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Abstract 
This thesis considers the problem of synthesizing finite-state controllers (FSC) for partially 
observable Markov decision processes wrt. steady-state properties. The set of candidate 
FSCs (design-space) is explored using state-of-the-art synthesis methods. The Abstraction-
Refinement (AR) method prunes the design-space by considering families of FSCs at once. 
The novel algorithm generating counter-examples regarding steady-state properties using 
principles of the counterexample-guided inductive synthesis method is proposed. The ex­
perimental evaluation compares the A R method with a one-by-one exploration. It shows 
that the A R method is faster by orders of magnitude in all but one example, where the low 
transition rates reduced the speed of the A R method. No other tool is capable of performing 
such synthesis, so a comparison with other approaches is not available. 

Abstrakt 
Tato práce se zabývá syntézou konečných automatů pro částečně pozorovatelné Markovovské 
rozhodovací procesy s ohledem na vlastnosti v ustáleném stavu. Množina přípustných kon­
trolérů je prozkoumávána pomocí state-of-the-art syntézních metod. Metoda Abstraction-
Refinement (AR) prozkoumává tuto množinu tím, že bere v úvahu rodiny kontrolérů na­
jednou. B y l navržen nový algoritmus generující proti-příklady vzhledem ke vlastnostem 
v ustáleném stavu, pomocí principů metody counterexample-guided inductive synthesis. 
V experimentální části se porovnává metoda A R se základní one-by-one metodou. Ukáže 
se, že metoda A R je rychlejší o několik řádů ve většině případů, s výjimkou jednoho, kde 
nízké hodnoty přechodů snížily její rychlost. Není k dispozici žádný jiný nástroj, který umí 
provádět takovou syntézu, takže porovnání s jinými přístupy nebylo možné. 

Keywords 
partially observable Markov decision process, finite state controller synthesis, steady-state 
properties, family of finite state controllers, abstraction of Markov chains, counter-examples 
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Rozšířený abstrakt 
V reálném světě se často potýkáme s problémy, které obsahují prvek náhody. Tyto prob­

lémy se dají modelovat s použitím Markovovských modelů. Ty se vyznačují tím, že přechody 
mezi stavy jsou dány pravděpodobnostní distribucí a tím, že tato distribuce je závislá pouze 
na současném stavu. Nejjednodušší Markovův model je Markovův řetězec. Jeho rozšířením 
o akce vznikne Markovův rozhodovací proces (Markov decision process - M D P ) , t ím se 
otevře možnost interakce s namodelovaným prostředím pomocí tzv. agenta. Ten vybírá 
akce na základě stavu, ve kterém se nachází. Akce vybere příslušnou pravděpodobnostní 
distribuci, která vybere následující stav. Často se však objevují problémy, kde pozice agenta 
v modelu není přesně známá. Například robot má pouze senzory, které nejsou schopné určit 
jeho přesnou polohu. Toto nám dovoluje modelovat částečně pozorovatelný Markovovský 
rozhodovací proces (partially observable M D P - P O M D P ) . V něm agent, místo stavu ve 
kterém se nachází, dostane pouze omezené informace v podobě pozorování (observation), na 
jehož základě může rozhodnout o další akci. Markovovy procesy jsou často analyzovány, aby 
se ověřilo, zda-li splňují nějakou vlastnost. Jedna z těchto vlastností definuje pravděpodob­
nost dosažení nějakého stavu. Další umožňuje přiřadit odměnu každému páru stavu a akce, 
a zkoumat jaké množstí odměny se nasbírá. Poslední vlastnost, která je předmětem této 
práce, zkoumá jaká je pravděpodobnost, že se agent nachází v daném stavu, když bychom 
nechali systém běžet nekonečnou dobu. Chování systému se po čase ustálí. Chování agenta 
v prostředí může být reprezentováno konečným automatem, který v každém stavu (nebo 
pozorování) vybere jednu akci, a t ím vyřeší nedeterminismus. 

Tato práce se zabývá syntézou konečných stavových kontrolérů pro částečně pozorovatel­
né Markovovské rozhodovací procesy s ohledem na vlastnosti v ustáleném stavu. Množina 
přípustných kontrolérů je prozkoumávána pomocí state-of-the-art syntézních metod. Metoda 
abstraction-refinement (AR) je využita k prozkoumávání této množiny tak, že bere v úvahu 
rodiny kontrolérů najednou pomocí abstrakce. Tuto abstrakci reprezentuje jeden M D P , 
jehož analýzou je možné vyřadit celou rodinu najednou. Pokud to není možné, tak je ab­
strakce zjemněná a vzniknou dvě podrodiny, které se následně analyzují. Tento process je 
pak opakován, dokud není prozkoumán celý prostor přípustných kontrolérů nebo dokud není 
nalezen kontrolér, který splňuje danou zkoumanou vlastnost. Metoda s opačným přístupem 
nazývaná protipříklady řízená induktivní syntéza (counterexample-guided inductive synthe­
sis, CEGIS) , je založena na zkoumání jednoho náhodného kontroléru, který danou vlastnost 
nespňuje. Cílem je nalézt část kontroléru (a zkoumaného systému), která je dostačující 
na zavrhnutí tohoto kontroléru. Tato část je následně využita k zavrhnutí větší množiny 
kontrolérů s podobným chováním. B y l navržen nový algoritmus generující proti-příklady 
vzhledem ke vlastnostem v ustáleném stavu s využitím principů této metody. 

V experimentální části práce se porovnává metoda A R se základní one-by-one metodou, 
která ověřuje splnitelnost kontroléru jeden po druhém. Je navržena sada experimentů, které 
mají netriviální vlastnosti ve stabilním stavu. Je ilustrováno řešení některých menších ex­
perimentů pomocí poměrně malých kontrolérů. Ukáže se, že metoda A R je rychlejší o 
několik řádů ve většině případů, s výjimkou jednoho, kde nízké hodnoty přechodů snížily 
drasticky její rychlost. Tato metoda byla původně implementována pro hledání řešení vzh­
ledem k pravděpodobnostem definujících dosažitelnost stavů. Proto byla provedena analýza 
modelů také vzhledem k těmto vlastnostem, aby mohla být porovnána její efektivita vzh­
ledem k vlastnosem ve stabilním stavu. Zaznamenané výsledky syntézy v byly pomalejší 
právě při specifikacích zahrnujících vlastnosti ve stabilním stavu. Metoda je tedy efek­
tivnější v případě vlastnosti dosažitelnosti, ale prokázala svou použitelnost také při syntéze 
vůči vlastnostem ve stabilním stavu. 
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Chapter 1 

Introduction 

Probabilistic systems have a wide range of applications, e.g. robot planning, randomized 
protocols [5], and analysis of software and hardware systems. The complexity of systems 
rises very quickly while the robustness requirements are also increasing, as it may have a 
huge impact on the survival of a company. In the nineties, Intel made a mistake when 
designing Pentium processors, causing a loss of about 475 million USD. A n average car 
contains dozens of microcontrollers, some responsible for critical safety elements, like vehicle 
air bag opening crash sensors. Another software flaw caused the death of six cancer patients 
due to overexposure to radiation in the Therac-25 machine [8]. Therefore, the formal 
verification of system design is crucial to guarantee the required system properties. 

Current state. Formal models allow the modelling of stochastic systems. A Markov 
chain (MC) is similar to a finite-state machine, except in M C , the successor state is cho­
sen probabilistically. Markov decision process (MDP) extends M C with non-deterministic 
choices, i.e., the actions. For each permitted action in every state, there is a probabilistic 
distribution over the successor states [8]. E.g., a robot using actions left, right, etc., to move 
in its environment in a probabilistic manner. In partially observable M D P ( P O M D P ) , a 
state uncertainty arises. That is, an agent receives observation which has only a probabilis­
tic relationship with the state [14]. 

Properties of stochastic models are used to verify that a model satisfy given specifica­
tions. As the execution of a system is represented by a path [16], the question might be: 
What is the probability that a certain path is taken? Expected reward property requires 
each state to have an assigned reward value and express the accumulated expected reward 
before the given time is reached [5]. Another property, called long-run average reward, is 
the average reward accumulated per step on every infinite path [7]. That is an elegant 
way to model performance properties, e.g. power consumption, calculating the number of 
lost requests [16], the average rate of a particular event, etc. Lastly, long-run average (or 
so-called steady-state) properties describe the fraction of time spent in a state or a given 
set of goal states. 

Probabilistic model checkers, namely STORM [13] and PRISM [16], explore a state-
space to verify that a model satisfies a given set of specifications. As input, they take 
a program (formal model) description in the P R I S M or J A N I language and the set of 
specifications defined as a conjunction of temporal logic constraints and return ' y e s ' o r 

'no', indicating whether the system satisfies the given specifications. In the models with 
non-determinism, the agent has a wide range of possible behaviors. The objective is to find 
the behavior, that potentially optimally satisfies the given specifications. A given model 
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satisfies the property, if there is any behavior that satisfies the property. Finding such 
behavior in M D P or P O M D P is referred to as solving the problem. 

Every M D P has only a finite set of possible behaviours, and the set can be enumerated 
to find the best solution. The solution is guaranteed to be optimal, meaning that no better 
solution exists. The existence of the optimal solution to P O M D P s for long-run average 
and infinite horizon properties is undecidable [18]. However, the set of possible strategies 
can be explored to find sub-optimal solution. There are online planning algorithms, which 
computes the optimal actions during the execution of P O M D P . They get a limited amount 
of time to perform the computation, and the best found action is then played. They can 
be based on Monte-Carlo tree search [20]. The Monte-Carlo method require the black-
box simulator of the P O M D P s to the computation of best actions, which is not always 
possible to supply. On the other hand, they are able to solve larger P O M D P s than any 
other methods. Other P O M D P solving methods are based on the belief-curve, but they 
lack the possibility of verification by formal proofs. Finally, the available policies can be 
represented as FSCs [9]. In general, such policies are randomized and therefore represented 
as stochastic FSC (sFSC) [1]. It makes a decision of the following action based on the 
probability distribution over the actions. If the distribution always selects one action, then 
the FSC is deterministic. Such FSC have a benefit of explainability and their debugging is 
easier. Searching for sub-optimal deterministic FSC is implemented in the tool P A Y N T . 

The PAYNT [5] is built on top of STORM Python A P I [13] and allows synthesizing the 
FSCs for P O M D P s [6]. Solving P O M D P s requires memory to make better decisions based 
on the history of actions and observations. The memory is represented as the number of 
FSC nodes - the larger FSC is able to remember more information. The set of possible FSCs 
(called design-space) increases exponentially when the memory node is added. Therefore, 
it is obviously unfeasible to do design-space exploration by enumerating all options one by 
one. Instead, PAYNT is pruning design space using more complex methods - abstraction-
refinement [10] (AR) and counter-example guided inductive synthesis (CEGIS). 

Contribution. The PAYNT currently supports the conjunctions of reachability and ex­
pected reward properties [5]. The contribution of this thesis is to extend PAYNT with 
an option to specify long-run average properties as program specifications, as well as a 
formal description of the problem and evaluation of the implemented methods. To provide 
examples, it would be possible to define constraints like the robot must be in the defined 
exploring state at least half the time, or verify, that the fraction of time spent in the set of 
error states will not exceed a given threshold for all possible realizations of the system. An­
other utilization is the maximal (or minimal) synthesis problem, i.e., finding the realization, 
at which the fraction of time in some state will be as high (or low) as possible. 

Related work [22] specifies an algorithm to find a policy maximizing expected reward 
while satisfying a set of constraints given by steady-state properties. The solution is based 
on a linear program finding a stochastic policy, which induces Markov chain by applying it 
to Markov decision process. The steady-state distribution of such Markov chain is computed 
to validate given constraint. However, the steady-state distribution can be determined only 
if the underlying Markov chain is recurrent. Therefore, the constraints are added to the 
linear program finding policies, so the underlying Markov chain is recurrent. 

However, my approach is focused on finding policies represented as deterministic FSC 
for P O M D P s . It was proven [11], that sub-optimal P O M D P solutions for long-run average 
properties require only a finite number of memory. Consequentially, the existence prob­
lem is decidable. Design-space exploration is done with the utilization of the abstraction-
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refinement method implemented in the PAYNT. The abstraction aggregates a subset of 
design-space to one Markov decision process. The analysis of that M D P is used to argue 
about whole subset, allowing effective exploration. The CEGIS method requires the gener­
ation of counter-examples, which is essentially a subset of states. The generation regarding 
reachability property is based on examining a subset of states while the behavior of other 
states is changed. Such change, however, drastically changes the behavior of the system 
when the long-run average properties are concerned. Therefore, such an approach is not 
feasible and it is shown that it does not work in a model without transient states. The 
adapted approach is proposed, for generating CEs in the transient states of the model. 

Structure of this paper. Chapter 2 presents a necessary theory and introduces a 
notation used throughout the following chapters. Chapter 3 explains the Abstraction-
Refinement and the Counter-Example Guided Inductive Synthesis methods. In the follow­
ing Chapter 4, the novel algorithm for the generation of Counter-Examples is proposed and 
the A R method is extended to the synthesis wrt. L R A properties. Chapter 5 presents the 
detailed experimental evaluation and a comparison with the baseline one-by-one algorithm. 
Finally, Chapter 6 summarize this thesis and the experimental evaluation. 

