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Abstract
Most human interactions are either text-based or can be converted to text using speech-to-
text technologies. This thesis is dedicated to recognizing emotions from these texts. Despite
extensive research in this domain, three significant challenges persisted: unexplored or
limited cross-domain efficacy of the methods, superficial analysis of the result, and limited
usability of the outcomes. We address these challenges by proposing two models based
on the RoBERTa model, which we call EmoMosaic-base and EmoMosaic-large. These
models were trained on the following datasets: SemEval-2018 Task 1: Affect in Tweets,
GoEmotions, XED, and DailyDialog datasets. In contrast to prior studies, we trained
our models on all the datasets simultaneously while preserving their original categories.
This resulted in models that exhibit strong performance across diverse domains and are
directly comparable to other methods. In fact, EmoMosaic-large outperforms recent single-
domain state-of-the-art models on SemEval-2018 Task 1: Affect in Tweets and GoEmotions
datasets, demonstrating outstanding cross-domain performance. To promote the usability
and reproducibility of our research, we make all our code and models public, available at:
https://huggingface.co/vtlustos.

Abstrakt
Většina lidských interakcí probíhá buď prostřednictvím textu, nebo může být na text převe-
dena pomocí speech-to-text technologií. Tato práce je věnována rozpoznávání emocí z
takovýchto textů. Navzdory rozsáhlému výzkumu v této oblasti tři významné problémy
přetrvávaly: neprozkoumaná nebo omezená účinnost metod napříč doménami, povrchní
analýza výsledků a omezená použitelnost výstupů. Tyto výzvy řešíme navržením dvou
modelů založených na modelu RoBERTa, které nazýváme EmoMosaic-base a EmoMosaic-
large. Tyto modely byly trénovány na následujicích datasetech: SemEval-2018 Task 1:
Affect in Tweets, GoEmotions, XED a DailyDialog. Na rozdíl od ostatních studií jsme naše
modely trénovali na všech uvedených datasetech současně, přičemž jsme zachovali jejich
původní kategorie. Výsledkem jsou modely, které dobře fungují napříč různými domé-
nami a jsou přímo porovnatelné s ostatními metodami. Model EmoMosaic-large dokonce
překonává nedávné jedno-doménové state-of-the-art modely na datasetech SemEval-2018
Task 1: Affect in Tweets a GoEmotions, což dokazuje jeho vynikající schopnosti napříč
různými oblastmi. Pro zvýšení využitelnosti a reprodukovatelnosti našeho výzkumu posky-
tujeme veškerý kód a modely veřejně na: https://huggingface.co/vtlustos.
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Rozšířený abstrakt
Většina lidských interakcí probíhá buď prostřednictvím textu, nebo může být na text převe-
dena pomocí speech-to-text technologií. Tato práce je věnována rozpoznávání emocí z
takovýchto textů. Začali jsme důkladným a rozsáhlým přehledem literatury. Tato analýza
mimo jiné zdůraznila potřebu rozmanitých, kvalitních datasetů pro vývoj odolných a dobře
generalizujících metod. Datasety SemEval-2018 Task 1: Affect in Tweets, GoEmotions,
XED a DailyDialog jsme identifikovaly jako ty, které v případě sloučení splňují tato kritéria.
Další podrobnosti najdete v Kapitole 2.2. Z analýzy také vyplynulo, že modely založené
na Transformerech jako jsou BERT, RoBERTa a BART dosahují nejlepších výsledků na
následujících datasetech SemEval-2018 Task 1: Affect in Tweets a GoEmotions. Na zák-
ladě reportovaných výsledků na datasetu DailyDialog, jsme usoudili, že v oblasti zpracování
konverzací nejlepších výsledků dosahují hybridní modely kombinující Transformer enkodéry
jako je BERT s grafovými neuronovými sítěmi (GANs). Dalším výstupem z této analýzy,
byla identifikace následujících klíčových oblastí pro zlepšení. Jednotlivé oblasti jsou po-
drobně popsány v Kapitole 2.5 a zahrnují:

• Účinnost napříč doménami: Většina současných metod je zaměřena na jednu konkrétní
doménu, jako je nejčastěji Twitter a Reddit, a obvykle již není testována v rámci jiných
domén. To výrazně omezuje aplikovatelnost takovýchto metod v reálných situacích,
které jsou zpravidla rozmanité. Studie, které se snaží cílit na mezi-doménovou efek-
tivitu, problém do značné míry zjednodušují. Za účelem sjednotit obecně se lišící kat-
egorie (napříč datasety), přemapují typicky velký počet kategorií na výrazně menší.
Jako příklad lze uvést přemapování 27 kategorií z datasetu GoEmotions na 6 základ-
ních emocí podle Ekmanova modelu. Takové to přemapování udělají obdobně i pro
ostatní datasety. Tento přístup však vede ke značné ztrátě úrovně detailu a znemožní
srovnání s ostatními metodami.

• Analýza výsledků: Posouzení většího počtu metrik na úrovni jednotlivých datasetů,
ale také na úrovni kategorií/emocí je nezbytné pro komplexní analýzu výkonosti mod-
elů. Nicméně většina studií typicky uvádí 1-3 globální metriky, což rozhodně není
dostatečné pro komplexní posouzení výkonosti modelu. Dále pak žádná ze studií
neposuzovala kalibraci jejich metody.

• Použitelnost výsledků: Výzkumníci často zveřejňují pouze články bez doprovodného
kódu nebo natrénovaných modelů. To brání reprodukovatelnosti a praktickému využití
jejich poznatků.

V rámci této studie navrhujeme metodu, která adresuje všechny uvedené výzvy. Za-
čali jsme výběrem vhodných datasetů a pokračovali jejich převodem na jednotný formát.
Konkrétně jsme zvolili SemEval-2018 Task 1: Affect in Tweets, GoEmotions, XED a Dai-
lyDialog. Kombinací těchto datasetů jsme vytvořili rozmanitý, kvalitní, multi-label dataset,
který nazýváme EmoMosaic-dataset. Důležité je zmínit, že jsme u všech datasetů zachovali
původní kategorie, narozdíl od ostatních studií. Další podrobnosti naleznete v Kapitole
3.2.1.

V rámci této studie představujeme dva modely, EmoMosaic-base a EmoMosaic-large,
z nichž první je založen na modelu RoBERTa-base a druhý na modelu RoBERTa-large.
Na rozdíl od ostatních studií jsme naše modely trénovali na všech uvedených datasetech
současně, přičemž jsme zachovali jejich původní kategorie. Abychom tohoto cíle dosáhli,
naše modely zpracovávají věty bez ohledu na konkrétní dataset či kategorii. Tím jsou nu-
ceny předpovídat celé spektrum kategorií, které vzniklo sjednocením emocí z jednotlivých



datasetů. Jelikož nepřemapováváme kategorie, tak každá věta v našem sjednoceném datasetu
obsahuje několik kategorií, pro které nemá anotace. Abychom předešli případným chybám,
během tréninku tyto kategorie maskujeme. Výsledkem jsou modely, které dobře fungují
napříč různými doménami a jsou přímo porovnatelné s ostatními metodami. Zároveň je-
likož jsme neredukovali množinu kategorií žádného z použitých datasetů, naše modely si
zachovávají původní úroveň detailu, což umožňuje pochopení i složitějších emocí. Další
podrobnosti najdete v Kapitole 3.2.

Po natrénování modelů jsme přistoupili k jejich podrobnému otestování. Postupovali
jsme podle postupů uvedených v Kapitole 3.2.4. Nejdříve jsme vyhodnotili jejich výkon na
úrovni jednotlivých datasetů, následně pak na úrovni jednotlivých kategorií/emocí. Náš
nejlépe fungující model EmoMosaic-large prokázal vynikající výsledky napříč doménami a
předčil aktuální state-of-the-art (SOTA) modely na následujících datasetech: SemEval-2018
Task 1: Affect in Tweets a GoEmotions. EmoMosaic-large dosahuje na datasetu SemEval-
2018 Task 1: Affect in Tweets makro-průměrovaného F1 skóre 60.72 % (nárůst o 0.42 %
oproti SOTA) a v datasetu GoEmotions 53.93 % (nárůst o 0.13 % oproti SOTA). Jeho
menší verze, EmoMosaic-base, sice nedosahuje výsledků SOTA modelů a v průměru (počí-
taném napříč všemi datasety) za ním zaostává o 1.94 % v makro-průměrovaném F1 skóre.
Vzhledem k jeho přibližně třetinové velikosti stále však nabízí vynikající poměr výkonu
a výpočetní náročnosti. Následně jsme prostřednictvím datasetu DailyDialog otestovali
schopnost našich modelů pracovat s konverzacemi. Model EmoMosaic-large dosáhl mikro-
průměrovaného F1 skóre 60.65% (3,56% pokles oproti SOTA). Vzhledem k absolutní hod-
notě lze usuzovat, že si vedl poměrně dobře, ale nepřekonal nejlepší soudobé metody,
které byly ve všech případech založeny na hybridních modelech kombinujících Transformer
enkodéry a grafové neuronové sítě (GATs). Detailní porovnání a diskuzi výsledků nalzenete
v Kapitole 4. Následovala analýza na úrovni jednotlivých kategorií, ze které vyplynuly
konkrétní silné a slabé stránky našich modelů. Detailní analýzu naleznete v Kapitole 4.2.
Poté jsme zhodnotili kalibraci našich modelů a zjistili, že oba navrhované modely jsou
poměrně dobře kalibrovány, proto považujeme jejich predikce za důvěryhodné. Analýzu
jsem zakončili empirickým testováním našich modelů v různých situacích. Ačkoli si oba
naše modely obecně vedly dobře zjistili jsme, že špatně reagují na věty vykazující ironii.
Kromě toho jsme učinili závěr, že model EmoMosaic-base není příliš vhodný pro zpracování
konverzací. Další podrobnosti nalezente v Kapitole 4.3. Žádný z modelů však nevykazoval
systematické chyby a oba modely se osvědčily pro zpracování textů z různých domén, což
byl hlavní cíl této studie.

Tím, že jsme navrhli a podrobně otestovali modely, které dobře fungují napříč různými
doménami, jsme posunuli oblast rozpoznávání emocí z textu vpřed. Dále zveřejněním všech
našich modelů a kódu, dostupné na https://huggingface.co/vtlustos, jsme zvýšili re-
produkovatelnost a využitelnost našeho výzkumu. Další výzkum by se mohl zaměřit na
zvýšení přesnosti těchto systémů, i když předpokládáme, že dosažení makro-průměrovaných
F1 skóre nad 75 % nemusí být dosažitelné zejména kvůli nejednoznačnosti emočních pro-
jevů. Další oblastí výzkumu by mohlo být vytvoření tzv. human baseline, která by umožnila
srovnání mezi modely a lidským faktorem. Další oblast by mohla zahrnovat adaptaci
velkých jazykových modelů (LLMs). Ačkoliv LLMs zatím nejsou vhodné pro rozpoznávání
emocí, jejich neustálý vývoj naznačuje, že v budoucnu by mohly být. LLM pro rozpoznávání
emocí by mohly zvýšit flexibilitu těchto systémů, protože nevyžadují zanesení konkrétních
kategorií do jejich architektury.

https://huggingface.co/vtlustos
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Chapter 1

Introduction

Most human interactions are either text-based or can be transcribed to text using speech-
to-text technologies. This thesis is dedicated to recognizing emotions from these texts. We
can think of numerous practical applications for emotion recognition, ranging from mental
health support to marketing. For instance, we can offer timely assistance to those in need
or create a safer and better online space by filtering hateful and offensive content. Overall,
emotion recognition can greatly improve our daily lives in many ways.

Deciphering human emotions from texts is a complex and multidisciplinary challenge,
especially since human expressions are often ambiguous. The first hurdle is identifying
the range of emotions people can experience. Several well-established psychological models
describe human emotions, yet there is no agreement within the scientific community about
a single, universally accepted model. [38] From a technical perspective, interpreting human
emotions is also a significant challenge, as emotions are often expressed implicitly and
indirectly. Moreover, ironic or sarcastic sentences complicate things even more, as they
can be difficult for humans to understand and even more so for artificial models. [4] [38]
Fortunately, with continuous developments in natural language processing, a research field
that deals with text processing, machines are getting incrementally better at understanding
written texts. As a result, they can now be used for various applications that require
complex understanding, such as emotion recognition. [7] [25] [28] [10] [9] [32] [37] [12] [33]
[8] [37] [30] [5] [30] [2] [16] [24] [14] [27] [40] [36] [22] [13] [18] [6] [11] [39]

Emotion recognition from text has been extensively researched for the past two decades,
yet there is still significant room for improvement. For instance, no model yet demonstrates
strong cross-domain performance, meaning that it would work well in diverse situations and
contexts. Moreover, while relying on a limited number of metrics, most published works
provide a superficial analysis of their results, lacking a comprehensive understanding of
model behaviour. Furthermore, authors often do not share their models and code, which
limits the practical applications of their outcomes. We aim to tackle some of these issues
throughout this thesis.

Chapter 2 thoroughly reviews relevant literature (including psychological theories and
models), setting the stage for this research. Chapter 3 clearly defines the research goals we
addressed and outlines our methodology. We discuss dataset selection and model design,
training and validation procedures. Chapter 4 presents our experimental results, highlight-
ing the strengths and weaknesses of our models. Additionally, we compare our models
with recent state-of-the-art methods. Chapter 5 summarizes our findings, emphasises the
cross-domain efficacy of our proposed models and discusses possible directions for future
research.

3



Chapter 2

Literature Review

This chapter introduces psychological models and theories relevant to this research. Ad-
ditionally, it presents a thorough review of datasets and key literature, concluding with
a summary of the limitations and gaps in current approaches, setting the stage for this
research.

2.1 Psychological Models of Emotions
There isn’t any consensus within the scientific community regarding a singular, universally
accepted psychological model that completely and exclusively describes all human emotions.
All existing models can be divided into two groups:

• Categorical models: represent emotions as a finite set of named entities that may
have defined relationships. Generally, a set of basic/core emotions is defined. Addi-
tionally, relationships between the emotions may be formed, resulting in secondary
emotions. These relationships describe what happens if two or more emotions are ex-
perienced simultaneously. For example, Plutchik’s Wheel of Emotions Model defines
a composition of joy and surprise as delight (secondary emotion). [1] [38]

• Dimensional models: define emotions as coordinates within a specific coordinate sys-
tem. Emotions are then represented by varying degrees of its dimensions. The rela-
tionships are expressed implicitly by the nature of the system. An example of such
taxonomy is Circumplex’s Model of Affect, which represents emotions by varying
degrees of valence and arousal dimensions. [38]

2.1.1 Paul Ekman’s Model

Paul Ekman’s Model, published in a study of facial expressions and emotions, is one of
the simplest categorical models that is still, to some extent, accepted by the scientific com-
munity. It defines six primary/core emotions: anger, disgust, fear, happiness, sadness,
and surprise. The model does not define any relationships between the emotions. There-
fore, adapting this model is relatively straightforward because annotating data precisely is
simple due to the limited number of emotions. However, this can also be perceived as a
disadvantage since a fine-graded emotion classification using this model is impossible. [38]
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2.1.2 Wheel of Emotions Model

Another influential and widely adopted model is the Wheel of Emotions, also known as
Plutchik’s Model. It is based on eight so-called primary emotions: joy, sadness, anger, fear,
trust, disgust, surprise, and anticiation. The emotions are carefully placed within the model,
forming a structure depicted in Figure 2.1. Similar emotions are generally placed close to
each other, whereas opposite emotions are placed 180 degrees apart. Intense emotions are
placed near the model’s centre, whereas mildly intense emotions are located closer to the
edge. Furthermore, the model defines a relationship between emotions, as depicted by
Figure 2.2, forming dyads (pairs of emotions) and triads (a mixture of three emotions).
Dyads are also characterised based on the distance between those emotions: primary - 1
petal apart, secondary - two petals apart, tertiary - three petals apart and opposite dyad -
4 petals apart. The Wheel of Emotions model offers a comprehensive framework covering
a wide spectrum of emotions. It can be adapted in various machine learning applications
since precise data annotation is possible. However, due to its complexity, this can be quite
challenging and may require a consensus across multiple annotators. [38] [31]

Figure 2.1: Depicts the Wheel of Emotions model. Taken from [1].
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Figure 2.2: Shows dyads and triads as defined for the Wheel of Emotions Model. Taken
from [31].

2.1.3 Parrot’s Model

Parrot’s model divides the emotions into layers, as depicted in Figure 2.3, forming primary,
secondary and tertiary emotions. In total, this model defines 100 unique emotions. It
is often visualized as a tree where a connection between nodes represents a relationship
between emotions. This model can be used for nuanced emotion classification. However,
precise data annotation can be challenging and sometimes somewhat subjective due to its
complexity. [38]

Figure 2.3: Displays the first two layers (primary and secondary emotions) of the Parrot
model. Image taken from [38].
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2.1.4 Circumplex’s Model of Affect

The Circumplex Model of Affect is widely respected by the scientific community, a contin-
uous model having two dimensions: valence and arousal. Valence describes the emotional
experience, ranging from pleasant to unpleasant. Arousal expresses the intensity of the
experience, ranging from low/calm to high/excited. The centre of the graph represents a
neutral emotion. Emotions are represented by varying degrees of valence and arousal. The
model is shown using Figure 2.4. This model can be used when a continuous representation
of emotions is needed. However, precise data annotation is impossible since the emotions
have no clear boundaries. [38]

Figure 2.4: Depicts the Circumplex’s Model of Affect. Taken from [38].

2.1.5 Summary

Table 2.1 summarises the reviewed psychological models, providing valuable insights.
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Paul Ekman’s Model [38] categorical 6 6 ✓ ✗ 1.
Parrot’s Model [38] categorical 6 100 ✓ - 4.

Wheel of Emotions [38] [1] categorical 8 92 ✓ ✓ 3.
Circumplex’s Model [38] dimensional 5 ∞ ✗ ✓ 2.

Table 2.1: Summarises the reviewed psychological models. The column # Primary repre-
sents the number of primary emotions defined by the model, while # Total represents the
total number of distinct emotions defined by the model. Column Exact highlights whether
exact annotations are theoretically possible. Column Relations assesses whether the emo-
tions have meaningful relationships defined. Column Difficulty, ranked in order of easiest
to hardest, assesses the level of difficulty involved in generating annotations.
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2.2 Datasets
Emotion classification is mostly approached as either a multi-class or multi-label problem.
In multi-class scenarios, a single emotion is considered valid for each sentence, while in
multi-label, combinations of multiple co-occurring emotions are valid for each sentence.
This led to the creation of many datasets with varying characteristics. These include:

• Number of Samples: datasets vary greatly, with some having only a few hundred
samples while others contain millions.

