VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

N\

FAKULTA INFORMACNICH TECHNOLOG!i
USTAV POCITACOVYCH SYSTEMU

N\
FACULTY OF INFORMATION TECHNOLOGY

:[II DEPARTMENT OF COMPUTER SYSTEMS

7

HTTP PROTOKOL PRO VYUKOVOU HW/SW
PLATFORMU FITKIT

HTTP PROTOCOL FOR TEACHING HW/SW PLATFORM FITKIT

BAKALARSKA PRACE
BACHELOR'S THESIS

AUTOR PRACE ISTVAN JOBA
AUTHOR

VEDOUCI PRACE Dr. Ing. OTTO FUCIK
SUPERVISOR

BRNO 2009

Abstrakt

Cilem bakal&ské prace je implementovat protokol HTTP pro vyukowlatformu FITkit. Po
piedstaveni FITkitu a jehdasti se prace zatfuje na implementai detaily protokolu HTTP, jako
jsou jeho verze, zéklady komunikace, stavové hl@kysiovani klienti. Implementace je zaloZzena
na API knihovnach libfitkit a libkitclient, kteréyb vytvoieny pro FITkit.

Abstract
The goal of the bachelor thesis is the implememtatif the HTTP protocol for the FITkit teaching
platform. After introducing the FITkit and its compents, the work deals with the Hypertext Transfer

Protocol (HTTP), such as the versioning, commuitcatconcepts, status signaling. The
implementation is based on the libfitkit and lilskient APIs, developed by the FITkit team.

Kli éova slova

FITkit, HTTP, mikrokontrolér, i komunikace, libfitkit, libkitclient

Keywords

FITkit, HTTP, microcontroller, network, communiacati, libfitkit, libkitclient

Citace

Istvan J6ba: HTTP protocol for Teaching HW/SW RIati FITKit, bakalésk& prace, Brno, FIT
VUT v Brn¢, 2009

HTTP protokol pro vyukovou HW/SW platformu FITKit

Prohlaseni

Prohla3uiji, Ze jsem tuto bak&d&ou praci vypracoval samostajmod vedenim Dr. Ing. Otto Eika.
Uvedl jsem v8echny literarni prameny a publikaegkterych jsengerpal.

Istvan Joéba
27.05. 2009

Podékovani

Na tomto mist bych ch&él podkkovat mému vedoucimu Dr. Ing. Ottovi dtkiovi za odborné vedeni,
za konzultace aiffpominek, které mi pomohlyipieSeni bakat&ké prace.

© Istvan Joba, 2009

Tato prace vznikla jako Skolni dilo na Vysokétenil technickém v Ben Fakulé informatnich
technologii. Prace je chrana autorskym zakonem a jeji uZziti beZledi opraveni autorem je
nezakonné, s vyjimkou zakonem definovanyigiag:..

Contents

1070 ¢ =] 0| £ J PP 1.
N {11 o T U o4 1T o PR 2
P2 e I (S PR PP TOPPPPPPPRRPR 3
2.1 OVBIVIBW ..ttt et e e e ettt ettt e e e e e e e e bbbttt et e e e e e semnnt e e e e e e e e e e nabbbeeeeeeaee s 3
2.2 COMPONENES. ...t ottt e e e e et ettt e e e e e e ettt bt e e eaaeeeaaeeesnbbn e e eaaaeeesnnns 3
N R o = 0 11 = 3
P 110111 OO PP PPPPPPR 6
2.2.3 SOTIWAIE ...eeeeiiie ettt i ettt e e e e e ettt e e e e e e ar—nrr e e e e e e e e as 8
3 Hypertext Transfer ProtoCOl (HTTP) ... iceeeee e e e 9
3.1 L@ YT T PP 9
70t Nt R = = U ol oo] Lo =T o £ 9
3.1.2 PrOtOCOI VEISIONS.uiiiiiiiieeeeieiiit ettt e e e e ettt et e e e e e s s s bbb e e e e enssabb e e eeaaeeeeas 11
3.2 Y = 1Y LSS 13
32,1 HTTP MESSAQE. .. ittt e ettt et £+ttt e e e e e e et ee bt e e e e e e eeebenmmmssa e e aaeeaeenes 14
T (=1 o T0] PP 18
4 Design and implementationooo s ccee e 21
4.1 The relay appliCation..........oooo oo et e e e e e e e e e e e e e eeeas 21
4.1.1 Designing the communication protocolccccocoiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeee 21
4.1.2 General INAZAION.ooiiiiiee e e 22
4,13 COMPIIING i ————————————————————— 23
4.2 ComMmMUNICALION PrOTOCOLeeviiieiiiiit et e e e e e e aeeeas 23
421 Initial handshake ... 23
4.2.2 ACCEPL A CONNMECLIONuuuueiiiiieiiee s s emmmmmme e e et e e e e et e ettt e et et e et e e e e e e eeeeeesaaeaaeeaaaeaaaaaeaeeees 24
4.2.3 ClOSE CONMNECTIONuuiiiiiiieeeeeisiiitttieeeeeer et e e e e e e e s s bbbt e e e e e e e e s s s sab bbb e e e e e s annnnbsneeeeaeas 24
S L= = (o [=T o U] 24
T S 11 0T o - - PR 25
4.3 T @ YU 015311 1= 1 4 PP 25
4.3.1 FUNCHON INIE_NEIWOIKutiiiiiiiiiiiii e e e e e e e e e e e e e e 26
4.3.2 FUNCLION ClOSE _CONNECHION........iieiiiueee s s s e e e e e e eetttte s s e e e e eeaetta e e e eeeeseenrnnsannaneeeas 26
4.3.3 FUuNCtion aCCEPL_CONNECIION.ciiiiiiiieeeeee et e e e e e e e smmrre e e e e 26
.34 FUNCHON FECV ..teiiiiiiieiiiiiiiite ettt e s+ 444ttt ettt e e e e e e e e s bbbttt e e e e eettee e e e e e e e e e aannn 26
4.3.5 FUNCHON SEN...ciiiiiiiiiiiiiiie ettt ettt e e et e e e s eeet it e e e e e e e e e e e annes 27
4.4 HT TP SBIVEL ..o et e ettt e e e e e a e e as 27
R | 11 =1 2= U1 o] o PP 27
|V - 11 T o To USRS 27
4.4.3 Parsing and generating reSPONSESoviceeemmmmmiiiieiiee et e e e e e e e eeeeeeneans 28
O = V1 1] o] [SRR 29
L S @7 o[1113 o] o ISP 30

1 Introduction

In the last one and a half decade the World Widé \WéWW) and every technology inspired by it,
like the HTTP protocol, experienced an exponengabwth both in numbers of users and
devices/platform supporting or using it. With thengral technological evolution, the size of these
devices is constantly shrinking, allowing deploysmgaller and smaller WWW compliant devices,
like the FITKkit.

The FITKit project, a training platform to studyrbeare/software co-design, created at our
faculty, allows the students to gain competitivtlskn the field of embedded devices. In the seton
chapter | describe this platform: its main compdsewhat devices/peripherals are available for it,
the internal and external communication interfaeesl finally the software/firmware tools that aid
the potential developer for the platform.

The next chapter explains the history and purpdsheoHTTP protocol, describes the basic
concepts of HTTP, the communication principles, ahd main differences between protocol
versions. Also deals with the design of a simplélAM.0 compliant server developed for the FITkit,
explaining the HTTP protocol in detail: messagetaynmethod usage, transferring entities, status
messages, noting possible design changes and iempents in a further revision on the way.

In the last chapter we will see to the implemenotatletails: including details on the reduced
HTTP protocol in the application, the supported hods, the built-in sample webpage and its
resources. Also describes the protocol createdditithte communication between the FITkit and the
PC. Detailed explanation is given about the stmectof the two applications: the HTTP server
developed for the FITkit and the relay applicatiomning on a PC, transforming TCP/IP
communication back and forth to the HTTP serveis Thapter also includes the description of the
I/O interface which was created to allow the currexerial protocol based protocol to be easily
replaced by a future TCP/IP stack.

2 FITkit

Microcontrollers and embedded systems are all @rausn from a simple wristwatch to a camera or
DVD player. All these devices have one thing in coon: their hardware had to be designed and
their software had to be developed by an engineer.

The goal of introducing the FITkit platform was ¢pve the students at our faculty the
opportunity to develop and design practical prgentolving not only software but also hardware-
based applications. In this chapter we will getifeamwith this HW/SW platform.

