Appendix
Appendix 1: Sample CSV dataset used for training

\square	А	В	С	D	E	F
1	Date	Price	Open	High	Low	Change %
2	4-Jan-99	35.1205	35.087	35.5355	34.488	-0.0007
3	5-Jan-99	34.905	35.081	35.45	34.7	-0.0061
4	6-Jan-99	34.784	34.881	35.373	34.072	-0.0035
5	7-Jan-99	34.921	34.719	35.22	34.566	0.0039
6	8-Jan-99	35.0385	34.898	35.2095	34.744	0.0034
7	11-Jan-99	35.2415	35.004	35.3205	34.607	0.0058
8	12-Jan-99	35.453	35.21	35.53	34.904	0.006
9	13-Jan-99	35.829	35.41	36.206	35.252	0.0106
10	14-Jan-99	35.805	35.751	36.085	35.066	-0.0007
11	15-Jan-99	35.5975	35.728	36.1385	35.379	-0.0058
12	18-Jan-99	35.536	35.603	35.837	35.131	-0.0017
13	19-Jan-99	35.6985	35.514	35.8235	35.366	0.0046
14	20-Jan-99	35.972	35.669	36.161	35.262	0.0077
15	21-Jan-99	36.164	36.039	36.251	35.569	0.0053
16	22-Jan-99	36.2555	36.137	36.3715	35.945	0.0025
17	25-Jan-99	36.284	36.23	36.337	35.927	0.0008
18	26-Jan-99	36.623	36.279	36.732	36.127	0.0093
19	27-Jan-99	36.54	36.592	36.649	36.151	-0.0023
20	28-Jan-99	36.595	36.499	36.776	36.181	0.0015
21	29-Jan-99	36.782	36.506	37.021	36.346	0.0051
22	1-Feb-99	37.135	36.837	37.362	36.256	0.0096

Appendix 2: LSTM model sample code

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.metrics import mean_squared_error
from keras.layers import LSTM
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
from pandas import datetime
from keras.layers.core import Dense, Activation, Dropout
regressor = keras.Sequential()
regressor.add(LSTM(4, activation='relu', return_sequences=(True),input_shape=(1,11)))
regressor.add(LSTM(4,activation='sigmoid',return_sequences=(False)))
regressor.add(Dense(1) )
regressor.compile(optimizer='adam',loss="mean_squared_error")
dataset=pd.read_csv(r"C:\Users\Duni\Desktop\dollar.csv",parse_dates=['Date'], index_col='Date')
plt.title('Dataset')
dataset.plot()
plt.show()
print(dataset.isnull() )
dataset.dropna(inplace=True)
print(dataset)
#feature scaling (normalization)
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
traning data=dataset.iloc[:,0:12].values
#getting the input and the outputs
x= traning_data[:, 1:12]
x=sc.fit_transform(x)
Xx = sc.inverse transform(x)
plt.title('Traning Dataset')
plt.plot(Xx)
plt.ylabel('Price')
plt.xlabel('day')
plt.show()
y= traning_data[:, 0:1]
y=sc.fit transform(y)
```

Appendix 3: Sample Code for Feature Selection

```
from sklearn.datasets import make regression
from sklearn.ensemble import RandomForestRegressor
from matplotlib import pyplot
import pandas as pd
from sklearn.datasets import make regression
from sklearn.ensemble import RandomForestRegressor
from matplotlib import pyplot
from sklearn.model selection import train test split
from sklearn.feature selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
dataframe = pd.read csv(r"C:\Users\Duni\Desktop\pt\feature.csv", header=0)
X=dataframe [['Open', 'High', 'Low', 'Change %', 'MA 5', 'MA 10', 'CMA', 'EMA 0.1', 'EMA 0.3', '12-Day EMA'
,'26-Day EMA','MACD','Signal Line','Upward Movement','Upward Movement','Downward Movement','Avg. 14
y=dataframe ['Price'] # Labels
y=y.astype('int')
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
sel = SelectFromModel(RandomForestClassifier(n estimators = 100))
sel.fit(X train, y train)
sel.get support()
selected_feat= X_train.columns[(sel.get_support())]
len(selected feat)
```

Appendix 4: Sample Code for calculating technical indicators

```
df_26DayEMA=df_T['Price'].ewm(span=26).mean()
df final=pd.read csv(r"C:\Users\Duni\Desktop\euro.csv")
df final['MA 5'] = df forex1
df final['MA 10'] = df forex2
df final['CMA'] = df cumulative
df final['EMA 0.1'] = df EMA
df final['EMA 0.3'] = df EMA1
df final['12-Day EMA'] = df 12DayEMA
df final['26-Day EMA']=df 26DayEMA
df MACD = df final['12-Day EMA'] - df final['26-Day EMA']
df final['MACD']=df MACD
df SignalLine = df final['MACD'].ewm(span=9).mean()
df final['Signal Line'] = df SignalLine
## calculating Relative Strength Index
                                        momentum indicator
diff = df final['Price'].diff()
up, down = diff.copy(), diff.copy()
up[up < 0] = 0
down[down > 0] = 0
df final['Upward Movement'] = up
df final['Downward Movement'] = abs(down)
df_14days_Up = df_final['Upward Movement'].rolling(14).mean() # using 14 day
df 14days down = df final['Downward Movement'].rolling(14).mean() # using 14
df final['Avg. 14-Day Up Closes']=df 14days Up
df_final['Avg. 14-Day Down Closes']=df_14days_down
df_RelativeStrength = df_final['Avg. 14-Day Up Closes'] / df_final['Avg. 14-L
df final['Relative Strength'] = df RelativeStrength
df RSI = 100 - (100/(1+df final['Relative Strength'] ))
```

Appendix 5: Sample 17 days Actual vs Predicted forex price for CZK/Euro Using LSTM

Actual - NumPy object			final - NumPy object array			
	0			0		
O	26.061		0	26.3249		
1	26.055		1	26.3935		
2	26.009		2	26.4902		
3	25.914		3	26.6055		
4	25.87		4	26.4327		
5	25.861		5	26.3323		
6	25.827		6	26.3951		
7	25.747		7	26.4947		
8	25.653		8	26.505		
9	25.715		9	26.0629		
10	25.756		10	26.1462		
11	25.725		11	26.3453		
12	25.699		12	26.3192		
13	25.656		13	26.3548		
14	25.787		14	25.8778		
15	25.818		15	26.1979		
16	25.883		16	26.1105		
17	25.875		17	26.3226		