
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

TRANSPARENT ENCRYPTION SOLUTION FOR END
POINT DEVICES
TRANSPARENTNÍ ŠIFROVÁNÍ PRO KONCOVÁ ZAŘÍZENÍ

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. DAVID POŘÍZEK
AUTOR PRÁCE

SUPERVISOR Doc. Dr. Ing. DUŠAN KOLÁŘ,
VEDOUCÍ PRÁCE

BRNO 2019

Brno University of Technology
Faculty of Information Technology

Department of Information Systems (DIFS) Academic year 2018/2019

Master's Thesis Specification lllllllllllllllllllllllll
22055

Student: Pořízek David, Be.

Programme: Information Technology Field of study: Information Systems

Title: Transparent Encryption Solution for Endpoint Devices

Category: Security

Assignment:
1. Analyze current implementations of transparent encryption used in practice on endpoints. Focus on

Windows and multi-platform solutions.
2. Propose a solution of a transparent encryption system for external devices consisting of a kernel driver and

an encryption architecture. Base the design of the encryption architecture on already existing solutions
analyzed in (1). Use standardized encryption algorithms and standardized formats of encrypted file
envelopes.

3. Implement the solution proposed in (2) for Microsoft Windows platform.
4. Verify whether the implementation meets security expectations defined in (2) and Safetica requirements.
5. Propose and discuss potential extensions (for example, an outgoing e-mail attachment protection), future

development and multiplatform possibilities.
Recommended literature:

• RUSSINOVICH, Mark E., David A. SOLOMON a Alex. IONESCU. Windows internals Part 1. 6th ed.
Redmond, Wash.: Microsoft Press, c2012. ISBN 978-0735648739.

• RUSSINOVICH, Mark E., David A. SOLOMON a Alex. IONESCU. Windows internals Part 2. 6th ed.
Redmond, Wash.: Microsoft Press, c2012. ISBN 978-0735665873.

• CATLIN, Brian, Jamie E. HANRAHAN, Mark E. RUSSINOVICH, David A. SOLOMON a Alex IONESCU.
System architecture, processes, threads, memory management, and more. Seventh edition. Redmond:
Microsoft, [2017]. ISBN 978-0735684188.

• NAGAR, Rajeev. Windows NT file system internals: a developer's guide. Sebastopol, Calif.: O'Reilly,
C1997. ISBN 978-1565922495.

• File Encryption Driver Development with per Process Access Restriction. Apriorit [online]. 01 April 2016
[cit. 2018-06-16]. https://www.apriorit.com/dev-blog/371 -file-encryption-driver-development-with-per-
process-access-restriction

Requirements for the semestral defence:
• First two items, and initial parts of the item 3.

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Kolář Dušan, doc. Dr. Ing.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 22, 2019
Approval date: October 24, 2018

Master's Thesis Specification/22055/2018/xporiz03 Strana 1 z 1

https://www.apriorit.com/dev-blog/371
http://www.fit.vutbr.cz/info/szz/

Abstract
The goal of this thesis is to propose and implement a transparent encryption solution for
the Microsoft Windows platform. The solution should be able to integrate with the data
loss prevention (DLP) product and extend it. The implementation utilizes the Microsoft
File System Minifilter Driver framework, which allows it to monitor and modify access to
files on an external device or a disk in a running system. Protected files are encrypted in
the background in order to not interfere with user's work. The driver ensures, that the
user is always working with decrypted data. Furthermore, an external application will be
developed, which will allow the user to access the protected files even in a network without
the D L P product active.

Abstrakt
Cílem té to práce je návrh a implementace řešení transparentního šifrování pro platformu
Microsoft Windows. Řešení by mělo být propojitelné s produktem prevence proti úniku
dat (DLP) a rozšiřovat jej. K implementaci byl využit framework Microsoft File System
Minifilter Driver, s jehož pomocí je možné sledovat a upravovat přístup k jednotlivým
souborům na externích zařízeních nebo discích za běhu systému. Soubory jsou zabezpečeny
na pozadí tak, aby uživatel nebyl neovlivněn při práci. Ovladač zajišťuje, že uživatel vždy
pracuje s rozšifrovanými daty. Dále bude také vyvinuta externí aplikace, která umožňuje
uživateli přistoupit k zašifrovaným datům, aniž by musel být v síti, kde D L P produkt běží.

Keywords
transparent encryption, encryption header, minifilter, file system, driver, windows driver
model

Klíčová slova
transparentní šifrování, šifrovací hlavička, minifiltr, filé systém, ovladač, windows driver
model

Reference
POŘÍZEK, David. Transparent Encryption Solution for Endpoint Devices. Brno, 2019.
Master's thesis. Brno University of Technology, Faculty of Information Technology. Super
visor Doc. Dr. Ing. Dušan Kolář,

Rozšířený abstrakt
S rostoucím počtem služeb, které poskytují pohodlný způsob, jak přistupovat a sdílet data

na dálku, se stává ochrana firemních citlivých dat stále složitější. Počet případů, kdy dojde
ke ztrátě nebo úniku citlivých dat, které způsobí nenávratnou škodu firmě také roste. Ve
větší části případů, jsou na vinně zaměstnanci daných firem, i když by se mohlo zdát, že
ochrana proti externím útokům je důležitější.

Tento fakt vedl ke vzniku nového odvětví, které se zabývá právě ochranou dat uvnitř
firmy a snaží se zabránit jejich úniku. Jelikož je většina firemních dat uložena v digitální
podobě, většina firem zabývajících se tímto odvětvím, poskytuje softwarové řešení, které
monitoruje operace uživatele a při detekci operace, která by mohla zapříčinit únik dat mimo
firmu, j i zablokuje.

Tato práce se snaží výše zmíněného trendu využít a popisuje návrh a implementaci
řešení, které by data chránilo bez ohledu na operace uživatele. Cílem je zabezpečit data
na tolik, aby při potenciálním úniku tato data nebyla dostupná neautorizovanému člověku
a t ím rozšířit již existující D L P řešení. Cílem práce je tedy nejen implementace nového
řešení transparentního šifrování, ale také integrace s existujícím D L P produktem.

Teoretická část je tvořena ze tří hlavních částí. První část popisuje řešení prevence úniku
dat (DLP) z obecného hlediska a vysvětluje základní pojmy týkajících se tohoto tématu.
Dále je zde provedena analýza rozšířenějších D L P řešení, kde je každé analyzované řešení
popsáno hlavně z hlediska přístupu, jaký používá pro šifrování. Na závěr té to části jsou
jednotlivé přístupy k šifrování shrnuty do tří kategorií a rozebrány jejich výhody a nevýhody
v rámci těchto kategorií.

Druhá teoretická část se zabývá návrhem řešení této práce. Jsou zde definovány poža
davky na řešení, spolu s předpokládaným procesem používání a popisem očekávaných uži
vatelů. Poté je zde vysvětleno transparentní šifrování a všechny pojmy s ním související. Je
zde také popsán proces, který je potřeba k tomu, aby transparentní šifrování bylo použitelné
a funkční. V poslední podkapitole je popsán návrh šifrovací logiky a šifrovací hlavičky, která
je použitá pro uchování stavových informací.

Třetí teoretická část je nej rozsáhlejší a popisuje strukturu systému Windows z pohledu
ovladačů a souborových systémů. Jelikož je řešení implementováno jako transparentní
šifrování uvnitř minifiltr ovladače, bylo pochopení souvislostí v rámci ovladačů souborových
systémů naprosto nezbytné pro vytvoření návrhu a implementaci práce.

Výsledné řešení se skládá z několika částí - transparentní logiky, šifrovací logiky, ex
terní uživatelské aplikace a aplikace s grafickým rozhraní pro nouzové rozšifrování souborů.
Transparentní logika je implementována jako minifiltr ovladač. Každý takovýto ovladač
se nejprve musí přihlásit do zásobníku ovladačů, které jsou zachyceny nad jednotlivými
disky. Díky tomu dokáže zachytit obsah souborů uložených na daných discích ještě dříve,
než se dostane k uživateli. V momentě, kdy do ovladače přijde požadavek na přečtení nebo
zápis obsahu, ovladač se podívá, zda je to požadavek na soubor, který by měl chránit.
Pokud ano, tak provede rozšifrování nebo zašifrování obsahu. Nicméně, uživatel vždy uvidí
rozšifrovaný obsah a se souborem bude schopný pracovat bez jakékoliv změny. Jakékoliv
šifrovací operace tedy probíhají na pozadí uvnitř ovladače a uživatele nijak neovlivňují.

Šifrovací logika je implementována jako knihovna. Je j i tedy možné jednoduše nahradit,
za předpokladu, že jsou ovladači poskytnuty ta stejná rozhraní pro komunikaci s knihov
nou. V základu je implementován algoritmus AES-256 pro šifrování obsahu i hlavičky
a MD5 pro kontrolní součet. Hlavička se skládá z identifikační části, klíče pro zašifrování
obsahu souboru a kontrolního součtu. Tato hlavička je uložena před samotným obsahem
a ovladačem je vždy při přístupu k souboru přeskočena. Při uložení na disk je samotná

hlavička zašifrována klíčem, který si uživatel zvolil nebo, který byl dodán přes komunikační
rozhraní D L P řešením. Součástí řešení je také konzolová uživatelská aplikace, která demon
struje způsob, jakým lze komunikovat s ovladačem. Aplikace umí nastavit uživatelské heslo,
přidat novou chráněnou složku, odebrat chráněnou složku a vypnout a zapnout šifrování.

Poslední částí řešení je aplikace s uživatelským rozhraním, která umožňuje rozšifrovat
soubory zašifrované ovladačem. Tato aplikace byla přidána do řešení, aby bylo možné
pracovat se soubory i v případě, že nelze ovladač nainstalovat. V takových případech může
uživatel využít tuto aplikaci, ale jejím použitím dojde k porušení transparentnosti a t ím
pádem i celkové bezpečnosti citlivých dat. Jedná se tedy o nástroj, který by měl být použit
jen v případech nouze.

Kompletní řešení bylo otestováno za pomocí dvou různých typů testů. Nejprve byl
testován výkon řešení při přístupu a otevírání souborů o různých velikostech - od 10 megaba
j tů (MB) do 500 M B . Výsledkem bylo jen nepatrné ovlivnění, jelikož systém k souboru přis
toupí většinou ještě dříve, než si jej uživatel reálně vyžádá. Dále byla testována správná
funkcionalita řešení. Tyto testy byly provedeny manuálně a jejich cílem bylo zašifrování
souboru a následné porovnání zobrazeného obsahu, zda odpovídá originálu. Ve většině pří
padů tento test dopadl pozitivně. V závěru kapitoly popisující testování je pak ukázáno, že
řešení splnilo všechny požadavky jak nastavené D L P řešením, tak i požadavky vycházející
z návrhu. Na základě těchto testů a ověření je možné říci, že výsledné řešení je funkční
a také integrovatelné s existujícím D L P řešením a tím splnilo cíl této práce.

Největší komplikací této práce byla komunikace se správci mezipaměti a virtuální paměti.
Jelikož je potřeba při každém požadavku na přístup k souboru upravovat velikost, bylo za
potřebí korektně upravovat parametry požadavku a také obsah souboru, který se posílá
v parametru požadavku.

Transparent Encryption Solution for Endpoint Devices

Declaration
Hereby I declare that this master thesis was prepared as an original author's work under
the supervision of Doc. Dr. Ing. Dušan Kolář. A l l the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

David Pořízek
May 21, 2019

Acknowledgements
I would like to express my thanks to my supervisor Doc. Dr. Ing. Dušan Kolář for his
guidance, patience, and dedicated time. I would also like to thank Ing. Martin Dráb for
his consultations and ideas which helped me with the general understanding of Windows
driver architecture as well as the final design of the driver. Finally, I would like to thank the
whole Safetica team for providing me the opportunity to work on this project and namely
Zbyněk Sopuch who has helped me with the specification of the design.

Contents

1 Introduction 3

2 Data Loss Prevention 4
2.1 What is D L P ? 4
2.2 Security Points of Deployment 5
2.3 Solution Modules 6
2.4 Analysis of Existing D L P Solutions 7
2.5 Encryption Approaches 9

3 Proposed Transparent Encryption Solution 12
3.1 Requirements and Expectations 12
3.2 Transparent Encryption Logic 14
3.3 Encryption Architecture 18

4 Microsoft Windows Driver Development 19
4.1 What is a Driver? 19
4.2 Driver Architecture 22
4.3 Frameworks Available 23

5 File System Driver Development 25
5.1 File System Drivers 25
5.2 File System Filter Drivers 26
5.3 I /O Manager 26
5.4 Virtual Memory Manager 27
5.5 Cache Manager 27
5.6 File System Dispatch Routines 28

6 Implementation 32
6.1 Transparency Filter Driver 32
6.2 Encryption Module 36
6.3 Driver Configuration 37
6.4 User-Mode Decryption Application 38

7 Testing and verification 39
7.1 Performance Load Tests 39
7.2 Proper Functionality Tests 40
7.3 Results 41
7.4 D L P Solution Integration Requirements 43

1

8 Conclusion

Bibliography

Appendices

A Contents of the CD

B Use-case Diagram

C Driver Installation

D Driver's Registry Structure

E Manual Test Protocol

Chapter 1

Introduction

With growing number of services which allow convenient access and storage of data, such as
clouds or remote access, it becomes increasingly more difficult for companies to protect their
business secret and other sensitive data which are private and valuable to the company.
Incidents, where a considerable amount of sensitive data was leaked, become more and
more common. These incidents often cause irreparable damage to the affected companies
and in some cases even harm the people who entrusted this company with investments,
data or other information. External intruders are not the only cause of them, but quite
the contrary. In more cases, the incidents are caused by the company itself or its employees
either knowingly or unknowingly.

