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ABSTRACT 
Simple two­dimensional antenna radiators that serve as building blocks of antenna 
arrays are analyzed analytically in the time­domain. As a main tool for the analysis the 
Cagniard­DeHoop method is employed. It is shown that the chosen approach is capable 
of providing the exact and closed­form time­domain expressions that clearly demonstrate 
the influence of input parameters involved and elucidate physical insights into the pulsed 
electromagnetic field radiation behavior. Given numerical examples illustrate important 
features of the pulsed electromagnetic fields in diverse problem configurations. The ob­

tained results are useful for the efficient design of antenna arrays excited by pulsed fields. 

KEYWORDS 
time­domain, pulsed electromagnetic field, slot antenna, antenna array, Cagniard­

DeHoop technique 

ABSTRAKT 
Jednoduché dvojrozměrné anténní zářiče, které slouží jako stavební bloky anténních 
polí, jsou analyticky analyzovány v časové oblasti. Jako hlavní nástroj pro analýzu je 
použita Cagniard-DeHoopova metoda. Je ukázáno, že zvolený přístup umožňuje získat 
přesné vzorce v časové oblasti v uzavřeném tvaru, které jasně demonstrují vliv vstupních 
parametrů a objasňují fyzikální podstatu pulsního elektromagnetického vyzařování. 
Dané numerické výsledky ilustrují důležité aspekty pulsního elektromagnetického záření 
v rozličných konfiguracích problémů. Získané výsledky jsou užitečné pro efektivní návrh 
anténních polí, které jsou buzeny pulsními signály. 
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. . . "But why are such terrific efforts made just to find new particles?" asked 
Mr Tompkins. 
"Well, this is science," replied the professor, "the attempt of the human mind 
to understand everything around us, be it giant stellar galaxies, microscopic 
bacteria, or these elementary particles. It is interesting and exciting and that 
is why we are doing it." 
"But doesn't the development of science serve practical purposes by improving 
the comfort and well being of people?" 
"Of course it does, but this is only a secondary purpose. Do you think that the 
main purpose of music is to teach buglers to waken soldiers in the morning, to 
call them for meals, or to order them to go into battle? They say "curiosity 
kills the cat"; I say "Curiosity makes a scientist"." 
And with these words the professor wished Mr Tompkins a good night. 

- Mr Tompkins Explores the Atom, G. Gamow 
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Chapter 1 

Introduction 

Recently, with the advent of communication systems based on the transfer, identification 
and subsequent interpretation of digital signals, there is a growing importance of the time-
domain analysis of such systems. One of the actual requirements imposed on modern 
communication systems is the capability of providing a bundle of services for a high 
number of customers. These new capabilities bear high demands on the signal processing 
and front-end parts of communication systems. Since the signals between the transmitting 
and receiving parts of such communication systems must be steered in specified directions, 
a utilization of antenna structures that provide a spatial filtering is necessary. This calls 
for the use of antenna arrays and the investigation of their pulsed field radiation behavior. 

The important building block of an antenna array is the radiator itself which can take 
various forms. One of the practically well verified antenna array elements consists of an 
aperture that can be realized as an open end of a waveguide or as a horn. Since the 
aperture type antennas are frequently used in intricate ambient conditions (for example, 
in aeronautical applications), their openings are usually protected by a dielectric covering 
that can significantly affect the radiation behavior. A synthesis of antenna arrays is 
therefore unavoidably connected with an understanding of the antenna element behavior 
itself in diverse circumstances. 

Beside of this, a pulsed field behavior of simple aperture radiators and antenna arrays is 
of a great interest in the design and optimisation of inter- and intra-chip wireless pulsed 
signal transfer channels in integrated circuits. The need of wireless integrated circuit 
interconnects that are capable of transfering pulsed-shaped (bit-like) signals originates 
in the trend of miniaturization of electronic circuit components and in the using of still 
higher bit rates, which leads to the impossibility of realising the required interconnects in 
the classical electrical conductive-wire manner. The research on this subject is nowadays 
in full progress [24,25]. 

1.1 Compendium of relevant approaches 

In order to satisfy the high demands of advanced communication systems, an efficient 
design of antenna array requires a tool that clearly demonstrates the influence of the 
involved configurational and excitation parameters. This requirement can hardly be met 
with traditional numerical approaches (Finite Difference Method, Finite Element Method, 
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Method of Moments) that provide single-purpose results giving superficial insights only. 
On this account, an application and investigation of analytical techniques is in our scope 
of interest. Although antenna enginnering has a long history, the pulsed field behavior of 
antenna systems is still a subject seldom touched upon. In this respect, the analysis of 
pulsed behavior of antenna systems and the time-domain description of an antenna itself 
has received attention in [4,17, 38]. 

The early works on the analysis of microwave components with a construction based 
on the horizontally stratified media lean upon the formulation of Sommerfeld [39,40]. 
Sommerfeld's approach involves the Fourier transformation with respect to time followed 
by the 'cylindrical' form of the two-dimensional Fourier transformation with respect to 
the spatial coordinates parallel to the media interface (Fourier-Bessel transformation). 
The same theoretical machinery led to the development of the frequency-domain integral 
equation technique [31]. The main drawback of this approach is a demanding numerical 
solution of an inverse spatial-transformation integral (commonly known as Sommerfeld's 
integral). In general, the Sommerfeld-type integral has an unbounded domain of inte­
gration, oscillatory integrands containing the pole and branch-point singularities. The 
mentioned difficulties are ussually solved via the proper choice of an integration contour 
and by special extrapolation techniques accelerating the convergence of numerical inte­
gration [30]. Despite of the inherent drawbacks, the frequency-domain integral equation 
technique has proved to be useful for analyses of various microwave devices based on the 
microstrip structure [32]. 

Regarding the radiation from flanged parallel-plate waveguides excited by an incident 
mode a number of approaches have been formerly applied. They are mainly focused on 
an aperture radiator description in terms of the aperture admitance and self-reflection 
coefficients connected with a particular excitation mode. These approaches are based 
on a variational problem formulation [29], on the correlation matrix technique [28] or on 
the asymptotical ray method [26]. The 'classical' approach is described in Harrington's 
book [22, Sec. 3.11]. In the latter, the one-dimensional Fourier transforms are applied 
with respect to time and horizontal spatial coordinate. The difficulties arise when one 
attempts to perform an inverse spatial Fourier transformation. Again, this can be done 
numerically or, for particular cases, through the asymptotic integration techniques [20, 
Sec. 4]. 

The difficulties involved in Sommerfeld's formulation have been avoided by De Hoop's 
modification of Cagniard's method [5,6] which is widely known as the Cagniard-DeHoop 
technique [2,3, 7,10,11, 21]. The Cagniard-DeHoop method is based on the combination 
of a unilateral Laplace transformation with respect to time with the spatial slowness 
representation such that the time-domain counterpart is found by inspection, without 
making use of an inverse Laplace transformation. The corresponding procedure based on 
the time Fourier transform can be found in Chew's book [9, Sec. 4.2]. The Cagniard-
DeHoop allows for the inclusion of Boltzmann-type relaxation behavior (which includes, 
for example, Lorentz-line and Drude/Debye-absorption behavior) at the expense of having 
to use more complicated theorems of the time Laplace transformation. In this respect, the 
generalized Cagniard-DeHoop technique [14,16,18] employing the Schouten-VanDerPol 
theorem [37,43] has been developed. 
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1.2 Statement of the problem 

Based on the observation that all other known approaches (which include both numerical 
and analytical ones) do not yield exact solutions of the problem in hand, the pulsed 
field radiation behavior of the slot antennas is investigated by means of the Cagniard-
DeHoop technique. The Cagniard-DeHoop method yields the closed-form expressions 
providing the pulsed radiated electromagnetic fields as functions of position and time. 
Such expressions clearly demonstrate the influence of the parameters involved and thus 
provide useful insights into the slot antenna synthesis. They serve as the basis for carrying 
out parameter sensitivity analyses as to pulse shapes in relation to the geometrical and 
physical parameters of the configuration. Since the expressions obtained can be evaluated 
at a given observation position and within any finite time window with any prescribed 
accuracy, they can serve as a benchmark tool in the use of purely computational techniques 
that are required for the configurations of higher complexity. 

Our investigation is aimed at two-dimensional structures only. More precisely, the 
pulsed electromagnetic field radiation from a slot, that would be conceived as an open end 
of the parallel-plate waveguide, is thoroughly investigated in a number of configurations. 
A n excitation field distribution over the radiating aperture is prescribed in two ways. The 
uniform excitation field distribution corresponds to the radiation from a parallel-plate 
waveguide carrying the Transverse ElectroMagnetic (TEM) mode, while a nonuniform 
excitation field distribution corresponds to, in our case, the Transverse Magnetic (TM) 
modal excitation. The applied theory can be further generalized to account for three-
dimensional radiators. 

1.3 General conventions 

1.3.1 Employed quantities 
Throughout this thesis light-faced Roman or Greek symbols stand for scalars. The tensors 
of higher order are preferably handled with the subscript (indicial) notation. In it, the 
latin subscript can stand for {1, 2,3}. Whenever appropriate the Roman bold-face letters 
stand for vectors. 

In order to localize the position of a point in a Cartesian space M 3 , the orthogonal 
right-handed Cartesian reference frame is employed (see Fig. 1.1). The spatial reference 
frame is defined with respect to the origin O and the three mutually perpendicular base 
vectors {*i,*2,*3} of unit length each; they form, in the indicated order, a right-handed 
system. Within this reference frame, the position of a point is defined by the vector 

The partial differentiations with respect to xm is denoted as dm. The symbols t and dt 

are reserved for the time coordinate and the partial differentiation with respect to time, 
respectively. Such product of arithmetic arrays is ussually written in a shorthand way 
with the help of the summation convention 

X = Xili + X2l2 + X3I3 

— ^k^k 
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m*3 

Figure 1.1: Orthogonal Cartesian reference frame with origin O and three mutually per­
pendicular base vectors 12, «3} of unit length each, position vector x = x\i\ + £2*2 + 

x3i3, and time coordinate t. 

where the repeated (dummy) subscript implies a summation. Special tensors that are in 
use are the Kronecker and Levi-Civita tensors. The Kronecker tensor is the symmetrical 
unit tensor of rank two defined as 

The Levi-Civita tensor is the completely antisymmetrical unit tensor of rank three defined 
as 

{ 1 if {k, m,p} is even permutation of {1, 2, 3} 
— 1 if {k,m,p} is odd permutation of {1,2,3} (1.4) 
0 all other cases 

1.3.2 Employed integral transformations 
As a basic tool for the analysis we employ the advantage of the shift invariance of the 
analyzed configuration by carrying out appropriate integral transformations with respect 
to time and spatial coordinates. In order to take into account the property of causality 
of a pertaining wave field, the one-sided Laplace transformation with respect to time of a 
bounded physical quantity f(xi,t) is applied 

POD 

f(x1,s)= / exp(-s*)/(a;i,*)d* (1.5) 
Jt=o 

with real and positive transformation parameter s. This choice of the transformation 
parameter ensures the uniqueness of Eq. (1.5) by Lerch's theorem [27,44]. The latter 
asserts that a causal function is uniquely given by its known Laplace transform specified 
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at the sequence of real s values {sn G M; sn = so + nh, so > 0, h > 0, n — 0,1, 2 , . . . }. As 
a consequence of the Laplace transformation and the vanishing initial conditions we have 
dt —> s. From here on, the corresponding Laplace transformation counterpart is denoted 
by the circumflex over a symbol. 

Subsequently, the unilateral Laplace transformation is combined with the slowness 
field representation that is capable of handling fields in an unbounded domain. The latter 
representation with respect to the spatial coordinate x\ is given as 

involving imaginary values of the slowness parameter p along xi, i.e. p G C with Re(p) = 0. 
As a consequence of the latter representation we have di —> —sp. From here on, the 
corresponding wave slowness quantity is denoted by the tilde over a symbol. 

Finally, in accordance with the international conventions, the physical quantities are 
expressed in SI units (International System of Units) [15]. 

The analysis of the slot antennas effectuated throughout this thesis is based on the 
Maxwell's laws of macroscopic electromagnetic theory [23]. The electromagnetic field 
equations as applied throughout the thesis are briefly discussed in Chapter 2. The com­
prehensive survey of the subject can be found in [15, Part 3]. 

The main part of the thesis consists of seven chapters dealing with problems of in­
creasing complexity. In view of consistency, each of these parts is treated at full length 
and can be regarded, to a certain extent, as a separate, self-contained account. Through­
out the thesis we investigate the pulsed-field radiation behavior of a slot in an electrically 
perfectly conducting screen. The source exciting the structures is modeled as a prescribed 
distribution of the transverse electric field across the radiating slot. 

Starting with a freestanding infinitesimal slot (line source) we gradually extend the 
problem complexity by inclusion an additional electrically conducting screen or a dielectric 
covering layer. Subsequently, we proceed to the more realistic radiator by considering 
a finite width of the slot. Again, the pulsed radiation from this slot is investigated 
in the presence of an electrically conducting screen or a dielectric layer. Finally, it is 
demonstrated how to deal with the spatially nonuniform distribution of the excitation, as 
occurs in the case of the modal excitation. For the sake of briefness, most of the chapters 
are suplemented by an Appendix, where the generic integral representation applying to the 
corresponding problem is solved. A number of numerical results that illustrate important 
features of corresponding wave phenomena are given. 

Chapter 3 addresses the radiation properties of a slot of infinitesimal width in a two-
dimensional configuration. The solution of the latter problem is solvable also in the 
frequency domain and can be found in the literature (see, for example [20]). In this part, 
the radiated pulsed fields are found via the Cagniard-DeHoop technique and also with 
the help of the corresponding scalar Green's function. 

1.4 Outline of the thesis 
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Chapter 4 can be considered as a generalization of the previous chapter and as a 
preparatory step for the next one. Here, the pulsed radiation from a narrow slot is 
investigated in the presence of a perfectly conducting screen that is placed above the slot. 
This chapter brings new features as the reflected wave constituents that occur on account 
of the additional screen. 

Throughout Chapter 5, our considerations are aimed at the narrow slot antenna con­
figuration covered by a dielectric slab. Thanks to the presence of the dielectric covering, 
the pertaining wave motion appears as the superposition of a number of propagating, 
reflecting, and refracting wave constituents. The exact solution of this problem can be 
found in [42] where the attention was focused on the evaluation of the field pulse shapes 
at dielectric/air interface. This has been extended here such that the closed-form expres­
sions for radiated fields are given in the dielectric layer, at the dielectric/vacuum interface 
as well as in the vacuum half-space. 

In the next chapters, the problem has been generalized by considering a finite slot 
width. A pulsed field radiation from a freestanding wide slot is investigated in Chapter 6. 
Here it is shown that the excitation via a wide slot shows additional features in that the 
corners of the waveguide feed show a separate diffractive behavior with accompanying 
wavefronts. The results of this chapter have been used for the description of pulsed 
radiation from a simple antenna array configuration [41]. 

Again, Chapter 7 can be considered as a certain generalization of the previous chapter 
and as a preparatory step for the next one. Here, the wide slot from Chapter 6 is analyzed 
in the presence of a perfectly conducting screen. It is shown that this additional screen 
causes reflections of diffractive and plane radiated wave fields. 

Chapter 8 deals with the pulsed electromagnetic radiation from a wide slot that is 
covered by a dielectric layer [19]. On account of the presence of the dielectric slab, 
the pertaining wave motion appears as the superposition of a number of propagating, 
reflecting, and refracting wave constituents emanating from the corners of the feeding 
waveguide in addition to the plane wave propagating and reflecting above the radiating 
slot. 

Finally, in Chapter 9 the problem of a nonuniform spatial distribution of an excitation 
field (as in the case of a modal excitation in the radiating aperture) is addressed. It is 
shown that the modal aperture excitation can be taken into account at the expense of 
having to evaluate an additional one-dimensional integral over a finite time-window. 

In conclusion, the accomplishments of the thesis and the prospective aims are sum­
marized. 
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Chapter 2 

The electromagnetic field equations 

Summary 

In this chapter, the electromagnetic source-free field equations, as used throughout the 
thesis, are given. Since all problem configurations, as well as their excitation, are inde­
pendent of one of the spatial coordinates, our starting equations take on a particular form 
that is derived here. 

2.1 The basic equations 

Throughout the thesis, the pulsed electromagnetic radiation from a two-dimensional slot 
antenna is evaluated (see Fig. 2.1). It is assumed that a radiating aperture A = {—w/2 < 
x\ < w/2, -co < X2 < oo, £3 = 0} of a width w (w is vanishing for a narrow slot antenna, 
w is finite for a wide slot antenna) is mounted on a perfectly electrically conducting screen 
S = { ( — 0 0 < X\ < —w/2) U (w/2 < x\ < 0 0 ) , — 0 0 < x2 < 0 0 , £ 3 = 0} and radiates into 
a linear, time invariant, instantaneously and locally reacting, homogeneous and isotropic 
domain T> described by its scalar electric permitivity e and scalar magnetic permeability 
[i. 

In this domain, the nonzero electromagnetic wave field quantities satisfy the electro­
magnetic field equations [15, Sec. 18.3] 

—Gk,m,pdmHp + edtEk = 0 (2.1) 
ej^rdnEr + iidtHj = 0 (2.2) 

where ek,m,P is the Levi-Civita tensor and 

Ek = Ek(x,t) is the electric field strength [V/m], 
Hp = Hp(x,t) is the magnetic field strength [A/m]. 

The excited field quantities are causally related to the x2-independent excitation E1 field 
distribution on the radiating aperture 

lim #!(£! , x 3 , *) = [Vb(0/H^i)n(xi/w) (2.3) 
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V»3 
solution domain | 

£;i(xi,o,t) = [y0(*)/w]n(xi)n(xi/«;) 

P E C ground plane | o1 

< w > 

Figure 2.1: Generic configuration with indication of the aperture feeding. 

for t > 0, X\ G M. Here, Vo(t) is a feeding pulse, fi(xi) describes a spatial distribution 
of an excitation field and II(x) is the rectangular function defined with the help of the 
Heaviside step function H(x) as 

U(x) = H(x + 1/2) - H(x - 1/2) (2.4) 

On account of the problem configuration that is ̂ -independent, the electromagnetic field 
equations can be written out in terms of their components as 

d3H2 + edtEx = 0 (2.5) 
-dxH2 + edtE3 = 0 (2.6) 

-9 i£? 3 + d3E1 + fidtH2 = 0 (2.7) 

and 

-^^ + lidtHt = 0 (2.8) 
dxE2 + fidtHa = 0 (2.9) 

d1H3-d3H1 + edtH2 = Q (2.10) 

The Eqs. (2.5) - (2.7) interrelate {E1,E3, H2}(xi, x3, t) components (Transverse Magnetic, 
or TM, with respect to x3) while the Eqs. (2.8) - (2.10) interrelate {Hi, H3, E2}(xi,x3, t) 
components (Transverse Electric, or TE, with respect to x3). Since the excitation is 
included in via the excitation condition (2.3) for pulsed £q field component, only the TM 
field components are nonzero. 
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Chapter 3 

Pulsed electromagnetic field radiation 
from a narrow slot antenna 

Summary 

The pulsed electromagnetic field radiated by a 2D narrow slot antenna is analytically 
investigated via the application of the Cagniard-DeHoop technique. Starting with the 
description and formulation of the field problem we shall arrive at closed-form expressions 
describing the pulsed field radiation behavior of a narrow slot in an electrically perfectly 
conducting screen. Illustrative numerical results are given in Chapter 5, where a pulse 
distortion due to the presence of a dielectric slab is investigated.1 

3.1 Introduction 

This chapter aims at providing the description of the pulsed electromagnetic field radia­
tion from a narrow slot in an unbounded perfectly electrically conducting (PEC) screen. 
The source is modeled as a prescribed distribution of the transverse electric field across 
the slot of a uniform and vanishing width. In fact, the problem configuration consists of 
the magnetic line source. The source further radiates into free space. Using the combina­
tion of a unilateral Laplace transformation with respect to time and the spatial slowness 
representation of the field components that is known as the Cagniard-DeHoop method, 
closed-form expressions are obtained for the electric and the magnetic field as a function 
of position and time. It is emphasized that the time-domain field expressions resulting 
from this section are well-known and is possible to derive them in a number of ways. 
In this respect, the electromagnetic field quantities are found via the application of the 
Cagniard-DeHoop technique and by means of the scalar Green's function of the wave 
equation. 

