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1. Abstract 

Proteins are large biomolecules that play a fundamental role in every cell in an organism, 

performing a variety of functions, such as DNA replication, aiding cell movement, and catalyzing 

biochemical reactions. The process of protein synthesis is complex, and the amino acid sequence 

encoded in the DNA is transcribed into a mature mRNA that serves as a template for protein 

synthesis in the ribosomes. However, even with the amino acid sequence, fully understanding the 

protein's function and activity requires a comprehensive analysis of its structure. Proteins exhibit 

hierarchical organization of structure, with four distinct levels: primary, secondary, tertiary, and 

quaternary. Determining protein structure using experimental methods such as X-ray 

crystallography, fluorescence spectroscopy, and protein nuclear resonance is time-consuming and 

expensive. Therefore, computational methods have become essential for investigating the structure 

and function of proteins. Advanced algorithms and modeling techniques allow researchers to predict 

the spatial arrangement of amino acids in a protein sequence and simulate protein folding and 

unfolding. Computer-aided approaches are particularly useful for studying hypothetical or 

artificially designed proteins that may not be amenable to experimental techniques. While 

experimental and computational methods are critical for understanding protein structure and 

function, environmental factors such as pH, temperature, presence of ions, salt content, or 

osmolality significantly impact protein folding and stability. Understanding the relationship 

between protein structure and function requires a comprehensive analysis that takes into account 

both the primary amino acid sequence and the environmental factors that affect protein folding and 

stability. 

 

2. Introduction 

Proteins, which are composed of amino acids and linked together through peptide bonds to form a 

polymer, are among the largest biomolecules found in nature. They play a crucial role in 

maintaining the functionality of every cell in an organism, performing a diverse range of tasks such 

as facilitating the transport and detection of various substances, aiding in DNA replication, enabling 

cell movement, and catalyzing a wide array of biochemical reactions. Despite being the subject of 

intense scrutiny for decades, only approximately 144,000 protein structures have been determined 

to date, despite the fact that billions of different proteins are known to exist (wwPDB consortium, 

2019). 

The process of protein synthesis is a complex one that begins with the DNA sequence encoding the 

amino acids necessary to form the protein. This sequence is transcribed into a pre-mRNA molecule 

which is then modified to create a mature mRNA that serves as the template for protein synthesis in 
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the ribosomes. Each base triplet in the mRNA corresponds to a specific amino acid or a start/stop 

signal, which in turn determines the linear sequence of amino acids that will be synthesized to form 

the primary structure of the protein. 

However, simply knowing the amino acid sequence is not enough to fully understand the function 

and activity of the protein. When initially synthesized, the protein lacks a stable three-dimensional 

structure and may be partially folded, random coiled, or completely unfolded. While smaller 

proteins may spontaneously form their functional conformation, larger and more complex proteins 

often require support from chaperones (Beissinger M., et al., 1998) to prevent undesirable or even 

harmful manifestations such as prions (Beringue V., et al., 2008), toxins (Lybchenko Y.L., et al., 

2010), toxins, loss of function (Hutt D.M., et al., 2010), or aggregation and accumulation (Bevan-

Jones W.R., et al., 2020). 

Moreover, even proteins with similar or identical amino acid sequences may have different 

conformations due to environmental factors such as pH, temperature, presence of ions, salt content, 

or osmolality (Millan S., et al., 2020). These environmental influences can significantly impact the 

folding and stability of the protein, leading to differences in function and activity. Thus, 

understanding the relationship between protein structure and function requires a comprehensive 

analysis that takes into account both the primary amino acid sequence and the environmental factors 

that affect protein folding and stability. 

Proteins exhibit a hierarchical organization of structure, with four distinct levels. At the most basic 

level, the primary structure of a protein represents the linear sequence of amino acids that make up 

the protein. This level of structure is the most detailed and can be directly sequenced to determine 

the specific amino acid sequence. 

The secondary structure of a protein describes the spatial arrangement of a local area, or protein 

domain, which can take on several configurations such as alpha-helices, beta-sheets, or random 

coils. The tertiary structure refers to the overall spatial arrangement of a single-chain protein, which 

incorporates all of the protein domains present. This level of structure is critical to protein function, 

as it defines the specific three-dimensional conformation of the protein. 

The quaternary structure describes the arrangement of multiple macromolecules, which are held 

together by various intermolecular forces such as van der Waals forces, hydrogen bonds, or 

Coulomb forces (McNaught A.D., et al., 1997). This level of organization is essential for the 

function of many proteins, particularly those involved in complex enzymatic reactions or large 

macromolecular assemblies. 

 

It's important to note that the definition of protein structure outlined above does not encompass 

more complex structural configurations such as capsomeres in the capsid of viruses or collagen in 

the collagen fibril. However, this hierarchical organization of protein structure provides a valuable 
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framework for understanding the complex interplay between protein sequence, structure, and 

function. 

There are several experimental techniques available for determining the spatial configuration of a 

protein, including X-ray crystallography, fluorescence spectroscopy, circular dichroism, protein 

nuclear resonance (NMR), and others (Kikhney A.G., et al., 2015, Singh B.R., 2000) . However, 

these methods are often time-consuming, expensive, and require specialized equipment. Some of 

them rely on mutations, gradual unfolding or folding, and the observation of conformational 

changes, while others are based on the crystallization of an isolated protein. Additionally, in some 

cases, it may not be possible to prepare the sample properly for analysis, making experimental 

approaches less feasible. 

To overcome these limitations, computational methods have become an essential tool for 

investigating the structure and function of proteins. By using advanced algorithms and modeling 

techniques, researchers can predict the spatial arrangement of amino acids in a protein sequence, 

and simulate the folding and unfolding of proteins. Computer-aided approaches are particularly 

useful for studying hypothetical or artificially designed proteins that may not be amenable to 

experimental techniques. 