2.1 Overview

Embedded systems are a successful and flourishiagch of IT these days, with great future
potential: its products are used in everyday hfgreat quantity.

A typical embedded system (mp3 player, TV set) etontains a microprocessor, specialized
hardware and application software. This means éveldper needs to be familiar with both software
and hardware designing and how to use this knowl@dgractice.

The FITkit teaching platform provides not simplhardware background, but also a complete
set of software tools and programming APIs forraidine beginners and thus providing a great deal
of practical knowledge and skill that a versatilebedded system engineer needs to have to be
successful and competitive at the global labor etark

2.2 Components

The FITkit teaching platform can be divided intoet main areas: hardware, firmware, software.

2.2.1 Hardware

First let's examine the electrical components.

2.2.1.1 Microcontroller

The FITkit contains a microcontroller unit (MCU)fn the MSP430 family manufactured by Texas
Instruments. In the recent 2.0 revision of the RiThe selected chip is the MSP430F2617T-rev E. It
is built around a 16 bit RISC microprocessor wittame amount of peripherals and has very low
power consumption, which makes it a great candidatelow powered and wireless portable
applications.
The MCU key features are the following [1] :
* Low supply voltage, ranging from 1,8 V to 3,6 V
e Ultra low power consumption
0 - Active mode: 365 A @ 1MHz, 2.2V
0 - Standby mode (VLO): 0.5 pA
0 - Off mode (RAM retention): 0.1 pA
e 16-Bit RISC architecture, 62,5-ns instruction cytitee
* 92KB+256B Flash memory, 8KB RAM (upgraded in FITiay. 2.0)

* Max. processor frequency 16 MHz @ 3,3 V

* Three-channel internal DMA

e« Two 16 bit timers (Timer_A with three capture/compaegisters and Timer_B with
seven capture/compare-with-shadow registers)

* On-Chip comparator

« Four Universal Serial Communication Interfaces (JS@pporting fC, synchronous
SPI, IrDA, enhanced UART with auto-baud rate débect

e Bootstrap loader,

* 481/0O ports

» Temperature sensor

The functional block diagram of the MCU is shownFag. 1:

XIN/ XOUT/ P3.x/P4.x
WTOIN XT20UT DVCC DVSS AVCC AVSS P1xP2Xx o me's
2 o2 2x8 4x8
..-- - - - - - - S S s ee e - - ... - - .. - ... - - ... - - ... ---------.--.------.'
' :
' ACLK '
s | Osciators —»> Flash RAM ADC12 '31‘2081,‘2 Ports Ports usci Ao |$
s |Basic Clocklsmcik : -Bi P1/P2 P3/P4 UART/ |
’ System+ ' 120kB 4kB 12-Bit P5/PE LIN, ’
H 116kB 8kB 2 28 /O DA, SPI | 3
' MCLK o2k8 8B 8 Channels I iermupt || 4xe 10 .
' ¢ 92kB 4kB channels | | voltage || ooanits gsciso 1
' 56kB 4kB out pablily ’ :
: 16MHz MAB :
'| ceu '
" 1MB '
v| incl 16 H
: Registers MDB :
1] L}
] [}
E Hardware Timer_B7 USCI At E
s | Emulation Brownout | | Multiplier OMA Watchdog| | Timer_A3 Comp_A+ UART/ | o
’ Protection Controller WDT+ 7ce LIN []
[] A []
H IS svs hTPPYYS, 3 acc Registers, 8 DA, SPI H
" 15-Bit egisters adow annels [
Interf 1 ' Bi Regi Shad Channels { | uscl B1
g | INiEMECE SVM MAC, Channels Re sprisc | o
' MACS g ’ :
] L}
RST/NMI

Fig. 1: Functional block diagram of MSP430F2617, [1] p.9

2.2.1.2 FPGA module

The next main component of the kit is the FPGA dkield Programmable Gate Array) containing
many thousands of logic gates: their configuratian be reprogrammed (rewired) using a hardware
description language or a schematic design.

It's able of performing any logical function that application-specific integrated circuit can;
with the added ability of easily redesign and réole@ new or improved application. The use of a
programming language for hardware design makegpitbeess of designing hardware components
more available and easy for the students. Whiler¢ladized implementation doesn’t deal with this
component directly, it does use it with the helptloé libfitkit library and other components and
further version also can make use of it more intehg

The FITkit contains a XC3S50-4PQ208C chip from Smartan3 family manufactured by
Xilinx, with the following characteristics [2] [3]:
e 192 configurable logic blocks in 16 rows and 12uomhs, 1728 logic cells, 50k system
gates
» 72 Kbits of block RAM and 12 Kbits of distributedA\RI
e Four dedicated 18 bit multipliers
e Upto 124 user I/O ports, support for 23 I/O stadda

2.2.1.3 USB to serial/parallel communication interface

For communicating over USB the FITkit utilizes #&2232D chip from FTDI. It offers the kit two
independent communication channels (A and B).

Channel A is connected to the Spartan 3 FPGA aablles a PC application to communicate
via any device created in the FPGA via protocdds IfC or connect channel A to the serial channel
and communicate with the device via the virtual C@®dft in the computer.

Channel B is connected to the microcontrollers @ogning pins (RESET, TST) and to MCU
UART’s (Universal asynchronous receiver/transmjttexD and TxD (receive and transfer) pins.
When using théibfitkit API created by the FITkit developers, this chanselsed for communication
between the FITkit application and the terminald aiso for programming/flashing new application
to the FITkit [2].

22.1.4 Other components

e LCD display (16 characters each in two lines)
e 4x4 keypad

« Audio interface (in/out)

e Two PS/2 connectors

¢ VGA interface

* RS232 connector

 DRAM 8x8 Mbit

e /O connectors for external peripherals

¢ Flash memory for the FPGA application code

The layout of the components can be seen on FigitR:1the keypad and LCD display dismounted on
the right-hand picture to reveal the FPGA and DRémdule beneath them:

5
AUDIO

IN/OUT

(]

KEYBOARD =

A

Fig. 2: FITkit components [2]

2.2.2 Firmware

The firmware of the FITkit deals with the followingsues.

2.2.2.1 Communication between the main components

Almost every component and peripheral needs tambeexcted to the microcontroller in some way or
other, so the embedded application can use it. 8Miime of them (like the USB interface) are
directly connected, most of the built-in peripherate connected to the FPGA chip.

The communication between the MCU, FPGA and thehH-taemory is realized using the SPI
interface (Synchronous/Serial Peripheral Interfade)is a high speed full-duplex synchronous
master/slave serial bus using four wires contrdtiethe master device:

e CS (chip select): indicates the start of a datméragenerated by the master and active
at low

e SCK (clock): generated by the master

* MOSI (Master Out Slave In): data output for masigout for slave

« MISO (Master In Slave Out): data input for mastertput for slave

This interface is used when the MCU applicationdse® communicate with FPGA devices,
typically the memory controller or a device corigol

In the FITkit the MCU, FPGA and Flash memory arengghe same SPI signals (Fig. 3:) so
the slave device is selected by the first byterafidgferred data. If the first byte indicates thed t
communication is intended for the FPGA the adddsthe specific device is transmitted by the
MCU.

MCLU FLASH

Cs [
ECE aCH
MOEI MOZT
HIz0 HMIZ0

FPGA

Cs

—] 5CE
HMO3I
HIz0

Fig. 3: SPI used internally on FITkit [2]

2.2.2.2 Device controllers

The next step is to create the device controllersHe peripherals included in the FITkit, so tivay
be re-used in later applications designs. The obtbets are described in VHDL, a hardware
description language, and are communicating wighnticrocontroller via the SPI interface described
earlier.
The following peripheral controllers already hae=b implemented:
» LCD display controller, a generic interrupt conieo] 4x4 keypad, PS/2 controller and
SDRAM controller.

2.2.2.3 Library libfitkit Device “drivers”

This library contains modules for reprogramming kiteoffers communication via a command based
terminal which can be used in user applicationsPiGrcommunication, and also offers C macros to
simplify development (string compare, character stnidg conversions, etc.). It was developed in C.
Many device “drivers” were added to this libranhig allows to easily use the implemented
device controllers (residing in the FPGA) in anlaggtion (running on the MCU)
The library contains functions such as:
* Communication interface between FPGA devices (tbmetrollers) and the drivers
(MCU) via the “FITkit SPI”.
« A simple terminal application for communication Wi#sB and UART, including a
command interpreter for controlling the MCU
* FPGA configuration: a basic task of the librargyddoad the FPGA configuration data
after initialization (e.g. power on or reset).