4 



Chapter 2 

Preliminaries 

This chapter presents a necessary theory and introduces the notation used throughout 
the following chapters. First are introduced the Markov models, starting with the Markov 
chain (MC), the most simple stochastic model without the non-deterministic behavior. The 
transitions in the M C are based on stochastic distributions over successor states. Extending 
the Markov chain with the actions creates the possibility of making decisions. Such a model 
is called the Markov decision process (MDP) and its execution alternates between taking the 
action and transitioning to the next state based on the selected action. The action is selected 
based on the current state and the history of actions and visited states. In the partially 
observable M D P ( P O M D P ) , the current state is unclear. Instead of a specific current 
state, it gets only limited information about the state, called an observation. The decision­
making in the P O M D P is therefore based on the history of actions and observations. The 
Markov models are often analyzed regarding some properties. One type of such property 
is reachability, it studies the probability of eventually reaching a given state. Another 
property studies the behavior of the model in the long run. If one would let the system 
evolve for an infinite amount of time, it converges to the steady-state. The applications of 
the mentioned models often have huge timescales, thus, the motivation to study the long-
run properties arises. Finally, at the end of the chapter, several tools allowing automatic 
verification of the models are introduced. 

2.1 Stochastic modeling using Markov models 

Many real-world situations seem to have a random outcome, but if the problem is examined 
deeper, then it shows up, that it is actually a complex but deterministic problem. The great 
examples are for example rolling a dice or tossing a coin. In the modeling of real-world 
situations, the complex details are often replaced with stochastic behavior. Such models 
can be formally described using Markov models. The crucial property of Markov models 
is that the transition values are not based on the history of model execution. That is, the 
transition distribution over successor states is based solely on the current state. This is the 
case with all Markov models, hence is this memory less behavior called Markov property. 
The Markov chain is essentially a probabilistically determined sequence of states. 

Definition 1 (MC). [15, 16, 6] Markov chain (MC) is tuple M = (S, s0, P) where S stands 
for a set of states and so 6 S is the initial state and P is probability distribution function 
P(si\sj), describing the transition probability to move from state Sj to Sj. 
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Markov chains are useful for modeling the system with its environment when the behav­
ior of the environment can be described using probabilities. In the case when all probabilities 
are not clear, the non-deterministic behavior of the agent interacting with the environment 
arises. Markov decision process (MDP) extends the Markov chain with actions, i.e., the 
Markov chain is M D P with only one action [6]. 

Definition 2 (MDP) . [8, 22] M D P is tuple M = (S, s0, Act, P) where Act is a set of 
actions that can be taken in each state. P: S x Act x S —> [0, 1] is the transition 
probability function P(s' \ s, a^), where at G Act and s,s' G S, means the probability of 
moving from state s to s' when the action a& is taken. Naturally, the sum of probabilities 
to move from state s G S to s', when action a G Act is taken must be equal to 1: 

Markov decision process permits modeling of the non-determinism while the probabilis­
tic choices from MCs are preserved [9]. The agent is interacting with the environment by 
making decisions. E.g., imagine the environment given by states arranged to the grid. The 
agent is using the actions left, right, up, and down to move to different states. However, 
the actions have unclear consequences, the agent may take the action up but accidentally 
transition to the grid on the left. This uncertainty is modeled using the stochastic distri­
butions over the successor states. E.g., taking action down in the concrete state may lead 
to bottom, left and right states with the probability of 0.8, 0,1, and 0.1 respectively. 

However, many real-world applications of the M D P s will come across the problem, that 
the state of the system is not perfectly observable. For example, the sensors of the robot are 
not perfect and there are not able to perfectly determine the state of the robot. However, 
they provide some information about the state and the agent takes a decision based on 
them. The special case, when a single observation is obtained in all states is called blind 
MDP. Otherwise, the environment can be described using the P O M D P model. 

Definition 3 ( P O M D P ) . [6, 9] Partially observable M P D (POMDP) extends M D P with 
observations. P O M D P M. = (S, so, Act, P, Z, O) where Z is a finite set of observations and 
O is the observation function, that returns for every state s an observation Z{s) = z G Z. 

P O M D P s have various applications for example computational biology, robotics [17], 
image processing and many others. However, the state uncertainty makes the verification 
of the P O M D P s more difficult. 

2.2 Steady-state properties of Markov models 

If you let the system evolve for an infinite amount of time, the steady-state distribution is 
the fraction of time spent in each state. Let's assume the procedure of endless repetition of 
rolling a fair die. If the dice is rolled a few times, it may appear that some values on the dice 
are more common. However, after the infinite amount of rollings, it would be clear that the 
probabilities to get a certain value are the same. Such a procedure can be modeled as M C 
and the steady-state distribution of this model would result in the same probabilities as 
the described experiment. In general, the steady-state of the system describes the behavior 
of the model in the long run. The steady-state distribution can be computed only for the 
MCs. It is not possible for the M D P s and P O M D P s , because it is unclear how to solve the 
non-determinism and thus, the Long-Run Average (LRA) property will be defined. 

The steady-state distribution is described first, using the transient probability distri­
bution. Transient probability distribution 9n(s,t) is a vector indicating the probability of 
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n 9n(x,x) 9n{x,y) 

1/4 1/2 

0 1.00000 0.00000 
1 0.25000 0.75000 
2 0.43750 0.56250 
3 0.39062 0.60938 
4 0.40234 0.59766 
5 0.39941 0.60059 
6 0.40015 0.59985 
7 0.39996 0.60004 
8 0.40001 0.59999 
9 0.40000 0.60000 

(a) (b) 

Figure 2.1: Example of Markov chain (a) with two states, where x is the initial state and 
its transient probability distribution (b), which converges to a steady-state. 

being in some state t £ S after n > 0 steps when starting in state s £ S [8, p. 828]. The 
distribution 9Q(S, t) is the initial distribution over the initial states. In the case of a single 
initial state, the probability to be in the initial state is 1. For n > 1, the vector 9n is 
calculated by equation 2.1. 

Example 1. Consider a M C M outlined in the Figure 2.1. The transition matrix of M is: 

The state x is the initial state, therefore the vector ko = [10]. Table 2.1b shows the transient 
probability distribution vectors for 0 < k < 10 calculated using equation 2.1. The transient 
probability distribution converges to the steady-state distribution, meaning that the next 
enumeration will not change the values. Therefore, the steady-state distribution for the 
M C M is [0.4 0.6]. 

This enumerating approach of the Equation 2.1 is simple as it requires only a multi­
plication of a vector by a matrix. However, in the complicated MCs, it takes a very long 
time to converge [21], or it may never converge. Instead of enumerating the equation, the 
steady-state distribution Pr°° can be obtained by taking the equation to the limit, that is, 
l imn —> ookn = Pr°°. This limit exists only in the case when at least one state is absorbing. 
The state is absorbing when it contains a self-loop. Otherwise, the transient probability 
distribution will alternate between a finite set of numbers and never converge to any value. 

Another approach to obtain steady-state distribution is to solve the following set of 
linear equations [21]. 

Definition 4 (Steady-State Distribution). [22] Given a Markov chain M = (S,so,T), 
the steady-state distribution Pr°° : S i-> [0,1], Ylses P r ° ° ( s ) = 1; a^so known as the station­
ary or invariant distributions, over the state space denotes the proportion of time spent in 
each state as the number of transitions within A4 approaches oo. This distribution is given 
by the solution to the system of equations given by 2.2 and 2.3. 

9n(s,t) = 9n-1(s,t)-P (2.1) 

P = 
1/4 3/4 
1/2 1/2 
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X*P = X (2.2) 

Where X is a vector of all states, i.e. X = \x\ xi ••• xn] and P is the transition matrix 
of the given M C . The normalization equation has to be added to ensure a unique solution. 

J> = 1 (2.3) 
s£S 

Considering M C from example 2.1 it is: 

[x y] * 
1/4 3/4 
1/2 1/2 

x + y = 1 

X y] 

Which can also be written as: 

1/4 * x + 1/2 * y =x 

3/4 * x + 1/2 * y =y 

x + y =1 

Solving this set of linear equations will produce the same result as that to which 2.1b 
converged: 

Pr°° = [xy} = [0.4 0.6] 

The steady-state distribution is a very accurate specification of the system, however, 
when the state-space is large, it becomes difficult to derive anything from it. The L R A 
property is the sum of steady-state probabilities to be in a given subset of states. This 
allows to study more general system properties. 

Definition 5 (LRA) . Let the M be a finite M C , a set T C S of target states, and Pr°° 
the steady-state vector of M C M . The LRA [T] of the M C M is the sum of steady-state 
values of each target state: 

LRA [T] = J > ° o ( s ) 

Critically, the steady-state distribution exists only for Markov chains, because it is 
unclear how to solve nondeterminism. In other words, the behavior of the agent may change 
over time and the behavior will never converge to steady-state. The scheduler resolves the 
non-determinism in M D P (and P O M D P ) by selecting actions on any state of any path. 

Definition 6 (Scheduler). [10] A scheduler for an M D P M = (S,so,Act,V) is a function 
a : Pa ths^ n —>• Act such that a(ir) G Act (last (TV)) for all ir G Paths jf n . Scheduler a is 
memoryless if last (ir) = last (ir') a (ir) = a (ir') for all ir, ir' G Pathsjf n. The set of all 
schedulers of M is T,M. 
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The scheduler defines the behavior of the agent and remains fixed over time. In each 
state, the one selected action will always be played, thus, the other actions can be omitted. 
The M D P with only one action in each state is recognized as M C , denoted as Ma. Like that, 
the steady-state distribution of M C created by every possible scheduler can be obtained 
and the L R A can be computed based on it. The schedulers c r m i n , c r m a x denote the schedulers 
with minimal and maximal found L R A values. 

Definition 7 ( L R A | ) . Let M be a M D P , a set £ = {min, max} and the c r m i n , cmax £ S M 

be a schedulers such that V<r £ E M : LRA Ma™* < LRA Ma < LRA M C T m a x . The LRAmin 

= LRA M C T m i n and LRAmax = LRA M C T m a x . 

For P O M D P s , the number of schedulers is infinite. Therefore, the schedulers o" m i n and 
Cmax cannot be determined [11, 18]. 

2.3 Model checking Markov models 

Formal probabilistic models are great for modeling probabilistic systems and the objective 
is often verification, that a model satisfies a specification. The probabilistic programs, 
such as PRISM1 and STORM2, make the verification automatic. As input, they take 
the system specification (Markov model) in the PRISM or JANI language and a set of 
investigated properties. The finite-horizon properties are limited to a number of steps. 
Infinite-horizon objectives consider all infinite paths. Some of the many available properties 
include reachability, reward, and long-run average properties. The reachability properties 
are denoted as P, they study the probability to reach a given set of target states. It can 
be limited on the number of steps, e.g., is the given property satisfied in 100 steps? The 
indefinite reachability is also supported - what is the probability of eventually reaching a 
given subset of states? The reward assigns each state-action pair a real value and the finite 
property is the average accumulated reward. The indefinite reward property is called mean 
payoff or long-run average reward and it is the average reward per step when simulating 
the M D P [15]. The last type is the long-run average (LRA) property, which studies the 
average probability to be in a given state. 

The specified tools provide an interface to check the feasibility of a property or get the 
exact value. The feasibility check evaluates whether a certain property holds. E.g., is the 
probability to reach a target state at least 90%? Such property is denoted as P>o.g[T]. 
The exact value can be obtained with a check denoted as P =? [ T ]. On models with non-
determinism, it is not possible to obtain the exact value, but rather only the minimal and 
maximal values obtained by the best and worst schedulers. Both model checkers supports 
model-checking reachability properties on all models and L R A properties on MCs. The 
P R I S M is not able to provide the LRA$ values on M D P , therefore the S T O R M A P I is used. 
The S T O R M computes the long-run average properties (Definition?) using value iteration 
[7], or strategy iteration [15]. Strategy iteration is a dynamic programming technique, which 
starts with an arbitrary strategy and iteratively improves it until the optimal solution 
is found. Neither tool is able to perform model-checking regarding L R A properties on 
P O M D P s , because the min/max scheduler existence problem is undecidable. In the next 
chapter, the eps-optimal solutions for P O M D P s are explained. 

1Prism model checker is available at: https://www.prismmodelchecker.org/  
2Storm model checker available at: https://www.stormchecker.org 
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Chapter 3 

Inductive Synthesis of Finite-State 
Controllers for P O M D P s 

In most real-world control systems, the state of the agent is not clear, due to modeling 
of inaccuracy, sensing limitations, and so forth. The P O M D P is therefore viable model 
with a wide range of applications in many different fields. The analysis of the P O M D P is 
often focused on finding a policy satisfying some constraints. The constraints specify the 
desired behavior of the system - reaching a given state of the system, avoidance of fatal 
states, reaching a subset of states infinitely often, visiting a given set of states in arbitrary 
order, etc. For a given P O M D P and a threshold specifying the probability of success, the 
existence of the policy is undecidable [18]. 

The policies generally use memory to obtain a better estimate of the belief of the agent. 
The memory essentially allows the agent to make better decisions based on the history of 
observations and actions. Restricting the size of the memory creates a finite set of policies 
in which the (sub)optimal policy can be found. The policies for P O M D P s are commonly 
represented by policy trees, belief states and FSCs [9]. Point-based value iteration [19] and 
Monte-Carlo tree search [20] algorithms are superb in finding optimal policies based on 
belief space. Another approach is finding an optimal policy in a set of either stochastic [1] 
or deterministic FSCs [9], where the FSC size indicates how much memory is being used. 
Deterministic FSC is the special case of a stochastic FSC and has advantages in terms of 
explainability and reproducibility. The current state-of-the-art approach focused on finding 
optimal deterministic FSC [6] is using oracle-guided inductive synthesis framework which 
will be explained in this chapter. 