Overall, both experimental and computational methods play critical roles in advancing our 

understanding of protein structure and function. By combining these approaches, researchers can 

gain a more comprehensive understanding of the complex interplay between protein sequence, 

structure, and function, which is essential for the development of new therapeutics and biomaterials. 

 

Modeling protein folding is a significant challenge, as trying out every possible configuration 

sequentially would take longer than the age of the known universe to evaluate the true or even the 

most plausible 3D structure. This is known as Levinthal's Paradox (Levinthal C., 1969), as proposed 

by Cyrus Levinthal, who was aware that proteins fold spontaneously in a very short period of time 

in reality. Levinthal suggested that the secondary structure is a thermodynamic state, where the most 

stable and some metastable forms are located in local minima of the configuration energy. As a 

result, he proposed the existence of potential pathways that would make the inclusion of unstable 

states unnecessary, thereby significantly speeding up the computation of the protein folding model. 

 

The many factors that are required to create such a model are difficult to define, too numerous, too 

complex, or even still unknown. Therefore, various machine learning methods are utilized to 

recognize and learn patterns and relationships themselves. These methods include common 

architectures such as attention mechanisms for evaluating context priorities, convolutional layers 

with pooling to identify peculiarities and reduce data size, and recurrent-based neural networks that 

can also incorporate unknown features. Other statistical methods, alignment algorithms, and 
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generative adversarial networks (GAN) may also be employed for structural modeling (Wu J., et al., 

2016). These methods are often used in combination to increase the accuracy of the predictions. 

 

This bachelor thesis focuses on the theoretical description of solving the protein folding problem, 

the current state of research, as well as a classification of the protein data set SCOP 1.67 based on 

the given primary structure using a deep learning approach. 

 

3. Background 

3.1 Amino acids and proteins 

The building blocks of proteins are amino acids, which are chemical compounds consisting of 

carbon, nitrogen and oxygen. Their general structure consists of a methylene group (-CH2- for 

glycine or -CHR- for any other) in the center, one amino group (-NH2 or in substituted form -NR2) 

on one side and one carboxy group (-COOH) on the other. The carbon of the methylene group 

adjacent to the carboxy is designated the Cα atom, while the following C atoms on the substituted 

residue chain are designated in Greek alphabet order up to delta δ. For the protein synthesis α-

amino acids are needed, where the amino group is on the Cα. Peptides made of other forms than the 

α-configuration do not occur in nature, but the amino acids do and serve different purposes. For 

example, β-alanine is part of pantothenic acid (vitamin B5) and γ-Aminobutyric acid (GABA) acts 

as a neurotransmitter. Except of glycine, which is achiral, amino acids can have 2 isomers which are 

basically mirrored configurations of each other: the L- and the D- form. Naturally ocuring amino 

acids have the L-configuration, but some exceptions like D-Alanin or D-Valin can occur in bacteria, 

archaeea, fungi and other lower life forms (Wang H., et al., 2014). 

For these reasons and for the sake of simplicity, the α- and L-form is omitted from here for amino 

acids. 

 

Amino acids can be differentiated depending on the side chain (-R) on the Cα. Depending on the 

nature of these residues, 20 different standard amino acids can be classified. Each of these has a 

three-letter abbreviation and a one-letter code. In addition, four other abbreviations and codes are 

used as placeholders for undetermineable or undetectable amino acids in protein sequencing via X-

ray cristallography or a chemical approach. 

 

The negatively charged residues include aspartate (Asp) and glutamate (Glu), which have 

carboxylic acid groups in their side chains. The positively charged residues are arginine (Arg), 

lysine (Lys), and histidine (His), which have basic amino groups in their side chains. 
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The hydrophilic amino acids are those that have polar but uncharged side chains. These include 

serine (Ser), threonine (Thr), asparagine (Asn), glutamine (Gln), and tyrosine (Tyr). 

The hydrophobic amino acids are those that have nonpolar side chains, which are typically involved 

in the formation of the protein's interior. These include alanine (Ala), valine (Val), leucine (Leu), 

isoleucine (Ile), phenylalanine (Phe), tryptophan (Trp), and methionine (Met). 

There are also some amino acids with special properties. Cysteine (Cys) has a thiol (-SH) group in 

its side chain that can form disulfide bonds with other cysteine residues, stabilizing the protein's 

structure. Selenium is present in the side chain of selenocysteine (Sec), which is found in some 

proteins. Proline (Pro) has a cyclic structure that makes it less flexible than other amino acids, and 

glycine (Gly) is unique in that its side chain is just a hydrogen atom, allowing for more flexibility in 

certain regions of a protein. 

Undetermineable or undetectable amino acids are asparagine or aspartate (Asx), glutamine or 

glutamate (Glx), leucine or isoleucine (Xle) and any unknowm (Xaa). 

Selenocysteine (Sec) and pyrrolysine (Pyl) are used by some eukaryots and several microorganisms, 

resulting in a total of 26 possible codes to describe a protein. 

Furthermore, there are five other Greek letters and the symbols + and -, which act as another 

placeholder to describe amino acids that are difficult to determine in more detail according to their 

chemical properties. 

 

When the carboxyl group is joined to the amino residue of different amino acids, a chain connected 

by a peptide bond is formed. The length of these chains varies, with chains of up to 30 amino acids 

referred to as peptides and longer, more complex chains referred to as polypeptides or proteins. The 

sequence of amino acids in a protein is dictated by the genetic information stored in DNA, which is 

transcribed into RNA and then translated by ribosomes into a protein sequence. 

After synthesis, the protein begins to fold or wrap itself into a specific shape, which is essential for 

its function. The process of protein folding is complex and can involve many post-translational 

modifications, such as the chemical modification of specific amino acid residues or the binding of 

cofactors or other proteins. Chaperones can also play a role in helping to fold proteins into their 

correct shape. 