2.2.3 Software

After identifying the hardware and firmware compotseof the kit, we can move to the development
aids available for the PC.

2.2.3.1 Library libkitclient

The libkitclient is a multiplatform library for maging and interaction with FITkits. It was
written in C++ (with binding for the Python langwgand offers a uniform API for Windows and
Linux. It is using the FTDI library to directly aess the USB controller on the FITkit which
simplifies the application configuration to exclugley hassle with configuring virtual COM ports.

Brief list of operations offered in the library:

e managing multiple connected FITkits

« change the communication channel properties (speeily, stop bits, etc.)
* reset MCU

* write or read data

QDevKit

An example of using the libkitclient: it's a mulgtform application with GUI, created to simplify
the work with— and in some degree the developmant the FITkit. Its main features are:

» discovers connected FITkits and allows communigawith them via a terminal (it is using
the libkitclient API for these tasks)

e acts as a front-end for compiling and flashing b&CU and FPGA based FITkit
applications (projects), while maintaining a fresbhpy of the applications via SVN
(Subversion: a version control system)

« allows creating plug-ins

3 Hypertext Transfer Protocol (HTTP)

This chapter explains the history and purpose of PiTdescribes the basic concepts of HTTP, the
main differences between protocol versions. Ingbeond part explains the structure of the HTTP
message more deeply and giving notes about implémgeihie protocol in an embedded device.

3.1 Overview

The Hypertext Transfer Protocol (HTTP) was created at the European OrganizatiorNfaclear
Research (CERN) as part of ttéorld Wide Web (WWW) project. The project’s main goal was to
assist the sharing of information among researchsinsg hypertext documents. Digitally linking
related documents and by selecting the referencédvaause the linked document to be retrieved.

3.1.1 Basic concepts

HTTP is a stateless request/response protocol wipehiates at the application layer of the OSI
Reference Model and the Internet Protocol Suitenfoonly known as TCP/IP). While it is mostly
used in TCP/IP networks the HTTP protocol itseliquiees only an error-free two-way
communication and can be implemented on top ofreatyork with reliable transport layer. Over its
19 years of existence the protocol has seen thmestey revisions (versions 0.9, 1.0 and 1.1) and
numerous features were added while the basic cesoemained the same.

The basic concepts are [4], [5]:

3.1.1.1 Message

The HTTP messagas the basic unit of HTTP communication. It cotsief either arequestor a
response The messageeeds to be transmitted via an error-free protgewst of the time this is
TCP).

Its syntax has changed over time so new featunekl & implemented. In the latest versions
the message format is similar to that used by é-ighaierne Mail) and the MIME standards
(Multipurpose Internet Mail Extensions).

3.1.1.2 Request

At the beginning of the HTTP communicatiorregjuestis sent by theiser agent(or client) to the
server In the first line of the message it contains thethodto be applied to theesource the
identifier of the resource, and starting with HTUétsion 1.0, the protocol version too. Depending on
the method and the protocol version it can alsdaioradditional headers and antity.

3.1.1.3 Response

An HTTP responsés sent as an answer forequest In HTTP/1.0 and 1.1 it contains a status line
informing the client about the result of the requ@gpending on the interpretation of the requeest i
may also contain additional headers andeafity. (see HTTP/0.9 description for the old response

type)

3114 Entity

An entity is a representation of resource It consists of metainformation in the form of thetity
headerand the content in the form efitity body Both HTTPrequestandresponsanay contain an
entity (header only or whole entity).

3.1.15 Resource

A resourceis a network data object or service which candeatified by an URI (Uniform Resource
Identifier).

As far as HTTP is concerned, URIs are simply fotagastrings which identify via name (in the form
of Uniform Resource Names — URN), location (in tbem of Uniform Resource Locators — URN),
or any other characteristic of a network resource.

3.1.1.6 Client or user agent

Theclientis a program that establishes a connection tee¢heerfor the purpose of sendimgquests
These are often browsers, spiders (web-traversingts), or other end user tools. As of HTTP/1.1 the
clients should recognize the status-line of eveli A 1.0 or 1.1 response and understand any valid
response in the format of HTTP 0.9, 1.0 or 1.1.

3.1.1.7 Server or origin server

An application that accepts connections in ordesevicerequestsby sending backesponsesFor
backwards compatibility the servers must recogtiieerequest line of previous protocol versions,
understand any valid request in previous formatsfavally respond accordingly to the major version
of the client protocol.

3.1.1.8 Proxy

It is an intermediary program which acts as botserverand aclient for the purpose of making
requests on behalf of other clients. A proxy muserpret, and, if necessary, rewrite a request
message before forwarding it. Proxies are oftend use implement content filtering and save
bandwidth by caching previous responses and ressurc

3.1.1.9 Gateway

It is a server which acts as an intermediary fons@ther server. Unlike a proxy, a gateway receives
requests as if it were the origin server for thguessted resource; the requesting client may not be
aware that it is communicating with a gateway. @ates are often used as server-side portals
through network firewalls and as protocol trangkatfwr access to resources stored on non-HTTP
systems.

10

3.1.1.10 Communication examples

To summarize the basic concepts of HTTP let's segesexamples.

Our first example while being the simplest poss#aenario, it is also the most common one:
with an HTTP client sending a request through tbemunication channel and than the server
sending back a response (Fig. 4:).

#1 - request
> HTTP
server

HTTP client |

#2 - response

Fig. 4: HTTP request/response in a simple client/server eironment

The next example (Fig. 5:) introduces a forwardaggnt (a proxy) to the communication
chain. Upon receiving a client request, the proagds to analyze it and act correspondingly with its
internal rules (e.g.: changing the request, progidhe requested resource from its internal cache,
denies forwarding the request, provide contersgrfilig, etc.).

Utilizing a proxy is common in corporate environrtewhere it is used mainly for its content
filtering options.

#1 - request #2 r‘e';r:]ae';%ec’
HTTP client | « > proxy < > ATTP
#4 — changed 43 server
response - response

Fig. 5: Adding a proxy to the HTTP communication chain

3.1.2 Protocol versions

HTTP uses a "<major>.<minor>" numbering scheme ndiciate versions of the protocol. The
<major> number is incremented when the format ofessage within the protocol is changed while
the <minor> number is incremented when the changee to the protocol add features which do not
change the general message parsing algorithm, bigthwnay add to the message semantics and
imply additional capabilities of the sender.

Including the HTTP-Version field in the request aedponse messages (part of the standard
from v1.0) is intended to allow the sender to iatkcthe format of the message and its capacity for
understanding further HTTP communication. If thesian field is missing the receiving application
must assume the message is in the simple HTTRIth&af.

The subsequent versions were created with backwameipatibility in mind and to ease the
implementation of compatible clients, servers arakies alike, and promoting the robustness of the
applications using HTTP as describedJse and Interpretation of HTTP Version Numbggis

11

3.1.21 HTTP /0.9, or the protocol as defined in 1991

The first version of HTTP (HTTP/0.9) was a very glenprotocol to promote the quick adaptation
and easy implementation of the WWW. It was firsblghed in 1991 by its author Tim Berners-Lee
[7].

The definition of this protocol used the TCP pratiogs the preferred transport layer to explain
the client/server communication, although at theesgime permitting implementations with other
connection-oriented services [7]. Later versiors® &lad strong connections with the TCP/IP protocol
suite, including built-in optimizations for TCP/Hetworks.

The downside of being a very simple protocol ikt most of the functionalities of a modern
interactive protocol the evolving WWW needed: sutipg only GET requests (meaning one-way
information transfer, from server to client), aru ttransfer of hypertext-only documents in those
requests.

The format of the GET request method (recent vassieferring to this as the “Simple-
Request”) was the following:

Si npl e- Request = "GET" SP Request-URI CRLF [4]

A server would respond with a byte stream of ASEHlaracters containing the HTML
document specified by thiRequest - URI and close the connection.

It must be noted that the shortcomings of the patavere soon discovered and a year later
many of them were corrected or improved.

3.1.2.2 HTTP /1.0

The first formalized version of the protocol wassien 1.0, described in RFC1947 and published in
May 1996 [4].

This version was a great improvement which addedenaus new features to the protocol. The
most important addition was the generalizatiorhefprotocol: incorporated MIME-like concepts and
header structure and added support for other typeata beside hypertext.

While the new features allowed creating more saighited web servers and clients, it was still
backward compatible with older clients and serusiag HTTP/0.9.