The necessity to contain and resolve this issue lead companies to reach out and accept
help from solutions which focus on protection and prevention of data leaks. Since majority
of sensitive data is stored in digital form, these solutions primarily develop software applica
tions and methods which help prevent and protect data from leaking outside of the company
premises.

The thesis takes into account the aforementioned trend and aims to solve the issue
from a different angle. While preventing the leak itself is sufficient in most data
protection logic which would ensure that data are secured even outside company's network
would cover cases where prevention is not enough. The goal of this thesis is to propose and
implement a transparent encryption application which would enhance a data loss prevention
(DLP) solution.

Chapter 2 introduces general concepts of D L P solutions and describes typical modules
which are often present. In order to propose a complete and functional solution, the thesis
looks at existing models used in different D L P products and analyses them in section 2.4.

The following chapter 3 presents the proposed design. It defines the main requirements
for the solution in section 3.1. The architecture of the driver and the encryption header is
described in sections 3.2 and 3.3 respectively.

Basics of driver development are described in chapter 4 focusing on the development
on the Microsoft Windows platform. It introduces different models available to the deve
loper and describes basic driver architecture and concepts important for drivers. Lastly, it
describes frameworks which are provided by Microsoft to better support the development.

Chapter 5 expands on information provided in chapter 4 and focuses on development of
file system drivers. The beginning of the chapter discusses the file system architecture in
Microsoft Windows platform. Later in the chapter, the core system resource managers are
presented which take part in managing file access.

3

Chapter 2

Data Loss Prevention

This chapter talks about approaches that are utilized within different D L P products. Since
the D L P market is becoming quite saturated, section 2.4 focuses mainly on established
companies and innovative solutions. Each company will be presented briefly along with
the scope of their product, and their approach to encryption will be shown in more detail.

2.1 What is DLP?

D L P is a set of tools and processes which helps to ensure that sensitive data are not lost,
misused or accessed by an unauthorized user. In order to distinguish sensitive data, most
D L P software utilize multiple data classification approaches. Development is usually driven
forward by regulatory compliance for example G D P R 1 and H I P A A 2 . To help D L P software
identify sensitive data and generally dangerous actions, administrators have the option to
introduce policies. These policies should define safe or unsafe flows of data inside the net
work. [19]

Sensitive Data

Sensitive data are defined by the security standard SEC-501 as any data that would influence
interest of an involved party, course of the organization, or privacy of individual in case
their privacy, integrity, or availability was to be compromised. The rate of sensitivity is
directly proportional to potential damage done to the company if these data were to be
leaked. [1]

Furthermore, D L P solutions usually implement their own algorithms which categorize
data and mark data as sensitive. Generally speaking, there are two common approaches to
detecting sensitive data - context and content approach. The context approach analyses
only the process, which lead to obtaining said data. For example, an export of data from
Microsoft Excel, working with a previously marked sensitive spreadsheet file. On the other
hand, the content approach does not take context into account. It simply scans files, which
it suspsects might be sensitive and analyses only the file's content. For example, a file
containing social security numbers would be deemed as sensitive.

x h t t p s : //eur-lex. eur opa.eu/eli/r eg/2016/679/o j
2https://www.govinfo.gov/content/pkg/PLAW-104publl91/html/PLAW-104publl91.htm

4

https://www.govinfo.gov/content/pkg/PLAW-104publl91/html/PLAW-104publl91.htm

Policies

Policies are the core object of every functional D L P product. They allow administrators to
define complete rules and guidelines on how business data can be shared outside the com
pany. These rules are stored digitally inside D L P solutions which enforce them. The D L P
solutions then make sure that these rules are followed properly by all the users.

Furthermore, sometimes companies are required by law to follow certain regulations
and standard. Defined policies can be used as means to ensure that these regulations are
being followed properly as well as a proof in case of a review. A recent example of this is
the G D P R regulation.

Policies can be applied through two different processes - content and context scan.
Solution can scan the content of the file and decides whether there are any sensitive data
or not. If there are, it may for example tag the file for other modules, so that they can
block the file from leaving the company. Contrary to this approach, the context scan is not
interested in the content of a file, but rather in the operations which lead the file to the state
it is in right now. Therefore, it takes into account multiple actions and not a single one.

Data-at-rest

Any data that are stored physically on a storage medium are described as data-at-rest.
D L P solutions must be able to seek out specific files wherever they may be stored. If there
are such files present, it opens them and scans them for sensitive data. [13]

Data-in-use

Data-in-use refers to files and other data containers which are currently opened and being
accessed. The main goal is to monitor the movement of the aforementioned data. It
is usually accomplished through agents, which closely monitor separate applications and
report back to the management server.

Thanks to being so closely connected with applications, the agents are able to react to
data changes based on the defined policies and rules. Agents acquire policies from the server
and have to process them in order to apply them in reaction to data modifications. Some
policies may be fairly complex and too difficult to process on an endpoint. In that case,
some compromises are required in order to process any policy without disrupting the user's
workflow. [13]

Data-in-motion

Data-in-motion describe any data which are being transferred from one point in the network
to another. A file transfer across the network usually consists of sending multiple packets
containing chunks of the original file. The D L P solution must be able to properly identify
different packet streams and reconstruct the file in order to analyse its content, similar to
the analysis of data-at-rest. [13]

2.2 Security Points of Deployment

There are two main places at which D L P solutions usually get deployed - an endpoint
and a network. Each of them has different advantages and disadvantages. A complete

5

D L P solution deploys most of the time on both, thus, providing a combined security and
advantages of both. [18]

Endpoint

A solution deployed on endpoints monitors and controls data access. They focus on pro
tecting data-at-rest and data-in-use. Their main advantage is being able to protect the end-
points even outside the company's premise. While the solution is able to apply and process
policies by itself, it typically doesn't store them locally, but rather receives them from
a central server, located in the company's network. [18]

Network

Network protection usually analyses the network traffic inside the company and is able to
block, allow, or secure outgoing data. This includes encryption of data, which should not
be read by an unauthorized person. These solutions usually have probes, which monitor
and analyse multiple points in the network. The probes send the collected information
to the central server located at the egress of the company's network. The server then
decides based on active policies, how to proceed. The network solution primarily protects
data-in-motion. [18]

2.3 Solution Modules

This section presents the usual modules introduced in D L P solutions. The following infor
mation is based on the analysis later in this chapter in section 2.4.

Agent

D L P solutions need to have a connection to each endpoint they manage. This is typically
done by running an agent application on each endpoint which communicates with the man
agement center and receives commands from it. The agent monitors and logs file accesses
and scans the file content. It usually attempts to run hidden from the user.

Management Center

The main purpose of the management center is to manage agents and provide a centralized
server which the agents can use to send collected information. The center usually takes care
of auditing and providing users (usually administrators or managers) with summarized view
of all the information collected by the agents.

Probe

A network probe is used for monitoring network traffic. It is typically located on the com
pany's gateway and scans all passing traffic going outside the company's network. Further
more, some probes are also able to prevent data leaks from happening upon their detection.
Since the whole traffic is being monitored, the probe is able to protect everything that is
related to network including emails, clouds, and file shares.

G

2.4 Analysis of Existing DLP Solutions

I would like to point out, that all the information presented in this section is taken from
materials available to public and my understanding of them. Therefore, some information
may be inaccurate or simply wrong. This fact is not a big issue for a collective analysis
like this, because the thesis is primarily interested in general concepts that the solutions
utilize. Nevertheless, I still feel it is important to warn readers about this as to not interpret
the analysis as definite facts.

The analysis is based on D L P solutions available on multiple platforms. A l l analysed
solutions provided a support for Windows and MacOS. Linux platform support was more
rare, but still present in a couple of solutions.

Endpoint Protector3

Endpoint protector focuses mainly on data encryption on all the leading platforms. While
it is able to monitor and block certain actions, it doesn't seem to be the main goal of
the solution. It uses a content aware protection and is able to protect data at rest as well as
data in motion. Data at rest can be protected by using a discovery function, which is able
to detect unprotected sensitive files and immediately perform a defined action, for example
a file encryption.

The solution is provided in three different appliances. Virtual appliance, hardware
appliance, and cloud-based appliance. This is an unique approach, since majority of D L P
products tend to focus on only one of the mentioned methods.

The most interesting part is definitely the Device Control. It is able to monitor, con
trol, and block USB storage devices and peripheral ports. The basic workflow starts with
detection of vulnerable external device. It is than scanned for sensitive data and if there are
any unencrypted sensitive data, it encrypts them at once. It is possible to whitelist certain
external devices and have them excluded from this process and also to entirely block an
external device from being mounted. Another step is executed, when there are any data
copied onto the external device, they are encrypted just in time (JIT). Unfortunately, there
isn't enough information available to know for sure how is the software part of the product
implemented.

Check Point1

Check Point provides a complete D L P solution for Windows and MacOS. It is able to make
decisions based on content, users, and processes. It scans the defined files and tags them.
These files are then protected and prevented from leaving the organization. Customers can
manage the product in two different ways. Central policy management allows admins to
control all clients in one centralized place. It is possible to create policies which identify
stored data and tag them based on that policy. There is also an event management which
is used for real-time monitoring and log reporting.

Another feature is a network protection. It works by being active on an existing gateway,
monitoring any network traffic going through it and analysing wide range of transport
protocols, thus, protecting data in motion. The protocol detection works in conjunction
with applications to make sure it is properly filtering data.

3 h t t p s : //www.endpointprotector.com/products/endpoint-protect or/features
4 h t t p s : //www.checkpoint.com/products/endpoint-policy-management/

7

http://www.endpointprotector.com/products/endpoint-protect
http://www.checkpoint.com/products/endpoint-policy-management/

Encryption logic is also part of the product. It provides full-disk encryption for endpoint
disks and external devices. The algorithm used is AES-256. Moreover, there is also an
option to block certain devices or ports from being accessed at all. Admins can choose to
receive notifications instead of denying the access.

On top of that, there is a ransomware protection which uses behavioral analysis to
detect any unwanted file modifications. Also, a zero-day attack prevention is available. It
uses advanced heuristics to detect and block any unknown phishing sites.

Symantec Endpoint Encryption 5

Symantec solution provides protection of all the important channels on which data can
appear - Endpoint, Network, Cloud, and Storage for Windows, MacOS, and Citrix Xen-
Desktop platforms. It is able to monitor and notify administrators when there is a possibility
of data leak or a breach of a policy.

Endpoint protection consists of discovery and prevention functions. Discover can scan
local storage and look for sensitive unsecured data. Upon discovering the data, it can
perform certain actions, for example, encrypt, delete, or move. The network part pro
vides monitoring features and prevents sensitive data from leaking to email and websites.
The storage protection is similar to endpoint protection but on top of discovery and pre
vention provides also an A P I , which developers can use to implement custom responses.
Lastly, there is also a cloud protection service. It focuses mainly on the well-known cloud
providers.

As mentioned earlier, one of the possible responses to policy violation on an endpoint is
data encryption. While this is true for external devices, the solution implements a full-disk
encryption for the local hard drive. The files copied to external device are encrypted JIT.
Furthermore, an encryption process similar to the external devices occurs when there are
sensitive data detected being moved to an external storage or a cloud.

Verdasys Digital Guardian D L P 6

Digital Guardian D L P is able to protect endpoint, network, and clouds on Windows, Linux,
and MacOS platforms. Network and cloud protection work as a software solution and it is
a separate product from the endpoint protection. We are primarily interested in encryption
function in the endpoint solution, therefore only that part is mentioned.

Similarly to the Symantec solution, Verdasys is able to define actions which are per
formed upon detection of sensitive data, such as an encryption. There is a specific function
when it comes to external devices. The user can choose to use either portable or non
portable encryption. The non-portable one is used to transport data only between machines
which run the Verdasys solution. The portable encryption method is used to transport data
outside the company's premise while ensuring data are properly secured. The public ma
terial is not very specific on whether it uses an open-source encryption method or there is
an external application which can be used outside of the solution's network.