While the energetically optimal and most stable secondary structure of a protein under specific 

conditions is largely predetermined based on its sequence, there are often metastable states that 

occur. These states can significantly influence the function and stability of the protein. Therefore, 

understanding the folding and stability of proteins is critical for understanding their biological 

function and developing new treatments for diseases. 
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After some time or under certain circumstances, some proteins must be degraded again. If a protein 

is in the wrong place in an organism, or it is misfolded, or if an entire cell has to be broken down 

into its individual parts in the course of apoptosis, proteolysis is mostly unavoidable to maintain a 

proper function of the whole organism. 

A peptide bond itself is considered to be relatively stable. Uncatalyzed hydrolysis in an aqueous 

environment would take several hundred years, so proteolysis mostly occurs under catalyzed 

conditions with the help of enzymes called proteases. Proteolysis not only takes place within the 

cell space or an organism during degradation in the course of protein turnover, but also during food 

intake, where digestive enzymes break down the proteins into amino acids or shorter polypeptides 

that are available to the body. There is also proteolytic processing after protein synthesis, a 

completed reaction with another protein (signaling protein sequences), or after passing through a 

membrane (target protein sequences), where only a part of the protein is separated and disposed of 

and the rest can then take its active form. 

Conversely, an under- or over-expression of proteases in the wrong places can cause abnormalities 

in function, diseases or even death of an organism. 

 

Proteins have been the subject of intense scientific scrutiny, but conducting research on them can be 

extremely challenging. The first hurdle researchers must overcome is locating the targeted protein 

or at least having an idea of its location within an organism. To facilitate research, genetically 

modified microorganisms are often created, which enable researchers to study either new proteins 

or the functions of known ones by slightly modifying a specific position. Once the protein has been 

located, it must be isolated. However, this process almost always involves the destruction of cells. 

There are several approaches to isolating proteins, but the most common involves a series of steps 

that include cytolysis or mechanical disruption of the cell, centrifugation, precipitation, and 

chromatography or gel electrophoresis. Each step must be precisely tailored to the desired protein 

and requires various tools to eliminate disruptive factors. For example, when destroying the 

membranes in the first step, protease inhibitors must be added to prevent active proteases inside the 

cells from decomposing the proteins to be examined. Centrifugation must also be adjusted precisely 

as some proteins tend to sink to the bottom while others remain in solution. Some proteins 

coagulate in an aqueous environment, while others only begin to precipitate above a certain salt 

content. 

Chromatography and gel electrophoresis can be used efficiently only if various properties of a 

protein are already known to some extent. These methods rely on the separation of proteins based 

on properties such as size, charge, and hydrophobicity. As such, prior knowledge of these properties 

is required to select the appropriate chromatography column or gel matrix. Additionally, researchers 

may also use mass spectrometry to identify and analyze the isolated proteins. 
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Overall, isolating and studying proteins requires careful consideration of various factors. Successful 

protein isolation depends on precise tailoring of each step and understanding the properties of the 

protein being studied. Nonetheless, the insights gained from such research can provide invaluable 

information about the structure and function of proteins and aid in the development of treatments 

for various diseases. 

 

Although various methods exist for analyzing the secondary, tertiary, or quaternary structure of 

proteins, they all require significant effort and resources. As a result, researchers have been striving 

for decades to develop an in silico solution to simulate proteins and their structures on a computer. 

With the advent of modern algorithms, researchers can now obtain quick and highly reliable results. 

Even older approaches, such as Clustal, have been continuously improved over the years. Despite 

the high accuracy of these results, the complexity of the technologies used has also increased. 

Purely mathematical approaches are no longer adequate for solving such a complex problem, so 

self-learning algorithms are being used more frequently. With advancements in computer hardware 

since the late 2000s, larger architectures are now able to model increasingly complex tasks, leading 

to significant progress in protein research. These developments have allowed researchers to gain a 

deeper understanding of the complex nature of proteins and their interactions, paving the way for 

new discoveries in fields such as medicine, biotechnology, and biochemistry. 

 

3.2 AI: artificial neural network, deep learning and convolutional neural network 

Artificial intelligence (AI) is a rapidly growing field within computer science that has achieved 

remarkable progress in recent years, resulting in significant advances in many areas and greatly 

accelerating research. The success of AI has led to the introduction of a variety of new terms, which 

are often used interchangeably despite their differences. The primary objective of AI is to simulate 

specific decision-making structures and to enable independent problem-solving. Although AI cannot 

be precisely defined, it is commonly used in research and development as an umbrella term for 

various subdomains, including machine learning, mathematical logic, statistics, knowledge-based 

systems, and search and optimization processes. (Bitkom e.V. und Deutsches Forschungszentrum 

für künstliche Intelligenz, 2017). 

Machine learning is a subfield of AI that involves teaching machines to learn and improve from 

experience without explicit programming. It is based on the idea that a machine can learn from 

patterns and make decisions based on those patterns, instead of relying on explicit instructions from 

a programmer. Machine learning is used in a wide range of applications, from natural language 

processing to image and speech recognition. 
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Mathematical logic is another important subfield of AI that is focused on developing formal 

methods to represent and reason about knowledge and information. It provides a rigorous 

framework for developing logical systems, formal languages, and inference mechanisms that enable 

machines to reason and make decisions based on logical rules and principles. 

Statistics is also an essential component of AI, providing tools and techniques for analyzing and 

modeling complex data sets. It is used in many areas, including machine learning, data mining, and 

natural language processing, to extract meaningful insights and make predictions based on 

statistical patterns and relationships. 