New features in this version (among others):

« Including the HTTP-Version field in the first liref the message in every request and
response (for backwards and further version corbitiit).

e Defining new request methods beside GET: HEAD a@& P, while leaving the list
open-ended for extensions.

» Status codes in response messages to indicatesihié of the previous request

 MIME-like message format, proxy support, etc.

12

The high success and rapid development of the Wdeh sevealed some of the HTTP/1.0’s
design limitations, namely:

* Only one website could be hosted with one server/fpombination (IP or domain
name + TCP port). Workarounds: additional servens dvery website (not very
economic), or each website listening to another @t very user-friendly)

e For every HTTP request a new TCP connection ne¢dldmk established, with it's
three-way opening handshake (and possibly a foyr-Wwandshake closing the
connection) and thus increasing the delay of natrgeresources from the server.

3.1.2.3 HTTP /1.1

The shortcomings of HTTP/1.0 mentioned before wereedied in the next version. HTTP/1.1 was
made available in 1999 as RFC 2616 [1] and intreduseveral significant improvements over
version 1.0 of the protocol.

The issues pointed out in the previous section k@ addressed:

e Multi-homed web servers: every 1.1 request now MWS8iitain the new Host header.
This contains the hostname and port of the reqdestource as given by the user or
the referring resource. Additionally the new staddfor HTTP/1.1 states that all
implementations of HTTP (including updates to emggtHTTP/1.0 applications)
MUST support this header.

» Persistent connections: a HTTP/1.1 client may sewdtiple requests in one TCP
connection. This saves CPU time in network routemsl hosts as well, reducing
network congestion and allowing time for the prolo determine the congestion
state of the network, latency is improved becausesunbsequent TCP opening
handshakes are needed. The RFC doesn't definéetitisre as mandatory for a valid
HTTP/1.1 implementation, only as a “should be impated”.

3.2 Analysis

In the previous chapter we got familiar with thesibaconcepts of the HTTP communication and the
differences between its versions.

The main differences between versions 1.1 andré.thahe variety of supported header fields
(newer has more) and most of them are not mandatmy thus the features 6fTTP/1.0 | am
considering to be enough for a FITkit HTTP applmat Even more the hardware limitation in form
of relatively small RAM onboard the microcontrollerakes implementing the whole standard more
complicated.

Considering the fact that out of the three prota@kions only HTTP/1.0 and HTTP/1.1 was
formed as a standard in an RFC document, and aeytrapplication would implement one of these
versions, we will not mention RFC notes about HOI®tompatibility issues.

Any implementation-specific notes argghlighted most of them are regarding memory
limitations for the implementation of the HTTP servalternatively a client.

13

3.2.1 HTTP Message

As we discussed earlier the basic communicatioh @nHTTP is themessageThe shared major
version number of the 1.1 and 1.0 standards gusganhat the message format will be similar.
Both HTTP versions define two types, request asgdaorse message:

HTTP- message = Request | Response [5]

The request and response message follow the gangric messagiormat, consisting of a
start-line, zero or more message headers (all ebgexkactly one CRLF), an empty line indicating
the end of the message headers, and finally aorgbtimessage body (entity body):

generic-nmessage = start-line
*(message- header CRLF)
CRLF
[nessage-body] [5]
Thestart-lineis of course defined separately for the requedtrasponse message:

start-line = Request-Line | Status-Line [5]

3.21.1 Message headers

Many differences between HTTP 1.0 and 1.1 areésdteaders: the newer version defines more.

The message headers include gemeral request responseand entity headers. Eacheader
field consists of &eader naméollowed by a colon (‘) and thield value

The order of the headers is not significant althoiigs a good practice to send them in the
following order: general headers, request or respdreaders, and finally entity-headers.

Multiple message headers with the same field heaniigt be included in a message only if
the field values can be combined into one valuearsgpd by a comma without changing its
semantics. Proxies are forbidden to change the ofdbese headers.

General header fields

General headers fields are applicable for bothasgand response messages, excluding any entity
transferred within them.

The two general header fields in HTTP/1.0 BragmaandDate The former is being used in
the request message by a client to bypass cachittigei HTTP communication chain. The latter
represents the date at which the message wasaigdimnd can be used by both origin servers and
user agents while user agents should only incluaéhen transferring an entity (like in the POST
method).

Implementation noteNone of these headers are mandatory, but inclutiegdate header in
the implemented HTTP server might be a worthy &mldiin a future version. It involves creating a
date/time module with appropriate external syncization..

3.21.2 Message/entity body

The entity body (if any) sent with an HTTP requestesponse is in a format and encoding defined
by the entity header fields.

14

A request message contains an entity body onlfiéfrmethod allows it. The presence of a
message body is signaled by tlmntent-Lengthheader field, which is mandatory for every
HTTP/1.0 request containing a body.

In the response message the presence of a boépéndent on both the request method and
the response time. A response to the HEAD methost mot contain a body, although the Content-
Length header field is mandatory. Also some statassages are forbidden to have bodies: all 1xx
(informational), 204 (no content), 304 (not modifie

Message type

Every message containing an entity body shouldudeltheContent-Typeand Content-Encoding
header fields. The former is indicating the datpetyand the latter a possible coding of the data
(usually meaning compressing).

Implementation notecompressing the entity body doesn’'t make senslfoamounts of data,
like that the FITkit is able to process at one time

3.2.1.3 Message length

Implementation noteThe message length can be deduced for every ¢fpmessage in
reasonable limits. This is extremely importantdetermining right buffer sizes on the FITkit.

The standard requires every GET and HEAD requestdind their header fields to end with
exactly one CRLF and ending the whole message twithCRLFs, so most of the request messages
can be read line after line.

If the request message includes an entity bodyh(ebitrary number of CRLFs), @ontent-
Length header field MUST indicate its length. At this it can be decided whether the FITkit
application can handle the message or discard it.

3.2.14 Request

The first line of the request message containsmbéhodto be applied to theesource the
identifier of the resource and the protocol vergitwe latter being “HTTP/1.0” for version 1.0).

Request-Li ne = Met hod SP Request-URI SP HTTP- Versi on CRLF [4]

Example: GET /index.html HTTP/1.0 <CRLF>
Now let's see what request header fields and metifodmmands) are usually offered by
HTTP/1.0 implementations (the method token is c&sesitive, unlike most of the standard).

3.2.15 Request header fields

The request header fields allow the client to a$itional information about the request, and about
the client itself, to the server.
It can contain the following header fields:

» Authorization this field is used after receiving a responsén w1 status line and if
the user agent wants to authenticate with the seiMee user and password are
encoded in base 64. Example:

Authorization: Basic QWxhZGRpbjpvcGVulHNIc2FtZQ== [4]

e From: should contain an Internet e-mail address forhthman user who controls the

requesting user agent. Rarely used

15

» If-Modified-Sinceused in conjunction with the GET method (seeWglo

« Referer]sic]: in this field the client may specify thedrdss where the Resource-URI
was obtained.

e User-Agent contains information about the user agent, fer@pera browser version
9.25 running on Windows XP it looks like this: Oa&.25 (Windows NT 5.1; U; en)

e Host it was specified in version 1.1 and noted thatrgvnew or upgraded 1.0
application MUST include it. It is used for condsery IP addresses by enabling
multiple websites to be hosted on the same portsantk server. Its content is the host
and port from the original URI.

3.2.1.6 GET

The GET is the most common HTTP method. It meansttieve whatever information (in the form
of an entity) specified by the Request-URI.

It can be modified to a “conditional GET” with tifeModified-Since header field: meaning the
resource will only be transferred if it is neweaththe specified date/time. This is intended taced
network usage without transferring unnecessary. data

Implementation note:although the HTTP server running on FITkit is orfyTTP/1.0
compliant, it is bound to support requests with $hene major version number, e.g. a web browser.
The modern browser is using the more customizalll€R41.1 to deliver a user-friendly, localized
web-experience to the average user, and this nigdiromh the average a GET request is around 300-
500 bytes. As we will see from the example, it eorg much more information about the requesting
client’s capabilities.