The framework can be described as a learner-teacher algorithm. The learner constructs 
a set of finitely many FSCs (called design-space), describing possible realizations of the 
controller. The teacher explores the design-space to determine which one is the best and 
provides additional information. The exploration may be done by naive enumeration of each 
FSC. However, the inductive synthesis methods are able to prune a larger subset of FSC at 
once, allowing much faster exploration. The learner either accepts the proposed FSC as the 
result of the synthesis or modifies the design-space [6]. The framework supports two types 
of properties - indefinite-horizon reachability and expected reward. This thesis focuses 
on extending the framework with long-run average (LRA) properties (see the following 
chapter). 

10 



Problem statement. Given a P O M D P Ai and a specification of the synthesized FSC 
given by a set of constraints <j> and at most one optimization objective o, find a controller 
J- satisfying all constraints <fi and then incrementally improve the FSC J- wrt. optimization 
objective. Each constraint is limiting a given property by either an upper or lower bound. 
For an indefinite-horizon reachability property, a constraint is defined as threshold A £ [0,1], 
specifying the probability of eventually reaching a set of target states T C S. Let the set 
of operators cxi G {<, >}, the FSC is admissible for P O M D P M if the induced M C satisfies 
P\x\- Constraints are defined similarly for expected reward properties with the threshold 
A £ K . Similarly, the optimization objective is to find FSC minimizing or maximizing a 
given property. Let the set £ = {min,max}, the optimization property is denoted as or 
Rp for reachability and reward property, respectively [6]. 

The first section explains the formal model for a set of FSCs - a family of FSCs and 
introduces the algorithm which implements the learner. Then, the baseline one-by-one 
algorithm exploring a given family of FSC will be introduced. The following sections ex­
plain the current state-of-the-art inductive synthesis methods. The abstraction-refinement 
method prunes the design-space by creating an abstraction over set of FSCs [6, 10]. The 
counter-example guided inductive synthesis method checks whether candidate FSC satisfies 
specifications and provides C E if not. The C E generalizes to subset of unsatisfying FSC, 
which can be safely pruned. 

3.1 Families of Deterministic Finite-State Controllers 

The strategy (also called policy or scheduler) defines the rules deciding the action to play 
based on past actions and observations. If the strategy is limited in the amount of informa­
tion it can store, then it is called a finite-memory strategy. If the strategy is finite-memory, 
then it can be described with finite-state controller [11]. The deterministic FSC represents 
the strategy and has the following structure. 

Definition 8 (FSC). [6] Finite-state controller (FSC) for a P O M D P M is a tuple F = 
(N, no, 7, 5), where iV is a finite set of nodes, no £ N is the initial node, 7(n, z) determines 
the action when the agent is in node n and observes z, while 5 updates the memory node 
to S(n, z), when being in n and observing z. For \N\ = k, we call an FSC a fc-FSC. 

The nodes in FSC are also called internal memory states [9] and they represent the 
number of memory that can the agent utilize to better decision-making. Internal memory 
is changing based on the history of observations. The function 5 updates the internal state 
based on the current state and observation. The function 7 resolves the non-determinism by 
selecting which action will be played at each state and observation combination. Therefore, 
imposing FSC F on P O M D P M produces M C MF. 

Definition 9 ( M C induced by FSC) . [6] Imposing fc-FSC F onto P O M D P M yields 
the Markov chain (MC) MF = (SF, (s0,n0), PF) with SF = S x N and using z = 0(s) : 

PF{{s',n')\(s,n)) 
P (s' J s, 7(n, z)) if 5(n, z) = n' 
0 otherwise. 

For each P O M D P state s G S, there are \N\ memory nodes, and therefore, in the 
resulting MF there are \S\ • \N\ states in total. The function PF maps the corresponding 
transition function to the internal state selected by the 5. The set of FSC with k memory 
nodes for a P O M D P M is called family F&. 
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(a) POMDP M with two observations (b) FSC F for (c) The MC MF induced by imposing 
and two actions. States are labeled as POMDP M. FSC F on POMDP M. 
(n, z) where sn <G S A 0{sn) = z. 

Figure 3.1: Imposing FSC F on P O M D P A4 yields a Markov chain. 

Definition 10 (Family of F S C Fk). [6] A family of full fc-FSCs is a tuple Tk = (N, n 0 , K), 
where iV is the set of k nodes, no £ iV is the initial node, K = N x Z is a finite set of 
parameters each with domain V{n,z) Act xiV. 

Selecting a value for each parameter from the corresponding domain creates a concrete 
member of the family. The FSC and P O M D P yields M C , therefore, the P O M D P M and 
family of FSC J-k naturally yields a family of Markov chains. The teacher explores the 
family of MCs to select the optimal M C . Remark that the M C is optimal only in the given 
family because it is always possible to add another memory node, which may improve the 
optimal value. The family is only a subset of an infinite number of F S C . Therefore, the 
optimal M C in a given family is called sub-optimal in general. 

Example 2. For the P O M D P A4 depicted in Figure 3.1a, the family of memoryless con­
trollers T\ = (N,no,K), where N = {no}, K = {fci,/^} where parameters k\ = (no,x), 
&2 = (no,y) and both have the same domain V = {(a, 0), (6, 0)}. Wi th \V\ = \K\ = 2, 
there are two options for each of the two parameters. Therefore, the design-space describes 
4 1-FSCs, and one of them, FSC F is outlined in Figure 3.1b. It is obtained by selecting 
value (6,0) and (a, 0) for parameter k\ and /c2, respectively. FSC F decides when to take 
which action in P O M D P A4 yielding M C Mp represented in Figure 3.1c. 

A given state s is perfectly observable in P O M D P A4 if V s' G S A s ^ s' is the fact 
that O(s) 7̂  O(s'), meaning that the observation is unique for state s. For many P O M D P 
problems, the memory is not required in perfectly observable states, but in a family of FSC 
(Definition 10), there are k nodes for each observation z. Therefore, there is a model of a 
reduced family given by a memory model \x : Z —>• N , reducing the number of memory nodes 
used in observation z G Z to (J,(z). This reduces the size of parameter domains, significantly 
reducing the size of the design-space. Another benefit is that memory needed to store and 
execute the controller is also reduced, which is useful in resource-aware applications [6]. 
The model of a reduced family is defined as follows: 

Definition 11 (Reduced family of F S C J-^). [6] A reduced family J-^ given by the 
memory model fx is a sub-family of Tk. The number of nodes \N\ = max^e^{//(2;)}, (n, z) G 
K implies n < (J,(z), and the domains V L ^ are as in Tk- If the memory update function 
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updates 5(n, z) = n' and n' > /x(z'), then the memory update is invalid and update <5(n, z) 
= no is used. 

In the described framework, the learner creates a finite design-space by restricting 
searched FSCs by a number of nodes. It is beneficial to search in small FSCs first be­
cause 1) small FSCs are well explainable and 2) an admissible controller is often found fast 
as some P O M D P s require only a few memory nodes. Therefore, the strategy is to search 
memoryless (1-FSCs) controllers first and incrementally add memory. The Algorithm 1 
constructs the family of a given size in each iteration. Then, reduces memory used in 
perfectly observable states using memory model \x. After that, the inner exploration loop 
(teacher) analyzes constructed family and returns found satisfying controller, or NONE. If 
the controller satisfying set of constraints is not found in family J-jj, then the family J~k+i is 
explored. If the controller is found and the optimization property is not specified, then the 
satisfying controller is the result of the synthesis. Whenever is the optimization property 
present, there is no stopping criterion specified. However, user can stop the synthesis loop 
whenever he wants or it can stop after a specified time. 

Algorithm 1 Learner loop 
Input: P O M D P M, set of constraint (f), optimization property o 
Output: Best FSC F* or UNSAT 

1: F* <r- NONE 

2: k <- 1 
3: while true do 
4: Tk constructFamily(TW) > Definition 10 
5: <— reduceFamily(Jrfc, M) > Definition 11 
6: F* <— exploreFamily(.M, J-y, (f), o) > Initiate inner exploration loop 
7: if F* is not NONE and o is NONE then 
8: return F* 
9: end if 

10: k <r- k + 1 
11: end while 

3.1.1 Baseline one-by-one family exploration algorithm 

The teacher is responsible for exploring a design-space, naturally, the straightforward 
method is reasoning about each family member one by one. The Algorithm 2 iterates 
over each FSC F in a family J7, imposes F onto P O M D P A4 yielding M C Mp and checks 
the feasibility of constraints <fi. If the M C is feasible and improves so far best found FSC 
F*, then the FSC is saved to be returned at the end. The M C improves best FSC F*, if 
the FSC F* is NONE or when the value of the property under F is lower (greater) than M C 
under FSC F* for a given safety (liveliness) optimization property. 

The one-by-one exploration is understandably unfeasible for large synthesis problems. 
Therefore, there are better techniques based on reasoning about families of MCs. 
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Algorithm 2 One-by-one algorithm 
Input: P O M D P M, family of k-FSC 
Output: Best satisfying FSC F* or NONE 

1: F* <r- NONE 
2: while T / 0 do 
3: F <r- any (J7) 
4: F^F\{F} 
5: MF <- M under F 
6: if V(f G 0 : M F 1= <̂  then 
7: if MF improves F* wrt. o then 
8: F* ^ F 
9: end if 

10: end if 
11: end while 
12: return F* 

set of constraint 0, optimization property o 

> Definition 9 

3.2 Abstraction-Refinement Method 

The abstraction-refinement method is based on considering sets of MCs at once. The formal 
model for a set of MCs is called the family of MCs. The stochastic model called quotient 
MDP allows to the creation of abstraction over a given family. This allows for verification 
of the behavior of the entire family by one model-check call, but the verification result is 
over-approximation. Model-checking the abstraction M D P wrt. a given property <p provides 
interesting results, allowing to discard the entire family. If the abstraction is too coarse 
then it is necessary to refine the family. The refinement is essentially splitting the family 
of MCs into two subsets of MCs. After splitting, the new abstraction over each subset is 
created and the process is recursively repeated. This concept will be described in detail. 

Definition 12 (Family of MCs) . [10] A family of MCs is a tuple V = (S,s0,K,B) 
where S is a finite set of states and SQ G S is an initial state, K is a finite set of discrete 
parameters with domains Vk C S for each k G K, and B : S —>• Distr(i^) is a family of 
transition probability matrices. 

The function B maps states to distribution over parameters [10]. Selecting a value for 
each parameter from the corresponding domain yields a concrete M C called the realization 
of the family. 

Definition 13 (Realization). [10, 4] A realization of a family V = (S, so, K, B) of MCs 
is a function r : K —>• S s.t. r(k) G Vk, for all k G K. Realization r induces MC 
T>R = (S, so,BR) where BR is the transition probability matrix in which each k G K in P is 
replaced by r(k). The set of all realizations of T> is denoted as 1ZV. 

Subset of all realizations TZP is called a sub-family. The number of realizations in family 
J- is exponential in the number of parameters. Enumerating realizations [10] is technically 
the same approach as Alg . 2, because it requires model checking each M C one-by-one. 

Example 3. The family of MCs obtained by imposing family of 1-FSCs T\ on P O M D P 
M outlined in Figure 3.1a is V = (SV,SQ,K,B), where S V = S, the set of parameters 
K={k0,k1,k2}, with domains Vko = { s 0 , s i } , Vkl = {SQ,S2}, Vk2 = {si}, Vk3 = {s0} and 
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Figure 3.2: Set of Markov chains given by enumerating realizations of the family T>. 

the family of transition probability matrices B is defined by: 

B(SQ) = 1 : ko, 

B(si) = 0.5 : ki + 0.5 : k2, 

B(s2) = l:k3. 

Concrete realization r\ G VP arises by selecting values s\ and s2 for parameters ko and k\, 
respectively and the only available values for parameters k2 and k3. The realization r\ and 
all other realizations from TZP are in Figure 3.2. 

Instead of enumerating realizations to decide the feasibility of each realization separately, 
there is a stochastic model in which all realizations are possible at once. It is achieved by 
allowing to switch from one realization to another mid-execution [3]. Switching realizations 
changes the probability distributions over the successor states. This concept is identical to 
using actions and therefore, the described model is conclusively M D P . 

Definition 14 (Quotient M D P ) . [3, 10] Let V = (S,s0,K,B) be a family of MCs. A 
quotient M D P of V is an M D P Mv = (S, s0, TZV, V), where V(-)(r) = BR. The restriction 
of MV wrt. set of realizations TZ C VP is the M D P MV[R] = (S,s0,nv^,V) where 
KVW = {ar\r G TZ}. 

The quotient M D P is able to execute the path of every realization of the family because 
the actions at each state correspond to any realization [10]. However, this allows for the 
execution of paths, which do not correspond to the behavior of any family member. This 
is called over-approximation and it is demonstrated in the following example. 

Example 4. The quotient M D P MV of the family T> from Example 3 allows to switch 
between 4 realizations of the family after each probabilistic transition to the successor 
state. It is possible to always select one realization - execute s ^ s' ^ ... ^ s°° where 
r* G VP. Notice (see Figure 3.2) that in neither M C of the family V was state SQ reachable 
from the initial state. However, in MV, it is possible to switch realization after e.g. first 
transition to execute path s -4 s s -4 . . . which allows reaching the state s2 • The 
over-approximation of the family given by the quotient M D P makes the state s2 reachable, 
as outlined in Figure 3.3. 
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Figure 3.3: Illustration of the over-approximation of the quotient M D P - it is not possible 
to execute this path in neither M C of the family in Figure 3.2. 

The scheduler which always selects realization r G VP is called consistent. Checking 
the consistency of the scheduler decides if the M C induced by a given scheduler is a member 
of the family. 