5 h t t p s : //www.Symantec.com/products/data-loss-prevention
6 h t t p s : //digitalguardian.com/products/endpoint-dlp

8

http://www.Symantec.com/products/data-loss-prevention

C A Data Protection'

C A Data Protection D L P solution protects data at rest, data in motion, and data in use.
It secures endpoints by distributing agents, which then report either to gateway server or
directly to central management console. Network is secured by a software solution that is
able to control number of different protocols including SSL traffic that is decoded locally.
External file storage and email attachments are protected as well.

The logic primarily focuses on encrypting data, which are leaving the endpoint. There
are agents running on every endpoint and reporting to the gateway server. The server scans
data going through it and decides, whether there is any action required based on defined
policies. For example, it can block outgoing data transfer and store data being transferred
on the server in an encrypted form to be reviewed by the admin at a later time. It uses
AES-128 to encrypt any captured data.

The solution is also able to detect data being transferred to external device and encrypt
them JIT. This action is controlled by their Client File System Agent, which most likely
works as a file system filter. It is also able to transparently encrypt files being synchronized
through cloud services.

Sophos - SafeGuard Encryption 8

Sophos doesn't offer the usual D L P functionality, such as user monitoring and action control.
They rather focus on securing user's data and making sure that they are secured at any
point while inside the company's premises. This includes endpoint, network, and email
protection. Since they primarily protect data, encryption logic is an important part of
the product. They are able to protect Windows and MacOS platforms.

There are several encryption methods used in each of the products, however we are
mostly interested in the endpoint protection. It utilizes two different approaches to encryp
tion. The first one is a full-disk encryption used for encrypting local hard drives. The second
one is a transparent encryption which is used to secure external devices even when they are
outside the Sophos's network.

2.5 Encryption Approaches

As we can see from the analysis above, there are several methods used in practice when
encrypting data. The following sections attempt to summarize the approaches mentioned
into three groups and describe their common advantages and disadvantages. While this list
is not exhaustive it should cover the most common approaches and provide enough insight
into each of them to come to a conclusion as to which of the approaches is the most suitable
to be used in the solution of this thesis.

Full-disk Encryption

This approach is the most used one. It is based on encrypting the entire disk and/or
the folder and, thus, securing any data stored within it. The approach is suitable for
protecting data from external threats. This means, that the full-disk encryption does not
see its user as a threat and trusts him/her with the data completely.

7 h t t p s : //www.ca.com/us/products/ca-data-protection.html
8 h t t p s : //www.sophos.com/

9

http://www.ca.com/us/products/ca-data-protection.html
http://www.sophos.com/

The main advantage of this implementation is that it is easy to implement and get going.
It is also fairly fail-proof, because it is generally used to encrypt more (e.g. the entire disk)
rather than less. This makes it more robust then the other approaches.

The disadvantage is the trust in the user. Conceptually speaking, this goes against what
any D L P product is trying to achieve. The main goal of D L P is not to protect the data
from external threats, but rather to protect the data from user's mistakes. To expand on
this, D L P is trying to prevent a user from leaking any sensitive data, by protecting the data
from him/her. This means, that by giving the user full control over the data, it would make
the product very prone to failure in its core goal.

That being said, the full-disk encryption is still a viable solution for protecting external
devices' data, from being accessed by an unauthorized person, for example, when stolen.
Despite that, this work aims to extend an existing D L P product, therefore, this approach
is not suitable.

Server-based Proxy Encryption

The server-based proxy encryption works by securing data, which are about to leave
the company's premises over a network. As the name suggests, the idea behind the server
is, that it assumes the role of company's gateway router and, thus, it is able to monitor all
data that are being routed outside the company's network. This approach is very good at
protecting data-in-motion on the network channel. It is usually implemented as a hardware
appliance, which is physically connected to the company's network as a gateway.

There are several advantages to this approach. The server is able to monitor, filter,
encrypt, or block any outgoing packets containing sensitive data. The encryption process is
done on the server, so there is no performance impact on any of the endpoints. Futhermore,
protecting a storage to cloud service is possible. This is usually quite problematic for
the other approaches.

The main disadvantage is, that it is able to protect only one channel - network. Data
leaving the company's premises on any other channel (for example, physically on an exter
nal storage) are neither protected nor detected. This is usually the reason, why most of
the companies opt to use another solution alongside the server-based one.

Since the goal of this work is to be able to protect data on external devices, this approach
is not usable.

Transparent Encryption

The goal of transparent encryption is to protect the defined data, without affecting the user's
work. The idea behind this approach is similar to the full-disk encryption. The transpar
ent encryption logic encrypts the data on a disk. The difference here is that the user is
virtually normally working with a file, but if he/she attempts to, for example, copy a file
to an external device, the file will stay encrypted. Of course, the user will not know that,
because the encryption is working transparently. But if he/she removed the external device
and plugged it into a different computer without the transparent encryption, the file be
unreadable.

The advantage of this approach is that it gives a user access to the decrypted data only
when necessary. It allows him/her to work with the files, but does not allow him/her to
share the protected files with others, unless they are also running the transparent encryption
solution. This allows the solution to ensure, that no files are accessed by an unauthorized

10

user. Furthermore, any overhead can be eliminated, if all protected files are encrypted
just-in-time (JIT), when they are first accessed.

Although there is plenty of advantages to this approach, there are still several disad
vantages. The main disadvantage is, that it is fairly complicated to implement it properly.
The idea behind the implementation is to basically „fake" read and write information, so
that the file system and any application that is trying to read a file can access a different
content, then is actually stored on the disk. On top of that, usually such solutions have
to rely on implementation details of file systems and user applications to get them to work
properly.

Based on the description above, I decided to implement the transparent encryption
solution.

11

Chapter 3

Proposed
Solution

Transparent Encryption

This chapter introduces the proposed transparent encryption. The first section 3.1 defines
the requirements and expectations of the encryption solution. The approach chosen for this
thesis is described in section 3.2. Finally, the encryption header as well as the algorithms
are shown in section 3.3.

3.1 Requirements and Expectations

This section defines the requirements and expectations of the encryption solution. The spe
cific requirements are described in the first subsection. The following subsections then
describe the targeted end-user and the expected work flow respectively.

Encryption Solution Requirements

There are multiple requirements for a successful integration with a D L P solution, which
should be considered during the design:

1. A n option to define which data should be protected.

2. Data must be protected even outside the company's premises.

3. Data must be accessible and readable outside the company's premise.

4. The protection algorithms used must be strong enough to resist simple cracking me-

5. The encryption solution should be easy to deploy and use.

6. The solution should be able to easily integrate with the existing D L P product.

7. The solution should work hidden to the end-user.

There are two commonly used options to define files which should be protected. The first
one is by specifying protected folders. Then, any file that is copied into the folder will be
protected automatically. The second one is a secondary file stream. It would be possible to
write an information into the secondary file stream to notify the encryption logic that this
file should be encrypted.

thods.

12

By using a transparent encryption, it can guarantee both second and third point of
requirements at the same time. Since files would be encrypted JIT, any protected file
will be automatically encrypted and only readable by a user if he/she accesses the file
inside the company's network. Furthermore, by implementing a custom encryption logic,
an external application can be introduced to provide a proper access to the encrypted
data. This also means, that a secondary user-defined password would be usable in cases
where the user authentication cannot be verified through the D L P solution deployed in
the company.

Appendix B shows a figure which defines use cases that should cover the requirements
mentioned above. There are two actors - an administrator and a user, because the person
who is configuring the encryption solution will not be the same person who will be using it.

End-users Description

This solution is aimed at users who use the computer at work on daily basis and are
a potential source of data leak whether intentional or unintentional. That is, the features
it provides, are to be used by the user. There are two different groups of users who could
benefit from it. The first group, are all users, who are unaware of the potential damage
they may cause and their data should be protected automatically to prevent any possible
leaks. The second group, are users, who are aware of potential leaks, but choose to use
the features in order to protect their data, for example, while they are being transferred
between two destinations and the transfer path itself is not secure.

Expected Workflow

It is expected that the more common use case of the encryption solution will be on-demand
with external devices instead of protecting a local storage path and running constantly on
a system. The reason for this is that usually full-disk encryption is sufficient for situations
like these. The encryption solution does not attempt to replace it, but rather extends it by
adding new features which would not be available in a full-disk encryption approach.

There are two different workflows worth noting. The first is a user working with a trans
parent encryption set-up on a local disk:

1. A n admin deploys the encryption solution and sets a protected folder on a local disk
alongside the D L P solution.

2. A user logs into his/hers Microsoft Windows account and a D L P solution is automat
ically launched - launching the transparent encryption as well.

3. The transparent encryption detects the added folder and encrypts all the content in
it, while the user does other work.

4. If the user attempts to access any data inside the folder before it has been encrypted,
the file he/she is attempting to access is prioritized and encrypted before the user
receives an access to it.

5. Once all the files have been encrypted, the folder structure is displayed to the user
identically as before.

6. The user continues his/hers work and every file that is added to the secured folder is
encrypted and displayed to the user in decrypted form.

13

7. If the user attempts to copy the file to an external device and bring it home, he/she
will be able to access only the encrypted form of the file.

The second workflow describes a user transporting data on an external device between
two places - one with the encryption solution active and the other without it.

1. A n admin deploys the encryption solution and configures it to encrypt only on-
demand.

2. A user logs into his/hers Microsoft Windows account and a D L P solution is automat
ically launched - launching the transparent encryption as well.

3. The user realizes, he/she will need to bring data outside the company's premises to
showcase something to a customer. This would not be typically possible without
breaching the D L P policies and rules and copying the unsecured data to an external
device.

4. The user copies the files to an external device and is prompted by the running D L P
solution, whether he/she will need to use these files outside the company's network.

5. If he/she selects yes, a password prompt will pop up. He/she will be asked to enter
a password, which will be used to authorize the user on the other endpoint. In case
he/she selects no, the data protection will not be modified, and if he/she attempts to
access the data on the other endpoint, it will not be possible.

6. The user brings the external device to an unsecured location and runs an external
application which is present on the external device. The application prompts him/her
for the password he/she inputs before and if the password is correct, the application
loads the transparent encryption and allows the user to access and read the data in
the encrypted files.

7. The transparent encryption becomes inactive in the system once the external device
is removed.

It should be noted, that in both workflows the transparent encryption has been suc
cessfully hidden from the user. The only time only he/she would be able to realize an
encryption is present, is during a potential data leak or when he/she would need to use
a specific feature the solution provides.

The deployment of the transparent encryption should be seamless and required only
initially. After that, the encryption solution should be able to run on its own, while not
disturbing the user unless specifically requested.

The second workflow is more important and the main focus of the encryption solution.
While local disk storage and its protection is an interesting topic, it can be replaced by
full-disk encryption as mentioned above. Therefore, the design focuses on external devices
and how to protect them effectively.

3.2 Transparent Encryption Logic

This section describes the core ideas of the design and talks about them in greater detail.
The first subsection describes the reasoning behind choosing the minifilter approach, while
the other ones expand on that and discuss the data flow, file view provided to the user, and
external communication and settings interfaces.

14

Filesystem Minifilter Approach

Based on the analysis provided in the chapter 2.4 and requirements defined in the chap
ter 3.1, I have chosen to implement a minifilter driver. The main advantages provided by
this approach are the following:

• Transparent encryption applied only to a part of a logical storage.

• A n encryption logic which is easily extensible and not limited to use with external
devices.

• Just-in-time encryption - files are encrypted only when they are copied to the pro
tected folder.

• Possibility to change encryption algorithms when needed.

• Open-source encryption header allows other D L P solutions to extend their support
to the presented approach.

• Complete control over file movement and access.

• It is an expected functionality for a minifilter driver and in some parts even encouraged
by Microsoft by providing samples of such functionality.

There are number of concepts this approach introduces that should be addressed. Pro
bably the most important one is that even though the minifilter approach provides freedom
and gives developers higher control over files, any potential error could cause the system
to become unstable or crash. The fact that kernel drivers have to be developed with more
caution and must be thoroughly tested is true for all kernel drivers. Luckily, Microsoft is
well aware of this and provides multiple tools to verify and test whether driver's behavior
is correct.

Another concept to keep in mind is that the driver runs in kernel-mode. This means,
that it has access to system structures and functions. It would be possible for the minifilter
to work with cache manager and essentially take over the cache management. While it is
indeed a possible way to approach the implementation, it would also exponentially increase
the scope and difficulty of the implementation. While some communication with the cache
manager is expected, it is not to the extent of taking over cache entirely.

On top of that, running in kernel-mode has other advantages. For example, it provides
an extra layer of security for the driver. The reason being that it is more complicated,
to attempt to temper with a kernel-mode process than a user-mode one. Furthermore,
it is also protected by the Microsoft driver infrastructure and limitations that Microsoft
introduced to improve the security of drivers.