Knowledge-based systems are AI systems that incorporate knowledge and expertise in a specific 

domain, allowing them to reason and make decisions in that domain. These systems are built on top 

of knowledge representation and reasoning techniques, which enable machines to understand and 

reason about complex information in a specific domain (Hitzler P., 2022) 

 

One method of machine learning is the artificial neural network (ANN), which, like artificial 

neurons, is inspired by the biological design. In contrast, the highly complex connections of neurons 

in the nervous system are not directly simulated, but a simplified model is used to process 

information for a specific task. The core element is the artificial neuron as a logical threshold value 

element with several inputs and one output (McCulloch, et al., 1943). If the scalar product of the 

vector of real-valued weights and the input vector (as well as a bias) exceeds a certain threshold 

value, an output is generated according to its definition. In the case of the first neuron used in the 

so-called single layer perceptron, only the state 1 or 0 could be used as a Boolean variable output . 

The learning effect results from an adjustment of the weights, which is essentially based on the 

difference between the true and the predicted output (Rosenblatt F., 1958). 

However, this simple architecture is only able to resolve linearly separable functions, such as the 

logical operators AND, OR and NOT, but not XOR. This restriction can be avoided with a 

multilayer perceptron in which at least one hidden layer of neurons with a subsequent non-linear 

activation function such as the hyperbolic tangent is used before the output layer. This architecture 

represents the simplest form of an ANN. 

With increasing complexity such as a higher number of hidden layers, a change in the architecture 

(fully connected or short-cuts) or recurrent neural networks (RNN), other activation functions like 

rectifier linear unit (ReLU) and further modifications (dropout, attention mechanisms, layer 

skipping as used in residual neural networks), the models used are summarized under the term 

“deep learning”. The transition from an ANN to a deep neural network (DNN) is fluid and still not 

well defined. An ANN with only one hidden layer is basically able to approximate each function to 

a certain extent and it is conversely denoted to as “shallow”. According to this approach, all ANNs 

with two or more hidden layers can be referred to as DNN (Goodfellow I., et al., 2016). DNNs 
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seems to prove to be a more accurate model type in most cases, but the number of layers does not 

always correlate with the prediction performance (Bianco S., et al., 2018). 

 

Convolutional Neural Networks (CNNs) have become a powerful tool for image classification tasks 

due to their ability to extract relevant features from images. At a high level, a CNN accepts input in 

the form of a 1D array, 2D or 3D matrix, and applies one or more filter kernels, also known as 

convolutional filters, over the input. The convolution operation produces a feature map, which 

represents the presence of a certain feature in the input. The process of moving the filters over the 

input and computing the inner product at each position is known as convolution. 

A CNN typically consists of several layers of convolutional and pooling operations. After the initial 

convolution operation, each subsequent layer applies a series of convolutional filters to the output 

of the previous layer. Each filter extracts a different feature from the input, which is used to create a 

new feature map. This allows the network to learn complex representations of the input, with each 

layer building on the features learned by the previous layer. 

Pooling layers are used to reduce the size of the feature maps generated by the convolutional layers. 

The most common type of pooling is max pooling, where the maximum value in a sub-region of the 

feature map is retained and the rest of the values are discarded. This helps to reduce the amount of 

data that needs to be processed by the network, while still retaining the important features. 

The alternating layers of convolution and pooling are repeated several times in a typical CNN, with 

each subsequent layer building on the features learned by the previous layers. The final layer of the 

CNN is typically a fully connected layer, where the features generated by the previous layers are 

flattened and fed into an artificial neural network (ANN) for classification. 

Overall, CNNs have shown remarkable performance in image classification tasks and have been 

widely used in a variety of applications, including self-driving cars, medical image analysis, and 

facial recognition. (Nagi J., 2011) 

 

3.3 CASP-challenge 

Critical Assessment of Protein Structure Prediction (CASP) is a public experiment and competition 

that has been held biennially since 1994 and is hosted by the University of California, Davis. It is 

supported and documented by the National Institutes of Health (NIH) as well as the United States 

National Library of Medicine (NLM) (Protein Structure Prediction Center, US National Institute of 

General Medical Sciences (NIH/NIGMS, 2007-2020, https://predictioncenter.org/). The aim of this 

challenge is to compare the methods of different research groups for the structure elucidation of 

proteins on the basis of the primary structure. The data set to be tested consists of protein structures 

https://predictioncenter.org/
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that have not yet been determined or published which ensures that every participant has the same 

opportunities. 

In order to be able to compare different models, the so-called global distance test (GDT) is used, in 

which the distances of the calculated alpha carbon positions are compared with the experimentally 

determined positions at different cutoff values. The unit for the distance is Å r.m.s.d (Angstrom 

Root-Mean-Square Deviation of Atomic Positions). The respective percentage of the positions 

within the tolerances is used for further evaluations. Mostly these cutoffs are in the range between 

0.5 Å and 10 Å (Zemla A., 2011). For the CASP challenges, the GDT total score (GDT_TS) is used, 

which is composed of the average of the cutoffs of 1, 2, 4 and 8 Å (Kryshtafovych A., et al., 2007). 

For comparison, the width of a carbon atom is at approximatly 1.4 Å, so models performing below 

this value can be considered to be very precise. 

 

3.4 SCOP database 

The Structural Classification of Proteins (SCOP) database is a freely accessible database for the 

classification of protein structures and was created by the Medical Research Council (MRC) 

Laboratory of Molecular Biology (LMB) in Cambridge, England, and was released 1994 (Andreeva 

A., et al., 2014). This database aims to establish structural and evolutionary relationships between 

various proteins, provided the structures are known. Different discrete units, the protein domains, 

are divided into families and superfamilies depending on their evolutionary divergence and, since 

the release of SCOP2 in January 2020, further divided into interrelationships and hyperfamilies 

(Andreeva A., et al., 2020). IUPRs (Intrinsically Unstructured Protein Region), which contain 

proteins that do not adopt a globular folded structure, have also been added. These either contain a 

mixture of different conformations or are unstructured until they bind to other macromolecules. 