Definition 15 (Consistent scheduler). [3] Let V = (S, Sinn ,K,B) be a family of MCs 
and let MV = (5, SQ,1ZV,V) be a quotient M D P of V. For r G VP, a (memoryless) 
scheduler ar G SmT> is called r-consistent iff Vs € S : a(s) = r. A scheduler is called 
consistent iff it is consistent for some r G TZV. 

The restriction of the quotient M D P wrt. subset of realizations 1Z C 1ZV where 1Z = {r} 
and r G creates concrete M C of the family. Restricting the quotient M D P gradually 
for each r G 1ZV is another version of the one-by-one approach called the enumeration of 
consistent schedulers [10]. 

However, the abstraction approach is different. It is based on model-checking the quo­
tient M D P . Because the model contains non-deterministic choices, the model-checking can 
provide only the lower vmin and upper vmax bound values and corresponding schedulers 
cry and cry. The interpretation of the model-checking results is crucial. Assume there is a 
target state t G S and single liveliness reachability property <p>\. If the maximum value 
Vmax given by cry to reach the state t is lower than A, then the entire family can be pruned, 
because no realization of the family can satisfy (p. If the vmin is greater than A, then all 
realizations satisfy the property (p. When vmin < A < vmax and the scheduler cry is con­
sistent, then the M C M A T is the concrete member of the family. The M C M A T satisfies 
property ip>\ as vmax > A and therefore the FSC Fa± is declared as the synthesis result. 
Nevertheless, in the case when cry is not consistent, the abstraction is too coarse and the 
refinement of the family is necessary. The reasoning about synthesis wrt. safety property 
is similar and requires checking the consistency of the a±. It can be also modified to max 
synthesis [10]. The upper and lower bound values are also returned to the learner because 
they can be used to prune larger design-space of FSC family Fk+i-

Example 5. Assume the P O M D P A4 3.1, and safety property </?<o.5 to reach the target 
state S2- The model-checking of the quotient M D P A4V provides the lower bound vmin = 

0 and upper bound vmax = 1. It is true that vmin < A < vmax, therefore, the consistency 
of a± is checked. The a± always select realization r% (see left-bottom of Figure 3.2) and 
therefore proves to be consistent. The FSC given by a± is the result of the synthesis. 

On the other hand, if the property would change to liveliness, e.g. </?>o.5, then it 
turns out differently. The predicate vmin < A < vmax still holds and the scheduler cry is 
inconsistent. The Figure 3.3 shows MCAT induced by inconsistent scheduler cry. In this 
case, the abstraction is too coarse and thus it is needed to refine the family. 
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The refinement of the family is done by splitting it into two sub-families. Then, the 
quotient M D P of the sub-families can be created and the process follows recursively until 
the entire family is pruned or the feasible realization is successfully found. 

Definition 16 (Splitting). [10] Let 2) be a family of MCs, and 1Z C TlF a set of realiza­
tions. For k G K and predicate Ak over S, splitting partitions 1Z into 

Instead of splitting and rebuilding the quotient M D P in each iteration, we can make 
use of restricting the quotient M D P wrt. IZj and 1Z±. This is essential to the speed of 
the synthesis loop [10]. The synthesis speed can be accelerated by wisely choosing the 
predicate Ak according to which is the family split. The splitting strategy is based on the 
most significantly inconsistent parameter of the policy [6]. 

3.3 Counter-Example Guided Inductive Synthesis Method 

The opposite approach to the A R method is the CEGIS method. While the A R method 
reasons about multiple realizations at once using the abstraction, the CEGIS is based on 
the analysis of a single realization. It takes one random realization and checks whether 
it satisfies a given property. If the property is satisfied, then the FSC which induces this 
realization is the result of the synthesis. Otherwise, a detailed analysis of the M C induced 
by this unsatisfiable realization is performed. The goal is, to find the critical part of the 
system, which causes the M C to be unsatisfiable. Essentially, the critical part is only a 
subset of states of the analyzed M C . A l l realizations, which behave the same in the critical 
part of the system can be safely pruned. 

Definition 17 (Sub-MC). [3] Let M = (S,s0,P) be an M C with s± <£ S and let C C S 
with s0 G C. The sub-MC of M wrt. C is an MC M | C = (C U {s±} , s0, P'), where the 
transition probability matrix P' is defined as follows: 

Definition 18 (Critical sub-system). [3] Let M = (S1, Smit ,P) be an M C and let ip be 
a property s.t. M Y= (p. If, for some set C , it holds M J, C Y= ip, then this set C and the 
corresponding subsystem M \, C are called critical. A critical set C is called minimal iff 
\C\ < \C'\ for all critical sets C 

The transition probability function in sub-MC re-routes all transitions leading out of a 
subset of states C to the absorbing state s±. This changes the behavior of the states not 
included in the C and allows to study the behavior of the states in the subset C. If the M C 
M | C induced by the subset C does not satisfy ip, then it is called a critical sub-system. 
In the synthesis of FSC for P O M D P s , the induced M C is labeled as (s, n), indicating the 
state and the used memory. The set of relevant parameters is for each state (s, n) G C, 
the parameter (n, O(s)) G K . In other words, if the state (s, n) is in the critical-subsystem, 
then the parameter (n, O(s)) G K is called relevant [6]. The Algorithm 3 describes the 
fundamental approach of the CEGIS method. 

TZT = {r G K | Ak(r(k))} and TZ± = {r G K \ ̂ Ak(r(k))} . 

P(s'\s) 

±-Zs«es\cP(s"\s) 
1 

if s, s' G C, 
if s G C and s' = s±, 
if s = s' = s±. 
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Algorithm 3 Counterexample-guided inductive synthesis [3]. 
Input: A family of MCs, arbitrary property ip 
Output: A realization Dr N (p or UNSAT 

1 

2 while K / 0 do 
3 r <— any(7£) 
4 if Dr \= (p then 
5 return r 
6 end if 
7 C <— criticalSubsystem (Dr, <p) 
8 K <— relevantParameters(D, C) 
9 K <- K\(r t K) 

10 end while 
11 return UNSAT 

The minimal critical sub-system typically allows pruning a larger set of design space. 
However, the search for a minimal sub-system is not trivial and thus takes more time than 
the alternative approach. The alternative is, to search greedily from the initial state. The 
search begins with C = {so} and the set of states C is then gradually enlarged until the 
property ip is not satisfied. To induce small counter-examples, the greedy approach takes 
into account parameters defining the set of realizations and prioritizes already relevant pa­
rameters [4]. The size of the set of relevant parameters is crucial. If the set of relevant 
parameters is large, then there is a smaller amount of realizations, which select these pa­
rameters. Therefore, the aim is to select as least parameters as possible. Another way to 
reduce the number of relevant parameters is to use the information about the above M D P 
acquired by the abstraction. Namely, the state-vector 5 defining the upper or lower bounds 
to reach the target state from each state is computed. The upper (lower) bounds are uti­
lized when the liveliness (safety) property is concerned. The vector 5 is used to induce 
M C M 4- C [ 5 ] - to reroute successor states of C to the state s±. This state is considered 
the target state and the analysis of this induced M C takes that into account. Relevant 
parameters are still those belonging to set C, but the transitions of succ(C) are used in the 
greedy search, allowing the creation of smaller counter-examples. 

Definition 19 (Counter-example). [6] A counter-example (CE) for FSC F and reach­
ability property is a subset C C SF that induces the sub-MC M I C [5] given as 
(C U succ(C) U {s±, sT} , (s0, n0), P') where P'\ 

where succ{C) is the set of direct successors of C , and the probability to reach T U {ST} 
from C is < A. 

This approach of finding critical sub-systems does not directly work for L R A properties. 
The reason for that and the adapted approach is explained in the next chapter. 

P'(s) 
PF(s) 
[sT H > S(s), s± H > 1 - 5(s)] 
[8^1] 

if seC, 
if s € succ(C)\C, 
if s e {sT,s±}, 
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3.4 P A Y N T Tool 

The P A Y N T (Probabilistic progrAm sYNThesizer) was initially created for the automated 
synthesis of probabilistic programs. That is taking a partially implemented system with the 
holes and finding satisfying hole assignments. Nevertheless, is also supports the synthesis 
of FSC for P O M D P s . As input, it takes P O M D P specified in the PRISM or the JANI 
language, set of constraints and one optimization objective. The described methods (AR 
and CEGIS) are implemented in this tool. They were, however, implemented for the P C T L 
properties and the aim of this thesis is to extend PAYNT to synthesis wrt. L R A properties. 
The PAYNT is built on top of the STORM model checker and the Z3 solver is used to solve 
S M T formulas [5]. The A R utilizes the STORMPY1 python A P I meaning that it is fully 
implemented in the P Y T H O N . The S T O R M supports model-checking of M D P s and MCs 
regarding L R A properties. Hence, the extension of the P A Y N T to provide a possibility 
to perform FSC synthesis using A R method regarding L R A properties on P O M D P s was 
technically already implemented. There was an issue with a method, which double-checked 
the results of the synthesis. It used wrong equation solver type, which did not work with 
L R A properties and thus was changed to default method. The one-by-one algorithm was 
implemented to provide a comparison to the A R method. Additionally, the possibility to 
generate statistics about synthesized families and quotient MDPs was added to P A Y N T . 
Generated statistics were used to perform detailed analysis of the A R method described 
in Chapter 5. Nevertheless, most of the counter-example generation is written directly 
as storm extension. It is implemented in modern highly templated C+-1-, which makes it 
challenging to add new functionality or make changes. Therefore, this work was not focused 
on the implementation of counter-example generation. 

1 S T O R M P Y is available on github: littps://github.com/randriu/stormpy/tree/syntliesis 
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Chapter 4 

Synthesis of Controllers Regarding 
Long-Run Average Properties 

The problems encountered in many applications of P O M D P s have a large timescale. The 
L R A properties are specifying the behavior of the agent in the environment regarding an 
infinite amount of time. Consequently, they are the subject of investigation. One use case 
is specifying the upper (lower) bound to the probability that the system is in a given state. 
For instance, ensure that the C P U will not be in a recovery mode more than 1% of the 
time. They are also utilized to specify that a given state is visited finitely or infinitely often 
because the L R A probability of a state that is visited finitely often is 0. E.g., make sure, 
that in mutual exclusion problem, each process is in the critical section infinitely many 
times. There are also expected long-run rewards (also known as mean-payoff) properties, 
where the reward function r: S x A —>• M assigns a real number reward to each state-action 
pair. However, they rely on techniques for computing the long-run probabilities [8, p. 830], 
thus, only those are considered. 

The related work on finding a policy satisfying L R A specifications was made. In partic­
ular, the steady-state control (SSC) problem is defined as: Given an ergodic M D P and the 
goal steady-state distribution 5goai over states, does there exist a policy which imposed on 
M D P yields M C whose steady-state distribution equals 5goa{! The policy is initially defined 
as history-dependent, but it is proven, that memoryless stochastic policies are sufficient to 
represent goal policy, provided it exists. The existence of the goal policy is decidable and 
the solution is provided by a linear program. These conclusions hold for the labeled M D P 
as well. The labeled M D P (LMDP) is considered because the concrete steady-state distri­
bution is a very accurate specification. The states in L M D P are labeled to provide higher 
generalization over the state-space. The SSC problem is then finding the goal steady-state 
distribution over labels [2]. Given M D P is called ergodic, if every policy induces ergodic 
M C , and M C is ergodic if it is recurrent and aperiodic. The requirement of the ergodic 
M D P is later solved by defining another linear program, which induces a recurrent M C in 
possibly non-ergodic M D P . Additionally, there is a possibility to provide optimization ob­
jectives defined as expected rewards. This approach is called Steady-State Policy Synthesis 
(SSPS) [22]. 

For P O M D P s , it was already mentioned, that the existence of policy specified with 
indefinite horizon property is undecidable [18]. The proof is based on extending known 
undecidable string-existence problems for probabilistic finite-state automata. The L R A 
properties belong to the indefinite horizon probabilities. Therefore, the SSC problem is 
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for P O M D P s undecidable [2]. Nevertheless, the existence of an approximation problem is 
a recursively enumerable and therefore a decidable problem. The approximation problem 
for the optimization objective is: for a given P O M D P , an objective function and e > 0 
- compute the optimal value within an additive error of e. The approximation problem 
for threshold decision is defined in a similar fashion. The recursive enumeration is the 
consequence of the proof, that for every approximation problem, there is a finite-memory 
strategy that achieves the optimization objective within e of the optimal value. The set of 
finite-memory strategies if finite, and therefore enumerable [11]. In this thesis, the set of 
finite-memory strategies represented by deterministic FSC will be searched for an e-optimal 
solution, with the utilization of inductive synthesis methods introduced in the preceding 
chapter. In contrast with SSC, the specification is not the entire steady-state distribution 
over states (nor labels). To the best knowledge of the author, this is the first attempt of 
finding e-optimal FSCs wrt. L R A objectives in P O M D P s . 

Problem statement. The problem is the same as in the previous chapter, but it 
assumes L R A properties: let the threshold A G [0,1], the set of operators 03 € {<, >}, the 
set of target states T C S and the set \ G {min, max}. The problem is given by a P O M D P 
A4, a set of constraints <fi and an optimization objective o. The set <fi is such that G <p '• 
if = LRAfxtx[T] and the optimization objective o = LRA^[T]. The task is to construct the 
FSC F which imposed on P O M D P yields M C satisfying the set of constraints <fi and then 
incrementally improve the FSC F wrt. optimization objective o. 

