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Abstract
The immune system is a vital part in human survival since it is responsible for protecting the
body against pathogens. This ability stems from molecular mechanisms for the recognition
of non-human proteins and molecules. While this system is critical for survival, it hampers
the use of non-human proteins as biotherapeutics, many of which have already demonstrated
significant potential in healthcare. To exploit this potential, it is vital that the immune
system does not attack and inactivate the proteins. Therefore, it is often necessary to
engineer these proteins to reduce the immunogenicity and avoid early detection by the
immune system. To this end, scientists introduce mutations to a protein of interest to lower
the response. Large-scale experimental validation of such mutations is typically unfeasible
due to the enormous size of combinatorial space to explore. With the help of machine
learning tools, this process can be accelerated and total development cost significantly
reduced by scoring the mutations in silico first and experimentally validating only a subset of
short-listed viable designs. However, the field of machine-learning-based tools for predicting
such mutational effects is yet to be explored.

To address this challenge, we present a novel dataset focused on the effect of mutations
on epitopes – protein regions that trigger the immune system response. The newly collected
dataset contains epitopes, their single and double-point mutations, and the effect of these
mutations on imunogenicity as labels. By leveraging this novel dataset and recent advances
in large language models for protein engineering, we train a set of machine-learning-based
models that are able to classify mutations based on their effect on immunogenicity, showing
a significant improvement in performance over the baselines. Additionally, we investigate
and present a way to separate the dataset into different train-test splits to minimize data
leakage between these splits. This leads to a more robust real-world performance evaluation
of the models trained on this data.
Abstrakt
Imunitný systém je dôležitou súčasťou prežitia človeka, pretože je zodpovedný za ochranu
tela pred patogénmi. Táto schopnosť vyplýva z molekulárnych mechanizmov rozpozná-
vania cudzorodých bielkovín a molekúl. Hoci je imunitný systém rozhodujúci pre prežitie,
bráni využívaniu proteínov pochádzajúcich z iných organizmov ako bioterapeutík, z ktorých
mnohé už preukázali významný potenciál v zdravotníctve. Na využitie tohto potenciálu je
nevyhnutné, aby imunitný systém tieto proteíny nenapadol a nedeaktivoval. Preto je často
potrebné tieto proteíny upraviť tak, aby sa znížila ich imunogénnosť a zabránilo sa ich
detekcii imunitným systémom. Na tento účel vedci zavádzajú mutácie do proteínu, ktorý
je predmetom záujmu, aby znížili imunitnú odpoveď. Rozsiahle experimentálne overovanie
takýchto mutácií je zvyčajne neuskutočniteľné vzhľadom na obrovskú veľkosť kombina-
torického priestoru, ktorý treba preskúmať. Pomocou nástrojov strojového učenia možno
tento proces urýchliť a výrazne znížiť celkové náklady na vývoj tým, že sa mutácie najprv
vyhodnotia in silico a experimentálne sa overí len podmnožina sľubných návrhov z užšieho
výberu. Oblasť nástrojov založených na strojovom učení na predpovedanie takýchto mu-
tačných účinkov však ešte nie je preskúmaná.

Na vyriešenie tejto výzvy predstavujeme nový súbor dát zameraný na vplyv mutácií
na epitopy - oblasti bielkovín, ktoré spúšťajú reakciu imunitného systému. Novo zhromaž-
dený súbor dát obsahuje epitopy, ich jednobodové a dvojbodové mutácie a vplyv týchto
mutácií na imunogénnosť. Využitím tohto nového súboru a nedávnych pokrokov v oblasti
veľkých jazykových modelov pre proteínové inžinierstvo sme natrénovali súbor modelov za-
ložených na strojovom učení, ktoré sú schopné klasifikovať mutácie na základe ich vplyvu na



imunogenicitu, pričom vykazujú výrazné zlepšenie výkonu oproti existujúcim a základným
modelom. Okrem toho prezentujeme spôsob rozdelenia súboru dát na rôzne tréningovo-
testovacie rozdelenia s cieľom minimalizovať prienik údajov medzi týmito rozdeleniami. To
vedie k spoľahlivejšiemu ohodnoteniu reálnej výkonnosti modelov natrénovaných na týchto
údajoch.
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Rozšírený abstrakt
Ľudský imunitný systém zohráva rozhodujúcu úlohu pri obrane nášho tela pred napad-

nutím patogénmi. Kľúčovým prvkom tohto obranného mechanizmu je rozpoznávanie cud-
zích molekúl, vrátane proteínov, špecializovanými imunitnými bunkami nazývanými lym-
focyty. Toto rozpoznávanie prebieha na základe špecifických oblastí antigénov nazývaných
epitopy. Epitopy možno vo všeobecnosti rozdeliť na dva typy: lineárne epitopy, ktoré po-
zostávajú zo súvislej sekvencie aminokyselín, a štrukturálne epitopy, ktoré sú trojrozmerné
konformácie tvorené nespojitými úsekmi proteínovej sekvencie.

Vývoj nových liečiv na báze bielkovín často zahŕňa využitie bielkovinových predlôh z
rôznych organizmov. Tieto, pre ľudské telo cudzorodé bielkoviny, však môžu pri vstupe
do organizmu vyvolať nežiadúce imunitné reakcie, najmä ak je zdrojový organizmus známy
patogén. Preto je kľúčovým krokom pri návrhu liečiv na báze bielkovín ich úprava, s cieľom
minimalizovať ich imunogénnosť, teda schopnosť vyvolať imunitnú odpoveď. Tradične sa
úprava imunogenicity bielkovín vykonáva pomocou pracných a finančne náročných experi-
mentálnych techník na identifikáciu a modifikáciu imunogénnych epitopov. Strojové učenie
ponúka nástroje na zefektívnenie tohto procesu. Algoritmy strojového učenia dokážu an-
alyzovať veľké súbory dát známych epitópov a sekvencií bielkovín s cieľom identifikovať
vzorce, ktoré možno použiť na predpovedanie imunogenity nových sekvencií.

Napriek tomu, že identifikácii epitópov pomocou strojového učenia je venovaných viacero
nástrojov a článkov, tak doteraz nebol navrhnutý žiadny prediktor, ktorý by vyhodnocoval
účinky mutácií na imunogenitu. Táto práca si kladie za cieľ vyplniť túto medzeru a vyvinúť
prediktor založený na strojovom učení, ktorý možno použiť na posúdenie vplyvu mutácií
na imunogenitu bielkovín.

Hlavnou výzvou pri vytváraní takéhoto modelu je získanie kvalitných dát na trénovanie
a testovanie. V tejto práci je navrhnutý nový robustný proces získavania a spracovania
dát. Využívame existujúce databázy epitopov na extrakciu relevantných informácií o nich
a o ich zdrojových bielkovinových sekvenciách. Tieto údaje sa následne spracovávajú s
cieľom získať informácie o mutáciách, a zároveň sa zabezpečuje ich konzistentnosť. Ďalším
aspektom nášho prístupu je vytvorenie kvalitného rozdelenia dát do trénovacích, testovacích
a validačných dátových sád, za účelom minimalizovať presak informácii medzi nimi, a tým
pádom zaručiť kvalitné ohodnotenie modelov.

Z databázy IEDB sa nám celkovo podarilo vyťažiť 8742 záznamov o mutáciach epitopov,
a z toho je 1584 označených ako mutácii znižujúcich imunogenitu. Databáza IEDB sama
o sebe neobsahuje mutačné záznamy, ale vďaka porovnávaniu a prelínaniu existujúcich
záznamov bolo možné vyťažiť informácie o mutáciách. Zároveň sme dáta rozdelili do 3
nezávislých častí na trénovanie, testovnaie a validáciu.

Cieľom je vytvoriť model založený na strojovom učení, ktorý pomôže pri vývoji nových
liečiv tým, že umožní výskumníkom predpovedať, ako mutácie, ktoré zaviedli do epitopov,
ovplyvnia imunogenicitu bielkoviny. Tento model môže byť užitočný hlavne keď predloha
liečiva pochádza z iného organizmu. Pretože je nutné bielkovinovú predlohu upravť tak, aby
nedráždila imunitný systém človeka. S pomocou prezentovaného modelu môžu výskumníci
strategicky a s nižšími nákladmi testovať rôzne mutácie epitopov s cieľom minimalizovať
imunogenitu.

Aby sme overili spoľahlivosť existujúcich nástrojov na mutačných dátach, tak sme už
existujúce nástroje na identifikáciu epitopov adaptovali na mutačné dáta a ohodnotili na
novej dátovej sade. Zistili sme, že na výsledky týchto modelov sa nedá spoľahnúť pri vyhod-
nocovaní vplyvu mutácii na epitopy. Preto prezentujeme nové modely, ktoré sa zameriavajú
na túto úlohu a dosahujú oveľa vyššiu presnosť. Na ich vytvorenie sme použili predtréno-



vaný model ESM2 v kombinácii s algoritmami strojového učenia. Najlepší model dosahuje
presnosť 0.73, čo je v súčasnosti state-of-the-art.
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Chapter 1

Introduction

The human immune system plays a critical role in defending our bodies against invading
pathogens. A key element of this defense mechanism is the recognition of foreign molecules,
including proteins, by specialized immune cells called lymphocytes. This recognition relies
on specific regions of the foreign protein called epitopes. Epitopes can be broadly classified
into two types: linear epitopes, consisting of a continuous sequence of amino acids, and
structural epitopes, which are three-dimensional conformations formed by discontinuous
segments of the protein sequence.

The development of novel protein-based drugs often involves utilizing protein templates
from different organisms. However, these foreign proteins can trigger unwanted immune
responses when introduced into the human body, especially if the source organism of these
templates is a known pathogen. Therefore, a crucial step in protein-based drug design is to
engineer these proteins to minimize their immunogenicity, the ability to induce an immune
response.

Traditionally, engineering protein immunogenicity has involved laborious and expensive
experimental techniques to identify and modify immunogenic epitopes. Machine learning
(ML) offers a promising approach to streamline this process. ML algorithms can analyze
large datasets of known epitopes and protein sequences to identify patterns that can be
used to predict the immunogenicity of novel sequences. Despite the progress in epitope
identification with ML, no predictor of mutational effects on immunogenicity has ever been
proposed. This thesis aims to fill this gap and develop a machine learning-based predictor
that can be used to assess the impact of mutations on protein immunogenicity.

A central challenge in building such a predictor lies in acquiring high-quality data for
training and evaluation. This thesis addresses this challenge by proposing a robust data
mining and processing pipeline. We leverage existing databases to extract relevant infor-
mation on epitopes and protein sequences. This data is then meticulously processed to
mine mutational information, while ensuring accuracy and consistency. A critical aspect
of our approach is the creation of well-defined training, test, and validation data splits to
minimize data leakage and ensure the generalizability of our model.

Our goal is to create a machine learning-based tool that aids in the design of novel drugs
by enabling researchers to predict how mutations introduced into identified epitopes will
affect the protein’s immunogenicity. This tool can be particularly valuable when the drug
template originates from a different organism, requiring modifications to evade the human
immune system. By utilizing our predictor, researchers can strategically mutate epitopes
to minimize immunogenicity while potentially preserving the efficacy of the protein-based
drug.

3



This thesis is structured as follows. Chapter 2 provides an introduction to proteins,
protein engineering, and biopharmaceuticals. Chapter 3 highlights current knowledge about
the immune system, more specifically about the adaptive immune system, and describes
the concept of immunogenicity. Chapter 4 contains a review of machine learning, existing
methods for epitope prediction, and machine learning approaches used in immunogenicity
prediction. Chapter 5 presents the source data and development of the pipeline to create the
novel dataset. Chapter 6 describes the development of our proposed machine learning-based
predictor for mutational effects on protein immunogenicity. Chapter 7 contains results,
performance metrics and comparison of the existing and newly proposed models. Finally,
Chapter 8 concludes the thesis by summarizing the key contributions of this work.
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Chapter 2

Proteins

Proteins, ubiquitous building blocks of life, facilitate a multitude of vital functions within
organisms, from catalyzing chemical reactions to manipulating and repairing DNA. They
provide structural stability to cells, transport of metabolites within and outside cells, help
fight pathogens, and they are also at the core of all active movement of organisms [2]. From a
chemical perspective, proteins are macromolecules that comprise long chains of amino acids.
These chains are usually also specifically arranged in the 3D space to be able to perform
their function. When analyzing proteins in silico, there are multiple representations, from
a string of letters representing amino acids to a set of 3D atom coordinates.

