact state of a package at one moment. E.g. for upgrading and down
grading a package, the row will be ('upgraded'/'downgraded', new_package, previ-
ous.package) instead of (previous-package, 'upgrade'/'downgrade') and (new.package,
'upgraded'/'downgraded'). For 'install' or 'erase' states the package relation could be
filled with information which package obsoleted it or which package required it, respec
tively. That way less total fields will be saved on disk when a majority of transactions
are update processes.

These are rules how the tuple (state, pkg, reason, pkg) representing package transaction
will be stored based on action:

• ('erased', erased.pkg, 'user', null)

• ('obsoleted', removed.pkg, 'dep', which_obsoleted)

• ('installed', installed.pkg, 'user', null)

• ('installed', installed.pkg, 'dep', which_requires)

• ('downgraded', downgraded.pkg, _, from_pkg)

• ('upgraded', upgraded_pkg, _, from.pkg)

• ('reinstalled', reinstalled_pkg, _, null)

To summarize, here are all the changes made for tables and their values in database
structure:

• transaction (merged trans-beg and trans-end)

+ commandline

• trans_data_pkgs

+ package in relation

+ reason

+ group

— rpmdb keys

— commandline

• yumdb

— reason

— group_member

— installed_by

+ rpmdb keys

• pkgtup

+ type

— arch

— epoch

29

— version

— release

— checksum

• trans_output (merged transscriptstdout and trans-error)

+ type

— trans_skip_pkgs

— trans_cmdline

— trans_prob_pkgs

— pkg_RPMDB

— pkg_yumdb

+ repos

+ groups

A d d o n data

Addon data files consist of key-value pairs. The total count of keys and their key names is
usually the same across all transactions. The only record regularly changed is the comman-
dline which is stored also in the transaction itself. Addon data part is the most problematic.
It is not a general solution but very specific to D N F and even the data itself are not crucial
for D N F . In the meantime the file database could remain and later could be refactored to
store the difference of configurations between transactions or eventually dropped.

4.3 Features

Transaction and all transaction related data (trans-with-pkgs, trans-data-pkgs, trans-output,
pkgtups) can be modified only by transaction handler that created the transaction, not by
a handler obtained from queries. The only data that can be changed/added from queries
handler are the ones in yumdb.

Pkgtup can be dynamically expanded and by default will store all the data that were
originally in yumdb (except reason field) plus additional info from R P M D B table. The
R P M D B keys are used only for information output about packages on user demand. They
can be dropped in future with no harm done.

Pkgtup can be created anytime and will be created automatically when writing addi
tional data and no record of that package exists in the database yet.

USD could be utilized as a storage for all additional package metadata, no matter what
package type it is. To avoid repeated setting of the field with package type when creating
a package object or in the query filter, applications that handle only one type of package
format can pass the defaultJype parameter to the constructor of USD to make this field
set implicitly.

30

repos
rid

name
last_synced
is_expired

yumdb
pkgtupid

trans_data (did)
from_repo_revision

from_repo_timestamp
releasever

changed_by
checksum_data
checksum_type

installonly
origin_url

from_repo (rid)
installed_by

pkg_RPMDB_keys

pkgtup
pkgtupid

name
type

transaction
tid

beg_timestamp
end_timestamp
RPMDB_version

cmdline
loginuid

return_code

trans_with_pkgs

Figure 4.2: New database scheme of history database and yumdb for Yum, D N F and
PackageKit

.'31

4.4 API

USD will be written in C++. Since primary user will be DNF, the A P I will be accessible
from Python. The query syntax will be inspired by Django Query methodology []. The
reason why we can't reuse Django's code is because it should be accessible by PackageKit
as well. The Python scripts can be executed from C but this is not a clean solution that
would fit into PackageKit's speed limits. From C++ code base, C bindings can be done
easily.

The exact USD public C++ A P I with detailed description is explained below:

• class Swdb - handler to USD

— Swdb(string db_path="var/lib/usd" , int default_pkg_type=RPM_PKG,

vector<string> actors) - constructor

* db.path - from where database should be opened or where new database
should be created

* default_pkg_type - Search or insert records only with the same package
type. If zero is set all queries will run against all kinds of packages (can be
explicitly filtered in query afterwards).