• Quality of Annotations: some datasets, especially large ones, have only weakly la-
belled samples, while others demonstrate rigorous annotation procedures involving
multiple annotators.

• Complexity: some datasets contain only easy-to-classify sentences, while others com-
prise a mix of sentences featuring sarcasm, irony, and context-dependability in con-
versations (meaning is influenced by preceding utterances).

This chapter summarises only the most influential datasets in the domain.

2.2.1 SemEval-2018 Task 1: Affect in Tweets

SemEval-2018 Task 1: Affect in Tweets is a multi-task dataset developed for the 2018
Semantic Evaluation competition. It is dedicated to assessing an individual’s emotional
state based on their tweets. Since its publication in 2018, it has become a de facto standard
for evaluating multi-label emotion classification models, garnering more than 750 citations.
This chapter paraphrases the original paper [26]. The dataset comprises tweets annotated
for the following tasks:

• Emotion intensity regression (EI-reg): Given an emotion and a tweet, the system is
tasked to predict a number between 0 and 1 describing how intense the emotion is,
with 1 being the most intense.

• Emotion intensity ordinal classification (EI-oc): similar to the EI-reg, this task re-
quires the system to predict one of the following categories: no emotion (for tweets not
conveying the emotion), low emotion, moderate emotion and high emotion describing
the emotion intensity.

• Valence (sentiment) regression (V-reg): Given a tweet, the system is tasked to predict
a real number between 0 and 1, describing how positive the sentiment of the sentence
is, with 1 being the most positive.

• Valence ordinal classification (V-oc): unlike V-reg, this task involves classifying the
sentiment of a tweet into one of these categories: very negative, moderately nega-
tive, slightly negative, neutral or mixed, slightly positive, moderately positive, and very
positive.

• Emotion Classification (E-c): Given a tweet, the system is required to output one or
more labels (multi-label classification) describing emotions present in the tweet.
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Annotation Procedure

In total, the authors collected over 100 million English tweets. They gathered the data by
pooling the Twitter API over the period spanning from July to September of 2017 using
emotion-specific keywords. Subsequently, they employed a three-step process to get the
final dataset:

1. Data Selection and Emotion Pre-Assignment: Specific keywords, emojis and emoti-
cons were used to pre-select tweets rich in emotional content. Additionally, a word-
embedding space selection was conducted to ensure the diversity of the dataset. At
the end of this stage, the tweets have automatically pre-assigned emotions.

2. Data Annotation: A crowdsourcing platform, Figure Eight (formerly CrowdFlower),
was used to annotate the tweets. The annotators were presented with a small set (4
to 8) of tweets having pre-assigned labels. Their task was to identify one tweet that
most strongly represented that emotion and one that least represented it.

3. Data Aggregation: The authors compiled these rankings and executed particular
post-processing steps to finalize the dataset.

Analysis

The SemEval-2018 Task 1 - Emotion Classification (E-c) dataset is explored through var-
ious tables, each providing unique perspectives on its structure and annotations. Table
2.2 presents five examples from the dataset, featuring tweets alongside corresponding an-
notations. Table 2.3 details how samples are divided into training, validation, and testing
splits. Table 2.4 illustrates the distribution of samples annotated with varying co-occurring
emotions. Table 2.5 shows the occurrence rates of individual emotions across the splits
without considering co-occurrence. Conversely, Table 2.6 focuses on frequently co-occurring
emotional combinations. For clarity, we present only those whose relative proportions are
greater than 1%. These tables offer a nuanced understanding of the dataset’s structure
and emotional dynamics. The SemEval-2018 Task 1: Affect in Tweets is a rich corpus
frequently containing sentences annotated with multiple co-occurring emotions.

Text Emotions
My roommate: it’s okay that we can’t spell because we have auto-
correct. #terrible #firstworldprobs

disgust

About 7 weeks till I can pick up my camera again. Though I think
there is a group cemetery shoot in October, I can make it! #photog-
raphy

joy, optimism

@NHLexpertpicks @usahockey USA was embarrassing to watch.
When was the last time you guys won a game..? #horrible #joke

anger, disgust

@onefumi Oh, I see. I’ve seen so many people mourn the loss that I
was surprised to see your tweet. I suppose same old here in SA

surprise, sadness

#smile every morning to a positive head start with your #clients
relations

optimism, joy

Table 2.2: Presents five simplified examples from the SemEval-2018 Task 1: Affect in
Tweets dataset. To see the full dataset’s structure, please refer to Chapter 3.2.1, which
describes it in detail.
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Number of Samples Proportions (%)
train validation test

∑︀
train validation test

6838 886 3259 10983 62.26 8.07 29.67

Table 2.3: Presents how the data in the SemEval-2018 Task 1: Affect in Tweets dataset is
divided into training, validation, and test splits.

Number of Emotions Number of Instances Proportions (%)
0 293 2.67
1 1481 13.48
2 4491 40.89
3 3459 31.49
4 1073 9.77
5 170 1.55
6 16 0.15∑︀

10983

Table 2.4: Displays the distribution of samples annotated with varying numbers of co-
occurring emotions in the SemEval-2018 Task 1: Affect in Tweets dataset.

Emotion Frequency Proportions (%)
train validation test train validation test

disgust 2602 319 1099 38.05 36.00 33.72
anger 2544 315 1101 37.20 35.55 33.78
joy 2477 400 1442 36.22 45.15 44.25

sadness 2008 265 960 29.37 29.91 29.46
optimism 1984 307 1143 29.01 34.65 35.07

fear 1242 121 485 18.16 13.66 14.88
anticipation 978 124 425 14.30 14.00 13.04
pessimism 795 100 375 11.63 11.29 11.51

love 700 132 516 10.24 14.90 15.83
surprise 361 35 170 5.28 3.95 5.22

trust 357 43 153 5.22 4.85 4.69

Table 2.5: Presents the distribution of emotions in the SemEval-2018 Task 1: Affect in
Tweets dataset, providing frequency and percentages that reflect the proportion of sentences
having assigned the emotion.
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Emotion Frequency Proportions (%)
train validation test train validation test

anger, disgust 865 107 366 12.65 12.08 11.23
joy, optimism 538 88 356 7.87 9.93 10.92

anger, disgust, sadness 446 56 201 6.52 6.32 6.17
joy, love, optimism 308 69 255 4.50 7.79 7.82
pessimism, sadness 174 18 82 2.54 2.03 2.52
anger, disgust, fear 157 18 49 2.30 2.03 1.50

joy, love 155 20 108 2.27 2.26 3.31
anticipation, joy, optimism 146 24 72 2.14 2.71 2.21

fear, sadness 113 9 46 1.65 1.02 1.41
disgust, sadness 93 14 42 1.36 1.58 1.29

anger, disgust, pessimism, sadness 87 24 61 1.27 2.71 1.87
anger, sadness 73 14 39 1.07 1.58 1.20

Table 2.6: Shows co-occurring emotions in the SemEval-2018 Task 1: Affect in Tweets
dataset, providing frequency and percentages that reflect the proportion of sentences having
assigned the combination. Only emotional tuples whose relative occurrence is >1% on all
subsets are presented.

2.2.2 GoEmotions

GoEmotions is a large, carefully curated dataset of Reddit comments annotated for multi-
label emotion classification. With 27 distinct emotions (not including combinations), it is
one of the most challenging datasets. Similar to SemEval-2018 Task 1: Affect in Tweets,
since its publication in 2020, it has also become a commonly used benchmark for evaluating
multi-label classification models. This chapter paraphrases the original paper [8] and the
official blog post [3].

Annotation Procedure

All the annotations were made by English speakers from India. The annotators were told to
assign only emotions that they were reasonably confident about. Additionally, they could
label the comment as difficult to classify if needed. The following pipeline was employed to
curate the final dataset:

1. Data Collection: Reddit comments originating from subreddits with a minimum of
10,000 comments were used. Data was collected from the start of Reddit in 2005
through January 2019.

2. Data Curation: Reddit is known for its biases towards young male users (demographic
bias) and toxic language. These biases were mitigated by using specific filters and
performing manual inspections. Additionally, a machine-learning model was employed
to weakly label the sentences. Subsequently, authors balanced the dataset, ensuring
that no weakly labelled emotions and neither popular subreddits were overrepresented.

3. Data Annotation: Each pre-labelled sentence was initially assigned to three raters.
Difficult samples without agreement on at least one label were assigned two additional
raters. The final annotations were composed using a majority voting technique.
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Analysis

The GoEmotions dataset is explored through various tables, each providing unique perspec-
tives on its structure and annotations. Table 2.7 presents five examples from the dataset,
featuring tweets alongside corresponding annotations. Table 2.8 details how samples are
divided into training, validation, and testing splits. Table 2.9 illustrates the distribution of
samples annotated with varying co-occurring emotions. Table 2.10 shows the occurrence
rates of individual emotions across the splits without considering co-occurrence. Con-
versely, Table 2.11 focuses on frequently co-occurring emotional combinations. For clarity,
we present only those whose relative proportions are greater than 0.1%. These tables offer
a nuanced understanding of the dataset’s structure and emotional dynamics. The GoEmo-
tions dataset experiences a notable imbalance and a lower co-occurring emotion prevalence
than the SemEval-2018 Task 1 - Emotion Classification (E-c) dataset. Specifically, GoE-
motions has 3 emotion labels represented by fewer than 200 instances each, highlighting
significant skewness in label distribution. Additionally, on the one hand, it features only
12% of instances annotated with two co-occurring and a mere 1% of three co-occurring
emotions. On the other hand, its finely graded set of labels may potentially compensate
for this, adding more depth.

Text Emotions
We need more boards and to create a bit more space for [NAME].
Then we’ll be good.

desire, optimism

that is what retardation looks like anger
Thank you friend gratitude
I miss them being alive grief, sadness
I’m going to hold out hope for something minor, even though it looked
really bad. Just going to wait for the official news.

optimism

Table 2.7: Presents five simplified examples from the GoEmotions dataset. To see the full
dataset’s structure, please refer to Chapter 3.2.1, where it is described in detail, along with
specific pre-processing steps applied to the data.

Number of Samples Proportions (%)
train validation test

∑︀
train validation test

43407 5426 5427 54260 80.00 10.00 10.00

Table 2.8: Presents how the data in the GoEmotions dataset is divided into training,
validation, and test splits.
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Number of Emotions Number of Instances Relative
0 16018 29.52
1 31096 57.31
2 6532 12.04
3 577 1.06
4 36 0.07
5 1 0.00∑︀

54260

Table 2.9: Displays the distribution of samples annotated with varying numbers of co-
occurring emotions in the GoEmotions dataset.

Emotion Frequency Relative (%)
train validation test train validation test

admiration 4130 488 504 9.51 8.99 9.29
approval 2939 397 351 6.77 7.32 6.47
gratitude 2662 358 352 6.13 6.60 6.49
annoyance 2470 303 320 5.69 5.58 5.90
amusement 2328 303 264 5.36 5.58 4.86

curiosity 2191 248 284 5.05 4.57 5.23
love 2086 252 238 4.81 4.64 4.39

disapproval 2022 292 267 4.66 5.38 4.92
optimism 1581 209 186 3.64 3.85 3.43

anger 1567 195 198 3.61 3.59 3.65
joy 1452 172 161 3.35 3.17 2.97

confusion 1368 152 153 3.15 2.80 2.82
sadness 1326 143 156 3.05 2.64 2.87

disappointment 1269 163 151 2.92 3.00 2.78
realization 1110 127 145 2.56 2.34 2.67

caring 1087 153 135 2.50 2.82 2.49
surprise 1060 129 141 2.44 2.38 2.60

excitement 853 96 103 1.97 1.77 1.90
disgust 793 97 123 1.83 1.79 2.27
desire 641 77 83 1.48 1.42 1.53
fear 596 90 78 1.37 1.66 1.44

remorse 545 68 56 1.26 1.25 1.03
embarrassment 303 35 37 0.70 0.65 0.68

nervousness 164 21 23 0.38 0.39 0.42
relief 153 18 11 0.35 0.33 0.20
pride 111 15 16 0.26 0.28 0.29
grief 77 13 6 0.18 0.24 0.11

Table 2.10: Presents the distribution of emotions in the GoEmotions dataset, providing
frequency and percentages that reflect the proportion of sentences having assigned the
emotion.
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Emotion Frequency Proportions (%)
train validation test train validation test

anger, annoyance 233 48 26 0.54 0.88 0.48
admiration, gratitude 228 30 26 0.53 0.55 0.48
admiration, approval 199 25 17 0.46 0.46 0.31
confusion, curiosity 186 15 20 0.43 0.28 0.37

admiration, love 156 17 18 0.36 0.31 0.33
annoyance, disapproval 149 21 19 0.34 0.39 0.35
disappointment, sadness 106 12 16 0.24 0.22 0.29

admiration, joy 92 11 11 0.21 0.20 0.20
annoyance, disappointment 80 12 10 0.18 0.22 0.18

admiration, optimism 79 9 7 0.18 0.17 0.13
approval, optimism 73 9 10 0.17 0.17 0.18

amusement, joy 70 11 6 0.16 0.20 0.11
amusement, gratitude 65 7 7 0.15 0.13 0.13

excitement, joy 61 9 8 0.14 0.17 0.15
approval, caring 54 8 11 0.12 0.15 0.20

amusement, approval 51 6 10 0.12 0.11 0.18

Table 2.11: Shows cooccurring emotions in the GoEmotions dataset, providing frequency
and percentages that reflect the proportion of sentences having assigned the combination.
Only emotional tuples whose relative occurrence is >0.1% on all subsets are presented.

2.2.3 XED

XED is a multilingual dataset designated for multi-label emotion classification. Unlike
previously introduced datasets, XED respects the well-established Plutchik’s taxonomy
featuring its eight core emotions: anger, anticipation, disgust, fear, joy, sadness, surprise,
trust and neutral emotion. The data comprises annotated movie subtitles obtained from
OpenSubtitles 1 (OPUS). The XED presents a great challenge for the models to comprehend
since subtitles are typically not self-sufficient and often rely on visual cues from associated
movies. This chapter paraphrases the original paper [27].

Annotation Procedure

The dataset was annotated by university students. Expert annotators were also part of the
annotation process to ensure quality. The students were instructed to favour quality over
quantity and to assign the emotion from the speaker’s point of view. Notably, no addi-
tional context was presented to the annotators (origin, visual cues, etc.). More than 108
annotators were present during the process, with 63 being active. An annotator who anno-
tated more than 300 sentences is considered active. The following pipeline was employed
to curate the final dataset:

1. Collection: The data comes from OPUS, a movie subtitle corpus. The subtitles were
collected from movies covering a wide range of genres to cover a broad spectrum of
human-spoken interactions. Other than that, the data was selected randomly.

1https://opus.nlpl.eu/OpenSubtitles-v2018.php
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2. Cleaning: The authors applied a sequence of pre-processing steps to clean up the
data, like entity removal of superfluous characters.

3. Annotations: Each sentence was assigned to three annotators. The final annotations
were determined using a majority voting technique, where an annotation is assigned to
the sentence only if at least two out of three annotators agree on it. Expert annotators
check hard-to-annotate (no agreement within annotators) sentences and sometimes
include them in the final corpus.

Analysis

The XED dataset is explored through various tables, each providing unique perspectives on
its structure and annotations. Table 2.12 presents five examples from the dataset, featuring
tweets alongside corresponding annotations. Table 2.13 details how samples are divided into
training, validation, and testing splits. Table 2.14 illustrates the distribution of samples
annotated with varying co-occurring emotions. Table 2.15 shows the occurrence rates of
individual emotions across the splits without considering co-occurrence. Conversely, Table
2.16 focuses on frequently co-occurring emotional combinations. For clarity, we present only
those whose relative proportions are greater than 0.1%. These tables offer a nuanced under-
standing of the dataset’s structure and emotional dynamics. In summary, the XED dataset
is an interesting and challenging dataset that exhibits a prevalence of labelled instances
with multiple labels similar to the GoEmotions. However, its broader categorization may
not adequately reflect the depth of human emotions. Additionally, the absence of train-
ing, validation, and test splits complicates comparisons of models on this dataset. Despite
these shortcomings, the dataset is noteworthy for its focus on spoken language within a
challenging environment (movies).

Text Emotions
When I say run, run. anticipation, fear
But, of course, she’s lying. disgust
When I came here, I thought this was gonna be a 30-day stretch,
maybe 60.

surprise

You’re welcome to have turkey with my husband and me. trust
A hundred of these are produced every day and sent to sweatshops
where urban slaves prepare this poison for our friends, our loved ones,
and our children.

anger, disgust

Table 2.12: Presents five simplified examples from the XED dataset. To see the full dataset’s
structure, please refer to Chapter 3.2.1, where it is described in detail, along with specific
pre-processing steps applied to the data.
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Number of Smaples Proportions (%)
train validation test

∑︀
train validation test

21762 2720 2721 27203 80.00 10.00 10.00

Table 2.13: Presents how the data in the XED dataset is divided into training, validation,
and test splits. Since the authors did not provide the splits they used in their paper, we
had to divide the corpus into training, validation, and testing by ourselves. See Chapter
3.2.1 for further details.

Number of Emotions Number of Instances Proportions (%)
0 9675 35.57
1 13655 50.20
2 3024 11.12
3 710 2.61
4 117 0.43
5 12 0.04
6 9 0.03
7 1 0.00∑︀

27203

Table 2.14: Displays the distribution of samples annotated with varying numbers of co-
occurring emotions in the XED dataset.