Example: Opera/9.25 accessing the website at wnezd

GET / HITP/ 1.1

<CRLF>

User-Agent: Opera/9.25 (Wndows NT 5.1; U; en)
<CRLF>

Host: www. cdr.cz

<CRLF>

Accept: text/htm, application/xnl;qg=0.9,

application/ xhtm +xm , i mage/ png, inage/jpeg, imge/gif,
i mge/ x-xbitmap, */*;q=0.1

<CRLF>

Accept - Language: hu, cs-CZ; g=0. 9, cs; g=0. 8, sk; q=0. 7, en; q=0. 6
<CRLF>

Accept - Charset: is0-8859-1, utf-8, utf-16, *;q=0.1
<CRLF>

Accept - Encodi ng: deflate, gzip, x-gzip, identity, *;qg=0
<CRLF>

Connection: Keep-Alive, TE

<CRLF>

TE: deflate, gzip, chunked, identity, trailer

<CRLF>

<CRLF>

16

Our server would discard most of the header-fidlatseither being 1.1-only header fields (like
TE, Connection), or not useful for a simple HTTlvee e.g. the User-Agent is used for creating
visitor statistics, and it is very unlikely thatettrsame resource would be available in different
languages or character set due to space restdcfjalthough on-the-fly converting might be
achievable).

3.2.1.7 HEAD

It is identical to GET except the response mustcootain ANY message-body. This method can be
used for obtaining metainformation about the reseubecause the server should generate the same
message for an identical GET or HEAD request (dav¢he message body). This method is often
used for testing hypertext links for validity, assmility (response message’s status line) anditece
modification (Date field). It is worth noting th#iis method, in contrast to the GET method, doesn’t
support the If-Modified-Since header-field.

Implementation notehis method is great for a HTTP client with liedt memory available and
for a server application shouldn’t be too diffictdtimplement. While usually a request’s size ithi&
same range (because most of them are either GEHEAD), a web client parsing an unfamiliar
HTML document must pay attention as larger messagikes are more likely to be encountered. A
client using this method (and a supporting sereedld deal with such inconvenient situation at the
application level in contrast with the more extre€P connection dropping or ignoring the
incoming data at the expense of wasting bandwidtbt (necessarily acceptable for every
application/platform).

3.2.1.8 POST

The POST method is used to request that the déstingerver accept the entity enclosed in the
request as a new subordinate of the resource fidehtly the Request-URI in the Request-Line.
POST is designed to allow a uniform method to célerfollowing functions:
* Annotation of existing resources
« Posting a message to a bulletin board, newsgroainan list, or similar group of
articles
e Providing a block of data, such as the result d&ingitting a form to a data-handling
process
« Extending a database through an append operation.
A successful POST does not require that the eh#tgreated as a resource on the origin server or
made accessible for future reference. That isathi®n performed by the POST method might not
result in a resource that can be identified by & UR [4]
Implementation notemplementing the POST method in a server dependthetype of this
server. By far the most common action desired esthiird option above: it is part of the Hypertext
Markup Language (HTML, RFC1866/2854) standard &#ischeeded for a web server.
If the server application determines that the PO&3thod is not applicable for the given
resource, it should respond with a 501 Not Impleteestatus code.

17

3.2.19 Other methods

Although so far we were focusing on HTTP/1.0 preiger | think it is worthy to note that many other
methods exist for HTTP/1.1 or as standalone exbessi

To give some overview, here are the additiati&l P/1.1 methods:

OPTIONS, PUT, DELETE, TRACE, CONNECT [5]

Some of thaVebDAV (or just DAV) extensions:
COPY, MOVE [8]

3.2.2 Response

The answer for a successfully interpreted cliemuest consists of a status line, zero or more
general/response/entity header and optionally &itydrody:
Response- nessage = Stat us-Line
*(General - Header
| Response- Header
| Entity-Header
CRLF
[Entity-Body] [4]

Implementation noteA response header is fairly less interesting thamquest header, both for a
client and a server, mainly for the less varial@aders it can contain.

3.2.21 Response header fields

These fields are intended to allow the server &8s @alditional information about the server:

* Location The Location response-header field defines tlaeteocation of the resource
that was identified by the Request-URI. For 3xxpmesses,the location must indicate
the server's preferred URL for automatic redirectmthe resource

e Server it is used for sending more information about seever, like its name and
version

« WWW-Authenticateit must be included in 401 (unauthorized) respongessages.

Example: WWW-Authenticate: Basic realm="Wallywdrld

3.2.2.2 Status line and status codes
The first line of a response is always a statusdind it looks like this:
St at us-Line = HTTP-Version SP Status-Code
SP Reason- Phrase CRLF [4]

At the very beginning of the line the HTTP-Versioken is the familiar “HTTP/1.0” literal.
The status-code is a three-digit number represgiii@ result of the request interpretation and
IS meant to be machine-readable, that is procesgeslitomata and is defined by the standard. In

18

contrast, the reason-phrase is intended for huraadsits contents are flexible, e.g. they can be
translated to the server’s local language.
The most important and common status codes:

Informational 1xx

Not used, but reserved for future use. HTTP/1.Gdu define any 1xx status codes and they are not
a valid response to a HTTP/1.0 request. (validTiTP/1.1 though)

Successful 2xx

This class of status code indicates that the &ierequest was successfully received,
understood, and accepted.

+ 200 0OK

The request has succeeded.

¢ 201 Created

The request has succeeded and the new resourcesteduwas created. From the HTTP/1.0
specification, only POST can create a resource.

¢ 204 No Content

The request has succeeded, but there is no nemmafion to send back.

Redirection 3xx

Further action must be taken in order to complateréquest.

* 301 Moved Permanently
The requested resource was moved to another knd®n This new URL is sent back in the
Location field of the response, but the entity atsdudes its new location (usually in HTML).
* 302 Moved Temporarily
The requested resource was temporarily moved. Tthe/RL should be used in subsequent requestst
(unlike in 301 Moved Permanently).
e 304 Not Modified

Used if the client requested a resource with tHddtlified-Since field and the resource didn’t chang
since then

Client Error 4xx

These error codes are used when the requesting séems to make a mistake. Except for a HEAD
request, the server should send an entity alsothhorief description of the issue

19

e 400 Bad Request

The request’s syntax was not valid and could natrimierstood by the server.

¢ 401 Unauthorized

The request requires user authentication. Subsegeaguoests for this resource should include the
Authenticate field. If the Authenticate field waseady present it means that the provided credentia
were refused.

* 403 Forbidden

The server understood the request, but is refusiniglfill it. Authorization will not help and the
request should not be repeated.

* 404 Not Found

The requested URI was not found on the server.

Server Error 5xx

These errors represent server-side failures.

+ 500 Internal Server Error

The server encountered an unexpected conditionhwrievented it from fulfilling the request.

¢ 501 Not Implemented

The server does not support the functionality nexglio fulfill the request.

* 502 Bad Gateway
The server, while acting as a gateway or proxyeikee! an invalid response from the upstream server
it accessed in attempting to fulfill the request.

¢ 503 Service Unavailable

The server is currently unable to handle the reo@s to a temporary overloading or maintenance of
the server. The implication is that this is a temapp condition which will be alleviated after some
delay.

20

4 Design and implementation

As we discussed, the HTTP protocol is a clientiserprotocol. This offers two choices for
implementation: while &lient could be implemented, the built-in memory arrangenof the kit is
more suitable for a hostingdrve) operation: in a HTTP client most of the applicatidata would
need to be obtained by the client during operati@eding greater amount of RAM to store it, while a
server application can store its data in the baiftash memory during programming.

Another argument for a server: the protocol itgslffairly universal. It offers transferring
different/any types of data while enabling limitbdlirectional communications. Creating a new
custom application using these properties could pessible way of implementing the protocol, the
wide availability ofweb browsersffered the chance to have many available cliesisg a server
running on the FITkit immediately after implemeiat if this server happened to host a simple
webpage.

This implementation of a HTTP server consists a modules:

e the HTTP server (with two parts: the I/O interfacel the server itself),
* relay application (“translating” between HTTP seraad internet clients)

The HTTP server is developed for the microcontroplléile the relay application is running on
a PC. The two devices are connected via the USBppesent on the FITkit and are using a simple
protocol for controlling behavior and transferrighata.

4.1 The relay application

In this chapter | will describe how does the raetgyapplication work and communicate with both the
TCP/IP network and the HTTP server.

The relay application is implemented in C/C++. Bwe TCP/IP networking part the Winsock
APl was used, while the FITkit management is hashtlethe libfitkit API.

It consists of two source code filesel ay. cpp and rel ay. h. When describing the
behavior of the application | will also include whifunction is handling it, if applicable.

4.1.1 Designing the communication protocol

The HTTP protocols “default” network is TCP/IP. Wnunately at the time of writing this thesis the
FITkit platform wasn't equipped with a fully funotial Ethernet layer component, nor offered some
other way to communicate via TCP/IP.