The introduced problem can be solved with the use of the one-by-one Algorithm 2, but 
this chapter is focused on solving this problem with inductive controller synthesis methods, 
namely A R and CEGIS. They were introduced in the previous chapter and designed with 
the P C T L properties in mind. However, the key ideas can be extended to Long-Run 
Average (LRA) properties. The first section covers the integration of L R A properties into 
the abstraction-refinement method. The beginning of the second section explains why it 
is not possible to create a counter-example in the bottom strongly connected component. 
The rest of the section discusses techniques for generating counter-examples in the transient 
part of the M C states. 

4.1 Integrating L R A Properties to the A R Method 

The core of the abstraction-refinement method is to verify the behavior of an entire fam­
ily of controllers represented by a quotient M D P . If the verification is inconclusive, then 
the family is split to create a less general family. This concept was discussed in detail in 
the preceding chapter. Integration of Long-Run Average (LRA) properties to abstraction-
refinement method consists of allowing model-checking abstraction M D P with respect to 
L R A properties. The interpretation of the model-checking result was explained in the pre­
vious chapter wrt. reachability property and it is exactly the same for the L R A properties. 
Therefore, it will not be explained again - instead the Algorithm 4 defining this approach 
is provided. 

The following example demonstrates Algorithm 4. 

Example 6. Assume the P O M D P Ai outlined in Figure 4.1 and the L R A property ip = 
L R A < 0.27 [T]. The 1-FSC family J-\ consists of 4 controllers given by combinations of 
one of two actions (a, b) for both observations (x, y). Under the P O M D P M, there is 
the quotient M D P MV given by 4 realizations 1Z = {r\, T2, r^, r^} defined by corresponding 
controllers. E.g., the ri corresponds to the controller which selects an action in observation 

21 



Algorithm 4 Abstraction-Refinement Algorithm (Adapted [3, Alg . 4] wrt. L R A props.) 
Input: P O M D P M, family of k-FSC a L R A safety property ~ip = LRA<X[T] 
Output: A satisfying FSC or NONE 
Mv <- buildQuotientMDP(.M,.7>) > Using Definition 14 
3 <- {•?>} 
while $ / 0 do 

T <- any(£) 
<- \ {^} 

7?. <— realizations^, A4) 
M <- M c [ ^ ] > Restrict M D P using Def. 14 
("min, ffmin, fmax, ^max) <~ boundsLraMdp(M, T) o Using Definition 7 
if v m in > A then 

continue > Reject all family members 
end if 
if t>max < A then 

return any(J-) > Vr G 72 N <̂  
end if 
if CTmin is r-consistent for some r G 72. then > Using Definition 15 

return FSC Fa . 
end if 
{?T, ?±) <~ split (J7) > Split family of FSCs 
S ^ S U { J 1 , . F t } 

end while 
return NONE 

P O M D P A i M D P M D | i ? T | 

Figure 4.1: Top-left: P O M D P M. with two observations and two actions. States are 
labeled as (n, z) where sn G S AO(sn) = z. A l l actions have either probability 1 or 0.5 and 
0.5, therefore are omitted from drawings. Bottom-left: Quotient M D P Mv induced by 4 
realizations given by 1-FSC family. Right: Quotient M D P MV\TZT\ and MV\TZ±\ induced 
by restricting Mv wrt. predicate selecting an action in so- Blue actions are avoiding the 
target state T the most. 
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z and action b in observation y. The analysis result of this quotient M D P provides lower 
and upper bounds vmin = 0.25 and vmax = 1 (7th line Alg . 4 ) . The analysis is inconclusive 
because vmin < 0.27 < vmax and therefore, the consistency of scheduler a m i n is checked. If 
the scheduler were consistent, then the M C Mamin would be M C induced by some realization 
r and would satisfy property ip. However, that is not the case - in the Mv, the blue actions 
that are least likely to lead to the state T are selected by a m i n . It is evident, that neither 
rn selects all these actions, therefore the a m i n is inconsistent and the family T\ is split into 
two sub-families (17th line Alg . 4) by parameter selecting an action in observation x. The 
set of realizations is split to IZj and 1Z± and 2 restricted quotient M D P s Mv\TZj\ and 
MV\1Z±\ arises. Then, the process is repeated - analysis of TZj is again inconclusive, but 
analysis of 1Z± has lower bound vmin = 0.29 and thus, the entire family can be pruned (9th 
line Alg . 4 ) . Note that the analysis using the A R method highly depends on the A value. 
If the A would equal 0.2, then 1 iteration would be enough to prune all realizations. On the 
other hand, if the A = 0.35, then the analysis of 1Z± would be inconclusive too, increasing 
the number of required iterations. In general, if the A is too high or too low, then is the 
A R method superb. 

When the entire family of Tk controllers is pruned and the satisfying controller is not 
found (or the optimization objective is specified), then the family Fk+i is created and the 
Abstraction-Refinement method is used on the larger family, see Algorithm 1. In the case 
of optimization objective, the best-found value is passed to A R with the Fk+i- The value 
can be used to prune the sub-family, which optimal value does not reach the optimum value 
from the previous family. The following example illustrates the effect of adding memory 
nodes on the optimality value. 

Figure 4.2: MemoryDemo: The P O M D P A4 with states labeled as (n, z) where sn £ 
S A 0(sn) = z. There is only 1 choice between a and b in observation x (blue). It is 
designed to show that more memory can improve the optimization L R A property. 

0.5 a 

0.99 
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Figure 4.3: Top-left: Part of optimal FSC F1. Bottom-left: Part of optimal FSC F2. Right: 
M C induced by optimal FSC F\. States are labeled as (x, n) where sx is the state and n is 
the memory node. The unreachable state is colored gray. 

Example 7. Assume the P O M D P Ai from MemoryDemo problem outlined in Figure 4.2 
and the goal to be in the state T as much as possible - optimality property LRAmax [T]. 
State 2 has observation F and once reached, the probability to leave this state is small, 
this models punishment to playing action b in state 0. In contrast, action b in state 1 
leads to the target state T. Critically, states 0 and 1 have the same observation x. The 
memoryless controller F i decides if the action a or b should be played in observation x. 
Notice that reaching state T requires playing different actions in the same observation, 
therefore, the state T is unreachable with the memoryless controller. States 2 and 3 are 
perfectly observable because they have unique observations. The memory is ineffective in 
those states, hence the memory function fi(F) = fJ,(T) = 1 and fi(x) = 2 is used. The 
part of best FSC F2 and F3 from family Ti and ^ 3 , respectively, are in the Figure 4.3. 
The observations F and T have only one possible action and therefore are omitted in both 
controllers. Notice that, using F2, the state T is now reachable because the memory node 
is allowed to play action a and then action b in the observation x. However, there is still 
a significant chance to stay in state SQ (by playing a) and then transition to punishment 
state F (by playing b). Imposing FSC F 3 on P O M D P M creates M C MFi (see Figure 4.3). 
The third memory node allows playing action 2 times, to increase the chance to be in state 
si (blue) when playing action b to hopefully transition to state T. Adding another more 
memory nodes allows to improve the controller even more in the same manner. Eventually, 
it would not be profitable to play another action a, because the chance to be in state s\ 
is sufficiently high and the optimization objective is to maximize being in state T. In the 
next chapter, the result of the experimental evaluation is that more than 7 memory nodes 
do not improve the optimum. 

Model-checking a quotient M D P of the given family often takes more time than it takes 
to model-check the concrete M C of that family because the M D P contains non-determinism. 
Additionally, concrete M C is smaller as it does not contain unreachable states. For the A R 
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to be effective, it must hold, that sum of time periods to model-check the abstraction M D P 
and refined sub-MDPs is smaller than model-checking each M C separately. This constraint 
is always satisfied when considering reachability properties. However, when it comes to L R A 
properties, that is not always the case. Algorithms to obtain L R A properties are based on 
computing a large number of time steps t i l l the steady-state of the system is reached, i.e. the 
algorithm converged. Small transition probabilities in a model can also negatively impact 
the time for the algorithm to converge because the number of required iterations increases. 
The above reasons may reduce the speed of A R so much that one-by-one enumeration is 
faster, as is demonstrated in the following chapter. 

4.2 Generating L R A Property Counter-Example 

The counter-examples for FSCs and the CEGIS algorithm are well defined in the previous 
chapter. The crucial component of the CEGIS algorithm is finding a critical sub-system, 
which suffices to refute the specified property. The critical-sub system is thereafter used 
to select relevant parameters and prune the subset of realizations. This section focuses on 
finding critical-sub systems regarding L R A properties. The L R A and reachability properties 
are fundamentally different in the changes of behavior of the derived sub-systems. The 
generation of counter-example regarding reachability property is based on finding a path, 
which refutes the property. The set of states on the paths forms a critical sub-system, 
where all transitions that don't belong to the path are rerouted to the s± state. In this sub­
system, the reachability property does not change. However, rerouting any transitions has 
a significant impact on the L R A properties. The transient states of any M C are visited only 
finitely many times, therefore, the L R A to be in a transient state is 0. The non-transient 
state is called recurrent and states reachable from a recurrent state form a recurrent class. 
The steady-state distribution of the recurrent aperiodic class is obtained by solving the set 
of linear equations, where every transition depends on the final steady-state distribution. 
Consequentially, the rerouting in the recurrent class has an impact on the L R A behavior 
of the sub-system. In the ergodic Markov chain, all states form a single recurrent class and 
therefore it is not possible to create counter-examples in ergodic MCs. 

In non-ergodic MCs, obtaining the steady-state distribution of the entire M C is based 
on computing the steady-state distribution for each recurrent class and multiplying them 
by the probability to reach the recurrent class. Because of that, the generation of critical 
sub-systems wrt. L R A properties are based on reachability properties to individual recur­
rent classes. In graph theory, a recurrent class is called the bottom strongly connected 
component (BSCC). A given M C is partitioned to the set of BSCCs and the L R A prop­
erty is calculated separately for each one, by declaring any state belonging to the B S C C 
as initial. Let's assume a M C M , a single target state t £ S, and a safety L R A property 
if = LiL4<o.2 [ t ] • The M C contains several BSCCs and the target state t belongs to B S C C 
Bt- Assuming only the states in the target B S C C , the L R A is, let's say, 0.5. If the probabil­
ity to reach Bt was 1 - there was no other B S C C except Bt - then the final L R A would be 
0.5. If the probability to eventually reaching Bt was 0.8, then the final L R A to be in state 
t would be 0.8 * 0.5 = 0.4. Whenever is the probability pt of reaching the Bt high enough 
that when multiplied by the L R A in Bt exceeds the value of <p, then it is sufficient to refute 
the property ip. I.e., if pt • 0.5 > 0.2 is true, then in refutes the ip. In this moment, the 
generation of critical subsystem wrt. L R A property can be transformed to the generation 
wrt. reachability property (p2 = P<:\[T] where T C S is a set of states which belong to 
the B S C C Bt and the A value, is given by dividing the value of L R A property <p by the 
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calculated L R A in the Bt- In the discussed example, the A = 0.2/0.5 = 0.4 and note that 
if pt is greater then A then the L R A property ip is refuted. 

However, the transformation to the reachability property works only in the case, where 
all target states belong to the single B S C C . Therefore, a more generalized approach is 
assumed, which allows consideration of multiple target states across different BSCCs. It is 
accomplished by collapsing the states belonging to any B S C C to the absorbing state, which 
represents the corresponding B S C C . In this collapsede M C , the critical sub-system is found 
with the knowledge of L R A properties in each individual B S C C . During the generation, the 
probability to reach each B S C C Bi is multiplied by the L R A value in Bi. Adding up these 
values can refute the given L R A property. The algorithm of this approach and the formal 
model for collapsed M C is described below. In addition, this approach can be extended by 
incorporating the abstraction element. The M C is still induced by the underlying quotient 
M D P . By folding the states belonging to any B S C C in the M D P , the collapsed M D P arises 
and the upper (lower) bounds can be obtained by maximizing (minimizing) policy. Then, 
those bounds are used to create rerouting with state sj and essentially generate smaller 
counter-examples. 

4.2.1 Crit ical sub-systems in Ergodic M C s 

Creating a critical sub-system to a reachability property and a given M C consists of finding 
a path, which suffices to refute an investigated property. The probability to take the path 
so • • • sn is calculated by multiplying the transition probabilities between the states 
on the path, i.e. IF£=1P(sx\sx-i). Note, that calculating the probability to take a given 
path does not include any other paths in the M C . Adding the paths starting in the initial 
state so and ending in the target state sn can only increase the probability of eventually 
reaching the target state. In other words, adding any other path does never decrease the 
reachability property. This allows to take states on the path and declare them as critical 
sub-system. Unfortunately, this is not the case when the L R A probabilities are concerned. 

Proposition 1. It is not possible to construct a critical sub-system for a given ergodic M C 
and an L R A property. 

Let's assume an M C M where each state is reachable from any other state - states form 
a single recurrent class. The L R A to be in a given subset of target states is defined using 
the steady-state distribution. Recall (from Definition 4) that the distribution is given by 
the set of linear equations, where each path of the M C is concerned. That means, that 
each path of the M C does have an impact on the final distribution. Additionally, in this 
M C , changing the initial state does not change the distribution. This contrast between the 
reachability and L R A properties has a direct consequence - there isn't a path between any 
states which can refute the L R A property. Generation of counter-examples for reachability 
properties was explained in the previous chapter using the rerouting - transitions which 
are not concerned are rerouted to the absorbing state s±. Such rerouting of any transition 
decreases or increases the L R A probability, and therefore using rerouting in recurrent class 
is not an option. 