Emotion Frequency Proportions (%)
train validation test train validation test

anger 3042 369 417 13.98 13.57 15.33
anticipation 2713 336 351 12.47 12.35 12.90

joy 2267 293 273 10.42 10.77 10.03
trust 2181 269 249 10.02 9.89 9.15
fear 1962 231 246 9.02 8.49 9.04

sadness 1960 251 253 9.01 9.23 9.30
surprise 1960 243 239 9.01 8.93 8.78
disgust 1836 240 241 8.44 8.82 8.86

Table 2.15: Presents the distribution of emotions in the XED dataset, providing frequency
and percentages that reflect the proportion of sentences having assigned the emotion.
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Emotion Frequency Proportions (%)
train validation test train validation test

anger, disgust 314 49 44 1.44 1.80 1.62
joy, trust 279 44 31 1.28 1.62 1.14

anticipation, joy 249 37 30 1.14 1.36 1.10
anticipation, trust 161 18 21 0.74 0.66 0.77
anger, anticipation 161 16 19 0.74 0.59 0.70
sadness, surprise 144 16 17 0.66 0.59 0.62

fear, sadness 112 10 17 0.51 0.37 0.62
anger, fear 104 11 12 0.48 0.40 0.44

anger, sadness 92 9 9 0.42 0.33 0.33
disgust, sadness 92 9 12 0.42 0.33 0.44
anger, surprise 88 12 14 0.40 0.44 0.51

anticipation, joy, trust 88 10 11 0.40 0.37 0.40
anticipation, surprise 83 15 8 0.38 0.55 0.29

joy, surprise 79 12 14 0.36 0.44 0.51
anticipation, fear 78 4 16 0.36 0.15 0.59

fear, surprise 77 14 7 0.35 0.51 0.26
fear, trust 58 14 9 0.27 0.51 0.33

anger, disgust, sadness 44 6 8 0.20 0.22 0.29
sadness, trust 30 4 4 0.14 0.15 0.15

anger, disgust, surprise 26 3 3 0.12 0.11 0.11
anger, disgust, fear 25 4 3 0.11 0.15 0.11

surprise, trust 23 3 3 0.11 0.11 0.11
anticipation, sadness 23 3 3 0.11 0.11 0.11

Table 2.16: Shows cooccurring emotions in the XED dataset, providing frequency and
percentages that reflect the proportion of sentences having assigned the combination. Only
emotional tuples whose relative occurrence is >0.1% on all subsets are presented.

2.2.4 DailyDialog

DailyDialog is a dataset comprising dialogues sourced from websites designed to help En-
glish learners practice English in everyday situations, hence its name. Each dialogue involves
two speakers and typically lasts for eight turns. These dialogues are split into utterances
(single conversational turns) and annotated. Unlike the previously introduced datasets, it
recognises the context preceding each utterance, thus minimizing ambiguity. This is impor-
tant because the same utterance may be interpreted differently based solely on its context.
See Table 2.18 for further details. This chapter paraphrases the dataset’s paper [21]. The
utterances are paired with their corresponding contexts and annotated for the following
tasks:

• Act Identification: Given an utterance alongside its context, the model’s task is to
identify the function of the utterance, which represents its role in the conversation.
The possible values are: inform, question, directive, and commissive.
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• Emotion Classification: Given an utterance alongside its context, the model’s task
is to identify the emotion hidden in the utterance. The authors adopted the Ekman
model, defining six core emotions.

Annotation Procedure

The dataset was annotated by three hired expert annotators. Notably, the annotators
reached a high inter-annotator agreement of 78.9%. The full dataset annotation pipeline
included the following steps:

1. Collection: The authors crawled several websites designed to help English learners
practice conversations. Unfortunately, the exact websites are not mentioned.

2. Cleaning: Initially, the raw data was de-duplicated, and dialogues involving more
than two parties were excluded. Subsequently, spelling errors were corrected using an
auto-correction package.

3. Annotation: Initially, all three annotators collaboratively annotated 100 randomly
selected dialogues, learning to annotate the data correctly. Following this, each anno-
tator labelled the entire dataset independently. The final annotations were determined
using a majority voting method.

Analysis

The DailyDialog dataset is examined through Tables 2.18, 2.17, 2.19 and 2.20, each assessing
the dataset from a different point of view. Table 2.18 displays five examples from the
dataset, each paired with relevant annotation. Table 2.17 shows the distribution of samples
across training, validation, and testing splits. Table 2.19 details the prevalence of individual
emotions in the dataset. Unlike the previously introduced datasets, we do not present the
table for co-occurring emotions. This table is omitted because this dataset categorizes
emotions into six broad, non-overlapping categories. In summary, the DailyDialog, with
its long and context-dependent sentences, is a unique and challenging dataset. However, it
also presents two significant downsides. Positive emotions are much more prevalent, and
each utterance can be assigned only one emotion from six possible categories, limiting the
depth of recognised emotional expression. Despite these limitations, the dataset remains a
valuable and widely used resource for recognising emotions in dialogues.

Number of Samples Proportions (%)
train validation test

∑︀
train validation test

79580 7475 7089 94144 84.53 7.94 7.53

Table 2.17: Presents how the data in the DialyDialog dataset is divided into training,
validation, and test splits.
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Text Emotion
I suggest a walk over to the gym where we can play singsong and meet
some of our friends. That’s a good idea. I hear Mary and Sally often
go there to play ping-pong. Perhaps we can make a foursome with
them.

happiness

Oh, my God! I’ve been cheated! What? What did you buy? It’s a
brick!

anger

What happened, John? Nothing. Why do you look unhappy? I’m
rather disappointed at not being able to see my best friend off.

saddens

Can you do push-ups? Of course, I can. It’s a piece of cake! Believe
it or not, I can do 30 push-ups a minute. Really? I think that’s
impossible!

surprise

Are you excited about your trip next month? Yes and no. I can’t wait
to go to Europe. Well, I have acrophobia.

fear

Table 2.18: Presents five simplified examples from the DialyDialog dataset. To see the full
dataset’s structure, please refer to Chapter 3.2.1, which describes it in detail. The context
preceding the classified utterance is italicized.

Number of Emotions Number of Instances Proportions (%)
0 78635 83.53
1 15509 16.47∑︀

94144

Table 2.19: Displays the distribution of samples annotated with varying numbers of co-
occurring emotions in the DialyDialog dataset and their respective percentages.

Emotion Frquency Proportions (%)
train validation test train validation test

happiness 9871 598 872 12.40 8.00 12.30
surprise 1483 101 111 1.86 1.35 1.57
sadness 920 79 91 1.16 1.06 1.28
anger 729 65 101 0.92 0.87 1.42

disgust 282 3 46 0.35 0.04 0.65
fear 131 11 15 0.16 0.15 0.21

Table 2.20: Presents the distribution of emotions in the DialyDialog dataset, providing
frequency and percentages that reflect the proportion of sentences having assigned the
emotion.

2.2.5 Summary

The summary of all the reviewed datasets is presented in Table 2.21. Moreover, all the
datasets that were reviewed possess certain properties such as a well-defined and rigorous
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annotation process, and they are of a reasonable size. By ”reasonable size“, we mean that
they are neither too small to facilitate the training of deep learning models, nor too large
to affect the ability to annotate them in a rigorous way.

Dataset Domain # emotions # train # validation # test
Daily Dialog [21] conversations 6 + 1 87 170 8 069 7 740
GoEmotions [8] Reddit posts 27 + 1 43 410 5 426 5 427

XED [27] movie subtitles 8 + 1 21 762 2 720 2 721
SemEval [26] Twitter posts 11 + 1 6 838 886 3 259

Table 2.21: Sumarises all reviewed datasets. # emotions denotes the number of distinct
emotions in the annotations, with +1 representing neutral/no emotion. # train, # valida-
tion, and # test denote the number of samples used for training, validation, and testing,
respectively.

2.3 Metrics
This chapter introduces metrics commonly used for assessing the performance of classifica-
tion models.

2.3.1 Confusion Matrix

The confusion matrix, as per Equation 2.1, is an important measure that visualizes the
degree to which the classes are being confused. By analyzing the matrix, we can compute
the number of true positives, true negatives, false positives, and false negatives for each class,
enabling the calculation of key metrics like accuracy, precision, recall/sensitivity, specificity,
and F1-score. Additionally, it provides details about commonly mistaken classes.

𝑀 =

⎛⎜⎜⎜⎝
𝑀11 𝑀12 · · · 𝑀1𝑛

𝑀21 𝑀22 · · · 𝑀2𝑛
...

... . . . ...
𝑀𝑛1 𝑀𝑛2 · · · 𝑀𝑛𝑛

⎞⎟⎟⎟⎠ (2.1)

where:

– 𝑀𝑖𝑗 indicates the number of instances of class 𝑖 predicted as class 𝑗.

The key components that can be calculated using the matrix are:

• True Positives (𝑇𝑃𝑖): defined in Equation 2.2, represents the amount of correctly
identified instances of class 𝑖.

𝑇𝑃𝑖 = 𝑀𝑖𝑖 (2.2)

• True Negatives (𝑇𝑁𝑖): defined in Equation 2.3, represent instances correctly identified
as not belonging to class 𝑖.

𝑇𝑁𝑖 =
𝐶∑︁

𝑘=1
𝑘 ̸=𝑖

𝐶∑︁
𝑙=1
𝑙 ̸=𝑖

𝑀𝑘𝑙 (2.3)
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• False Positives (𝐹𝑃𝑖): defined in Equation 2.4, are instances of other classes incor-
rectly identified as class 𝑖.

𝐹𝑃𝑖 =
𝐶∑︁

𝑘=1
𝑘 ̸=𝑖

𝑀𝑘𝑖 (2.4)

• False Negatives (𝐹𝑁𝑖): defined in Equation 2.5, occur when instances of class 𝑖 are
wrongly classified as other classes.

𝐹𝑁𝑖 =

𝐶∑︁
𝑙=1
𝑙 ̸=𝑖

𝑀𝑖𝑙 (2.5)

2.3.2 Exact Match Ratio

The Exact Match Ratio metric, as defined in Equation 2.6, measures the proportion of
instances where the model’s prediction precisely aligns with the ground truth. A prediction
is considered correct when it perfectly matches the ground truth as if every class aligns
precisely.

𝐸𝑥𝑎𝑐𝑡𝑀𝑎𝑡𝑐ℎ𝑅𝑎𝑡𝑖𝑜 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼(𝑌𝑖 = 𝑌𝑖) (2.6)

where:

– N is the total amount of test data,
– 𝐼 is an indicator function,
– 𝑌𝑖 is predicted sequence of labels
– 𝑌𝑖 is the ground truth sequence.

2.3.3 Accuracy

Accuracy is a metric that evaluates the overall performance of a classification model. It is
calculated as the ratio of correctly predicted instances to the total instances in the dataset.
As per Equation 2.7, the accuracy can be derived from the Confusion matrix. This metric is
particularly useful when the datasets are well-balanced, as it considers both True Positives
and True Negatives. However, it may not be as indicative of the model’s performance in
imbalanced scenarios.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑︀𝐶
𝑖 (𝑇𝑃𝑖 + 𝑇𝑁𝑖)∑︀𝐶

𝑖 (𝑇𝑃𝑖 + 𝑇𝑁𝑖 + 𝐹𝑁𝑖 + 𝐹𝑃𝑖)
(2.7)

2.3.4 Precision

The precision metric, defined by Equation 2.8, measures the proportion of instances that
the model correctly identifies as belonging to a particular category 𝑖 out of all instances
that the model predicts as category 𝑖. In other words, it measures how many instances
predicted as label 𝑖 are correct. It provides important insights into the reliability of the
model’s positive predictions. The micro-averaged precision metric, as defined in Equation
2.9, measures overall precision across all classes.
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
(2.8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑇𝑃𝑖∑︀𝐶

𝑖=1(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
(2.9)

2.3.5 Recall / Sensitivity / True Positive Rate

The recall, also known as the sensitivity or True Positive Rate, defined by Equation 2.10,
measures the proportion of instances the model correctly identifies as belonging to a partic-
ular category 𝑖 out of all instances belonging to the class 𝑖. In other words, Recall measures
how well the model can identify the true instances of a particular category among all the
instances of that category. This metric is important for understanding the model’s ability
to capture all relevant cases of a certain category. The micro-averaged recall metric, as
defined in Equation 2.11, measures overall recall across all classes.

𝑅𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
(2.10)

𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑇𝑃𝑖∑︀𝐶

𝑖=1(𝑇𝑃𝑖 + 𝐹𝑁𝑖

(2.11)

2.3.6 Specificity / True Negative Rate

The specificity, also known as the true negative rate, defined in Equation 2.12, measures the
proportion of true negative instances of class 𝑖 correctly identified by the model, essentially
assessing the model’s ability to distinguish non-members of class 𝑖 accurately. This metric
offers a comprehensive view of the model’s performance in conjunction with precision and
recall. However, when negative instances are predominant, relying on specificity could lead
to a skewed assessment. In such cases, there’s a risk that the model, despite achieving a
high specificity score, might fail to identify the positive class correctly. The micro-averaged
specificity metric, as defined in Equation 2.13, measures overall specificity across all classes.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑖 =
𝑇𝑁𝑖

𝑇𝑁𝑖 + 𝐹𝑃𝑖
(2.12)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝑇𝑁𝑖∑︀𝐶

𝑖=1(𝑇𝑁𝑖 + 𝐹𝑃𝑖)
(2.13)

2.3.7 False Negative Rate

The False Negative Rate, also known as the Miss Rate, defined in Equation 2.14, measures
the proportion of positive instances that are incorrectly classified as negative by the model.
In other words, this metric measures how often the model misses a positive instance. Given
its close relationship to recall, Equation 2.15 can determine the False Negative Rate. The
micro-averaged False Negative Rate, as defined in Equation 2.16, measures overall specificity
across all classes.

𝐹𝑁𝑅𝑖 =
𝐹𝑁𝑖

𝐹𝑁𝑖 + 𝑇𝑃𝑖
(2.14)
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𝐹𝑁𝑅𝑖 = 1−𝑅𝑒𝑐𝑎𝑙𝑙𝑖 (2.15)

𝐹𝑁𝑅𝑚𝑖𝑐𝑟𝑜 =

∑︀𝐶
𝑖=1 𝐹𝑁𝑖∑︀𝐶

𝑖=1(𝐹𝑁𝑖 + 𝑇𝑃𝑖)
(2.16)

2.3.8 F1-score

The macro-averaged F1 score, as defined in Equation 2.17, provides an average measure
of the model’s performance across all labels. It assigns equal importance to all labels,
even those that are underrepresented. The micro-averaged F1 score, defined in Equation
2.18, provides an average measure of the model’s performance across all instaces. Hence,
overrepresented labels have a proportionally greater impact on this measure.

𝐹1𝑚𝑎𝑐𝑟𝑜 =
1

𝐶

𝐶∑︁
𝑖=1

2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 +𝑅𝑒𝑐𝑎𝑙𝑙𝑖

(2.17)

𝐹1𝑚𝑖𝑐𝑟𝑜 = 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 ×𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑚𝑖𝑐𝑟𝑜 +𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑖𝑐𝑟𝑜
(2.18)

2.3.9 Expected Calibration Error (ECE)

The Expected Calibration Error (ECE) is a score commonly used to assess model calibra-
tion. It measures how well a model’s predicted probabilities align with actual outcomes.
Initially, the predictions are divided into bins based on their predicted probability scores.
In each bin, the observed accuracy is compared with the average predicted probability of
that bin. For more details refer to Equation 2.19.

𝐸𝐶𝐸 =
𝐾∑︁
𝑘=1

|𝐵𝑘|
𝑁

×
⃒⃒⃒⃒∑︀

𝑖∈𝐵𝑘
I(𝑦𝑖 = 𝑦𝑖)

|𝐵𝑘|
−

∑︀
𝑖∈𝐵𝑘

𝑦𝑖

|𝐵𝑘|

⃒⃒⃒⃒
(2.19)

where:

– 𝐵𝑘: represents the set of samples falling within the 𝑘𝑡ℎ bin.
– 𝑁 : represents the total number of samples.
– I(·): denotes an indicator function.
– 𝑦𝑖: denotes the true label for sample 𝑖.
– 𝑦𝑖: denotes predicted probability for sample 𝑖.

2.3.10 Brier Score

The Brier Score, as defined in Equation 2.20, is another score used for assessing model
calibration. It measures a mean squared error between predicted probabilities and actual
outcomes.
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𝐵𝑆 =
1

𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

(𝑦𝑖𝑗 − 𝑝𝑖𝑗)
2 (2.20)

where:

– 𝑁 : represents the total number of samples.
– 𝐶: represents the total number of classes/labels.
– 𝑦𝑖: denotes the true label for sample 𝑖.
– 𝑦𝑖: denotes predicted probability for sample 𝑖.

2.4 Approaches in Emotion Recognition
Initially, the task of emotion recognition has been approached using keyword-spotting ap-
proaches. These systems inferred the emotions by matching pre-processed input sequences
with predefined sets of keywords corresponding to each emotion, optionally considering
negations. While straightforward and computationally inexpensive, these methods failed
to recognise implicit emotions, as they did not consider sentence semantics. The field then
progressed to rule-based approaches. These systems determined emotions by applying lin-
guistic, statistical, and computational rules to pre-processed input sequences. While they
considered sentence semantics and yielded better results over keyword-spotting methods,
they still struggled with handling complex sentences. [4]

Currently, emotion recognition is approached either through traditional machine learn-
ing or deep learning. Approaches based on traditional machine learning have shown signif-
icantly better results than prior methods. However, their success heavily depends on the
quality of manually extracted features, making their development challenging. On the other
hand, deep learning approaches do not require any feature engineering, as the features are
automatically extracted during training. Moreover, deep learning methods generally have
better semantic understanding, dominating the field of emotion recognition.

2.4.1 Relevant Literature

After reviewing over 50 works, we selected five that applied different approaches to showcase
various methodologies. Additionally, we highlighted their strengths and weaknesses.

Recurrent Neural Networks (RNNs)

As shown in Figure 2.5, NTUA-SLP is a model employing a Bidirectional LSTM (Bi-LSTM)
with a multi-layer deep self-attention mechanism. This scores first and second place in E-c
and EI-reg in the SemEval-2018 Task 1: Affect in Tweets competition, respectively. First,
they pre-trained word2vec word embeddings using unsupervised learning on a large corpus
of tweets (about 550 million tweets). Then, they utilized a transfer learning scheme by
pre-training their model on theSemEval 2017 Task 4A (sentiment analysis in Twitter) and
fine-tuning the SemEval-2018 Task 1: Affect in Tweets datasets (multi-task). Like many
reviewed methods, this approach faces challenges in generalization outside the Twitter
domain due to the specialized training data, which consists only of tweets. Conversely, the
authors promoted the interpretability of the results by visualizing the self-attention scores
for some sentences. Additionally, the authors efficiently compensated for the lack of labelled

24



data by utilizing an unlabeled dataset of tweets along with two other supervised datasets.
[7]

Figure 2.5: Displays the NTUA-SLP model. Image taken from [7].

Transformer Encoders (Encoders)

Figure 2.6: Displays the architecture of RoBERTA-MA, DistilBERT-MA and XLNet-MA
models. Image taken from [5].