Data Flow

The flow of data is shown in figure 3.1
The following list explains each of the important points during the communication of

different system modules in reaction to a request from an application:

1. A user-mode application requests to read data from a secondary storage.

2. The I /O manager receives the request and forwards it to the appropriate file system
driver.

15

An application

/ User-mode
Configurating

Application
3 ^ I/O Manager

Transparent
Encryption Minifilter

Driver

0 ©

f

File system Driver

/ Secondary

Storage Dev ice /

Virtual Memory

Manager

Cache Manager

Figure 3.1: Figure which shows the I /O request and data flow.

3. The transparent encryption minifilter receives the request before it reaches the file
system, because it is higher in the driver stack. The minifilter stores identifying
information about the request and reads the data buffer associated with the request. It
then decides whether to encrypt, decrypt, or only modify file sizes based on the request
type and contained data. In this point, it is safe to modify data and to adjust file
sizes in order to virtualize the file content to cache manager (CM) and virtual memory
manager (V M M) .

4. The file system obtains or processes the request and returns the resulting data. It
communicates with the secondary storage device to obtain data, the C M to cache
read or written data, and the V M M to create memory mapping of the file associated
with the request.

5. Transparent encryption driver adjusts the file sizes and forwards the processed request
back to I /O manager. In this point, we can adjust file sizes as long as it adheres to
what the requesting application expects.

6. The I /O manager returns any result back to the requesting application.

7. This is the communication channel provided by the driver to the user-mode, which
allows to modify the driver's settings.

Virtualized File View

The main idea behind virtualizing the file view is to provide an illusion that the files a user is
currently working with are the original ones, while in fact they have been already modified

16

by the driver (for example, encrypted). Even though the explanation is fairly simple,
the implementation can be quite complex. In order to fulfill the requirements presented in
the previous section 3.1, the encryption driver must modify the file location as well as its
size and content.

The real file location needs to be modified, so that the encrypted files can be hidden
from the user in case he/she attempts to access them without the driver running. The file
size modification allows the driver to display the encrypted files as if they have not been
encrypted and appended with an encryption header.

There are two potential issues with this approach. The first issue is created by the cache
manager and the second issue arises during memory mapping of files. Caching of accessed
files will happen regardless whether we attempt to block it or not. To reliably prevent files
from being cached is impossible in the context of a minifilter. The implementation will need
to keep the decrypted data in the cache in order to allow any cached reads to go properly
through. On top of that, it will be required to encrypt data associated with a protected file
which the cache manager is trying to write through, in order to keep the encrypted data
up to date with what the user sees.

The second issue is mapped memory files since it allows a direct access to a content. This
means, that if a protected file would have to become memory mapped without driver's in
terference, the application could only access encrypted data. Consequently, the driver must
detect these requests and react accordingly by providing decrypted memory to initialize
the memory mapping.

User-mode Kernel-mode Communication Interface

Conceptually speaking, there should be two communication interfaces provided by the driver
- an internal interface and an external interface.

The internal interface would deal with communication coming from a D L P solution.
The driver should implement the following messages:

• Enable, load, disable, and unload the driver.

• Request a subject key and receive a response containing the key.

• Request to delete a subject key.

• Set a protected folder/file.

• Remove a protected folder/file.

These messages would need to be implemented by a D L P solution in order for the driver
to function properly. They are also meant to be used by an administrator, that is why
they should be separated from the interface, which would be externally accessible and only
provided internally.

The external interface would be used for communication with the user. Only one mes
sage would be needed for the communication and that is setting a key for access outside
premises. Other than that, the user should not know, that there is a transparent encryption
active and does not need to communicate with it in any other way.

17

External Application

The external application should provide a user with an interface to communicate and use
the transparent encryption outside the premises. It should be a standalone application
independent of the minifilter.

The user will need to use the application only in cases where an input is required from
him/her. This is only the case when he/she needs to set a password to access the data
outside a premise. The D L P solution should communicate with the driver and determine,
whether there are any external devices which store encrypted files and prompt the user for
an input if such files are found.

3.3 Encryption Architecture

A proposed encryption logic can be found in this section. It describes the encryption
header, which is the main part of the encryption logic and proposes algorithms to be used
on the data and on parts of the encryption header.

The encryption is done by appending an encryption header to any file that needs to be
protected and encrypting the content. The header than contains all the information required
to decrypt the file, so that the driver does not have to store any session information and
can work with already encrypted files.

Encryption Header

The minimal encryption header should consist of a header identifier, a symmetric content
encryption key, and a subject key.

The header identifier is a predefined set of bytes of fixed length, which should be as
unique as possible. The driver would read this header and based on that determine whether
the current file is already encrypted or not.

The symmetric content encryption key is used for encrypting data of a file. It is genera
ted by the driver for each request. The key is then stored in the header, so that the driver
does not have to keep the information in the memory.

Lastly, there is the subject key. This key has to be obtained externally from the D L P
solution which implements this header. This key is expected to be asymmetric and would
be used to encrypt the entire header. This means, that the driver needs to ask for this
key before attempting to access an encrypted file and also needs to store it in its memory.
Furthermore, the driver also needs to deal with managing the subject keys and reacting to
their changes.

A simple checksum should also be added to provide an extra verification that the header
or file data were not tampered with or modified.

Encryption Algorithms

Based on the analysis in the previous chapter in the section 2.4, majority of the D L P
solutions tend to use AES-128 or AES-256. Based on this and the fact that AES-192 and
AES-256 are deemed strong enough by the N S A 1 to protect T O P S E C R E T information [17],
these algorithms should be sufficient for use in the implementation as well.

x h t t p s : //en. wikipedia.org/wiki/National_Security_Agency

18

http://wikipedia.org/wiki/National_Security_Agency

Chapter 4

Microsoft Windows Driver
Development

This chapter explains the basics and motivation behind developing a driver. Section 4.1
introduces Windows driver model and explains available driver types. Basic structures used
during driver development are described in section 4.2. Finally, section 4.3 goes through
the frameworks provided by Microsoft for driver developers and explains their differences.

4.1 What is a Driver?

The definition of a driver can be difficult to properly formulate. Simply said, a driver is
a software component which enables a communication between the operating system and
a device. For example, if an application needs to get data from a device the application has
to call a function implemented by the system. The system then calls a function implemented
by the driver corresponding to the one called by the application. The whole exchange can
be seen in figure 4.1. [7]

Usually, it is not only one driver which participates in the communication chain, but
rather multiple drivers which are layered on top of each other. Microsoft Windows system
uses a layered design, where each driver forwards a call request to the underlying driver,
until it reaches the device. A driver which relays information to the device and manages
control messages for the device is called a function driver. A driver which only forwards
requests (or performs minor modifications and/or monitoring) to other drivers is called
a filter driver. Similar exchange is described in figure 4.2. [7]

To specify the definition further, drivers don't have to always communicate with any
device. It is possible to implement a driver which communicates only directly with the op
erating system and extracts data from its memory. In such cases, there is an option to write
a software driver. Software driver runs in kernel memory and has access to all structures
exposed by the system. To access these structures in the user-mode, the driver can send
a message to the user-mode application containing any data it needs. This process may
seem unnecessary, but the user-mode and kernel-mode is implemented this way, in order to
prevent user applications direct access to kernel memory. [7]

Software drivers always run in the kernel-mode, since the main reason for writing such
a driver is to access system structures and data. On the other hand, device drivers may
not require access to any system structures or data. This allows similar drivers to run

19

Application

i k
>

User mode
System

Kernel mode
System

i

'

•river <- >j Device

User mode

Kernel mode

Figure 4.1: A default driver location
when participating in a data exchange
with a device.

Application

S.."ste -I

Filter driver 2

Y
Function
driver 3

Figure 4.2: A Layered driver arrange
ment when participating in a data ex
change with a device.

in user-mode instead of kernel-mode making them much safer and easier to manage and
debug. [7]

Furthermore, filter drivers are divided into upper filters and lower filters. Upper filters
are located above the function driver and filter any messages that come through the driver
stack. Lower filters are located below the function driver. A l l filter drivers are optional and
may not participate in the communication at all. [7]

Lastly, a driver which coordinates information exchange on a bus and manages it is
mandatory in data exchange with a device. Such driver is called a bus driver. A n example
of how the driver stack looks in this case is shown in figure 4.3. [7]

Device Classes

The Microsoft Windows system defines classes and GUIDs which allow developers to man
age a specific group of drivers together. The only available classes are predefined and it is
not possible to define additional ones. [9] A l l the classes that system defines are documented
online in Microsoft's public documentation archive1

Function Driver

A function driver is a main driver which manages a device. It is typically written and
provided by the vendor of the device. A specific function driver can service multiple devices
if there aren't any other drivers which would be a better fit for the device. [12]

A n interface to control a device is usually provided by the function driver. It handles
reads and writes to the device as well as power policy. The bus driver encapsulates any
communication going directly to device, therefore the function driver doesn't have to be
aware of available hardware interfaces, neither any bus timings and synchronization. [12]

The function driver is always loaded by the PnP manager. The manager loads only
the best-fit driver. This means, that each driver has to specify, which devices it is meant

xhttps://docs.microsoft.com/en-us/windows-hardware/drivers/install/system-defined-device-
setup-classes-available-to-vendors

20

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/system-defined-device-

Upper-f i l ter c lass

filter driver

z x z
Upper- f i l ter device

filter driver :
Funct ion driver

ZXZ
Lower-f i l ter c lass

filter driver

Lower- f i l ter device I

fi lter driver !

Device drivers
i

Bus drivers

•

Bus filter driver ;

Bus driver

Figure 4.3: Different filter drivers in a driver stack.

to work with. The manager then goes through list of devices and its assigned devices and
selects the one, which matches the device's hardware identification the best. [12]

Bus Driver

A bus driver manages a bus controller, adapter, or bridge. Drivers for most common buses
are provided by Microsoft. The bus driver is required. Every physical bus needs to have an
assigned bus driver in order to function properly. There can be multiple bus drivers loaded
at the same time for a bus, but always at least one. [10]

The main responsibilities of a bus driver are:

• Enumerate the devices on its bus.

• Respond to Plug and Play I /O request packets (IRPs) and power management IRPs.

• Multiplex access to the bus.

• Generically administer the devices on its bus.

The device enumeration is a process where the driver identifies any new devices on
the bus and creates new device object for each of them. There are some operations which
the bus driver makes on behalf of the device like accessing the device's registers to physically
change its power state. [10]

It is important to note that the bus driver doesn't handle read and write requests. These
requests are handled by the function driver mentioned above. Although, it is possible for
a device to be used in a raw mode. Then, the bus driver must handle these requests
regardless of the function driver. [10]

21

Filter Driver

Filter drivers are usually associated with other main driver like a function driver or a bus
driver. They add value to or modify the device behavior. Filtering a bus driver is typically
used to implement proprietary enhancements to a standard bus interface. [11]

Upper-level and lower-level filter driver describe the filter driver's location in the current
stack. If it is below the main driver it is filtering for, then the driver is called lower filter.
Upper filter is a filter driver which is above the main driver in the driver stack. [11]

Upper-Level Filter Driver Since the upper-level filter drivers are above the main driver in
the driver stack they receive any requests before the main driver does. Therefore, they are
usually used to further improve a device's capabilities. For example, they could perform
additional security checks and stop any malicious requests before they reach the device or
monitor what messages the device receives and send the logs back to a user-mode auditing
application. [11]

The number of upper-level filters is not limited, and one main driver can have any
number of them. The only limitation I found is the size of the driver stack. [11]

Lower-Level Filter Driver The lower-level filter drivers are typically used to modify the be
havior of devices. Such modification is possible, because the filter is able to modify any
IRPs going to the device from the function driver which is associated with this filter driver.
The filter driver can also be used for monitoring the IRPs on the way to the device. [11]

4.2 Driver Architecture

There are several concepts which are crucial for proper understanding of the Windows
driver design and development. While the list in this section is not finite, it should cover
the most important ones which are heavily utilized by this work.