The basic units of proteins are amino acids. They have a unique chemical structure that
allows them to form peptide bonds. On the one end, they have a carboxylate functional
group, and on the other end, an amino functional group. Under certain conditions, these
two groups can join together and thus form a chain. In addition, each amino acid also
has a side chain, which differentiates one amino acid from the other. This side chain
determines the properties of an amino acid and helps to form a 3D structure and binding
sites of proteins. Although more than 500 different amino acids are known today, only 20
of them are encoded in the standard genetic code of all living organisms, and two more are
sometimes incorporated by special translation mechanisms (Table 2.1).

Table 2.1: The most common amino acids occurring in proteins and the corresponding
one-letter notation typically used in the field of protein engineering to represent protein
sequences.

Amino acid letter Amino acid letter Amino acid letter
Alanine A Glycine G Proline P
Arginine R Histidine H Serine S

Asparagine N Isoleucine I Threonine T
Aspartate D Leucine L Tryptophan W
Cysteine C Lysine K Tyrosine Y

Glutamine Q Methionine M Valine V
Glutamate E Phenylalanine F

5



The AAindex1 database serves as a comprehensive resource for studying the properties
of the 20 standard amino acids. There are 566 chemical, physical, and statistical descriptors
of these amino acids. Additionally, the database includes mutation matrices and pair-wise
contact potentials. All of these properties can be used to study the roles of amino acids
within proteins and to engineer features for machine learning applications.

2.1 Protein synthesis
In organisms, proteins are produced by a complex process that starts with the genetic
information of the organism and ends with the functional protein. First, the genes stored
in the DNA that encode a certain protein are copied by a process called transcription. The
part of the DNA that contains the gene is copied to mRNA. The ability of the DNA to
copy arises from the complementarity of the nucleic acid bases, which constitute the DNA.

After the mRNA is synthesized, it can be translated into a peptic chain, which is done
by ribosomes. They can translate 3 mRNA bases that are next to each other into a singular
amino acid and catalyze the formation of peptic bonds between neighboring amino acids.
Repeating this action over and over leads to the elongation of the peptide chain. The
order in which the amino acids are bound to each other forms the primary structure of the
protein. When enough amino acids with favorable properties are close to each other, they
form the so-called secondary structure elements in the 3D space: an 𝛼-helix, a 𝛽-sheet, or a
turn. When there are not enough favorable amino acids, it is also possible that they do not
take a 3D shape and stay in the form of a disordered chain. Finally, after the entire protein
has been synthesized, it can take its final shape in a 3D space, which is called the tertiary
structure. Here, all the secondary shapes remain formed, but they interact with each other
and with other parts of the chain to take their final positions. It is also worth noting that
protein molecules are dynamic in nature, the property often critical for their function, and
their tertiary structure is, in fact, a changing conformation, which can be regarded as a
sample from the underlying energy distribution based on the protein environment and state.

In some cases, the protein cannot fold on its own and requires the help of other proteins
called chaperones, which are specialized for this task. The correct function of the protein is
greatly impacted by this structure. For instance, a protein in a denatured state still typically
has the same primary and partially secondary structure, but it usually loses its function.
The denatured state of a protein is defined as a state in which the protein loses its tertiary
structure due to some external circumstances, such as a change in acidity, temperature,
pressure, or other factors.

Protein synthesis differs between prokaryotes and eukaryotes. Since prokaryotes do not
have a nucleus, DNA is freely present in plasma, and both transcription and translation
processes can occur at the same time. The eukaryotes have nuclei that contain the DNA but
not the translation mechanism, so the mRNA is first transcribed, then optionally processed,
then it has to leave the nucleus to get translated.

2.2 Taking advantage of proteins
Proteins are essential for living organisms, but humans have also found ways to utilize
them to their advantage, e.g., in chemical, medical, pharmaceutical, and biotechnological
industries, for example, by overexpressing required proteins using cell cultures. The most

1https://www.genome.jp/aaindex/
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prominent use is the production of alcohol and dough with yeast, which has been around
for millennia. One of the first out-of-cell uses of proteins was for laundry detergent in 1913,
but the enzyme was not stable enough. Only in the 1960s, a new enzyme was discovered
that became an important additive to detergents for home and industry use [23]. Another
example of the use of proteins in industry is the use of new lubricants for machines [31]. In
the medical field, insulin, a hormone responsible for the absorption of sugar from the blood,
has profoundly improved the life of people with diabetes. Recently, the use of monoclonal
antibodies has become more and more popular to restore or modify the immune system’s
response to pathogens and cancer cells. Some enzymes are also used as biosensors to detect
the presence of different substrates, as well as solutions to many modern environmental
challenges, such as carbon capture or plastic degradation [38].

For proteins to fulfill their function, they have to bind to other molecules, which are
called ligands. Enzymes are proteins that catalyze chemical transformations, increasing
the rate of reactions by lowering the energy barrier required for the reaction to happen.
After the reaction is complete, most enzymes go back to their native form, making them
ready for the next reaction cycle. In this way, organisms can produce essential chemicals
and regulate themselves.

Proteins have a wide variety of functions, but with that also come different environmen-
tal requirements. Some proteins are produced to never leave the cell, others are signaling
molecules that are released into the environment, and some enzymes facilitate reactions
outside the cell. The conditions outside and inside the cell might be entirely different. The
inside of the cell is highly regulated and controlled, whereas the outside may change rapidly.
All of this impacts the evolution trajectory each protein has undergone. Some organisms
can survive at relatively high temperatures, even above 80 ℃, while some human proteins
start to degrade already at 40 ℃. This particular property is called protein stability and is
one of the basic attributes of proteins. It is often quantified by the temperature at which
half of the protein sample is denatured (the melting temperature).

Another important property is pH stability, especially for the industrial use of proteins,
where the pH might be much higher or lower than the pH in their natural environment.
This was also the reason why the initial use of proteins in detergents failed in 1913 when the
researchers used trypsin in combination with soap, which changed the pH of the solution
and the trypsin became much less active.

This brings us to another critical property, particularly for enzymes, the activity. It
describes how well the protein facilitates the reaction. Some enzymes might have higher
activity but are more sensitive to the environment, while others might have lower activity
but can facilitate many reactions. This property is also interesting from the point of indus-
trial use, where we usually want the fastest reaction possible, but the particular enzyme
evolved with lower activity because the reaction it facilitates had to be regulated inside the
cell.

For example, consider lactate dehydrogenase, the enzyme that catalyzes the reaction of
lactate to pyruvate and back, which is a basic reaction in the anaerobic energy pathway as
lactate is a molecule that builds up in muscles during high-strain activities due to the lack
of oxygen [17]. The enzyme could potentially have evolved to have higher activity, but if it
had, it would process pyruvate too fast, and create too much lactate, which could lead to
acidosis. However, in industrial conditions, it is used to produce all kinds of fermentation
products and lactic acid, where a higher activity would be beneficial.
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2.3 Protein engineering
The discipline of studying individual proteins and the ways to modify them is called protein
engineering. Scientists in this field usually first study the sequence, structure, and behavior
of proteins under natural and artificial conditions. They then try to modify existing proteins
to have better properties, such as higher melting temperatures or better activity. Another
field of interest is to study a certain reaction and a family of enzymes that catalyze this
reaction to better understand and improve it.

A newly emerging field is de novo protein design, where scientists do not modify the
existing proteins but instead attempt to design completely new proteins from scratch [67].
This was previously not possible because the determination of the structure of proteins is a
challenging task, even for natural proteins. However, today, with the emergence of complex
AI-based tools, such as AlphaFold [28], a new generation of protein engineering tools is
emerging that are capable of using the structure of a protein that was not determined
experimentally before.

2.4 Biopharmaceuticals
Biopharmaceuticals are pharmaceutical drugs that are extracted or semisynthesized from
biological sources. They can be categorized into multiple classes based on their composition
and use:

• Protein-based therapeutics

• Nucleic acid-based therapeutics

• Gene therapies

• Vaccines

There are a total of 566 of approved therapeutics in these categories in the U.S. and E.U.
at the time of writing. If we subtract the vaccines from the list because they fall into
prevention rather than treatment and have different principle of function, then there are
378 therapeutics in total, 349 of them being protein-based therapeutics [33].

Most of the drugs and therapeutics used historically are in the category of small
molecules. Small molecules do not fall under the biopharmaceuticals and have low molec-
ular weight of (≤ 1000 Da). They are small, mostly organic, compounds that regulate
biological processes. Since they are used in drugs, they have to be approved by regulatory
entity. When searching for novel treatments these molecules are screened first, since it is
easier to approve a new drug with already approved chemical compounds. Currently, there
are 1973 of them approved in the U.S. and E.U.

Some protein-based therapeutics are peptides, which have a molecular weight of 500−
5000 Da. These include insulin, oxytocin, vasopresin, and more. From 2000 to 2022, a total
of 33 non-insulin peptide drugs have been approved worldwide, for various use including
treatment of advanced prostate cancer, multiple myeloma, osteoporosis, etc. Most of them
are peptides mimicking human peptides, but some of them are derived from other organisms.

The rest of the protein-based therapeutics are proteins with molecular weights above
5000 Da, such as monoclonal antibodies, thrombolytics (alteplase, tenecteplase), recombi-
nant clotting factors (Turoctocog alfa), hormones, growth factors, and vaccines. The source
organism of many of these proteins are humans, meaning they are natural to the human
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body and their codes are part of our genome. They are administered because there might
be a deficiency, mutation, or other problem, and the body is not able to synthesize them on
its own. In other cases, e.g., with ischemic stroke, alteplase, a thrombolytic drug capable
of dissolving blood clots, can be administered. In this case, alteplase is naturally occurring
in the blood stream, but in insufficient amounts to dissolve the clot in time.

Few of these proteins come from other organisms, such as chymopapain [15], which comes
from Carica papaya and is a cysteine protease. These proteins, however, are recognized as
a threat by the immune system and can be attacked and degraded. For chymopapain, it is
not a problem since it is administered acutely and using injection into the affected area to
take effect. However, there are enzymes that need to be administered to the bloodstream
to be distributed throughout the body and are thus more sensitive to immune responses.
One example is Staphylokinase [11] [22], a thrombolytic drug that could be used to treat
acute ischemic stroke. It comes from a bacteria called Staphylococcus aureus. Compared
to the approved alternative alteplase, it shows a more specific and faster response, while
causing less internal bleeding after administration.
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Chapter 3

Immune system

The immune system is one of the most complex body systems and has multiple parts that
have to cooperate to defend the body efficiently. It consists of a distributed network of cells,
organs, proteins, and chemicals. The main goal of this system is to protect against foreign
and internal threats. It protects the host from other organisms, toxins, parasites, and
viruses, generally called pathogens. In multicellular organisms, its task is also to eliminate
mutated cells that can cause cancer. Almost all living organisms have some kind of immune
system, ranging from simpler systems in bacteria to the most complex in mammals. The
system can be divided into two subsystems, innate and adaptive [1].

3.1 Innate immune system
This system is older and not as specific as the adaptive one. It is usually the first line of
defense against microbial and virus pathogens. Its main distinguishing feature is that it
does not learn from previous encounters. Therefore, it responds in the same way if the same
pathogen infects the host for the second time. Its main reactions are to induce inflammation
at the sites of infection and to defend against viruses by eliminating virus-infected cells.