Illustrative numerical results are given in Chapter 5, where a pulse distortion due to 
the presence of a dielectric slab is investigated. 

x Part of this chapter is based on the paper [42]. The permission of American Geophysical Union and 
co-authors Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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3.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 3.1. The configuration consists of an un­
bounded electrically perfectly conducting screen S = {(—oo < x\ < —w/2)U(w/2 < x\ < 
oo), —oo < X2 < 0 0 , 0 : 3 = 0} with a feeding aperture A = {—w/2 < x\ < w/2, —oo < 
x2 < oo,x 3 = 0} of the vanishing width w I 0. The structure radiates into the vacuum 
half-space V0 = {—oo < X\ < oo, — oo < x2 < oo, 0 < x3 < oo} with vacuum electric 
permittivity and magnetic permeability {eo,/xo} and corresponding electromagnetic wave 
speed c 0 = (e0/x0)"1 / 2-

\X3 

vacuum half-space | 

Pol {eo,Mo} 

0 JJ! = V0(t)/w xx 

P E C ground plane 1 

< w > < w > 

Figure 3.1: Configuration with indication of the aperture feeding. 

The antenna aperture is fed by the uniformly distributed, x2—independent, electric 
field 

El(x1,0,t) = Vo(t)/w mA (3.1) 

where Vo(t) is the feeding 'voltage'. Since the excitation, as well as the configuration, are 
independent of x2, the non-zero components of the electric field strength {£1, E3}(xi, x3, t) 
and the magnetic field strength H2(xi, x3, t) satisfy in V0 the source-free field equations 
(cf. Eqs. (2.5) - (2.7)) 

d,H2 - e0dtE3 = 0 (3.2) 
d3H2 + eodtEx = 0 (3.3) 

d,E3 - d3E, - n0dtH2 = 0 (3.4) 

with the excitation condition (cf. Eq. (2.3)) 

l i m E i ( x i , x 3 , t ) = Vo(t)5(xi) for a l l * (3.5) 
£3.10 

where S(x) is Dirac's distribution. It is assumed that V0(t) starts to act at * = 0 and that 
prior to this instant the field vanishes throughout the configuration. 
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3.3 Field representations 

In view of the Cagniard-DeHoop technique we employ the unilateral Laplace transforma­
tion with respect to time 

POD 

V0(s) = / exp(-st)V0(t)dt (3.6) 
Jt=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27], [44]. 
Further we use the wave slowness field representation 

l^i,^,^} (xi, x3, s) = ^ 7 J exp(-spxi) | ^ i , ^ 3 , # 2 } {p,x3,s)dp (3.7) 

Under these transformations, the field equations (3.2) - (3.4) and the excitation condition 
(3.5) transform into 

-spH2 - se0E3 = 0 (3.8) 

d3H2 + seoEt = 0 (3.9) 

-spE3 - d3Ex - s^0H2 = 0 (3.10) 

and 

]imE1(p,x3,s) = V0(s) (3.11) 

respectively. The bounded slowness-domain field quantities follow from (3.8) - (3.10) by 
expressing them in the form 

E3, H2 J (p,x3,s) = {7o(p)/eo,-p/eo,l}A(p,s)exp[-s7o(p)x3] in V0 (3.12) 

The unknown A(p,s) results from the application of the excitation condition (3.11) as 

A(p,s)=e0V0(s)/l0(p) (3.13) 

3.4 The time-domain radiated fields 

In this section we focus on the time-domain fields radiated into the vacuum halfspace T>Q. 
Using the results of Section 3.3 we express them as 

{E1,E3,H2}(x1,x3,s) = ^4- [ ( l , 7 - t , - t ^ t jexp{-s[pxi+7o(p)x 3 }dp 
2TTI Jp=_ioo { 7o(p) 7o(p)J 

(3.14) 

The algebraic parts of the integrand do not contain any propagation coefficient that 
differs from the propagation coefficient 70 (p) in the propagation factor. This has the 
consequence that the corresponding Cagniard-DeHoop contour for a positive horizontal 
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offset intersects the real p-axis in between p = 0 and p = 1/CQ, implying the absence of 
head-waves. Following the recipe given in Appendix A for CQ = c\, the corresponding 
time-domain expressions in T>Q can be found as 

{E1,E3,H2}(x1,x3,t) = dtV0(t) * - | — - — , e o j ^ — ( 3 . 1 5 ) 

where r = (xf + xf;)1/2 > 0 and £i (x i ,0 ,£) = Vo(£)<5(xi). The time-domain expressions 
can also be found from the solution of the source-free field equations (3.2) - (3.4) with 
(3.5) under the unilateral Laplace transformation. The solution is given as 

{&,Ek,H2Kx1,xs,s) = ?^{^K1{Sr/cQ),-^ 

(3.16) 

where K0ji (x) are the modified Bessel functions of the second kind. Employing the inverse 
Laplace transformation of the modified Bessel functions K0(sr/co) and Ki(sr/co) 

H{t-r/c0) c0t H{t-r/c0) 
( t 2 - r 2 / c § ) V 2 ' r (t2 - r2/c2)1/2 

respectively, we arrive at the time-domain expressions (3.15). In the last example we 
express the electromagnetic field components in terms of the scalar fundamental solution 
of the wave equation 

{E1,E3,H2}{x1,x3,t) = V0(t) * {-d^d^codtGo} (Xl,x3,t) (3.18) 

where G0 = G0(xi,x3,t) is a solution of the following problem in V0 

{d\ + dl - %/4)G0 = o 
]imd3G0 = -8(t)8(x1) (3.19) 

which is 

G0(xux3,t) = h ' 1 ^ ~ r 2 / c ° ) _ 1 / 2 f O T r / C 0 < * < ° ° ' (3.20) 
V ' ' 7 (0 for 0 < t < r/c 0

 V ; 

Carrying out the spatial differentiation introduced in (3.18) we arrive at 

^ • ^ ' • * " ' ) = w < J H - l - l } ( ^ ^ ( 3- 2 l ) 

Noting that 

9, [t/(t2 - r 2/^) 1/ 2] = -(r/c 0 ) 2 /(t 2 - r 2 /c 2 ) 3 / 2 (3.22) 

then the application of integration by parts transforms expressions (3.18) into (3.15) again. 
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Chapter 4 

Pulsed electromagnetic field radiation 
from a narrow slot antenna between 
two parallel planes 

Summary 

The pulsed electromagnetic field in between two parallel planes excited by a 2D narrow 
slot is analytically investigated via the application of the Cagniard-DeHoop technique. 
Starting with the description and formulation of the field problem we shall construct the 
exact pulse shapes for the radiated electromagnetic field components. 

4.1 Introduction 

The present chapter aims at providing the description of the pulsed electromagnetic field 
radiation from a narrow slot in an unbounded perfectly electrically conducting (PEC) 
screen. The source excited the structure is modeled as a prescribed distribution of the 
transverse electric field across the slot of a uniform and vanishing width. The structure 
further radiates into the domain in between two P E C parallel planes. If the upper plane 
is moved far away from the radiating slot, all reflected time-domain constituents become 
negligible and only upgoing radiated time-domain constituent is relevant. In this sense, 
the solved problem can be considered as a certain generalization of the problem described 
in Chapter 3. 

Reflections occur due to the additional screen above the slot, and the slowness-domain 
quantities have to be written as a superposition of constituents, each of which admits a 
closed-form representation attainable with the Cagniard-DeHoop technique as described 
in Appendix A. It is shown that the wave motion consists of the set of upgoing and 
downgoing cylindrical waves emanating from the slot. 

The problem solved in this chapter was studied by Schelkunoff in the frequency domain 
[36]. In it, electromagnetic waves between two parallel, perfectly electrically conducting 
screens are investigated with the aid of the 'Laplace transform method'. In view of the 
latter, the electromagnetic field in between the planes is excited by an a-c voltage applied 
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across the slot and the time dependence of electromagnetic field components is supressed 
by assuming exp(iu;£) time behavior. The excited electromagnetic field components are 
subsequently represented via the Bromwich contour inversion integral that is solved by 
means of the residue theorem. 

The aproach presented in this chapter is somewhat more general in the sense that 
the electromagnetic field components are found in the space-time domain, without anti­
cipation of the time-domain behavior of excited electromagnetic field. As the main tool, 
the combination of a unilateral Laplace transformation with the spatial wave slowness 
representation is used, which is known as the Cagniard-DeHoop technique. 

4.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 4.1. The configuration consists of two un­
bounded electrically perfectly conducting screens «Si = { — oo < x\ < oo, — oo < x2 < 
oo,x3 = h} and S2 = { ( — 0 0 < x\ < —w/2) U (w/2 < x\ < 0 0 ) , — 0 0 < x2 < 00,x 3 = 0} 
with a feeding aperture A = {—w/2 < x\ < w/2, — 0 0 < x2 < 0 0 , x3 = 0} of the vanishing 
width w I 0. The structure radiates into the domain V = {—oo<£i<oo,— 00 < X2 < 
00, 0 < £3 < h} with scalar electric permittivity and magnetic permeability {e, //} and 
corresponding electromagnetic wave speed c = (e/z)-1/2. 

KX3 

Xl 
h 

0 Ex = V0(t)/w Xl 
P E C plane 1 

+ ^ 

Figure 4.1: Configuration with indication of the aperture feeding. 

The antenna aperture is fed by the uniformly distributed, x2—independent, electric 
field 

E1(x1,0,t) = Vo{t)/w in A (4.1) 

where V0(t) is the feeding 'voltage'. Since the excitation, as well as the configuration, are 
independent of x2, the non-zero components of the electric field strength {Ely E3}(xi,x3, t) 
and the magnetic field strength H2(xi,X3,t) satisfy in V the source-free field equations 
(cf. Eqs. (2.5) - (2.7)) 

dxH2 - edtE3 = 0 (4.2) 
D3H2 + edtEx = 0 (4.3) 

dxE3 - d3Ex - fidtH2 = 0 (4.4) 
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The boundary condition of the explicit type requires that 

lim E1(xi,x3, t) — 0 for all t and for all X\ (4.5) 

while the excitation condition is (cf. Eq. (2.3)) 

l i m £ i ( x i , x 3 , 0 = Vb(*)<S(a;i) for all * (4.6) 

where S(x) is Dirac's distribution. It is assumed that V0(t) starts to act at t — 0 and that 
prior to this instant the field vanishes throughout the configuration. 

4.3 Field representations 

In view of the Cagniard-DeHoop technique we employ the unilateral Laplace transforma­
tion with respect to time 

V0(s) = / exp(-st)V0(t)dt (4.7) 
t=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27], [44]. 
Further we use the wave slowness field representation 

l^i,^,^} {xi,x3,s) = ^ 7 J exp(-spxi) ^EUE3,H2} (p, x3, s)dp (4.8) 

Under these transformations, the field equations (4.2) - (4.4) and the boundary conditions 
(4.5) - (4.6) transform into 

-spH2 - seE3 = 0 (4.9) 

93^2 + 56^1 = 0 (4.10) 

-spE3 - «93£i - s^H2 = 0 (4.11) 

and 

l i m ^ ! ( p , x 3 , s ) = 0 (4.12) 

lim E1(p,x3,s) = V0(s) (4.13) 
£3.10 

The bounded slowness-domain field quantities follow from (4.9) - (4.13) by expressing 
them in the form 

E1,E3,H2, \ (p,x3,s) = {7(p)/e, -p/e,l} A+(p,s) exp[-s-f(p)(x3 - h)] 

+ {-7(p)A, -p/e, 1} A~(p, s) exp [s-f(p)(h - x3)} (4.14) 
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in which 

7 (p) = (1/c2 - p2)1'2 with Re[7(p)] > 0 (4.15) 

for all p e C . The unknown coefficients result from the application of boundary conditions 
(4.12) - (4.13) as 

A+(p,s) = A-(p,s) = ̂ - T U T ( 4 1 6 ) 
7(j?) exp[s'y{p)n,\ — exp|—s'y{p)n,\ 

Via the convergent expansion 

exp[s7(p)/i] 
exp[sqf{p)h] - exp[-sqf{p)h] n = { ) 

J^exp[-2ns7(p)/i] (4.17) 

the slowness-domain field quantities can be written as the superposition of constituents 
each of which admits a closed-form representation attainable with Cagniard-DeHoop tech­
nique. 

4.4 The time-domain radiated fields 

In this section we provide the time-domain fields radiated into the domain T>. Using the 
results of Section 4.3 we express them as 

oo 

{Ei, E3, H2] (Xl,x3, S) = J2 {Ef\E[
3

n\ H[?]) (*i,x3,s) (4.18) 
n=0 

with 

E^\Et\Ht]}{xllX3ls) 

27ri Jp=_ioD { ' 7(p)' 7(p) 
exp{—s[px\ + j(p)Z+}dp 

+ - - £ v 4 \ I" exp{- S [px 1 + 7 (p)^-}dp (4.19) 
27ri J p = _ i o o [ ' T ( P ) ' 7(P) 

with Z+ = x3 + 2nh and Z _ = 2(n + l)h — x3. The algebraic parts of the integrands do not 
contain any propagation coefficient that differs from the propagation coefficient 7 (p) in the 
propagation factors. This has the consequence that the corresponding Cagniard-DeHoop 
contours for a positive horizontal offset intersect the real p-axis in between p = 0 and 
p — 1/c, implying the absence of head-waves. Following the recipe given in Appendix A 
for c — Co — Ci, the corresponding time-domain expressions in T> can be found as 

E^\Et\Ht]\{xux3,t) = dtV0(t) * " (-
J 71 ^ X\ 

Z+t xxt £ ] H(t-T+ 
2 + zy x2 + zy } ( t 2 - T 2 ) V 2 

(*) 1 ( Z.t Xlt \ H{t - T. 
+ dtV0(t) * 

IT { x2 + ZV x2 + ZV J (t2-r2y/2 

(4.20) 
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where 

T± = {x\ + Zlf^/c. (4.21) 

Obviously, the wave motion consists of set of upgoing and downgoing time-domain con­
stituents. In the limit h —> oo, i.e. as the upper plane is moved towards infinity, the 
reflected time-domain constituents become negligible and only the zero-order upgoing 
constituent is relevant. This is consistent with the expressions (3.15) derived in the pre­
vious chapter. 
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Chapter 5 

Pulsed electromagnetic field radiation 
from a narrow slot antenna with a 
dielectric layer 

Summary 

The pulsed electromagnetic field radiated by a 2D narrow slot antenna with a dielectric 
layer is analytically investigated via the application of the Cagniard-DeHoop technique. 
Starting with the description and formulation of the field problem we shall arrive at 
closed-form expressions describing the pulsed field radiation behavior of a narrow slot 
in an electrically perfectly conducting screen covered by a dielectric layer. In order to 
illustrate the pulse distortion that results from the presence of the dielectric slab, the 
results of this chapter shall be also compared with ones from Chapter 3. Illustrative 
numerical examples are given. 2 

5.1 Introduction 

With the rapid development of communication systems whose operation is based upon 
the transfer of pulsed electromagnetic fields and the detection and subsequent interpre­
tation of the pertaining digital signals, there is a need for the mathematical analysis 
of model configurations where the influence of (a number of) the system parameters on 
the performance shows up in closed-form analytic expressions that characterize the phys­
ical behavior. The present chapter aims at providing such a tool with regard to the 
pulsed radiation behavior of a narrow slot antenna covered with a dielectric layer in a 
two-dimensional setting. 

The source exciting the structure is modeled as a prescribed distribution of the trans­
verse electric field across a slot of uniform width in a perfectly electrically conducting 
(PEC) planar screen. The pulse shape of the exciting field is arbitrary. In front of this 
slotted plane there is a homogeneous, isotropic dielectric slab of uniform thickness. The 

2 Par t of this section is based on the paper [42]. The permission of American Geophysical Union and 
co-authors Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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structure further radiates into free space. Using the combination of a unilateral Laplace 
transformation with respect to time and the spatial slowness representation of the field 
components that is known as the Cagniard-DeHoop method, closed-form expressions are 
obtained for the electric and the magnetic field as a function of position and time. The 
representation appears as the superposition of a number of propagating, reflecting and 
refracting wave constituents in the slab and is, within any finite time window of obser­
vation, exact. It is immediately clear that the pulse shapes of these constituents (that 
successively reach a receiving observer) are distorted versions of the time derivative of ac­
tivating source signature. Parameters in this respect are: the pulse shape of the excitation 
(characterized by the pulse rise time and the pulse time width of a unipolar pulse), the 
thickness and the dielectric properties of the slab, as well as the position of observation 
relative to the exciting slot. 

The exact description of the pulsed electromagnetic field behavior of this problem was 
published in [42]. In this paper, the attention was focused on the evaluation of the fields 
at the dielectric/air interface, which is sufficient for the evaluation of radiated fields into 
the vacuum half-space. This has been extended here such that the closed-form expressions 
for radiated fields are given in the dielectric layer, at the dielectric/vacuum interface as 
well as in the vacuum half-space. For the evaluation of the pulse shapes in the vacuum 
half-space, the parametrization of the Cagniard-DeHoop integration contour is carried 
out numerically via the iterative process described in Appendix D. The last section pro­
vides a number of illustrative numerical examples and is divided into three subsections. 
At first, numerical examples that illustrate the distortion of pulse shapes (of continuous 
components across the interface) at the vacuum/dielectric interface due to the presence 
of a dielectric layer are given. The next subsection shows the pulse shapes (of component 
that jumps across the interface) just below and above the vacuum/dielectric interface. F i ­
nally, the time-evolution of the Poynting vector in the dielectric layer, dielectric/vacuum 
interface and in vacuum is given. This example is further supplemented with the illus­
tration of Cagniard-DeHoop paths connected with the observation point in the vacuum 
half-space for the first two wave constituents. 

In the case of vanishing contrast (in electromagnetic properties) between the dielectric 
slab and free-space, obtained results become identical with ones given in Chapter 3. In 
this sense, the solved problem can be considered as a certain generalization of the problem 
described Chapter 3. 