However it did have other means of communicatidncduld communicate via its USB
interface with a computer and a simple API was lalée for using it in the libfitkit library: theart
module.

The module implemented the serial I/O operatiorss small buffers to avoid (minor) data
losses when other applications used the microcientrdds an HTTP server potentially can receive
and send substantially more data, filling up th&drs, | chose to workaround this issue within the
application by defining which data transfer cangilly occur in each situation. Unfortunately this
means that this particular implementation of thensgfer protocol cannot be used with other
applications relying on the UART module for commaation.

21

Furthermore it is a highly application-specific fmeol, basically operating on tlaplication
level of the ISO/OSI reference model, ignoring or sifyolig some details of TCP/IP, so it is most
probably not reusable in a different applicaticiei.

The goal of this protocol - was while having in ohithhe properties of the simple serial protocol
- to create a communication protocol between ttegarts of the application:

e The HTTP server which is running on the FITkit
» the relaying application listening for client coetiens on a TCP/IP network and
sending it to HTTP server via the bridging protogahning on PC)

While heavily using and depending on the libraead components of the FITkit project, both
applications implementing the final version of thetocol aren't meant to be integrated with the
terminal functionality of the libfitkit: there wereompatibility issues with using the shared
communication channel and the attempts made tdd#meise issues proved to be error-prone.

The relaying applications behavior is controlledhmgending control codes via Channel B by
the HTTP server:

* communication via TCP/IP,
« transferring application specific data (HTTP reduezgsespond),
« and controlling TCP states.

4.1.2 General initialization
The relay applications initialization consists of:

Parameter handling

The application has two possible parameters; tiseifi to display a simple help text and the second
to specify the number of the TCP port where it \igten for client connections. Valid ports are: 80
and the range 1025-65500.

Discovering, managing FITkits

In the next stage the application uses functioom fthelibkitclient to find and initialize any FITkits
connected to the computer.

In the final step Channel B of the USB-serial ifdee is opened to communicate with the
microcontroller.

If any of the previous steps fail, the applicatiaiti exit.

Network initialization

This consists of the Winsock initialization, regishg the Winsock cleanup with standard library
function at exi t (), and opening the TCP port for listening in tyeen_port () function. The
application is using a blocking socket, with onekbag connection.

The network handling part was mostly inspired by Winsock tutorial available on MSDN [10].

22

FITkit initialization

After resetting the microcontroller, the relay dpalion echoes initialization information sent et
FITkit (like information about FPGA programming ahdrdware initialization, sent bipfitkit).

4.1.3 Compiling

As mentioned, this module was developed in C++gutiie Winsock API. For successful compiling
the project needs tHibkitclient header and library files to be in their respectlirectories under the
relay. c/. h source file’s directory structure. The includedkefde contains every necessary
argument (define, library and header file locat)ansd can be changed if necessary.

Development and testing was done using MinGW canmlystem, on Windows XP and
Windows Server 2008.

4.2 Communication protocol

The communication protocol is best to be descrifpech the implementation point of view in the
relay application
The protocol itself is using control codes (opcddes signalization. These include (as defined

in ther el ay. h header file):

* ACK (acknowledge: operation, data transfer, etc),

¢ NACK (operation failed),

e ACCEPT_CNN (accept connection, connection accepted)

* INCOMING_CNN (incoming connection),

e READ_X (read from..) and

» SEND_DATA (sending new data).

The opcodes are one byte long, and their interfimatare dependent on the current state of the
application (no escape characters are used).

In this protocol the relaying application is essahyt acting as a server, waiting for incoming
opcodes from the application (the HTTP server) anting according to them. Beside the initial
handshake, the other commands (or chain of commaadsbe received more than once, and are in
fact processed in an infinite loop (the relay aggiibn cannot be terminated by the HTTP server with
an opcode).

4.2.1 Initial handshake

This is a very simple handshake: the relay apptinawvaits for an initial ACK from the FITkit and
upon receiving answers with another ACK.

This is the only read operation in the relay alan with a timeout: if no communication
attempt is made by the kit in the given time peliddeconds), it is assumed that another applitatio
is running in the FITkit.

On the other hand, the kit also tries to performcgyg multiple times, so it is not necessary to
perform the reset in the relay application duriisgnitialization.

23

4.2.2 Accept a connection

If this control code (ACCEPT_CNN) is sent by the' HPTserver, the relaying application first checks
if any TCP connection is open. If there isn't, imfs the HTTP server by sending an ACK that
accepting a connection is now possible, and theogads accepting a TCP connection by calling the
accept _connection() function. When a client makes a connection, theyrapplication sends
the ACCEPT_CNN opcode to the kit (now meaning threnection was successfully accepted).

Waiting for a connection will not trigger a timeout

On Fig. 6: we can see the successful accept cbanecommand chain (note: between
commands 2 and 3 a substantial delay can occur).

1. ACCEPT_CNN

>

2. ACK

FITkit < relay app

3. ACCEPT_CNN

<

Fig. 6: A successful ACCEPT_CNN initiated by the applicatia on FITkit

4.2.3 Close connection

Simply checks for an open connection, and if fimae, closes it. An ACK is sent back upon
completion. Opcode: CLOSE_CNN.

4.2.4 Read request

This opcode (READ_X) instructs the relay applicatio read a request from an open connection. It is
handled by theend_dat a2fi t ki t () function.

Upon successfully receiving data from the connedt€® client, the function sends the kit an
ACK, immediately followed by a SEND_DATA opcode, l&t it prepare for a data transfer. When
ready, the kit signals this with an ACK and theayehpplication sends the size of the soon-to-be-
transferred data ionsi gned short int (two bytes), which is again accepted by an ACKrfro
the kit. Please note, that as both the MSP430 wucriooller and the x86 PC are little-endian, this
multibyte numerical value doesn’t need to be coteekr

Because in the FITkit the communication is realizeith the libfitkit uart module with
relatively small receive (and send) buffers, tovpré data loss from buffer overflow, the data iktsp
into chunks, 100 bytes each (save for the lastwhigh can be of course smaller). Every chunk must
be ACK-ed by the kit before the transfer continues.

Note that the read request opcode is depending tgonsual behavior of most web browsers
of sending the whole request in one piece, sodhbt oner ecv() system call is able to read the
whole request message. This means that the comnusely HTTP server debugging tool, telnet,
cannot be used with this implementation (exceptbadhe line-by-line version).

Waiting too long for a data transfer to occur mégger a timeout (by the FITkit).

24

The transfer of 290 bytes of data, from issuingREAD_X command until the last ACK, in

12 steps, can be seen on Fig. 7:
1. READ X [1B] >

2. ACK [1B]

3. SEND_DATA [1B]

4. ACK [1B]

. 0x122 [2B]

6. ACK [1B]

FITkit relay app

7. first 100 bytes

8. ACK [1B]

9. next 100 bytes

A|lA|A| 4AA

10. ACK [1B]

Viviviy

4 11. remaining 90 bytes

12. ACK [1B] >

Fig. 7: Sample for transferring 290 bytes of data in 12 sf&s, after READ_X reception

425 Send data

This command instructs the relay application toeptthe following data from the HTTP server and
forward it to the client. It is handled by thecv_dat af ronfi t ki t () function.

First, the command is acknowledged, and then twesbgre read from FITkit, representing the
size of the payload dataimsi gned short i nt. Because the buffers on the computer are large
enough to prevent data loss (unlike in the oppoditection), the payload is transferred in a
continuous burst of bytes. In the next step the&tion tries to send the payload to the connected pe
and informs the kit about the result with an ACKN&CK.

4.3 1/O subsystem

The I/0O subsystem was created with the idea duhaglevelopment to allow the easy change of the
underlying input/output subsystem to TCP/IP if @cbmes available for FITkit. According to this
general rule, the HTTP server itself doesn’t make law-level input/output; every communication is

through the higher level API calls.
| created a simple interface to use as a univers@liork communication API for the HTTP

server. | tried to stay minimal and hide as marpeats of classical socket handling as possibls (thi
of course might lead to performance or efficiensgues). The interface is defined in the
i o_http. h header file and the serial protocol implementaisoim thei o_seri al . ¢ file.

After taking the aspects of classical socket pnogning and information about the HTTP
protocol into consideration | chose to have thifaing functions:

25

4.3.1 Function init_network

It's a general network initialization function. &m Ethernet implementation this could be used as a
placeholder for initializing the transceiver, ciegtthe data layer connection, or registering for
network communication in a multitask environment.

i o_serial.c: Inthe serial implementation this is used to perfdhe initial handshaking,
using the ACK opcode. To allow for some flexibility allows a few timeouts before failing. The
transfer and receiving is done by calling ther m send_char (), termrcv_char() and
termrcv_char_t().