* actors - N E V R A strings of package managers that are responsible for fol
lowing transactions.

— Record record (string table_name) - Returns new Record object that could
be inserted to table named table-name as a row after setting fields and firing
save method.

— Query query (string table_name) - Returns new Query object. Results will
be from the table-name table only.

— create_index(const string& table_name, const stringfe field_name,

bool unique=f alse) - create index on frequently searched field that could have
been created on demand.

* f ield_name - column that should be indexed
* table_name - table where the column is
* unique - create unique (true) / normal (false) index

• class Record - class representing row to insert, update or delete. Object ensures
database consistency whether mentioned operation is allowed or not. Object must be
initialized from Swdb method.

— bool is_in_db () - Returns True if the record is already in database else returns
False.

— bool is_changed() - Returns False if object is stored in database with the same
values as it holds now, otherwise returns True.

— int id() - Returns id of the record or -1 if item is not present in database.

— bool set (const string& key, int value) - For all append and set methods
stand: new fields are not pushed into database (see save method) and return
False in the case that column type is unlike given value type, key contains non-
alphanumeric character or '_id', record is trying to be updated in protected table
or database connection error occurred.

32

— bool set(const stringfe key, const stringfe value) - Sets new key with
value or updates value for given key.

— set (const string& key, vector<Record> records) - Insert records from
vector into neighbor table having many-to-one relation to origin record table.
Erase all existing connected rows in foreign tables.

— bool append(const string& key, Record record) - Same as previous method
except all existing records are not replaced with the new ones appended.

— bool get(const string& key, int& value)

— bool get (const stringfe key, stringfe value) - Return False if column in
table does not exist or database error happens. Otherwise return True and assign
attribute of the record to value.

— bool save () - Returns False when database error occurs or commits all fields set
or appended to database and returns True. Each appended record will implicitly
call recursively save method itself. For every unknown key new column will be
added to the table.

• class Query - class required for reading data from database. It includes iterator
class inside that is inherited from STD input-iterator. Object must be initialized
from Swdb method.

— filter(const stringfe path, string value, int value_flags) - Sets con
dition of sought rows. When query is executed iterator will run through records
that met all filter criteria. Any number of filters can be applied on a query.

* path - Optional table names, that are in relation, ending with required
column name. A l l the names are separated by dot.

* value - value that should match column (last item of the path).
* value_flags - should be one of E Q (value equal), N E Q (not equal), G T

(greater), G T E (greater or equal), LT (less) or L T E (less or equal) compara
tors and any of I C A S E (match case insensitive) and G L O B (match column
against glob search pattern).

— Record operator [] (int n) - runs the query and return n-th record that suc
ceeds on all the filters.

— iterator begin() - returns iterator over Records of the query

— iterator end() - end of iterator

The A P I of USD is objectively more general while providing more expressive power
than the very specific methods in historydb. One can query literally for anything via one
class and one method. The quantity of functions is replaced with fewer methods that are
enhanced by parameters they take. Moreover, the core of USD will also take care that
nobody overrides protected fields.

Below are USD code snippets that will be called from D N F for certain task:

• Get reason of the last transaction of the package. If the package reason does not exist,
the next transaction will be fetched. This case is not trivial with historydb - joining
tables has to be done by hand and only for tables that have implemented methods
for accessing their fields.

33

usd.query("pkg_change").filter(reason neq=None, pkg name=<NEVRA>)[-1]

• Get the first transaction (historydb. old(' 1') [0])

usd.query("transaction")[0]

• Get the last transaction (historydb.last())

usd.query("transaction")[-1]

• Get last n transactions that contain given transaction ids (historydb.old(tids,
limit=n))

usd.query("transaction").filter(tid=tids)[:n]

Note: when the value passed to the filter is a List type, USD will try to match field
of row to any object of the sequence.

4.5 Overview Of Storage Options

In this section I will analyze various types of database engines. I am trying to find the best
storage that fits USD needs.