5.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 5.1. The configuration consists of an un­
bounded electrically perfectly conducting screen S = {(—oo < x\ < —w/2)U(w/2 < x\ < 
oo), —oo < X2 < oo ,X3 = 0} with a feeding aperture A = {—w/2 < x\ < w/2, —oo < 
X2 < oo, £3 = 0} of the vanishing width w J. 0. The covering dielectric slab occupies the 
domain T)\ = { — 0 0 < X\ < 0 0 , — 0 0 < x 2 < 0 0 , 0 < x3 < d}. The structure radiates into 
the vacuum half-space V0 = { — 0 0 < X\ < 0 0 , — 0 0 < x 2 < 0 0 , d < x3 < 0 0 } . The spatial 
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\X3 

vacuum half-space | 

£>0 {eo,/x0} ^ _ d .A A . c . D 

dielectric slab | / 
0 
7 r 

0 /Ex = V0{t)/w 
P E C ground plane 

< w > 

Figure 5.1: Configuration with indication of the critical angle 8C = arcsin(ci/co). Positions 
of the observation points {B, C, D} are not true-to-scale with those chosen in Section 5.7.1. 

distribution of electric permittivity and magnetic permeability is 

{ e ^ l H j . , . _ (5-1) |ei,/xi} in P i 

The corresponding electromagnetic wave speeds are c 0 = (eo/xo)~1//2 and Ci = (ei/xi)~1//2. 
The antenna aperture is fed by the uniformly distributed, x2 —independent, electric 

field 

E1(x1,0,t) = V0(t)/w in A (5.2) 

where Vo(t) is the feeding 'voltage'. Since the excitation, as well as the configuration, are 
independent of x2, the non-zero components of the electric field strength {Ei, E3}(xi,x3, t) 
and the magnetic field strength H2(xi,x3,t) satisfy in V0 and T)\ the source-free field 
equations (cf. Eqs. (2.5) - (2.7)) 

dxH2 - edtE3 = 0 (5.3) 
D3H2 + edtEx = 0 (5.4) 

dlE3 - d3Ex - fidtH2 = 0 (5.5) 

The interface boundary conditions require that 

lim Ei(xi, x3, t) = ]imEi(xi,X3,t) for all X\ and t (5.6) 

lim H2(xi, x3, t) = lim H2(xi, x3, t) for all x\ and t (5.7) 
x3.[d xz\d 

while the excitation condition is (cf. Eq. (2.3)) 

MmE^xxiX^t) = VQ(t)5(x1) for all t (5.8) 

as w I 0 with S(x) denoting Dirac's distribution. It is assumed that V0(t) starts to act at 
t = 0 and that prior to this instant the field vanishes throughout the configuration. 
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5.3 Field representations 

The Cagniard-DeHoop technique employs a unilateral Laplace transformation with res­
pect to time of the type 

POD 

V0(s)= / exp(-st)V0(t)dt (5-9) 
Jt=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27,44]. The 
next step is to use the slowness representation of the field quantities 

l^i,^,^} (x1,x3,s) = ^ 7 J exp(-spxi) l^i,^,^} {p,x3,s)dp (5.10) 

that involves imaginary values of the complex slowness parameter p. Using (5.9) and 
(5.10), the field equations (5.3)-(5.5) transform into 

-spH2- seE3 = 0 (5.11) 

<93#2 + se£i = 0 (5.12) 

-spE3 - d3E! - SfxH2 = 0 (5.13) 

the interface boundary conditions (5.6) and (5.7) into 

lim Ei(p, x3, s) = lim Ei(p, x3, s) (5-14) 

\im H2(p, x3, s) = lim H2(p,x3, s) (5.15) 
x3id x31d 

and the excitation condition (5.8) into 

lim E1(p,x3,s) = V0(s) (5.16) 

The slowness-domain field quantities follow from (5.11) - (5.16) by expressing them in 
the form 

EUE3,H2} (p,x3,s) = {7o(p)/e0, -p/eo, i M o (p,s)exp [-sj0(p)(x3 - d)] in V0 

(5.17) 

and 

£ i , £ 3 , # 2 j ip,x3,s) = {j1(yp)/e1,-p/e1,l}Af(yp,s)exp[-sj1(yp)x3} 

+ {-7I(P)A I , -p/ei , 1} A (p, s) exp [-S7i(p)(d - x3)} in Vx 

(5.1? 

in which 

7o,i (p) = (l/cg f l - p 2) 7 with Re [7o,i(p)] > 0 for all p e C (5.19) 
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Using these expressions in (5.14) - (5.16) it is found that 

A } ( p , . ) = - ^ ^ (5.20) 
7i(p) A 

A r ( p , s ) = ̂ f l „ ( P ) t e E h £ 2 l ( £ M ( 5 . 2 1 ) 

7i(p) A 

^ f c s ) = ^ r H ( p ) f c p h £ 2 l M ( 5 . 2 2 ) 

in which 

fl = 7 . M A . - 7 . M A . ( 5 2 3 ) 

7i(p)/ei + 7o(p)/eo 

TH (p) = : T T T - 5 - 2 4 

7 i b ) A i +7o(p)/e0 

A = 1 - ifo(p) exp[-2s7i(p)d] (5.25) 

Via the convergent expansion 
^ oo 

- = [RH(p)T exp [-2snd 7i(p)] (5.26) 
n=0 

the slowness-domain field quantities can be written as the superposition of constituents 
each of which admits a closed-form representation attainable with Cagniard-DeHoop 
method 

oo 

[E^E^H,] (Xl,x3,s) = {E[?\Ef\Ht]} (xux3,8) (5.27) 
n=0 

5.4 The time-domain field in the dielectric layer 

In this section we focus on the time-domain constituents of the fields components propa­
gating in the dielectric slab T>\. Using the results of Section 5.3 we express them as 

27ri Jp=_ioo { ' 7i (p)' 7i (p) 
x exp{—s\px\ + 7i(p)Z +]}dp 

+ f ^ f j - i ' « W ) P « 
27T1 Jp=_ioo [ -fi{p) 7l (p) J 

x exp{—s[pxi + 7i(p)Z_]}dp (5.28) 
where Z + = £3 + 2nd, Z_ = 2(n + l )d — X 3 . Obviously, the expressions represent sets of 
upgoing and downgoing waves. The latter waves, as well as subsequent reflected upgoing 
waves, disappear as the contrast in electromagnetic properties between V0 and V\ vani­
shes. Since the propagation terms in (5.28) do not contain the propagation coefficient 
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7o(p)5 which, for the standard case c 0 > ci , implies the possible occurence of head-waves. 
The corresponding time-domain expressions of each of these constituents follow upon the 
application of the Cagniard-DeHoop technique as described in Appendix A . In this way, 
the body-wave time-domain constituents can be written as 

{ C i [ f l l , C ! [ n U ? W l [ B l } (*i,*3,«) = dtVQ(t) * vr- 1 

x { R e ( { 7 i ( P
B W + ) , - p B W + , e i } [RH(P

BW+)]n)H{t-T^+) ( t 2 - T r X " 1 / 2 

+ Re ( { - 7 l ( p B W " ) , - p B W ' , e i } [RE ( p B W - ) f + 1 ) 

xH(t-T^_){e-T^_y1/2} (5.29) 

,[n]2 
BW4 

where p B W ± = pBW±(xi, Z±, t) is given as 

1/2 
pBW± = {xxt + i Z ± (t 2 - 2 * ^ ) }/{z 2 + Z|} (5.30) 

with 

* ± = (*? + ^I ) 1 / 2 /ci (5-31) 

In the range where x\/(x\ + Z 2 ) 1 / 2 > ci/c 0 is satisfied, the head-wave time-domain 
constituents are present 

|^HW;[n] ̂ HW;[n] ̂ HW;[„] j = W ^ 

x { im ({ 7 l ( p H W + ) , - p H W + , £ l } ( p H W + ) ] n ) n [(t - T g ) /7i"j] ( * 2
+ " t2Y'2 

+ Im ( { - 7 l ( p H W - ) , - p H W " , £ l } [RH ( p H W - ) ] 

x n t _ r w ) / r w (T^_-A~1'2 \ (5-32) 

where II(rc) denotes the rectangular function and p H W ± = paw±(xi, Z±,t) is given as 

1/2 
{arxt - Z ± ( r ^ - t 2 ) }/{*2 + Z 2 } (5.33) 

with 

I / 2\l/2 rpln] 
JHW± 

= XI/CQ + Z± (1/c2 

1C± 
( rpln] 

— 1 JHW± 4- T[n] } 
' 1 BW± J rpln] 

1L± 
_ T iN 
~~ JBW± 

rpln] 
JHW± 

(5.34) 

/2 (5.35) 

(5.36) 
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5.5 The time-domain field at the vacuum/dielectric in­
terface 

In this section we focus on those field components at the interface x3 = d that are 
continuous across this interface, i.e. E\ and H2. In fact, the radiated field in T>Q can be 
easily expressed in terms of these field values. Using the results o f Section 5.3 we express 
them as 

{mmMs)=4^ r { ^ . - t t ) ^ d a w - M r 
1 J 2TTI Jp=_ioo UO7I(P) 7i (p) J 

x exp{—s\px\ + 7i(p)(2n + l)d]}dp (5.37) 
Since the propagation terms in (5.37) do not contain the propagation coefficient 7o(p), 
which for the standard case Co > ci , implies the possible occurence of head-waves. The 
corresponding time-domain expressions of each of these constituents follow upon the appli­
cation of the Cagniard-DeHoop technique given in Appendix A . In this way, the body-
wave time-domain constituents can be written as 

x [ ^ ( p B W ) ] " ) / / ( * - ^ ) ( t 2 - * 2 ) " 1 7 2 (5.38) 

where p B W = pBW[xi, (2n + t] is given as 
1/2 

p B W = [ X l t + i(2n + l)d (t2 - l f | ) }/{X 2 + [(2n + l ) c f } (5.39) 

with 

T^ = {x2
1 + [(2n+l)d]2}1/2/c1 (5.40) 

In the range where x\j{x\ + [(2n + l)^]2}1/2 > C\/CQ is satisfied, the head-wave time-
domain constituents are present 

J£HW;M^HW;W j = W ) (J ^ ^ ( { ^ (pHW) / E O , E I } T „ ( p H W ) 

x [ife ( P h w ) ] " ) n [(t - r w ) / i f ] (TJ$ - t 
(5.41) 

where pnw = pnw[xi, (2n + l)d, t] is given as 

pHW = _ ( 2 n + 1 ) d ^ M 2 _ f 2 y / 2

 + [ ( 2 n + 1 ) d ] 2 | ( 5 4 2 ) 

with 

= *iA*> + (2n + l )d (l/c 2 - l / c 2 ) 1 / 2 (5.43) 

7 ? ] = + ) /2 (5.44) 

1h — J BW J HW (O.̂ Oj 
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5.6 The time-domain field in the vacuum 

In this section we focus on the time-domain constituents of the fields radiated into the 
vacuum halfspace T>0. Using the results of Section 5.3 we express them as 

£ H {XUX3,S)=ffw r ^^\Ttt{p)[RH{p)r 
1 J 2TTI Jp=_ioo Uo7i(p) eo7i(p) 7i(p)J 

x exp{-s[pxi + 7o(p)(x 3 — d) + 7i(p)(2n + l)d]}dp (5.46) 

The propagation terms as well as the algebraic part of the integrands now contain both 
propagation coefficients 70 (p) and 71 (p). This has the consequence that the body-wave 
part of the Cagniard-DeHoop contour intersects the real p-axis between p = 0 and 
p = 1/co, implying the absence of head-wave constituents in T>0. Note that, in this 
case, the Cagniard-DeHoop contour does not have a simple parametrization and has to 
be determined either algebraically via Cardano's formula or via the iterative numerical 
procedure as described in Appendix D. Once the iterative procedure is terminated, the 
corresponding time-domain body-wave expressions of each of these constituents result 
from the procedure as applied in Sections 5.4 and 5.5, i.e. 

{ ^ W > j E ? w ; [ » ] > j f f B W ; [ » ] } { x i ^ t ) = d t V o { t ) W ^ 

x I m ( { I t t P ' - A > ^ H } T » ^ ^ "d-BW) 
xH(t- TJ&) (5.47) 

where p B W ( r ) results from solving r = px\ + 7o (p)(x3 — d) + 7i(p)(2n + l)d such that 
r G M, r > 0. The examples of corresponding Cagniard-DeHoop contours are given in 
Sec. 5.7.3. 

5.7 Illustrative numerical examples 

This section provides illustrative numerical results for the case of excitation with the 
power exponential signature with v — 2 (tw/tr = 1.8473), as shown in Fig. 5.2a. Fig. 5.2b 
shows its spectral diagram. In them, the normalized Vo(t) is Vo(t)/Vmax, the normalized 
time is t/tr, the normalized Vo(iu) is Vo(ia;)/Vo(0) and the normalized angular frequency is 
U J / c i ; c o r n e r . This activating source signature is used throughout this section. 

The rise time of the excitation pulse tr is taken as half of the free-space travel time 
across the slab. As described in Appendix E, the pulse time width tw is related to the 
pulse rise time tr via (E.3), which gives cotw/d = 0.9236 for v — 2. The properties of the 
slab are taken as {ei,/xi} = {4e0,/xo}. 

The first part of this section shows pulse shapes of {E1: H2}(xi,d,t) at the level of 
vacuum/dielectric interface, while the second part provides pulse shapes of E3(xi,xs,t) 
just below and above the interface, across which it jumps. The third subsection gives 
the time evolution of the Poynting vector within a certain region of space at two succes­
sive observation times. The last part is supplemented by examples of Cagniard-DeHoop 
contours associated with the evaluation of pulse shapes in the vacuum. 

25 



A l l time convolution integrals contain inverse square-root singularities at one of the 
end-points of the integrals. These are numerically handled via a stretching of the variable 
of integration according to 

R = COSII(M) for 0 < u < oo (5.48) 

with the Jacobian 

^ = T ^ s i n h ( M ) = (r 2 -T ] r|) 1 / 2
 (5.49) 

for a body-wave constituent with arrival time and 

r = cos(w) for 0 < v < ir/2 (5.50) 

with the Jacobian 

% = -T^sin(v) = - { T ^ - ^ ) 1 / 2 (5.51) 

for a head-wave constituent. The integration limits at the time convolution integrals are 
subsequently adjusted to the corresponding intervals in u and v. 

5.7.1 Examples of pulse shapes at the vacuum/dielectric interface 
In any finite time window of observation, only a finite number of time-domain constituents 
yields a non-zero contribution, while in the range of critical refraction only a subset of 
these contributions have a head-wave part. The objective of our analysis is to compare 
the pulse shapes of the different constituents with the ones that the slot antenna would 
radiate into a half-space with the properties of T>Q. This comparison is carried out on the 
vacuum/dielectric interface. 

Four positions of observation at x3 = d have been selected: (A) x\jd = 0, (B) x\jd = 
0.5, (C) xi/d = 2.8, (D) xi/d = 5.0. In accordance with Fig. 5.1, only the last two 
observation points are in the range of critical refraction. The time window of observation 
is taken as 0 < c^t/d < 20. The arrival times of the different contributions are shown in 
Table 5.1. 

Figs. 5.3 - 5.6 show the results. In them, the normalized E1 is Eid/VmSiK, the normalized 
H2 is (/x0/eo)1//2H2d/Vmax, the normalized time is c0t/d. The successive reflections at the 
interface clearly show up. Especially in the ranges where head-wave contributions occur, 
the total pulse shape significantly deviates from the one that is excited at the radiating 
slot. 

5.7.2 Examples of pulse shapes just below and above 
the vacuum/dielectric interface 

For the observation of pulse shapes of the electric field component E3(xi,x3,t), six ob­
servation points below and above the points (B), (C) and (D) at vertical levels x3/d — 
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Table 5.1: Arrival times of constituents at the vacuum/dielectric interface. 

A r r i v a l times 

order 

M 

A B C D A B C D 
order 

M 
Head-wave Body-wave order 

M QJ^HW/d Co^Bw/^ 
0 - - 4.5321 6.7231 2.0 2.2361 5.9464 10.1980 
1 - - 7.9962 10.1962 6.0 6.0828 8.2073 11.6619 
2 - - - 13.6603 10.0 10.0499 11.4612 14.1421 
3 - - - 17.1244 14.0 14.0357 15.0785 17.2047 
4 - - - - 18.0 18.0278 18.8510 -

0.995,1.005 have been chosen. The corresponding points just below the interface are 
labeled with f and the points just above the interface with 1. 

In the plots, the normalized time is cot/d and the normalized E3 stands for E3w/Vmax. 
Figures 5.7 - 5.9 exhibit the jump in magnitude that is related to the electric contrast 
ratio ei/eo = 4. The arrival times corresponding to the pulse shapes in the dielectric layer 
and in the vacuum are summarized in Tables 5.2 and 5.3, respectively. 

5.7.3 Time evolution of the Poynting vector 
In the (color) vector density plots we show the time evolution of two-component Poynting 
vector 

Si = -E3H2 (5.52) 
S3 = EXH2 (5.53) 

normalized with respect to 

|SU = ( W ^ ) 2 ( e o M ) ) 1 / 2 (5.54) 

The spatial domain of observation is taken as {—3 < X\jd < 3,0 < x3/d < 3} and two 
observation times are chosen as: c0t/d = {2,4}. 

In Fig. 5.10a the cylindrical wavefront just reaches the vacuum/dielectric interface 
at cot/d = 2. Fig. 5.10b illustrates the spatial distribution of the Poynting vector at 
cot/d = 4. At the latter observation time, the reflected wave time-domain constituents 
and the head-wave time-domain constituents beyond the critical refraction limit are clearly 
visible. 

At two points inside the spatial observation region, the Cagniard-DeHoop paths have 
been evaluted for the first two successive time-domain constituents n — {0,1}. The time-
window has been taken as T B W < cot/d < 20. Fig. 5.11 shows the first quadrant of p-plane 
with the corresponding Cagniard-DeHoop paths at X\ = 0.5c?, x3 = 2d while Fig. 5.12 
shows the Cagniard-DeHoop paths for the observation point at X\ = 2.8d, x3 = 2d. 
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Table 5.2: Arrival times of constituents in the dielectric slab. 

A r r i v a l times 

order 

N 

Head-wave (upgoing) Body-wave (upgoing) 

order 

N 
C O ^ H W + / D CQT^w+/d order 

N |B |B |C |D 

0 2.7234 4.5234 6.7234 2.8214 5.9431 10.1961 
1 - 7.9875 10.1875 6.3151 8.2000 11.6568 
2 - - 13.6516 10.1882 11.4525 14.1351 
3 - - 17.1157 14.1322 15.0692 17.1965 
4 - - - 18.1008 18.8414 -

order 

N 

Head-wave (downgoing) Body-wave (downgoing) 

order 

N 
order 

N |B |D |B |C |D 

0 2.7407 4.5407 6.7407 2.8355 5.9498 10.2000 
I - 8.0048 10.2048 6.3340 8.2146 11.6671 
2 - - 13.6689 10.2078 11.4700 14.1492 
3 - - 17.1330 14.1520 15.0877 17.2128 
4 - - - 18.1207 18.8605 -

Table 5.3: Arrival times of constituents in the vacuum. 

A r r i v a l times 
Body-wave 

order 
N IB 4C ID 
0 2.7321 4.5321 6.7321 
I 6.3284 7.9962 10.1962 
2 10.2026 11.4624 13.6603 
3 14.1469 15.0818 17.1244 
4 18.1156 18.8550 -
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Figure 5.2: The power exponential excitation signature, (a) Pulse shape; (b) Spectral 
diagram. 
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Figure 5.3: Normalized E-y field time-domain response and normalized H2 field time-
domain response at x\/d = 0. 

30 



Figure 5.4: Normalized E\ field time-domain response and normalized H2 field time-
domain response at x\/d = 0.5. 
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Figure 5.5: Normalized E\ field time-domain response and normalized H2 field time-
domain response at x\/d = 2.8. 
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Figure 5.6: Normalized E\ field time-domain response and normalized H2 field time-
domain response at x\/d = 5.0. 
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Figure 5.7: Normalized E3 field time-domain response above (x3/d = 1.005) and below 
(x3/d = 0.995) the dielectric interface at x\jd = 1.0. 
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Figure 5.8: Normalized E3 field time-domain response above (x3/d = 1.005) and below 
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Figure 5.10: Normalized Poynting vector of the field at (a) c0t/d = 2; (b) c0t/d = 4. 
Electromagnetic parameters of the dielectric slab are {ei,/xi} = {4e0,/xo}- Parameters of 
the excitation pulse are cotw/d = 0.9236, v — 2. 
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Figure 5.11: Examples of Cagniard-DeHoop contours associated with the first two suc­
cessive time-domain constituents in vacuum (a) n = 0; (b) n — 1. 
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Chapter 6 

Pulsed electromagnetic field radiation 
from a wide slot antenna 

Summary 

The pulsed electromagnetic field radiated by a 2D slot antenna with a finite slot width is 
analytically investigated via the application of the Cagniard-DeHoop technique. Starting 
with the description and formulation of the field problem we shall arrive at closed-form 
expressions describing the pulsed field radiation behavior of a finite slot in an electrically 
perfectly conducting screen. The closed-form time-domain expressions are consequently 
used for the studying of time-domain beam-steering and beam-shaping capabilities of a 
simple antenna array. Illustrative numerical results are also given in Chapter 8, where a 
pulse distortion due to the presence of a dielectric slab is investigated.3 

6.1 Introduction 

The present chapter aims at providing the description of pulsed electromagnetic field 
radiation from a slot of a finite width in an unbounded electrically perfectly conducting 
screen. The source excited the structure is modeled as a prescribed distribution of the 
transverse electric field across the slot of a uniform and finite width. The structure further 
radiates into free space. Using the combination of a unilateral Laplace transformation with 
respect to time and the spatial slowness representation of the field components that is 
known as the Cagniard-DeHoop method [11,12], closed-form expressions are obtained for 
the electric and the magnetic field as a function of position and time. 

It is shown that the excitation via a wide slot shows additional features in that the 
corners of the waveguide feed show a separate diffractive behavior with accompanying 
wavefronts. In this case, the wave motion radiated from such slot consists of two cylindrical 
waves emanating from the edges of the slot and of a plane wave coming upward from 
the slot. Again, as in Sec. 3.4, the radiated electromagnetic field components are also 
expressed via the appropriate fundamental soultion that is found in two equivalent forms. 

3 Par t of this chapter is based on the paper [41]; ©[2010] I E E E . The permission of I E E E and co-authors 
Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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The results of this section are used in the investigation of pulsed-field radiation be­
havior of the array of slot antennas of a finite width [41]. This can be useful in the de­
velopment of direct time-domain pulsed-field radar return identification methods [8,33]. 
First results of these methods typically deal with responses from certain classes of objects 
to an incident, linearly polarized, plane wave with a ramp function electric field pulse 
shape, observed in the far-field region of the scatterer, under the application of some 
physical-optics field approximation on the boundary surface of the object. One of the 
first generalizations of the method involves the taking into account of the properties of 
the transmitting antenna and allowing the scattering object not necessarily to be in the 
far-field region of the antenna (where a local plane-wave approximation applies). The in­
teraction of the pulsed transmitted field with the scatterer can then be analyzed through 
the time-domain field/source reciprocity theorem [17]. For this, the time-domain expres­
sion of the field transmitted by the radar antenna is needed. With this kind of application 
in mind, the pulsed E M field radiated by a planar array of slot antennas in a 2D setting are 
given. Neglecting the mutual coupling between the slots, the Cagniard-DeHoop technique 
provides closed-form analytic expressions for all field components, expressed in terms of 
the transverse electric field distibution in the apertures. By exciting the slots with pulse 
shapes of various amplitudes, pulse rise times, pulse time widths and mutual time delays, 
beam steering and beam shaping can be influenced. Combined with the mutual geometri­
cal positioning of the slots, there is a substantial amount of parameters whose influence 
on the antenna's time-domain performance can be studied with the expressions obtained. 