4.2.2 Generating counter-examples in transient states of M C s 

While the generation of a critical sub-system is not possible in ergodic MCs, it is possible 
in Markov chains containing transient states. The first step is computing L R A property in 
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each bottom strongly connected component (BSCC) seperately. That is accomplished by 
decomposing a M C to the set of bottom strongly connected components. 

Definition 20 (BSCC). [15, 8] Let M be a finite M C , the strongly-connected component 
(SCC) is a subset of states CCS where for each s,s' G C exists a path from s to s'. A 
bottom SCC (BSCC) of M is an SCC B from which no state outside B is reachable, i.e. 
Vs £ C and s' €. S \ C: P(s,s') = 0. Let BSCC(M) denote the set of all BSCCs of the 
M C M . 

If the initial state of a given M C is changed to any state belonging to some B S C C , 
then states belonging to this B S C C are only reachable states. This change creates ergodic 
M C and it was already mentioned, that the steady-state distribution of ergodic M C is 
independent of the initial state. The steady-state distribution for each ergodic M C created 
by changing the initial state to any state of BSCCs is obtained. Then, the L R A property is 
calculated (see Definition 5) by adding up the steady-state values of target states. The L R A 
value wrt. target state is computed for each B S C C , obtaining the BSCC-vector IraBSCC 
of L R A values in each B S C C . 

The L R A behavior in each B S C C is computed, therefore, the initial M C is reduced wrt. 
the set of BSCCs. The reduction is based on collapsing the states, which belong to any 
B S C C to one state, which represents the corresponding B S C C . In other words, for each 
B S C C Bi G BSCC(M) is created one state S j . Then, each transition that leads to state 
s G Bi is rerouted to state S j . Additionally, all states Si are absorbing, which simulates 
the behavior of B S C C . Set Sinbscc created using predicate inbscc(s) is utilized to create 
collapsed M C . 

Definition 21. Let M = (S,s0,P) be a M C and B S C C ( M ) be a set of BSCCs of M . 
The predicate inbscc is true if a given state s belongs to any B S C C , i.e., inbscc(s) iif 
3Bi G BSCC(M) : s e Bi. The set Sinbscc C S contains all states satysying the predicate 
inbscc, that is Sinbscc = {s G S \ inbscc(s)}. 

Definition 22 (Collapesd M C ) . Let M = (S, s0, P) be a M C , BSCC(M) a set of BSCCs 
of M and k = \BSCC(M)\. The collapsed M C MB = (SB, s0, PB) is reduced wrt. B S C C ( M ) . 
The SB = S \ Smbscc U {si,~s~2, • • • , S k } , where each Si represents its corresponding B S C C 
Bi G BSCC(M). The PB is defined for each pair s, s' G SB as: 

{1 if S = s' = Si, 

T.^Bi

p{8"\8) if s ^ s ' A s ' = sh 

P(s'\s) otherwise. 
At this point, the bscc-vector describing the L R A behavior of each B S C C component 

and collapsed M C MB is created. Searching for subset C C SB of critical transient states 
that form a critical sub-system in MB is following. Let the C = {so} contain only the 
initial state and create the sub-MC MB \, C using the Definition 17. A l l transitions which 
do not end in any state s £ C are rerouted to the absorbing bottom state s±. Then, the 
probability of eventually reaching each Sj from initial state SQ is calculated. As each Si 
represents Bi, another bscc-vector reachBSCC, indicating the probability to eventually 
reach Bi, is obtained. The L R A behavior of sub-MC M g J, C is obtained by multiplying 
each L R A Bi with each corresponding Si and adding that up. This is known as the dot 
product of vectors. If the obtained value exceeds the A value of a safety L R A property 
if = LRA<\, then the subset of states C is enough to refute the property (p. However, 
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the C is a subset of states in collapsed M C M g , but the subset of states original M C M is 
needed. Therefore, all reachable states Si G C must be replaced with states s G Bi that were 
collapsed in the original M C . In the case, when the subset C does not refute the property ip, 
then it is enlarged by including any state that is reachable from C. The described approach 
is outlined in the Algorithm 5. 

Algorithm 5 Generation of a critical subsystem wrt. a L R A property ip 
Input: A MCs M s.t. M\?<p,& L R A safety property <p = LRA<X[T] 
Output: A critical set CCS for M and ip 
B <- BSCC(M) > Using Definition 20 
IraBSCC <- [ V#i G B : LRA(Bi} T)} 
MB 4- collapseMC(M, B) > Using Definition 22 
Co <- {so}, x 4- 0 
S 4- SB\ CO 

while S / 0 do 
Mc 4- MB 1 Cx o Using Definition 17 
reachBSCC < - [ V B i £ B : reachabilityMC{Mc,Si)) 
if IraBSCC • reachBSCC > A then 

C <— Cx\ {si G SB} 
return C U J s G B j reachBSCC {Bi) > 0} 

end if 
s <— reachableState(Cx) 
S<-S\{s} 
Cx+\ 4- CXU {s} > Add random reachable state to critical states 
x = x + 1 

end while 

The worst case scenario is gradually including all states s G SB to subset C. When 
C = SB, then no transition is rerouted in the sub-MC M g 1 C and therefore it has the 
same behavior as M C M . Consequentially, the proposed algorithm will always terminate. 
Let's assume a M C Mr induced by a random realization (see Algorithm 3, 4th line). The 
Mr is depicted in Figure 4.4a and it will be referred to as M C M . Assume an L R A safety 
property ip = LiL4<o.i[T] . The analysis of this M C provides a result LRA[T] = 0.39, 
which is greater than 0.1 and therefore M\f (p. Therefore, the Algorithm 5 is initiated to find 
a critical subsystem for M and L R A property ip. The following example will demonstrate 
the application of the algorithm. 

Example 8. The decomposition of B S C C is performed and two B S C C BUB2 G BSCC(M) 
are created. In the Figure 4.4a, B\ is colored blue and B2 red. The initial state is changed 
to S 4 G B\ and then, the L R A [T] is found to be 1/3. This is repeated for each Bi (see 
Algorithm 5, 2nd line) and thus, the vector IraBSCC = [1/3 1/2] is created. Next, the 
collapsed M C M g is constructed using Definition 22 (and is depicted in Figure 4.4b). The 
corresponding states s\ and S2 representing BSCCs B\ and B2, respectively, are created. 
The sets Co = {so} and C\ = {so,si} do not create sub-MCs, which refutes the given 
property. The collapsed sub-MC M g 1 C\ using the set C\ = {so,si} is depicted in the 
Figure 4.5a. For the M g 1 C i , the vector reachBSCC = [0,0], because neither state 
Si is reachable. Therefore, the set C is enlarged by selecting a random reachable state 
s\ meaning that C2 = {so,si,si}. The reduced M C M g 1 C2 is depicted in Figure 4.5b 
and the vector reachBSCC = [0.64 0]. The dot product of vectors IraBSCC and 
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M C M M C M g 

(a) Markov chain M such that M \f ip. (b) Reduced MC MB wrt. set of BSCC. 

Figure 4.4: The M C M , where color distinguishes which state belongs to which B S C C and 
the reduced M C M g with created Sj states, representing the corresponding B S C C . 

M C MB 1 C M C MB 1 C 2 

(a) Sub-MC M | Cu where C i = {s 0 ,si}. (b) Sub-MC M | C 2 , where C 2 = {s 0 , s i , s i} . 

Figure 4.5: The set of critical C„ set is gradually increased t i l l it suffices to reject <p. 

reachBSCC is 0.213 which exceeds the ip value of 0.1 and therefore is sufficient to refute 
(p. The result of the algorithm is set C2, where each S J is replaced by states which belong 
to the corresponding B S C C Bi. 

The Algorithm 3 then continues on the 8th line to select relevant parameters based on 
the obtained subset of critical states. Then, the set of all realizations is pruned wrt. relevant 
parameters. The previous chapter explained, why smaller critical subsystems induce a 
smaller number of relevant parameters and therefore enable pruning of the larger subset of 
realizations. The abstraction approach was used to create smaller counter-examples wrt. 
reachability properties and the following subsections show how to utilize abstraction to 
create smaller CEs wrt. L R A properties. 

4.2.3 Towards smaller counter-examples using abstraction 

The counter-example generation is based on taking random unsatisfiable realization and 
generalizing this realization to a larger subset of realizations, which can be safely pruned 
from the design-space. In the process of finding a critical sub-system, the simplest approach 
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M D P M c M C Mv iC[5] 

Figure 4.6: The reduced quotient M D P wrt. BSCC(M) where M is M C from Figure 4.4a. 

forgets that the realization is part of some larger system and instead considers only the M C 
induced by one realization. However, the information about the above quotient M D P can be 
certainly used to generate smaller critical sub-systems. The analysis of the M D P provides 
lower and upper bounds. The bounds are used to re-route all transitions leading out of 
critical sub-system C to freshly created state sj, which is added to the subset of target 
states. This concept can be extended to L R A properties. 

The underlying unsatisfiable M C M is decomposed to the set of BSCCs and the L R A in 
each B S C C is computed. Then, instead of folding states in the M C to create reduced M C 
M e , the states in the quotient M D P are folded to create the reduced MDP. The reduction 
takes into account the decomposition B S C C ( M ) of a given unsatisfiable M C M . Similarly, 
all actions leading to any state Bi G BSCC(M) are rerouted to state Si which represents 
the corresponding B S C C . Then, the minimum or maximum bounds (depending on safety 
or reachability property) to reach the folded states Si are calculated for each state to obtain 
state-vector 5. This vector is thereafter used to induce sub-system M | C [ 5 ] , which reroutes 
transitions leading out of C to state sj, which is considered the target state. However, the 
state sj is necessary for each S j , because the reachability bounds to each B S C C must be 
calculated. The following example demonstrates this idea. 

Example 9. Recall the M C M induced by the random realization of quotient M D P Mv, 
the decomposition BSCC(M) and reduction of M C M is in Figure 4.4. The the vector 
IraBSCC = [1/3 1/2] is same as in the previous example. Similarly, the reduced M D P 
Mv wrt. the same set BSCC(M) is in Figure 4.6. The same L R A property <p = LRA^.i [ T ] 
is assumed, it is the safety property, therefore the state-vector 5 contains minimum bounds. 
Take a look at the state initial state so, the minimum probability of eventually reaching s\ 
and S2 is 0.45 and 0.2, respectively. Using this values and C = {so}, the M C Mv I C [8] 
arises. The minimum probabilities are rerouted to corresponding states sl

T. The reachability 
probabilities bscc-vector, to reach target states is [0.48 0.16] and the dot product is 0.24 
and which is already larger than ip value 0.1. Therefore, critical sub-system C containing 
only one state is enough to refute ip. Notice that the sub-system C is much smaller than 
the sub-system from the previous example, where abstraction was not used. Namely, state 
s\ is not included in the sub-system, and therefore, all realizations, which select action a 
in state so can be pruned. Instead of punning just realizations selecting action a in so and 
b in s\, as was the case in the previous example. 
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Chapter 5 

Experimental Evaluation 

The goal of this chapter is to answer the following research questions: 

Q l : Are synthesis methods effective when considering L R A properties? Con­
troller synthesis methods were initially created with P C T L properties in mind. Key ideas 
behind inductive controller synthesis methods can be utilized to synthesis with respect to 
long-run average properties, as described in the previous chapter. The effectiveness and 
applicability of the A R method are studied throughout this chapter. 

Q2: How much memory is needed to solve simple P O M D P problems? Every 
P O M D P has finite memory e-optimal strategy for L R A objectives [11]. Searching for op­
timal strategy starts at FSC with one memory node, then the memory is incrementally 
added until the optimal strategy is found. Adding many memory nodes yields harder syn­
thesis problems as a design-space increases significantly. However, solving simple P O M D P 
problems requires only a few memory nodes (see Section 5.2). 

Q3: How much is the A R method faster in comparison with the one-by-one 
considering L R A properties? A benchmark containing several experiments was created 
and synthesis was run using both methods to evaluate their efficiency. The one-by-one 
controller synthesis method is used as a baseline algorithm and it is confirmed that it does 
not scale on large problems. Both methods do always provide the correct (optimal) solution, 
therefore execution time is the sole relevant factor. 

Q4: How does the speed of synthesis compare between the reachability and L R A 
properties on a given model? Compared to the baseline algorithm, the A R method is 
always faster in synthesis with specifications containing P C T L properties. The comparison 
in acceleration (see Section 5.3) on a given model with different types of specifications allows 
to show that the performance is comparable when L R A properties are concerned. 

Q5: Why does the one-by-one method sometimes outperform the A R and can 
we prevent it? While the A R is faster in most cases, there is one special model, where the 
one-by-one method is better on L R A specifications. In Section 5.4, the impact of design-
space, state-space, and transition probabilities on the A R speed is investigated, and a few 
improvement ideas are proposed. 

31 



problem name |S| | A | |Z| 
storm-problem 3 5 2 
memory-demo 4 6 3 
endless-maze 18 138 7 

endless-maze-large 27 110 7 
blind nanny 27 90 15 

robot-battery 65 122 13 
robot-battery-stay 71 195 13 

drone-4-1 1125 2954 383 
crypt4 2068 4708 558 

Figure 5.1: Comparison of the sizes of the benchmark experiments. 