S Q L

The storage engine for our case should be as lightweight as possible, but the majority of
relational databases utilizes a server that runs on a specific port. Only a few of them
are embedded and mature enough for this project, SQLite and M y S Q L embedded. The
advantage of SQLite is the fact that it is installed on most distributions by default.

Relational attitude doesn't suit best for columns filled with data only in small amount
of rows.

Security of the fields could be provided using views, although views in SQLite are read
only. That means special A P I should be created and deprecate SQL commands.

Key-value Store N o S Q L Databases

The database is a simple data file containing records, each is a pair of a key and a value.
Every key and value is serial bytes with variable length. Both binary data and character
string can be used as a key and a value. Each key must be unique within a database. There
is neither concept of data tables nor data types. Records are mainly organized in hash table
or B + tree. In this category belongs Berkeley D B - current R P M database backend.

• MongoDB is a cross-platform document-oriented database system. It eschews the
traditional table-based relational database structure in favor of JSON-like documents
with dynamic schemes.

The features are:

— search by field

— regular expression searches

34

— MapReduce for batch processing of data

Using MongoDb as USD storage would be the most convenient solution. A l l custom
and main fields would be retained in one object with support of powerful queries
above all of them.

The downside of MongoDB is the inability to hide and protect key data from overwrit
ing and running server is required. The biggest drawback of this storage is the absence
of transactions. That would lead to inconsistency of the database [7]. Moreover it is
over 90Mb of additional dependency.

The next representatives in subsections are all embedded and provide transaction oper
ations.

• Kyoto Cabinet, the next USD database engine candidate, attains performance im
provement in retrieval by loading the whole of the bucket array onto the R A M . The
bucket array saved in a file is not read into R A M with the read call but directly
mapped to R A M with the mmap call. Therefore, preparation time on connecting
to a database is very short, and two or more processes can share the same memory
map [11].

The extension Kyoto Tycoon is provided for concurrent and remote connections to
Kyoto Cabinet. Kyoto Tycoon is composed of the server process managing multiple
databases and its access library for client applications. The server and its clients com
municate with each other by H T T P RESTful interface. In addition, several operations
are available in an efficient binary protocol [12].

The features are:

— read/write locking by records

— storage selection: onmemory, single file, multiple files in a directory

— MapReduce functions that can be executed parallel using multiple cores

— prefix/regex matching

• UnQLite is a standard key/value store with a rich feature set [18].

The features are:

— support for on-disk as well in-memory databases

— built with a powerful disk storage engine which support 0(1) look-up

— thread safe and full re-entrant

— concurrent reader support

• LevelDB is a fast key-value storage library written at Google that provides an or
dered mapping from string keys to string values. It is mainly optimized for parallel
writing [6].

The features are:

— Users can create a transient snapshot to get a consistent view of data.

— Forward and backward iteration is supported over the data.

— Data is automatically compressed using the Snappy compression library.

35

— External activity (file system operations etc.) is relayed through a virtual inter
face so users can customize the operating system interactions.

Unfortunately, LevelDB doesn't allow more than a single instance of the database to
be open. A l l of the options are for a single process.

• L M D B is an ultra-fast, ultra-compact key-value data store utilized in OpenLDAP
Project. It uses memory-mapped files, so it has the read performance of a pure in-
memory database while still offering the persistence of standard disk-based databases [17].

The features are:

— Fully transactional, full A C I D semantics

— Readers don't block writers and writers don't block readers. Writers are fully
serialized, so writes are always deadlock-free

— Supports multi-thread and multi-process concurrency

— Memory-mapped, allowing for zero-copy lookup and iteration

— Provides in addition many database forks (SQLite, B D B , . . .) that uses L M D B
as a backend while preserving the original A P I .

L M D B should be the fastest for random and sequential read of all storages mentioned
above, however, it is a pretty new project that offers only commercial support.

Wi th SQLite we would gain features like indexes and easier connection between enti
ties for free - we won't have to reinvent a wheel. By doing so we will also attract more
applications to utilize our storage thanks to the independence of any other storage library.