The illustrative numerical examples of antenna beam-steering and beam-shaping are 
presented in the last section of this chapter. The illustrative numerical examples con­
cerning a pulsed electromagnetic field radiation behavior of a single slot are provided in 
Chapter 8, where the pulse distortion due to the presence of a dielectric slab is investi­
gated. 

6.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 6.1. The configuration consists of an un­
bounded electrically perfectly conducting screen S = {(—oo < x\ < —w/2)U(w/2 < x\ < 
oo), —oo < X2 < oo ,X3 = 0} with a feeding aperture A = {—w/2 < x\ < w/2, —oo < 
X2 < oo ,X3 = 0} of the finite width w > 0. The structure radiates into the vacuum 
half-space V0 = {—oo < X\ < oo, — oo < x 2 < oo, 0 < x3 < oo} with vacuum electric 
permittivity and magnetic permeability {e0,/xo} and corresponding electromagnetic wave 
speed c 0 = (e0/x0)"1 / 2-

The antenna aperture is fed by the uniformly distributed, x 2 —independent, electric 
field 

E1(x1,0,t) = Vo{t)/w in A (6.1) 

Since the excitation, as well as the configuration, are independent of x 2 , the non-zero 
components of the electric field strength {E1: E3}(xi,x3, t) and the magnetic field strength 
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vacuum half-space | 

£>0 ( e 0 , M 

Ei = V0(t)/w 

Figure 6.1: Configuration with indication of the aperture feeding. 

H2(xi,x3,t) satisfy in V0 the source-free field equations (cf. Eqs. (2.5) - (2.7)) 

«9i#2 - e0dtE3 = 0 
d3H2 + = 0 

dxE3 - d3Ex - fi0dtH2 = 0 

with the excitation condition (cf. Eq. (2.3)) 

limEi(xi,x 3, t) = [Vo(t)/w]U(xi/w) for all t 

(6.2) 
(6.3) 
(6.4) 

(6.5) 

where II(x) is the rectangular function (see Eq. 2.4). It is assumed that Vo(t) starts to 
act at t — 0 and that prior to this instant the field vanishes throughout the configuration. 

6.3 Field representations 

In view of the Cagniard-DeHoop technique we employ the unilateral Laplace transforma­
tion with respect to time 

Vn(s) exp(-st)VQ(t)dt (6.6) 
t=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27], [44]. 
Further we use the wave slowness field representation 

Ex,E3,H2 \ (x1,x3,s 
27ri 

p=—lOO 

exp(-spxi) <̂  E1, E3, H2 \ (p, x3, s)dp (6.7) 

Under these transformations, the field equations (6.2) - (6.4) and the excitation condition 
(6.5) transform into 

-spH2 - se0E3 = 0 

d3H2 + se 0 £ i = 0 

-spE3 - d3Ex - sfi0H2 = 0 

(6.8) 

(6.9) 

(6.10) 
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and 

lim Ei(p, x3,s) 
V0(s) exp(spw/2) — exp(—spw/2) 

w sp 

respectively. The bounded slowness-domain field quantities follow from (6.8) 
expressing them in the form 

(6.11) 

(6.10) by 

E1,E3,H2j (p,x3,s) = {7o(p)/eo,-p/eo,l}A(p,s)exp[-s7o(p)x3] in V0 (6.12) 

The unknown A(p,s) results from the application of the excitation condition (6.11) as 

Vo(s) €Q exp(spw/2) — exp(—spw/2) 
A[p, s) 

w 70 (p) sp 
(6.13) 

6.4 The time-domain radiated fields 

In this section we focus on the time-domain fields radiated into the vacuum halfspace T>0. 
Using the results of Section 6.3 we express them as 

{El,E3,H2}(xl,x3,s) 
Vo(s) 
2nwi 

P=—100 

e0 

V 7o(p)>7o(p) 

x { exp{-s[p(a;i - w/2) + jo(p)x3}} - exp{-s[p(a;i + w/2) + 7o(p)^3]}}dp (6.14) 

The algebraic parts of the integrands do not contain any propagation coefficient that 
differs from the propagation coefficient 70 (p) in the propagation factors. This has the 
consequence that the corresponding Cagniard-DeHoop contours for a positive horizontal 
offset intersect the real p-axis in between p = 0 and p = 1/CQ, implying the absence of 
head-waves. Following the recipe given in Appendix B for CQ = c i , the corresponding 
time-domain expressions can be found as 

{E1,E3,H2}(x1,x3,t) = ^ ^ -
W 71 

x3(Xl-w/2) 1 (Xl-w/2)t\ H(t-Th) 
" '/xo c^-xl J {f - T b

2 )V2 C0L X3 

X3(XJ + w/2) 

C0L X3 

1 (Xl+w/2)t\ H(t-Ta) ' 
" '/xo c^-xl / ( t 2 - T a 2 ) V 2 

+ [V0(t - x3/c0)/w] {1, 0, (e0//x0)1/2} H(Xl/w) 

with 

Th = [(x1-w/2Y + xi]^/c0 

T a = [ ( x 1 + W / 2 ) 2 + x 2 ] 1 / 2 / C o 

(6.15) 

(6.16) 

(6.17) 

The first two terms can be interpreted as cylindrical waves emanating from the edges of 
the slot, while the last term represents the plane wave progressing upward from the slot. 
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Still, electromagnetic field components (6.15) can be expressed via the scalar Green's 
function as 

(*) (6.18) {E1,E3,H2}(x1,x3,t) = V0(t) * { -d 3 G,diG,eod t G}(xi ,X3,£) 

where G(xi,x3,t) is a solution of 

(dj + d! - d?/cl)G = 0 (6.19) 
lim d3G = -5(t)U(x1/w)/w (6.20) 

From (6.15) and (6.18) it is straightforward to show that solution of (6.19)-(6.20) can be 
written as 

G(xl,x3,t) 1 
TTW 

1 
71W 

x\ — w/2 rdr 
-T^2-X2/C2{T2-T^I2 

x\ + w/2 rdr 

T=TA 

+ c0H(t - x3/c0)U(x1/w)/w (6.21) 

A n alternative approach includes the spatial convolution of the two-dimensional funda­
mental solution (3.20) with the spatial source distribution U(xi/w)/w given as 

G(xl,x3,t) 
irw x=xi—w/2 (t2 - r 2 / C 2 ) V -

dx (6.22) 

where r = (x2 + x|)1//2 > 0. Applying the integration by parts and noting that S[f(x)] 
[S(x — XQ) + 8(x + xo)]/|/'(a;o)|, / ( ± x 0 ) = 0, we arrive at 

G{xx,x3,t) Co 
irw 

arcsm 

arcsm 

x\ + w/2 
(c2

0t2-x2y/2 

x\ — w/2 
(c2t2 3-2)1/2 

+ c0H(t - x3/cQ)U(xl/w)/w 

The Eq. (6.23) can be connected with Eq. (6.21) through the following relation 

—codt arcsin 

that validates our results. 

(x1±w/2)t X\ ± w/2 
c2

0t2-x2y/2\ t2 - x2/c2 it2 - T 2 ) V 2 

(6.23) 

(6.24) 

6.5 Illustrative numerical examples 

This section contains some illustrative numerical results concerning the antenna array 
configuration (Fig. 6.2) consisting of radiating slots that are excited by mutually delayed 
power exponential pulses. 
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Figure 6.2: Antenna array configuration. 

The antenna array consists of an electrically perfectly conducting screen S with the 
collection of N non-overlapping feeding slots U^=1An, with An = {an < X\ < bn, —oo < 
x2 < oo, x3 = 0}, subject to the condition a\ < b\ < ... < < b^. The antenna radiates 
into the vacuum half-space V0 = {—oo < x\ < oo, —oo < x2 < oo,x3 > 0}. We neglect 
mutual coupling. Under this condition, the radiated field is the superposition of the fields 
radiated by the different slots 

{Ei, E3, H2}(xi, x3,t) Vn(t) ft) 
h * 

n=l 

1 J x3{xi — a 
7T 

x3(xi 
XÜ 

, 1 , 
1 (xi - bn)t\ H(t - Th.n) 

CQL X3 

ii I -. 1 \Xi cin)t 

c2^2 - x\ 

H{t - T a ; n ) 

T2 u/2 
b;n/ 

+ {1,0, (e0//x0)1/2} [if (xi - a„) - ü ( x ! - bn)]S(t - x3/c0) 

in which 

- b;n 

0 2 + ^]1/2/cb 
& n ) 2 + ^ ] 1 / 2 / C O 

(6.25) 

(6.26) 

(6.27) 

A l l cylindrical wave field constituents contain time-convolution integrals with inverse 
square-root singularities at the arrival time of the wave. These are numerically handled 
via a stretching of the variable of integration according to 

r = T a ; n cosh(-u) for 0 < u < oo (6.28) 

with the Jacobian 

- = T a ; n s i n h ( M ) = ( r 2 - T 2 J 1 / 2 (6.29) 

For an array with A^ = 5, bn—an — w (n — 1 , . . . , 5) and an+i = bn+w/2 (n = 1 , . . . , 4), 
the (color) vector density plots Figs. 6.4 - 6.11 show the time evolution of the two-
component Poynting vector 

Si = - £ 3 i f 2 (6.30) 
S3 = EXH2 (6.31) 
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Figure 6.3: Excitation pulse shapes. 

normalized to the magnitude |<S|ref of the maximum value of the Poynting vector as it 
would be carried by a Ti^M-mode in a parallel-plate waveguide that would be feeding 
the radiating apertures, i.e. 

|S|ref = (e 0//x 0) 1 / 2niax n[K i a x ; n/(b n - an)f for n = 1 , . . . , TV (6.32) 

Two sets of excitation pulses are taken to have all the same amplitudes and different shapes 
with cotr = {0.3, 0.6}w, which gives the spatial supports of pulses (a) cotw = 0.5542-u; and 
(b) cotw = 1.1084w for v = 2. These activating pulses are shown in Fig. 6.3, where the 
normalized time is c0t/w and normalized V(t) is V(t)/Vma,x. 

Four different time delays between the pulse starting values have been considered: 
(A) c 0 ( T n + 1 - Tn)/w = 0, (B) c 0 ( T n + 1 - Tn)/w = 0.5, (C) c 0 ( T n + 1 - Tn)/w = 1.0, (D) 
co (T n + i — Tn)/w = 1.5, all for n — l . . . , 4 and Ti = 0, and two observation times 
cot/w = {4,8}. 

The plots clearly show the beam-steering associated with the time delays in excita­
tion and the beam-shaping associated with the spatial supports of activating pulses. In 
Figures 6.4a-6.11a that correspond to the narrower excitation pulse shape, the particular 
cylidrical wave components are more distinguishable in comparison with Figs. 6.4b-6.11b 
connected with the excitation pulses whose spatial support sligthly exceeds beyond the 
slot width. In the latter, the particular components of the pertaining wave motion are 
mutually blurred. If the spatial support of activating pulses is further increased then the 
(time-varying) spatial distribution of the Poynting vector becomes more 'homogenous' 
and for zero excitation delays, the wave motion resembles one that would be radiated 
from a single wide slot. 
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Xi/w 

Xi/w 
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Figure 6.4: Normalized Poynting vectors of E M fields at cot/w = 4 for an array of N = 5 
equally spaced slots of width w and spacing (an+i — bn)/w = 0.5 for n = {1,...,4}, 
excited with zero time delays and with two sets of excitation pulses with different spatial 
supports, (a) c 0 t w = 0.5542w; (b) c0tw = 1.1084w. 
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Figure 6.5: Normalized Poynting vectors of E M fields at cot/w = 4 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 0.5 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542w; (b) c 0 t w = 1.1084w. 
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Figure 6.6: Normalized Poynting vectors of E M fields at cot/w = 4 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 1.0 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542w; (b) c 0 t w = 1.1084w. 
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Figure 6.7: Normalized Poynting vectors of E M fields at cot/w = 4 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 1.5 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542u>; (b) c 0 t w = 1.1084w. 
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Figure 6.8: Normalized Poynting vectors of E M fields at cot/w = 8 for an array of N = 5 
equally spaced slots of width w and spacing (an+i — bn)/w = 0.5 for n = {1,...,4}, 
excited with zero time delays and with two sets of excitation pulses with different spatial 
supports, (a) c 0 t w = 0.5542w; (b) c0tw = 1.1084w. 
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Figure 6.9: Normalized Poynting vectors of E M fields at cot/w = 8 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 0.5 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542w; (b) c 0 t w = 1.1084w. 
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Figure 6.10: Normalized Poynting vectors of E M fields at cot/w = 8 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 1.0 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542w; (b) c 0 t w = 1.1084w. 
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Figure 6.11: Normalized Poynting vectors of E M fields at cot/w = 8 for an array of 
N = 5 equally spaced slots of width w and spacing (an+i — bn)/w = 0.5, excited with 
co(T n + i — Tn)/w = 1.5 time delays for n = {1, . . . ,4} and with two sets of excitation 
pulses with different spatial supports, (a) c 0 t w = 0.5542w; (b) c 0 t w = 1.1084w. 
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Chapter 7 

Pulsed electromagnetic field radiation 
from a wide slot antenna between two 
parallel planes 

Summary 

The pulsed electromagnetic field in between two paralell planes excited by a 2D wide 
slot is analytically investigated via the application of the Cagniard-DeHoop technique. 
Starting with the description and formulation of the field problem we shall construct 
the exact pulse shapes for the radiated electromagnetic field components. In conclusion, 
illustrative numerical examples are presented. 

7.1 Introduction 

The present chapter aims at providing the description of pulsed electromagnetic field 
radiation from a wide slot in an unbounded perfectly electrically conducting (PEC) screen. 
The source excited the structure is modeled as a prescribed distribution of the transverse 
electric field across the slot of a uniform and finite width. The structure further radiates 
into the domain in between two P E C parallel planes. If the upper plane is moved far 
away from the radiating slot, all reflected time-domain constituents become negligible 
and only outgoing radiated constituents are relevant. In this sense, the solved problem 
can be considered as a certain generalization of the problem from Chapter 6. 

Reflections occur due to the additional screen, and the slowness-domain quantities have 
to be written as a superposition of constituents each of which admits a closed-form rep­
resentation attainable with the Cagniard-DeHoop technique as described in Appendix B. 
It is shown that the wave motion consists of two sets of upgoing and downgoing waves 
connected with the right and left radiating edges supplemented with the upgoing and 
downgoing plane waves propagating above the slot. 

The problem solved in this chapter was studied by Schelkunoff in the frequency domain 
[36]. In it, electromagnetic waves between two parallel, perfectly electrically conducting 
screens are investigated with the aid of the 'Laplace transform method'. In view of the 
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latter, the electromagnetic field in between the planes is excited by an a-c voltage applied 
across the slot and the time dependence of electromagnetic field components is supressed 
by assuming exp(iu;£) time behavior. The excited electromagnetic field components are 
subsequently represented via the Bromwich contour inversion integral that is solved by 
means of the residue theorem. This leads to the result consisting of a sum of direct upgoing 
wave and infinite series of reflected ones, which is intricate from the numerical point of 
view. Moreover, as the distance between the plates increases, convergence properties of 
the series become worse. This is usually solved with the help of some of extrapolation 
techniques [30]. 

The aproach presented in this chapter is somewhat more general in the sense that 
the electromagnetic field components are found in the space-time domain, without anti­
cipation of the time-domain behavior of excited electromagnetic field. As a main tool, 
the combination of a unilateral Laplace transformation with the spatial wave slowness 
representation is used, which is known as the Cagniard-DeHoop technique. This tech­
nique provides the space-time domain expressions that are possible to evaluate within a 
finite time-window with any prescribed accuracy. Numerical examples that illustrates the 
influence of the excitation and configurational paramaters are given. 

7.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 7.1. The configuration consists of two un­
bounded electrically perfectly conducting screens «Si = { — oo < x\ < oo, — oo < x2 < 
oo,£3 = h} and S2 = { ( — 0 0 < x\ < —w/2) U (w/2 < x\ < 0 0 ) , — 0 0 < x2 < 0 0 , £ 3 = 0} 
with a feeding aperture A = {—w/2 < x\ < w/2, — 0 0 < x2 < 00, x3 = 0} of the finite 
width w > 0. The structure radiates into the domain V = { — 00 < X\ < C X J , — C X J < x2 < 
0 0 , 0 < £3 < h} with scalar electric permittivity and magnetic permeability {e, //} and 
corresponding electromagnetic wave speed c = (e/z)-1/2. 

The antenna aperture is fed by the uniformly distributed, x2—independent, electric 
field 

E1(x1,0,t) = Vo{t)/w in A (7.1) 

where V0(t) is the feeding 'voltage'. Since the excitation, as well as the configuration, are 

yX3 

P E C plane | 

V EMI 
h 

0 = V0(t)/w Xl 
P E C plane 1 

, w „ 

Figure 7.1: Configuration with indication of the aperture feeding. 
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independent of x2, the non-zero components of the electric field strength {£1, E3}(xi, x3, t) 
and the magnetic field strength H2(xi,x3,t) satisfy in V the source-free field equations 
(cf. Eqs. (2.5) - (2.7)) 

dxE2 - edtE3 = 0 (7.2) 
d3H2 + edtEx = 0 (7.3) 

dxE3 - d3E1 - iidtH2 = 0 (7.4) 

The boundary condition of the explicit type requires that 

lim Ei(xi, x3, t) = 0 for all t and for all x\ (7.5) 

while the excitation condition is (cf. Eq. (2.3)) 

l im£i (x i ,x 3 , £ ) = [Vo(t)/w]n(xi/w) for all t (7.6) 

where n(x) is the rectangular function (see Eq. (2.4)) . It is assumed that Vo(t) starts to 
act at t — 0 and that prior to this instant the field vanishes throughout the configuration. 

7.3 Field representations 

In view of the Cagniard-DeHoop technique we employ the unilateral Laplace transforma­
tion with respect to time 

POD 

V0(s)= / exV(-st)V0(t)dt (7.7) 
Jt=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27], [44]. 
Further we use the wave slowness field representation 

| l i ) E 3 , ^ } ( i i , % s ) = ^ : | exp(-spxi) 1^1,̂ 3, ^2} {p,x3,s)dp (7.8) 

Under these transformations, the field equations (7.2) - (7.4) and the boundary conditions 
(7.5) - (7.6) transform into 

-spH2 - seE3 = 0 (7.9) 

d3H2 + seE1 = 0 (7.10) 

-spE3 - <93jBI - s[iH2 = 0 (7.11) 

and 

l i m i ^ p ^ s ) = 0 (7.12) 

v f? i \ V°(s) e x P ( g W 2 ) ~ exp(-gpw/2) 
hm E^p, x3, s) = (7.13) 
Z3J.0 w sp 
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The bounded slowness-domain field quantities follow from (7.9) - (7.13) by expressing 
them in the form 

E3,H2, } (p,x3,s) = {7(p)/e, -p/e, 1} A+(p, s) exp [-sj(p)(x3 - h)] 

+ {-7(P)A, -P/e, 1} ̂ ~(p, exp [s'y(p)(h - x3)\ (7.14) 

in which 

7 (p) = (1/c2 - p 2 ) 1 / 2 with Re[7(p)] > 0 (7.15) 

for all p G C. The unknown coefficients result from the application of the boundary 
conditions (7.12) - (7.13) as 

A+(p,s) = A-fas) = — £ i (p ,0 ,s ) (7.i 6 ) 
' 7(p) exp[s,y(p)h] — exp[—s/y(p)h] 

Via the convergent expansion 

exp[s7(p)/i] 
exp[s/y(p)h] — exp[—s/y(p)h] 

J^exp[-2ns7(p)/i] (7.17) 
n=0 

the slowness-domain field quantities can be written as the superposition of constituents 
each of which admits a closed-form representation attainable with Cagniard-DeHoop tech­
nique. 