As shown in Figure 2.6, RoBERTA-MA, DistilBERT-MA, XLNet-MA are models based
on the Transformer encoder architecture. This work significantly contributed to the field
as the RoBERTA-MA achieved state-of-the-art performance. The models were trained

25



and evaluated on the SemEval-2018 Task 1: Affect in Tweets and Ren-CECps (Chinese
corpus consisting of blog posts). As part of their work, the authors demonstrated that
Transformer-based models outperform the RNN-based approaches significantly. Addition-
ally, they improved the results slightly by introducing additional multiple attention (MA)
layers before the output layer. [5]

Transformer Encoder-Decoders (Encoder-Decoders)

Figure 2.7: Presents a high-level overview of the BART model utilized for classification.
The same input sentence is fed to both the encoder and decoder. Image taken from [17].

Madaan et al. focused on improving the performance of sequence-to-sequence models like
BART-base and T5-11B for set generation tasks, including emotion classification. Both of
these models are based on encoder-decoder Transformer architecture. Figure 2.7 provides
a high-level overview of the BART model and explains how it can be used for classifica-
tion. The proposed SETAUG data augmentation method improves sequence-to-sequence
model performance by an average of 20% for multiple set generation tasks. Consequently,
the authors demonstrated that sequence-to-sequence models can be effectively utilized for
emotion classification.

Graph Attention Networks (GATs)

As shown in Figure 2.8, UCCA-GAT and Dep-GAT are models based on graph attention
networks (GATs). They achieved almost state-of-the-art results, only about 0.3% worse
than the best-performing models, on the SemEval-2018 Task 1: Affect in Tweets dataset.
The authors proposed two models: Universal Conceptual Cognitive Annotation Graph At-
tention Network (UCCA-GAT ) and Dependency Graph Attention Network (Dep-GAT ).
Their methodology involved extracting semantic/syntactic representation of the sentence,
followed by applying a graph attention network. The UCCA-GAT model utilizes adja-
cency and feature matrices extracted from the Universal Conceptual Cognitive Annotation
(UCCA), while the Dep-GAT is based on syntactic representation extracted from depen-
dency trees (Dep). In both cases, they utilized the output of the pre-trained BERT model
as the feature matrices. UCCA-GAT tends to produce better results than Dep-GAT. [6]
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Figure 2.8: Displays the architecture of UCCA-GAT and Dep-GAT models. Image taken
from [6].

Large Langauge Models (LLMs)

Figure 2.9: Displays error types with proportions identifying why in-context fails in
specification-heavy tasks as uncovered by the authors. Image taken from [29].

Peng et al. published a study on Specification-Heavy tasks for in-context learning (ICL).
The in-context learning allows large language models (LLMs) to be adapted to specific
tasks (like emotion classification) without altering their parameters. Instead, the models
are given a carefully crafted prompt that specifies the task it needs to perform, relying on
pre-existing knowledge of the models and the context provided by the prompt. However,
this study identifies Specification-Heavy tasks that require substantial training to master,
even for humans. One such task is emotion recognition. Using the GoEmotions dataset,
the authors demonstrated that current LLMs, including FLAN-UL2, Alpaca, Vicuna, Chat-
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GPT, DaVinci, and GPT-4, perform below half the performance of state-of-the-art (SOTA)
models. Interestingly, when fine-tuned, these models achieve results comparable to those
of the SOTA models. Three key reasons, as shown in Figure 2.9, for ICL failing were
identified: inability to specifically understand context, misalignment with humans, and in-
adequate long-text understanding. The inability to specifically understand context stands
for the model’s inability to comprehend all details, including small nuances from the pro-
vided context, which leads to inaccurate responses. Misalignment with humans indicates
that the model might not interpret the task as humans do, leading to unexpected responses.
Inadequate long-text understanding refers to the model’s limitations in efficiently utilizing
information over longer contexts. Experiments with both aligned and unaligned models
showed that human-aligned models performed consistently better in ICL scenarios. How-
ever, even smaller, fine-tuned models outperformed larger, aligned models using ICL. [29]
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2.4.2 Comparative Summary

This chapter presents a summary Table 2.22 that introduces all research papers (organized by the year publication) and details their
methodologies, types of methods employed alongside specific models used and datasets utilized for evaluation (only datasets for which
results are reported are presented). This table serves as a quick reference, offering a quick overview of methods used in emotion recognition,
highlighting studies that achieve state-of-the-art (SOTA) results, maintain dataset integrity (Integrity), and are trained/evaluated across
multiple domains (Cross-Domain). By state-of-the-art results, we refer to a method achieving the highest score based on the main metric
widely recognised by the research community. For SemEval-2018 Task 1: Affect in Tweets, GoEmotions, and XED, this metric is the
macro-averaged F1 score. For DailyDialog, it is the micro-averaged F1 score.

Year Model Approach Data

SO
T

A

C
ro

ss
-D

om
ai

n

In
te

gr
it

y

2018 NTUA-SLP [7] RNN: word2vec, Bi-LSTM SemEval 2017 - 4A, SemEval 2018
1-Ec

✗ ✗ ✓

2018 TCS Research [25] Hybrid: GloVe, emoji2vec, Senti-
ment Neuron, Bi-LSTM

SemEval 2018 1-Ec ✗ ✗ ✓

2018 PlusEmo2Vec [28] Hybrid: GloVe, DeepMoji, Bi-
LTSM, SVR, logistic regression

SemEval 2018 1-Ec ✗ ✗ ✓

2019 KET [40] Hybrid: graph attention, knowl-
edge base, cross-attention

DailyDialog and other emotion
dialogues datasets

✗ ✗ ✓

2019 BERT-large+DK [37] Multiple: BERT, BiLSTM, CNN SemEval 2018 1-Ec ✗ ✗ ✓

2020 EmoGraph: BERT-GAT [36] GAT: BERT features IEMOCAP, SemEval 2018 1-Ec
(a)

✗ ✗ ✓

2020 GoEmotions:BERT-base [8] Encoders: BERT GoEmotions ✗ ✗ ✓

2020 XED:BERT [27] Encoders: BERT XED ✓ ✗ ✓

2020 CESTa [34] Hybrid: LSTM, self-attention,
CRF

IEMOCAP, DailyDialog, MELD ✗ ✗ ✓
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2020 COSMIC [9] Hybrid: RoBERTa, COMET,
GRU, attention

IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2021 Seq2Emo [10] RNN: BiLSTM with attention SemEval 2018 1-Ec, GoEmotions ✗ ✗ ✓

2021 SpanEmo [2] Encoders: BERT SemEval 2018 1-Ec ✗ ✗ ✓

2021 TUCORE-GCN [13] Hybrid: BERT, multi-headed at-
tention, LSTM, GCN

DialogRE, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2021 SKAIG [18] Hybrid: RoBERTa, COMET,
Graph Transformer

IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2021 TODKAT [41] Hybrid: LSTM (encoder-
decoder), Transformer (encoder-
decoder), attention, SBERT,
COMET

IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2021 KI-Net [35] Hybrid: Context- and
Dependency-Aware Encoders,
word embeddings, knowledge
base

IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2022 S + PAGE [22] Hybrid: Transformer, GAT, CRF IEMOPCAP, MELD, DailyDia-
log (a), EmoryNLP

✓ (a) ✗ ✗

2022 MADAAN:T5-11B,
MADAAN:BART [24]

Encoder-Decoders: BART, T5-
11B

GoEmotions, other non-emotion
datasets

✗ ✗ ✓

2022 RoBERTa + FSA [14] Encoders: RoBERTa IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2022 CoMPM [15] Hybrid: RoBERTa, GRU IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2023 RoBERTA-MA, DistilBERT-
MA, XLNet-MA [5]

Multiple: GloVe (for RNN),
LSTM, Bi-LSTM, XLNet, Distil-
BERT, RoBERTa

SemEval 2018 1-Ec (a), Ren-
CECps

✓ (a) ✗ ✓

2023 UCCA-GAT, Dep-GAT [6] GAT: BERT features, depen-
dency trees

GoEmotions (a), SemEval 2018 1-
Ec (b)

✗ ✗ ✗ (a) / ✓ (b)
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2023 EmoLit:RoBERTa [30] Encoders: RoBERTa, BERT EmoLit, Tales, ISEAR,
EMOINT, GoEmotions

✗ ✓ ✓

2023 REMTA [42] Hybrid: BERT, LSTM, attention GoEmotions ✗ ✗ ✓

2023 TTL [16] Encoders: RoBERTa 11 datasets including GoEmo-
tions, SemEval 2018 1-Ec

✗ ✓ ✗

2023 DualGATs [39] GAT: RoBERTa features, GAT,
cross-attention

IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2023 COSMIC + CKCL [9] RNN: custom RNN based IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2023 Mtl-ERC-ES [32] RNN: BiLSTM, attention IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2024 MIP-GAT [11] GAT: BERT features GoEmotions (a), CMU-MOSEI ✓ (a) ✗ ✓

2024 Li:BART, Li:GPT-3.5-Turbo [19] LLMs, Encoder-Decoders: GPT-
3.5-Turbo, BART (a)

GoEmotions (a), other non-
emotion dataset

✓ (a) ✗ ✓

2024 CLED [12] Encoders: RoBERTa IEMOCAP, MELD, EmoryNLP,
DailyDialog

✗ ✗ ✓

2024 Wang:BERT, Wang:RoBERTa
[33]

LLMs, Encoders: RoBERTa,
BERT, ChatGPT 4

GoEmotions, CARER ✗ ✗ ✓

Table 2.22: Summarises all reviewed papers (ordered chronologically by their year of publication). Each paper’s approach is outlined,
specifying the type of method used, such as Recurrent Neural Networks (RNN), Hybrid (a combination of methods), Graph Attention
Networks (GAT), Transformer Encoders, Large Language Models (LLMs), or Encoder-Decoders (sequence-to-sequence transformers).
Specific models used are also detailed alongside their types. Additionally, the datasets used for evaluation are displayed for comparison
purposes. Finally, each paper is assessed to determine whether it achieves state-of-the-art results on any specific dataset (SOTA), was
trained across different domains (Cross-Domain), and preserves the original categories of the datasets (Integrity).
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2.4.3 Reported Results

The results reported by individual studies are presented in Tables 2.23, 2.24, 2.25 and
2.26. Researchers often evaluate their models using only a few (typically 1 to 3) established
metrics for specific datasets. This complicates the comparison since these metrics vary
across datasets.

SemEval-2018 Task 1: Affect in Tweets

Models Year Accuracy F1 micro F1 macro
RoBERTa-MA [5] 2023 62.4 74.2 60.3
UCCA-GAT [6] 2023 61.2 66.1 60.0
DistilBERT-MA [5] 2023 61.3 72.5 58.9
XLNet-MA [5] 2023 60.5 70.4 58.4
Dep-GAT [6] 2023 59.7 63.5 57.8
SpanEmo [2] 2021 - - 57.8
EmoGraph: BERT-GAT [36] 2020 58.3 69.9 56.9
BERT-large+DK [37] 2019 59.5 71.6 56.3
TCS Research [25] 2018 58.2 69.3 53.0
NTUA-SLP [7] 2018 58.8 70.1 52.8
Seq2Emo [10] 2021 58.67 70.02 51.92
PlusEmo2Vec [28] 2018 57.6 69.2 49.7

Table 2.23: Compares reported results on the SemEval-2018 Task 1: Affect in Tweets
dataset. In this instance, we compare accuracy, macro-averaged and micro-averaged F1
scores. These are commonly the only results reported in those studies.

GoEmotions

Model Year P macro R macro F1 macro
Li:BART-base [19] 2024 56.3 53.9 53.8
MIP-GAT [11] 2024 56.4 51.7 53.8
REMTA [42] 2023 52.12 54.08 52.27
EmoLit:RoBERTa [30] 2023 - - 52
Wang:BERT [33] 2024 57.27 49.18 51.83
MADAAN:T5-11B [24] 2022 - - 50.9
Seq2Emo [10] 2021 - - 47.28
GoEmotions:BERT-base [8] 2020 40 63 46
Li:GPT-3.5-Turbo [19] 2024 53.1 40.9 42.1
MADAAN:BART [24] 2022 - - 30

Table 2.24: Compares reported results on the GoEmotions dataset using the full taxonomy.
P, R and F1 denote macro-averaged precision, recall and F1 scores, respectively.
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DailyDialog

Model Year F1 macro F1 micro
S + PAGE [22] 2022 - 64.18
CESTa [34] 2020 - 63.12
TUCORE-GCN [13] 2021 - 61.91
DualGATs [39] 2023 - 61.84
RoBERTa + FSA [14] 2022 55.84 61.67
CLED [12] 2024 - 61.23
COSMIC + CKCL [9] 2023 53.09 60.96
CoMPM [15] 2022 53.15 60.34
Mtl-ERC-ES [32] 2023 53.06 60.10
SKAIG [18] 2021 51.95 59.75
TODKAT [41] 2021 52.56 58.47
COSMIC [9] 2020 51.05 58.48
KI-Net [35] 2021 - 57.3
CoG-BART [20] 2022 - 56.29
KET [40] 2019 - 53.37

Table 2.25: Compares reported results on the DailyDialog dataset. In this instance, we
compare macro-averaged and micro-averaged F1 scores. These are commonly the only
results reported in those studies.

XED

Models Year Accuracy F1 macro
XED:BERT [27] 2020 54.4 53.6

Table 2.26: Compares reported results on the XED dataset. We found other results beyond
those provided as baselines in the dataset paper. Additionally, this dataset comes without
predefined training, validation, and test splits. The authors utilized a 5-fold cross-validation
with a stratified splitting method of 70:20:10 for training, development, and test data.

2.5 Summary and Limitations of Existing Methods
After a thorough and extensive review of existing research, we have made several obser-
vations and identified key areas for improvement. These areas can be grouped into five
main categories: datasets, methods, cross-domain efficiency, evaluation and usability. In
the subsequent chapters, we delve deeper into each of these categories.

2.5.1 Datasets

There is a wide range of datasets available for emotion classification. However, these
datasets often do not adhere to any well-established psychological model, making them
difficult to interpret. Moreover, many of these datasets only recognise one emotion at a
time, contradicting established psychological theories that suggest multiple emotions can
be experienced simultaneously. Furthermore, the quality of annotations varies widely. For
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instance, datasets like [30] utilize distantly labelled data, suffering from low-quality annota-
tions. Additionally, the lack of clearly described data collection and annotation procedures
in some datasets makes it challenging to assess their demographics and the quality of their
annotations. Therefore, we have set the following criteria for selecting high-quality multi-
label datasets:

• Number of Samples: Datasets must have a reasonable number of samples to ensure
annotation quality isn’t compromised by excessively large datasets while still being
large enough to train deep learning models effectively. We reviewed only those con-
taining thousands or tens of thousands of samples.

• Multi-label Annotations: Datasets must support multi-label annotations, adhering to
well-established psychological theories.

• Rigorous annotation process: Datasets must be subject to a comprehensive annotation
process, ensuring high quality of the annotations. We included only those where
multiple annotators reviewed each sentence, did not include distantly labelled data,
and outlined their validation procedure.

• Diversity: Each dataset should come from a different domain, providing comprehen-
sive coverage.

As a result, we have identified four high-quality multi-label datasets that adhere to our
criteria. These datasets include:

• GoEmotions dataset [8]: comprising Reddit posts,

• SemEval-2018 Task 1: Affect in Tweets dataset [26]: comprising tweets,

• XED dataset [27]: composed of movie subtitles,

• DailyDialog dataset [21]: composed of conversations between two individuals.

2.5.2 Methods

Studies such as [7], [25], [28], [10], [9], [32] and [37] utilized Recurrent Neural Networks
(RNNs) with embeddings trained using various methods and datasets. These studies showed
that the quality of the embeddings used significantly influenced the performance of their
models. However, these approaches have been consistently outperformed by newer stud-
ies, such as [12], [33], [8], [37], [30], [5], [30], [2], [16], [24], [14] and [27], that incorporate
transformer-based models. The researchers have already tried many models, including
encode-only (BERT, RoBERTa, DistlBERT, XLNet), encode-decoder (BART, T5) and
decoder-only (Chat-GPT 3.5, ChatGPT 4, DaVinci) models, with BERT and RoBERTa
showing superior performance. A recent trend in adapting large language models to specific
problems involves in-context learning when the model is presented with a carefully crafted
prompt, removing the need to alter the model’s weights. However, as addressed by studies
[33], [29], [24] and [19], this approach has proved to produce mediocre results for emotion
classification. The latest trend in emotion classification, especially in processing dialogues,
leverages the strengths of hybrid models that combine Transformers with Graph Attention
Networks (GANs). This approach can be seen in studies such as [40], [36], [22], [13], [18],
[6], [11] and [39]. Transformers, such as BERT and RoBERTa, are designed to capture
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the contextual meaning of words, while Graph Attention Networks (GANs) excel at under-
standing relationships between data points, which, in this case, represent embeddings of
individual utterances (part of the conversations). On the DailyDialog dataset, these models
have outperformed approaches based solely on Transformers.

2.5.3 Cross-Domain Efficacy

All the reviewed studies, except [16] and [30], relied exclusively on data from a single domain
like Twitter or Reddit. This leads to models that excel within a specific domain but may
struggle to generalize across domains. Notably, the study [30] demonstrated the difficulty
of the domain transfer. Their model fine-tuned on the EmoLit dataset (a large dataset des-
ignated for multi-label emotion classification in literature) demonstrated weak performance
when applied to the GoEmotions dataset. The study [16] trained and evaluated their model
using multiple datasets, yet they restricted the range of emotions to Ekman’s taxonomy
(six core emotions). This remapping resulted in a loss of detail, making a comparative
assessment with other models that utilize the original labelling of the datasets impossible.
In conclusion, achieving strong multi-domain performance while preserving the dataset’s
original labelling still remains a significant challenge.

2.5.4 Evaluation

Existing research, presented in Tables 2.24, 2.23, 2.25, and 2.26, often utilised only a limited
number of evaluation metrics. These studies typically reported fewer than three metrics,
with approximately one-third reporting only a single F1 score (either micro or macro-
averaged). Calculating metrics at both dataset and label levels is important to comprehen-
sively evaluate the model’s performance. Most studies neglect the label level evaluation.
Assessing metrics at the dataset level helps us to understand how well the model performs
overall. This is crucial, but it’s also important to go deeper and see how the model performs
for individual labels/emotions. This way, we can identify the model’s individual strengths
and weaknesses. Additionally, none of the studies evaluate the calibration of their models,
which complicates the assessment of how trustworthy the model’s outputs are.