4.6 Implementation Details

Due to the fact that USD A P I is inspired by Django queries [2], user doesn't need to
join tables. He/she actually doesn't manipulate SQL command strings at all. The SQL
instructions are constructed internally from query path. For example, the following directive

Query q(db, "t3");

q . f l i t e r (
M

t 2 . t l . t I f 1", "val", EQ);

is translated into

SELECT t3.* FROM t3

JOIN t2 ON t3.t2 = t2._id

JOIN t l ON t2._id = tl.t2

WHERE t l . t l f 1 = 'val';

To make it work, table relations need to be configured during USD initialization. After
query execution, the validity of the path is checked. Note: Queries are lazily evaluated.
SQL commands are built from all filters applied on Query when the results are demanded,
i.e. when operator[] or begin method is called. Eventually, database transaction is executed.

The implementation language of USD is C++. To create bindings to Python, so that
D N F and Yum can use it, there are plenty ways of doing this. The most common way is
to write a lot of redundant code in Python C A P I like Hawkey, librepo and libcomps does.

36

A more convenient solution is to declare which functions, classes and their methods should
be exposed to Python and automatically wrap the original code to make it accessible from
other languages. Swig is a good example of such tool that can generate bindings to dozens
of languages from C / C + + code base. Another option is Boost-Python that belongs to
Boost libraries family although it doesn't require any of them for runtime. Only Boost-jam
(Boost configuration and build tool) is needed for a build. Boost-Python can be linked
statically or dynamically, whatever is preferred. I chose dynamically linked Python-Boost
in USD project to make the work of exporting interface easier.

To follow the same manner of USD's siblings (Hawkey, Libsolv, Librepo, Libcomps,
DNF) , the project build is managed by CMake that should check the prerequisites and
generate Makefile.

37

Chapter 5

USD Testing

This chapter is focused on benchmarking of USD and yumdb.

5.1 Policy Of Measurements

In test cases I am comparing yumdb and USD part for storing direct package metadata.
Since historydb and USD both utilize SQLite as a backend, it is pointless to perform a
comparative analysis.

The test scripts were written in C++ and measured with chrono library from the all-
embracing C++11 standard. The procedure of benchmarking was following:

• List of installed packages' N E V R A names on my system is obtained by executing
rpm - q i command, then records were shuffled and first n names temporary stored.

• The names are appended into vector

• Timer is set

• Loop for querying/writing items from/into USD/yumdb is fired.

• Calculation the execution time (user) of the loop

• This procedure was repeated ten times from step three and minimal time was counted
as final result.

Every operation will be tested for 50, 200 and 3500 records for both USD and yumdb.
Wi th regard to chosen numbers, the fifty packages set is the smallest set providing relatively
accurate measurements. This is the average package count when installing new software
that has a lot of dependencies out of Fedora's pre-installed package set. 200 records will be
queried for a match in USD usually during update that is done on weekly basis. The largest
number is the total number of all installed packages on my system during its lifetime. Note
that in real, packages will be filtered by Libsolv at first then put into USD query for extra
metadata information.

Benchmarks should figure out whether PackageKit performance requirements are satis
fied. Yumdb is tested just out of curiosity and it doesn't really compete with USD, only to
give us some perspective of how long the operation usually takes. Speed is not USD's top
priority as long as it is not super slow.

38

At the end of each test case is a sheet with measured values. In Summary Of Test Cases
section 5.6 are these measures in graphs, collected and aggregated by number of packages
the benchmark was run on.

A l l tests were conducted on a machine with 7.5GB R A M , Intel Core i7-3520M 2.9Ghz
per core, 4 cores total, hard drive of 7200 rpm. Filesystem had ext4 partitioning and sqlite3
of version 3.8.3 was installed.

5.2 Read Performance

The database was filled with 3500 N E V R A records as name and for each, the reason of
package installation was additionally supplied that was constant for all of them - 'user'.