User-Mode and Kernel-Mode

A processor in a computer running on a Windows system uses two different modes - kernel-
mode and user-mode. Applications run in user-mode while system processes and core
components run in kernel-mode. The processor is able to switch between the two as needed,
depending on what type of code it is running at the moment. As mentioned above, some
special drivers are still able to run in user-mode despite being a system process. [6]

When an application is started, the system creates new process for it. It provides the ap
plication an allocated private virtual address (VA) and a private handle table. Since the V A
is private, it is protected from unintentional or malicious access by other applications. Each
application run is isolated from another. Consequently, if an application crashes the crash
and its effects are limited to only that application. [6]

In addition to being private, the V A space is protected by the processor mode. When
a processor runs in user-mode, it is unable to access any addresses belonging to kernel-
mode address space range. Thus, critical system data are protected from a user application
accessing, modifying and damaging them. [6]

Comparatively, all code running in kernel-mode shares one virtual address space. This
means, that unlike user applications which are isolated from each other, this is not the case
for kernel processes such as kernel-mode drivers. Every kernel-mode driver has access to

22

the whole kernel-mode address space and is able to write to or read from any of its addresses.
Although, such address must still be legally writable, the write must be properly aligned,
it mustn't be locked by synchronization, etc. If any of the kernel-mode drivers crashes, for
example, by accessing a locked memory without requesting the lock ownership, it causes
a crash for the entire operating system. [6]

Device Objects and Device Stacks

The device tree represents a complete description of all devices currently present on the host
machine. It is constructed by Plug and Play (PnP) manager during startup and when a new
device is connected. The PnP manager asks each bus to enumerate its devices currently
connected. The bus driver creates physical device object (PDO) for each of the connected
devices. The PnP manager then associates a device node witch each P D O that has been
created. [3]

Every device is represented by a device node in the Plug and Play device tree. Each
device node contains an ordered list of device objects, which is called the device stack.
Each of these objects has an associated driver. Every device node has its own device stack.
The device object is an instance of a DEVICE_OBJECT structure. [3]

I/O Request Packets

When a request is sent to a device, it is usually packaged in an I /O request packet (IRP). To
send an IRP to a driver, Microsoft provides a function I o C a l l D r i v e r which takes a pointer
to a DEVICE_OBJECT and a pointer to the IRP. [5]

Typically, when an IRP is sent for processing, it is first sent to the top of a device stack
based on the associated DEVICE_OBJECT. Every DEVICE_OBJECT structure contains a pointer
to its associated DEVICE_OBJECT. Upon receiving the IRP, a callback is invoked, which is
defined by a driver associated with the aforementioned DEVICE_OBJECT. [5]

IRPs are self-contained. This means that they hold all the information which a driver
could require in order to process the I /O request. The IRP structure contains both infor
mation common to all drivers and information specific to the current driver. [5]

Driver Stack

Requests to device drivers are usually sent packaged in an IRP. When sending a read,
write, or control request to a device, the I /O manager locates a device node which is
associated with the device and sends the IRP to its device stack. There can be multiple
device stacks involved in processing one IRP. To process the given request, a driver, which
is associated with the current DEVICE_OBJECT processing the IRP, is invoked. The driver
processes the IRP and either completes it or sends it further down the device stack to be
further processed by other drivers. The sequence of all the involved drivers is called a driver
stack. [4]

4.3 Frameworks Available

Microsoft provides two core frameworks for Windows driver developers. The first and older
one is called Windows Driver Model (WDM) and the newer one is called Windows Driver
Framework (WDF). The features and capabilities of the framework came a long way since

23

W D M . Both W D M and W D F are still widely used. W D F is preferred for device drivers
and in cases in which we can sacrifice some control over the driver functions. [16, p.68-80]

Windows Driver Model

W D M replaced V x D and Windows N T Driver Model. The goal of this framework was to
unify driver models for Windows 9x and Windows N T by defining standard requirements
and structures. A l l the crucial structures for driver developers came from W D M and are
described by it. This significantly simplified the driver development process. The W D M is
supported by all Windows systems since Windows 98. [16, p.68-80]

Although this framework was an improvement, there were still some issues with it.
Namely, managing power policies of devices was unreasonably difficult and even seasoned
driver developers had difficult time trying to get it right. I /O cancellation was quite difficult
as well. And there is no support for writing user-mode drivers. [16, p.68-80]

Windows Driver Framework

W D F complements the older W D M . It extends it and abstracts away multiple processes
and requirements when developing a driver. It consists of two frameworks - Kernel-Mode
Driver Framework and User-Mode Driver Framework. [2]

Kernel-Mode Driver Framework

The drivers developed with the use of kernel-mode driver framework (K M D F) are always
kernel-mode drivers and are supported by Windows 2000 and later. The K M D F is object-
based and built to extend the W D M . Its goal is to reduce the amount of code that is
required to write a kernel-mode driver. It manages power policies of devices and handles
plug and play, making the driver less complicated. [2]

User-Mode Driver Framework

The user-mode driver framework (UMDF) is quite similar to the kernel-mode one. User-
mode drivers do not provide as much versatility and freedom as kernel-mode drivers but
on the other hand are less prone to crashes and should never cause a system wide crash.
Kernel-mode drivers also have the advantage performance wise. The main advantage of
user-mode drivers is that they simplify a lot of development details, such as power policies
and device states during multi-threaded processing. Drivers developed using the user-mode
driver framework are supported by Windows X P and later. [2]

24

Chapter 5

File System Driver Development

This chapter defines basic types of file system drivers in section 5.1. Later in the chapter,
the concepts and system managers are described. They are important for the file system
development, general understanding of the role which file system drivers take, and the flow
of requests and communication between a storage and a user application.

5.1 File System Drivers

A file system driver (FSD) manages storing and retrieving of data. It is part of the storage
management subsystem. The commercially available local file disk implementations provide
the following functionality [15, p.21]:

• Create, modify, and delete files.

• Sharing files and transferring information between them easily through a secured and
controlled manner.

• Structuring the contents of a file in a way that it makes more convenient for the ap
plication to access.

• Identifying stored files by their symbolic or logical name, instead of using the physical
device name.

• Viewing the data logically, instead of a more detailed physical view.

Although, it is a kernel-mode driver, it is quite different from standard kernel-mode
drivers. The most notable difference is that it is required that the FSD registers itself
as a FSD service to the I /O manager. FSDs also interact with memory manager quite
extensively and rely on the services of cache manager for enhanced performance. There are
two main types of FSDs which are possible to design, implement and install in the Microsoft
Windows environment - Local FSDs and Network FSDs. [15, p.22]

As the name suggests, local FSDs manage data stored on storage devices connected
directly to the host. A simplified view of an I /O request and FSD interaction is shown in
Figure 5.1. The FSD receives requests to open, create, read, write, read file information,
write file information, read directory information, and close files on a storage. [15, p.22]

Network FSDs provide an option to share a locally connected storage over the network.
A network FSD consists of two components - the client-side redirector and the server on
a node which has the shared disk connected locally. The client-side takes care of issuing

25

User mode thread ,

User mode

Kernel mode •

I/O Subsystem Manager

•

Files., stem driver

Figure 5.1: Example of I /O request being passed to logical volume.

requests to access data stored on the server and receive response from the server containing
the requested information. The server-side must be able to receive these requests, access
the local data and provide their content back via the network. [15, p.22]

5.2 File System Filter Drivers

A file system filter driver is an intermediate driver, which is able to intercept requests
targeted at recipients lower in the driver stack. Therefore, a file system filter driver is
basically an extension or even a replacement to the original recipient of the request, typically
the file system driver. [15, p.47-48]

Developing a file system filter driver has been originally quite difficult, despite being
a common approach to add range of security features to file access. Therefore, Microsoft
introduced a new model called Filter Manager (FM) Model. It encapsulates legacy filter
driver interface and provides a simplified one with functionality, that is usually required by
file system filter drivers. A driver which utilizes the F M is called a Minifilter. [8]

5.3 I/O Manager

The I /O manager manages and defines the N T I /O subsystem. A l l the kernel-mode drivers
which control or interface with peripheral devices reside within the subsystem. Since there
are new types of peripheral devices being designed and developed continuously, the Windows
N T subsystem has to be well-designed and extensible in order to properly accommodate
new devices without issues. [15, p. 118]

Multiple generic system services are provided by the I /O manager. These services
are used by other subsystems to perform I /O or request other services from kernel-mode
drivers. Consider the following example: a user application initiates a read request. This
request is directed to Win32 subsystem. Now, Win32 subsystem does not directly target
the underlying FSD, but rather invokes a system service called NtReadFile () provided
by the I /O manager. This service then assumes the responsibility of handling the read
request and returns back to Win32 with a correct result. Consequently, the NtReadFile ()
also checks the validity of provided data and memory buffers. For security reasons, it is
important to not trust some buffers being provided to kernel-mode drivers from user space.
The received memory address has to be verified, that it belongs to the calling application
and that it has rights to access it. Furthermore, every buffer has to be properly aligned
a provide the specified length of allocated memory. If the buffers are validated successfully,

26

it also performs the necessary operations which make the user space address readable inside
the kernel-mode. [15, p. 118-122]

A l l the drivers in the system must conform to the I /O model defined by the I /O manager,
otherwise they won't be allowed to make I /O requests. As mentioned above, it consists
of objects and provided services which access and manipulate these objects. Thanks to
this approach, kernel-mode driver developers don't need to concern themselves with tech
nicalities of requesting I /O. Furthermore, it allows the drivers to define a generic behavior
for incoming I /O requests disregarding the initiating subsystem. The single I /O model
allows kernel-mode drivers to use services provided by each other and consequently allows
the kernel-mode drivers to use the layered hierarchy approach. [15, p. 118-122]

The I /O manager interacts with both the Cache Manager (CM) and the Virtual Memory
Manager (V M M) . Virtual block caching is supported thanks to the C M . Interaction with
the V M M and file system allows support of memory-mapped files. [15, p.118-122]

5.4 Virtual Memory Manager

One of the goals of V M M is to manage, provide, and optimize an access to the physical
memory available on the host machine. On top of that, the provided memory must be
protected from access of other applications. This means, that both the code and the data
location must be provided in a way that any other application is not able to access it. This
applies to the operating system and its memory as well. Furthermore, some applications
may require sharing some part of their memory with other applications. This has to be
facilitated and supervised by the V M M and allowed only in cases where proper access rights
are provided by all the participating applications. The V M M also makes sure the integrity
and security of the machine is not violated. [15, p.195-196]

Memory-Mapped Files

Memory-mapped files (MMFs) offers applications an option to access files on disk the same
way they access dynamic memory. This means, that it is possible to map any portion of file
on disk to memory and once the mapping is complete, accessing the memory is as simple as
dereferencing a pointer. The same applies to writing data to memory-mapped files. This
approach also provides a way for two applications to share memory, because it is possible
to map a file to the memory more than once. [15, p.213] [14]

The memory-mapped files are frequently utilized by the cache manager during read and
write requests. It is also possible to explicitly create a mapping of a file by calling functions
provided in the WinBase 1 A P I .

5.5 Cache Manager

The cache manager is a component which closely cooperates with the V M M . It provides
and manages a consistent system-wide cache for files. The cache manager also attempts to
provide the ability to perform read-ahead on files. Since buffered file requests go through
the manager, it is able to track file accesses, analyse the access patterns and provide read-
ahead on per-file basis for files which are most likely to be accessed in the near future.
Furthermore, it is able to delay writes to disk. This means that it holds changes made to

x h t t p s : //docs.microsoft.com/en-us/windows/desktop/api/winbase/

27

http://microsoft.com/en-us/windows/desktop/api/winbase/

files in the memory and writes the modified data to disk after some time has passed and it's
less likely that the data would be modified again soon. Thanks to this approach ensures
better responsiveness for the user application which performs the write. [15, p.243-246]

Cached Read

The idea of using the cache to satisfy a read operation is to improve performance when
issuing multiple reads to the same file with the same content. The process starts in I /O
manager as any other request. The I /O manager forwards the request to the appropriate
FSD. The FSD then recognizes that the request is directed to a file that is opened for
buffered access. The request is then passed to the cache manager. Consequently, the cache
manager is now responsible for managing and transporting the request data to the user's
buffer. [15, p.248-252]

Cached Write

The cached write operation is very similar to the cached read operation. The difference
being, that the caching occurs for data, which are provided by the user (or any other
requester). This means, that data which are written are being cached at the same time. [15,
p.252-255]

File Size Information

There are three different file size values which are used by FSDs [15, p.267]:

• The A l l o c a t i o n S i z e is a value which reflects the actual on-disk space reserved for
the file. It is a multiple of the minimum allocation size of the file system which
manages the storage where the file resides.

• The F i l e S i z e value defines the end-of-file (EOF) mark. A l l read operations return
E O F when attempting to read beyond this size.

• The ValidDataLength represents the amount of data stored within the file.

A n important thing to note is that any changes done to one or more of these fields
has to be synchronized with other read or write operations and the cache manager has to
be informed immediately about the changes. The reason for this, is that the FSD can be
bypassed by I /O manager, when it transfers data using the fast path and cache manager.
It should also be noted that changes in the F i l e S i z e are not usually synchronized with
paging I /O requests. [15, p.267-269]

5.6 File System Dispatch Routines

Dispatch routines are invoked as a reaction to a request coming to a driver. If the driver
defines a routine which corresponds to the type of the incoming request it is called with
parameters corresponding to the request. If it wasn't defined, the driver is skipped and
the request is passed to a next underlying driver. [16, p. 12-30]

Typically, each of these routines has two definitions - a pre-operation routine or a post-
operation routine. This means that a driver has a chance to process a request on its way
down the stack and also on the way back going up the stack. The pre-operation usually

28

contains all the information about a request that is needed by the driver to complete it
(usually the FSD when dealing with files). The post-operation routine on the other hand,
contains the requested information obtained by completing the request. [16, p.12-30]

Driver Entry

This is the main routine of a driver. It is invoked by the I /O manager when a driver is
loaded into the system. Drivers usually perform following operations in this routine [15,
p.390-392]:

• Allocate and initialize memory for global structures.