2.5.5 Usability

While many papers have been published, most authors have not included the corresponding
code and models. Releasing the models publicly would improve practical applications and
facilitate better reproducibility.
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Chapter 3

Proposed Methodology &
Implementation

This chapter outlines our methodology. We start by defining our research goals. Then,
we explain how we select and preprocess the data. Next, we discuss the selection and
implementation of our model. Finally, we provide a detailed explanation of how we train
and evaluate our models.

3.1 Research Questions and Goals
This thesis tackles three pivotal challenges in emotion recognition. For a discussion on the
existing limitations of emotion recognition systems, refer to Chapter 2.5. Specifically, we
explore:

• Cross-Domain Efficacy: How can we build emotion recognition models that gen-
eralise well across domains, communication styles and contexts?

• Preserving Labeling in Cross-Domain Settings: How can we maintain the in-
tegrity of labelling when applying emotion recognition models to datasets with varying
emotional categories?

• Comprhensive Evaluation: How can we thoroughly assess emotion recognition
models to provide in-depth insights into their effectiveness and limitations?

The main objective of this thesis is to design and propose a deep learning-based model that
addresses all these three research questions. Additionally, to facilitate usability and promote
the reproducibility of our research, we make all our models and code public, available at:
https://huggingface.co/vtlustos.

3.2 Proposed Method
We propose a method that successfully addresses all outlined goals. We accomplish this
by simultaneously training our models on four datasets systematically chosen to cover a
wide range of scenarios. However, unlike the existing approaches that typically remap the
original finely detailed categorizations into broader categories, our approach preserves the
original labelling of each dataset. Furthermore, we conduct a thorough analysis of our
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models. Initially, we evaluate the performance individually on each dataset to facilitate
comparison with other models. Then, we assess performance at the level of individual emo-
tions to identify the strengths and weaknesses of each model. Subsequently, we evaluate the
calibration of our models to verify the outcome’s trustworthiness. Finally, we complement
our results with a qualitative assessment to empirically validate our models.

3.2.1 Proposed Dataset

To ensure our models generalise well across domains, communication styles and contexts,
we composed the EmoMosaic-dataset dataset by integrating four previously established
datasets, namely the SemEval-2018 Task 1: Affect in Tweets (2.2.1), the GoEmotions
(2.2.2), the XED (2.2.3) - only the English subset, and the DailyDialog (2.2.4).

The EmoMosaic-dataset is analysed through various tables, each providing unique in-
sights. Table 3.1 details the distribution of data across training, validation, and test splits,
while Table 3.3 explores the distribution of samples annotated with varying numbers of co-
occurring emotions. Table 3.2 displays the occurrence rates of individual emotions across
splits, while Table 3.4 focuses on combinations of emotions that frequently co-occur. The
EmoMosaic-dataset is a large corpus that combines four challenging datasets, covering a
broad spectrum of situations, contexts and domains. Overall, the dataset has a balanced
mix of positive and negative emotions, with a significant portion of the sentences, 56.07%
to be precise, classified as neutral (having no emotions assigned). Additionally, 33.09% of
the sentences are annotated with one emotion and 7.53% with two emotions. Sentences
annotated with three or more emotions are less common but still significant, making up
less than 4% of the dataset. The EmoMosaic-dataset is imbalanced in terms of emotion
frequency, with most emotions occurring reasonably frequently (appearing in more than
500 instances). Additionally, the dataset frequently features co-occurring emotions such as
(anger, disgust), (joy, optimism) and (anger, disgust, sadness). However, it also contains
rare emotions such as grief, pride, relief, nervousness, and embarrassment, represented by
less than 300 instances.

Number of Samples Proportions (%)
train validation test

∑︀
train validation test

151587 16507 18496 186590 81.24 8.85 9.91

Table 3.1: Presents how the data in the EmoMosaic-dataset is divided into training, vali-
dation, and test splits.
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Emotion Frequency Proportions (%)
train validation test train validation test

happiness 9871 598 872 6.51 3.62 4.71
anger 7882 944 1817 5.20 5.72 9.82

sadness 6214 738 1460 4.10 4.47 7.89
joy 6196 865 1876 4.09 5.24 10.14

disgust 5513 659 1509 3.64 3.99 8.16
surprise 4864 508 661 3.21 3.08 3.57

admiration 4130 488 504 2.72 2.96 2.72
fear 3931 453 824 2.59 2.74 4.46

anticipation 3691 460 776 2.43 2.79 4.20
optimism 3565 516 1329 2.35 3.13 7.19
approval 2939 397 351 1.94 2.41 1.90

love 2786 384 754 1.84 2.33 4.08
gratitude 2662 358 352 1.76 2.17 1.90

trust 2538 312 402 1.67 1.89 2.17
annoyance 2470 303 320 1.63 1.84 1.73
amusement 2328 303 264 1.54 1.84 1.43

curiosity 2191 248 284 1.45 1.50 1.54
disapproval 2022 292 267 1.33 1.77 1.44
confusion 1368 152 153 0.90 0.92 0.83

disappointment 1269 163 151 0.84 0.99 0.82
realization 1110 127 145 0.73 0.77 0.78

caring 1087 153 135 0.72 0.93 0.73
excitement 853 96 103 0.56 0.58 0.56
pessimism 795 100 375 0.52 0.61 2.03

desire 641 77 83 0.42 0.47 0.45
remorse 545 68 56 0.36 0.41 0.30

embarrassment 303 35 37 0.20 0.21 0.20
nervousness 164 21 23 0.11 0.13 0.12

relief 153 18 11 0.10 0.11 0.06
pride 111 15 16 0.07 0.09 0.09
grief 77 13 6 0.05 0.08 0.03

Table 3.2: Presents the distribution of emotions in the EmoMosaic-dataset dataset, pro-
viding frequency and percentages that reflect the proportion of sentences having assigned
the emotion.

38



Number of Emotions Number of Instances Proportions (%)
0 104621 56.07
1 61741 33.09
2 14047 7.53
3 4746 2.54
4 1226 0.66
5 183 0.10
6 25 0.01
7 1 0.00∑︀

186590

Table 3.3: Displays the distribution of samples annotated with varying numbers of co-
occurring emotions in the EmoMosaic-dataset.

Emotion Frequency Proportions (%)
train validation test train validation test

anger,disgust 1219 161 417 0.80 0.98 2.25
joy,optimism 556 91 362 0.37 0.55 1.96

anger,disgust,sadness 491 62 209 0.32 0.38 1.13
anticipation,joy 323 46 61 0.21 0.28 0.33

joy,love,optimism 308 69 255 0.20 0.42 1.38
joy,trust 294 46 34 0.19 0.28 0.18

anger,annoyance 233 48 26 0.15 0.29 0.14
fear,sadness 232 21 65 0.15 0.13 0.35

admiration,gratitude 228 30 26 0.15 0.18 0.14
joy,love 208 23 115 0.14 0.14 0.62

disgust,sadness 192 24 54 0.13 0.15 0.29
anger,anticipation 183 18 26 0.12 0.11 0.14
anger,disgust,fear 182 22 52 0.12 0.13 0.28

anger,sadness 176 24 49 0.12 0.15 0.26
pessimism,sadness 174 18 82 0.11 0.11 0.44
anticipation,trust 169 18 22 0.11 0.11 0.12
sadness,surprise 153 18 23 0.10 0.11 0.12

Table 3.4: Shows co-occurring emotions in the EmoMosaic-dataset, providing frequency
and percentages that reflect the proportion of sentences having assigned the combination.
Only emotional tuples whose relative occurrence is >1% on all subsets are presented.

To enable comparative analysis, we made minimal adjustments to the original datasets,
ensuring that the changes were reversible. These transformations typically included con-
verting individual datasets into a consistent format as processed by our model while main-
taining the original labelling and other properties. However, since the authors of the XED
dataset did not provide predefined splits for training, validation, and testing, we had to
create these ourselves. As a result, our findings on this dataset are not directly comparable
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with other models. Subsequent chapters provide in-depth descriptions of our pre-processing
steps applied to each individual dataset.

SemEval-2018 Task 1: Affect in Tweets

We use the subtask5.english subset of the sem_eval_2018_task_1 dataset, available at:
https://huggingface.co/datasets/sem_eval_2018_task_1. This dataset is offered in
three versions: subtask5.arabic, subtask5.english and subtask5.english. Given that our model
is monolingual, focusing solely on English, we utilize the subtask5.english.

Table 3.5 presents a single-row example from the subtask5.english subset. We remove
the ID column and rename the Tweet column to text to maintain consistency. The training,
validation, and test splits are preserved. Table 3.6 displays the sentence after pre-processing.

ID Tweet anger anticipation . . . trust
2017-En-31527 @enews #breezy deserve it.. False True False False

Table 3.5: Presents a single-row example from the simplified subset of the
sem_eval_2018_task_1 dataset. Certain columns/labels are omitted to ease the illus-
tration.

text anger anticipation . . . trust
@enews #breezy deserve it. False True False False

Table 3.6: Displays the pre-processed row, simplified for clarity.

Go Emotions

We use go_emotions dataset, more specifically its simplified subsets, available at: https:
//huggingface.co/datasets/go_emotions. This dataset is offered in two versions: raw
and simplified. The raw provides annotations from individual annotators, while the sim-
plifed version aggregates these annotations and includes predefined training, validation, and
testing splits. Moreover, the simplified subset is commonly used to compare models.

Table 3.7 displays a single-row example from the simplified subset. We remove the
id column to maintain a consistent format within our dataset, as it is unnecessary for
our purposes. Additionally, we convert the labels, provided as indexes, into a multi-hot
representation. This format assigns a boolean value to each label: True if the label is
present in the label indexes, and False if it is not. The training, validation, and test splits
are preserved. Table 3.8 displays the sentence after pre-processing.

text labels id
I miss them being alive. [ 16, 25 ] ee8mzwa

Table 3.7: Presents a single-row example from the simplified subset of the go_emotions
dataset
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text admiration . . . grief . . . sadness . . . neutral
I miss them being alive. False False True . . . True False False

Table 3.8: Displays the pre-processed row, simplified for clarity. Certain columns/labels
are omitted to ease the illustration. However, in the emo-mosaic dataset, every label is
always represented by True or False.

XED

We use the en_annotated and en_neutral subsets of the xed_en_fi dataset, available at:
https://huggingface.co/datasets/xed_en_fi. The dataset is provided in four versions:
en_annotated, en_neutral, fi_annotated and fi_neutral. Since our model operates solely
in English, we utilize the English subsets exclusively. The annotated subsets, suffixed
_annotated, include multi-label annotations, whereas subsets suffixed _neutral contain
only samples that do not display any emotion.

Tables 3.9 and 3.9 present a single-row example from the en_annotated and en_neutral
subsets, respectively. Initially, we renamed the sentence column to text to maintain consis-
tency. Moreover, we unified the formats of the en_annotated and en_neutral subsets by
substituting the integer labels (always 0) in the en_neutral subset with [0]. Furthermore,
as shown in Figure 3.1, we concatenated and split the datasets, creating training, validation
and test splits in a 90:10:10 ratio, respectively. Finally, similar to our approach with the
GoEmotions dataset, we converted the indexes into a multi-hot representation. Table 3.11
displays the pre-processed rows.

# concatenate the datasets
dataset = concatenate_datasets([

dataset_no_neutral,
dataset_only_neutral

])

# split the dataset
train_test_split = dataset.train_test_split(

test_size=0.2,
shuffle=True,
seed=42

)
val_test_split = train_test_split[’test’].train_test_split(

test_size=0.5,
shuffle=True,
seed=42

)

train_split = train_test_split[’train’]
validation_split: val_test_split[’train’],
test_split: val_test_split[’test’],

Figure 3.1: Displays the code used for transforming the en_neutral and en_annotated
datasets into the consistent format as used by our EmoMosaic-dataset.
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sentence labels
All happened on your watch . [ 1, 3 ]

Table 3.9: Presents a single-row example from the en_annotated subset.

sentence labels
One moment please. 0

Table 3.10: Presents a single-row example from the en_neutral subset.

text neutral anger . . . disgust . . . trust
All happened on your watch. False True False True False False

One moment, please. True False False False False False

Table 3.11: Displays the pre-processed rows, simplified for clarity.

DailyDialog

This dataset distinguishes itself from others by providing per-utterance annotations, mean-
ing that every dialogue between two individuals is divided into separate utterances, each
with its preceding context (previous utterances). We use the daily_dialog dataset, available
at: https://huggingface.co/datasets/daily_dialog.

Reflecting on the dataset’s characteristics, we process the dialogues at the level of in-
dividual utterances, increasing rows in the pre-processed dataset. For each utterance, we
consider all preceding utterances as its context. The context and utterance are then for-
matted as <s>context</s><s>utterance</s>. It’s important to note that the annotation
applies specifically to the utterance and not to the context. Finally, similar to our ap-
proaches with the GoEmotions and XED datasets, we converted the label indexes into a
multi-hot representation. The training, validation, and test splits are preserved.

Table 3.12 presents a single row from the daily_dialog dataset. Table 3.13 displays the
sentence after pre-processing.

dialog emotion
[ ”How do you like the pizza here ? “, ” Perfect. It really hits the spot. “ ] [ 4, 4 ]

Table 3.12: Presents a single-row example from the simplified subset of the daily_dialog
dataset. Certain columns/labels are omitted to ease the illustration.

text . . . happiness . . .
<s></s><s>How do you like the pizza here?</s> False True False
<s>How do you like the pizza here ?</s><s>Perfect.
It really hits the spot.</s>

False True False

Table 3.13: Displays the pre-processed row, simplified for clarity. In this case, the trans-
formation of a single dialogue led to the creation of two rows in the pre-processed dataset.
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3.2.2 Proposed Model

As demonstrated by [12], [33], [8], [37], [30], [5], [30], [2], [16], [24], [14] and [27], among oth-
ers, models based on the Transformer architecture have repeatedly outperformed other
methods for emotion recognition. Additionally, the RoBERTa model has consistently
demonstrated strong performance across various tasks, including emotion recognitions,
as highlighted by [5], [18], [14] and [12]. Therefore, our proposed EmoMosaic-base and
EmoMosaic-large models are based on the RoBERTa-base and RoBERTa-large, respec-
tively.

Input

We condition our model on the sentence being classified and, if available, on the preceding
context (although some datasets only contain the sentence). The model requires inputs in
the following format:

<s>context</s><s>sentence</s>

Including the {sentence} part is mandatory as it represents the primary text for clas-
sification. Including the {context} is recommended, although optional, to clarify potential
ambiguities in the {sentence}, improve its understanding and enable the model to process
dialogues. Table 3.14 showcases how providing the context might influence the expected
outputs (detected emotions).

Text Expected Output
<s></s><s>You spend most of your time at home playing
games.</s> annoyance, anger, disgust

<s>I like chill people who enjoy playing games at
home.</s><s>You spend most of the time at home playing
games.</s>

approval, neutral

Table 3.14: Showing the importance of including context and the ability to process dia-
logues.

After being transformed into the described format, each sentence undergoes tokenization
using a suitable tokenizer. Additionally, ground truth vectors are created to indicate which
emotions apply to the sentence. Equation 3.1 describes how we create the ground truth
vectors.

𝑌 𝐵×𝐶 = [𝑦0, 𝑦1, . . . , 𝑦𝐶 ] (3.1)

where:

– 𝑌 𝐵×𝐶 is the ground truth vector, with 𝐵 and 𝐶 representing the batch size and
the number of distinct labels.

– 𝑦𝑖 corresponds to a specific label (emotion), indicating the label’s applicability
to a given sentence, where:

∗ a value of −1 indicates that the label was not included in the dataset’s
original labelling.
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∗ a value of 0 indicates that the label, although present in the dataset’s original
labelling, is not applicable to the given sentence.

∗ a value of 1 indicates that the label is present in the dataset’s original la-
belling and is applicable to the given sentence.

Output

Equation 3.2 defines the output generated by the model for any given input. The model
generates logits, representing the relevance of each label to these inputs.

𝑌 𝐵×𝐶
logits = model(𝑇𝐵×𝑆) (3.2)

where:

– 𝑌 𝐵×𝐶
logits represents the logits produced by the model, with 𝐵 and 𝐶 representing

the batch size and the number of distinct classes. The logits are unnormalized
scores used to determine each input sequence’s label probabilities.

– model stands for the RobertaForSequenceClassification model that we use for the
classification.

– 𝑇𝐵×𝑆 represents the tokenized input sentences, with 𝐵 and 𝑆 indicating the
batch size and maximum sequence length.

Loss Function

Given the highly imbalanced nature of the EmoMosaic-dataset, we utilised the Focal loss
function, as defined in Equation 3.3, that allows us to control the relative importance of
positive and negative classes and assign different weights to well-classified examples. [23]

As a way to accommodate the categories of individual datasets, we propose the following
modifications to the loss computation, which are shown in Equations 3.4 and 3.5. We start
by creating a mask that masks any labels absent in the original dataset. Following this, a
loss value is calculated for each logit the model produces using the Focal loss. Finally, we
apply the mask to these values and reduce them using the mean reduction method.

ℒ𝐵×𝐶 = −𝛼𝑡(1− 𝑃𝑡)
𝛾 log(𝑃𝑡) (3.3)

where:

– 𝐿𝐵×𝐶 represents a matrix of unreduced loss function values. Here, 𝐵 denotes
the batch size, and 𝐶 represents the number of distinct classes.

– 𝑃𝐵×𝐶 = 𝜎(𝑌logits) is a tensor of predicted probabilities, with 𝜎 representing the
sigmoid function.

– 𝑃𝐵×𝐶
𝑡 = 𝑃 · 𝑌 + (1− 𝑃 ) · (1− 𝑌 ) is a tensor of the target class probabilities.

– 𝛼𝐵×𝐶
𝑡 = 𝛼 · 𝑌 + (1− 𝛼) · (1− 𝑌 ) is the balancing factor, with 𝛼 ∈< 0, 1 > and

𝛼 > 0.5 giving more importance to the positive class.
– 𝛾 is the focusing parameter that reduces the relative loss for well-classified sam-

ples. The expected range for this parameter is anywhere between 1 and 4.

𝑀𝐵×𝐶
𝑏,𝑐 =

{︃
0 if 𝑌𝑏,𝑐 = −1,

1 otherwise
(3.4)
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where:

– 𝑀𝐵×𝐶
𝑏,𝑐 is a mask applied to the loss function, designed to exclude labels that are

absent in the original dataset labelling due to the uncertainty of their applica-
bility. 𝐵 and 𝐶 represent the batch size and the number of distinct classes. The
mask takes on the following values:

∗ a value of 0 is assigned based on the ground truth to positions corresponding
to the absent labels, omitting them from the calculation.