This immune subsystem can recognize pathogens due to pathogen-associated molecu-
lar patterns (PAMPs). These molecules are inherently associated with certain types of
pathogens, such as peptidoglycans that are part of the cellular wall of some bacteria.
Other examples include flagellin, which is a protein that forms the bacterial flagellum,
or double-stranded RNA, which is typical for some viruses. All PAMPs are typical for cer-
tain pathogens, and these pathogens cannot easily mutate these patterns because they are
essential for their survival, making their PAMPs effective and reliable targets to recognize
pathogens. It is estimated that for humans around 1000 different PAMPs exist.

Additionally, the innate immune system also has receptors to recognize damage-associated
molecular patterns. These are present when cells break down and are detected to mobilize
innate immunity to remove debris and start the repair process.

Some examples of cells that are part of this subsystem are:

• neutrophils – the most abundant leukocytes in the blood, they are the first to respond
to a bacterial or fungal infection. They are phagocytes, which means that they can
engulf pathogens and digest them inside.

• macrophages – their precursors are present in the blood, and after they are activated,
they become macrophages. Their function is similar to that of neutrophils, they
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phagocyte the pathogens and release and regulate inflammation, but they have a
much longer life span.

• dendritic cells – they are present in tissues that are part of the microbial response,
such as lymphatic nodes. They work closely with the adaptive immune system by
presenting antigens from processed pathogens.

• mast cells, natural killer cells, etc.

In addition, part of this immune system is also the barrier provided by the skin and
mucosal tissues present, for example, in the nose and mouth.

It is important to note that this subsystem combats either bacteria directly or viruses
indirectly, since it targets cells infected by viruses. The innate immune system is incapable
of producing antibodies, and thus it cannot affect proteins floating freely in the environment.
Moreover, after the cells that comprise this system differentiate to their final state, they all
have the same receptors, which is different in the adaptive immune system.

3.2 Adaptive immune system
The adaptive immune system is phylogenetically younger but more powerful and present
only in vertebrates. The complexity of the adaptive immune system is based on its ability
to learn, which creates large variations in the population and even within one organism.
This system responds slower than the innate system because the cells that can respond
first need to proliferate after encountering the threat. Its main characteristic is that it can
learn, so the second encounter with the same pathogen triggers a much faster and stronger
response. It is essential in the fight against pathogenic organisms that can adapt to avoid
the innate immune system, e.g., viruses. These are usually infectious diseases that are
harmful to humans.

The innate system is capable of recognizing general patterns shared by entire families
of microbes. In contrast, the adaptive immune system can adapt and recognize proteins
or other molecules that are specific to a particular organism. In this way, the latter can
recognize a wide variety of molecules, regardless of whether they are harmful or not, and
these molecules are called antigens in this context. The specific parts of antigens that the
adaptive immune system can recognize are called epitopes [20]. An epitope is a specific
part of the molecule that directly binds to antibodies or receptors, and this binding causes
the immune system to identify the given molecule as pathogenic. In protein targets, it is
either a short subsequence (linear epitopes) or a set of amino acids that are in close vicinity
in the 3D structure of the protein (structural epitopes).

The adaptive immune system has two main parts. The first part is the cells that
digest and process pathogens and present processed antigens. These include dendritic cells,
macrophages, and mast cells, commonly called antigen-presenting cells (APCs), which were
mentioned as part of the innate immune system, but are also part of the adaptive immune
system. The second part is T cells and B cells, called lymphocytes, which carry out adaptive
immune system responses based on the antigens presented by the APCs. Lymphocytes can
recognize specific pathogens thanks to receptors on their surfaces. These receptors are
specific for each cell line, making them very diverse.
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3.2.1 T cells

T cells are created in the bone marrow and then travel to the thymus, where they undergo
a mutation process and develop their specific receptors through a process called the V(D)J
recombination process, where DNA is edited and spliced. In this process, the genes that
encode the receptors are mutated randomly but not chaotically to form a novel random
receptor.

T cell receptors [40] react to antigens presented by class I or class II MHC proteins.
These are specialized proteins that bind to antigen proteins and present them on the surfaces
of cells. T cells have two types of receptors, the first receptor reacts to the MHC protein, and
the second receptor reacts to the antigen presented on the MHC protein. This mechanism
ensures that T cells will not be activated anytime the second receptor binds, but only if it
binds to the antigen presented by the MHC-presenting cell, which is confirmed by the first
receptor.

After T cells develop their receptors and express them on their surface, they undergo
a positive and negative selections. The positive selection keeps T cells that developed
functional first receptors that correctly recognize MHC proteins, manifesting in low or
moderate affinity for the antigens presented with MHC. This is possible because of cells in
the thymus that present, using the MHC, a wide variety of different proteins and molecules
from all over the body (self-antigens). The negative selection then filters out T cells that
developed receptors that would bind strongly to self-antigens, i.e., they would recognize the
body cells as foreign and attack them. This manifests itself in a very high affinity towards
the self-antigens presented with MHC because both receptors bind. Both of these processes
help regulate T cells and reduce the probability of autoimmune diseases.

After the selection of T cells, they are released into the blood and plasma, where they
circulate until they find the antigen they can recognize. If they do, they start to divide
and proliferate, creating copies of themselves while maintaining the same receptor. They
also promote inflammation and excrete chemicals that should kill pathogens. Other copies,
called helper T cells, help activate B cells. T cells are also responsible for the elimination
of cancerous cells.

3.2.2 B cells

The B cells are the only cells capable of producing antibodies. Antibodies are proteins
composed of 4 polypeptide chains, 2 are identical light chains and 2 are identical heavy
chains, all joined by disulfide bridges. Generally, antibodies have a Y shape, but some
variants of antibodies have multiple Y-shaped units joined together in a circle, forming a
star pattern. Both light and heavy chains contain a variable region, which is responsible for
a great variety of antibodies because, during cell development, it is heavily mutated by the
V(D)J process [3]. This process is theoretically capable of making more than 1011 distinct
variable regions in antibodies. The purpose of antibodies is to bind to antigens and either
disable them by the binding or mark them for destruction by other cells of the immune
system. Some antibodies are excreted from B cells, while other light and heavy chains make
part of B cell receptors. The antibodies are especially effective against viruses because they
can disable them before they infect the cell by binding to the proteins responsible for
allowing the virus to enter the cell. The place where they bind to the antigen is called the
epitope.

The main difference between B-cell and T-cell epitopes is their structure. T-cell epi-
topes are mostly linear, meaning that T-cell receptors recognize peptides based on their
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amino acid sequences. This is caused by the binding of MHC and antigen preprocessing.
In contrast, B-cell antibodies and receptors bind directly to antigens, which can be fully
assembled proteins. This causes the distribution of B-cell epitopes to be 90% structural
and 10% linear.

B cells are also created in the bone marrow, but they undergo differentiation there and
travel to the spleen to complete their maturation. They have, similarly to T cells, the
V(D)J recombination process that results in a wide variety of antibodies. They are also
selected, but differently compared to T cells. Their positive selection is focused only on
filtering the correct antibodies and receptors, which means that if something goes wrong
during DNA recombination and the receptors are malformed, those cells undergo apoptosis.
Their negative selection is also different. If the B cell binds strongly to some self-antigen,
then it can undergo apoptosis, or it can undergo V(D)J recombination again and change
its receptor. This selection is not as thorough as in T cells and is done only against self-
antigens that are ubiquitous in the body, such as blood proteins or membrane molecules
present in all cells. Only B cells that would react with most body cells are removed, while
those that might bind to proteins specific to a certain part of the body are kept. Mature B
cells usually reside in lymph nodes and scan their environment, dendritic cells, and other
antigen-presenting cells for pathogens. In addition, they are also capable of expressing the
MHC protein and presenting antigens to T cells. As mentioned above, their antigens are
more diverse and capable of recognizing proteins, lipids, nucleic acids, polysaccharides, and
other types of molecules.

B cells rarely respond to protein antigens on their own, even if they have the corre-
sponding receptor. This is because they need the help of T cells to confirm that it is indeed
pathogenic and not just a body protein they have not seen before. If they encounter a
protein to which their receptor strongly binds, they phagocytize this antigen, split it up,
present it using the MHC complex, and wait for confirmation from the T cell that this is
indeed a foreign protein [45]. If the antigen is not a protein, they can respond on their own.
This form of regulation is one of the reasons why B cells do not have to undergo such a
strong selection compared to T cells.

When B cells are activated, they start to proliferate and enter the bloodstream, where
they begin to mass-produce antibodies to combat the antigen by which they were activated.
Furthermore, these replicated B cells can further improve the antibody by small mutations
to have a better affinity towards this antigen.

3.3 Immunogenicity
Immunogenicity is the term used to describe how strongly the immune system responds
to a given substance or organism. This property is important for vaccine and drug design
and development as it determines drug effectiveness [12]. Therefore, tools that can help
affect the immunogenicity of a specific protein are in high demand as they can save time
and resources spent during the drug development cycles.

The most studied immunogenicity effects are by the adaptive immune system, mainly
due to the development of vaccines and new antibodies to battle new viruses or other
pathogens and their variations. It is necessary to say that each individual has their
unique set of antibodies that arise from exposure to different environmental conditions
and pathogens in the past. By exposing the body to a new pathogen, the adaptive immune
system is usually able to create new antibodies for this pathogen – the main mechanism
behind vaccination.
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When a new vaccine is developed, it is usually based on the antigen that would bind
strongly to antibodies so that the lymphocytes would get activated and start replicating
and producing antibodies. Thus, if the body encounters the real pathogen, the lympho-
cytes would have already multiplied and antibodies are abundant in the blood to fight the
pathogen.

With protein-based therapeutics that are administered intravenously, the exact opposite
effect is necessary: one wants to design the drug in such a way that the immune system
will not attack it. This is typically not a problem for T cells because they will not destroy
the protein. However, antibodies can bind to the protein and thus disable it. That is
also a reason why most protein-based therapeutics are taken from human proteins: this
approach eliminates the antibody problem, since the immune system has already applied
the negative selection so as not to attack native proteins. In contrast, when a protein from
another organism is considered, there is a high chance that the immune system will attack
it because that is what the immune system has evolved to do.

This effect is different in the drugs administered acutely, e.g., once or twice in life, or
the drugs that are administered periodically. An example of the first type of drug is a
thrombolytic agent, which is administered when a person suffers a stroke [10]. An example
of the second type is a protein-based drug, insulin, administered daily [56]. The first group
of drugs is expected to work for an individual at least for the first time because the immune
system has not seen the protein before, and if the amount is not too large, there is a
chance that the immune system will not be triggered by the drug. Still, this might be a
problematic neglect in the design of a drug, especially if it is designed to be administered
to a sick person, since if their immune system gets triggered, there is a possibility of fever
induced by the presence of the drug in the bloodstream. That is why the immunogenicity
of protein-based drugs is so important, but also why drugs based on proteins from other
organisms are not very common.

To explore the great potential of proteins from other organisms that can be used as
therapeutics, it is thus necessary to decrease or remove immunogenicity, i.e, to disable the
epitopes. There are multiple strategies to accomplish this goal, such as shielding methods
or epitope removal [69]. Shielding methods include PEGylation, methylation, glycosylation
and more. They always include attachment of another molecule to the protein to deny access
of receptors or antibodies to the binding site. One of the strategies of epitope removal is
domain removal, where a part of the protein is removed that contains or forms an epitope.
Although, this strategy is relatively simple, it is not always possible to delete part of the
protein and still keep its function, as the protein might not fold or the epitope might be a
part of the catalytic pocket if the given protein is an enzyme.