 

Table 1: Progress of the SCOP classification compared to SCOP version 1.75 

Number SCOP 2 

29th June 2022 

SCOP 2 

January 2020 

SCOP 1.75 

Folds 1562 1388 1195 

IUPRs 24 17 n.a. 

Hyperfamilies 22 15 n.a. 

Superfamilies 2816 2455 1962 

Families 5936 5060 3902 

Interrelationships 60 46 n.a. 
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The main purpose of SCOP was to support structural biologists in the analysis of similar protein 

structures, but the high number of reciprocal relationships also allowed it to be used to evaluate 

protein structure comparison and prediction methods. 

 

3.5 Homology detection 

Homology refers to the similarity between nucleotide or amino acid sequences of different 

organisms that have a common ancestor. This similarity is indicative of the fact that the sequences 

or the evolutionary changes are based on a common inherited sequence. Sequence alignment, which 

is a computational biology method, is used to identify homologues and classify the proteins being 

compared. Alignments of several sequences can also be used to display homologous regions (Simon 

C., 1994). 

 

The most popular and effective methods for alignment include the Smith-Waterman algorithm 

(Smith T., et al., 1981), FASTA (Pearson W., et al., 1988), and BLAST/PSI-BLAST (Altschul SF., et 

al., 1990). Most approaches, such as support vector machines (SVMs) (Vapnik V.N., 2000) or 

position-specific scoring matrices (PSSM) (Stormo G.D., et al., 1982) are resource-intensive and 

time-consuming, especially when comparing a new sequence against a large database of sequences 

(Hochreiter S., et al., 2007). Traditional machine learning approaches also require a fixed number of 

features to represent a sequence, making them less adaptable to new data. 

 

Current approaches, such as neural networks or LSTM (Hochreiter S., et al., 1997), can 

automatically learn representations from sequence data. These models can interpret unknown or 

hidden factors that are not considered in a sequence alignment, such as the chemical properties of 

amino acids and their sequence, as well as the effects of genetic recombination or genetic shuffling 

on sequence position. Such approaches are more flexible and adaptive to new data, making them 

useful tools for analyzing protein homology. 

 

3.6 AlphaFold and AlphaFold 2 

AlphaFold, a deep learning program developed by Google's DeepMind, has revolutionized protein 

structure prediction. Prior to its development, the most successful models were based on fragment 

assembly, where a structure of a short section was successively modified until a structure with low 

potential was obtained. However, AlphaFold has outperformed these models in every ranking at the 
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13th CASP challenge in December 2018, achieving a maximum average GDT_TS score of almost 

58. Its successor, AlphaFold 2, has achieved an even higher score of 87 at the 14th CASP challenge 

in July 2020, demonstrating its remarkable accuracy in predicting protein structures. This represents 

a significant advancement in the field of computational biology and has the potential to 

revolutionize drug discovery and disease research (Protein Structure Prediction Center, US National 

Institute of General Medical Sciences (NIH/NIGMS, 2007-2020, https://predictioncenter.org/). 

 

AlphaFold's folding process consists of various steps, starting with a convolutional neural network 

(CNN) (Schmidhuber J., 2015) that has been trained with the data from the PDB. Based on the 

distance between the Cß atoms and extracted features of the multiple sequence alignment (MSA) 

(EMBL-EBI, Hinxton) generated by an algorithm based on an Hidden Markov Model (HMM) 

approach called HH-suite3 (Steinegger M., et al., 2019) and PSI-BLAST, a discrete probability 

distribution from distances and torsion of each amino acid pair in a 64x64 residue region is 

evaluated. A distogram is generated from this data, in which the generated distances correspond to 

the real ones. In order to realize structures for the calculation of Cβ coordinates, the protein 

geometry backbone torsion angles (φ, ψ) are used to create a differentiable model x = G(φ, ψ) that 

was iteratively optimized in 1200 steps by gradient descent (GD) (Ruder S., 2016). 

 

For AlphaFold 2, some changes and extensions were introduced, such as a complete redesign of the 

neural network-based model (Jumper J., et al., 2021). Like AlphaFold, the network consists of two 

main steps: the processing of the input and the creation and manipulation of the 3D model. At the 

beginning, MSAs and paired features are converted into a new representation. For this purpose, an 

overall assigned loss function and the intermediate losses are iteratively minimized by means of a 

new equivariate attention architecture. This neural network block is called Evoformer. The 

Evoformer generates a sequence-by-residues matrix (an Nseq × Nres array) using attention-based and 

non-attention-based components. In the second part, the structure of the proteins is defined by 

rotation and translation of each residue, whereby the atomic chain structure of the protein is broken 

down using an equivalent transformer, which enables further refinement. Several similar layers that 

perform the same task are used throughout the network. This means that the same loss function can 

be used and the outputs are returned recursively to the same modules, which enables continuous 

communication between the blocks. Although this increases the training time slightly, the accuracy 

increases significantly. Both labeled and unlabeled data were used for the training. To do this, the 

structure of a subset of the data set was first predicted and filtered according to high confidence. 

This new data set was combined with the one previously used and this architecture was trained 

again with it. This procedure enables effective use of the unlabeled data with a simultaneous 

increase in accuracy. To predict the final structure, the paired representations of the 3D backbone 

https://predictioncenter.org/
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structures of the MSA are used. The rotations and translations are limited to their steric possibilities, 

taking into account the side chains. The peptide bond geometry acts completely unrestricted. 