4.3.2 Function close_connection

As the HTTP protocol was built for a connectioreoted protocol, and particularly older versions are
using the closing of the connection for signaling end of transfer (while newer ones are agaiist th
concept), this function was a must; it allows fmplementing multiple version HTTP servers.

io_serial.c: This is a fairly easy task using the communicafwatocol between the
computer and the FITkit. It consists of sending @&OSE_CNN opcode and waiting for the ACK
sent by the relay application.

4.3.3 Function accept_connection

For the same reasons as the close_connectiondontitis must be implemented as well.

io_serial.c: Again, using the relay application and the tramslaprotocol to
communicate with it, the hard part of this functisrhandled by the PC. But just to be sure we are o
the safe side, this particular implementation fickbses any active connection with sending a
CLOSE_CNN command, waiting to be acknowledged anlg then issuing the ACCEPT_CNN
opcode. From this point, the successful acceptirg DCP connection results in the communication
example seen on Fig. 6:

Because a connection might not come for some tinie function doesn’t time out waiting for
one (although slow closing might force that).

4.3.4 Function recv

This function is intended for, compared to the pyes ones, low-level manipulating with data: like
the name suggests, it receives data from the nktwoicase of the HTTP protocol a higher level is
also possible: receive whole request.

i o_serial.c: Infact, the serial implementation assumes thatemt will send the whole
HTTP request in one piece and presents it to theesaccording to this: a complete request.

The communication between the I/O interface andrét@ying application was discussed in
detail before (see 4.2.4) with the associated el@amp Fig. 7: Unlike the accept_connection
function, this function doesn’t wait indefinitelgif data.

26

4.3.5 Function send

Finally, the send function: this allows the HTTPv&e to send back the response to the client.

i o_serial . c: Unlike the send function this is implemented withdrawbacks and because
the buffers are not holding it back (no need forad@agmentation), it is slightly faster then the
receive function.

4.4 HTTP Server

After describing the inner workings of the relaypbgation, the properties of the communication
protocol used between FITkit and the PC, and wi@tinterface was created for the HTTP server,
it's time to take a look how the server itself wark
It was developed in C language in conjunction wvilte network interface, using building
blocks from the libfitkit library, mainly using itsimple 1/O interface (uart module) for sending and
receiving application data over the USB to the PC.
The server (and the I/O subsystem) is using tHeviiihg components of the FITkit:
e the MCU: handles all application and communicataaic
* Channel B of the USB - serial converter (see 232.1.for receiving requests and
sending responses to the relay application runoimg PC
* LCD display: status and error messages
e Indirectly also uses the FPGA chip and flash mencomponents (LCD controller)

The structure of the program is:

4.4.1 Initialization

This part is fairly short: because it is using libéitkit, most of the work is taken care of by liag
the initialize_hardware() function provided by it.

As the next step it starts the network initiali@atifunction, which, briefly, verifies that the
communication channel is up and the relay appbeoas working (for more information, see 4.3.1).

4.4.2 Main loop

The basic function of the main loop is to have $lkeever application receive HTTP requests and
provide the responses, indefinitely (or if an ewwocurs).

More on the following functions can be seen in previous chapters, at their respective
module description.

1. accept incoming connections by calliagcept _connecti on() from the network

API
preparing the global buffer for incoming requests
calling ther ecv() function to receive the client request
parsing the request to determine how to proceedwviatl response to send or generate
sending back the request through the PC witlsted () function
closing the TCP channel witl ose_connecti on()

o0 bkwDN

27

4.4.3 Parsing and generating responses

This implementation supports two out of three masguest methods: the GET and HEAD.
(Unfortunately the conditional GET method is nopgorted, because the FITkit lacks a clock and is
unable to process the If-Modified-Since field.) Bahethods have the same resource list for which
they can be applied to, namely:

« The main page, with seven alias names for the resoWRI (“/", /main.htm,

/main.html, /index.htm, /index.html, /default.htfdefault.html
* The /favicon.ico icon for the address bar
» The /fitkitlogo.png: title picture in the main page

For these resources a valid 200 OK request is g@weby thecr eat e_r esponse() and
page_i ndex() functions.

First, thecr eat e_r esponse() function generates the first part of the messageng as
arguments the status number (200), the MIME contige, (e.g., text/html) and the length of the
entity, adding the constant HTTP version (1.0), #redserver field.

For example, the response line and fields for thenrpage is the following:

HTTP/ 1.0 200 OK
Server: fitkit/0.01
Content - Type: text/htm
Cont ent - Lengt h: 1009

In the next step, thpage_i ndex() function copies the rest of the message (theyentit
case of a GET request, or nothing in case of HEADhis function also calls the
t her monet er _gettenp() function to determine the microcontrollers actterhperature and
after converting it into a string, copies it intbet HTML source code before sending. (the
thermometer_gettemp() function is part of the tikifilibrary).

In case of the much biggétkitlogo.pngresource, which doesn't fit into the limited RAkhe
response is sent in two parts: the output of ¢tineeat e_r esponse() function and the resource.

Invalid URI

For invalid URI requests (not part of the previdigsof resources) a 404 Not Found error respogsise i
sent. Again, ther eat e_response() function generates the header of the responsen ghe
status code.

POST

Because this method was not implemented in thisPH3@rver, the server responds with the 501 Not
Implemented status code.

28

4.4.4 Example

The main page hosted on the FITkit (Fig. 8:) viité following elements:
1. the favicon.ico
2. the fitkitlogo.png

3. the dynamic value of the internal MCU temperature

TYWELCOME-Opera
File Edit View Bookmarks ‘Widgets Mail Tools Help

1.

HTTP Se ver

| Welcome to the HITP/1.0 server running on FITKkit!
The temperature mside the MCU try and refresh the page).
External links: 3.

1. FlTkii project page

2. HTTP/1.0 (EEC 1945} and HTTP/1.1 (BEEC 2616}

%r HTML
- 4.01

Identify as Opera o = B ~

Fig. 8: The web page hosted on the FITkit

29

5 Conclusion

The aim of this work was to explore what obstaelese when trying to implement the HTTP
protocol (in one form or another) using the comémsl and communication channels available on the
standard FITkit device, and if possible, solve ¢hissues.

First, the decision was made to implement the sesde of the protocol, specifically creating
a simple web hosting server, based on the factthiitwould mean a huge client basis in form of
countless web browsers, right after implementirgggrver application, besides the fact that hosting
requires less RAM.

In the process of discovering the possibilitiescofinecting the designed HTTP server to its
future clients, we came across new questions regpad/ailable communication methods. Most of
the web browsers are communicating via the TCPtfopol, but our teaching platform doesn’t have
the TCP/IP stack implemented, nor has a data layerl upon which could have been easily
implemented.

The issue of connecting the HTTP server and cliewds solved by using the USB interface
connecting the teaching platform to the computer developing a communication protocol able to
transfer not only the HTTP requests and respondad, also controlling a relaying application
running on the computer. The relay applications iplio “translate” between the client’s native
TCP/IP protocol and the protocol we just created.

During the final chapter we discussed the innarcttire and workings of the mentioned relay
application, talked about implementation detailstioé devised USB-TCP/IP socket converting
protocol, the 1/O interface used by the HTTP serret the server itself: how does it handle incoming
requests, the request line parsing, response cdogpliétails, the sample web page it is hostingitnd
elements.

Although, as we saw, the HTTP protocol doesn’t appie be a very complicated protocaol, it
does have properties which are difficult to implain@& an embedded system: it is completely text-
based and the message lengths are variable. Patsimgs with variable length is usually a memory-
intensive task and this is the very bottleneck istandard FITkit device and many implementation
restrictions were made to create the server.

In further work the SDRAM memory controller shoudé definitely included which would
provide substantially more storage for parsing HTFEBuests, generating dynamic responses, etc.
Another viable extension would be incorporating Btihernet module with TCP/IP stack and
implement the newer HTTP/1.1 protocol version.