∗ a value of 1 is assigned otherwise.

𝑙 =

∑︀𝐵
𝑏

∑︀𝐶
𝑐 𝐿𝑏,𝑐 ·𝑀𝑏,𝑐∑︀𝐵

𝑏

∑︀𝐶
𝑐 𝑀𝑏,𝑐

(3.5)

where:

– 𝑙 represents the mean reduced scalar loss function value, calculated by applying
a mask to the unreduced loss values and then performing a mean reduction.

– 𝐿𝑏,𝑐 represents the unreduced loss function values.
– 𝑀𝑏,𝑐 represents the mask applied to exclude the absent labels from the loss

calculation.

Architecture

We based our models, the EmoMosiac-base and EmoMosiac-large, on the RobertaForSe-
quenceClassification. RobertaForSequenceClassification is a model from the Hugging Face’s
transformers library, available at: https://huggingface.co/FacebookAI/roberta-base
and https://huggingface.co/FacebookAI/roberta-large. It utilizes pre-trained em-
beddings (RobertaEmbeddings) and pre-trained encoder backbone (RobertaModel) coupled
with a newly initialized classification head (RobertaClassificationHead). We use the base
and large variants of the model. The key distinction between these variants is the number
of hidden layers and the number of features. Specifically, the base model comprises 12
hidden layers (<NL> = 12 ) and a hidden size of 768 (<HS> = 768 ), whereas the large
model consists of 24 hidden layers (<NL> = 24 ) with a hidden size of 1024 (<HS> =
1024 ). Figure 3.2 illustrates the architecture of each variant, while Table 3.15 compares
their computational requirements.

Specification RoBERTa-base RoBERTa-large
Number of Parameters 125M 355M

Number of Hidden Layers 12 24
Hidden Size 768 1024

Intermediate Size 3072 4096
Number of Attention Heads 12 16

Dropout Rate 0.1 0.1
Max Sequence Length 512 tokens 512 tokens

Training Data 160GB of text 160GB of text

Table 3.15: Compares the RoBERTa-base and RoBERTa-large models.
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RobertaForSequenceClassification(
(roberta): RobertaModel(

(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(50265, <HS>, padding_idx=1)
(position_embeddings): Embedding(514, <HS>, padding_idx=1)
(token_type_embeddings): Embedding(1, <HS>)
(LayerNorm): LayerNorm((<HS>,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)

)
(encoder): RobertaEncoder(

(layer): ModuleList(
(0-<NL>-1): <NL> x RobertaLayer(

(attention): RobertaAttention(
(self): RobertaSelfAttention(

(query): Linear(in_features=<HS>, out_features=<HS>, bias=True)
(key): Linear(in_features=<HS>, out_features=<HS>, bias=True)
(value): Linear(in_features=<HS>, out_features=<HS>, bias=True)
(dropout): Dropout(p=0.1, inplace=False)

)
(output): RobertaSelfOutput(

(dense): Linear(in_features=<HS>, out_features=<HS>, bias=True)
(LayerNorm): LayerNorm((<HS>,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)

)
)
(intermediate): RobertaIntermediate(

(dense): Linear(in_features=<HS>, out_features=<HS>*4, bias=True)
(intermediate_act_fn): GELUActivation()

)
(output): RobertaOutput(

(dense): Linear(in_features=<HS>*4, out_features=<HS>, bias=True)
(LayerNorm): LayerNorm((<HS>,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)

)
)

)
)

)
(classifier): RobertaClassificationHead(

(dense): Linear(in_features=<HS>, out_features=<HS>, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
(out_proj): Linear(in_features=<HS>, out_features=32, bias=True)

)
)

Figure 3.2: Shows the architecture of the RobertaForSequenceClassification model. <NL>
and <HS> represent number of layers and hidden size, respectively.
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The embeddings module (RobertaEmbeddings) transforms input tokens into dense vec-
tors. The word embeddings layer initially converts each token into a high-dimensional
vector, capturing its semantics. Subsequently, each vector is combined with a correspond-
ing position embedding, aiding the model in recognising the order of tokens in the input
sequence. Lastly, token-type embeddings can be used to differentiate between types of
sequences. Additionally, layer normalization and dropout layers are used to stabilise the
training and prevent overfitting.

The encoder (RobertaEncoder) is composed of multiple identical encoder layers (Rober-
taLayer). Each encoder layer contains a multi-headed self-attention layer, several dense lay-
ers, layer normalization layers, dropout layers, and activation functions. The self-attention
mechanism allows the model to recognize relationships between intermediate representa-
tions. Dense layers transform and extract features. Activation functions in these layers
introduce a non-linearity, enabling the model to recognise complex patterns.

The classification head (RobertaClassificationHead) uses additional dense layers, cou-
pled with layer normalization and dropout layers, to transform the extracted features into
scores/logits corresponding to each class/label.

3.2.3 Model Training Methodology

Similar to previous studies, we started by selecting the main metric to be tracked during ex-
perimentation. We chose the macro-averaged F1 score because it gives the same importance
to all classes, which is desirable for imbalanced datasets such as the EmoMosaic-dataset.

Considering the high impact of hyperparameters on the model’s efficacy, we imple-
mented a systematic hyperparameter selection strategy. We used the Ray Tune library
coupled with Optuna searching algorithm and Weights and Biases platform to conduct and
track our experiments. Since an exhaustive search (trying every combination) is not fea-
sible due to computational requirements, we used the Optuna algorithm to find the best
hyperparameters efficiently. We started by defining the hyperparameter space, which de-
scribes all possible values for each hyperparameter. Figure 3.3 shows an example of such
a definition, while Figure introduces 3.4 a complete configuration of our EmoMosiac-base
model with all the hyperparameters set to specific values.

from ray import tune
...
’steps’: tune.choice([

3000, 3500, 4000, 4500, 5500
]),
...

Figure 3.3: Shows how we specified all possible values for the number of training steps.

Then, we utilized the Optuna algorithm that utilizes a Gaussian process to model the
relationship between individual hyperparameters and the objective function. We utilized
the maximalization of the macro-averaged F1 score as the objective function. As Optuna
conducts trials, its internal representation of the hyperparameter space improves, leading
to better-performing models.
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CONFIG = {
# project-specific parameters
’project’: ’emo-mosaic’,

# data-specific parameters
’max_seq_length’: 192,
’dataset’: {

’name’: ’vtlustos/emo-mosaic-v2-192’,
’subsets’: [

’go_emotions’, ’sem_eval_2018_task_1’,
’xed’, ’daily_dialog’

]
},

# architecture-specific parameters
’model_name’ : ’FacebookAI/roberta-base’,

# training-specific parameters
’loss’: {

’name’: ’focal_loss’,
’args’: {

’alpha’: 0.75,
’gamma’: 1.75

}
},
’batch_size’: 128,
’accumulate_grad_batches’: 1,
’lr’: 1e-4,
’steps’: 3000,
’warmup_steps’: 1500,
’weight_decay’: 0.01,
’betas’ : (0.9, 0.98),
’val_check_interval’: 1000,

# resources-specific parameters
’tuner’: ’optuna’,
’num_samples’: 100,
’resources’: {

’cpu’: 5,
’gpu’: 1

},
’num_workers’: 10

}

Figure 3.4: Displays the configuration of the EmoMosiac-base model having all the hyper-
parameters set to specific values.
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Our framework supports the following hyper-parameters:

• project: specifies the project name, used for grouping all the experiments governed by
this configuration. Experiment names are generated automatically by the Ray Tune.

• max_seq_length: specifies the maximum sequence length. All items in the batch will
be padded to this length. The limit is 512 tokens for the RoBERTa by default.

• dataset: specifies which and how the dataset will be used for training, validation and
testing.

– name: specifies the name of the dataset, either vtlustos/EmoMosaic-dataset or
vtlustos/EmoMosaic-dataset-192.

– subsets: specifies wich subsets will be used. Since these datasets are formed by
combining multiple datasets together, there is an option to use specific portions.

• model_name: specifies the name of the model used for the classification. Must rep-
resent a RobertaForSequenceClassification model. We used FacebookAI/roberta-base
and FacebookAI/roberta-large.

• loss: specifies settings of the loss function utilized during training. We used the Focal
loss as described in Chapter 3.2.2.

– alpha: is the balancing factor, with 𝛼 ∈< 0, 1 > and 𝛼 > 0.5 giving more
importance to the positive class.

– gamma: is the focusing parameter that reduces the relative loss for well-classified
samples. The expected range for this parameter is anywhere between 1 and 4.

• batch_size: specifies how many samples will be in a batch.

• accumulate_grad_batches: specifies the number of steps before propagating gradients.
This enables the use of larger batches (split across steps) on machines with limited
VRAM.

• lr : specifies the peak learning rate.

• steps: specifies the number of steps before terminating the training.

• warmup_steps: specifies the number of steps over which the learning rate gradually
increases up to the lr.

• betas: specifies the first and second statistical moments (𝛽1, 𝛽2) utilized by the AdamW
scheduler.

• weight_decay: specifies the regularization factor used to adjust the model’s weights
during training.

• val_check_interval: specifies the frequency of model validation and checkpoint cre-
ation.

• tuner : specifies the name of the Ray Tune search algorithm that will be used for
searching the hyper-parameter space.
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• num_samples: specifies the maximum number of varying configurations drawn from
the hyper-parameter space.

• resources: specifies how many resources should be allocated for each trial. A trial will
start only if the requested amount of resources are available.

• num_workers: specifies the number of data-loader workers.

3.2.4 Model Evaluation Methodology

The last step of our methodology involved a thorough evaluation of our models. We assessed
how well the models perform on different datasets (dataset-level analysis). Consequently,
we selected the best-performing base and large models and conducted an in-depth analysis
at the level of individual emotions (label-level analysis), identifying their strengths and
weaknesses. Additionally, we measured the calibration of those models to ensure predic-
tion trustworthiness. Finally, we empirically evaluate our models (qualitative analysis) to
demonstrate their real-world applicability under various scenarios.

Quantitative Analysis

We utilized a comprehensive set of 484 metrics to assess the model’s effectiveness, evaluating
performance at both the dataset and label levels.

Metric Averaging Explanation
Accuracy - Measures the overall correctness of the model’s predictions.

Exact Match - Measures the proportion of samples with all labels predicted
correctly.

Precision macro Measures the average correctness of the model’s positive pre-
dictions for each class, treating all classes equally.

Recall macro Measures the average ability of the model to identify all
relevant instances of a class, treating all classes equally.

Specificity macro Measures the model’s average ability to correctly identify
irrelevant instances (true negatives) of a class, treating all
classes equally.

F1 macro Measures, the average harmonic mean of precision and re-
call, treating all classes equally.

Precision micro Measures the overall correctness of the model’s positive pre-
dictions, considering all positive predictions.

Recall micro Measures the model’s overall ability to identify relevant in-
stances, considering all relevant instances.

Specificity micro Measures the model’s overall ability to identify irrelevant
instances (true negatives), considering all non-relevant in-
stances.

F1 micro Measures the overall harmonic mean of precision and recall.

Table 3.16: Details the metrics used for the dataset-level analysis.

Evaluating metrics at the dataset level allows us to compare our results with other methods.
Moreover, by averaging those scores, we can assess the cross-domain performance of our
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models. Table 3.16 shows all used dataset-level metrics. Due to the highly imbalanced
nature of the EmoMosiac-dataset, it is necessary to use both micro-averaged and macro-
averaged metrics. Macro-averaged scores give equal importance to all labels, even those
that are underrepresented. On the other hand, micro-averaged scores assign the same
importance to all instances. Hence, overrepresented categories have a greater impact on
the micro-averaged measures. You can learn more about these metrics in Chapter 2.3.

Metric Explanation
Accuracy Measures the overall correctness of each label.
Precision Measures the correctness of the positive predictions for each label.

Recall Measures the model’s ability to identify all relevant instances of each label.
F1 Measures the harmonic mean of precision and recall for each label.

ECE Measures the expected calibration error, quantifying how closely predicted
probabilities of positive instances match empirical probabilities.

Brier Measures the mean squared error between predicted probabilities and ac-
tual outcomes, measuring how accurate the predictions are.

Table 3.17: Details the metrics used for the label-level analysis.

Evaluating metrics at the level of individual labels allows for a detailed analysis, helping us
identify areas where our models excel and struggle. Additionally, we analyse the calibration
of our models, assessing how well the predicted probabilities match the actual outcomes.
Table 3.17 shows all label-level metrics (calculated for each label).

Qualitative Analysis

To demonstrate our model’s versatility and adaptability, we designed four targeted test
suites to evaluate its performance in diverse scenarios:

1. Trivial Sentences: This suite comprises simple, easy-to-classify sentences like ”I can’t
believe you lied to me!“. This suite is designed to assess the model’s basic abilities.
Refer to Table 4.12 for more details.

2. Complex Sentences: In this suite, we challenge the model by introducing sentences
characterized by sarcasm, irony, and subtle emotional cues. This suite assesses the
model’s ability to classify challenging sentences like ”Oh great, another day in paradise
working with this ancient computer.“ correctly. Refer to Table 4.14 for more details.

3. Cross-Domain Efficiancy: This suite is designed to assess the effectiveness of the
model in different communication styles and contexts (cross-domain efficacy), such as
literature, social media platforms, news articles, and more. For instance, a sample
sentence from legal documents could be, ”The parties involved express their satisfac-
tion with the resolved settlement terms.“ Refer to Table 4.16 for more details.

4. Dialogues: This suite assesses whether the model can efficiently process dialogues
by considering the context of previous interactions. As shown in Table 4.18, we
intentionally constructed pairs of examples with the same sentence to be classified
but in different contexts, showcasing how the meaning changes based on context.
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3.2.5 Usability and Reproducibility

To promote the usability and reproducibility of our research, we make our code and all
models publicly available. Figure 3.5 provides an example of how to use the proposed
models.

import torch
from transformers import RobertaTokenizer
from transformers import RobertaForSequenceClassification

# 1. initialize the model
tokenizer = RobertaTokenizer.from_pretrained(

"vtlustos/EmoMosaic-base"
)
model = RobertaForSequenceClassification.from_pretrained(

"vtlustos/EmoMosaic-base"
).to(’cuda:0’)

# 2. tokenize the sentences
tokens = tokenizer(

[
"All your work was lost when the computer crashed.</s><s>Oh
my god. I spent a whole week on that."

],
truncation=True,
padding=True,
return_tensors = "pt"

)

# 3. make the prediction
with torch.no_grad():

logits = model(
tokens["input_ids"].to(’cuda:0’),
tokens["attention_mask"].to(’cuda:0’)

).logits

# 4. convert to probabilities
preds = torch.sigmoid(logits)

print(preds)

Figure 3.5: Shows an example of how to use the proposed models. Users should provide
samples in the following format context</s><s>sentence. The context is optional and rep-
resents sentences preceding the sentence to be classified, while sentence refers to the actual
sentence undergoing classification. This example demonstrates how to use the EmoMosaic-
base model. If you prefer to use its larger counterpart, replace vtlustos/EmoMosaic-base
with vtlustos/EmoMosaic-large.
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The models can be downloaded from:

• EmoMosaic-base: https://huggingface.co/vtlustos/EmoMosaic-base,

• EmoMosaic-large: https://huggingface.co/vtlustos/EmoMosaic-large.

We have also developed a Gradio application, as shown in Figure 3.6, and deployed it on the
Hugging Face Spaces platform. This allows anyone to experiment with the models easily
without requiring any technical skills or setup. Note that the initial request may take up to
30 seconds because the application needs to download the necessary files. Additionally, the
link represents a Git repository that houses all the code used in development, along with
the Gradio application.

Figure 3.6: shows the graphical user interface of the deployed Gradio application. The
application allows users to select between two models: EmoMosaic-base and EmoMosaic-
large. Additionally, users have the option to select emotions they want to assess, either
by manual selection or by using presets. Users are prompted to input the sentence to be
classified into the Sentence text area to use the application. The Context is optional. After
clicking on the Predict button, the results will be displayed as soon as they are computed.
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Chapter 4

Results and Discussion

This chapter summarises all our experiments, analyses the outcomes, and compares our
models with recent state-of-the-art models in the field. The discussion begins with model
training and hyperparameter optimization, followed by an in-depth examination of how the
models performed on different datasets, comparing them to recent state-of-the-art models.
Furthermore, we assess the performance at the level of individual emotions, providing a
nuanced understanding. In addition, we assess the calibration of our models to ensure
prediction trustworthiness. Finally, we empirically evaluate our models across various use
cases to support our claims and demonstrate their real-world applicability.

4.1 Hyperparameter Tunning
To maximize the effectiveness of our model, we employed a meticulous process for selecting
hyper-parameters, as detailed in Chapter 3.2.3.The table 4.1 presents the hyperparameters
used for our final models. We started with a model with a slightly different architecture
than our final model but also utilised the RoBERTa encoder. Therefore, we managed to
derive several key observations from it that were applied to our final model. These include:

• Batch Size: We experimented with batch sizes of 32, 64, 128, and 256, among which
a batch size of 128 achieved the highest macro-average F1 score. Thus, we used a
batch size of 128 samples for further experiments.

• Weight Decay: We experimented with weight decay rates of 0.1, 0.01 and 0.001. We
found that a rate of 0.1 led to severe underfitting (achieving macro-averaged F1 scores
around 0.35), while 0.001 led to slightly worse results than 0.01. Therefore, we used
a weight decay rate of 0.01 in all subsequent experiments.

• Moments: The AdamW optimizer’s first and second moments set at (𝛽1 = 0.9,𝛽1 =
0.98) demonstrated superior performance compared to (𝛽1 = 0.9,𝛽1 = 0.999). Hence,
we selected (𝛽1 = 0.9, 𝛽2 = 0.98) for subsequent experiments.

Based on those observations, we trained an additional 67 models with varying con-
figurations, initially utilizing a wide hyperparameter space. Due to the extensive training
time required, we frequently halted the automated search to manually refine and narrow the
hyper-parameter space. This iterative adjustment process enabled us to guide the optimiza-
tion process more efficiently. To make this thesis concise, we decided only to present the
configurations and, later in this chapter, the detailed analysis of our two top-performing
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models while highlighting the key observations from all our experiments. We made the
following observations:

• Loss Function: We experimented with two loss functions: Binary Cross Entropy
(BCE) and Focal Loss (FL). BCE achieved slightly lower F1 scores compared to Focal
Loss. However, the high trade-off between precision and recall was a more significant
issue with BCE. BCE typically resulted in a high average recall (around 0.65) and
a much lower precision (around 0.35). Therefore, we opted for Focal Loss. Focal
Loss offers more control via its 𝛼 and 𝛾 parameters, with 𝛼 allowing the adjustment
of the importance of the underrepresented class and 𝛾 assigning more importance to
hard-to-classify samples. We explored the following ranges of 𝛼 ∈ (0.15 − 0.85) and
𝛾 ∈ (1.5− 3.0), selecting the 𝛼 = 0.75 and 𝛾 = 1.75. This approach resulted in more
balanced outcomes, with precision reaching around 0.51 and recall reaching around
0.58.