• Create device object which can accept any request sent to the underlying device.

• Register itself with the I /O manager.

• Initialize function pointers for other dispatch routines.

• Initialize function pointers for the fast I /O path.

• Initialize any timer or synchronization objects.

Every Driver needs to have this routine defined and implemented. Returning anything
other than success here means that the whole process of loading the driver will fail and
continue with other drivers. Since this is an default initialization routine for drivers, this
is where designing boot drivers becomes prone to bugs. If there is a boot driver which is
required by the system (or specified as such by the user), failing during the load of a driver
will prevent the system from booting. [15, p.390-392]

Create

This routine has to be always called before a read or write operation can happen. Even
though the routine is called „create" it is typically used for opening a file and obtaining its
handle. When this routine is invoked, the driver has access to multiple different structure
members which specify information about the request and its parameters, such as desired
access, user authentication, requested shared access, pointer to the file object, etc. [15,
p.397-401]

The pre-operation routine contains primarily the path that to the file which should be
created and/or opened. Therefore pointers to file object or file buffer are invalid, since
the file doesn't exist isn't opened yet. [15, p.397-401]

The post-operation routine contains valid pointer to file object and file buffer. [15,
p.397-401]

Read

This routine is invoked when a driver receives a request to read the contents of a file.
The read can be requested in multiple ways. For example, the user may require satisfying
the request from cache or on the other hand to never satisfy it from cache. The way
the request is made also affects valid parameters in the read request structure. The request
might not even come from a user. It is common to receive a request which originated in
Cache Manager to read data which are meant to be cached. [15, p.424-426]

29

The pre-operation contains information about the requested file and details about the re
quest, such as read length, starting address, length of the buffer which receives the result,
etc. [15, p.424-426]

The post-operation receives the result and information about the course of the request.
Data that has been read is stored as a member as well as information whether the request
succeeded and how many bytes have been read. [15, p.424-426]

The read operations are round by FSDs up to a multiple of the sector size of the un
derlying file storage device. Therefore, when modifying the read data, the new data buffer
needs to rounded to a multiple of the sector size of associated device. [15, p.424-426]

Write

This routine gets invoked whenever there is a request to write data to a logical storage.
Just like the read request, the write request can be created with different requirements. It
may be requested to cache the written data, prohibited to use the cache, required to page
the data, etc. Once again, it is possible for the request to originate from a different source
than user application. For example, the cache manager can request to write-through its
cache to a logical storage. [15, p.437-439]

The pre-operation contains data which are supposed to be written to the destination. It
also contains some details about the request - length of the data, destination of the request,
etc. [15, p.437-439]

The post-operation only receives information about the result of the request and number
of bytes that have been really written. [15, p.437-439]

File Information

File information is requested when a participant needs to know some information about
a file. There are number of different types of file information requests where each of the type
results in obtaining different information about the file. These types are distinguished by
different structures supplied to the request. File information is often requested by other
subsystems in order to properly complete other requests like a read or write request. [15,
p.476-479]

The pre-operation describes the requested type of file information and ways to identify
the target file. [15, p.476-479]

The post-operation contains filled structure which corresponds to the requested type of
file information. [15, p.476-479]

Directory Control

There are two different types of the directory control request [15, p.503-504]:

• Request to obtain information about the contents of a directory.

• Request to notify the driver about changes occurring to the files/directories inside
a directory.

The first one occurs more often and is generally used when navigating directory struc
tures. The request can be specified further by providing information about what type of
data is the requesting actor interested in. The requester may for example want to know
metadata of the files in a directory. [15, p.503-505]

30

The second one is not as common and provides a transparent way for drivers to monitor
directory structure and changes to it. Since the directory change notification occurs only
when there is a change in a directory, applications are able to provide contents of directories
which are always up to date, without having to worry about polling the directories. [15,
p.509-510]

The pre-operation specifies whether this request is a change notification or a content
information request as well as the target directory. [15, p.509-510] [15, p.503-505]

The post-operation contains the result of the request - either buffer with stored infor
mation about the contents of the directory or status whether the notification succeeded in
reaching FSD. [15, p.509-510] [15, p.503-505]

Cleanup and Close

There is a slight difference in these two routines. The cleanup routine is invoked for each
successful Create operation which opened a file object. The close routine is similarly
invoked for each Cleanup operation, but can be delayed. Receiving a Cleanup operation
means, that all user references have been closed, but in cases when there are any references
still pending, it waits for them to close. Therefore, it is important to understand, that a file
object is not closed until there has been a Close operation for the specified file object. [15,
p.525-526] [15, p.529-530]

31

Chapter 6

Implementation

This chapter describes the implementation of all the modules in greater detail. Section 6.1
introduces the specifics of the driver and how it achieves the transparency. At first it
discusses the steps and the configuration required in order to install a driver and get it
running. The transparency process is divided into number of different subsections, where
each of the subsections corresponds to one of the phases in the transparency process. Each
of the phases is described in regards to the IRPs that it has to modify. The encryption
module is presented in the next section 6.2. In this case, the default algorithms are de
fined here as well as the structure of the encryption header. There are two other extra
modules implemented to complete the solution - configuration application and U M decryp
tion application. These modules are described in sections 6.3 and 6.4 respectively. These
are relatively small modules, compared to the other ones. These modules were added to
the work to make it usable as a stand-alone application.

6.1 Transparency Filter Driver

The driver is implemented as a file system minifilter driver, therefore the language used is
C. The core idea behind the transparent approach is to detect a moment, when a user is
accessing a file, and change the way the file is displayed to him/her. This way, it is possible
for the user to work with the file, even though it is stored in its encrypted form on the disk.

Driver Initialization Phase

The driver is written based on the Minifilter Framework standard. It implements the default
initialization function DriverEntry. In this function, it calls F l t R e g i s t e r F i l t e r standard
A P I function, which allows the driver to register as a filter driver and to let Filter Manager
(FM) know, that it is available. Furthermore, the driver registers different types of callbacks,
which are invoked whenever the driver receives IRP of the same type. The driver registers
for callbacks of the following IRPs:

. IRP_MJ_CREATE

. IRP_MJ_READ

. IRP_MJ_WRITE

. IRP_MJ_QUERY_INFORMATION

32

IRP_MJ_SET_INFORMATION

. IRP_MJ_DIRECTORY_CONTROL

. IRP_MJ_NETWORK_QUERY_OPEN

During the DriverEntry initialization phase, the driver also creates a new list, which
is used to store the protected paths and sets its version to 1. Then, the driver creates new
communication port, which serves as the public interface for internal communication with
the driver. This is done by calling standard A P I function FltCreateCommunicationPort.

After all the resources have been properly initialized, the driver calls standard A P I
function F l t S t a r t F i l t e r i n g , which notifies the F M , that the driver has finished the ini
tialization phase and can now be injected into a driver stack.

Driver Attachment Phase

A filter driver is able to monitor requests made towards a disk, only after it is attached to
the given disk. As it was mentioned earlier, every device has its own driver stack. This
means that every disk has its own driver stack. Therefore, the filter driver must attach to
the correct driver stack in order to filter requests.

The filter driver can either be attached automatically or manually by invoking the filter
manager. In both cases, the filter manager asks the running drivers, whether they would
like to attach to the current disk. If a driver responds positively, the filter manager then
initializes resources for him/her in the driver stack and injects him/her into the stack.

The automatic attachment occurs every time a new storage device is connected to
the endpoint. This also means, that the attachment phase will occur at least once during
the boot for all the connected storage devices. This is also the moment, when the default
file system driver is determined. File system drivers are inquired first and once the default
driver has been established, the filter manager then asks the filter drivers.

Per-operation Context and State Information

Thanks to the Windows Minifilter framework, it is possible to define a context, that can
be attached to an IRP we are currently processing or to some of the IRP's parameters.
This allows us to store information about requests, which can be persistent across different
requests towards the same file or even across different files. Similarly, it may be only defined
for the current IRP.

In my case, I decided to implement FILE_CONTEXT which is defined on per-file basis.
This means, that the defined context is available in all requests which are made towards
the same file (more specifically, towards the same FILE_OBJECT). Therefore, the driver can
define, for example, whether the current file has been already protected or not. This also
considerably improves performance, because the driver does not have to check a file every
time it is accessed to read the encryption header identifier. The entire structure that is
stored inside the context is as follows:

33

typedef s t r u c t _FILE_CONTEXT {
PFLT_FILE_NAME_INFORMATION FileName;
ULONG O r i g i n a l F i l e S i z e ;
ULONG NewFileSize;
ULONG EncryptionHeaderSize;
BOOLEAN OffsetShifted;
BOOLEAN Encrypted;
BOOLEAN PathMatched;
LONG PathArrayVersion;

} FILE_CONTEXT, *PFILE_CONTEXT;

Listing 6.1: File context structure definition

Protected Paths and Files

The driver receives information, about which paths should be protected and stores the in
formation in its own path list. Whenever there is a request made towards a file and an
IRP is issued, the driver extracts the file's path from the IRP and cross-checks it with
the previously mentioned list. If it finds the same path or sub-path, it stores the result in
the file context. This considerably enhances its performance, since traversing list and com
paring strings, especially, when there is tens to hundreds of requests coming to the driver
in a second, is a costly operation.

The list of protected paths can change at any point of processing a request. For this
reason, the driver uses a simple versioning system. The version is incremented, every time
there is a new path added or removed to or from the list. The version is also stored within
the file's context. This ensures, that the driver always knows, whether it should go through
its list again, or if it can rely on the information read from the file's context.

First Time File Access

When a file is accessed for the first time, the first IRP type that is issued is IRP_MJ_CREATE.
Mainly, because the Windows system has to open the file's handle everytime it needs to
access it, even for querying information from the file. In order to obtain a handle to the file,
this IRP must be issued.

IRP_MJ_CREATE
Pre-operation callback first attempts to obtain the path information about the current file
that is being requested. If it is successful, the file's path is stored as a string in a callback
completion context which is accessible only by the post-operation callback. The callback
then returns status, which requests a post-operation to be called once the request is travers
ing back up the driver stack.

Post-operation callback checks for the completion context and verifies, whether it is deal
ing with a file that should be protected. If the file should be protected, it creates new file
context and attaches it to the FILE_OBJECT. Then, it stores the path from the completion
context passed from the pre-operation callback in the newly created context. After that,
the driver goes through its list of defined paths that should be protected and compares them
to the current file's path. The result of the search is then stored in the context alongside

34

the version of the list mentioned earlier. If the driver is dealing with a file which should be
protected, it flushes the cache defined for the current file and returns STATUS_REPARSE and
restarts the operation to release any locks.

Processing any consequent IRPs allows the driver to quickly recognize, whether it should
be protecting the file or not. It does so by reading the information stored within the file
context. If the driver is not interested in this file, it simply forwards all IRPs regarding this
file to the underlying driver. On the other hand, if this is a file, which should be protected,
the driver reads first few bytes to determine whether the file has already been encrypted or
not. In case it reads the specified encryption header identifier, it assumes that the file has
been protected by the driver. This information is stored in the context and the callback is
completed.

In case the driver does not read the encryption header identifier at the start of the file,
it performs a second read, to read the whole file. Then, it calls the encryption library
and encrypts the content of the file and also appends the encryption header. After that,
the driver performs a write operation and replaces the previous content of the file with its
encrypted content.

After the file's handle is obtained, the system will usually query some information from
the file by issuing IRP_MJ_QUERY_INFORMATION. This IRP has to be handled by the driver
as well, although it modifies only one parameter.

IRP_MJ_QUERY_INFORMATION
Pre-operation callback only checks for the file context. If there is the context attached,
the driver returns a status to indicate, that the post-operation callback should be invoked.

Post-operation callback gets invoked, on its way back up the driver stack, after it reached
the file system and has been filled with the requested information. Since this callback
got invoked, the driver knows, that it should modify the returned information. Generally,
the driver attempts to modify any file size information, to match the size of the file in its
original state. The exception to this rule are cases, when this callback gets invoked right
before a read request is issued. The driver recognizes these cases and returns the real size
of the file. This is done to avoid issues, where the file system appends null characters to
the end of the file, since technically we have to read beyond the end of said file when we are
processing a read request and some applications may not deal nicely with that. In these
cases, the driver returns the original size to avoid this issue.

Data Read

When a user requests to read the content of a file, the system issues an IRP_MJ_READ towards
the disk that stores the file. The pre-operation contains all the information necessary for
the file system to properly read the data from the disk. The file's content is then returned
in the post-operation in IRP's parameters.

IRP_MJ_READ

Pre-operation callback gets invoked before the request reaches the file system. The driver
checks for the file's context and if there is none attached, it forwards the packet towards
the file system. In cases when there is a context defined, the driver knows that it should pro
tect this file. Instead of sending the IRP down the driver stack with modified parameters,

35

it creates a new IRP and sets it with the new parameters. This ensures that the underly
ing drivers are working with the modified IRP. The driver modifies the offset from which
the data will be read, it moves the offset beyond the encryption header, in order to read
only the content of the file. The header and all the required information are read before in
a separate request. Once the content has been obtained from the file, the driver fills in how
many bytes have been read and completes the whole request, thus, sending the IRP back
up the driver stack without invoking the post-operation callback.