5.1 Benchmark details and models introduction 

The benchmark was run on A M D Ryzen 7 5700G (3800 MHz, 16 cores) with up to 32GB 
of R A M and all used algorithms are single-threaded. The number of states, actions, and 
observations of all benchmark problems are summarized in Figure 5.1. Experiments 1 were 
designed with a particular intent of not having an absorbing goal state because otherwise, 
the L R A properties of the model are trivial. Instead, an objective of experiments is to reach 
a specific subset of target states infinitely often. One way to acquire that is to provide a 
reason to leave a goal state, e.g. robot must leave a subset of goal states to go charge itself, 
etc. Another is providing liveliness specification of two different goal states, with non-zero 
path length between them. There are such experiments in the created benchmark: 

• Robot-battery is the first problem in a benchmark - the robot is attempting to maxi­
mize time spent exploring the state while also keeping its battery away from running 
out. Robot has to go charge itself once in a while so the battery will not discharge. 
However, the robot only sees if it is in a charging state, an exploring state, or neither. 
It is also provided with a power manager which tells the robot what the battery level 
is - full battery, high, low, or discharged. There are 9 observations in total and 2 
actions (left and right) therefore the design-space describes 2 9 = 512 options. 

• Robot-battery-stay is an extended version of the Robot-battery problem. The action 
stay is introduced to provide the robot the possibility to remain in a current state in 
the grid (while the battery is running out). Therefore, the design-space is deliberately 
increased to 3 9 = 19683 different FSCs. 

• The second model is memory-demo outlined in Figure 4.2. The problem is designed 
to show on a small model that adding memory to FSC improves the optimum. 

• storm-problem is another very small P O M D P . Therefore, the synthesis problem is 
included twice in the benchmark - with memory 4 and 5. When the memory is 
added, the design-space explodes to 16 384 and 500 000 options in a family of 4-FSC 
and 5-FSC, respectively. 

• The blind-nanny problem is described in Figure 5.10. As the number of total obser­
vations is 12 and there are 4 actions at each state (1, r, d, u), there are 4 1 2 =16 777 

experiments are published on https://github.com/AntoninJarolim/synthesis/tree/ 
4db61e69bfce65e6cdadf4c661d7elddc86c0elc/models/pomdp/no-goal-state. 
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I | | (b) Synthesized 2-FSC: UC, LC, and '-' 
**• means upper, lower and no child cries, re-

(a) Small version of blind-nanny problem. spectively. 

Figure 5.2: Blind-nanny-small: There are only 3 observations Z = {lower-child-crying, 
upper-child-crying, failed} and four actions A = {u,d, l,r}. Synthesized FSC is best in a 
family of all 2-FSC concerning L R A minimization objective that some child cries. 

216 possibilities creating design-space. There are two L R A objectives specifying the 
time spent with each child. 

• Smaller version of blind-nanny problem is blind-nanny-small (Figure 5.2a). Studied 
L R A property is how much time at least one child cries. 

• Endless-maze is another grid-like example inspired by [6]. A n agent is wandering in a 
maze and is teleported to a random location once he finds a goal state. The objective 
is to reach the goal state as fast as possible an infinite number of times. 

• In Drone-4-1 model, the goal is to find a controller of a drone maximizing the L R A 
probability to be in a given goal state in a grid map. Additionally, it is trying to 
avoid an agent, which is moving around the grid in a probabilistic manner. 

• Crypt4 is modified dining cryptographers problem [12]. Four cryptographers gather 
around a table and communicate using an anonymous recipient algorithm forever. 
The design space of this model is enormous as it consists of 2068 states. 

5.2 Impact of used F S C memory for P O M D P s with L R A 
objectives 

The search for FSC implementing a solution to the P O M D P problem starts with a memo-
ryless controller because it takes the least time and some problem solutions do not require 
memory nodes. Memory nodes are incrementally added in order to find better solutions, 
this strategy assures that small good FSCs are found first. When the entire k-FSC family is 
pruned and the optimal value equals the optimal value found in the k-1 family, then an al­
gorithm achieved solution bound, and adding more memory will not improve the optimum. 
The following investigation of selected examples will demonstrate this point. 

Small-blind-nanny is the first investigated problem, described in the Figure 5.2. The 
objective is to calm the child as soon as possible when it starts to cry. Each child stops 
crying immediately after reaching its location. In the family of 1-FSC, it is not a problem to 

33 



k-FSC 
1 
2 
3 
4 
5 
6 
7 

optimum 
memory-demo blind-nanny-sm 

0 
0.0095 
0.026 
0.05 
0.077 
0.095 
0.103 
0.103 

1 
0.074 
0.04 
0.04 
0.04 
0.04 
0.04 
0.04 

Figure 5.3: Eventually, adding more mem­
ory nodes will not improve the optimum. 
Bold values mark solution values. For 
memory-demo, adding more than seven 
memory nodes does not improve the opti­
mum and only three memory nodes are re­
quired to find a solution to blind-nanny-sm 
problem. Both require at least one memory 
node. 

Figure 5.4: Endless-maze (top): The agent 
searches for the goal state (G) and is tele-
ported to a random location each time it's 
found. Actions A = {u, d, I, r}. States 
colored red extends model creating endless-
maze-large (bottom). Numbers label obser­
vation in each state. The objective is to find 
a goal always as soon as possible. 

reach any of the children, but it is not possible to return back to the other one, thus, in the 
long run, at least one child will always cry. However, adding one memory node allows the 
nanny to determine her position and stay near both children. The best 2-FSC is outlined in 
5.2b. No child is crying at the begging, so the objective is to reach the right bottom corner 
- the action to take is right if the agent is at the first child and down if it is at the upper 
child. Then, in the case that, e.g., the upper child starts to cry, the nanny's observation 
changes to UC, she takes the action up, and the memory changes to 1 in order to note her 
location. That child calms down and she returns to the right bottom location and notes it 
by changing memory back to 0. A similar approach is taken when the bottom child starts 
to cry. Incidentally, there is also a both-crying observation, but it is never observed when 
the optimal strategy is followed, thus it is omitted from FSC for simplicity. The optimum 
can be improved even more by adding another memory node, as described in Figure 5.3. 
Using three memory nodes, the L R A that some child is crying is 0.04, and adding a fourth 
memory node does not improve the optimum anymore. 

Memory-demo (recall Example 7) is a model designed to show how adding memory 
nodes improves L R A optimum. Eventually, it happens, that adding more memory does not 
improve the optimum, because it is more advantageous to take (risky) action b to reach 
the target state. Such an equilibrium state is achieved when 7 memory nodes are added 
because adding eight one does not improve the L R A objective to be in the target state. 
Monotonous improvement of the optimum value can be observed in Table 5.3 until the 
solution value of 0.103 is reached. 

Endless-maze is depicted in Figure 5.4. Here, two memory nodes are required to 
1) distinguish between two states having observation 1 and 2) choose different action at 
observation 4 to go down when the goal state is directly below and up otherwise. Adding 
more than two memory nodes does not improve optimum. However, in the extended version 
endless-maze-large, more memory nodes are useful. E.g., in the path from the right top 
corner to the goal state, the agent must remember to take the second (not first) turn down. 
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fastest best 
problem name specification time optimum time optimum 

blind-nanny-small LRAmin <1 0.074 (2) 6 0.04 (3) 
memory-demo •LRAmax <1 0.077 (5) 43 0.103 (7) 
endless-maze LRAmax <1 0.122 (2) 

endless-maze-large •LRAmax <1 0.071 (2) TO/263 0.094 (4) 
robot-battery •LRAmax <1 0.133 (2) TO/1001 0.214 (3) 

drone-4-1 •LRAmax <1 0.044 (1) 1.43 0.135 (1) 
crypt4 •LRAmax <1 0.037 (1) T O - (1) 

Figure 5.5: Overview on optimum values found by the A R method for various problems. 
Found optimum values and a number of k required memory nodes - marked (k) - are 
recorded. If any interesting value is found faster than the best-found value, we record it in 
the fastest column. Times are in seconds, less than one second is marked as <1. Hyphen (-) 
marks that no better value was found in a 1-hour timeout (marked as TO) . When TO/t ime 
is specified, the optimum value is best only in an incomplete k-FSC search. 

The objective is to maximize the L R A probability to be in the goal state. The solution 
strategy (2-FSC) maximizing L R A to 0.122 was found for the default model. And best 
value of 0.094 was found for the large model in a family of 4-FSCs. Considering larger 
state-space in a larger model, solutions are almost equally effective. 

Q2: Summary of adding memory nodes to selected examples. 
In the previous examples, it was discussed how adding memory optimizes L R A objectives. 
The optimization of optimum values by adding memory for blind-nanny-small and memory-
demo are in Figure 5.3. The required number of memory nodes to find a solution is 3, 7, 
and 2 for blind-nanny-small, memory-demo, and endless-maze, respectively. The synthesis 
of FSCs wrt. optimization L R A specification using the A R method is summarized in 
Figure 5.5. In all cases, interesting results are found under one second, because the strategy 
searches in the smallest FSCs first. In the endless-maze-large and robot-battery, design-space 
explodes by adding more memory to already large problems, creating enormous families 
whose exploration takes more than one hour. In those cases, only part of the k-FSC family 
is pruned and the best-found solution is recorded. The last problem, crypt4, is large enough, 
that not even a family of 1-FSCs is pruned. The optimal value is found under one second 
and no better solution is found in the remaining time. 

5.3 Evaluating A R performance regarding L R A properties 

A synthesis was run on introduced models to investigate how much is the A R method 
effective in comparison with the baseline one-by-one method. Therefore, the synthesis was 
run using both methods on identical models and specifications. Some specifications consist 
of two properties, however, their values are the same for simplicity. In addition to L R A 
specifications, there are also reachability specifications in order to compare the acceleration 
of the A R method concerning different types of specifications. 

The statistics about benchmark examples with various memory sizes are in Figure 5.6. 
It is evident that adding memory increases the design-space enormously. The one-by-one 
method implements the consistent scheduler enumeration and therefore, the design-space is 
the exact number of required iterations. The size of the quotient M D P describes the number 
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problem name (m) design-space quotient M D P size avg. M D P size 
robot-battery 5* 10 2 65 58 

robot-battery (2) 2 * 10 1 2 128 108 
robot-battery-stay 2* 10 4 71 47 
storm-problem (4) 2* 10 4 9 7 
storm-problem (5) 5* 10 5 11 8 

blind nanny 2* 10 7 27 19 
endless-maze (2) 3* 10 8 18 15 

endless-maze-large (2) 2* 10 9 27 23 
drone-4-1 2 * 1029 1225 -

crypt4 1 * 10 1 2 2 2068 -

Figure 5.6: Comparison of design-spaces and quotient M D P s of the benchmark experiments. 
A number in parenthesis represents the number of used memory nodes, otherwise a memory-
less controller is used. The A R method never terminated when synthesizing the crypt4 and 
drone-4-1 models, therefore, the avg. M D P size statistics are not available. 

of states in an underlying system, influencing the speed of model-checking and thus also the 
synthesis speed. In the A R method, the splitting makes many states unreachable, making 
the size of the subfamily's quotient M D P smaller. The average M D P size outlines how many 
states became unreachable, by specifying the average number of states in model-checked 
M D P . Note that in trivial synthesis problems, where it is only necessary to do 1 iteration, 
it holds that quotient M D P size equals average M D P size. The average M D P size in non-
trivial cases in the below tables was averaged once more to create an average M D P size 
record in the mentioned table. 

Because changing the A value changes the difficulty of synthesis using the A R method 
(recall Example 6), the synthesis is run using different A values to demonstrate the extent 
to which synthesis time increases. The feasibility threshold is marked as Xf. Synthesis 
difficulty is also highly connected to the number of iterations, so the number of iterations 
is next to the synthesis time in the iters column for the A R method. On the other hand, 
intuitively, changing the A does not affect the synthesis time of the one-by-one method. 
In the below tables, the synthesis time unit is one second. Milliseconds are sometimes 
omitted to simplify tables. Please, refer to the attached medium for exact synthesis times 
or synthesis results. Timeout was set to 1 hour, so if the solution was not found in that 
period, it is marked as >3600. Sometimes, the <1 mark is used when synthesis was faster 
than one second. 

one-by-one A R 
A time time iters 

0.16 >3600 >3600 >860676 
0.17 >3600 62 46849 
0.20 >3600 34 25627 
0.22 >3600 4 3681 
0.25 >3600 <1 15 

Figure 5.7: Robot-battery memory 2: L R A > A [ „exploring" ], Xf = 0.16 
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Robot-battery. Since the design-space size of the model is only 512, the solution of 
the synthesis of such a small problem is found in dozens of milliseconds even when using 
the one-by-one method. Therefore, the focus will be on synthesizing FSC with 2 memory 
nodes. In this case, the design-space is enormous and the one-by-one method is not feasible 
as it would take days to find a solution. The A R method is able to find the solution to a 
maximizing optimality problem in 78 seconds. The optimum value L R A m a ; E is 0.16 and, as 
Table 5.7 shows, the A R is not able to find the solution to the feasible synthesis problem. 
Specifically, when the A value is 0.16, it is not able to find the solution in a one-hour 
timeout interval although it does 860 676 iterations. Increasing the value to 0.17 creates an 
unfeasible synthesis problem and the A R successfully terminates in about one minute. The 
quotient M D P of the entire family over-approximates maximum L R A to value around 0.25. 
When the A value approaches that threshold, the solution is found in under one second 
because it requires only a few iterations. 

one-by-one A R 
A time time iters one-by-one A R 

0.01 3.83 0.05 123 A time time iters 
0.08 3.91 0.03 71 0.2 3.66 0.01 1 
0.09 3.87 0.01 19 0.4 3.63 0.03 151 
0.15 3.88 0.01 16 0.6 3.72 0.05 159 
0.2 3.86 0.01 10 0.95 3.65 0.09 69 

(a) L R A > A [ exploring"], A/ = 0.083 (b) P > A [ ..exploring"], A/ = 1 

Figure 5.8: Robot-battery-stay: Comparison of methods on liveliness L R A and liveliness 
reachability specification. 