50, 200 and 3500 random N E V R A samples were randomly searched by name for reason
tag within USD and Yumdb. The process was applied to warm cache and cold cache
separately. Before every cold cache read measurement, this command was executed to free
both page cache and dentries cache.

sync ; echo 3 I sudo tee /proc/sys/vm/drop_caches

Results can be seen in the next two tables. According to the numbers YumDb outper
forms USD even with indexed name column. Indexed USD was about eight times faster
that its non-indexed version only for read of 3500 records.

number of packages \database USD (indexed) USD yumdb
50 0.003 0.002 0.001

200 0.008 0.011 0.001
3500 0.139 1.048 0.017

Table 5.1: The execution time of read (warm cache) operation in sec.

number of packages \database USD (indexed) USD yumdb
50 0.005 0.005 0.004

200 0.009 0.009 0.018
3500 0.153 1.066 0.076

Table 5.2: The execution time of read (cold cache) operation in sec.

5.3 Write Performance

This performance test should be analogous to setting metadata for packages which were
verified after installation. The insertion of 50, 200 and 3500 records were measured.

In the table 5.3 the time difference between storages is significant. In Yumdb time sheet,
the results are linear to number of records whereas the trend in USD is likely logarithmic.

39

file:///database
file:///database

number of packages \database USD yumdb
50 0.002 0.011

200 0.002 0.022
3500 0.006 0.239

Table 5.3: The execution time of write operation in sec.

5.4 Erase Performance

The whole USD and yumdb environment made in previous test case for 50, 200 and 3500
records was timed for complete database purge.

The deleting of USD took almost zero milliseconds in any case while in yumdb for 3500
items it lasted 30 milliseconds.

number of packages \database USD yumdb
50 0 0

200 0 0.001
3500 0 0.033

Table 5.4: The execution time of erase operation in sec.

5.5 Disk Space Taken

In this section the amount of disk space USD and yumdb takes for 50, 200 and 3500 items
is examined. The capacity of storages from write performance check 5.3 is measured in
bytes.

As it may seems on first impression that yumdb is wasteful in sense of storing values in
separate files, from tables 5.5 can be seen that SQLite takes up even more space.

number of packages \database USD yumdb
50 12288 416

200 19456 1708
3500 178176 28320

Table 5.5: The total disk space taken by databases in bytes

5.6 Summary Of Test Cases

The performance of databases is more or less at the same speed as for cold cache reads.
Yumdb is better in warm cache read operations while taking less disk space. On the other
hand, USD is faster in inserting records into database and their deleting.

40

file:///database
file:///database
file:///database

From statistically collected measurements it was ascertained that USD's execution for
read procedure is not blazingly fast but still sufficient. That could be eventually an argu
ment for Package Managers to abandon USD. In that case some optimizations need to be
considered.

When USD is ready for production, profiling PackageKit and D N F for install, removal
and update transactions targeting on database part will be essential.

These graphs are collected from previous tests to provide better visual comparison.

12

• USD
• yumdb

read (warm cache) read (cold cache) write delete

tested operations for 50 records

Figure 5.1: Benchmarks for 50 records

41

25

• USD
• yumdb

read (warm cache) read (cold cache) write delete

tested operations for 200 records

Figure 5.2: Benchmarks for 200 records

300

• USD
• yumdb

read (warm cache) read (cold cache) write delete

tested operations for 3500 records

Figure 5.3: Benchmarks for 3500 records

42

Chapter 6

Summary

This chapter should summarize the thesis. What was done and what could be done better
will be discussed. I will go through the future of USD as well.

6.1 The Future Of USD

Conversion from yumdb and historydb to USD is in DNF's roadmap and its absence blocks
several issues from being solved. Pul l request of USD for D N F was created. Now some
adjustments and more test cases from D N F should be added to USD. The plan is that
Fedora main repository will host usd, python-usd and usd-devel packages to enlarge the
package management ecosystem.

After a successful era of trouble-free functioning of USD as DNF's main storage, more
focus on C part will be made and then PackageKit should start using it.

Yum should use USD at the same time as PackageKit. There is a possibility that Yum
will not adapt to the new trend at all as it is marked as obsolete.