Developing effective drugs often necessitates a more in-depth understanding of the tar-
get protein’s epitopes, both structural and linear. Ideally, these epitopes can be strategi-
cally disabled or their immunogenicity reduced. However, studying epitopes experimentally
proves to be a significant hurdle. Structural epitope analysis requires obtaining the pro-
tein’s structure bound to an antibody, a complex and expensive undertaking. Conversely,
linear epitope investigation involves fragmenting the protein into smaller peptides and test-
ing them individually against various antibodies – a laborious and time-consuming process.
Considering that protein development might necessitate multiple rounds of such experi-
ments, the cost becomes a significant barrier. This highlights the critical need for efficient
in silico tools to aid in epitope research. Such tools, potentially based on machine learning,
hold immense promise for accelerating drug development and furthering our understanding
of the immune system.
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Chapter 4

Machine learning

Machine learning (ML) [57] [42] is a subfield of computer science concerned with the de-
velopment of algorithms that can automatically identify patterns and relationships within
data. These algorithms are trained on a representative subset of data, known as the train-
ing set or training data, enabling them to learn and make predictions on new, unseen data
that has similar form to the training data. Machine learning has been utilized in many
applications for more than 15 years, such as customized search results, suggestions on so-
cial networks, movie suggestions on online streaming platforms, spam filtering and much
more. This was more behind-the-scenes usage, and the users might not have been aware
of it. However, ML is becoming more and more visible with the emergence of large lan-
guage models from companies like OpenAI [49] and Google [63] and their use as virtual AI
assistants.

The machine learning techniques are usually divided into multiple categories:

1. Supervised learning – the training data includes input features and expected out-
puts. The algorithm looks at the inputs and tries to determine how to derive the
outputs. This includes tasks such as classification and regression.

2. Unsupervised learning – the training data includes only input features. The algo-
rithm tries to uncover the structure or groupings within the data. The typical tasks
are dimensionality reduction and clustering.

3. Reinforcement learning – the training involves an interactive learning process
between an agent and its environment. The agent learns by trial and error while
being rewarded for desirable actions and penalties for not-desirable ones.

Machine learning is revolutionary because of its data-driven approach, without the
need for analytical solution. In the field of bioinformatics, ML algorithms are employed in
a multitude of ways, such as analyzing biological sequences, predicting protein structures
and functions, designing novel drugs, antibodies and more. Since biological systems are
so complex, machine learning helps to uncover previously hidden relations and process the
increasing amounts of biological data.

The usual steps when solving problems using machine learning are as follows:

1. data collection

2. data cleaning and preparation

3. selection of suitable algorithm/s
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4. (optional) feature engineering

5. model training and hyperparameter optimization

6. model testing

Before the data can be used in machine learning, a pre-processing step is necessary to
reduce the noise and reformat them for the chosen algorithm. Additionally, the data is
split into training and testing or training, testing and validation splits. The algorithm is
trained on training data, and testing data is supposed to show a real performance of the
predictor on previously unseen data. Usually, the algorithms themselves have parameters,
called hyperparameters, and these also need to be optimized. The subset of the training
dataset, the validation set, is used to compare scores of models trained with different
hyperparameters, acting as an independent set, while the testing set is kept aside and
used only to evaluate the final predictor.

In the realm of machine learning, data preparation often necessitates feature engineering
[43]. Features are essentially numerical representations extracted from the raw input data
that encapsulate informative characteristics relevant to the specific task at hand. Crafting
effective features can be a significant challenge in the design of machine learning predictors.
While large neural networks exhibit a degree of resilience to suboptimal feature engineering,
they often demand considerably larger volumes of training data [4]. In biological and chem-
ical research domains, however, data acquisition is frequently a costly and time-consuming
endeavor [28]. This very constraint partly explains the recent resurgence of interest in
more general, large protein models, which can achieve good performance even with limited
training data [59]. Consequently, feature engineering, when judiciously combined with sim-
pler models, remains a viable and advantageous approach for a multitude of applications,
particularly in scenarios where extensive training data is scarce.

4.1 Metrics
In machine learning, various metrics are used to evaluate how well the model performs. In
the case of classifiers, a common approach it to score how many datapoints are classified
correctly. In regression models, the model performance is evaluated by how far off the
real values and the predictions are. The metrics selected are highly dependent on the task
the model solves, and often new metrics need to be invented for novel tasks. A noticeable
example is text generation, where it is not obvious how to compare generated text to
expected while taking into account synonyms and ambiguity of natural language. In this
thesis, the main focus is on classification, and there are well-defined scoring techniques for
this task.

4.1.1 Accuracy

Accuracy is a metric used to evaluate results of binary classification. It calculates the
fraction of correctly classified data points:

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4.1)

where TP = True positive, TN = True negative, FP = False positive, FN = False negative.
Accuracy thus produces scores between 0 and 1. However, in the case of unbalanced

datasets (there is a larger fraction of one class compared to the other) the result might be

16



misleading. For a typical example of the prevalence of a disease in a population (usually
only a small proportion of the population has the illness), if 2% of the population are sick
and the predictor always sees everyone as healthy, it will have the accuracy of 98%, despite
not using any useful information in the features.

The balanced accuracy score is adjusted for the dataset imbalance, but the problem
with looking only on the positive predictions prevails. Thus, there are multiple other met-
rics that put into proportion other combinations of the TP, TN, FP, and FN. Jointly, they
provide a clearer picture of the real situation and are more useful for objective analysis.
However, the diversity of metrics brings a higher level of complexity to machine learn-
ing, making the model engineering harder. Thus, a single metric that reflects all relevant
information is desirable.

4.1.2 Matthews correlation coefficient (MCC)

One of such metrics is Matthews correlation coefficient [41] or Phi coefficient, defined as
follows:

𝑀𝐶𝐶 =
𝑇𝑃 * 𝑇𝑁 − 𝐹𝑃 * 𝐹𝑁√︀

(𝑇𝑃 + 𝐹𝑃 )(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃 )(𝑇𝑁 + 𝐹𝑁)
(4.2)

.
It measures the quality of binary classification and returns values between −1 and 1,

for negative and positive relationships, respectively. It is not dependent on the ratio of the
classes in the dataset. However, the results are harder to interpret for values that are not
−1, 0, or 1.

4.2 Algorithms
The machine learning domain encompasses a diverse arsenal of algorithms, which are then
tailored to address specific tasks. These algorithms include support vector machines, de-
cision trees, random forests, logistic regression, gradient boosting, and neural networks, to
name a few. While some algorithms exhibit versatility, capable of both classification and
regression, others are designed for specific types of tasks.

Linear models serve as the foundation for many algorithms. As the name suggests, they
predict values based on a linear combination of input features. In contrast, more advanced
models, such as deep neural networks, transcend these linear limitations, possessing the
ability to learn and approximate functions of various complexities. However, this very
strength presents a challenge: overfitting. Overfitting is a situation where a significant
drop in performance is observed when evaluating the model on the test set compared to the
performance observed on the training set. Deep neural networks, with their capacity to fit
any function, are susceptible to overfitting the training data, leading to poor performance
on unseen data. Subsequent sections will delve deeper into the algorithms most relevant to
this thesis.

4.2.1 Logistic regression

Logistic regression is a cornerstone technique in supervised learning specifically designed for
classification tasks. It excels at modeling the probability of a particular outcome belonging
to one of two predefined classes. Unlike linear regression, which predicts continuous values,
logistic regression transforms the linear relationship between the input features and the
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binary outcome into a probability estimate between 0 and 1. This transformation is achieved
through the logistic function Equation 4.3.

𝜎(𝑡) =
1

1 + 𝑒−𝑡
(4.3)

Logistic regression offers several advantages that contribute to its widespread adoption.
A key strength lies in its interpretability. During the training process, the model assigns
weights to each input feature. These weights provide valuable insights into the relative
influence of each feature on the model’s prediction. Features with larger weights exert a
more significant impact on the model’s output probability, allowing to gain a deeper under-
standing of the factors driving the classification process. Additionally, logistic regression
exhibits robustness to outliers in the data, making it less susceptible to the influence of
extreme data points.

However, it is essential to acknowledge the limitations inherent to logistic regression.
One such limitation is the assumption of a linear relationship between the input features
and the output class. This linearity assumption can restrict the model’s ability to effectively
capture complex, non-linear relationships within the data. Furthermore, logistic regression
can struggle with high-dimensional data containing a vast number of features. In such
scenarios, alternative classification algorithms, such as Support Vector Machines or Random
Forests, might be more adept at handling the increased complexity.

4.2.2 Neural network

Neural networks, inspired by the structure and function of the human brain, are a powerful
tool in the field of machine learning. These computational models consist of interconnected
nodes, often referred to as artificial neurons, that process information by transmitting sig-
nals between each other. Each connection between neurons has a weight assigned to it,
which determines the strength of the signal transmitted. Through a process called learn-
ing, these weights are iteratively updated based on minimizing a particular loss function,
which depends on the training data and current predictions. This allows neural networks to
identify patterns, make predictions, and perform complex tasks without explicit program-
ming.

Critical to this process are activation functions. These functions act as gatekeepers,
determining whether a neuron’s output signal should be sent forward to the next layer in the
network. Different activation functions introduce non-linearity into the network, allowing it
to model complex relationships between input data. Common activation functions include
the sigmoid function, which outputs a value between 0 and 1, and the rectified linear unit
(ReLU), which outputs the input directly if positive and zero otherwise. The choice of
activation function depends on the specific task and network architecture.

Neural networks come in various architectures, each suited for specific applications.
They have revolutionized various fields, including image recognition, natural language pro-
cessing [32], machine translation, and bioinformatics [34].

4.3 Large language models
Large language models (LLMs) are at the forefront of artificial intelligence currently, push-
ing the boundaries of human-computer interaction. These complex algorithms are revolu-
tionizing the way we process and generate text. They are trained on a vast digital library
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of textual data containing books, articles, social media conversations, etc. The models an-
alyze the training data during training and find patterns and relationships between words.
The large sizes of the models allow them to capture grammar, syntax, and other language
nuances in great detail.

The true power of LLMs lies in their versatility. They are capable of generating text
based on input prompts, essentially allowing users to specify what they need using a natural
language, and the users get responses in the same language, in many task types comparable
to human responses. The output of the model can also be customized by introducing
configuration prompts before the user queries. The LLMs are also capable of condensing
and sifting through large amounts of text, as well as extracting key points and creating
summaries. They are also capable of seamlessly operating in many languages, allowing
users to use them for translation. Another capability is answering factual questions, which
comes from the vast amount of information included in the training data. Thanks to these
features, the LLMs have quickly become the basis for many personal assistants, internet
search enrichment, etc.

In terms of training, there are usually multiple strategies involved for different tasks.
One of the tasks is filling in the blanks in the input. The model gets a text or a sentence
with some words missing on the input and tries to fill in the blanks. The words the model
filled in are compared to the actual words that were masked, and the model weights are
adjusted accordingly. This method of training is called masking, and the idea is that the
model learns language rules and grammar using this objective.

Another strategy is called next sentence prediction. In this case, the model is
presented with two sentences or two short texts, and the goal is to predict if the second
sentence should follow the first one. This objective helps the model to understand context
and relations between sentences. This task is more focused on classification tasks, where
it is necessary to condense information about the sentence into a vector, so the model has
context based on which it can compare the sentences.

Usually, the models do not process text (letters and words) directly, but a preprocessing
step is in place, called tokenizer. The tokenizer encodes words or parts of words into
numerical values, usually integers. It also has to be trained, but the point of training is to
find optimal letter groups. The training of the tokenizer is done before training the model,
and it is usually fast. Compared to other methods of machine learning, this approach
basically avoids engineering any additional features. This burden is on the model during
training, which accelerates the process of data preprocessing, but necessitates larger training
datasets.

4.3.1 Transformers

The idea behind the transformer comes from a recurrent neural network encoder-decoder
[6], where one neural network (encoder) encodes an input sequence into a fixed-length vector
representation and another one (decoder) decodes the representation to another sequence
of symbols. These two networks are trained together to maximize the probability of the
target sequence, given the source sequence.