However, since this procedure often violates the actually possible arrangements, an additional 

violation loss term is used, which is minimized by gradient descent in order to reduce 

steriochemical violations without reducing the accuracy at the same time. Some residues of the 

MSA are randomly masked and predicted with a transformer similar to the BERT architecture 

(Devlin J., et al., 2019). This approach leads in the network anticipating phylogenetic and 

covariation relationships within the protein sequences without having to manually add additional 

information or hardcode additional statistics. 

However, AlphaFold 2 has some limitations. The accuracy drops significantly when the mean 

alignment depth falls below 30 protein sequences, resulting in a wrong definition of the structure in 

the early stages of the network, since the information from the MSA is insufficient. To overcome 

this limitation, additional methods may be required to improve the prediction accuracy. 

On the other hand, depths over 100 sequences no longer seem to have a significant influence on 

accuracy. It was also observed that the network performed better for proteins with fewer intra-chain 

or homotypic contacts. AlphaFold 2 won the CASP14 challenge in November 2020 with a median 

GDT score of 92.4 out of 100 and achieved 88% of the predictions with a GDT_TS score of over 

80. 

 

Despite this outstanding performance, which was undeniably observed in comparison with other 

approaches, there are still some limitations of the meaningfulness of the results. When using one of 

the traditional manual methods to measure a specific protein, the circumstances and conditions 

(context) at the time of measurement are known. These include, among other factors, the property 

of a protein not to fold into the next shape until it has bound to another protein or in the presence of 

specific metal ions, or after chemical modification or formation of a larger complex. When 

examining known protein sequences, most publications therefore explain in detail why a specific 

configuration forms or cannot form. However, for yet unknown sequences, AlphaFold 1 and 2 can 

predict the structure with outstanding accuracy, but this configuration has been stripped of its 

context. 

An example of this is the human 60S ribosomal protein L19, which in nature only retains a specific 

configuration when bound to the ribosomal RNA complex. Because this structure can only arise 

during formation of the ribosome, it cannot be observed or replicated in aqueous solution. Since 

structures from PDB (protein data bank, https://www.rcsb.org/) were used to train AlphaFold 1 and 

2, it can be observed in this example that the predicted structure of the protein L19 corresponds to 

that of the in bound to the ribosome, although it would never have formed on its own under this 

conditions (Vernon R., 2021). 
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In summary, AlphaFold 2 is undoubtedly a breakthrough in the field of structural bioinformatics, 

representing a significant leap in the accuracy and efficiency of protein structure prediction. This 

model outperforms all previous models and ranks among the best in the industry. One of the most 

significant changes in AlphaFold 2 is the complete redesign of the neural network-based model. 

The results obtained with AlphaFold 2 are impressive, and the accuracy achieved in predicting 

protein structures surpasses that of experimental techniques, which is remarkable. However, the 

authors of the study admit that there is still room for improvement, and the problem of protein 

folding is not yet considered entirely solved. 

Despite these limitations, the impact of AlphaFold 2 cannot be overstated. The ability to predict 

protein structures accurately and efficiently opens up new possibilities for drug discovery, protein 

engineering, and the understanding of diseases at the molecular level. The results obtained with 

AlphaFold 2 have already paved the way for further research, and it is likely that we will see even 

more significant advances in the field of structural bioinformatics in the years to come. 

 

4. Methods 

4.1 Data preprocessing 

The data record consists of one or more FASTA files in a folder with at least one protein sequence 

each. The name FASTA file contains a label “train” or “test” for use in training or evaluation of the 

model, as well as the class “pos” and “neg” as a label. Each file is read out and the number of amino 

acids in the longest sequence is determined as “maxlen”. Although there are only 20 proteinogenic 

amino acids (aa), other symbols are used as placeholders for two or more as well as unknown ones, 

resulting in a total of 26 amino acid labels (UPAC_IUB, 1984). Due to these values, a zero padded 

matrix of the form “maxlen × aa” is created as a template. Each sequence is one-hot coded and 

inserted in the center of this this template. A positive and a negative labeled set are combined into 

one for the respective data set for training or testing. 
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Figure 1: Distribution of protein length in the full dataset (Source: own illustration) 

 

4.2 Model architecture 

The model used for the classification of protein sequences is based on a CNN. A dataset generator 

with 64 sequences each act as input, which is then processed and classified at the end. As a loss 

function, the binary cross entropy is used as a criterion for the training and AdamW (Loshchilov I., 

et al., 2019) as an optimizer. 

At the beginning, the input is cloned. One set is passed to a fully connected ANN, called the inner 

ANN, while the other set is passed to a parallel CNN pipeline. The outputs are concatenated, 

processed by an attention mechanism and passed to another ANN that acts as the final classifier. 

The inner ANN acts similar to an encoder that automatically recognizes the various properties of the 

sequences without having to enter them specifically. This information is thus reduced to an array 

whose length is defined by the number of output nodes. In contrast, the structural information of the 

positions of the amino acids is processed in the parallel CNN pipeline. The merging of this 

information allows the downstream attention mechanism to prioritize individual properties and thus 

make classification easier for the final ANN. 

 

4.2.1 inner ANN 

The inner ANN is a fully connected feed forward ANN with two hidden layers. Each layer consists 

of a linear function with 1024 nodes, a 1D-batch normalization, SELU as an activation function and 
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an alpha dropout of 0.3 (Klambauer G., et al., 2017). The output layer also contains 1024 nodes, 

without normalization or dropout steps but sigmoid as an activation function. 

 

4.2.2 Convolutions 

In the next step of the network, the processed input is passed on to two parallel convolution 

pipelines, called gouped convolutions (Kirzhevsky A., et al., 2012). These each consist of three 

blocks with a 1-dimensional (1D) convolution layer, followed by a SELU activation function 

instead of the commonly used ReLU to avoid the dying ReLU problem (Lu L., et al., 2020), a alpha 

dropout of 0.3 and a pooling layer. The difference between the two paths lies in the pooling layers 

implemented: one uses 1D max pooling and the other uses 1D average pooling, both with a kernel 

size of 3 and a stride of 1. 