7.4 The time-domain radiated fields 

In this section we provide the time-domain fields radiated into the domain T>. Using the 
results of Section 7.3 we express them as 

oo 

{Ei, E3, H2) (Xl,x3, s) = J2 {E[r\E[
3\ H[

2
n]) (xi, x3, s) (7.18) 

n=0 

with 

1 J w 27nJp=_ioo[p 7(p) pry(p) J 

x (exp{ -s [pX b + j(p)Z+} - exp{-s\pXa + j(p)Z+}^Jdp 

w 2?ri J p = _ i o o \ p I{PYPI{P)) 

x (exp{ -s [pX b + 7(p)Z_} - exp{-s[pXa + 7 (p)Z_} )dp (7.19) 

where Xa = xi + w/2, Xb — x\ — w/2 and Z+ = x3 + 2nh, Z_ = 2{n + l)h — x3. 
The algebraic parts of the integrands do not contain any propagation coefficient that 
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differs from the propagation coefficient 7 (p) in the propagation factors. This has the 
consequence that the corresponding Cagniard-DeHoop contours for a positive horizontal 
offset intersect the real p-axis in between p = 0 and p — 1/c, implying the absence of 
head-waves. Following the recipe given in Appendix B for c = c 0 = C i , the corresponding 
time-domain expressions in T> can be found as 

Obviously, the wave motion consists of two sets of upgoing (+) and downgoing (-) time-
domain constituents connected with the left (a) and right (b) radiating edge. In the limit 
h —> oo, i.e. as the upper plane is moved towards infinity, the reflected time-domain 
constituents become negligible and only the zero-order (n = 0) upgoing constituents are 
relevant. These are consistent with the expressions (6.15) derived in the Chapter 6. 

7.5 Illustrative numerical examples 

This section provides illustrative numerical examples for the case of two excitation pulses 
with the same amplitudes and different pulse shapes: cotw = 0.9236u> (tr = 0.5/i/co) and 
cotw = 0.1847u> (tr = 0.1/i/co) for v = 2 (tw/tr = 1.8473). These activating pulses are 
shown in Fig. 7.2, where the normalized time is c0t/w and normalized V(t) is V(t)/Vmax. 

A l l cylindrical wave field constituents contain time-convolution integrals with inverse 
square-root singularities at the arrival time of the wave. These are numerically handled 
via a stretching of the variable of integration according to 

+ 

(7.20) 

where 

for 0 < u < oc 

with the Jacobian 

(7.23) 
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Figure 7.2: Excitation pulse shapes. 

The (color) vector density plots Figs. 7.3 - 7.6 show the time snaps of the two-
component Poynting vector 

S, = -E3H2 (7.24) 
S3 = EXH2 (7.25) 

normalized with respect to 

\SU = ( K n a x » 2 ( e 0 / « o ) 1 / 2 (7.26) 

The reference magnitude |<S|ref corresponds to the maximum value of the Poynting vector 
as it would be carried by a TEM-mode in a parallel-plate waveguide that would be a 
feeding of the radiating aperture. The spatial domain of observation is taken as {—2 < 
xi/h<2,0<x3/h< 1} and two observation times are chosen as the vacuum travel time 
across the distance between the plates (a) c^t/h = 1 and its double (b) c^t/h = 2. The 
width of the slot w and the distance between the parallel plates h are interrelated via 
h/w = 1. Two configurations with different electric permittivity are considered: vacuum 
{e,n} = {e0,/xo} and the dielectric filling with { e ,« } = {4e0,Uo}. 

In Fig. 7.3 and Fig. 7.4 we present the time evolution of the Poynting vector in the 
domain V filled by vacuum {e,/x} = {eo,«o} f ° r two different excitation pulse shapes 
with different supports cotw = 0.9236u> and cotw = 0.1847u>, respectively. In Fig. 7.3a 
and Fig. 7.4a the wavefront just reaches the upper screen while in Figs. 7.3b and 7.4b 
the reflected wavefront arrives back at level of the radiating slot. This is more apparent 
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from the case with the narrower excitation pulse where the radiated beam is spatially 
more localized and the particular components of the wave motion are therefore more 
distinguishable. 

In order to illustrate the effect of a dielectric filling, the electromagnetic properties 
of the solution domain V have been changed to {e,/x} = {4e0,/xo}. Upon comparison of 
Fig. 7.3 with Fig. 7.5 and Fig. 7.4 with Fig. 7.6 the decrease of wave-speed as well as 
focusing phenomenom are obvious. 
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Figure 7.3: Normalized Poynting vector of the E M field at (a) c^t/h = 1.0; (b) c^t/h = 2.0. 
Distance between screens versus slot width is h/w = 1 and electromagnetic parameters 
are {e,/x} = {e0,/xo} (vacuum). Parameters of the excitation pulse are c0tw/w = 0.9236. 
v = 2. 

b xi/h 

Figure 7.4: Normalized Poynting vector of the E M field at (a) c^t/h = 1.0; (b) c^t/h = 2.0. 
Distance between screens versus slot width is h/w = 1 and electromagnetic parameters 
are {e,/x} = {e0,/xo} (vacuum). Parameters of the excitation pulse are c0tw/w = 0.1847. 
v = 2. 
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Figure 7.5: Normalized Poynting vector of the E M field at (a) c^t/h = 1.0; (b) c^t/h = 2.0. 
Distance between screens versus slot width is h/w = 1 and electromagnetic parameters 
are {e, //} = {4e0, «o} (dielectric). Parameters of the excitation pulse are c0tw/w = 0.9236. 
v = 2. 
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Figure 7.6: Normalized Poynting vector of the E M field at (a) c^t/h = 1.0; (b) c^t/h = 2.0. 
Distance between screens versus slot width is h/w = 1 and electromagnetic parameters 
are {e, //} = {4e0, /xo} (dielectric). Parameters of the excitation pulse are c0tw/w = 0.1847. 
v = 2. 
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Chapter 8 

Pulsed electromagnetic field radiation 
from a wide slot antenna with a 
dielectric layer 

Summary 

The pulsed electromagnetic field radiated by a 2D slot antenna of a finite width covered by 
a dielectric layer is analytically investigated via the application of the Cagniard-DeHoop 
technique. Starting with the description and formulation of the field problem we shall 
arrive at closed-form expressions describing the pulsed field radiation behavior of such 
problem configuration. In order to illustrate the pulse distortion that results from the 
presence of the dielectric slab, the conclusions of this chapter are compared with ones 
from Chapter 6.4 

8.1 Introduction 

With the rapid development of communication systems whose operation is based upon 
the transfer of pulsed electromagnetic fields and the detection and subsequent interpre­
tation of the pertaining digital signals, there is a need for the mathematical analysis of 
model configurations where the influence of (a number of) the system parameters on the 
performance shows up in closed-form analytic expressions that characterize the physical 
behavior. Parameters in this respect are: the pulse shape of the excitation (characterized 
by the pulse rise time and the pulse time width of a unipolar pulse), the thickness and the 
dielectric properties of the slab, the width of the slot, as well as the position of observa­
tion relative to the exciting slot. The present chapter aims at providing such a tool with 
regard to the pulsed radiation behavior of a wide slot antenna covered with a dielectric 
layer in a two-dimensional setting. 

More precisely, we consider a slot in a perfectly electrically conducting planar screen 
with a uniform finite width. Across the slot a prescribed distribution of the transverse 

4 Par t of this chapter is based on the paper [19]; ©[2011] I E E E . The permission of I E E E and co-authors 
Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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electric field is applied. The pulse shape of the exciting field is arbitrary. In front of the 
slotted plane there is a homogeneous, isotropic dielectric slab of uniform thickness. The 
structure further radiates into free space. 

Upon application of the Cagniard-DeHoop technique, the closed-form and exact ex­
pressions describing the radiated pulsed fields as functions of position and time are ob­
tained [19]. It is shown that the excitation via a wide slot shows additional features in 
that the corners of the waveguide feed show a separate diffractive behavior with accom­
panying wavefronts. In this case, the wave motion radiated from such slot consists of two 
sets of upgoing and downgoing cylindrical waves emanating from the edges of the slot in 
addition to the plane waves propagating and reflecting above the wide slot. 

The obtained expressions can serve a purpose of benchmarking the performance of 
purely computational techniques that have to called upon in the more complicated con­
figurations met in practice, in particular the ones in patch antenna design, where the 
field in the present chapter represents the field 'incident' on the geometry of the patches 
located on the dielectric/free-space interface. 

The last section provides a number of illustrative numerical examples for a variety 
of parameters, all chosen such that the pulse time width is smaller than the travel time 
needed to traverse the slab and such that the separate arrivals from the two edges can 
be distinguished. This section is divided into three subsections. At first, numerical 
examples that illustrate the distortion of pulse shapes (of continuous components across 
the interface) at the vacuum/dielectric interface due to the presence of a dielectric layer 
are given. The next subsection shows the pulse shapes (of component that jumps across 
the interface) just below and above the vacuum/dielectric interface. Finally, the time-
evolution of the Poynting vector in the dielectric layer, dielectric/vacuum interface and in 
vacuum is given. This example is further supplemented with the illustration of Cagniard-
DeHoop paths connected with the observation point in the vacuum half-space for the first 
two wave constituents. 

8.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 8.1. The configuration consists of an un­
bounded electrically perfectly conducting screen S = {(—oo < X\ < —w/2)U(w/2 < x\ < 
oo), —oo < x 2 < oo,x 3 = 0} with a feeding aperture A = {—w/2 < x\ < w/2, —oo < 
x2 < oo,x 3 = 0} of the finite width w > 0. The covering dielectric slab occupies the 
domain T)\ = {—oo < x\ < oo,—oo < x2 < oo,0 < x 3 < d}. The structure radiates into 
the vacuum half-space V0 = {—oo < x\ < oo, —oo < x2 < oo, d < x 3 < oo}. The spatial 
distribution of electric permittivity and magnetic permeability is 

The corresponding electromagnetic wave speeds and characteristic admitances are CQ = 
(eoA io)~1//2; c i — ( e iA i i )~ 1 / / 2 and r̂ o = (eo/Aio)1//2, % = ( ei// xi) 1 / / 2; respectively. The antenna 
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vacuum half-space 

^ b J L ^ o ^ o } x . = d n 

Figure 8.1: Configuration with indication of the critical angle 8C = arcsin(ci/co). Positions 
of the observation points {B, C, D} are not true-to-scale with those chosen in Section 8.5. 

aperture is fed by the uniformly distributed, x2—independent, electric field 

E1(x1,0,t) = Vo(t)/w in A (8.2) 

where V0(t) is the feeding 'voltage'. Since the excitation, as well as the configuration, are 
independent of x2, the non-zero components of the electric field strength {Ey, E3}(xy,x3, t) 
and the magnetic field strength H2(xi,x3,t) satisfy in V0 and T)\ the source-free field 
equations (cf. Eqs. (2.5) - (2.7)) 

dyH2 - edtE3 = 0 (8.3) 
d3H2 + edtEy = 0 (8.4) 

dyE3 - d3Ex - fidtH2 = 0 (8.5) 

The interface boundary conditions require that 

lim Ei(xi, x3, t) = ]imEi(xi,X3,t) for all X\ and t (8.6) 

lim H2(xi, x3, t) = lim H2(xi, x3, t) for all x\ and t (8.7) 
x3.[d X3ld 

while the excitation condition is (cf. Eq. (2.3)) 

\\mE1(x1)x3)t) = [Vr
0(t)/w]n(xi/w) for all t (8.8) 

with n(x) denoting the rectangular function (see Eq. (2.4)). It is assumed that V0(t) 
starts to act at t — 0 and that prior to this instant the field vanishes throughout the 
configuration. 

8.3 Field representations 

The Cagniard-DeHoop technique employs a unilateral Laplace transformation with res­
pect to time of the type 

V0(s) exp(-s£)Vo(t)di 19) 
t=o 
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in which s is taken to be real-valued and positive relying on Lerch's theorem [27,44] . 
The next step is to use the slowness representation of the field quantities 

l^i,^,^} ( x i , x 3 , s ) = ^ 7 J exp(-spxi) 1^1,̂ 3,̂ 1 {p,x3,s)dp (8.10) 

that involves imaginary values of the complex slowness parameter p. Using (8.9) and 
(8.10), the field equations (8.3)-(8.5) transform into 

-spH2- seE3 = 0 (8.11) 

93^2 + 56^1 = 0 (8.12) 

-spE3 - d3Ex - s^H2 = 0 (8.13) 

the interface boundary conditions (8.6) and (8.7) into 

lim Ei(p, x3, s) = lim Ei(p, x3, s) (8-14) 

lim H2(p,x3,s) = lim H2(p,x3, s) (8.15) 

and the excitation condition (8.8) into 

\imEl(p,x3,s) = M e x P ( W 2 ) - e x p ( - W 2 ) ( g l g ) 

x3i0 W Sp 

The slowness-domain field quantities follow from (8.11) - (8.16) by expressing them in 
the form 

£ i , £ 3 , # 2 j (p,x3,s) = {7o(p)/e0, -p/eo, i M o (p,s)exp [-sj0(p)(x3 - d)] in V0 

(8.17) 

and 

£ i , £ 3 , # 2 } (p,x3,s) = {7i(p)/ei, - p / e i , 1} Af(p,s)exp [-S7i(p)x 3] 

+ { -7I (P)A I , - P / e i , 1} Ai(p, s) exp [-S7i(p)(d - x3)\ in Vx 

(8.18) 

in which 

7o,i(p) = ( l/c 2
5 l - p 2 ) 1 / 2 with Re [7 o,i(p)] > 0 for all p e C (8.19) 

Using these expressions in (8.14) - (8.16) it is found that 

A+(p,s) = ^-E1(p,0,s)^ (8.20) 
7i(p) A 

A r ( P , . ) = - S 4 f i 1 ( P , 0 , . ) f i g ( p ) e [ p ' - y f t ( p ) < j l (8.21) 
7i (P) A 

<fc.) = -SL-bto, 0, „ W ^ M ( 8 . 2 2 ) 
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in which 

7i(p)/ei + 7o(p)/eo 

7 i b ) A i +7o(p)/e0 

A = 1 - ifa(p) exp[-2s7i(p)d] (8.25) 

Via the convergent expansion 

- = [RH(P)T exp [-2snd 7i(p)] (8.26) 
n=0 

the slowness-domain field quantities can be written as the superposition of constituents 
each of which admits a closed-form representation attainable with Cagniard-DeHoop 
method 

oo 

{ A , 4 , £ 2 } (*i,*s,s) = £ { ^ " U f U i " 1 } (*i,*s,a) (8.27) 
n=0 

8.4 The time-domain field in the dielectric layer 

In this section we focus on the time-domain constituents of the fields components propa­
gating in the dielectric slab T>\. Using the results of Section 8.3 we express them as 

£{» ] , f iM £ W } , ) = V M 1, r f l 1 _ J , I 
J w 27nJp=_ioo[p 7x(p) P7i(p)j 

x (exp{ -s [pX b + 7x(p)Z+]} - exp{-s[pX a + 7i(p)Z+]})dp 

w 2iriJp=_ioo [ p 7x(p) P7i(p)j 

x (exp{ -s [pX b + 7 1 (p )Z_] } -exp{ - s [pX a + 7 1(p)Z_]})dp (8.28) 

where X a = xi+w/2, X b = x\—wj2 and Z + = £3 + 2n<i, Z_ = 2(n+ — x 3 . Obviously, 
the expressions represent two sets of upgoing and two sets of downgoing waves. The 
latter waves, as well as subsequent reflected upgoing waves, disappear as the contrast 
in electromagnetic properties between T>0 and T>\ vanishes. Since the propagation terms 
in (8.28) do not contain the propagation coefficient 70(p), which, for the standard case 
Co > Ci, implies the possible occurence of head-waves. The corresponding time-domain 
expressions of each of these constituents follow upon the application of the Cagniard-
DeHoop technique as described in Appendix B. In this way, the body-wave time-domain 
constituents can be written as 

{ ^ [ ™ U 3 B W ; N ^ B W ; W | { x u X a t t ) = m ) / w ] ( J , - 1 

/ / B W ; [ n ] + B W ; [ n ] + B W ; [ n ] + B W ; [ n ] + , B W ; [ n ] + , B W ; [ n ] + \ , ,x 
x I \ e lb e l a 5 e 3 b e 3 a ) rb2b 'b2a ^l,X3,t) 

f B W ; [ n ] - B W ; [ n ] - B W ; [ n | - B W ; [ n ] - , B W ; [ n ] - , B W ; [ n ] - l , , X /o n n \ 
+ i e i b _ e l a > e 3 b _ e 3 a > ft2b _ ft2a f 1 ^ 1 ) ^ 3 , ^ ) ( O . ^ y j 
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with 

( e f W « + > e B W i W + i / i B W i W + j ( i i i 3 i ( ) 

= R e ({T, ( P r + ) / r f w + , - i , ^ / P r + } [RH w w + ) n 
( ln] \ ( 2 [«]2 \ _ ^ 2 

X ~ ^ B W a + J V _ ^ B W a + J 

B W ; [ n ] - B W ; [ n 
l a ' e 3 a , /l. BW;[n]-

) ""2a (xux3,t) 

Re ( { - 7 i ( P T " ) /PT~, - 1 , ci/lT-} ( P a W - ) ] 
71+1 

xH(t-Tl B W a -
.2 _ r p M 2 

6 J B W a -

-1/2 

where p. B W + 
a 2? 

B W + ( X a , Z±, t) is given as 

P*W± {x,t + i z ± { e - T ^ ± ) 1 , 2 } / { x i + zi} 

with 

T, B W a ± 

In the range where X a j b / ( X 2
b + Zj_) 1 / / 2 > C\/CQ is satisfied, the head-wave time-

constituents are present 

' P H W ; [ n ] T - iHWj fn ] r r H W ^ n l l / , N r T , , ,s / -,( ') - \ 

E1 'li,E3 'li,H2 \(xux3,t) = [V0(t)/w] * 71 1 

({' 
H W ; [ n ] + _ H W ; [ n ] + H W ; [ n ] + _ H W ; [ n ] + , H W ; [ n ] + _ , HW;[n] + 

X I ' e l b e l a ) e 3 b e 3 a > ft2b 1 1 

+ e 
HW;[n]-
l b — e 

HW;[n] 
l a 

HW;[n] 
3b 

_ H W ; [ n ] - . H W ; [ n j - , e 3 a , ^ ' "-2b 

2a 

HW;[n] -
2a 

(Xi,X3,t) 

(xux3,t) 

with 

H W ; [ n ] + H W ; [ n ] + , H W ; [ n ] + 
l a ) e 3 a Aa (x1,x3,t) 

i m [{71 (PT +) - i , ei/iT +} ( P a w + ) n 

x n . _ rp[n\ 
1 J C a + 

raj 
L a + 

T [ n ] 2 _ 
J B W a + L 

-1/2 

and 

H W ; [ n ] - H W ; [ n 
l a ) e 3 a i ^ 2 a 

HW;[n] 

= Im 

x n 

(Xi,X3,t) 

{ - 7 i WW") /Pr~, - 1 , C i / P T - } « W " ) ] 
1/2 

71+1 

C a - L a -
rp[n]2 _ 5 
J B W a - 1 
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w h e r e IL(x) d e n o t e s t h e r e c t a n g u l a r f u n c t i o n a n d p^w± = p a
w ± ( X a , Z±,t) i s g i v e n a s 

1/2 
{Xat - Z± (r^± _ } / { X a

2 + Zl) ( 8 . 3 7 ) 

w i t h 

rJSL = ^ a / c o + Z± {l/ci - l / c 2 ) 1 / 2 ( 8 . 3 8 ) 

TlcL = ( * a ± + TlLt) / 2 ( 8 - 3 9 ) 

T>H _ _ T - i N f o /in"! 
- ' L a i ~~ i B W a ± J H W a ± I^O.^Uj 

T h e e x p r e s s i o n s c o n n e c t e d w i t h t h e e d g e x\ = b = w/2 a r e s i m i l a r w i t h t h o s e c o r r e s ­

p o n d i n g t o x\ — a — —w/2, o n l y w i t h ' a ' r e p l a c e d w i t h ' b ' . I n a d d i t i o n , i f t h e o b s e r v e r 

i s a b o v e t h e s l o t , i . e . i f | x i | < w / 2 , t h e n u p g o i n g a n d d o w n g o i n g p l a n e - w a v e s h a v e t o b e 

i n c l u d e d 

^ W ^ l ^ i W } { x i i X 3 i t ) = \[RH(or{lAr]l}V0(t-Z+/c1)/w 

+ [RH(0)}n+1{-l,0,r]l}V0(t-Z_/c1)/w}ll(x1/w) ( 8 . 4 1 ) 

8.5 The time-domain field at the vacuum/dielectric in­
terface 

I n t h i s s e c t i o n w e f o c u s o n t h o s e field c o m p o n e n t s a t t h e i n t e r f a c e £3 = d t h a t a r e 

c o n t i n u o u s a c r o s s t h i s i n t e r f a c e , i . e . E\ a n d H 2 . I n f a c t , t h e r a d i a t e d field i n T>Q c a n b e 

e a s i l y e x p r e s s e d i n t e r m s o f t h e s e field v a l u e s . U s i n g t h e r e s u l t s o f S e c t i o n 8 . 3 w e e x p r e s s 

t h e m a s 

1 J w 2TTI J i o o UoP7i(p) P7I(P)J 

e x p { - s [ p X b + 7 i ( p ) ( 2 n + l ) d ] } - e x p { - s [ p X a + 7 i ( p ) ( 2 n + l ) d ] } J d p ( 8 . 4 2 ) 