In the next phase, either a thin A P I should be created above USD and R P M or the access
to R P M transactions from within USD should be implemented to eliminate occurrence of
R P M transaction that is not logged into transaction history.

The last move will be refactoring R P M D B . B D B ' s license is changing and new data
storage should replace the current solution sooner or later. The final solution of USD is
represented in picture 6.1. It would be great as a general solution for all kinds of packages
and it would save Package Managers a lot of trouble for taking care of database but will be
hardly deployed. It would replace R P M D B , createrepo files, history database and yumdb
at once. This ambitious plan would require a huge portion of changes in R P M code base.
In appendix A is a preview what A P I should contain to be package-type agnostic. The
user should be able to operate with five base classes: Application, Relation, Repo, File and
Directory. These classes store commonly used attributes across package types. Any more
specific category defining the new fields has to be derived from the base class. By doing
this we can manipulate different data sources uniformly.

43

Use

Use

RPMDB YUMDB

USD

Createrepo files

7T

History

Use Use

Package Kit

Use

Solv files Use

Use
Use

< - Use

Figure 6.1: Ideal package managers interaction using USD

6.2 Possible Improvements

I can focus on optimizations, especially speeding up the read operation. Some improvement
could be accomplished by switching from SQLite to SQLightning which utilizes L M D B as
storage engine. The creators of SQLightning claim that it's three times faster than SQLite3
for random reads. Aside from performance part, a little bit of A P I changes based on sane
arguments from package managers will be inevitable. Only time will tell which. However,
the idea of logging all package changes to USD, database structure and base A P I for queries
will remain in any case.

6.3 Conclusion

Although USD has deflected from the original plan of storing all package metadata and
replace R P M D B , its current implementation is still necessitous for high-level package man
agers. The importance of this thesis consisted in determining a usable A P I to univer
sal extensible storage. USD maintains package transactions logs; package, repository and
groups additional data that couldn't be stored in R P M D B . The core package data are still
maintained by R P M . Hopefully, the replacement of R P M D B and unifying with USD will
arise.

It will take a while before it is adopted by most package managers. I will write a 'how
to start with U S D ' document and optionally make patches for other package management
tools, besides DNF, to ease the translation.

Aside from DNF, Yum, PackageKit, OSTRee and Gnome Software; some release engi
neers could be interested in USD for their projects. USD is package-type agnostic and can
be utilized for instance on Debian based operating system. I am open to adding features

44

according to additional sudden requirements as well.
USD has A C I D operations and its performance is enough for brief start of Gnome Soft

ware and PackageKit applications. D N F cares rather about A P I convenience and getting
rid of ancient Yum's code.

To Summarize, USD accomplished goals it was created with and it will be ready for
production once patch proposal is accepted by DNF, then it will be marked as DNF's
dependency and added to Fedora main repository.

45

Bibliography

[1] Edward C. Bailey. Maximum RPM. Red Hat Inc., 2600 Meridian Parkway, Durham,
N C 27709, 2011.

[2] Django Software Foundation. Django documentation.
h t tps : / /docs .d jangoproject .com/en/dev/ topics /db/quer ies / , 2013. [Online].

[3] Gnome. Ostree. h t tps : / /wiki .gnome.org/Projec ts /OSTree , 2014. [Online].

[4] Richard Hudges. Gnome software. h t tps : / /wiki .gnome.org/Apps/Software , 2013.
[Online].

[5] Richard Hudges. Packagekit. h t tp : / /www.packageki t .o rg /pk- in t ro .h tml , 2013.
[Online].

[6] Google Inc. Leveldb. h t tps : / / code .google .eom/p/ leve ldb / , 2013. [Online].

[7] MongoDB Inc. Mongodb manual.
http://docs.mongodb.org/manual/faq/fundamentals/, 2013. [Online].

[8] Red Hat Inc. Yumdb - yum. ht tp : / /yum.baseur l .org/wiki /YumDB, 2012. [Online].

[9] Red Hat Inc. Rpm package file structure.
h t tp: / /docs . fedoraproject .org/en-US/Fedora_Draf t_Documentat ion/0.1/
html/RPM_Guide/ch-package-structure .html, 2013. [Online].