Data Write

Whenever system needs to write some data to a file it must issue an IRP_MJ_WRITE. Similarly
to the read operation, the system can issue a write operation without the user requesting
one. For example, the lazy writer is a component, which is part of the C M and takes care
of cache coherency. This means, that the lazy writer will write through any data, that
has been modified inside the cache, but has not been updated on the disk yet. Generally
speaking, these writes can occur at any point during the system run-time, but usually they
happen right after the user modifies data inside the cache.

IRP_MJ_WRITE
Pre-operation callback gets invoked and is processed similarly to the read operation.
The IRP is filtered by the driver before it reaches the file system. The driver then checks
for an attached context and continues to process the request if it finds the correct one. In
the case of the write operation, the driver does not move the file offset. Instead, it increases
the parameter, which defines the size in bytes that are about to be written to the disk,
to include the encryption header as well. It also creates its own IRP and sets the new
parameters. Once the new IRP is completed, it transfers all information to the original
one and adjusts the value, which defines the actual number of bytes written to the disk. It
subtracts the length of the encryption header, thus, creating an illusion the application has
written only the size of the content.

6.2 Encryption Module

The encryption part of the thesis is implemented as a library. This allows anyone adopting
the library to modify, for example, algorithms used or the structure of the encryption
header to suit their needs. The encryption logic works by encrypting a content of a file
and appending the encryption header to the beginning of the file. This header is later
used to read all information needed to access the content of the protected file. By default,
the library uses AES-256 for encrypting the content as well as the header itself and BCrypt's
random generator1 to generate random key to encrypt the file's content.

The library is implemented in C, so that it can be easily linked to the driver. The A E S
encryption uses algorithms implemented by Brian Gladman 2 . This implementation is sup
posedly secure enough to be recommended by the A E S group at Ecole Normale Superieure
which evaluates multiple different implementations3. Furthermore, this specific implemen
tation is written in C and even provides an assembler implementation. This allows us to

x h t t p s : //docs.microsoft.com/en-us/windows/desktop/api/bcrypt/
2 h t t p s : //github.com/BrianGladman/aes
3 h t t p s : //www.di.ens.fr/david.pointcheval/Documents/Papers/wl999_AES2.pdf

36

http://microsoft.com/en-us/windows/desktop/api/bcrypt/
http://www.di.ens.fr/david.pointcheval/Documents/Papers/wl999_AES2.pdf

» Encrypted by Content

Encryption

Header Content Encryption Key Content Checksum Content

Identif icatior

^ I

Encrypted by user-defined or

company-defined key

Figure 6.1: Figure which shows the binary structure of the encryption header.

use the encryption algorithms in kernel quite easily and the library only requires a couple
of modifications in order to work properly.

Encryption Header

As it was mentioned above, every file that is protected by the driver contains a header at
the start of the file. This header contains all the necessary information for the driver to
access the file's content. The header's structure is describe in figure 6.1. The design of
the header is inspired by the patented header structure by E S E T .

The content encryption key is generated with real randomness. It uses the BCrypt's
A P I function BCryptGenRandomO to generate the key. The function uses true randomness
which complies with NIST SP800-90'. This ensures, that the key is truly random and
therefore minimizes the issue of key re-use. As the name suggests, this key is used to
encrypt the entire content of the file.

To make sure, that an unauthorized person cannot access the content key stored in
side the header, the entire header is stored encrypted as well. The header is encrypted
using either a user-defined key or a company key provided externally to the driver. When
the header is decrypted inside the driver, first, it verifies the checksum stored at the end of
the header, to make sure that the content has not been tampered with.

6.3 Driver Configuration

The driver provides an interface, which can be used to communicate with it. The inter
face is implemented using the F l t P o r t 6 interface. This means, that anyone who knows
the identifier of the F l t P o r t can implement an application, which would be able to config
ure the driver. The driver accepts the following commands:

• Set user key.

• Add company key.

• Remove company key.

• Add protected path.

4https://permalink.orbit.com/#/patent ;xpn=3XF3B5E3UZPjCoOEB2EWlnf DUqlXTJ5uwQdFuycu4uk7„3D7„
26n7„3Dl;id=0;base=FAMPAT

5 h t t p s : //en. wikipedia.org/wiki/NIST_SP_800-90A
6 h t t p s : //docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/fltkernel/nf-

f l t k e r n e l - f I t createcommuni cat ionport

37

https://permalink.orbit.com/%23/patent
http://wikipedia.org/wiki/NIST_SP_800-90A
http://microsoft.com/en-us/windows-hardware/drivers/ddi/

• Remove protected path.

• Stop the encryption.

• Start the encryption.

Furthermore, I decided to implement a simple command line application, which demon
strates the proper communication with the driver. The application is able to set a user's
password, add a protected path, and remove a protected path. Once again, the applica
tion is implemented in C, in order to easily utilize the f l t U s e r . h library, which provides
implementation of F l t P o r t interface for U M applications.

6.4 User-Mode Decryption Application

This application has been implemented to provide a complete encryption solution. It offers
a very simple Graphical User Interface (GUI) which can be used to access any file without
requiring the driver to run. Since this type of access obviously breaks the transparency, it is
meant rather as a last resort and should not be provided as a common feature to the user.
Instead, it should be under the supervision of an administrator and provided on demand.

The application uses the same encryption library as the driver. Therefore, it is able to
decrypt the content in similar fashion that the driver is. It requires the user to specify which
file they want to decrypt and also an output file. The application then invokes the library's
functions, accesses the content and stores the output to the user-specified file. The output
file can then be accessed without the driver's interference.

It is important to note, that this completely removes any protection from the file pro
vided by the driver and it is then up to the the user to properly delete any files that have
been accessed this way. The original file will, of course, stay protected the same way it was
before.

38

Chapter 7

Testing and verification

The aim of this work was to provide a solution which would be able to extend an existing
D L P system and provide new functionality to it. Therefore, the transparent encryption
minifilter driver has been proposed and implemented.

To verify that it meets the requirements specified in subsection 3.1, a number of tests
were introduced. These tests are aimed to verify that the solution does not impact the per
formance of the endpoint in a considerable way, as well as a proper functionality. There are
two categories of tests. The first category is aimed specifically on testing of performance
under heavy load and to what extent does the driver affect the endpoint. The description
of these tests can be found in section 7.1. The second category of tests focuses on proper
functionality and unlike the performance tests, it is manually verified. Section 7.2 describes
these tests. A l l results are presented in section 7.3. The section also discusses and explains
the results to provide a better insight into the performance impact of the solution. Finally,
section 7.4 goes over the requirements of the integration process with the D L P solution and
verifies that they have been met and properly addressed.

7.1 Performance Load Tests

I prepared a set of three tests, in order to determine the driver's impact on the performance
of the endpoint. Since the endpoint's performance may be affected by different processes
during the test time, each of the tests have been run 5 times to ensure that the measured
results are not skewed by a random process suddenly requiring processor's time. To properly
compare the driver's impact on the endpoint, the tests were run with the driver enabled
and then the test was repeated with the driver disabled. Since the tests were the same,
the results can be compared to assess the driver's impact.

The tests are implemented as a script file, which runs the selected application and start
the application with an argument to immediately open a file. The script then waits for
the application to finish opening the file and loading its content and then closes the appli
cation. The time it takes to do all these operations is measured and then reported. Despite
the fact, that the tests results are influenced by the application start and exit time, the dif
ference in times when running these tests with and without driver is still important and
relevant, because we are not interested in the absolute time, but rather the time difference.

A l l the tests were performed in a Windows 10 virtual machine provided by Hyper-V,
since debugging and analysing a driver is very limited on a local machine. The file system

39

present was FAT32. This also allowed me, to run all tests on a clean system and to guarantee
an identical environment for all tests, even after the machine was restarted.

Big Files Loaded into Memory

The first test is heavily aimed at performance and stress testing under a load. To minimize
the impact of start and exit times of the used applications, tests were performed with
wordpad. exe application, which is a simple text editor.

The main goal of this test is to verify how is the performance impacted when there is
a large chunk of data being accessed and loaded into memory. A simple text file is enough
to the time it takes to load.

The process of the test is as follows:

1. Open a 50 Megabyte (MB) file in wordpad.exe.

2. Wait for the application until it is done with processing and loading the file.

3. Close the application and move to another file and repeat from 1..

4. When 5 files have been tested, repeat from 1. with 100 M B file.

5. When the total of 10 files has been tested, end the process.

When the test was finished, the computer was restarted and the test was run again, this
time using the other application. Thus, providing 2 sets of results.

High Volume of Small Files

The second test is similar to the first one. Once again, the main focus here is the perfor
mance load. Also, the same applications and file formats were used.

Rather than measuring the load time of large data, this test was used to measure
the time it takes an application to access the file. This test is an important threshold,
because most overhead happens, when the file is first accessed, as this is the point, where
the file becomes protected.

The process of the test is as follows:

1. Open a 25 Megabyte (MB) file filled with a single character in wordpad.exe.

2. Wait for the application until it is done with processing and loading the file.

3. Close the application and move to another file and repeat from 1..

4. When 5 files have been tested, repeat from 1. with 25 M B file filled with randomly
generated content.

5. When the total of 10 files has been tested, end the process.

7.2 Proper Functionality Tests

As mentioned above, these tests are aimed to verify real world scenarios. Usually, users
will not use text files, but rather more complicated formats. This test was introduced to
cover such cases and to better verify, how the driver will function in reality. These tests

40

were performed and verified manually by me. They were performed only once, since their
aim is to solely verify the functionality and that should not change with multiple runs.

These tests are also considerably easier to perform than the performance measurement.
They only provide a simple answer of yes or no. For this reason, it was possible to perform
and verify them manually, otherwise an automated process would have to be introduced.

Similar to the automatic tests, these tests were run on a clean Hyper-V virtual machine
with Windows 10 installed and N T F S file system.

The test was performed with multiple different file formats: Adobe Portable File (PDF),
PowerPoint 2007 X M L presentation (P P T X) , Joint Photographic Experts Group (JPEG),
Moving Picture Experts Group (M P E G) , and X M L Word document (DOCX) .

The applications used were Foxlt Reader, LibreOffice Impress, Photos, V L C , and L i -
breOffice Writer. There was no particular reason, other than that these applications are
easy to install on a virtual machine without them requiring a license. That being said, they
are well known alternatives and they are able to open the tested formats as expected.

The entire testing process form is available in appendix E . l . The simplified process of
the test is as follows:

1. Open a sample file in one of the designated applications.

2. Wait for the application until it is done with processing and loading the file.

3. Verify, that the content matches the original file.

4. If the content matches, close the application and finish the test as positive. Otherwise,
finish the test as negative.

7.3 Results

This section summarizes the results from both categories of the tests. The first cate
gory produced time measures, which are presented in side-by-side tables, to better present
the run-time differences of tests that have been run with the driver and without the driver.
The results from the manual test are presented as a percentage successful rate.

The run-time of scripts which performed the automatic tests was measured with a power-
shell utility command Measure-Command1. This command is able to measure the time it
takes to run a different command, a script, or a batch file.

The Automatic Performance Test Using Big Files

The test is described in the subsection above. The test was run with five 100 M B files and
five 50 M B files. The measured time is equal to reading 5 files of 100 M B and 5 files of
50 M B . The results of the test when run without the driver are presented in table 7.1 and
the results of the test run with the driver are in table 7.2.

As we can see from the results, the read time is slightly slower when the driver is present.
The time difference is most likely caused by the driver decrypting the content. Although,
the difference is almost negligible, the read with the driver present is still slower, but as we
will see in the other test results, it may not always be the case.

x h t t p s : //docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-
command?view=powershell-6

41

http://microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-

Another thing that is worth pointing out, is that the first run takes the same time as
any of the other runs, despite the fact, that the driver should be encrypting the data on
its first access. This happens, because the system already opened the file's handle, before
the test was run and, therefore, the driver already encrypted the file. This case is hardly
avoidable, because it is not guaranteed when the system may try to access the file. That
is why I decided to not attempt to measure the time with the first time access, but rather
focused on the consequent accesses. This stands true even for the other automatic test.

Run Time Ticks

1 Iml2sl53ms 721532435
2 Iml2sl48ms 721486909
3 lml l s l46ms 711464734
4 Iml3sl50ms 731505056
5 Iml2sl46ms 721461106

Table 7.1: Results of second test run
without the driver.

Run Time Ticks

1 Iml5sl72ms 751725967
2 Iml4sl57ms 741571194
3 Iml5sl54ms 751548330
4 Iml6sl55ms 761550841
5 Iml5sl55ms 751558476

Table 7.2: Results of second test run with
the driver.