The convolution layers are configured the same in both paths. The first column block starts with an 

input from 26 channels, a kernel size of 26 and 26 output channels. Furthermore, the 

hyperparameter "groups" is set to 26 at this layer only, which is equivalent to a division of the input 

analogous to 26 convolution steps running in parallel. Thus, a separate filter set is used for each 

channel and the output is subsequently concatenated. In the second block, 52 channels are output by 

a kernel of size 26, whereby the stride has been decreased to 1. Then one path is pooled with 1D-

max and the other with 1D-average, both with a size of 3. Each output of these blocks is activated 

with a SELU function and an alpha dropout of 0.3 is applied. 

Both paths are flattened and concatenated together with the output of the inner ANN to one array 

per sequence. 

 

4.2.3 Attention mechanism 

Each sequence is processed by a Hopfield network. (Ramsauer H., et al., 2021). 

Hopfield networks are feedback networks, but there is only one layer in which every neuron is 

connected to each other except itself. This layer acts as an attention mechanism, in which patterns in 

the data set are recognized by setting calculated pooling weights. Since this is determined for each 

query and a softmax function is applied to the stored patterns, it can be used as a pooling over the 

sequence. 

The input size is given by the length of the assembled arrays from the inner ANN and the grouped 

convolutions with 3208. The maximum update steps are fixed at 3 and a dropout of 0.2 is used. 
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4.2.3 Classification ANN 

This data set is passed on to a fully connected feed forward ANN with an input layer, 2 hidden 

layers with 1024 nodes each and an output layer with one output node. In between there are a SELU 

activation function, a batch normalization layer and a dropout of 0.3. The sigmoid function was 

used for the output layer to obtain the output in a range between 0 and 1. 

 

5. SCOP Experiments 

The following experiments were performed on an ASUS Zenbook UX510U with an Intel Core i7-

7500U, an NVIDIA GeForce GTM 960M and a memory of 24 GB. The OS was Ubuntu 20.04.2 

LTS, coding was carried out with Python 3.8.5 and CUDA 11.1 in Jupyter 6.3.0. The used machine 

learning framework was PyTorch 1.8.1. Due to the hardware limitation and the size of the data set, 

each FASTA file had to be loaded and processed individually during the training. Thus, the data 

loader was set to a maximum batch size of 64. 

 

5.1 Pre-testing and the final network 

The training was initially carried out with a small sub-sample of the data for 100 epochs, an initial 

learning rate of 5e-3 and a weight decay of 1e-4 to get a first impression of the behavior of the 

network. Although overfitting was to be expected with these settings, this was considered irrelevant 

for the initial trials. 

The training set consisted of 2848 positive and 3324 negative samples, the test set consisted of 15 

positive and 665 negative samples. To counteract this imbalance, the datasets were duplicated in 

each run until there was an approximately 1:1 ratio in the dataset. 

In each epoch, the current learning rate was multiplied by a factor of 0.99 (Bengio Y. 2019). The 

mean magnitudes of the gradients of each layer as well as the losses and the accuracies of one 

training and test set were tracked. 

The magnitudes of the gradients were smoothed by a Savitzky–Golay filter (Savitzky A., et al., 

1964) with a polynomial of the first degree and a window size of 25 data points in order to represent 

the long-term trends. All smoothed magnitudes except the last output layer were visualized, with a 

significant increase in the gradients of the linear layers of the classification ANN groups being 

recognizable at the beginning. After around 30 epochs, this trend reverses, with the linear layers 

remaining at a constant level. The magnitudes of the convolutional layers begin to alternately rise 

and fall, escalating sharply towards the end of the training. 
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Figure 2: Pre-testing stage: magnitude of gradients(Source: own illustration) 

 

The collected losses and accuracies were also visualized. In the case of the losses, there is a strong 

fluctuation above and below the starting value of the beginning of the training, which usually 

indicates that the applied learning rate is too high. The effect is further enhanced by the unbalanced 

ratio of approximately 1:44 of the positive to negative test samples. 

 

Figure 3: Pre-testing stage: Pretraining accuracy development without gradient clipping (Source: 

own illustration) 
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Figure 4: Pre-testing stage: Pretraining loss development without gradient clipping (Source: own 

illustration) 

 

 

This pattern was identified as the exploding gradient effect and therefore a gradient clipping step 

was added in the training phase (Bengio Y., et al., 1994). The decision was made in favor of 

gradient clipping-by-norm, since with the gradient clipping-by-value the gradients are only clipped 

within a previously defined threshold and an optimal value can only be approximated carefully 

through several experiments. With norm clipping, the norm of all gradients together is determined 

and compared with the previously defined maximum norm threshold. If it is exceeded, the gradient 

is updated according to 

 

g ← threshold * g / ||g|| 

 

where g is the gradient and ||g|| represents the norm of g. Thus, the gradients are always adapted to 

the extremes taking into account the other gradients. The maximum norm value was determined by 

testing at 1e-3 with a p-norm of 2. 

 

This behavior is even more evident in the accuracies, which is mainly due to the unequal 

distribution of the two classes in the test samples. In the case of the losses, a weakening fluctuation 

can be seen as the learning rate in the last epoch was only around 37% of its value at the beginning. 
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Almost half of this value was adopted as the starting value, thus, the initial learning rate was 

reduced to 1e-3. 

Again, the test was repeated with these modifications on a new network for 100 epochs to show 

their possible effect in the visualizations. 