S i n c e t h e p r o p a g a t i o n t e r m s i n ( 8 . 4 2 ) d o n o t c o n t a i n t h e p r o p a g a t i o n c o e f f i c i e n t 70 ( p ) , 

w h i c h f o r t h e s t a n d a r d c a s e c 0 > Ci , i m p l i e s t h e p o s s i b l e o c c u r e n c e o f h e a d - w a v e s . T h e 

c o r r e s p o n d i n g t i m e - d o m a i n e x p r e s s i o n s o f e a c h o f t h e s e c o n s t i t u e n t s f o l l o w u p o n t h e a p p l i ­

c a t i o n o f t h e C a g n i a r d - D e H o o p t e c h n i q u e g i v e n i n A p p e n d i x B . I n t h i s w a y , t h e b o d y -

w a v e t i m e - d o m a i n c o n s t i t u e n t s c a n b e w r i t t e n a s 

{ C * 1 ^ } ( * . , * * ) - Wt)M * ' ' - ' 

x { C i W " e r J " 1 , C " J " 1 - C * ' } M t ) ( 8 . 4 3 ) 

w i t h 

e B W ; [ n ] ^ j B W ; [ n j i ^ ) 

= R e ({ei7o ( P D / ^ V i / n ^ ww) [AH r ) n 
x ^ f t - T ^ ^ - Ä ) " 1 7 2 ( 8 . 4 4 ) 
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in which pBW = pBW[Xa, (2n + l)d, t] 

P a W = {Xat + i(2n + l)d {f - T | f a ) 1 / 2 )/{xl + [(2n + l)df } (8.45) 

with 

TJ?L = {Xi + l(2n+l)df}1/2/Cl (8.46) 

In the range where Xa^/{X%h + \{2n + l)cf]2}1//2 > C\/CQ is satisfied, the head-wave time-
domain constituents are present 

{ C ' " U " W ; H } M t ) = [v0(t)M "J 

x { C " J ' " " « 2 * ! W , C ! W " * T i W } (*.."•«) (8-47) 

where 

{ e r i W , C W } ( ^ ^ ) 

= Im [{6 l 7 o ( p T ) / ^ W , C i / P T } TH (pT) [RE ( P T ) ] " ] 

x n • ( t _ T N ) / T W ] ( T ^ - t 2 ) " 1 7 2 (8.48) 

in which = p B W [ X a , (2n + l)d,t] 

p™ = {Xat - (2n + l)d (rj$a - t 2 ) V 2 }/{x2 + [(2n + l)df } (8.49) 

with 

r l t a = Xjc0 + (2n + l)d (1/c2 - l/c 2 ) 1 / 2 (8.50) 

T[c! = ( * a + a) /2 (8.51) 
T " N _ rrin} _ rp[n} (q r r s \ 
J L a — J B W a J H W a 

In addition, if the observer is above the slot, i.e. if |xi| < w/2, then the plane-wave has 
to be included 

J £ P W ; [ ^ tfPW;W} (Xl,d,t) = TH(0)[RH(0)}N{VL/VO,VL}V0[t - (2n+l)d/c1}U(x1/w)/w 
(8.53) 
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8.6 The time-domain field in the vacuum half-space 

In this section we focus on the time-domain constituents of the fields radiated into the 
vacuum half-space T>0. Using the results of Section 8.3 we express them as 

{ B S " U I " U I " ] } ( X „ I „ S ) 

w 2TTI L = _ i o o UoPTHP) e o 7 i b ) PlAP)) 

x {^exp{-s[pXh + 7o(p)(x3 - d) + 7i(p)(2n + l)d}} 

- exp{-s[pX a + -f0(p)(xs -d) + 7i(p)(2n + l)d]})dp (8.54) 

The propagation terms as well as the algebraic part of integrands now contain both 
propagation coefficients 7o(p) and ji(p). This has the consequence that the body-wave 
part of the Cagniard-DeHoop contour intersects the real p-axis in between p = 0 and 
p = 1/co, implying the absence of head-wave constituents in V0. Note that, in this 
case, the Cagniard-DeHoop contour does not have a simple parametrization and has to 
be determined either algebraically via Cardano's formula or via the iterative numerical 
procedure as described in Appendix D. Once the iterative procedure is terminated, the 
corresponding time-domain body-wave expressions of each of these constituents result 
from the procedure as applied in Sections 8.4 and 8.5, i.e. 

f p B W ; [ n ] n B W ; [ n ] u - B W j W l / ,\ n r /,\ / i (*) - 1 ( # 1 ,E3 ,H2 ) (xi,X3,t) = [V0{t)/w] * 71 

BW;[n] BW;[n] BW;[n] BW;[n] , BW;[n] , B W ; [ n ] l , ,x ( R 

e i b _ e l a > e 3 b - e 3 a > ft2b - ft2a J 1 ^ 1 , ^ 3 , ^ (8.55J 

with 
BW;[n] BW;[n] , BW;[n] I / ,x 

' l a 5 e 3 a 5 ' 4 2 a [ l , x l 5 x 3 j ''J 

Im [ei/71 W w ) ] {7o « w ) /eoPT, " V * , } 

where Pab^7") r e s u h from solving r = p X a j b + 7o(p)(a^3 — <i) + 7i(p)(2ra + l )d such that 
r G M, r > 0. The examples of corresponding Cagniard-DeHoop contours are given in 
Sec. 8.7.3. 

In addition, if |xi| < w/2 the plane-wave time-domain constituents are present 

| ^ P W ; N ^ P W ; M ^ P W ; N | = (Q) [ j R ^ ( 0 ) ] « , 0, ^ } 

xV0[t- (x3 - d)/c0 - (2n + l)d/c1}U{x1/w)/w (8.57) 

8.7 Illustrative numerical examples 

This section provides illustrative numerical results for the case of excitation with the power 
exponential pulse with parameter v — 2 (tw/tr = 1.8473), shown in Fig. 5.2a. (Fig. 5.2b 
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shows its spectral diagram). This activating pulse is used throughout this section. The 
properties of the slab are taken as {ei,/xi} = {4eo,A*o}-

The first part of this section shows pulse shapes of { £ 1 , H2}(xi, d, t) at the level of 
vacuum/dielectric interface, while the second part provides pulse shapes of E3(xi,x3,t) 
just below and above the interface, across which it jumps. The third subsection gives the 
time evolution of the Poynting vector within a certain region of space at successive obser­
vation times. The last part is supplemented by examples of Cagniard-DeHoop contours 
associated with the evaluation of pulse shapes in the vacuum. 

A l l time convolution integrals contain inverse square-root singularities at one of the 
end-points of the integrals. These are numerically handled via a stretching of the variable 
of integration according to 

r = T|^ a C O S I I (M ) for 0 < u < 0 0 (8.58) 

with the Jacobian 

Yu = TBL = ( r 2 - 7 f | a ) ^ (8.59) 

for a body-wave constituent with arrival time TJ^jVa and 

R = T^A cos(v) for 0 < v < TT/2 (8.60) 

with the Jacobian 

% = -T^LMv) = ~ ( T j & - r 2 ) 1 / 2 (8.61) 

for a head-wave constituent. The integration limits at the time convolution integrals are 
subsequently adjusted to the corresponding intervals in u and v. 

8.7.1 Examples of pulse shapes at the vacuum/dielectric interface 
In any finite time window of observation, only a finite number of time-domain constituents 
yields a non-zero contribution, while in the range of critical refraction only a subset of 
these contributions have a head-wave part. The objective of our analysis is to compare 
the pulse shapes of the different constituents with the ones that the slot antenna would 
radiate into a half-space with the properties of T>0. The latter can be found in Section 
6.4. The comparison is carried out on the vacuum/dielectric interface. 

Four positions of observation at x3 = d have been selected: (A) x\jd = 0, (B) x\jd = 1, 
(C) x\jd — 3, (D) x\jd — 5 (indicated, not to scale, in Fig. 8.1). The observation point 
(A) lies right in front of the radiating slot. The observation point (B) is within the range 
of critical refraction associated with the left edge of the slot and outside the range of 
critical refraction associated with the right edge of the slot, while the observation points 
(C) and (D) are within the range of critical refraction associated with both edges of 
the slot. The time window of observation is taken as 0 < c^t/d < 20. The width of 
the slot w and the thickness of the dielectric slab d are interrelated as d/w = 1. The 
rise time of the excitation pulse tr is taken as half of the free-space travel time across 
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Table 8.1: Arrival times of time-domain constituents at the vacuum/dielectric interface. 

Arrival times 

order 
N 

A B C D A B C D 
order 

N 
Head-wave (left edge) Body-wave (left edge) order 

N C 0 ^ H W a / ^ C 0 ^ B W a / d 

0 - 3.2321 5.2321 7.2321 2.2361 3.6056 7.2801 11.1803 
1 - - 8.6962 10.6962 6.0828 6.7082 9.2195 12.5300 
2 - - 12.1603 14.1603 10.0499 10.4403 12.2066 14.8661 
3 - - - 17.6244 14.0357 14.3178 15.6525 17.8045 
4 - - - - 18.0278 18.2483 19.3132 -

order 
N 

Head-wave (right edge) Body-wave (right edge) order 
N C 0 ^ H W b / ^ C 0 ^ B W b / ^ 
0 - - 4.2321 6.2321 2.2361 2.2361 5.3852 9.2195 
I - - 7.6962 9.6962 6.0828 6.0828 7.8102 10.8167 
2 - - - 13.1603 10.0499 10.0499 11.1803 13.4536 
3 - - - 16.6244 14.0357 14.0357 14.8661 16.6433 
4 - - - - 18.0278 18.0278 18.6815 -

the slab. As described in Appendix E, the pulse time width tw is related to the pulse 
rise time tr via (E.3), which gives cotw/d = 0.9236 for v — 2. The arrival times of the 
different contributions are collected in Table 8.1. Figures 8.2 - 8.5 show the results. In 
them, the normalized time is c0t/d, the normalized electric field is Eiw/Vmax while the 
normalized magnetic field is (fJJo/€0)1^2H2w/VmaiX. The observation point (A) lies outside 
the range of critical refraction range of both radiating edges. Here, the wave motion 
consists of a superposition of a plane-wave contribution emanating from the radiating slot 
and cylindrical waves emanating from the edges of the slot. No head-wave contribution 
occurs. The observation point (B) lies within the range of critical refraction of the left 
edge of the slot and outside the one associated with the right edge. Here, the wave motion 
consists of a superposition of cylindrical waves emanating from both edges of the slot and 
head-wave contributions emanating form the right edge of the slot. The observation points 
(C) and (D) lie within the range of critical refraction of both edges of the slot. Here, the 
wave motion consists of a superposition of cylindrical waves emanating from both edges 
of the slot and head-wave contributions emanating form both edges of the slot. In all 
those regions where head-wave contributions occur pulse shapes show up that drastically 
differ from the excitation. 

8.7.2 Examples of pulse shapes just below and above 
the vacuum/dielectric interface 

For the observation of pulse shapes of the electric field component E3(xi,xs,t), six ob­
servation points below and above the points (B), (C) and (D) at vertical levels x3/d — 
0.995,1.005 have been chosen. The corresponding points just below the interface are 
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labeled with f and the points just above the interface with |. 
In the plots, the normalized time is cot/d and the normalized E3 stands for E3w/Vmax. 

Figures 8.6 - 8.8 exhibit the jump in magnitude that is related to the electric contrast 
ratio ei/eo = 4. The arrival times corresponding to the pulse shapes in the dielectric layer 
and in the vacuum are summarized in Tables 5.2 and 5.3, respectively. 

8.7.3 Time evolution of the Poynting vector 
The (color) vector density plots Figs. 8.9 - 8.12 show the time snaps of the two-component 
Poynting vector 

S i = -E3H2 (8.62) 

S3 = EXH2 (8.63) 

normalized with respect to 

\SU = ( K n a x » 2 ( e o / / x 0 ) 1 / 2 (8.64) 

The reference magnitude |<S|ref corresponds to the maximum value of the Poynting vector 
as it would be carried by a TEM-mode in a parallel-plate waveguide that would be a 
feeding of the radiating aperture. The spatial domain of observation is taken as {—3 < 
xi/d < 3, 0 < x3/d < 3} and two observation times are chosen as cot/d = {2,4}. The 
width of the slot w and the thickness of the dielectric slab d are interrelated via d/w = 1. 

Figure 8.9 shows the time evolution of the Poynting vector for the power-exponential 
pulse excitation with c0tw/d = 0.9236. In Fig. 8.9(a) the wavefront just reaches the 
dielectric/vacuum interface. Because of the relatively high ratio of the spatial extent of 
the excitation pulse compared with the slot width, the radiation of the slot resembles 
the one that would be radiated from a line source. In Fig. 8.9(b), the reflected wave 
constituents as well as head-wave constituent are clearly seen. 

In order to illustrate the dependence on the relation between the spatial extent of 
the excitation pulse and the slot width, the rise time tr of the excitation pulse has been 
decreased to one tenth of the free-space travel time across the slab. The correspond­
ing normalized pulse time width is cotw/d = 0.1847. For this case, Fig. 8.10 shows the 
Poynting vector distribution at the two observation times cot/d = 2 and cot/d — 4. Over­
lapping cylindrical waves arising from the radiating edges and a plane-wave contribution 
emanating from the slot are clearly distinguishable. The electromagnetic power density 
radiated from the slot is now concentrated within the narrower beam propagating above 
the radiating slot. 

For a closer look, Figures 8.11 and 8.12 show the time evolution of the Poynting vec­
tor in the observation domain { — 1.1 < X\jd < 1.1,0 < x3/d < 0.6} at two observation 
times (a) c0t/d = 0.55, (b) c0t/d = 1.21 for both foregoing normalized pulse time widths 
cotw/d = {0.1847,0.9236}. While in Figures 8.11 the cylindrical waves are hardly identi­
fiable, the Figures 8.12 clearly show the cylindrical waves emanating at radiating edges 
before and after they overlap themselves. 

At two points inside the spatial observation region, the Cagniard-DeHoop paths have 
been evaluted for the first two successive time-domain constituents n = {0,1}. The 
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Table 8.2: Arrival times of constituents in the dielectric slab. 

A r r i v a l times 

order 

N 

Head-wave (upgoing, left edge) Body-wave (upgoing, left edge) 

order 

N 
coT^a+/d coT^a+/d order 

N |B |C |B |C |D 

0 3.2234 5.2234 7.2234 3.6000 2.774 11.1786 
1 - 8.6875 10.6875 6.6993 9.2130 12.5252 
2 - 12.1516 14.1516 10.4307 12.1984 14.8593 
3 - - 17.6157 14.3080 15.6435 17.7966 
4 - - - 18.2384 19.3039 -

order 

N 

Head-wave (downgoing, left edge) Body-wave (downgoing, left edge) 

order 

N 
coT^a_/d order 

N |B |C |B |C 
0 3.2407 5.2407 7.2407 3.6111 7.2829 11.1821 
I - 8.7048 10.7048 6.7171 9.2261 12.5348 
2 - 12.1689 14.1689 10.4499 12.2147 14.8728 
3 - - 17.6330 14.3276 15.6614 17.8124 
4 - - - 18.2582 19.3225 -

order 

N 

Head-wave (upgoing, right edge) Body-wave (upgoing, right edge) 

order 

N 
coT™Wh+/d coT^Wh+/ d order 

N |B |C 
0 - 4.2234 6.2234 2.2271 5.3815 9.2174 
I - 7.6875 9.6875 6.0729 7.8026 10.8111 
2 - - 13.1516 10.0399 11.1714 13.4462 
3 - - 16.6157 14.0257 14.8567 16.6349 
4 - - - 18.0178 18.6719 -

order 

N 

Head-wave (downgoing, right edge) Body-wave (downgoing, right edge) 

order 

N 
coT™Wh_/d 

C 0 T B W b - / d 
order 

N |B |C 
0 - 4.2407 6.2407 2.2450 5.3889 9.2217 
I - 7.7048 9.7048 6.0926 7.8179 10.8222 
2 - - 13.1689 10.0598 11.1893 13.4611 
3 - - 16.6330 14.0456 14.8755 16.6517 
4 - - - 18.0377 18.6912 -
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Table 8.3: Arrival times of constituents in the vacuum. 

A r r i v a l times 

order 

N 

Body-wave (left edge) Body-wave (right edge) 

order 

N 
c 0 T B W b / d 

order 

N I B |C I D I B | C I D 

0 3.2321 5.2321 7.2321 2.2384 4.2321 6.2321 
1 6.7105 8.6962 10.6962 6.0875 7.6962 9.6962 
2 10.4444 12.1603 14.1603 10.0548 11.1826 13.1603 
3 14.3224 15.6547 17.6244 14.0406 14.8698 16.6244 
4 18.2530 19.3167 - 18.0327 18.6858 -

time-window has been taken as T B W < cot/d < 20. Fig. 8 .13 shows the first quadrants 
of pa,b-planes with the corresponding Cagniard-DeHoop paths at x\ = d, x3 = 2d while 
Fig. 8 .14 shows the Cagniard-DeHoop paths for the observation point at X\ = 3d, x3 = 2d. 

Our analysis can be used to further study the possibilities of adapting the excitation 
pulse to design requirements associated with optimum signal transfer [34] and/or time-
domain beam shaping of antenna arrays. 
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Figure 8.2: Normalized E\ field time-domain response and normalized H2 field time-
domain response at x\/d = 0. 
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Figure 8.3: Normalized E\ field time-domain response and normalized H2 field time-
domain response at x\/d— 1. 
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Figure 8.4: Normalized E-y field time-domain response and normalized H2 field time-
domain response at x\/d = 3. 
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Figure 8.5: Normalized E\ field time-domain response and normalized H2 field time-
domain response at xi/d = 5. 
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Figure 8.6: Normalized E3 field time-domain response above (x3/d = 1.005) and below 
(xs/d = 0.995) the dielectric interface at x\jd = 1.0. 
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Figure 8.7: Normalized E3 field time-domain response above (x3/d = 1.005) and below 
(x^/d = 0.995) the dielectric interface at x\jd = 3.0. 
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Figure 8.8: Normalized E3 field time-domain response above (x3/d = 1.005) and below 
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Figure 8.9: Normalized Poynting vector of the E M field at (a) cot/d = 2; (b) c^t/d = 
4. Slab thickness versus slot width is d/w — 1 and electromagnetic parameters of the 
dielectric slab are {ei,/xi} = {4e0,/xo}. Parameters of the excitation pulse are c0tw/d = 
0.9236, v = 2. 
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Figure 8.10: Normalized Poynting vector of the E M field at (a) c^t/d = 2; (b) c^t/d = 
4. Slab thickness versus slot width is d/w — 1 and electromagnetic parameters of the 
dielectric slab are {ei,/xi} = {4e0,/xo}- Parameters of the excitation pulse are c0tw/d = 
0.1847, i/ = 2. 
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Figure 8.11: Normalized Poynting vector of the E M field at (a) c^t/d = 0.55; (b) c^t/d = 
1.21. Slab thickness versus slot width is d/w = 1 and electromagnetic parameters of the 
dielectric slab are {ei,/xi} = {4eo,/xo}. Parameters of the excitation pulse are cotw/d = 
0.9236, v = 2. 

2 
1 

0.5 
0.2 

0.02 

2 
1 

0.5 aa 
0.2 ^ 

0.02 I 

Xi/d 

Figure 8.12: Normalized Poynting vector of the E M field at (a) c^t/d = 0.55; (b) c^t/d = 
1.21. Slab thickness versus slot width is d/w = 1 and electromagnetic parameters of the 
dielectric slab are {ei,/xi} = {4eo,/xo}- Parameters of the excitation pulse are cotw/d = 
0.1847, i/ = 2. 
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Figure 8.13: Examples of Cagniard-DeHoop contours associated with the first two suc­
cessive time-domain constituents in vacuum (a) n = 0; (b) n — 1. 
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Figure 8.14: Examples of Cagniard-DeHoop contours associated with the first two suc­
cessive time-domain constituents in vacuum (a) n = 0; (b) n — 1. 
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Chapter 9 

Pulsed electromagnetic field radiation 
from a wide slot antenna with a modal 
excitation 

Summary 

In this chapter, a pulsed electromagnetic field radiation from an aperture of two-dimensional 
parallel-plate waveguide that supports the TM (Transverse Magnetic) propagation mode 
is investigated. As a main tool for the analysis, the Cagniard-DeHoop technique is em­
ployed. In conclusion, a number of numerical examples are given. 