• Learning Rate: The learning rate is another critical hyperparameter. We tested
learning rates 𝜆 ∈< 5𝑒−5, 3𝑒−4 > for the base models and 𝜆 ∈< 3𝑒−5, 7𝑒−5 > for the
large models. For the base model, the learning rate that led to the best results was
𝜆 = 1𝑒−4, while rates above 3𝑒−4 caused divergence. The large model performed best
when the rate was set at 𝜆 = 5𝑒−5.

• Steps: The number of steps is another hyperparameter significantly influencing the
model’s overall performance. As we employ a linear scheduler with a warmup period,
training a single model for an extended period and then selecting a checkpoint with
the best-reported results would lead to suboptimal performance. More specifically,
the number of steps affects the learning rate dynamics, gradually increasing during
the warmup period to the peak learning rate before linearly decreasing to zero by the
end of training duration. We experimented with different training durations, starting
from 1000 to 8000 steps, and surprisingly, we found that both the base and large
variants of the model achieved their best results when trained for 3000 steps.

• Warmup Steps: Similarly, the number of warmup steps influences the learning rate
dynamics. We experimented with 500, 1000, 1500, and 2000 steps, finding out that
1500 warmup steps worked best for our model’s smaller and larger variants.

Name LR Batch Steps 𝛼 𝛾 𝜆 𝛽1 𝛽2

EmoMosaic-base 1 * 10−4 128 1500/3000 0.75 1.75 0.01 0.9 0.98
EmoMosaic-large 5 * 10−5 128 1500/3000 0.75 1.75 0.01 0.9 0.98

Table 4.1: Displays the configuration of our top-performing base and large model variants.

”LR“ and ”Batch“ indicate the learning rate and batch size. The ”Steps“ column is for-
matted as warm-up steps/total steps. The parameters 𝛼 and 𝛾 correspond to the settings of
the focal loss function. The terms 𝛽1 and 𝛽2 represent the moments used by the optimizer.
𝜆 denotes the weight decay rate.
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4.2 Quantitative Analysis
To quantitatively evaluate the performance of our models, we followed the methodology
outlined in Chapter 3.2.4.

4.2.1 Cross-Domain Performance

The cross-domain performance of our models, EmoMosaic-base and EmoMosaic-large, is
presented in Table 4.2. The EmoMosaic-large consistently outperforms EmoMosaic-base
in all metrics, typically by less than 2 %. Considering that the EmoMosaic-large model
outperforms existing state-of-the-art models on two datasets and delivers competitive re-
sults on others, we consider its performance to be quite satisfactory. Furthermore, the
EmoMosaic-base model, despite being roughly a third the size of its larger counterpart,
delivers a satisfactory performance, even though it does not surpass recent state-of-the-art
models on any dataset.

macro averaged micro averaged
Model Accuracy P R F1 P R F1

EmoMosaic-base 50.94 50.30 58.25 53.44 54.85 66.20 59.95
EmoMosaic-large 51.70 51.72 60.70 55.38 56.25 68.71 61.79

Table 4.2: Shows the cross-domain performance of our models. P and R denote precision
and recall, respectively.

4.2.2 Per-Dataset Performance

GoEmotions

macro averaged micro averaged
Model Accuracy P R F1 P R F1

Li:BART [19] - 56.3 53.9 53.8 - - -
MIP-GAT [11] - 56.4 51.7 53.8 - - -
REMTA [42] - 52.12 54.08 52.27 - - -

EmoLit:RoBERTa [30] - - - 52 - - -
Wang:BERT [33] - 57.27 49.18 51.83 - - -

MADAAN:T5-11B [24] - - - 50.9 - - -
Seq2Emo [10] - - - 47.28 - - -

GoEmotions:BERT-base [8] - 40 63 46 - - -
Li:GPT-3.5-Turbo [19] - 53.1 40.9 42.1 - - -
MADAAN:BART [24] - - - 30 - - -

EmoMosaic-base 46.47 51.41 57.81 53.72 52.70 62.53 57.19
EmoMosaic-large 46.67 51.35 58.34 53.93 52.86 63.39 57.65

Table 4.3: Shows the results of our two top-performing models measured on the test set of
the GoEmotions dataset and compares them with the results of state-of-the-art models. P
and R denote precision and recall, respectively.
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Our EmoMosaic-large model, as shown in Table 4.3, achieves the highest macro-averaged
F1 score, outperforming all recent state-of-the-art models. Additionally, the performance of
our EmoMosaic-base model is closely behind that of the EmoMosaic-large model, placing
it among the top three best-performing models.

SemEval-2018 Task 1: Affect in Tweets

macro averaged micro averaged
Model Accuracy P R F1 P R F1

RoBERTa-MA [5] 62.4 - - 60.3 - - 74.2
UCCA-GAT [6] 61.2 - - 60.0 - - 66.1

DistilBERT-MA [5] 61.3 - - 58.9 - - 72.5
XLNet-MA [5] 60.5 - - 58.4 - - 70.4
Dep-GAT [6] 59.7 - - 57.8 - - 63.5
SpanEmo [2] - - - 57.8 - - -

EmoGraph [36] 58.3 - - 56.9 - - 69.9
BERT-large+DK [37] 59.5 - - 56.3 - - 71.6

TCS Research [25] 58.2 - - 53.0 - - 69.3
NTUA-SLP [7] 58.8 - - 52.8 - - 70.1
Seq2Emo [10] 58.67 - - 51.92 - - 70.02

PlusEmo2Vec [28] 57.6 - - 49.7 - - 69.2

EmoMosaic-base 20.65 54.96 62.58 58.44 64.63 73.62 68.83
EmoMosaic-large 22.49 57.97 64.12 60.72 67.44 75.27 71.14

Table 4.4: Shows the results of our two top-performing models measured on the test set of
the SemEval-2018 Task 1: Affect in Tweets dataset and compares them with the results of
state-of-the-art models. P and R denote precision and recall, respectively.

Both our models, as shown in Table 4.4, demonstrated strong performance across several
metrics except for the subset accuracy. Particularly, the EmoMosaic-large model excelled
with its highest macro-averaged F1 score, thereby setting a new benchmark for this measure.
Additionally, it displayed competitive performance in the micro-averaged F1 score, securing
fourth place among compared models.

However, both models faced challenges with subset accuracy, which requires a perfect
alignment with all labelled emotions. Upon closer examination, we identified the source of
these lower-than-average results. This dataset, unlike others, frequently requires predicting
sets of three (31.49 %) or more (11.47 %) co-occurring emotions, as shown in Table 2.4. In
contrast, our training corpus mostly required predictions of zero (56.07 %), single emotions
(33.09 %) and pairs (7.53 %), making it challenging for our models to work efficiently in
cases involving three or more emotions. Therefore, our models predict sets with 3 or more
emotions infrequently. This discrepancy led to the observed decrease in subset accuracy.
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XED

macro averaged micro averaged
Model Accuracy P R F1 P R F1

XED:BERT [27] 54.4 - - 53.6 - - -

EmoMosaic-base 51.78 48.47 63.00 54.67 48.62 63.86 55.21
EmoMosaic-large 52.59 50.35 66.54 57.19 50.43 67.43 57.70

Table 4.5: Shows the results of our two top-performing models measured on the test set of
the XED dataset and compares them with the results of state-of-the-art models.

Both our models, as shown in Table 4.5, seem to outperform the BERT model provided
as a baseline in the dataset’s paper. However, this comparison does not reflect equivalent
experimental conditions because the XED dataset does not include predefined training,
validation, and test splits. The baseline, as introduced in the dataset paper [27], was
evaluated using a 5-fold cross-validation using a stratified splitting method of 70:20:10
for training, development, and test phases. Our method used an 80:10:10 split. Hence,
comparisons should be interpreted cautiously.

DailyDialog

macro averaged micro averaged
Model Accuracy P R F1 P R F1

S + PAGE [22] - - - - - - 64.18
CESTa [34] - - - - - - 63.12

TUCORE-GCN [13] - - - - - - 61.91
DualGATs [39] - - - - - - 61.84

RoBERTa + FSA [14] - - - 55.84 - - 61.67
CLED [12] - - - - - - 61.23

COSMIC + CKCL [9] - - - 53.09 - - 60.96
CoMPM [15] - - - 53.15 - - 60.34

Mtl-ERC-ES [32] - - - 53.06 - - 60.10
RoBERTa-large [18] - - - 51.95 - - 59.75

TODKAT [41] - - - 52.56 - - 58.47
COSMIC [9] - - - 51.05 - - 58.48
KI-Net [35] - - - - - - 57.3

CoG-BART [20] - - - - - - 56.29
KET [40] - - - - - - 53.37

EmoMosaic-base 84.85 46.34 49.60 46.94 53.44 64.81 58.57
EmoMosaic-large 85.05 47.20 53.80 49.65 54.24 68.77 60.65

Table 4.6: Shows the results of our two top-performing models measured on the test set of
the DailyDialog dataset and compares them with the results of state-of-the-art models.
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Our EmoMosaic-large model, as shown in Table 4.6, ranks in the top half among all com-
pared models, featuring a micro-averaged F1 score of 60.65 %. This result showcases its
ability to process dialogues. In contrast, the EmoMosaic-base model, securing a position
fifth from the bottom with a micro-averaged F1 score of 58.57, indicates having difficul-
ties with processing dialogues. Despite this, the results of the EmoMosaic-large model
are approximately 3% below that of the top performers, still indicating a solid efficacy in
processing dialogues. After analyzing the methods used by top performers, we discovered
that they all employ Graph Attention Networks (GATs) often coupled with Transformer
encoders such as RoBERTa or BERT. This implies that hybrid models are more suitable
for processing conversations.

4.2.3 Per-Label Performance

We initially assumed that the EmoMosaic-large model would outperform the EmoMosaic-
base for all emotions. However, as shown in Table 4.7, our analysis revealed that in 10
instances, the large model actually underperformed, typically by about 1.5% in the F1
score. Notably, in the case of relief, the discrepancy reached a striking 15.22%. The cause
of this remains unclear. For other emotions, a typical improvement in F1 scores from the
EmoMosaic-base to the EmoMosaic-large model ranged between 3-5%.

Both models, achieving F1 scores above 60%, excelled at recognizing the following 13
emotions: admiration, amusement, gratitude, anger, disgust, fear, grief, happiness, joy, love,
optimism, remorse, and sadness. However, with F1 scores falling below 40%, we identified
the following 5 weak spots: annoyance, disappointment, nervousness, realization, and relief
(in the case of EmoMosaic-large).

Furthermore, we analysed how well the performance of our models aligned with in-
dividual emotional models discussed in Chapter 2.1. This analysis confirmed that both
models are highly competent (when considering core emotions) in recognizing the emotions
described by those models.

Please note that the results presented in Tables 4.7, 4.8, 4.9, 4.10 were calculated for
all datasets combined, measuring the cross-domain performance of our models. Therefore,
a direct comparison with other works is not possible.
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EmoMosaic-base EmoMosaic-large
Emotion Precision Recall F1 Precision Recall F1
admiration 63.82 80.16 71.06 65.25 79.37 71.62
amusement 74.11 94.32 83.00 73.87 93.18 82.41

anger 63.46 74.08 68.36 64.29 76.00 69.66
annoyance 35.15 44.37 39.23 33.81 44.06 38.26

anticipation 39.09 55.15 45.75 42.10 57.99 48.78
approval 43.40 45.87 44.60 42.66 44.73 43.67
caring 45.67 42.96 44.27 40.26 45.93 42.91

confusion 36.10 56.86 44.16 38.76 52.94 44.75
curiosity 48.48 67.25 56.34 48.40 74.65 58.73

desire 53.09 51.81 52.44 65.08 49.40 56.16
disappointment 35.57 35.10 35.33 34.36 37.09 35.67

disapproval 40.00 49.44 44.22 39.14 47.94 43.10
disgust 62.05 71.31 66.36 63.62 72.30 67.68

embarrassment 57.69 40.54 47.62 58.33 37.84 45.90
excitement 37.40 44.66 40.71 39.82 43.69 41.67

fear 61.93 68.69 65.13 64.22 71.24 67.55
gratitude 93.29 90.91 92.09 91.01 92.05 91.53

grief 66.67 66.67 66.67 66.67 66.67 66.67
happiness 58.10 70.76 63.81 58.21 75.23 65.63

joy 73.43 81.18 77.11 74.55 83.53 78.78
love 64.95 73.74 69.07 64.13 76.13 69.62

nervousness 33.33 43.48 37.74 42.86 39.13 40.91
optimism 64.33 76.00 69.68 66.98 79.38 72.66
pessimism 42.31 52.80 46.98 43.66 47.73 45.61

pride 66.67 37.50 48.00 63.64 43.75 51.85
realization 32.71 24.14 27.78 34.29 24.83 28.80

relief 55.56 45.45 50.00 33.33 36.36 34.78
remorse 55.56 89.29 68.49 57.78 92.86 71.23
sadness 58.65 70.14 63.88 61.08 72.67 66.37
surprise 40.02 51.29 44.96 44.02 55.67 49.16

trust 35.33 47.01 40.34 40.59 48.26 44.09

Table 4.7: Shows the results of EmoMosaic-base and EmoMosaic-large models evaluated
at the label-level.
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Paul Ekman Model

EmoMosaic-base EmoMosaic-large
Emotion Precision Recall F1 Precision Recall F1

anger 63.46 74.08 68.36 64.29 76.00 69.66
disgust 62.05 71.31 66.36 63.62 72.30 67.68

fear 61.93 68.69 65.13 64.22 71.24 67.55
happiness 58.10 70.76 63.81 58.21 75.23 65.63
sadness 58.65 70.14 63.88 61.08 72.67 66.37
surprise 40.02 51.29 44.96 44.02 55.67 49.16

Table 4.8: Shows the results of EmoMosaic-base and EmoMosaic-large models evaluated
at the label-level. This table exclusively shows results for the emotion categories in Paul
Ekman’s model.

In Table 4.8, which outlines performance for the six basic emotions identified by Paul
Ekman, both models demonstrated strong overall capabilities, with a slight exception of
surprise. Additionally, the EmoMosaic-large model consistently outperformed its smaller
counterpart.

Parrot Model

EmoMosaic-base EmoMosaic-large
Emotion Precision Recall F1 Precision Recall F1

anger 63.46 74.08 68.36 64.29 76.00 69.66
fear 61.93 68.69 65.13 64.22 71.24 67.55

sadness 58.65 70.14 63.88 61.08 72.67 66.37
joy 73.43 81.18 77.11 74.55 83.53 78.78
love 64.95 73.74 69.07 64.13 76.13 69.62

surprise 40.02 51.29 44.96 44.02 55.67 49.16

Table 4.9: Shows the results of EmoMosaic-base and EmoMosaic-large models evaluated
at the label-level. This table exclusively shows results corresponding to primary emotions
as defined in Parrot’s model.

In Table 4.9, which evaluates primary emotions from Parrot’s model, both our models
demonstrated strong overall performance, with the EmoMosaic-large consistently outper-
forming the EmoMosaic-base across all metrics. However, it is worth noting that both
models, particularly the EmoMosaic-base, struggled with the emotion of surprise.
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Wheel of Emotions Model

EmoMosaic-base EmoMosaic-large
Emotion Precision Recall F1 Precision Recall F1

anger 63.46 74.08 68.36 64.29 76.00 69.66
anticipation 39.09 55.15 45.75 42.10 57.99 48.78

disgust 62.05 71.31 66.36 63.62 72.30 67.68
fear 61.93 68.69 65.13 64.22 71.24 67.55
joy 73.43 81.18 77.11 74.55 83.53 78.78

sadness 58.65 70.14 63.88 61.08 72.67 66.37
surprise 40.02 51.29 44.96 44.02 55.67 49.16

trust 35.33 47.01 40.34 40.59 48.26 44.09

Table 4.10: Shows the results of EmoMosaic-base and EmoMosaic-large models evaluated
at the label level. This table exclusively lists results for the primary emotions as defined in
the Wheel of Emotions model.

In Table 4.10, which evaluates primary emotions from the Wheel of Emotions model,
the EmoMosaic-large generally demonstrated good performance, even though it displayed
mediocre results for the emotion of trust and surprise.

4.2.4 Calibration

We evaluated the calibration of our models using two metrics: Expected Calibration Error
(ECE) and Brier score, which are presented in Table 4.11. Since no other studies have
assessed calibration, we have not compared our results with any other methods. In emotion
classification, the data’s somewhat subjective and ambiguous nature makes precise prob-
abilistic calibration less critical than in fields like medical diagnostics, making a slightly
higher ECE acceptable. The EmoMosaic-large model typically exhibited slightly lower
values for both metrics than EmoMosaic-base, indicating its slightly superior calibration.

To assess the overall calibration of our models, we averaged all the measured ECE and
Brier scores. The average ECE values, while on the higher side for some applications, are
still perfectly acceptable for emotion classification. The average Brier score for both models
is notably low, indicating highly reliable predictions. However, for emotions such as pes-
simism, optimism, anticipation, approval, and realization, both models display significantly
higher ECE and Brier scores than the average, indicating the model’s miscalibration of
these emotions.
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EmoMosaic-base EmoMosaic-large
Emotion ECE Brier ECE Brier
admiration 0.1040 0.0530 0.1005 0.0519
amusement 0.0896 0.0237 0.0778 0.0211

anger 0.0802 0.0535 0.0784 0.0508
annoyance 0.1516 0.0742 0.1493 0.0740

anticipation 0.2012 0.1358 0.1944 0.1301
approval 0.1756 0.0816 0.1758 0.0818
caring 0.0846 0.0272 0.0907 0.0291

confusion 0.1056 0.0370 0.1048 0.0361
curiosity 0.0821 0.0392 0.0911 0.0407

desire 0.0809 0.0185 0.0731 0.0163
disappointment 0.1284 0.0449 0.1355 0.0474

disapproval 0.1332 0.0585 0.1234 0.0557
disgust 0.0785 0.0479 0.0704 0.0455

embarrassment 0.0726 0.0124 0.0650 0.0108
excitement 0.0990 0.0286 0.1021 0.0287

fear 0.0740 0.0312 0.0707 0.0290
gratitude 0.0850 0.0175 0.0789 0.0165

grief 0.0428 0.0040 0.0457 0.0038
happiness 0.0928 0.0731 0.0943 0.0719

joy 0.1086 0.0673 0.1098 0.0632
love 0.0796 0.0461 0.0793 0.0452

nervousness 0.0616 0.0094 0.0564 0.0079
optimism 0.1105 0.0815 0.1113 0.0788
pessimism 0.1918 0.1230 0.1733 0.1139

pride 0.0533 0.0060 0.0543 0.0059
realization 0.1619 0.0534 0.1561 0.0516

relief 0.0605 0.0067 0.0643 0.0070
remorse 0.0542 0.0095 0.0533 0.0087
sadness 0.0936 0.0514 0.0842 0.0480
surprise 0.1037 0.0425 0.1017 0.0408

trust 0.1760 0.0895 0.1634 0.0821
average 0.1038 0.0467 0.1010 0.0450

Table 4.11: Shows the calibration results of our two top-performing models evaluated at
the label level.