[10] Red Hat Inc. Software collections.

h t tps : / / f edorahos ted .o rg /Sof twareCol lec t ions / , 2013. [Online].

[11] F A L Labs. Kyoto cabinet, h t t p : / / f a l l abs . com/kyo tocab ine t / , 2013. [Online].

[12] F A L Labs. Kyoto tycoon, h t t p : / / f a l l abs . com/kyo to tycoon / , 2013. [Online].

[13] Jan Nový. Beer, h t tp : / / source fo rge .ne t /p ro jec t s /bee r / , 2014. [Online].

[14] Fedora Project. Fedora project.
h t tp : / / f edoraproject .org/wiki /PackagingDraf ts /Epoch, 2009. [Online].

[15] The Chromium Projects. Chromium os autoupdate. http://www.chromium.org/
chromium-os/chromiumos-design-docs/autoupdate-details, 2014. [Online].

[16] Michael Schroder. Libzypp satsolver.
h t tp : / / e n . opensuse. org/openSUSE: Libzypp_satsolver , 201. [Online].

[17] Symas. Lmdb. http://symas.com/mdb/, 2013. [Online].

46

https://wiki.gnome.org/Projects/OSTree
https://wiki.gnome.org/Apps/Software
http://www.packagekit.org/pk-intro.html
https://code.google.eom/p/leveldb/
http://docs.mongodb.org/manual/faq/fundamentals/
http://yum.baseurl.org/wiki/YumDB
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/
https://fedorahosted.org/SoftwareCollections/
http://fallabs.com/kyotocabinet/
http://fallabs.com/kyototycoon/
http://sourceforge.net/projects/beer/
http://www.chromium.org/
http://symas.com/mdb/

[18] Symisc Systems. Unqlite. h t t p : / / u n q l i t e . o r g / , 2013. [Online].

[19] Jan Zelený. Design of new rpm database. Master's thesis, F IT V U T v Brně, 2010.

47

http://unqlite.org/

Appendix A

USD Future C++ API

• class Db - Db is the main class for access to the database,
public:

— Db(string& namespace) - Namespace is typically program's name that is call
ing the constructor.

— bool close() - Close the database and commit all changes. Return false in
case of error.

— void begin_transaction(. . .) - Anything written after this line will not be
stored into database t i l l end-transaction() will be executed. Parameters are
strings of namespace where the fields will be modified.

— void end_transaction() - Commits changes that were made between this line
and the begin_transaction() command.

— void discard_transaction() - Discard changes that were made between this
line and the begin_transaction() command.

— int last_synced(app_type type) - Return time in U T C of last synchroniza
tion with master database or remote repositories. For example if type is
R P M _ P A C K A G E , it will return time of last checking the R P M D B and reposi
tories with librepo.

— bool f orce_sync (app_type type) - Synchronize immediately with master
database of given type. Return false if an error occurred (e.g. no internet
connection to fetch remote repository).

— Entity<Application> apps()

— Entity<File> files()

— Entity<Directory> dirs()

— Entity<Repo> repos()

• class Entity - Entity class represents base classes,
public:

— Entity(stringfe f i l e) - Argument is path to file.

— int last_modif ied() - Return U T C of last modification. Application that
make own cache database from USD can take advantage of this.

— int size() - Return number of stored records.

48

— Query<T> query()

— bool create_index(string key)

— bool delete_index(string key)

class Query : public std: : iterator<std: : input_iterator_tag, T> - Query
is an iterator that can access sequentially to all records that satisfy the condition,
public:

— Query(Condition)

— Query(const Query&)

— Queryfe operator++()

— Query operator++(int)

— bool operator==(const Query& rhs)

— bool operator!=(const Query& rhs)

— T& operator* () - Returns the record of certain class.

class Condition - This class is used for merging two Conditions together,
public:

— operator&(Condition)

— operator|(Condition)

— and(Condition)

— or(Condition)

class Match : public Condition - Match is used for searching records whose
specific key equals certain value,
public:

— Match(string key, int val)