9.1 Introduction 

So far, a pulsed electromagnetic field radiation from two-dimensional slot antennas with 
a uniform aperture distribution has been considered. The results of previous chapters 
correspond to the electromagnetic field radiation from a parallel-plate waveguide carrying 
the TEM (Transverse ElectroMagnetic) mode. In this chapter, an analysis of pulsed 
radiation from a parallel-plate waveguide is carried out with a nonuniform excitation field 
distribution, as is in case of the TM (Transverse Magnetic) mode in the waveguide. 

The source excited the structure is modeled as a prescribed and spatially nonuniform 
distribution of the transverse electric field across the slot of a uniform and finite width. 
The structure further radiates into free space. Using the combination of a unilateral 
Laplace transformation with respect to time and the spatial slowness representation of 
the field components that is known as the Cagniard-DeHoop method [11,12], closed-form 
expressions are obtained for the electric and the magnetic field as a function of position 
and time. From them it is clear that the nonuniform excitation via a wide slot shows 
additional features in that the corners of the waveguide feed show a separate diffractive 
behavior with accompanying wavefronts. The approach described in the chapter can be 
also applied on the more complicated configurations treated in Chapters 7-8. 

Provided numerical examples clearly illustrate changes in pulse shapes of excited elec­
tromagnetic field components with respect to various excitation field spatial distributions. 
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9.2 Description of the configuration and formulation of 
the field problem 

The configuration examined is shown in Fig. 9.1. The configuration consists of unbounded 
perfectly electrically conducting (PEC) screen S = {(—oo < x\ < —w/2) U (w/2 < x\ < 
oo), —oo < x 2 < oo,x 3 = 0} with a feeding aperture A = {—w/2 < x\ < w/2, —oo < 
x2 < oo,x 3 = 0} of the finite width w > 0. The structure radiates into the vacuum 
half-space V = {—oo < X\ < oo, —oo < x2 < oo, 0 < x3 < h} with scalar electric 
permittivity and magnetic permeability {eo,/xo} and corresponding electromagnetic wave 
speed c 0 = (e0/x0)"1 / 2-

yx3 

vacuum half-space | 

£>o] {eOjMo} _ _ _ x3_= 

Ei(xi,0,t) = VQ (t) sin(n7ra;i/w)/w 
Xy 

P E C ground plane 1 d 
<w > 

d 
<w > 

Figure 9.1: Configuration figure with indication of the aperture feeding. 

The antenna aperture is fed by the nonuniformly distributed, x2—independent, elec­
tric field that corresponds to the TM modes that would be excited in a parallel-plate 
waveguide 

Ei(xi,0,t) = VQ(t)sm(mvxi/w)/w in A (9.1) 

for n — 1, 3, 5 , . . . , where Vo(t) is the feeding 'voltage'. Since the excitation, as well as 
the configuration, are independent of x 2 , the non-zero components of the electric field 
strength {E1: E3}(xi,x3,t) and the magnetic field strength H2{x\,x3,t) satisfy in VQ the 
source-free field equations (cf. Eqs. (2.5) - (2.7)) 

dxH2 - edtE3 = 0 (9.2) 
d3H2 + edtEx = 0 (9.3) 

dxE3 - d3Ex - iidtH2 = 0 (9.4) 

and the excitation condition is (cf. Eq. (2.3)) 

limEi(xi,x 3, t) = [Vo(t)/w]sm(n7rxi/w)IL(xi/w) for all t (9.5) 
x3.[0 

where II(x) is the rectangular function (see Eq. (2.4)). It is assumed that V0(t) starts to 
act at t — 0 and that prior to this instant the field vanishes throughout the configuration. 

91 



9.3 Field representations 

In view of the Cagniard-DeHoop technique we employ the unilateral Laplace transforma­
tion with respect to time 

/•oo 
V>0(s) = / exp(-st)V0{t)dt (9.6) 

Jt=o 

in which s is taken to be real-valued and positive relying on Lerch's theorem [27,44]. 
Further we use the wave slowness field representation 

[E1,E3,H2}(X1,X3,S) =-^-j exTp(-spxi)^E1,E3,H2^{p,x3,s)dp (9.7) 

Under these transformations, the field equations (9.2) - (9.4) and the excitation condition 
(9.5) transform into 

-spH2 - seE3 = 0 (9.8) 

d3H2 + seEx = 0 (9.9) 

-spEs-dsEi- S/JH2 = 0 (9.10) 

and 

limEifax^s) = in-1[VQ(s)/w] [exp(spw/2)+exp(-spw/2)]G(p,s) (9.11) 

where 

G(P,s) = -\ ( 1 + 1—r) (9.12) 
2 \ps + vn/KJw ps — mir/wj 

The bounded slowness-domain field quantities follow from (9.8) - (9.11) by expressing 
them in the form 

[Ex, E3, H2}(p, x3, s) = {70A0, -p/eo, l}A(p, s) exp[-s7 0(p)x 3] (9.13) 

where A(p, s) follows from the application of the excitation condition as 

A(p,s)=€OE1(p,0,s)ho(p) (9.14) 

in which 

7 o (p) = (1/c2 - p2)1'2 with Re[7 o(p)] > 0 (9.15) 

for all p e C . 
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9.4 The time-domain radiated fields 

In this section we provide the time-domain fields radiated into the domain T>. Using the 
results of Section 9.3 we express them as 

E1, E3, H2\ (x1,x3,s) = 

exp { - s [ p X a + 7o(p)x3]} G(p, s) < 1 

exp {-s[pXh + 'jo{p)x3}}G{p, s) < 1 

2TXW\ 

SV0(S] 
p=—oo 

ioo 

P eo 

2irwi 
•ra—1 

p=—oo 

7O(P)'7O(P) 

P eo 
7o(p)'7o(p) 

dp 

dp (9.16) 

with X a = x\ + w/2 and X b = x\ — w/2. The algebraic parts of the integrands do 
not contain any propagation coefficient that differs from the propagation coefficient 70 (p) 
in the propagation factors. This has the consequence that the corresponding Cagniard-
DeHoop contours for a positive horizontal offset intersect the real p-axis in between p = 0 
and p = 1/CQ, implying the absence of head-waves. The time-domain counterparts are 
found via the Cagniard-DeHoop technique as described in Appendix C. In this way, we 
can arrive at 

{Ei, E3, H2}(xi,x3, t) 
dtVoit) (t) i™"1 [°° dr_ 

* / R e ( G [ p a ( r ) , t - r ] { 7 o [ p a ( r ) ] , - p a ( r ) , e 0 } ) - ^ — -

8 V (t) (t) i n _ 1 r°° 

y — J R e ( G [ p b ( r ) ) t _ r ] { 7 o [ p b ( r ) ] ) _ p b ( r ) ; e o } ) 

ir 71 

+ n (-) 

r=Th 

1/2 

[r2-Ta , 
dr 

( r 2 - T h

2 ) 

d u d 3 , d 1 ) * J 0 

2 \ 1/2" 
" ^ ' O ( f _X3 

It' 
•?'3 

x i f ( £ ) s i n ( n 7 T X i / w ) 

with 

Pa,b(r) = { X a , b r + i * 3 ( r 2 - T a , b
2 ) 1 / 2 }/{X a , b

2 + *2} 

(9.17) 

(9.18) 

7o[Pa,b(r)] = { x 3 r - i X a , b ( r 2 - T a , b
2 ) 1 / 2 }/{X a , b

2 + x 2 } (9.19) 

and 

T a , b = ( X a ^ + x 2 ) 1 / 2 /c 0 (9.20) 

G{p,r) = cos(mrr /'pw) /'p (9.21) 
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provided that p ^ 0. The real parts in (9.17) can be easily found 

Re <̂  G[p a ib(r),t - r]7o[pa,b(r)] 
x3X. a.b 

c 2 r 2 

x cosh 

r ( r 2 

cos 
q 

nir(t 
x 2 /q 

rar(£ — r) x 3 ( r 2 — T a.b 
2 U / 2 -

sin 

r 2 - xl/cl 
nir(t — T 

T" 

x sinh 

^a,bT 
X 2 / C Q 

(9.22) 

for field component and 

Re <̂  G[p a ib(r), t - r]pa,b(r) [ = cos 

x cosh 

n7r(t - r) X a j b T 

m r ( t - r ) x s ^ - T ^ 2 ) 1 ^ " 

414 
(9.23) 

for _E3 field component and finally 

Re G [ p a , b ( r ) , t - r ] cos 
nn(t 

x cosh 

4/4 
nn(t — T) XS(T2 — T 

4/4 

a.b 
2\l /2 

W 

x 3 ( r 2 - T a.b 
2^ 1/2 

r 2 - x 2 /c 2 

~mr(£ - r) X a j b r 
r 2 - xl/cg sin 

W T 2 — X | / C Q 

x sinh 
w r ( t - r ) x s ^ - T ^ 2 ) 1 ^ 

4/4 
(9.24) 

for if2 field component. 
The evaluation of the fields exactly above the radiating edge, i.e. for X a = 0 or for 

X b = 0, requires increased attention. In this case, one of the Cagniard-DeHoop paths 
runs along the imaginary axis, starting at pa = 0 or pb = 0. For this case, the Eq. (9.17) 
is not valid because of the division by zero in (9.21). Nevertheless, one can show from 
(9.16) that for {E\, H2} field components, the integration along the imaginary axis in the 
sense of Cauchy principal value gives only half-pole contributions that correspond to the 
third term in the right-hand of (9.17). On the other hand, the half-pole contributions 
connected with E3 cancel each other, but the integration along the rest of the integration 
path gives a nonzero value except for the arrival time when the field is also zero. One can 
encounter numerical difficulties on account of the exponential growing of the integrands 
in (9.23). A solution of this problem can be found in a linear interpolation between 
the values of E3 evaluated with the help of (9.17) at some neighbouring points or in a 
numerical differentiation induced by Eq. (9.2). 
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9.5 Illustrative numerical examples 

This section provides illustrative numerical examples for the case of power-exponential 
excitation pulses with Vmax — 1, v — 2 (tw/tr = 1.8473), c 0 t w = 0.1847u> (tr = 0.1u>/c0) 
as depicted in Fig. 7.2. 

A l l cylindrical wave field constituents contain time-convolution integrals with inverse 
square-root singularities at the arrival time of the wave. These are numerically handled 
via a stretching of the variable of integration according to 

r = T a cosh(-u) for 0 < u < oo (9.25) 

with the Jacobian 

^ = T a s i n h ( M ) = ( r 2 - T a
2 ) 1 / 2 (9.26) 

According to Fig. 9.1, two observation points at the vertical level x3 = w have been 
chosen with horizontal offsets: (A) x\jw = 0.25; (B) x\jw = 1. Note that due to the 
antisymmetry of the excitation field distribution, only the vertical electric field component 
Es is nonzero along x\/w = 0 for all TM modes, while for the TEM mode uniform 
excitation this component is zero and {E\, H2} components form the plane wave here. 

At the chosen observation points, the pulse shapes of { £ 1 , E3, H2}(xi, x3, t) are com­
puted within the time-window 0 < c0t/w < 4.0 for two successive TM modes with 
n = {1,3} and for TEM mode. In the following figures, normalized Ei3 represents 
Ei^w/Vmax, normalized H2 represents (no/eo)1^2H2w/VmaiX and normalized time stands 
for cot/w. 

Figures 9.2 - 9.4 show the pulse shapes of { £ 1 , E3, H2}(xi, x3, t) at point (A), x\jw = 
0. 25, X3/1V = 1. Since this observation point lies above the radiating slot, all time-domain 
responses start before the arrival time T B due to the wave progressing upward from the 
aperture. 

Figures 9.5 - 9.7 show the pulse shapes of {Ei, E3, H2}(xi,X3, t) at point (B), x\jw = 
1, X3/1V = 1. In this case, the observation point does not lie above the radiating slot and 
the resposenses start at the arrival connected with the closer edge. 

In all figures can be observed how the spatial changes in the distribution of the ex­
citation field manifest themselves in the temporal responses of radiated electromagnetic 
field components. 
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Figure 9.2: Normalized E\ time-domain response at x\jw = 0.25, x3/w = 1. Parameters of the excitation pulse are cotw/w = 
0.1847, v = 2. 



Figure 9.3: Normalized E3 time-domain response at x\/w = 0.25, x^/w = 1. Parameters of the excitation pulse are cotw/w = 
0.1847, v = 2. 



Figure 9.4: Normalized H2 time-domain response at x\/w = 0.25, x^/w = 1. Parameters of the excitation pulse are cotw/w = 
0.1847, v = 2. 



Figure 9.5: Normalized E\ time-domain response at x\jw = 1, x3/w = 1. Parameters of the excitation pulse are cotw/w = 0.1847. 
v = 2. 



Figure 9.6: Normalized E3 time-domain response at x\jw = 1, x3/w = 1. Parameters of the excitation pulse are cotw/w = 0.1847. 
v = 2. 
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n o r m a l i z e d t i m e 

Figure 9.7: Normalized H2 time-domain response at x\/w — 1, x^/vo — 1. Parameters of the excitation pulse are cotw/w = 0.1847. 
v = 2. 



Chapter 10 

Conclusions 

Currently used computational tools are not up to the demands that came up with the 
recent advances in the communication systems. Realizing the lack of the pulsed-field 
computational tools, we have developed one for the exact time-domain analysis of some 
typical radiators used in antenna arrays. The applied approach is entirely built upon 
the space-time description and does not introduce any mathematical artifacts that follow 
from frequency-domain descriptions. As it turned out, the developed pulsed-field com­
putational tool provides the capabilities that lie far beyond the scope of currently used 
software instruments. The most striking feature is the possibility of the exact evaluation 
of all excited pulsed electromagnetic field components at a given observation point within 
a finite time-window. The obtained results have proved to be applicable to the design of 
the antenna arrays with agile beam steering and beam shaping facilities. 

To accommodate the identified objectives of the thesis, we have employed the Cagniard-
DeHoop technique. It has been demonstrated that this technique is capable of providing 
the exact time-domain closed-form expressions that give physical insights into the radi­
ation mechanism, which is necessary for the efficient design process in practice. These 
results thus form the solid fundamental basis for novel time-domain applications of an­
tenna arrays. 

Throughout the thesis, the pulsed electromagnetic field excited by controlled aper­
ture source distributions is investigated in various problem configurations. The common 
feature of the solution of all problems is the development of the generic integral represen­
tation for the radiated electromagnetic field components, which significantly contribute 
to the brevity and lucidity of the thesis. The handling with generic integral representa­
tions can be designated as the theoretical cornerstone of the thesis. Most of the chapters 
are supplemented with numerical examples that clearly illustrate the main features of a 
pertinent problem in hand. 

In Chapter 3 the pulsed electromagnetic field radiation from the narrow slot has been 
adressed. Chapter provided more ways for solving the problem and, thus, helped the 
reader to understand the approach applied troughout the thesis. 

Chapter 4 aimed at the investigation of the pulsed electromagnetic radiation from 
the narrow slot antenna in the presence of the additional perfectly electrically conduct­
ing screen. This chapter has illustrated how to accommodate the reflected time-domain 
constituents pertinent to the narrow slot antenna. 
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In Chapter 5 the pulsed electromagnetic radiation from the narrow slot with the di­
electric covering was investigated. It has been shown that the applied approach is capable 
of describing all intricate phenomena that arise on account of the nonzero contrast in elec­
tromagnetic properties above the narrow radiating slot. The obtained exact expressions 
make possible to design a pulse-excited antenna array of narrow slots taking into account 
the influence of the protecting dielectric covering. 

From Chapter 6 on, the more realistic aperture radiators, with a finite slot width, are 
considered. For this type of radiating apertures, it was demonstrated that the excitation 
via a wide slot shows additional features in that the corners show a separate diffractive 
behavior with accompanying wavefronts. Chapter 6 has described the pulsed radiation 
behavior of the free-standing wide slot and served as the point of the departure for the 
following chapters. Here, it has been demonstrated how the obtained results can be used 
for the design of a pulsed-field antenna array. 

Chapter 7 focused on the analysis of the pulsed electromagnetic radiation from the wide 
slot antenna in the presence of the additional perfectly electrically conducting screen. This 
chapter has illustrated how to deal with the reflected time-domain constituents pertinent 
to the wide slot antenna. 

In Chapter 8 the pulsed electromagnetic radiation from the wide slot with the dielec­
tric covering was investigated. It has been shown that the applied approach is capable 
of describing all intricate phenomena that arise on account of the nonzero contrast in 
electromagnetic properties above the wide radiating slot. The obtained exact expressions 
make possible to design a pulse-excited antenna array of wide slots taking into account 
the influence of the protecting dielectric covering. 

Chapter 9 concerned the handling of a nonuniform excitation field distribution, which 
can be applied on all previous problem configurations with the wide slot. It has been 
shown that the modal excitation can be easily taken into account at the expense of having 
to evaluate an additional one-dimensional integral over a finite interval. The provided 
numerical examples have demonstrated how the spatial changes in the modal excitation 
manifest themselves in the time-domain responses of the radiated field components. 

The prospective developments and the course of the future research rest in a gene­
ralization of our approach for three-dimensional radiators and in the applications of the 
obtained results. In this respect, we can provide the following examples: 

• The description of the interaction of the analyzed aperture antenna array and a scat-
terer through the time-domain field/source reciprocity theorem and a development 
of pulsed-field radar identification methods. 

• The analysis and design of time-domain near-field focused antenna arrays. 

• The design and optimisation of wireless integrated circuits interconnects. 

Having pinpointed some of the future scientific targets, we conclude this thesis. 
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Appendix A 

A narrow slot antenna: 
The Cagniard-DeHoop technique 

This section provides the description of Cagnuiard-DeHoop method dealing with the 
generic integral representation concerning a narrow slot antenna.5 The generic integral 
form of the wave constituents in the interior of the dielectric slab and on its boundary is 
(s = time Laplace-transform parameter, p = slowness parameter along x\) 

sV (s) fioD 

W(x1,x3,8) = ^rL / exp{-s[pX + ll(p)Z]}A[l0A(p)]dp (A.l ) 

where A [70,1(2?)] is an algebraic function of 70,1 (p) and has the branch cuts in accordance 
with Re[70,1 (p)] > 0, i.e. {l/co,i < |Re(p)| < oo,Im(p) = 0} and X and Z are the 
propagation paths in the x\- and x3-directions. We assume that c 0 ^ C\. Under the 
application of Cauchy's theorem and Jordan's lemma of complex function theory, the 
path of integration in (A.l) is replaced with one along the 'Cagniard-DeHoop path' defined 
through 

pX + 7 i (p )Z = r for T < r < 0 0 (A.2) 

where r is real-valued. 

Body-wave path 

The body-wave path follows from (A.2) as the hyperbolic arc C B W U C B W * , where 

/7BW / B W / V 7 \ XT + iZ(r2 — T|W) 1 / / 2 \ /. Qx 
C = <p [X,Z,T) = X 2 - Z 2 , i B w < r < c x ) > (A. 3) 

with 

T B W = (X2 + Z2fl2/Cl (A.4) 

5 Par t of this section is based on the paper [42]. The permission of American Geophysical Union and 
co-authors Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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as the arrival time of the body-wave constituent. Along this path 

7T — \ X(T2 — T2 V/2 

7 i ( p B W ) = x2
 + Z2 forTBW<r<oo (A.5) 

and the Jacobian of the mapping from p to r is 

d p B W _ i 7 i ( p B W ) 
dr " ( r 2 - T | w ) V 2 for T B w < T < OO (A.6) 

The body-wave path replaces the path of integration in (A.l) as long as the intersection 
of this path with the real p-axes does not lie on the branch cut associated with 70 (p), 
i.e. for points of observation in the range cos(0) = |X|/(X2 + Z2)1/2 < C\/CQ. For points 
of observation outside this range, the body-wave path has to be supplemented with a 
connecting loop integral along the branch cut associated with 70 (p). This loop integral 
yields the head-wave contribution to the wave constituent. 

Head-wave path 

The parametrized head-wave path follows from (A.2) as the loop C H W U C H W * , where 

^ H W / H W / Y 7 \ XT — Z(T£W — T2)1/2 1 f \ y\ 
C = <p (X,Z,T) = X < 2 - Z < 2 hiO, i H w < T < i B w > (A.7) 

with 

T H W = X/c0 + Z{l/c\ - l / c 2 ) 1 / 2 (A.8) 

as the arrival time of the head-wave constituent. Along this path 

li(pnW) = Z T + X ^ ~ T 2 ) 1 / 2 f o r T H w < r < T B W (A.9) 

and the Jacobian of the mapping from p to r is 

QPHW 7 l(pHW) 

dr ( T 2
w - r 2 y / 2 

for T H W < T < T B W (A. 10) 

The corresponding wave constituents follow from combining the two complex conjugate 
parts of the paths and applying Schwarz' theorem of complex function theory. 