 

Figure 5: Testing stage: magnitude of gradients with gradient clipping (Source: own illustration) 

 

 

Figure 6: Testing stage: Pretraining accuracy development with gradient clipping (Source: own 

illustration) 
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Figure 7: Testing stage: Pretraining loss development with gradient clipping (Source: own 

illustration) 

 

 

In terms of losses and accuracies, a small fluctuation was observed above the 70th epoch, with the 

losses also starting to fluctuate. The magnitudes of gradients also fluctuated too much in the first 

half of the entire training period. This indicates that the learning rate is too high. 



26 

For this reason, the learning rate is multiplied by a factor of 0.99 every 3 epochs. The step decay of 

the learning rate prevents over-jumping a global minimum of the cost function in order to increase 

the chance of an ideal optimization (Bengio Y. 2019). 

Because the positive and negative samples included in the dataset were not in an ideal 1:1 ratio, 

some of the minority class were randomly duplicated until balance was reached. This method is 

known as Random Oversampling (Fernández A., et al., 2018). 

 

The final model is pre-trained with only one of the 409 datasets. 100 epochs were deliberately 

trained with an initial learning rate of 1e-3 and a weight decay of 1e-4 to an overfitting state with an 

approximated minimum of the loss value. The binary cross entropy is used as a criterion for 

calculating losses. After each epoch, the current learning rate was reduced by 1%, resulting in a 

final learning rate of almost 37% of the initial one. In addition, the model was saved after each 

epoch. 
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Figure 8: Training stage: accuracy developement (Source: own illustration) 

 

 

Figure 9: Training stage: loss developement (Source: own illustration) 
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Since minimal loss of the test set is seen at epoch 56 in the pre-trained model, it is chosen as the 

basis for the training of the full dataset. 

 

The final training takes place in 20 epochs across all data sets, with the same initial learning rate of 

1e-3 and a weight decay of 1e-4. The actual learning rate of the optimizer being multiplied by the 

factor 0.65 after every 3 epochs. The size of this factor leads to a continuously smaller decreasing 

range from 1e-3 to 4.9e-5 of the learning rate, in which the learning process shows an acceptable 

behavior. In this network architecture, the gradients during the training phase were clipped by the 

maximum gradient norm of 1e-3 and its norm type of L2 (Euclidean norm) to prevent the effect of 

the exploding gradients (Philipp G., et al., 2018). 

 

6. Results 

As expected, the accuracies dropped from 76.5% to 72.7% in the training dataset and from 67.3% to 

65.5% in the first epoch when training with the entire dataset. 

After the second epoch, it rose sharply again and was able to steadily increase its accuracies to over 

84.2% for the train set and 81.6% for the test set up to epoch 6. From there it could only be 

increased slowly with a few fluctuations before reaching the maximum of 86.0% for the training set 

and 82.8% for the test set towards the end of training in epoch 20. 

Figure 10: Post-training stage: accuracy developement (Source: own illustration) 
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Further epochs were omitted since the learning rate had already reached a very low value and, thus, 

no significant improvement was evident since the 17th epoch. 

 

A similar behavior can also be seen in the case of losses. After the losses for the test set increased 

from 0.242 to 0.255 and for the train set from 0.186 to 0.225 in the first epoch, they then dropped 

again very quickly. The loss reduction momentum persists until about the 9th epoch, when values of 

0.064 for the train set and 0.139 for the test set were reached. Except for a small peak in epoch 16, 

the losses leveled off at values of 0.056 for the train set and 0.072 for the test set. 

 

Figure 11: Post-training stage: loss developement (Source: own illustration) 

 

 

In addition, the magnitudes of the gradients were also visualized in order to observe the activity of 

the individual layers. Here it can be observed how the gradient clipping contributed significantly to 

a flattening of the gradients. Furthermore, no drifting of the gradients can be observed, which 

indicates a constant learning performance of each layer. 
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Figure 12: Training stage: magnitudes of gradients of final training (Source: own illustration) 

 

When looking at the data sets of the test sets individually, a fluctuation in accuracy between 81.3% 

and 87.8% can be seen. 

 

Figure 13: Final accuracies of each test set, numerically ascending (Source: own illustration) 
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Presented as a histogram, it becomes clearer that the majority of the test sets are in the accuracy 

range below 82%. 

 

Figure 14: Final accuracies of each test set, Histogram (Source: own illustriation) 

 

 

7. Conclusion and Discussion 

Random oversampling was used to obtain a balanced data set. This simplifies the interpretation of 

subsequent model statistics, reduces spontaneous accuracy fluctuations and normalizes the costs. A 

disadvantage of this method is that the model focuses more on the duplicated samples and a class is 

therefore partially overfitted. Hybrid methods of oversampling and undersampling as well as more 

sophisticated approaches such as Synthetic Minority Oversampling Technique (SMOTE) (Chawla 

N.V., et al., 2002) would be more suitable for better balancing. 

Another drawback lies in the architecture of the model. Since an ANN was used parallel to the 

convolution pipeline to determine some hidden features, the number of nodes of its input layer is 

already defined in advance. Firstly, this leads to a limitation of the maximum length of the entered 

protein sequence. New samples that exceed this length cannot be processed by this model. 

Secondly, all sequences shorter than this length in the given dataset contain a high number of 

leading and tailing zeros, which can lead to a reduction in generalization since the information is 

placed in the center of the sequence. A workaround could be to place the shorter samples at a 

random position (data augmentation). If repeated several times, this can also be used to artificially 
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expand the data set. In general, it would be ideal to take an approach that is capable of processing a 

sequence directly, regardless of length. For example, an LSTM or a Transofrmer (Vaswani A., et al., 

2017) would be better suited for this. 

While the grouped convolutions are able to learn a broader range of low- and high-level features 

(Krizhevsky A., et al., 2017), the model would benefit from an even further extension of this block 

due to the existing hardware limitation. 
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