A recurrent neural network (RNN) is a type of architecture used to process sequential
input data. There are many modifications of RNNs, such as Long-short term memory
(LSTM) [25] or Gated recurrent units (GRU) [6]. They are still being widely used, with
more than 16000 citations on Google Scholar for the original LSTM article alone. In
RNNs, the input sequence is processed one token after the other, each token producing
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a vector representation that is then used when encoding the next token. This brings the
inherent sequential processing into training, hindering any useful parallelization possibility
and necessitating long training times for large datasets. Additionally, the models tend to

”forget“ parts of the previously seen sequence, sometimes parts that are far off from the
current token due to vanishing gradient problem [24] and sometimes due to catastrophic
forgetting [58].

The term transformer was first introduced by [64]. It is also an architecture based on
encoder and decoder, but the main difference is that the recurrent mechanism is removed.
The input is processed by the encoder as a whole, giving the encoder a view of the entire
input sequence. Additionally, it is enriched by a mechanism called attention, which gives
each input token a different weight, based on the surrounding tokens, making it possible to
highlight important parts of the sequence and ignore the others. More precisely, it is called
self-attention, referring to relations between different positions (tokens) of the input. This
architecture was shown to excel at text-processing tasks, such as translation [37] and text
generation [63].

The encoder consists of multiple layers, each consisting of a multi-head attention layer
and feed-forward network layer. There might be a slight variation in how the encoder pro-
cesses the tokens: some encoders are unidirectional, meaning the current token is processed
using attention, taking into account only previous tokens, or bidirectional where during
the processing of the current token, all other tokens are taken into account in the atten-
tion mechanism. Multi-head attention means that multiple attention-based mechanisms
are used in parallel, each focusing on a different importance of the context. The number of
layers in the encoder is a hyperparameter that has to be decided before training the model.

The decoder is also formed from multiple layers, and each layer has three parts: attention
on the previously generated outputs, attention on encoder outputs, and the feed-forward
layer. The first attention layer takes the tokens that the decoder produced previously.
When the decoder starts generating a text, it generates the first token. When generating
the second token, the decoder already takes the first token into account, etc. This allows
the decoder to see what it has generated before, so the following text is concise and well-
connected. At the same time, this makes it possible to generate longer or shorter texts than
the input, making the length of the output text independent of that of the input.

The second attention layer takes the output of the first attention layer and the output
from the encoder as input. The reason is that the decoder still considers what was on the
input when generating the answer. The output from the encoder stays the same while the
decoder generates the output.

BERT

The Bidirectional Encoder Representations from Transformers (BERT) model was first
introduced in [13]. It took only the encoder part of the transformer, and the entire training
was done on the encoder only. The goal was to provide a universal model that understood
language and could be fine-tuned for various tasks. BERT was originally trained 50% on the
masking task and 50% on the next sentence prediction task. Both of these tasks required
unlabeled data, which helped with the data preparation and collection.

Fine-tuning is a technique used to adapt large language models (LLMs) to specific
tasks. A significant portion of an LLM’s capability lies in generating features relevant to
the final task. Since this feature generation machinery is reusable across various tasks, it is
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inefficient to retrain it for each new purpose. Consequently, pre-trained models like BERT
exist, focusing solely on feature generation without targeting a specific task.

Fine-tuning leverages these pre-trained models by adding a new layer at the end, specifi-
cally tailored to the desired task. This final layer is then trained (fine-tuned) on a dedicated
dataset. This dataset can be substantially smaller compared to the massive datasets used
for pre-training the LLM. This efficiency arises because fine-tuning focuses on training just
the added layer and making minor adjustments to the pre-trained model’s internal parame-
ters. The advantages of fine-tuning include facilitating the creation of custom models with
greater accessibility, as well as enabling faster model training and evaluation.

Transformers in bioinformatics

The transformer architecture has also successfully been used in bioinformatics for protein
sequences [16]. The idea is that the model learns the language of proteins. Usually, the
proteins are represented as sequences of letters, where each letter represents an amino acid.
In the sense of transformers, each letter is a separate token, and a single protein sequence
acts as input to the transformer. The ProtTrans transformer model was, according to
this ideology, achieving state-of-the art performance on multiple tasks, such as per-residue
secondary structure prediction or missing residue prediction. The authors did not train
only transformer models, but also BERT-based models. Analysis of the embeddings with
clustering methods implied a high capacity for learning. This conclusion was derived from
the analysis of the identified clusters and their mapping to protein properties, such as origin
organism, amount of secondary structures, or chemical properties of amino acids.

The AlphaFold [28] model uses attention mechanisms to process multiple sequence align-
ment and the OmegaFold [68] model uses as a part of its pipeline language model based on
transformers. Both of these models are focused on predicting tertiary structures of proteins
for their sequences.

Evolutionary scale modeling (ESM2) [65] is another language model based on BERT
architecture. It was trained on protein sequences from the UniProt database and has been
used for many applications, such as predicting tertiary structure [36] and de-novo protein
design. It has also been widely used by the community for various downstream tasks, such
as peptide screening [14], protein function prediction [35], or epitope prediction [7].

4.3.2 Fine-tuning LLMs on small peptides

In the recent paper [21], multiple language models were fine-tuned on peptide datasets.
The base model was chosen as state-of-the-art transformer ProtBERT [16]. Models were
trained on three tasks targeting peptide properties, including solubility, hemolysis, and
non-fouling. Peptides are short chains of amino acids, typically containing fewer than 50
amino acid residues. Peptides occupy a middle ground between simple organic molecules
and proteins in terms of size and complexity. They are more flexible than smaller organic
molecules due to their chain-like structure but lack the intricate folding patterns observed
in proteins.

In the paper, the authors used ProtBERT, a transformer model influenced by the origi-
nal BERT model. ProtBERT is pretrained on the UniRef100 dataset containing millions of
unique protein sequences. After the layers used in the base model, a linear layer was added
with the sigmoid activation function to perform the binary classification task. The authors
trained separate models for each task and showed that the PeptideBERT model had supe-
rior performance on two out of the three tasks compared to several baseline models, such as
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a LSTM, engineered embeddings with logistic regression, or random forests. The model did
not perform better only in the solubility task, where DFResSol [39] was the leader. This
approach shows promise in adapting a similar strategy to epitopes since epitopes also have
a form of short peptides.

4.4 Machine learning in immunoinformatics
As machine learning is becoming more and more prevalent in everyday life, it is also be-
ing used in the immunology field for various purposes. The main area of use is vaccine
design and development, necessary to combat new mutations in existing viruses as well as
new viruses. An excellent example is the COVID-19 vaccines, which were developed in an
unprecedentedly short time (around 1 year). For comparison, vaccine development usually
took 5 or more years before [51]. Admittedly, the speedup was a result of multiple factors,
such as relatively new vaccine technology (mRNA vaccine) and a shortened legislative pro-
cess, but the recent development in bioinformatics tools and machine learning technologies
also played a significant role [26] [48] [52]. Such tools include complex tools for designing
vaccines, such as Vaxign2 [46], but also simpler tools designed to analyze epitopes [53] [50]
[7] [60].

4.4.1 Epitope prediction

In epitope prediction, the goal is to predict parts of antigens that are causing the immune
reaction – epitopes. Thus, an ideal tool would be able to accurately identify potential
epitopes in a protein sequence with high sensitivity and specificity. However, as explained
earlier, the interactions of the immune system with antigens are highly individual. Thus,
the tool should be able to generalize to how most of the population would react to an
antigen.

Machine learning in this field proves to be a major challenge, as the immune system is
very complex and difficult to measure. Nevertheless, a substantial number of methods have
been published, and some are available as web-accessible tools. Usually, each subsystem of
the immune system is addressed separately, as a reliable method for complex prediction of
the immune response is not yet available. Each of the subsystems has different stages of
tool reliability and quality.

For T-cell immunogenicity, a recent artificial neural network-based tool that predicts T-
cell epitopes based on MHC binding is claimed to achieve a 90% correlation [54] on the test
set. The other categories are MHC II binding predictors [29] and B-cell epitope predictors
[27] [8]. These are proving to be more challenging, especially because B cells have around
90% structural epitopes, which require exploring the 3D structure of given proteins and the
3D structure of their binding to antibodies. B cells also produce antibodies, which might
inhibit the target therapeutics. Thus, the B cell epitope engineering is the main motivation
for collecting mutational data.

The Immunoepitope Database (IEDB) [66] serves as the primary source for epitope
information and is currently the most extensive database available. It houses data from
thousands of assays encompassing B-cell, T-cell, and MHC-binding immune responses. Epi-
topes within IEDB can be derived from proteins, pathogenic molecules, such as organic com-
pounds, or even glycoproteins. The database meticulously stores results for each potential
epitope, including its corresponding measured immune response (positive or negative). The
data can be downloaded in a user-friendly SQL format, with well-documented table rela-
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tionships visualized through Entity-Relationship diagrams. For structural information on
antibody-antigen interactions, AbDb (or abYbank) [18] offers a complementary resource.

Currently available tools primarily focus on predicting the structural impact of mu-
tations, with limited capacity to address the effect on protein immunogenicity or epitope
presentation. This knowledge gap stems from two main factors. Firstly, there is a scarcity
of well-curated datasets specifically designed to address the relationship between mutations
and immunogenicity. Secondly, a significant portion of research in this field prioritizes
the development of effective antibodies against pathogens, rather than proteins that evade
immune response. Developing such tools is crucial for the design of novel protein-based
therapeutics with minimal immunogenic response. Additionally, these tools could be in-
strumental in creating improved vaccine delivery systems and targeted drug carriers that
evade clearance by the immune system.

4.4.2 Vaxign2

Vaxign2 [47] is a web-based vaccine design program that leverages machine learning and
reverse vaccinology methods to identify potential vaccine candidates. It analyzes pathogen
genomes, including those from viruses and bacteria, to propose suitable targets for vaccine
development. Vaxign2 has been instrumental in suggesting novel vaccines for various dis-
eases, successfully pinpointing the spike protein as the primary candidate for a COVID-19
vaccine. The program’s machine learning component relies on models based on gradient
boosting. It is important to note that Vaxign2 is specifically focused on target identifica-
tion for vaccine development and is not intended for epitope analysis or protein mutational
design.

4.4.3 BepiPred

BepiPred represents a successful suite of tools designed for B-cell epitope prediction. The
latest iteration, BepiPred-3 [7], leverages protein structure data from the PDB database
alongside the power of language models to predict structural epitopes. BepiPred-3 incorpo-
rates the ESM2 model [65] developed by Facebook AI, fine-tuned to generate scores between
0 and 1 for each residue in a protein sequence. These scores indicate the likelihood of a
residue being part of an epitope (values closer to 1) or not (values closer to 0). The tool
also provides user-friendly visualizations to aid in interpreting the predictions.

Earlier versions of BepiPred also focused on structural epitope prediction, with version
2 employing a random forest model. The original version, published in 2006, addressed
linear epitope prediction using Markov models.

Predicting the effect of mutations is highly beneficial for protein engineering. A multi-
tude of predictors exists for predicting effects on stability [44] [5] [55], or activity [19]. We
found out that the existing tools for predicting immunogenicity, such as BepiPred3, do not
perform well for mutational effects (Table 7.1 and Figure 7.3), thus a novel tool for such
task would be advantageous in designing novel therapeutics.
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Chapter 5

Data collection

In order to create machine learning-based tools, it is necessary to create or find a suitable
dataset for a given task. For effective prediction of mutation effects, usually, the dataset
consists of different single or few-point mutations in a single wild-type protein sequence,
or if the collection is larger, on a set of wild-type sequences. For non-mutational datasets,
each datapoint consists of a protein sequence and/or its structure and such labels as melting
temperature, activity for enzymes, etc.

The field of immunoinformatics encompasses a diverse range of tasks, including predict-
ing antibody-antigen binding, designing antibodies for specific antigens, paratope similarity,
and epitope prediction. This thesis focuses on immunogenicity prediction, which aims to
determine whether a given epitope or peptide will elicit an immune response. Although cer-
tain types of experiments are capable of measuring the extent of the immune response, most
of the datasets are based on binary labels, labeling epitopes as inducing or non-inducing
immune response.