30

References

[1] Texas Instruments IncorporateDatasheet for MSP430F241x, MSP430F261x mixed
signal microcontroller[online]. 2007, JANUARY 2009 [cit. 2009-05-05]. Boipny z
WWW:
<http://focus.ti.com/general/docs/lit/getliteratusp?literatureNumber=slas541e&fileTyp
e=pdp

[2] VASICEK, Zdergk, , et al.FITkit (platform homepage and documentatigahline].
2006-2009 [cit. 2009-05-15]. Dostupny z WWWhttp://merlin.fit.vutbr.cz/FITkit/>

[3] Xilinx. Spartan-3 Generation FPGA User Guide : Extendedrt8pe8A, Spartan-3E,
and Spartan-3 FPGA Familiepnline]. 2006 , UG331 (v1.5) January 21, 2009. [ci
2009-05-10]. Dostupny z WWW:
<http://www.xilinx.com/support/documentation/useridgs/ug331.pdf>.

[4] BERNERS-LEE, T., FIELDING, R., FRYSTYK, HHypertext Transfer Protocol --
HTTP/1.0 [online]. 1996 , May 1996 [cit. 2009-05-05]. Dogty z WWW:
<http://www.rfc-editor.org/rfc/rfc1945.txt

[5] FIELDING, R., et al. Hypertext Transfer ProtocolHTTP/1.1 [online]. 1999- , June
1999 [cit. 2009-05-05]. Dostupny z WWW: <http://wwie-editor.org/rfc/rfc2616.txt>.

[6] MOGUL, J. C. , et al. Usand Interpretation of HTTP Version Numbégogsline]. 1997
[cit. 2009-05-05]. Dostupny z WWW:http://www.rfc-editor.org/rfc/rfc2145.txt

[7] BERNERS-LEE, T.The Original HTTP as defined in 19¢dnline]. 1991 [cit. 2009-05-
05]. Dostupny z WWW: kittp://www.w3.org/Protocols/HTTP/AsImplemented.h#ml

[8] STEIN, Greg.DAV Frequently Asked Questiofenline]. 2000 , Wed Oct 11 03:46:50
PDT 2000 [cit. 2009-05-15]. Dostupny z WWW:
<http://www.webdav.org/other/fag.html

[9] FRANKS, J., et allHTTP Authentication: Basic and Digest Access Adutbation

[online]. 1999 [cit. 2009-05-05]. Dostupny z WWW: http://www.rfc-
editor.org/rfc/rfc2617.txt

[10] Microsoft Corporation.Getting Started with Winsockonline]. 2009 , Build date:
5/14/2009 [cit. 2009-05-10]. Dostupny z WWW:http://msdn.microsoft.com/en-
us/library/ms738545(VS.85).aspx

31

Attachment list

Attachment 1: Augmented BNF, [4]
Attachment 2. Source codes on CD.

32

ATTACHMENT 1

The augnmented BNF includes the follow ng constructs:
name = definition

The nane of a rule is sinply the nanme itself (wthout any
enclosing "<" and ">") and is separated fromits definition by
the equal character "=". Wiitespace is only significant in that
i ndentation of continuation lines is used to indicate a rule
definition that spans nore than one line. Certain basic rules
are in uppercase, such as SP, LW5, HT, CRLF, DIG@ T, ALPHA, etc
Angl e brackets are used within definitions whenever their

presence will facilitate discerning the use of rule nanes.
"literal"

Quotation marks surround literal text. Unless stated otherw se,
the text is case-insensitive.

rulel | rule2

El ements separated by a bar ("I") are alternatives
e.g., "yes | no" will accept yes or no.

(rulel rule2)

El ements encl osed in parentheses are treated as a single
el ement. Thus, "(elem (foo | bar) elem" allows the token
sequences "elemfoo elent and "el em bar el ent.

*rul e

The character "*" preceding an elenent indicates repetition. The
full formis "<n>*<npel enent” indicating at |east <n> and at
nost <> occurrences of elenent. Default values are 0 and
infinity so that "*(elenent)" allows any nunber, including zero;
"l1*el enent"” requires at |east one; and "1*2elenment” all ows one
or two.

[rul e]

Squar e brackets encl ose optional elenments; "[foo bar]" is
equi valent to "*1(foo bar)".

N rule
Specific repetition: "<n>(elenment)" is equivalent to
"<n>*<n>(elenment)"; that is, exactly <n> occurrences of
(elenment). Thus 2DIGA T is a 2-digit nunber, and 3ALPHA is a

string of three al phabetic characters.

#rul e

A construct "#" is defined, simlar to "*", for defining lists
of elenents. The full formis "<n>#<npel ement” indicating at
| east <n> and at nobst <nP el enments, each separated by one or

nmore conmmas (",") and optional |inear whitespace (LW5). This
makes the usual formof lists very easy; a rule such as
"(*LW5 elenent *(*LWS "," *LWS elenent))" can be shown as

"1#el enent”. Wherever this construct is used, null elenents are
al | oned, but do not contribute to the count of elenments present.
That is, "(elenment), , (elenent)" is pernmitted, but counts as
only two el enents. Therefore, where at |east one elenent is
required, at |east one non-null elenment nust be present. Default
values are 0 and infinity so that "#(elenent)" allows any
nunber, including zero; "1#elenent" requires at |east one; and
"1#2el ement” all ows one or two.

; comment

A sem -col on, set off sone distance to the right of rule text,
starts a coment that continues to the end of Iine. This is a
simple way of including useful notes in parallel with the
speci fications.

i mplied *LW5

The granmmar described by this specification is word-based.
Except where noted otherw se, |inear whitespace (LW5) can be

i ncl uded between any two adj acent words (token or

quot ed-string), and between adjacent tokens and delimters
(tspecials), without changing the interpretation of a field. At
| east one delimter (tspecials) nust exist between any two
tokens, since they would otherwi se be interpreted as a single
t oken. However, applications should attenpt to follow "common
fornm' when generating HTTP constructs, since there exist some
i mpl ementations that fail to accept anything beyond the comon
forns.

Basi ¢ Rul es
The following rules are used throughout this specification to

descri be basic parsing constructs. The US-ASCI| coded character set
is defined by [17].

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASClI| character (octets 0 - 127)>
UPALPHA = <any US-ASCI| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">
ALPHA = UPALPHA | LQALPHA
DAT = <any US-ASClII digit "0".."9">
CTL = <any US-ASCII| control character

(octets 0 - 31) and DEL (127)>
CR = <US-ASCIl CR, carriage return (13)>

34

LF = <US-ASCI| LF, linefeed (10)>

SP = <US-ASCI| SP, space (32)>
HT = <US-ASCI| HT, horizontal-tab (9)>
<"> = <US- ASCI | doubl e-quote nark (34)>

HTTP/ 1.0 defines the octet sequence CR LF as the end-of-1line marker

for all protocol elenents except the Entity-Body (see Appendi x B for
tol erant applications). The end-of-line narker within an Entity-Body
is defined by its associated nmedia type, as described in Section 3.6.

CRLF = CR LF

HTTP/ 1.0 headers may be folded onto nultiple lines if each
continuation line begins with a space or horizontal tab. Al linear
whi t espace, including folding, has the sane semantics as SP.

L\WS = [CRLF] 1*(SP | HT)

However, folding of header lines is not expected by some
applications, and should not be generated by HTTP/ 1.0 applications.

The TEXT rule is only used for descriptive field contents and val ues
that are not intended to be interpreted by the nessage parser. Wrds
of *TEXT may contain octets fromcharacter sets other than US-ASCl I

TEXT = <any OCTET except CILs
but including LWs>

Reci pi ents of header field TEXT containing octets outside the US-
ASCI | character set may assune that they represent |SO 8859-1
characters.

Hexadeci mal nuneric characters are used in several protocol el enents.

HEX ="A"| "B | "C | "D | "E'"| "F"
| "a" | "b* | "c¢" | "d" | "e" | "f" | DAT

Many HTTP/ 1.0 header field val ues consist of words separated by LW5
or special characters. These special characters nust be in a quoted
string to be used within a paraneter val ue.

wor d = token | quoted-string
t oken = 1*<any CHAR except CTLs or tspecial s>
tspecials =) e] e

I R A B

A I S S N I

| {1y SP | HT

Conments may be included in sone HTTP header fields by surrounding
the conment text with parentheses. Conments are only allowed in

35

fields containing "coment" as part of their field value definition

In all other fields, parentheses are considered part of the field
val ue.

comment
ct ext

"(" *(ctext | comment) ")"
<any TEXT excluding "(" and ")">

A string of text is parsed as a single word if it is quoted using
doubl e- quot e mar ks.

(<"> *(qdtext) <">)

quot ed-string

qdt ext <any CHAR except <"> and CITLs,

but including LWs>

Si ngl e-character quoting using the backslash ("\") character is not
permitted in HITP/ 1.0

36