The Automatic Performance Test Using High Volume of Files

The test is described in the subsection above. The test was run with five 25 M B files filled
with one character and five 25 M B files filled with random content. The measured time is
equal to reading ten 25 M B files. The results of the test when run without the driver are
presented in table 7.3 and the results of the test run with the driver are in table 7.4.

Here we can immediately see the difference between the previous test and this one. In
this case, the driver's read time is significantly faster. This is caused by the driver reading
the entire file into memory on its first access. The entire file gets cached, and the cache does
not have to be updated later, when the file is actually being read. When the file is accessed
for the first time without the driver running, the cache is filled by data chunks with each of
the read request. Reading the entire file into the memory is more advantageous in the case
of smaller files, because the file system and C M did not have enough time to optimize and
predict the read requests.

Run Time Ticks

1 49sl04ms 491043834
2 49sl02ms 491024898
3 49sl02ms 491022530
4 49sl01ms 491018874
5 49sl02ms 491025698

Run Time Ticks

1 32s77ms 320773019
2 31s81ms 310811816
3 32s68ms 320683707
4 32s67ms 320674719
5 31s66ms 310665763

Table 7.3: Results of first test run with
out the driver.

Table 7.4: Results of first test run with
the driver.

The Manual Functionality Test

The functionality verification is described in subsection 7.2. The test was run with a total
of 40 files with varying file formats and sizes and always with the driver present. The result

42

of each of the tested file was either yes or no, depending on whether the file was opened by
the application and the content of the file was identical to the original, before the encryption.
The results of the first time the test was performed is presented in table 7.5.

The first results presented a serious issue. That is, some of the files were not possible
to open in their respected applications. After examining the driver behavior and the appli
cation's expected response, I managed to pinpoint and fix the issue. The error was caused
by the LibreOffice Impress application, because it requested the content of a file differently
in different chunks than the other applications. A new check was introduced to the code,
to verify that we are properly responding to both types of the requests. Table 7.6 presents
test results, after the fix was applied.

A different issue was discovered with M P E G files. While it was possible to open the file,
the content of one of the movies was slightly changed. The frames were still very similar,
but some of pixels had a different tone of color. I attempted to fix this issue multiple
times, unfortunately, all the parameters of requests processed by the driver looked correct.
To properly pinpoint the issue, I would need to analyse every chunk of data sent from
the driver and compare the data in binary form. Such analysis would be very complicated
and time consuming. Therefore, I ultimately decided to give up on this issue and accept it
as an odd case, since all the other movies played properly.

Format Files Succeeded Failed Success Rate

P D F 10 10 0 100%
P P T X 5 0 5 0%
J P E G 10 10 0 100%

M P E G 5 4 1 80%
D O C X 10 10 0 100%

Table 7.5: Results of the manual test of functionality before a fixed issue.

Format Files Succeeded Failed Success Rate

P D F 10 10 0 100%
P P T X 5 5 0 100%
J P E G 10 10 0 100%

M P E G 5 4 1 80%
D O C X 10 10 0 100%

Table 7.6: Results of the manual test of functionality after a fixed issue.

7.4 DLP Solution Integration Requirements

There were also requirements for the D L P solution integration process mentioned earlier -
hidden from the user, easy integration and configuration, and secure. This section should
show, that all the requirements were met in the final solution and that it can be integrated
with the D L P solution.

By design, the protection works transparently. Whenever a user accesses a file, the driver
ensures, that he/she is working with the file in its decrypted form. This is done for every
file that is protected. Similarly, the file size of a file is modified as well. Therefore, once

43

the solution is deployed and properly configured, the user will be able to continue his/hers
work as before, but with the added benefit of data protection for certain files. The fact,
that the protection works this way is shown, for example, in subsection 7.3, where the file
accessed is encrypted, but the displayed data do not look encrypted.

The solution is able to integrate with any other system, because it provides interfaces for
configuration. These interfaces can be easily accessed and utilized to configure the driver,
as demonstrated in the application I provided in the final solution, to showcase the com
munication. The interface as well as the application is described in section 6.3.

Finally, the security of algorithms, which were chosen by default, is discussed in sec
tion 6.2. Based on that, the encryption can be deemed secure enough to be utilized in
customers' environments. Furthermore, the library which provides the encryption can be
easily swapped to modify, which algorithms are used to provide the encryption. This makes
the solution extensible and easily maintainable in the future.

44

Chapter 8

Conclusion

The goal of this work was to extend an existing D L P product by implementing an encryption
solution which would be able to integrate with it. The final solution is able to transparently
protect data on endpoint and external devices. It is also configurable through a provided
interface, which a D L P product can implement.

The design approach was chosen after the analysis of multiple D L P products and their
approaches to encryption modules. Based on that decision, a significant part of this work
was an extensive research of the file system internals and Windows Minifilter Framework.
A n understanding of these subjects was crucial to proposing and implementing the solu
tion. The design has been adjusted multiple times, based on the experience gained during
the research and even the implementation.

The final solution consists of multiple parts. The first part is a transparent module,
which is the core of the work and implemented as a Minifilter driver. The second part is
the encryption module, which protects the requested data. It also implements the encryp
tion header and provides access to any of the encryption libraries. Furthermore, the encryp
tion module is implemented as a library. Therefore, it is possible to simply swap the header
structure and/or the used algorithm for a different one. This considerably improves the ex
tensibility of the solution. The default algorithms used should be secure enough, as they
are widely used by organizations which deal with security on daily basis. On top of that,
the encryption header is inspired by a header structure that is patented by E S E T .

The solution was then implemented based on the design and its functionality was demon
strated by automatic and manual testing on both N T F S and FAT32 file systems. The au
tomatic tests showed, that the solution does not impact the endpoint in a significant way.
On the other hand, the manual testing proved, that the solution is functional even in real
life scenarios.

To demonstrate that the requirements of the D L P product integration process were met,
an external application was implemented, which demonstrates the integration of provided
interfaces. The application was then able to configure and control the driver, by sending
the driver appropriate command messages.

The solution also works around a limitation that a driver implementation has - a re
quirement of administrator privileges when installing a driver. A n external GUI application
is provided, which is able to decrypt any file encrypted by the driver and store the con
tent somewhere on the disk. Unfortunately, this approach breaks the transparency and,
therefore, should be used with caution.

Finally, there is a considerable possibility for an extension of this work. The biggest
weakness of the implemented approach is that it has to depend on some of the file system

45

implementation details. While a drastic change to a file system is unlikely, there is still
the potential risk, that the solution may stop working. Fortunately, it is possible to remove
this dependency. That is, by implementing a complete file system basically from scratch.
Although, a time and experience required to implement a project of such scale is beyond
the scope of Master Thesis, I am definitely going to pursue this as the next step. In fact,
I have already implemented a proof of concept driver to verify the validity and usability of
this extension project.

46

Bibliography

[1] A G E N C Y , V . I. T.: Information Technology Resource Management.
C O M M O N W E A L T H O F VIRGINIA. 2016. [Online].
Retrieved from: https: //web.archive.org/web/20170207183053/http:
//www.vita.virginia.gov/uploadedFiles/VITA_Main_Public/Library/PSGs/
Information_Security_Standard_SEC501.pdf

[2] Graff, E. ; Bazan, N . : Choosing a driver model. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/choosing-a-driver-model

[3] Graff, E. ; Bazan, N . : Device nodes and device stacks. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/device-nodes-and-device-stacks

[4] Graff, E. ; Bazan, N . : Driver stacks. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/driver-stacks

[5] Graff, E. ; Bazan, N . : I/O request packets. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/i-o-request-packets

[6] Graff, E. ; Bazan, N . : User mode and kernel mode. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/user-mode-and-kernel-mode

[7] Graff, E. ; Bazan, N . : What is a driver? [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
gettingstarted/what-is-a-driver-

[8] Hollasch, L . W.; K i m , A . ; Stroshane, M . : Filter Manager and Minifilter Driver
Architecture. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
i f s / f i l t e r - m a n a g e r - a n d - m i n i f i l t e r - d r i v e r - a r c h i t e c t u r e

[9] Hudek, T.: Device Classes. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
i n s t a l l / d e v i c e - c l a s s e s

[10] Hudek, T.; Sherer, T. D.: Bus Drivers. [Online].
Retrieved from: https:
/ / docs.microsoft.com/en-us/windows-hardware/drivers/kernel/bus-drivers

47

http://archive.org/web/20170207183053/http
http://www.vita.virginia.gov/uploadedFiles/VITA_Main_Public/Library/PSGs/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/
http://docs.microsoft.com/

[11] Hudek, T.; Sherer, T. D.: Filter Drivers. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
k e r n e l / f i l t e r - d r i v e r s

[12] Hudek, T.; Sherer, T. D.: Function Drivers. [Online].
Retrieved from: https: //docs.microsoft.com/en-us/windows-hardware/drivers/
kernel/function-drivers

[13] I S A C A : Data Loss Prevention. [Online].
Retrieved from:
http: //www. nortoninternetsecurity.ee/2011/03/dat a- loss-prevention.html

[14] Kath, R.: Managing Memory-Mapped Files. [Online].
Retrieved from:
https: //msdn.microsof t.com/en-us/library/ms810613.aspx?f =255

[15] Nagar, R.: Windows NT File System Internals: A Developer's Guide. O'Reilly
Media; 1 edition (September 11, 1997). ISBN 15-659-2249-2.

[16] Russinovich, M . E. ; Solomon, D. A. ; Ionescu, A . : Windows Internals, Part 2 (6th
Edition) (Developer Reference). Microsoft Press; 6 edition (September 25, 2012).
ISBN 07-356-6587-7.

[17] Secretari, O : CNSS Policy No. 15, Fact Sheet No. 1 . [Online].
Retrieved from: https: //web.archive.org/web/20101106122007/http:
//csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf

[18] Shabtai, A . ; Elovici, Y . ; Rokach, L . : A Survey of Data Leakage Detection and
Prevention Solutions (SpringerBriefs in Computer Science). Springer. 2012. ISBN
14-614-2052-0.

[19] Zhang, E. : What is Data Loss Prevention (DLP)? A Definition of Data Loss
Prevention. [Online].
Retrieved from: https://digitalguardian.com/blog/what-data-loss-
prevention-dip-definition-data-loss-prevent i o n

18

http://docs.microsoft.com/
http://docs.microsoft.com/
http://nortoninternetsecurity.ee/2011/03/dat
http://archive.org/web/20101106122007/http
http://csrc.nist.gov/groups/ST/toolkit/documents/aes/CNSS15FS.pdf
https://digitalguardian.com/blog/what-data-loss-

Appendices

49

Appendix A

Contents of the CD

/
thesis.pdf Text of the t h e s i s .
tex/ Î TgX source f i l e s .
.source/ V i s u a l Studio 2017 s o l u t i o n containing a l l projects.
_Readme.txt ...Text f i l e with i n s t r u c t i o n on how to i n s t a l l the d r i v e r .
License.txt Text f i l e containing the l i c e n s e .

50

Appendix B

Use-case Diagram

Figure B . l : Use case diagram describing the proposed solution.

51

Appendix C

Driver Installation

In the Windows system, each driver is represented as a service. Therefore, in order to
install a driver a service with the corresponding name must be created. There are certain
requirements regarding the attributes of the service and there must be specific keys defined
in the service's registry entry for the service to be regarded as a driver.

By default, there are two options of installing a driver. The first option is a .inf file,
which is usually included with the driver's binary file and it can be installed via context
menu. This file creates all the necessary configuration and values in the registry. The
second option is by manually creating the service and appending all the information in the
system's registry. Both of these approaches are equivalent and is up to the user to decide,
which is more convenient for him/her.

52

Appendix D

Driver's Registry Structure

HKLM\System\CurrentControlSet\
Services\MinifilterName
Type [REG_DWORD]: 1
Start [REG_DWORD]: 3
ImagePath [REG_EXPAND_SZ]: PathToTheDriversImage
ErrorControl [REG_DW0RD]: 1
Description [REG_SZ]: DescriptionString
DisplayName [REG_SZ]: DisplayNameString
Services\MinifilterName\Instances
Defaultlnstance [REG_SZ]: NameOfTheDefaultlnstance
Services\MinifilterName\Instances\NameOfTheDefaultInstance
Flags [REG_DW0RD]: 0
Al t i t u d e [REG_SZ]: 265000

Table D . l : The driver's registry structure.

53

Appendix E

Manual Test Protocol

Step Expected result
Launch the external user-mode applica
tion

The console application is shown with the
options to set a protected path, set user
password, and stop encryption

Choose to set user password The application prompts to enter a pass
word

Enter a password The application responds positively
Choose to set the protected path The applications prompts to enter the

path
Enter the location which contains the
sample files

The application responds positively

Navigate to the sample file location and
double click the file

A n application that is assigned to the for
mat by default starts to open

Go through the content displayed in the
assigned application

The content is same as was in the original
file

Close the application The application closes properly

Table E . l : The protocol describing the manual test.

54