5.1 Existing data sources
To our knowledge and according to our research, no tools or large, multi-protein data sets
have been published focused on the effect of antigen mutations on immunogenicity. The
existing datasets are small in size (up to 100 datapoints) and specific to a particular protein.
Since acquiring this kind of data experimentally is not feasible, it is necessary to obtain the
data in a different way.

It is important to note that around 80% of B-cell epitopes are structural in vivo. An
ideal predictor would focus on the structural epitopes. However, in BepiPred3, the authors
collected almost all available structural data of antibodies bound to antigens, resulting only
in 1466 datapoints. Considering the possible space of structural epitopes in comparison to
linear ones, it is unlikely that enough mutational datapoints could be mined from this
dataset following a similar protocol as suggested in this chapter. Additionally, working
with structures brings another level of complexity to data mining and the machine learning
approach. Since the field of mutational effects on epitopes has not been explored much, it
is reasonable to start with linear epitopes. Thus, in the rest of the thesis, our discussion
will center on linear epitopes only.
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5.1.1 Staphylokinase study

One of the studies that attempted engineering of an existing protein as a therapeutic, stud-
ied staphylokinase protein from a bacteria Staphylococcus aureus [11]. It is a thrombolytic
enzyme, which means it can degrade blood clots or aid in their degradation. During devel-
opment, the authors also performed immunogenicity studies. Since they engineered more
than 100 different staphylokinase mutants and tested almost all of them for immunogenic-
ity, the study presents a valuable source of data. The dataset size is still not enough for
training a neural network, and it covers only one protein. However, it can be used as an
independent data set to test existing and new predictors. This data had to be obtained
from multiple publications and patents. Apart from immunogenicity labels, the dataset
also contains enzyme activity labels, which are also valuable for other machine-learning
tasks. This study is the motivation behind the creation of a mutation-based predictor of
immunogenicity.

5.1.2 Immunoepitope database

The largest database of immunogenicity effects on antigens is IEDB [66]. It contains
epitopes from thousands of assays encompassing B-cell, T-cell, and MHC-binding immune
responses. Usually, immunogenicity assays for protein linear epitopes are based on splicing
the protein into small peptides and screening those peptides for the immune response. The
database is conveniently separated into different parts of the immune system, such as B-cell
receptors, T-cell receptors, and MHC bindings. For the development of novel protein-based
drugs, it might be necessary to optimize for B-cell and T-cell epitopes. However, for acutely
administered drugs, the B-cell immune response is more important, more specifically the
antibody binding, since the antibodies can disable the drug just by binding to it. Thus,
from now on, we will focus on B-cell epitopes, although a similar protocol can be utilized
for other types of immunogenicity as well.

5.1.3 Mutational data

As mentioned above, IEDB contains epitopes and their immunogenicity, but no mutational
data. So, the main question is how to obtain the mutational data from the non-mutational
database. Often, IEDB entries originate from the research of viruses and other pathogen-like
antigens. These organisms tend to mutate, especially viruses, and some of these mutations
might end up being viable for avoiding the immune system. Such mutations usually tend to
lead to more intensive spreading of the virus and spark up the research again. In this case,
the mutated antigens are investigated and screened again, but the protein sequence that
is saved in the database with the assay results is already slightly changed because of the
mutations. By utilizing this natural cycle, we can take advantage of the results and obtain
these mutations from the database. Additionally, we can also focus on specific epitopes if
the epitope was deactivated or a new epitope emerged from mutations.

Thus, the idea for obtaining a mutational dataset is to cluster these mutated proteins
based on their sequence similarity and to create groups of the same proteins with different
mutations. Then, the epitopes of the proteins within the group are scanned, and the
mutations are examined that cause the loss of immunogenicity for a given epitope or the
emergence of a new epitope. By taking advantage of available data and processing them in
a different way, it might be possible to create a new mutational dataset without any new
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experimental work necessary. This new dataset can be used later for training or fine-tuning
of models or statistical analysis. To my knowledge, no such dataset exists yet.

5.2 Technical steps
The following steps outline the retrieval of IEDB data and the essential data-cleaning pro-
cedures employed. The protocol is written for B-cell epitopes, but a very similar approach
can be taken for T-cell epitopes.

5.2.1 Database processing

The IEDB has to be downloaded in SQL format and imported to a local database engine.
Then the structure of the database has been analyzed with the help of the ERD diagram
provided by the IEDB to understand which tables are necessary in the next step. The
database has no foreign key constraints, only pure ID references to other tables, and in
certain tables even the IDs are not unique. This poses a problem, and uniquification of
tables is required in the next steps.

Table bcell contains the results of the B-cell receptor assays, and each item has its
ID and reference to the curated receptor. The results are also reported for different host
organisms, and in our case, we are only interested in the human host. Since multiple assays
can explore the same epitope, the curated receptor IDs are used to reference the same
epitope in different assays. Sometimes, assays can have contradictory results. Thus, the
first step is to count the number of positive and negative assays for each epitope and to
exclude epitopes with contradictory immunogenicity results. This step was done using SQL
queries.

The next step is to filter only protein epitopes since the database also contains other
types of antigens. However, the bcell table does not contain data for the antigen source
molecule directly, only as a reference to the source table. Unfortunately, this table does
not have a unique index, and some entries are duplicated multiple times. The table has to
be deduplicated, and subsequently, the tables can be joined. Finally, the resulting data can
be exported into a CSV file to the extent of:

• Result of the assay

• Epitope information – curated epitope ID, epitope sequence, position in the protein

• Protein information – protein sequence

5.2.2 Data refinement

The previous step yielded only filtered epitopes and not a mutational dataset, so further
processing is essential. In the following steps, the data will be processed using Python (3.9)
and Pandas library (2.2.1) and saved in a binary format using Pickle library, instead of
using CSV format due to superior loading speed and keeping track of data types.

After a short manual exploration of the database export, multiple inconsistencies in the
data have been detected:

• There are duplicates in the data,

• The entire source protein sequences are missing for some entries,
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• The coordinates specifying epitope locations within the sequence are absent or erro-
neous.

The first two problems can be easily addressed by deduplication and removal of the
epitopes with missing sequences. The third one is more elaborate and requires more effort,
since it would be unreasonable to remove entries affected by this problem. Furthermore,
the epitopes are still not grouped in a way that similar proteins are in one group, which is
necessary to produce mutational data.

First, in order to group similar sequences, the mmseqs2[62] tool is used to create clusters
of similar protein sequences. The sequences need to be exported from the data, and ideally,
only unique sequences are clustered, since in the data exported from the IEDB, multiple
epitopes are present for each sequence. Fortunately, each sequence already has a unique
ID, so a FASTA file is created with the ID of each sequence in the description. After tuning
the parameters of mmseqs2 and by manually exploring the results in Jalview program, the
most promising values are established at the 80% sequence identity with the 80% coverage.
The following shell commands were executed to cluster the sequences, which are stored in
bcell_db.fasta file:

$ mkdir tmp
$ mmseqs createdb bcell_db.fasta
$ mmseqs cluster -c 0.8 --min-seq-id 0.8 bcell_db bcell_clustered tmp
$ mmseqs createtsv bcell_db bcell_db bcell_clustered bcell_db_clustered.tsv

Next, the sequences within each cluster need to be aligned to have a global coordinate
space within the cluster. This is necessary to compare different epitope positions between
sequences to properly create the mutational dataset. For each cluster separately, a MAFFT[30]
alignment tool is run. Afterward, the aligned sequences are imported back into Python and
merged with the corresponding epitopes together with the newly obtained group IDs from
mmseqs2.

At this point, there is a problem with the epitope coordinates in the sequence because
most of the sequences now have inserted gaps. The coordinates for each epitope have
to be recalculated to match the aligned sequence. Concurrently, if the coordinates are
missing because they were not provided in the IEDB, Algorithm 1 attempts to fill them
with multiple strategies. Some epitopes have the coordinates as part of the epitope name,
so the algorithm tries its best to extract them and only then it tries searching the epitope
in the protein sequence. If the newly-found position is ambiguous because there might be
multiple positions where the epitope occurs in the protein sequence or the epitope was not
found at all, the datapoint is discarded.

In order to accelerate the process, these steps are done in parallel for each cluster, and
then the results are merged into one data frame. The MAFFT tool was used for its superior
speed compared to CLUSTALW and also because it is expected that the clustered sequences
are similar, and thus much easier to align.

Clusters with only one unique sequence are removed, which automatically discards clus-
ters with one data point. Moreover, we will need to create contrastive data points, that is,
a set of mutations that lead to the decrease/increase/not change in the epitope. This can
only be done within clusters. Therefore, only clusters with both positive and negative data
points are left in the dataset and the others are filtered out.
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Algorithm 1 Region coordinates validation and reparation
1: if epitope has coordinates then
2: verify coordinates by matching the sequence to the epitope
3: if the sequence does not match then
4: try looking at 5 amino acids around the given position, in case it was mislabeled
5: end if
6: end if
7: if the previous step did not produce valid coordinates then
8: if the coordinates can be obtained from the name of the epitope then
9: obtain the position

10: else
11: search the protein sequence for the unique position of the epitope
12: end if
13: end if
14: if some valid position was found then
15: recalculate the position relative to MSA
16: end if
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Figure 5.1: Region explanation. A) Visualization of terminology. Some regions cor-
respond directly to epitopes, but some are larger parts and span around the epitopes –
epitope-containing regions. B) Example of how negative regions can contain a part of the
epitope but have a negative immunogenic label. *The regions are all on the same protein
but are shown below for better clarity. C) The process of generating the final data points.
Two regions are considered, each from a different source sequence. One has to be positive
and one negative. If the negative epitope is longer or the same size as the positive epitope,
completely contains the region of the positive epitope, and differs in only one or two amino
acids, then a new data point is created, marking the mutation as reducing immunogenicity.
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5.2.3 Final dataset creation

It is important to stress at this point that not all datapoints obtained from IEDB are precise
epitopes. Some of them are epitope-containing regions (ECRs) and some are exact epitopes
(EEs) (see Figure 5.1). Each epitope has a label that indicates its type (ECR or EE). The
epitope-containing region is a short part of a protein (up to 30 amino acids) and contains
an epitope inside, but it is not precisely specified where the epitope is within this region.
The exact epitope region means that the entire region is an epitope. However, for the initial
creation of the dataset, this distinction is not taken into account but could be considered
if the dataset proves to be too noisy.

In general, it is not strictly correct to call all the entries obtained from IEDB epitopes,
since the epitope, by definition, is the region that induces an immune response, so only
positive data points that are exact epitopes are truly epitopes. The negative entries should
be called non-epitopes. Therefore, from now on, we call all the entries regions, no matter
if they are positive, negative, ECRs, or EEs.

To create the contrastive data points, the data set is iterated by clusters and, within
each cluster, the regions are assigned to negative and positive classes based on the immuno-
genicity label. For most of the clusters, there are many more regions in the negative class
than in the positive class. For each region in the positive class, the algorithm searches
through regions in the negative class that contain the positive region coordinates. Then
the overlapping parts of the positive and negative regions are compared and the number of
mismatches is counted. If the number of mismatches is one or two, then a new mutational
datapoint is created with a label marking it as decreasing immunogenicity.

The regions might overlap in different ways, but only these instances or their combina-
tion are considered:

• Equal – the start and end coordinates are the same for both

• Containing – the start and end of the positive region are inside the negative region.

A similar process is performed for only positive regions, where one positive region is
compared with other positives within the cluster. In this case, the new mutational data-
point has a label marking it as non-changing, meaning the mutation did not change the
immunogenicity. After these two steps, it is necessary to drop duplicates because it is
possible that the same region with the same mutation was marked as immunogenic and
non-immunogenic.

5.2.4 Encountered problems

When epitopes are evaluated experimentally, the proteins are sliced into smaller pieces, and
the results contain almost all possible slices of a given length, the lengths of the regions
being constant or very similar within one assay, even if just a part of a protein is screened.
Thus, there is often a large overlap between the screened regions.