4.3 Qualitative Analysis
We conducted a qualitative analysis to supplement our findings, distinguishing us from other
studies. To empirically validate the effectiveness of our models, we followed the methodology
outlined in chapter 3.2.4. We conducted experiments, each designed to evaluate a specific
capability. First, we evaluated how well they handle sentences of varying complexity ranging
from easy-to-classify to challenging cases of irony. Second, we examined their ability to
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perform consistently across different domains (legal documents, everyday conversations,
etc.). Finally, we assessed the ability of the models to process dialogues.

4.3.1 Trivial Sentences Suite

The Trivial Suit’s examples and responses are provided in Table 4.12 and Table 4.13, re-
spectively. Both models produced nearly identical responses, except for sentence si-se-1.
In this case, the EmoMosaic-base model provided a more favourable response because it
recognized annoyance. Nevertheless, we consider all responses to be valid.

ID Prompt
si-se-1 I can’t believe you lied to me!
si-se-2 I don’t understand these instructions.
si-se-3 How does this machine work?
si-se-4 I’m disappointed by the movie’s ending.
si-se-5 I’m so excited for the holiday!
si-se-6 Thank you so much for your help.
si-se-7 I’m very happy with the results.
si-se-8 I love you more than words can express.
si-se-9 I doubt that will ever happen.
si-se-10 Wow, that was unexpected!

Table 4.12: Shows the examples used in Trivial Sentences Suite. Note these examples were
generated using ChatGPT 4.

ID EmoMosaic-base EmoMosaic-large
si-se-1 anger, annoyance anger
si-se-2 confusion confusion
si-se-3 curiosity curiosity
si-se-4 disappointment, pessimism disappointment, pessimism
si-se-5 excitement, happiness, joy excitement, happiness, joy
si-se-6 gratitude, happiness gratitude, happiness
si-se-7 happiness, joy happiness, joy
si-se-8 happiness, love happiness, love
si-se-9 confusion, pessimism confusion, pessimism
si-se-10 surprise surprise

Table 4.13: Shows the responses that the EmoMosaic-base and EmoMosaic-large models
created in response to the Trivial Sentences Suite’s prompts.

4.3.2 Complex Sentences Suite

The Complex Sentences Suite’s examples and responses are provided in Table 4.14 and
Table 4.15, respectively. Upon reviewing responses to sentences co-se-1 and co-se-3, we
uncovered that both models struggled to detect intended emotions in complex cases of irony.
Both models successfully detected approval for sentence co-se-2, although confusion was
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also expected. For sentence co-se-5, we lean towards the response of the EmoMosaic-large
model because it recognized admiration, though the response of its smaller counterpart
is also correct. For sentence co-se-7, both responses appear valid: the EmoMosaic-large
model didn’t detect any specific emotions, which seems appropriate given the lack of strong
emotional expression, whereas the EmoMosaic-base model identified love and happiness.
While happiness is questionable, love could be inferred based on the context. Generally,
both models correctly identified emotions, with the exception of instances involving irony.

ID Prompt
co-se-1 Oh great, another day in paradise working with this ancient computer.
co-se-2 Your explanation is as clear as mud, but please, go on.
co-se-3 I’m totally looking forward to giving a speech in front of hundreds, said no

one ever.
co-se-4 Of course, the elevator would break when I’m late and on the top floor.
co-se-5 Somehow, you always manage to read between the lines.
co-se-6 Your energy is contagious! I find myself planning more ambitious projects

after our meetings.
co-se-7 You know you are like a brother to me.

Table 4.14: Shows examples used in Complex Sentences Suite. Note these examples were
generated using ChatGPT 4.

ID EmoMosaic-base EmoMosaic-large
co-se-1 admiration, happiness, joy admiration, happiness, joy
co-se-2 approval approval
co-se-3 anticipation, excitement, happiness anticipation, excitement, happiness
co-se-4 pessimism pessimism
co-se-5 realization admiration
co-se-6 admiration, anticipation, happiness,

optimism
admiration, happiness, joy, optimism

co-se-7 happiness, love

Table 4.15: Shows the responses that the EmoMosaic-base and EmoMosaic-large models
created in response to the Complex Sentences Suite’s prompts.

4.3.3 Cross-Domain Efficiency Suite

The Cross-Domain Efficiency Suite’s examples and responses are provided in Table 4.16 and
Table 4.17, respectively. The results reveal that both models identified similar emotions
for most prompts. The EmoMosaic-base model identified approval for the legal document
prompt cr-do-2, while the EmoMosaic-large model also recognised happiness and joy. We
prefer the response the EmoMosaic-large provided in this case. Responses to sentences
cr-do-4, cr-do-5, and cr-do-8 slightly differ, but we couldn’t determine which ones we like
more since all seem perfectly valid. Further differences were found in response to the sports
commentary cr-do-6, where the EmoMosaic-base model identified only surprise, whereas its
larger counterpart also identified admiration, favouring the EmoMosaic-large model. We’ve
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empirically verified that the model can respond effectively to texts from various domains.
While not every response was perfect, all met our criteria.

ID Domain Prompt
cr-do-1 literature Under the endless sky, she rediscovered a sense of bound-

less possibility.
cr-do-2 legal document The parties hereby express their satisfaction with the re-

solved settlement terms.
cr-do-3 news Local hero saves a family from fire, community praises

his quick action.
cr-do-4 blog post Embracing challenges in the workplace can lead to sub-

stantial growth.
cr-do-5 advertisement Discover freedom like never before with our latest range

of electric cars.
cr-do-6 sports commentary With seconds left, he scores! Unbelievable performance!
cr-do-7 conversation I finally passed my driving test. Let’s hit the road this

weekend!
cr-do-8 social media Just welcomed our new baby into the world. #newborn

#family

Table 4.16: Shows examples used in Cross-Domain Efficiency Suite. Note these examples
were generated using ChatGPT 4.

ID EmoMosaic-base EmoMosaic-large
cr-do-1 happiness, joy, optimism happiness, joy, optimism
cr-do-2 approval approval, happiness, joy
cr-do-3 admiration, happiness, trust admiration, happiness, trust
cr-do-4 approval, happiness, optimism anticipation, approval, optimism, trust
cr-do-5 anticipation, happiness, joy happiness, joy
cr-do-6 surprise admiration, surprise
cr-do-7 excitement, happiness, joy anticipation, excitement, happiness, joy
cr-do-8 excitement, happiness, joy, love happiness, joy, love, optimism

Table 4.17: Shows the responses that the EmoMosaic-base and EmoMosaic-large models
created in response to the Cross-Domain Efficiency Suite’s prompts.

4.3.4 Dialogues Suite

The Dialogues Suite’s examples and responses are provided in Table 4.18 and Table 4.19,
respectively. Overall, the EmoMosaic-large model performed satisfactorily and generally
outperformed the EmoMosaic-base in handling dialogues. However, when it comes to iron-
ical sentences such as di-2-2 and di-3-2, both models failed to recognise intended emo-
tions, an issue we have already uncovered in the Complex Suit. In instances like di-5-2,
the EmoMosaic-large model accurately identified pessimism, unlike its smaller counter-
part. Additionally, while both models correctly recognized surprise in sentence di-3-1, the
EmoMosaic-large also successfully identified excitement. Nevertheless, in the case of di-4-1,
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neither model identified happiness or relief, which was expected. This suit posed a great
challenge for both models.

ID Context Sentence
di-1-1 Good job! We will promote you to regional man-

ager. That came out of nowhere.
di-1-2 We have to let you go. Your performance was

not to our standards!
di-2-1 They found your lost luggage and will deliver it

tonight. Oh, that’s wonderful!di-2-2 They’ve permanently lost your luggage, no com-
pensation.

di-3-1 The article you have been working on was se-
lected as the feature for next month’s issue.
Congrats! Really? That’s unbelievable!

di-3-2 The article you have been working on was per-
manently rejected. Cite properly next time!

di-4-1 I managed to save all your work before the com-
puter crashed. Oh my god. I spent a whole

week on that.di-4-2 All your work was lost when the computer
crashed.

di-5-1 They approved your leave request for the holi-
days. Just like last year.di-5-2 They denied your leave request for the holidays.
You will have to work even on Christmas Eve.

Table 4.18: Show examples used in Dialogues Suite. Note these examples were generated
using ChatGPT 4.

ID EmoMosaic-base EmoMosaic-large
di-1-1 admiration,happiness admiration,happiness
di-1-2 disappointment,disapproval,pessimism disappointment,pessimism
di-2-1 admiration,happiness admiration,excitement,happiness,joy
di-2-2 admiration,happiness admiration,happiness
di-3-1 surprise excitement,surprise
di-3-2 surprise surprise
di-4-1 surprise surprise
di-4-2 disappointment,pessimism,sadness,surprise disappointment,sadness,surprise
di-5-1 approval approval
di-5-2 pessimism

Table 4.19: Shows the responses that the EmoMosaic-base and EmoMosaic-large models
created in response to the Dialogues Suite prompts.
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4.4 Computational Resources
Computational resources for this project were provided by the e-INFRA CZ project (ID:90254),
supported by the Ministry of Education, Youth and Sports of the Czech Republic. All ex-
periments were carried out on multiple nodes of the zia cluster. Each node of the cluster
featured 4x NVIDIA A100 SXM4 40GB GPUs. In total, these experiments ran for approx-
imately 124.5 CPU days. As we utilized 4 CPUs for 1 GPU, we estimate that the total
GPU usage was around 31.125 GPU days.

4.4.1 Experiments

Additionally, we measured the amount of floating-point operations (GFLOPS), the time,
and the peak graphical memory (VRAM) usage required to process N sentences, each having
L tokens. We utilized a setup equipped with an RTX 4070 12GB GPU and a Ryzen 9 7900
CPU, complemented by 32GB of DDR5 RAM. The recorded values were calculated as an
average across 100 tensors.

Table 4.20 shows the memory and computational requirements for our models. We
measured the average time to process a tensor of shape (1,128), corresponding to a single
sentence with 128 tokens. Table 4.21 shows the memory and computational requirements
for our models. We measured the average time to process a tensor of shape (32,128),
corresponding to 32 sentences with 128 tokens.

Model 𝐺𝐹𝐿𝑂𝑃𝑆(1,128) 𝑉 𝑅𝐴𝑀 (1,128) 𝑇𝑖𝑚𝑒(1,128)

EmoMosiac-base 11.19 0.51 GB 8 ms
EmoMosiac-large 39.49 1.44 GB 15 ms

Table 4.20: Compares the computational complexity of the proposed models using tensors
of shape (1,128).

Model 𝐺𝐹𝐿𝑂𝑃𝑆(32,128) 𝑉 𝑅𝐴𝑀 (32,128) 𝑇𝑖𝑚𝑒(32,128)

EmoMosiac-base 357.96 0.65 GB 52 ms
EmoMosiac-large 1263.78 1.61 GB 182 ms

Table 4.21: Compares the computational complexity of the proposed models using tensors
of shape (32,128).
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Chapter 5

Conclusion

Most human interactions are either text-based or can be converted to text using speech-
to-text technologies. This thesis is dedicated to recognizing emotions from these texts.
We began with a thorough and extensive literature review. This analysis highlighted the
need for diverse, high-quality datasets to develop robust, well-generalizable methods. We
have identified SemEval-2018 Task 1: Affect in Tweets, GoEmotions, XED and DailyDi-
alog as datasets that, when combined, meet the established criteria. See Chapter 2.2 for
further details. The analysis also revealed that models based on Transformers such as
BERT, RoBERTa and BART excel on the following datasets SemEval-2018 Task 1: Affect
in Tweets and GoEmotions. Additionally, from the results reported on the DailyDialog
dataset, we concluded that hybrid models incorporating Transformer encoders like BERT
alongside graph attention networks (GANs) deliver the best performance in conversational
processing. Subsequently, as detailed in Chapter 2.5, we identified the following key areas
for advancement in emotion recognition from text:

1. Cross-domain Efficacy: Most current methods focus on one specific domain, often
Twitter or Reddit, and are typically not tested on data from other domains. This sig-
nificantly limits their applicability in real-world situations, which are usually diverse.
Studies that addressed cross-domain effectiveness often oversimplified the issue. To
unify generally differing categories (across datasets), they remap many categories into
a much smaller set. For instance, they map the 27 categories from the GoEmotions
dataset to the six basic emotions according to Ekman’s model. A similar type of
remapping is applied to other datasets as well. Consequently, this approach greatly
loses depth and makes comparisons with other methods impossible.

2. Results Analysis: To perform a thorough analysis of the method’s performance, it
is important to evaluate multiple metrics at both the individual dataset and cate-
gory/emotion levels. However, most studies only report 1-3 global metrics, which is
insufficient. Additionally, none of the studies have assessed the calibration of their
method.

3. Usability: Researchers often publish only papers without accompanying the code or
models used in their research. This hinders the reproducibility and practical applica-
tions of their findings.

In this study, we propose a method that tackles all the outlined challenges. We started
by selecting appropriate datasets and continued by establishing a consistent data format.
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Specifically, we selected SemEval-2018 Task 1: Affect in Tweets, GoEmotions, XED and
DailyDialog. By combining these datasets, we created a diverse, high-quality, multi-label
dataset, which we call the EmoMosaic-dataset. It is important to mention that we preserved
the original categories for all datasets, unlike other studies. See Chapter 3.2.1 for more
details.

In this study, we propose two models, EmoMosaic-base and EmoMosaic-large, the for-
mer based on the RoBERTa-base model and the latter on the RoBERTa-large model. In
contrast to other studies, we trained our models on all the datasets simultaneously while
preserving their original categories. To achieve this, our models process sentences stripped
of any information regarding categories or datasets. This forces the models to predict
the entire spectrum of categories, which was created by unifying emotions from individ-
ual datasets. Since we do not remap categories, each sentence in our unified dataset, the
EmoMosaic-dataset, contains several categories lacking proper annotations. To avoid mis-
takes, we mask these categories during training. Consequently, our models perform well
across different domains and are directly comparable to other methods. Additionally, our
models retain the original level of detail, enabling understanding of complex emotions.
Further details can be found in Chapter 3.2.

After training the models, we proceeded to testing. We followed the procedures outlined
in Chapter 3.2.4. We first evaluated the performance of our models at the level of individ-
ual datasets and then at the level of individual categories/emotions. Our best-performing
model EmoMosaic-large demonstrated excellent results across multiple domains and out-
performed current state-of-the-art (SOTA) models on the following datasets: SemEval-2018
Task 1: Affect in Tweets and GoEmotions. EmoMosaic-large achieves a macro-averaged
F1 score of 60.72 % (an increase of 0.42 % over SOTA) on the SemEval-2018 Task 1: Affect
in Tweets dataset and on the GoEmotions dataset 53.93 % (an increase of 0.13 % over
SOTA). Its smaller counterpart, EmoMosaic-base, falls short of the SOTA models and, on
average (calculated across all datasets), lags behind it by 1.94 % in the macro-averaged F1
score. Despite being roughly one-third of its size, EmoMosaic-base provides a good balance
between performance and computational efficiency. Subsequently, we tested the ability of
our models to process conversations using the DailyDialog dataset. The EmoMosaic-large
model achieved a micro-averaged F1 score of 60.65% (3.56% decrease from SOTA). Al-
though it fell short of the state-of-the-art methods, it can be concluded that it performed
reasonably well given the value. The top-performing methods were based on hybrid mod-
els combining Transformer encoders and Graph Neural Networks (GATs) in all cases. A
detailed comparison and discussion of the results can be found in Chapter 4. Next, we eval-
uated the performance of our models at the level of individual categories, revealing their
respective strengths and weaknesses. This analysis can be found in Chapter 4.2. Following
this, we evaluated the calibration of our models and found that both proposed models are
relatively well-calibrated. Therefore, we consider their predictions to be credible. Finally,
we substantiate our claims by empirically testing our models under various scenarios. Al-
though both of our models performed well in general, we found that they responded poorly
to ironic sentences. In addition, we concluded that the EmoMosaic-base model is not very
suitable for processing conversations. See Chapter 4.3 for more details. However, none of
the models showed systematic errors, and both models proved themselves for processing
texts from different domains, which was the main goal of this study.

By making all of our models and code publicly available, we increase the reproducibil-
ity and applicability of our research and provide valuable resources for further research
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and practical use. All models and code are freely available at https://huggingface.co/
vtlustos.

In conclusion, by proposing and thoroughly testing models that exhibit strong cross-
domain performance, we have advanced the field of emotion recognition from text. Further
research could focus on enhancing the accuracy of these systems, though it is speculated
that achieving macro-averaged F1 scores over 75 % may be unattainable due to the inherent
ambiguity of emotional expressions. Another area of research could involve developing
a human baseline that would enable comparisons between artificial models and human-
level performance. Moreover, while large language models (LLMs) are not yet suitable for
emotion recognition, their continuous development suggests they might be in the future.
Adapting an LLM for emotion recognition could increase the flexibility of such systems, as
they do not require hard-wiring the labels into their architecture.
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Appendix A

Contents of the DVD

The attached DVD contains the following items:

• code/ folder: contains implementation source codes.

• EmoMosaic-base/ folder: contains the best checkpoint and evaluation results of the
EmoMosaic-base model.

• EmoMosaic-large/ folder: contains the best checkpoint and evaluation results of the
EmoMosaic-large model.

• thesis_source/ folder: contains the LATEXsource code of the thesis.

• thesis.pdf: contains the text of the thesis in PDF format.
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