— Match(string key, string val)

— Match(base_field f i e l d , int val)

— Match(base_field key, string val)

class NotMatch : public Condition - NotMatch is used for searching records
whose specific key not equals certain value,
public:

— NotMatch(string key, int val)

— NotMatch(string key, string val)

— NotMatch(base_field f i e l d , int val)

— NotMatch(base_field key, string val)

class CustomData - It is an interface that allow write custom data to any base class,
public:

49

— void set_custom(string& key, int value, override = true) - Set int
value with given key into implicit namespace (Db class constructor parameter).
If override is set to false and some value with given key exists then value remains
unchanged.

— void set_custom(string& key, stringfe value, override = true) - Set
string value with given key into implicit namespace (Db class constructor pa
rameter). If override is set to false and some value with given key exists then
value remains unchanged.

— void set_custom(string& namespace, string& key, int value,

override = true) - Set int value with given key into explicit namespace. If
override is set to false and some value with given key exists then value remains
unchanged.

— void set_custom(string& namespace, string& key, string& value,

override = true) - Set string value with given key into explicit namespace. If
override is set to false and some value with given key exists then value remains
unchanged.

— bool get_custom(const stringfe key, int& value) - F i l l value and return
true if key in implicit namespace exists, otherwise return false.

— bool get_custom(const string& key, string& value)

— bool get_custom(const string& namespace, const string& key,

int& value) - F i l l value and return true if key in namespace exists, otherwise
return false.

— bool get_custom(const string& namespace, const string& key, string&

value)

— void remove_custom_int (const stringfe key) - Remove int value of given key
from implicit namespace.

— void remove_custom_string(string& key) - Remove string value of given key
from implicit namespace.

• class Application : public CustomData - Base class Application is prototype
for all types of packages,
public:

— int typeO - type of application, E.g. R P M _ P K G , D O C K E R J M G , . . .

— string name()

— string version()

— string descriptionO

— string group()

— int version.cmp(string version)

— int size()

— int state () - can be I N S T A L L E D , N O T J N S T A L L E D , I N S T A L L I N G , . . .

— string arch()

— string author()

— string license()

50

— vector<File> files()

— vector<Directory> dirs()

— vector<AppRel> provides()

— vector<AppRel> requires()

— vector<AppRel> conflicts()

— vector<Repo> repos()

— string uninstall_script () - uninstall command of application

• class RpmPackage : public Application - RpmPackage is a specific package de
rived from base class Application.
public:

— int transaction_id() - id of package set it was installed with

— int install_id()

— vector<AppRel> obsoletesO

— string release()

— int epoch()

— string url()

— string summary()

— string signature()

— int evr_cmp (RpmPackage other) - Compares epoch, version and release with
other package. Returns 0, -1, 1 if this package is equal, less or greater than other
package respectively.

— operations with headers that will be wrapped above R P M

• class AppRel - AppRel is base class that represents dependency between packages,
public:

— int type() - type of AppRel (probably never needed, reserved for potential
future usage)

— Application latest_same_arch() - Get latest application of all application
in relation that fulfill type, what, version and arch condition. Architecture of
returned record will be same as user's machine processor.

— Application latest () - Get latest application of all applications in relation
that fulfill type, what, version and arch condition.

— int comparator () - Returns LESS, L E S S _ E Q U A L , E Q U A L ,
G R E A T E R J E Q U A L or G R E A T E R .

— int flags () - type of dependency, etc.

— string what() - name of application in relation

— string version()

— string arch()

• class Repo : public CustomData - Repo is base class representing repository
from where the application can be downloaded.
public:

51

— int type()

— string url()

— string nameO

• class Directory : public CustomData - Base class holds information of appli
cation's directory.
public:

— int type()

— string name()

— int attributes () - directory ownership

— vector<File> files()

— vector<Application> applicationO - Returns all applications that share
this directory.

• class File : public CustomData - Base class represents information of applica
tion's file.
public:

— int type()

— string name()

— int attributes () - file ownership

— Directory dir()

— vector<Application> applicationO - Returns all applications that share
this file.

52