At first, we considered any overlap of positive and negative regions, and the union of
the two regions was investigated as well. However, with such a high overlap rate between
regions, artifacts were created most of the time, where the same mutation was labeled as
inducing immunogenicity and suppressing it at the same time. This was because the regions
were labeled as causing immune reactions only when the epitope was completely contained
in the region. The regions that did not contain the entire epitope and thus did not induce
an immune response were labeled negative. Therefore, a slight shift of the slicing window
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created non-immunogenic regions and many false immunogenicity-reducing mutations (see
Figure 5.1). Thus, only the negative regions that entirely covered the positive region were
considered, and this is captured in the overlap types mentioned above.

The next level of complication is introduced by epitope-containing regions. If a mutation
is found in ECR, there is a chance that the mutation occurs outside the epitope, but still
within the region, so it does not affect immunogenicity in reality but would appear so in
the dataset. The corresponding mutation would become part of the dataset and would
be labeled as negative. It would be on the same level as mutations that truly decrease
immunogenicity. The only way to mitigate this would be to exclude ECRs from the initial
set. However, this would lead to a major loss in dataset size, so for now, this problem is
ignored and can be addressed later.

Algorithm 2 Mutational dataset procedure
1: for cluster in input dataset do
2: for pos in positive samples of cluster do
3: c1 ← does not come from the same sequence
4: c2 ← contains the whole pos region
5: negs ← negative samples from cluster that comply with c1 and c2
6: for neg in negs do
7: if pos and neg have 1 or 2 different amino acids then
8: add this datapoint to the final dataset
9: end if

10: end for
11: end for
12: end for

5.2.5 Data collection results

After the first step of getting the data from the database, 432 770 rows were obtained. These
were epitopes that did not have conflicting assay results. These epitopes come from 9411
source sequences. The source sequences of these epitopes were clustered together, resulting
in 4009 clusters. After filtering out epitopes that were not in clusters with positive and
negative samples present, the number of clusters was reduced to 495, and the number of
unique source sequences was reduced to 4676. The distribution of their sizes can be seen
in Figure 5.2 and Figure 5.3. Overall, there were 202 837 entries left after filtering and
clustering.

The mutational immunogenicity dataset includes 8742 datapoints with 1584 of them
labeled as reducing immunogenicity and 7158 labeled as not changing immunogenicity.
This makes the immunogenicity reducing datapoints only 18% of the entire dataset. In
the entire data set, there are 4407 unique sets of mutations per cluster, and this number
gives some intuition on how many epitopes occur in multiple ECRs or the same epitope in
different protein sequences, so the same position, and thus mutation, occurs multiple times
among the data points. However, this does not necessarily mean data duplication, since
the sequence of the region itself is different, so the data points with this property are kept
in the final dataset. In terms of mutation count, the data set is made up of 5694 single
and 3048 double-point mutations. The number of datapoints contributed by different-sized
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clusters can be seen in Figure 5.4. The distribution of individual epitope sizes can be seen
in Figure 5.5.

Figure 5.2: Number of unique sequences in clusters. It can be seen that most of the clusters
have fewer than 12 unique sequences.

Figure 5.3: Distribution of the lengths of unique sequences. Around 30% of sequences are
longer than 2000 amino acids.

31



0 200 400 600 800 1000 1200 1400 1600
Datapoints in cluster

0

20

40

60

80

100

120
N

um
be

r o
f c

lu
st

er
s

Figure 5.4: Number of data points contributed by the individual clusters. Most clusters
contribute very few data points. The largest cluster contributes around 17.5% of all data
points, and this is a cluster of sequences of hepatitis virus C.
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Figure 5.5: Region size distribution in the final dataset.
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Chapter 6

Models

As mentioned in section 4.4, there are no tools focused on predicting the effect of mutations
on the immunogenicity of epitopes. However, existing tools for predicting epitopes from
protein sequences can be adopted to predict the effect of mutations by evaluating the
original sequence and the mutated sequence and comparing the scores. In addition, we
introduce a new predictor that is focused on evaluating whether a given mutation reduces
immunogenicity or not. The first step in a machine learning pipeline, after collecting the
data, is to create a data split.

6.1 Splitting the dataset
To properly evaluate existing tools on this dataset and to create a new tool, it is important
to split the dataset into training, validation, and test splits. The training and validation
splits will be used to train a new predictor and optimize its hyperparameters. The testing
set will be used to benchmark the developed predictor against simple baseline methods and
the existing tools. The distribution of datapoints into training, validation, and test was
decided to be 75%− 15%− 10% respectively.

6.1.1 Random split

The simplest way to divide the data set is to randomly distribute the datapoints. However,
this would create a split with a high level of leakage, and scores obtained from validation
and test splits would not be representative of real-world performance. Indeed, there is a
high probability that the same epitope that is contained in different regions would appear in
different splits. This is not desirable and would artificially boost the measured performance
of the new tool. Thus, a more elaborate strategy is needed. However, for comparison
purposes, we created this split to see how the performance of the predictor would differ
compared to more elaborate splits.

6.1.2 Split based on protein sequence similarity

The first variant of the split is based on the sequence similarity of the source protein. The
idea is to keep the epitopes that come from the same protein in the same split. Clusters that
were computed during initial steps of dataset creation using MMseqs (see subsection 5.2.2
are a good starting point for this objective. However, certain sequences form separate
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clusters, even though they have a high similarity since the clustering was done for a relatively
high similarity threshold of 80%.

For this reason, a new clustering is performed on sequences that represent each cluster,
but in this case, the objective is to obtain the ancestral tree with distances between nodes
and leaves. Hierarchical clustering is done by the ClustalW1 tool and exported in Newick
format. The BioPython library (v1.78) is used to parse and traverse the Newick tree format.
After a manual inspection of the tree, a clustering threshold is chosen empirically as 0.5,
based on the distances of similar sequences in the phylogenetic tree.

An algorithm traverses the tree and creates an undirected discontinuous graph where
the sequences from the tree represent vertices, and if they have a distance smaller than the
threshold, an edge is formed between them. This graph is then traversed, and all continuous
subgraphs are found, and they represent a supercluster of sequences that should be kept
together within one split. These superclusters form basic units that will be distributed into
the splits. However, now the units that have to be distributed between the splits differ
widely in size. Additionally, there is the need to keep the splits a certain size.

This leads to an optimization problem called the knapsack problem, where items of
different values need to be put in a place with limited available space. Each item has two
attributes: weight and value. The knapsack has limited carrying capacity. The goal is to
find a combination of items that provide the highest value and still fit into the backpack.
In this case, the superclusters represent the items, and their value is the same as weight and
equals the number of datapoints that these superclusters contain. The knapsack represents
the split (test, validation), and its carrying capacity is the size of the whole dataset mul-
tiplied by the percentage that should be in the split. For example, the carrying capacity
for the validation split would be 8742 * 0.15 = 1311 (total dataset size * validation set size
percentage).

The algorithm is run twice, for validation and the test sets. The remaining superclusters
are assigned to the training set. The implementation of the knapsack solver is used from
the library ortools2 (v9.8) provided by Google.

6.1.3 Split based on epitope similarity

Although the previous method provides a solid separation, for predictors that do not con-
sider the source sequence, it might not be the best strategy because similar epitopes might
end up in different splits if different proteins contain similar parts or domains. A better
separation would be based on epitope similarity, which allows a more direct and cleaner
grouping of similar epitopes. The protocol is similar to the previous technique, with slight
modifications.

First, the similarity map is computed for all regions in the dataset, which means com-
paring each region to the others by aligning them using the global alignment method imple-
mented as PaiwiseAligner from the BioPython3 library with BLOSUM62 score matrix. If the
compared epitopes are aligned with up to two mismatches, with up to one gap that
is at most one in length, then they are marked as close. An undirected discontinuous
graph is then constructed in which the vertices are represented by epitopes and the edges
connect epitopes that are marked as close. From this point on, the protocol follows the
steps of the split based on protein sequence similarity: the graph is separated into contin-

1https://www.ebi.ac.uk/jdispatcher/msa/clustalo
2https://developers.google.com/optimization
3https://biopython.org/
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uous subgraphs, superclusters are computed, and the knapsack solver is used to construct
the splits.

6.2 Baseline models
To establish the baseline performance achievable with simple machine learning approaches,
we resort to feature engineering and linear models. To this end, two linear model algorithms
were used: a logistic regression and support vector classifier with class balancing, since the
dataset is very unbalanced. We also explored three groups of features: one-hot encoding,
AAindices, and ESM2 embeddings.

6.2.1 One-hot encoding

In this approach, features are one-hot encoded amino acids of the mutation. For example,
if the mutation is I3L, that means that the isoleucine (I) at the third position in a region is
mutated to a leucine (L). Each amino acid is one-hot encoded by a vector of 22 (20 typical
amino acids, a gap, and an X which marks an unknown amino acid), and the vectors for
both wild-type and target amino acids are concatenated to create a feature vector of 44
dimensions. In each 22-long vector, there is one in the position of the particular amino acid
and other positions are zero.

6.2.2 AAindex encoding

One-hot encoding does not incorporate physical-chemical similarities between different
amino acids. To fill this gap, we also transformed each region into a set of vectors based on
the AAindex database, which contains the chemical and physical properties of individual
amino acids. In total, 7 AA indices were selected, and wild-type and target amino acids
were encoded using these properties. We used two approaches to combine those two vectors:
a simple concatenation and taking a difference of these properties between the wild-type
and target.

6.2.3 ESM2 embeddings

A more elaborate approach is to use pre-trained language models on the epitope regions,
acquire embeddings from the last hidden layer, and use these embeddings as features. This
approach takes advantage of the model’s understanding of the protein language but does not
require any training of neural networks, sacrificing in part the explainability, since a neural
network provides the features. ESM2 was used to obtain embeddings of epitope regions in
the inference mode, with average pooling over the length dimension of each region.

6.3 Fine-tuning ESM2 for mutational effects
Our more advanced approach is a fine-tuned large language model. ESM2 was selected
as the pre-traned model due to its ease of use and wide adoption across various protein
engineering tasks.

The first problem that needed to be solved in our case was how to get rid of the em-
bedding size difference arising from the lengths of different regions because the embeddings
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initially were a two-dimensional matrix for each region, one dimension matching the se-
quence length and the second dimension being constant. The aggregation step is necessary
if we want to use feedforward layers that have constant sizes. The following strategies were
used to remove the variable element from the embeddings:

• mean

• max

• mean combined with a standard deviation

• pooling layer with trainable parameters

• embeddings of the [CLS] token of ESM2

• embeddings of the [SEP] token of ESM2

The aggregation functions aggregate across the dimension corresponding to the sequence
length. The [CLS] token is a special token added at the beginning of each input sequence.
It originates from the original BERT model, where it was used for the next sentence classi-
fication task. The [SEP] token is added at the end of each input, indicating the end of the
sequence. There is no apparent reason why these tokens should contain information about
the input sequence. However, it has been proven that using embedding from these tokens
provides good performance in other tasks [9] [21]. One of the reasons might be that the
[CLS] and [SEP] tokens are present in every input and always at specified positions, whereas
other tokens change, so the model uses the constant tokens to save contextual information
about the sequence that is later used during the reconstruction of masked tokens.

Another problem arises from the comparison of the embeddings of wild-type and mu-
tated regions. Three strategies were tested: Concatenation of the aggregated em-
beddings. The embeddings obtained from the previous step were concatenated into one
vector and fed to the fully connected network. Element-wise difference of the wild-type
embedding from the mutated embedding. The result was a vector of the same size as the
embeddings that were inputted into the feed-forward network. Concatenation of input
sequences. Both wild-type and mutated region tokens were concatenated and separated
by a special token, similar to the next sentence prediction tokenization in BERT.

Another optimization parameter was the shape and size of the fully connected network.
Three variants were tested:

• One layer with a sigmoid activation

• Two layers, with ReLU after the first layer, and a sigmoid after the second

• Three layers, with ReLU after the two inner layers, and a sigmoid after the last layer

The last layer always has only one neuron with a sigmoid activation for classification of
immunogenicity.