Time-domain body-wave constituent 

The s-domain body-wave constituent follows from (A.l) as 

sV0(s) W(xi,x3,s) 
7T 

J _t e x p ( - S r ) I m | A [ 7 o , i ( p B W ) ] ^ r | d r (A.11) 

105 



Im(p) 
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He(p) 

l/co cos(0)/ci 1/ci 

Figure A . l : Illustration of p-plane with body- and head-wave parts of the Cagniard-
DeHoop contour C B W and C H W for X > 0, original integration contour Re(p) = 0, branch­
points {l/co, 1/ci} with corresponding branch-cuts and the point of intersection of C B W 

with Im(p) = 0, cos(0)/ci. 

On account of Lerch's uniqueness theorem of the unilateral Laplace transformation [27,44] 
the time-domain constituent then follows as 

W(x1,x3,t) = dtV0(t) ( * 7 r - 1 R e { i { 7 o 1 i [pBW(xux3,t)] } 7 i [p B W(*i,x 3 ,t)] 

x - T B W ) ( t 2 - T%w)~1/2 (A.12) 

where (A.6) has been used and * denotes convolution with respect to time 

Time-domain head-wave constituent 

The s-domain head-wave constituent follows from (A.l) as 

W(x1,x3,8) = ^ & [TBW e x p ( - S r ) I m ( i [ 7 0 i l ( p H W ) l ^ M r 
7T dr 

(A.13) 

Again, on account of Lerch's uniqueness theorem of the unilateral Laplace transformation 
[27,44] the time-domain constituent then follows as 

W(Xl,x3,t)=dtV0(t) ^* 7 r _ 1 I m { 7 O , I [ p H W ( x i , x 3 , t ) ] } 7 i [p H W (x!,x 3 ,0]} 

xU[(t- TC)/T L] ( T 2
W - t2)-1'2 (A.14) 

where (A. 10) has been used, II(x) is the rectangular function and 

Tc — (THW + 2BW)/2 
TL = TEW ~ Taw 

(A.15) 
(A.16) 

These results are used in the main text. 
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Appendix B 

A wide slot antenna: 
The Cagniard-DeHoop technique 

This section provides the description of Cagniard-DeHoop method dealing with the generic 
integral representation concerning a slot antenna with a finite slot width. 6 The generic 
form of the transversal wave constituents in the interior of the dielectric slab and on its 
boundary is (s = time Laplace-transform parameter, p = slowness parameter along x\) 

W(xx,xz,s) = V0{s)[Wb(xi,xa,s) - W*{xi,x3,s)] (B.l) 

with 

Wa(x1,x3,s) = ^- A [ 7 o ' l ( p ) ] exp{-s\pXa + 7i(p)^]}dp (B.2) 
27T1 Jp=_ioo p 

where A [70,1(2?)] is an algebraic function of 70,1 (p), Xa = x\ — a and Z are the propagation 
paths in the x\- and x3-directions. We assume that c 0 ^ C\ and a < b. In this section, 
all conclusions for the expressions marked with 'a' are the same as for those marked with 
'b', only with 'a' replaced with 'b'. The right hand side of (B.l) has no singularity except 
of the branch points connected with branch cuts due to A[70,1(2?)] with Re [70,1(2?)] > 
0, i.e. {l/co,i < I Re (2?) I < oo,Im(p) = 0}. However, the desired Cagniard-DeHoop 
technique can only be applied to the separate terms, each of which has a simple pole at 
p = 0. To accomodate this situation, the path of integration is replaced with one that 
is indented to the right with a semi-circular arc with center at p = 0 and vanishingly 
small radius. This leads for the integration to the same result. Subsequently, under the 
application of Cauchy's theorem and Jordan's lemma of complex function theory, the 
paths of integration in (B.1)-(B.2) are replaced with ones along the Cagniard-DeHoop 
contours defined through 

p A a , b + 7 i (p )Z = r for T < r < 0 0 (B.3) 

where r is real-valued. From here on, the complex slowness parameters connected with 
the horizontal offsets X a and X b are denoted pa and pt>, respectively. 

6 Par t of this chapter is based on the paper [19]; ©[2011] I E E E . The permission of I E E E and co-authors 
Adrianus T. De Hoop and loan E . Lager to reproduce these results is gratefully acknowledged. 
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Three different cases have to be distinguished. In the region x\ < a, the indented 
contours are deformed into the Cagniard-DeHoop contours lying in the left halves of pa 

and j»b complex planes. With the chosen indentation, the pole contributions in pajb-planes 
are present. But, in view of (B.l) , both residues cancel each other. In the region x\ > b, 
the indented contours are deformed into the Cagniard-DeHoop contours lying in the right 
halves of pa and p-^ complex planes. With the chosen indentation, the pole contributions 
are not present. Finally, in the region above the slot a < x\ < b, the indented contours are 
deformed into the Cagniard-DeHoop contours lying in the right half of pa-plane and in the 
left half of jvplane (See Fig. B . l ) . With the chosen indentation, the pole contribution in 
Pb-plane has to be included. Along the lines X\ = a and X\ = b, the indented integration 
contour becomes unchanged and the isolated simple pole is counted as one half, which 
corresponds to taking the Cauchy principal value. 

Body-wave path 

The body-wave path follows from (B.3) as the hyperbolic arc C a
 w U C a

 w * , where 

^ B W _ ( J W / V y ^̂  _ X&T + iZ(r2 - T | W a ) 1 / 2 1 
C a — \Pa. {Xa,Z,T)- , 7 B W a < T < 0 0 > (B .4J a 1 ^ a V « i ' y^2 _|_ ^72 

with 

T B W a = (A a
2 + Z2fl2/Cl (B.5) 

as the arrival time of the body-wave constituent. Along this path 

7-r — \ X (t2 — T2 W 2 

7 i ( ^ W ) = xi + Z2 forTBWa<r<oo (B.6) 

and the Jacobian of the mapping from p a to r is 

dpT1 17l (PaW) 
dr ( r 2 - T 2

W a ) V 2 for T Bwa < T < 0 0 (B.7) 

The body-wave path replaces the path of integration in (B.1)-(B.2) as long as the inter­
section of this path with the real pa-axes does not lie on the branch cut associated with 
7o(p a ) , i - e - f ° r points of observation in the range \XA\/(X2 + Z2)1/2 < C\/CQ. For points 
of observation outside this range, the body-wave path has to be supplemented with a 
connecting loop integral along the branch cut associated with 70 (pa)- This loop integral 
yields the head-wave contribution to the wave constituent. 

Head-wave path 

The parametrized head-wave path follows from (B.3) as the loop C ^ w UC™*, where 

Cr = { ^ W ( X a , Z, r) = X a T ~ ^ W - 2 ~ r 2 ) 1 / 2 + iO, T H W a < r < T B W a } (B.8) 
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Re(pa) 

Figure B . l : Illustration of p-planes for a < X\ < b, original integration contour with the 
indentation at origin and branch-points {1/CQ, 1/CI} with corresponding branch-cuts, (a) 
pa-plane with the body-wave Cagniard-DeHoop contour w U w * ; (b) ptrplane with 
the body-wave part of the Cagniard-DeHoop contour w U C®w*. 
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with 

Tkwa = X a / c 0 + Z{l/c\ - l / c 2 ) 1 / 2 (B.9) 

as the arrival time of the head-wave constituent. Along this path 

li(Pr) = Z T + X ^ ~ T 2 ) 1 / 2 for T H W a < r < T B W a (B.10) 

and the Jacobian of the mapping from p a to r is 

^ ( ^ W a - ^ ) 1 / 2 

for THW* < r < T R W A . ( B . l T 

The corresponding wave constituents follow from combining the two complex conjugate 
parts of the paths and applying Schwarz' theorem of complex function theory. 

Plane-wave path 

If a < x\ < b then a contribution from the simple pole at j>b = 0 has to be counted 
in. The parametrized plane-wave path consists of a circle with center at j?b = 0 and 
vanishingly small radius, i.e. p^ = Pb W (£,#), where 

plw = eexp(i6) ioiT = Z/cl (B.12) 

and e j 0, 0 < 9 < 2%. Along this path 

7o,i(PbW) = 1/co.i forr = Z/cl (B.13) 

Time-domain body-wave constituent 

The s-domain body-wave constituent follows from (B.1)-(B.2) as 

Wr{xuxats) = I r eM-sr)lml^^A^.\dT ( B .14) 

7T 7 r=T B W a [ PA

 O T J 

On account of Lerch's uniqueness theorem of the unilateral Laplace transformation [27,44] 
the time-domain body-wave constituent then follows as 

WBW(Xl,x3,t) = VQ(t) (*> [W™(Xl,x3,t) - W™{xuxs,tj\ (B.15) 

with 

W™{x1,Xa,t)=*-1BB{A{TbA K W ( X a , X 3 , 0 ] } 7 l K W ( ^ a , X 3 , 0 ] / ^ W ( X a , X 3 , t) } 

x ^ - T B W a ) ^ 2 - ^ ) - ^ (B.16) 

(<) 
where (B.7) has been used and * denotes convolution with respect to time. 
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I m ( p a ) 

R e ( p a ) 

R e ( p b ) 

b 

Figure B.2: Illustration of p-planes for the observation point B in Fig. 8.1 (not true-
to-scale), original integration contour with the indentation at origin and branch-points 
{ 1/CQ, 1/ci} with corresponding branch-cuts, (a) pa-plane with body- and head-wave parts 
of the Cagniard-DeHoop contour C f w and C ™ , cos(0a) = X a / ( X a

2 + Z2)1'2- (b) pb-plane 
with body-wave part of the Cagniard-DeHoop contour C b

w , cos(0b) = A b / ( X 2 + Z2)1/2. 
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Time-domain head-wave constituent 

The s-domain head-wave constituent follows from (B.1)-(B.2) as 

Wa (x1,x3,s) = - e x p ( - g T ) W 1 - — > dr (B.17) 
7 1 A = T H W a [ P a ^ J 

On account of Lerch's uniqueness theorem of the unilateral Laplace transformation [27,44] 
the time-domain head-wave constituent then follows as 

W™(Xl,x3,t) = V0(t) ^ [W™{xuxa,t) - W™{xuxa,t)] (B.18) 

with 

W™{Xl,xs,t) = 7 r - 1 I m { i { 7 0 , 1 [ ^ w ( X a , * 3 , t ) ] } 7 l K W ( ^ , i 3 , i ) ] /p^w(Xa,x3,t)) 

xU[(t- T C a )/T L a ] ( T 2
W a - t2)-1'2 (B.19) 

where (B . l l ) has been used, U(x) is the rectangular function and 

Tea = (TuWa, + 2BWa)/2 (B.20) 
21a = 31wa — TnWa (B-21) 

Time-domain plane-wave constituent 

The s-domain plane-wave constituent follows from (B.1)-(B.2) with (B.12) as 

W™(Xl,x3,s) = A(l/cQjl)[H(Xl - a) - H(Xl - b)}exp(-sZ/Cl) (B.22) 

On account of Lerch's uniqueness theorem of the unilateral Laplace transformation [27,44] 
the time-domain plane-wave constituent then follows as 

WPW(Xl,X3,t) = V0(t) * W™(Xl,X3,t) (B.23) 

with 

W™(Xl,X3,t) = A(l/c0A)[H(Xl - a) - H(Xl - b)]5(t - Z/Cl) (B.24) 

These results are used in the main text. 
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Appendix C 

A modal excitation: 
The Cagniard-DeHoop technique 

This section provides the description of Cagniard-DeHoop method dealing with the generic 
integral representation concerning a pulsed electromagnetic radiation from a two-dimensional 
parallel plate waveguide supporting a TM mode. The generic integral representation is 
(s = time Laplace-transform parameter, p = slowness parameter along x\) 

W{xi, x3, s) = VQ(s) A{XI - w/2, x3, s) + A{xx + w/2, x3, s) 

where 

A{x!,x3,s) 1 
2TTI 

exp{-s[pxi + 7o{p)x3]}G(p, s) 
dp 

7o(p) 

( c . i ; 

(C.2) 

where 7o(p) = (1/c2, — p2)1^2 with Re[70(p)] > 0 which entails the branch-cuts along 
{1/co < |Re(p) | < oo,Im(p) = 0}. The function G(p, s) given in (9.12) has simple pole 
singularities at p = ±inn/sw, but the right-hand side of (C.I) is bounded here. However, 
the Cagniard-DeHoop technique can only be applied to the separate terms, each of which 
has simple poles on the imaginary axis. To accommodate this situation, the integration 
path is replaced with one that is indented to the right with semicircular arcs with centers 
at p = ±imr/sw and vanishingly small radii. This leads for the integration to the same 
results. Subsequently, the integral in A(xi,x3,s) is, under the application of Cauchy's 
theorem and Jordan's lemma, replaced with the Cagniard-DeHoop path CUC*, where 

C=\p{r) = 
X\T + i x 3 ( r 2 — T 2U/2 

x\ + x\ 
-, T < r < oc 

in which 

T (xi + x2
3)1/2/c0 

(C.3) 

(C.4) 

During the contour deformation, a contribution of simple pole singularities has to be taken 
into account. For the chosen contour indentation, this has to be done for x\ < 0 when 
the Cagniard-DeHoop path lies in left half of the complex p-plane (see Fig. C.I). On 
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+irar/' sw 

Re(p) 

l) —inir/sw 

Figure C . l : Illustration of the Cagniard-DeHoop path for x\ < 0 with the original inte­
gration contour indented at simple pole singularities p = ±in7i/sw. 

account of Lerch's uniqueness theorem of the unilateral Laplace transformation [27,44], 
the corresponding time-domain expression for A(xi,x3,t) follows as 

A(xl,x3,t) 
dr 

i £ r R e { G [ p ( r ) , t - r ] } - ( r 2 _ T 2 ) 1 / 2 

+c 0 cos J 0 

V w J 

2 \ ! / 2 ' 
"^'O ( t2 _X3_ 

It' 
(C.5) 

for T > X3/CQ and relation [1, (29.3.92)] has been used. Finally, the time-domain coun­
terpart of W(xi,x3, s) is given as 

(t) 

W(Xl,x3,t) = V0(t) * [A(Xl - w/2,x3,t) + A{Xl + w/2,x3,t)} (C.6) 

These results are used in the main text. 
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Appendix D 

Numerical parametrization of the 
Cagniard-DeHoop contour 

This section aims at providing a numerical approach concernig the numerical parametriza­
tion of the Cagniard-DeHoop contour connected with a general pulsed-field problem in­
cluding planar stratified media. Regarding the problems appearing in this thesis, the 
analytical expressions for the contour parametrization exist. The parametrization for a 
single vertical propagation term is given upon solving a quadratic equation and for the 
case with two progation terms, Cardano's formula can be used. However, for the sake of 
a generic applicability, we follow the line proposed by De Hoop [13]. 

Starting with the generic integral representation 

W(X,s) = — / exp{-s\pX + J2ln(P)Zn}}A[ln(p)}dp (D.l) 

where 7n(p) = — p 2 ) 1 / / 2 is n-th vertical propagation term, Zn and X denote vertical 
and horizontal propagation path lengths, s is a real and positive Laplace transformation 
variable, p is a slowness parameter and A[7„(p)] denotes an algebraic function of the 
vertical propagation terms. In view of the Cagniard-DeHoop technique we deform the 
integration path along the imaginary p-axis into the Cagniard-DeHoop contour such that 

pX + J2ln{p)Zn = T (D.2) 
n 

is real-valued. Keeping Re[7„(p)] > 0 in the entire p-plane implies the branch-cuts along 
the real axis in the p-plane {p G C; Qn < |Re(p)| < oo, Im(p) = 0}. 

The first task is to determine a point of intersection of the integration contour with 
the real p-axis. Corresponding time is found with the help of (D.2) by observing that the 
contour connected with a body-wave reaches a minimum at this point. Thus, for the first 
derivative of (D.2) with respect to p we can write 

dr/dp = X-pY,Znl-\p) (D.3) 
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The stationary points are then determined by solving the equation dr/dp = 0. Since the 
second derivative with respect to p 

d2r/dp2 = -J2^nZnl-%p) (DA) 
n 

is negative in the interval J : {p G C; 0 < Re(p) < flmin,Im(p) = 0} with f2 m i n = 
min n{f2„}, we can conclude that there is at most one root in this interval. It is immediately 
clear that in J exist two points PA, PB for which dp/dr(pA) > 0 and dp/dr(ps) < 0. 
which has the consequence that exactly one root exists in J. Since (D.3) is unbounded at 
p = f2 m i n we cannot use Newton's root-finding method. Another possible choice, ussually 
more efficient than the bisection method, is the regula falsi method. The points PA and 
PB are then utilized as the starting points in an iterative process. To find these points we 
observe that 

x - — J2 Zn < dr/dp <x- Zmin^- (D.5) 
Tmin Tmin 

n 
in J', where Z m i n is a vertical propagation path length corresponding to 7 m i n = (fl^^ — 
p2)1/2. From the latter inequality we can find the the starting points for the iterative 
process 

X X 
P A = nmin[x2 + (Enzn)2}^ P B = nmin(x2 + z2

mj^ ( D ' 6 ) 

The second derivative (with respect to p) of the function under investigation dr/dp is 
then given as 

d V / c V = - 3 p ^lZnl-\v) (D.7) 
n 

and is negative for p e J. Since sign{cV/dp(ps)} = sign{<93r/<9p3(p)} for p e J, the 
following iteration procedure always converges 

P n + 1 = P n ~ dr/dp(pZ~-dnr/dp(pn)dT,dv^ W l t h P l = P A ( D ' 8 ) 

Once the iterative procedure (D.8) is terminated with a prescribed precision, the corres­
ponding time T B w is given as 

PB-fiX + ^ ln(pB;0)Zn = T B W (D.9) 
n 

where PB-,O is the result of the iteration (D.8). In the second step we use Newton's method 
with the starting value resulting from the asymptotic expression 

Poo = , y -V 7 \\y + °^~2)\ as r ^ oo. (D.10) 
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With this starting value, the Cagniard-DeHoop path can be determined for r > T B W with 
the help of Newton's iterative procedure 

p n + 1 = pn - - ^ n r y \, with px = p^ (D.ll) 

where F(p) = pX + ] T „ ln{p)Zn - r. 

So far we have considered the part of the Cagniard-DeHoop path connected with 
the body-waves only. In general, however, a vertical propagation coefficient jhip) — 

(£1% — p2)1/2 can occur in the integrand while the corresponding vertical path length is 
zero. Then it can happen that Qh < PB-,O < ^min- In order to avoid crossing the branch-
cut, the hyperbolic arc part must be supplemented by a loop around the branch-cut 
associated with the branch-point Qh- Since the position of the branch-point fih is known, 
the corresponding time is computed from (D.2) as 

ü h X + - n 2
h ) l / 2 Z n = T H W (D.12) 

n 

The head-wave part of the Cagniard-DeHoop path is then found from (D.2) in the interval 
2HW < T < Tsw- This can be again done iteratively according to the iterative process 
(D.ll) with px = nh. 
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Appendix E 

The power exponential pulse 

A convenient pulse type to model a unipolar pulse excitation 7 is the power exponential 
pulse [35] 

V0(t) = VmsK{t/tiy exp[-v{t/tT - l)]H(t) (E.l) 

where Vmax is the pulse amplitude, v > 0 is the rising exponent of the pulse and tT is the 
pulse rise time. Note that Vo(tr) = Vmax. The pulse time width tw follows from 

roc 

Vmaxtw= / V0(t)dt (E.2) 
Jt=o 

as 

tw = txv~v-xY{y + 1) exp(z/) (E.3) 

The time Laplace transform of (E.l) is 

».M = V ^ l ( s

r

+ ^ + , e x p M (E.4) 

The spectral amplitude of Vo(t) follows from (E.4) as 

= p + ^ ) 2 ] t + l ) / 2 ( E - 5 ) 

From 

| V 4 M / V 4 ( 0 ) I = [ M , / , / + i ] < ^ ( E ' 6 ) 

it follows that both 

|VuM/Vo ( 0 ) | < 1 (E.7) 

7 This section is given in the paper [42] with v = 0 ,1 ,2 , . . . . Here we assume that v is a real and 
positive constant. 
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and 

| V 4 M / V 4 ( 0 ) I < ( K 8 ) 

In the spectral diagram (where |Vo(ia;)| is plotted against both on logarithmic scales), 
the right-hand sides of (E.7) and (E.8) are straight lines that are denoted as the spectral 
bounds of |Vu(ia;)/Vu(0)|. The two spectral bounds intersect at their corner point 

ĉorner = V/tr (E.9) 
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