In the first iteration of experiments, the weights of the ESM2 were frozen and only the
feed-forward layers were trained. In the second iteration, all the weights, including ESM2,
were trained.
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6.4 Third-party tools
As mentioned in chapter 4, there are no state-of-the-art tools for predicting mutational
effects on epitopes. Nonetheless, multiple epitope prediction tools exist, and although they
are not focused on mutagenic effects, it is possible to adapt them. These tools are usually
trained on entire protein sequences and are intended to be used as such.

BepiPred3 [7] provides a per residue scoring of the input sequence in the range between
0 and 1, symbolizing the confidence that this residue belongs to an epitope. It gives two
scores for each residue, one for conformational epitopes and one for linear epitopes. As we
are not using structures in our workflow, we use only linear epitope scores.

We will test two different approaches in adapting BepiPred3 for mutational effects.
In the first approach, the model is given the wild-type and mutated regions separately
and evaluates them. Then the scores for each residue are added together for each region,
and the wild-type score is compared to the mutated one. If the score is lower for the
mutated region, the mutation is marked as reducing immunogenicity, otherwise as non-
reducing. In the second approach, the entire protein sequences of the wild-type and mutated
proteins are presented, also separately, on the input. The model provides scores for the full
sequences, and when evaluating immunogenicity, only the scores for the region in question
are considered and evaluated in the same way as before, i.e., by adding them together and
comparing the sums between wild-type and mutated regions.

LBTope [61] is an older (2013) tool for evaluating the immunogenicity of peptides. It
provides a probability of each input sequence being an epitope or not. This tool was eval-
uated similarly to BepiPred3, where it was presented with wild-type and mutated peptides
on the input, and if the probability was lower for the mutated region, then this region was
labeled as reducing immunogenicity.

We have also tried to use the epitope1D tool [60]. However, it was not possible as the
tool required taxonomy of the origin organism, and many datapoints from the dataset were
not tagged with this information.
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Chapter 7

Results

This chapter delves into the results of applying various machine learning algorithms men-
tioned in the previous chapter to the newly constructed dataset for predicting mutational
effects on protein immunogenicity. We analyze the performance of baseline models and
third-party tools and compare them to the ESM2-based models, evaluating their ability to
accurately classify mutations that alter immunogenicity. The comparison of the created
models can be found in the Table 7.1.

7.1 Baseline models
The scores for baseline models can be seen in Table 7.1. The two algorithms, Logistic
regression (LR) and Support vector classifier (SVC), are marked accordingly together with
the features used. The best performing from the baselines is SVC with AAindex difference
between wild-type and mutated amino acids with the MCC score 0.18 and accuracy of 0.61.
Dependencies between different features and feature distribution can be seen in Figure 7.1.
There is no clear separation of the two classes, and the distribution of the feature values
is almost identical between positive and negative classes. This implies that the task of
predicting the change in immunogenicity cannot be easily reduced to a simple evaluation of
the change in physicochemical characteristics of the mutated amino acid, and more context
needs to be taken into consideration when making a prediction. This is also reflected in the
scores of the models trained using these features being close to random guessing.

7.2 ESM2-based models
The second round of models consists of ESM2 embeddings of the wild-type and mutated
regions, both of them separately aggregated by averaging and using the aggregated embed-
dings as input features to LR and SVC. These models performed much better, compared
to baseline models, achieving an accuracy higher than 70%. The SVC models performed
marginally better than the LR models. Using the variant of the ESM2 model with a larger
size did not seem to provide additional benefits.

The third round consists of a purely neural-network-based approach. We performed
numerous experiments to optimize the parameters and structure of the model. We use the
150 million parameter ESM2 model variant and binary cross entropy as a loss function. The
validation set was used to score the different modifications of the models for comparison
and parameter optimization. The ESM2 model was extended by linear layers and different
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Figure 7.1: Pairplot of the AAindex features where the wild-type amino acid values were
subtracted from the target amino acid. The codes of the features are provided next to the
axes. It can be seen that there is no clear linear separation of the positive (orange) and
negative (blue) labels within the dataset.
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Table 7.1: The summary of the performance of all the models on the held-out test set. In
general, the logistic regression models performed worse compared to the Support Vector
Classifiers trained with the same features. The best-performing model in terms of accuracy
was the Support vector classifier with ESM2 embeddings of the entire epitope region, but
in terms of MCC and precision it was ESM2 with frozen weights and a linear layer. The
fine-tuning of ESM2 yielded slightly worse results than using frozen weights. All the third-
party tools showed performance close to random guessing. (The scores are rounded to two
decimal digits, but the highlights are based on the highest score without rounding.)

Model Balanced
accuracy MCC Precision F1

Baseline models
LR with one-hot encoding 0.55 0.07 0.56 0.50
SVC with one-hot encoding 0.58 0.14 0.65 0.46
LR with concatenated AAindices 0.51 0.01 0.51 0.46
SVC with concatenated AAindices 0.58 0.13 0.64 0.47
LR with subtracted AAindices 0.48 -0.02 0.48 0.45
SVC with subtracted AAindices 0.61 0.18 0.69 0.52

Linear models with ESM2 embeddings
ESM2 150M embeddings + LR 0.72 0.35 0.77 0.69
ESM2 150M embeddings + SVC 0.72 0.36 0.78 0.69
ESM2 650M embeddings + LR 0.71 0.33 0.76 0.68
ESM2 650M embeddings + SVC 0.73 0.37 0.80 0.69

Fine-tuned ESM2 models
ESM2 150M frozen w. + linear layer + sigmoid 0.69 0.38 0.85 0.60
ESM2 150M + linear layer + sigmoid 0.71 0.35 0.79 0.67

Third-party tools
BepiPred3 regions only 0.54 0.05 0.54 0.56
BepiPred3 full sequences 0.52 0.03 0.52 0.53
LBtope 0.53 0.04 0.52 0.55

40



modifications were tried. The AdamW optimizer was used for training with a reduction of
the learning rate on a plateau. In the first experiment, the ESM2 weights were frozen, and
only the additional layers were trained. Most of the models trained this way were unable to
minimize training loss and resulted in MCC scores below 0.1. Multiple architectures were
tested: using concatenation and difference of the wild-type and mutated embeddings, as
well as single, double, and triple layer feed-forward neural networks. Furthermore, multiple
different initial learning rates were tested: 0.1, 0.01, 0.001, 0.0001. None of these modifica-
tions made any difference in the MCC score, which was close to 0. Even if the multilayer
networks with concatenation strategy were able to minimize the training loss, the validation
loss increased, suggesting overfitting. Only after replacing the average pooling with [CLS]
and [SEP] token embeddings, the models were able to achieve a higher validation MCC
of around 0.3 but they were unable to optimize training loss, further proving that these
tokens contain valuable information about the input sequence. Adding more layers to the
neural network did not change the performance in any way for the [CLS] and [SEP] token
embeddings. In general, taking the difference of the embeddings turned out to be a much
worse strategy than concatenating the wild-type and mutant embeddings, yielding very low
validation MCC scores (around 0.01) even for [CLS] token embeddings.

Finally, all the ESM2 weights were also trained. These models were able to optimize
training loss much better, and most of them converged after 10 to 20 epochs. However, the
validation MCC score did not improve and stayed at 0.3 on average. Furthermore, changing
the other parameters did not change the overall performance, sometimes even worsening
it. In addition, a trainable pooling layer was tested for aggregation, but the MCC score
dropped to 0.26 on average. Again, the best-performing network used CLS token as
the aggregation method and concatenation of wild-type and mutated sequences.
It achieved an MCC score of 0.38 and balanced accuracy of 0.69. Unfortunately, for all
models, the validation loss did not drop below 0.5. The best model variant was evaluated
on the test set with a balanced accuracy score of 0.61 and an MCC score of 0.32.

The Precision-recall and ROC curves were calculated for the best models from the three
rounds, and the graphs can be seen in Figure 7.2. Even though the ESM embeddings with
SVC model had the best MCC score, the ROC curve suggests that the ESM2 with frozen
weights, linear layer, and sigmoid should have a slightly higher true positive rate and lower
false positive rate with the appropriate cutoff. The Precision-recall curves suggest that if we
want to have precision above 80%, then the recall will be around 0.6, which could already
help in reducing the potential promising mutations for experimental validation.

The hyperparameters of the best-performing model were used to train the model again,
but on the random split dataset, to better understand the effect of the elaborate data-
splitting strategy. Immediately, after the second epoch, the model achieved an MCC of
0.53 on the validation set and a balanced accuracy of 0.78. Thus, proving that robust
dataset separation is essential when creating datasets and evaluating models with data
from the same source on which they were trained.

7.3 Third-party tools
Since none of the third-party models is focused on the effects of mutations, their outputs
were adjusted for this task. This resulted in poor scores for both models with accuracy close
to 0.5 and MCC scores very close to 0, which is close to random guessing. The scores for
both tools can be seen in Table 7.1. The BepiPred tool was evaluated using two strategies:
when it is run only on regions and on the entire protein sequences.

41



(a) ROC curves (b) Precision-Recall curves

Figure 7.2: ROC and Precision-Recall curves for selected models indicated in the subgraph
titles.
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We also evaluated the BepiPred3 tool on the Staphylokinase dataset by calculating
the average score over the whole sequence and comparing it with the experimental data
from the study (see Figure 7.3. Since there are no known B-cell epitopes in IEDB for the
Staphylokinase, there is no way to make the evaluation specific to certain regions. That is
the reason the evaluation was done on the whole sequence, and why it is not possible to
evaluate our predictors using this dataset.

(a) (b)

(c)

Figure 7.3: Correlation of BepiPred3 predictions on the Staphylokinase dataset vs. real
labels. The three graphs illustrate the results of different aggregation strategies of per-
residue scores: (a) Summarization of the scores; (b) Summarization of scores that are above
threshold of 0.2; (c) The scores are averaged using a moving window of 9 and then filtered
using threshold. None of the strategies provide satisfactory result that would correlate with
the real labels.
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Chapter 8

Conclusion

Predicting the impact of mutations on antigen immunogenicity is an emerging field with
significant implications for drug design. Currently, no specialized tools exist to address this
specific challenge. While existing tools designed for epitope prediction offer some value,
they fall short in accurately predicting the effects of mutations.

To address this gap, we created a novel dataset from the Immune Epitope Database
(IEDB). Our approach involved identifying highly similar epitopes with demonstrably differ-
ent immunogenicity profiles. By analyzing the sequence variations between these epitopes,
we were able to capture the mutational effects on immunogenicity. This newly constructed
dataset comprises 8,742 data points, with 1,584 entries specifically classified as exhibiting
reduced immunogenicity.

Furthermore, we implemented two rigorous methods for creating training-test splits to
ensure the absence of data leakage, a critical step in maintaining the generalizability of our
models.

We then explored the efficacy of various machine-learning techniques for this novel task.
This included employing linear models, such as Logistic Regression and Support Vector
Classifiers, alongside large language models, specifically the ESM2 model. Interestingly,
the most effective approach involved a hybrid strategy, leveraging the feature generation
capabilities of ESM2 models to provide input for a Support Vector Classifier trained to
predict the impact on immunogenicity. This combined model achieved an MCC score of
0.37 and a balanced accuracy of 0.73 on the held-out test set.

The newly created dataset presents a valuable foundation for the development of a user-
friendly predictor tool. Such a tool could empower researchers to strategically introduce
mutations into epitopes and lower immunogenicity while preserving the desired therapeu-
tic function. Future endeavors to enhance model performance could involve further data
cleaning based on additional criteria, such as assay type, or incorporating weights based on
the number of assays supporting the immunogenicity classification.

In conclusion, this work establishes a crucial first step toward developing a new gener-
ation of tools for predicting the effects of mutations on immunogenicity. The novel dataset
and the promising initial results pave the way for further advancements in this field, ulti-
mately contributing to the design of more effective and targeted therapeutics.
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