Robot-battery-stay. The design-space of this model is moderate, but it is enough 
to show the capabilities of the A R method. While the one-by-one method always requires 
19 683 iterations to model check each realization of the family, the A R method needs at 
most 159 iterations. It is clear, that the synthesis time using the one-by-one method was 
always approximately 3.8 seconds. On the other hand, the A R method is able to find a 
solution to every problem in under 0.1 seconds. A n interesting remark can be seen in the 
synthesis of the liveliness L R A property (Table 5.8a). The number of iterations increases 
from 71 to only 19 when the feasibility threshold Af is exceeded - A is changed from 0.9 
to 0.8. Although, the change did not greatly manifest in synthesis time. In general, the 
difficulty of synthesis keeps increasing while the A is decreasing even though A is moving 
away from A / . 

As the model-checking reachability property is faster, the execution time of the one-
by-one method is slightly smaller in Table 5.8b than 5.8a. When switching from liveliness 
to a safety property in the A R , the durations don't show a significant difference. The A R 
method performs at least 37 times better than one-by-one and acceleration regarding L R A 
and reachability properties is comparable. 
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one-by-one A R one-by-one A R 
A time time iters A time time iters 

0.01 1.42 0.96 4672 0.01 45 28 125836 
0.22 1.4 0.92 4536 0.22 44 25 117630 
0.3 1.47 0.73 3626 0.3 45 19 88014 
0.49 1.42 0.08 352 0.49 45 2 7918 

(a) liveliness property, memory=4 (b) liveliness property, memory=5 

Figure 5.9: storm-problem: Comparison of synthesis speed of 4-FSCs and 5-FSC. The 
optimal value A/=0.5 is the same in both cases. 

Storm-problem. The design-space of this model is comparable to the previous -
Robot-battery-stay - model, however, the size of the underlying system is about 6 times 
smaller. Therefore, the synthesis is more than 2 times faster in the one-by-one method. 
The A R method does perform noticeably better than the one-by-one, as the synthesis time 
is at least 1.4 times smaller. Nevertheless, this is not as much of a speedup as in the previous 
examples. The performance is not different when comparing liveliness and safety property. 

This model is evaluated with memory 4 and 5, even though adding memory does not 
change the feasibility threshold \f. The interesting note is, that the acceleration ratio of the 
A R method is similar when the memory node is added. E.g., the worst recorded acceleration 
is 1.4 and 1.6 in 5.9a and 5.9b, respectively. The best case scenario, for non-trivial synthesis, 
is speedup up to 23 times. 

2 2 0 

F F 1 

3 3 0 

Figure 5.10: Blind-nanny problem: Blind nanny is supposed to take care of two children, 
however, she does only view adjacent fatal states, marked as red F . The direction of viewing 
distinguishes observations therefore there are 4 (blue) observations - lower, left, upper 
adjacent state is fatal and no adjacent state is fatal. Additionally, there are 3 observations 
deciding which baby needs care - the first or second baby is crying and no baby is crying. 
A combination of stated observations creates 4 • 3 = 12 total observations. 
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A one-by-one A R 

0.01 2872 10398 
0.1 2884 10327 
0.3 2882 9842 
0.4 2945 3352 
0.6 2874 2982 
0.64 2951 2544 
0.65 2971 569 
0.66 2941 <1 

Figure 5.11: Blind-nanny: The A R method 
does not always outperform the one-by-
one on synthesis regarding L R A proper­
ties. Two liveliness L R A properties with the 
same A value. 

A one-by-one A R live A R safety 
0.05 2045 329 734 
0.1 2061 281 683 
0.3 2050 250 650 
0.95 2058 109 589 
0.98 2092 102 576 

Figure 5.12: Blind-nanny: Comparison of 
methods on reachability properties - same 
threshold A is used on both properties. Both 
liveliness (live) and safety properties are 
concerned. 

Blind-nanny. This model has quite a large design space even without memory nodes, 
but the quotient M D P size is moderate. It is the special model because the A R method 
does not outperform the one-by-one method in all C 8 J S 6 S , ctS stated in 5.11. Specifically, the 
one-by-one method terminates in under 3000 seconds every time, in contrast with the A R 
method, which takes more than 10k seconds in the hardest synthesis problems. When the 
A value is 0.66, it is necessary to do only a few refinements of the quotient M D P to come 
across the over-approximation threshold around 0.65, meaning that algorithm terminates 
after a few iterations. Lowering the A only by 0.02 already creates a challenging synthesis 
problem, but the A R still remains faster than one-by-one. However, the A R does not find 
the solution faster, when the A decreases to 0.6 and below. The feasibility threshold A/ is 
around 0.35, using the same A for both liveliness properties. It is evident, that the execution 
time of the A R method increases almost 3 times when the feasibility threshold is crossed. 
Additionally, the synthesis wrt. to only one L R A property was run, to make sure that it is 
not multiple-objectives ruining it for the A R method. 

However, the synthesis with respect to reachability properties (5.12) turned out differ­
ently. Here, the A R is at least 6 times faster for liveliness and around 3 times faster for 
safety property. In this case, the feasibility thresholds are 0 and 1 for safety and liveliness 
properties, respectively, meaning that all problems have feasible solutions. 

Q3: To summarize, the A R method performs multiple times better in most 
of the examples. In the introduced examples, the synthesis using the A R is faster in three 
out of four synthesis problems. Other synthesis problems are summarized in Figure 5.13. 
As stated earlier, A value has a significant impact on the execution time of the A R method, 
hence the synthesis was run using various A values to create the easiest and the hardest 
synthesis problems. Both methods are slightly modified to prune an entire design-space 
instead of returning the first satisfying assignment. That allows to compare the methods 
without the factor of luck. Synthesis problems with a tiny design-space were equipped 
with memory nodes because otherwise the synthesis using both methods is faster than one 
second and the comparison is misleading. Returning to the table, it is evident, that the 
range of acceleration differs significantly. E.g., for the storm-problem, in the worst case, 
the acceleration was only 1.5, but when the synthesis problem was easier, it was up to 
25. In the robot-battery problem, the one-by-one method is not feasible at all and the A R 
method is able to find a solution only when the synthesis is unfeasible. There are multiple 
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L R A A R speedup P A R speedup 
problem name (m) worst best worst best 
storm-problem (4) 1.5 25 17 18 
robot-battery (2) T O oo - -
robot-battery-stay 52 370 120 364 

blind-nanny 0.277 5 3 20 
blind-nanny-small (2) 4 130 1.8 • 10 3 3.5 • 10 3 

endless-maze (2) 4.4 • 103 * 2•10 4 * 325 * 515 * 
endless-maze-large (2) 1.3 • 10 4 * 2•10 5 * 2•10 3 * 5•10 5 * 

crypt4 T O T O 

Figure 5.13: Comparing speedup between the A R method and one-by-one method on vari­
ous models. The comparison is on both L R A and reachability (P) specifications. To provide 
an acceleration range, there are the best and worst recorded values. Small models are con­
cerned with more than one memory node - marked as (m). Hyphen means not tested and 
T O means one-hour timeout. When the A R terminated in the timeout and one-by-one did 
not, the estimated time to prune the entire design-space (using the one-by-one method) 
was used. The * marks these cases. 

cases when the one-by-one method was not able to prune the entire design-space until the 
timeout. However, because the method's run-time is linear, even a brief period of time can 
provide an estimate of when it will finish. In that case, the estimate is used to calculate the 
acceleration. It was not possible to solve the crypt^ problem even using the A R method. 
For the blind-nanny, the A R method was at most 5 times better, however, in most cases, 
the one-by-one execution took up to 3 times less time. In the next section, this problematic 
model will be the subject of a detailed review in order to find out, why is the synthesis 
using the A R method slower. 

Q4: The synthesis with reachability specifications shows comparable results 
in the best-case scenarios. The best case scenario speedup differs significantly only 
in blind-nanny-small problem - where it is faster using reachability specifications - and 
endless-maze where it is faster using L R A specifications. However, the worst case ac­
celerations between L R A and reachability properties differ. The execution time 
with the reachability specifications doesn't decrease that much as with L R A . In fact, the 
reachability acceleration decreases more only in the endless-maze-large. In all other cases, 
the speedup decreases significantly less. E.g., in storm-problem, for L R A the acceleration 
decreases from 25 to a mere 1.5 while for reachability, it decreases only from 18 to 17. 
Additionally, when reachability specification is concerned, the A R always outperforms the 
one-by-one method even on the peculiar blind-nanny problem. 

5.4 Investigating limitations of the A R method regarding 
L R A properties 

While the abstraction-refinement method is faster in most cases, there is one problematic 
example where one-by-one enumeration performs better. For a better understanding of 
why this is happening, various ideas are examined to reveal details about the model. The 
first idea is, if a model-checking time of a larger family is greater than for smaller, refined, 
families - one would expect, that the model-checking time of the quotient M D P of an entire 
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Time distributions regarding family size. 
102 i 

size of the family 

Figure 5.14: Distributions of model-checking times in seconds with respect to different 
family sizes. It is clear, that analysis time is not significantly larger when the family size 
increases. 

family would be the largest. The second question is: how much does the number of states in 
the M D P affect model-checking time? Lastly, for MDPs , the Long-Run Average property is 
computed using iterative algorithms, which rely on iterating as many times as it is needed 
for the algorithm to converge. Therefore, it will be examined, how much is the converge 
time affected by small transition probabilities. 

Does large design-space impact model-checking time? 
In most of the cases, it holds, that the number of states in quotient M D P decreases with 
a number of refinements, i.e., refined families have smaller quotient MDPs in comparison 
with their super quotient. Therefore, it is reasonable to consider, that model-checking the 
quotient M D P of larger families does take more time in general. To verify this idea, the 
model-checking time and design-space of each quotient M D P was noted during the synthesis 
of blind-nanny model. The used A value was 0.6, as it is the first value, where is one-by-one 
faster in Table 5.11. 

The records were used to produce graph 5.14. There is a boxplot for each size of the 
family, to show the distribution of model-checking times for the corresponding family size. 
It is evident, that model-checking M D P s representing larger design-space are slightly larger 
than model-checking refined MDPs . However, the difference is insignificant, as it is not 
even one order of magnitude. On the other hand, it is clear, that outline members have 
extreme values - more than 10 times larger than mean values. 

The total number of records is 434 440 and only 504 out of them are over one second, in 
5.14, they are separated by dotted line. Surprisingly, the analysis times of that small subset 
of quotient MDPs sum up to 9636.3 seconds out of a total time of 11087 seconds. Therefore, 
around 0.116% of model-checking calls took up to 87% out of total model-checking time. If 
it would be possible to reduce the model-checking time of those extreme values, then the 
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Time distributions regarding MDP size. 

$ $ 

3 6 9 10 12 14 15 17 18 20 21 23 24 26 27 
number of states in MDP 

Figure 5.15: Graph showing distributions of model-checking times in seconds with respect 
to the quotient M D P size (state-space). It is obvious that the size of an M D P does affect 
analysis time. While the majority of times is under 1 0 - 2 there are extreme values reaching 
almost a minute. 

synthesis of the entire family would be many times faster, and, more importantly, the A R 
method would be able to outperform the one-by-one synthesis. 

Does large state space impact model-checking time? 
Naturally, the difficulty of a model-checking task scales with a number of states in a provided 
model. In the blind-nanny problem, the state-space is not huge and therefore, it is a 
question, of whether or not large MDPs have an impact on the A R performance. During 
the same synthesis run of the blind-nanny model, as was already motioned, the sizes of 
MDPs were noted too. 

The graph in Figure 5.15 shows the distributions of synthesis times with respect to 
different numbers of states in particular quotient M D P . It can be observed, that model-
checking is more time-consuming in the models having more than twenty states and in 
general, there is an incline as the number of states increases. Specifically, the mean model-
checking time increases 10 times when comparing the lowest and the highest number of 
states. The majority of the time-consuming outliners are on models with more than twenty 
states. In summary, larger state spaces do have distinct impact on model checking time. 
However, the extreme values are still the biggest concern, which is again separated by a 
dotted line as in Figure 5.14. 

How much do small transition probabilities increase converge time? 
Iterative algorithms computing L R A properties on M D P s do heavily rely on many iterations 
t i l l the precise solution is found. Furthermore, at each iteration, the transition values are 
used to approach a solution. Therefore, they have a direct impact on the converge time. 

In the examined model, there is a variable determining the probability that any of the 
children start to cry. In order to change transition values in the model, the variable will 
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iterations per second vs synthesis speed 

4000-

3000 

synthesis time 
iterations per second 

w 2000 

1000 

Figure 5.16: Impact of small transition probabilities on synthesis speed - the number of 
model-checks per second - using the A R method. Rate is variable in blind-nanny problem, 
indicating the probability that some child starts crying. The dashed line represents the 
average synthesis speed using the one-by-one method, 
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be modified. However, note that the variable is not an exact transition value, because 
there are also other constants, which must be multiplied by the rate in order to create the 
actual transition value of an underlying M D P . Therefore, the transition probabilities are 
even smaller. 

The synthesis was run multiple times and the rate was increased in each iteration. It 
was initially set to a pretty low value (0.05) where was one-by-one enumeration faster. 
However, as the graph 5.16 shows, increasing the variable to 0.06 shortens the synthesis 
time by one-third, making the A R method faster. Synthesis speed decays exponentially with 
the increasing rate. Increasing the rate has a significant impact on the solution because 
the number of iterations decreases with it. Therefore, the synthesis time is not sufficient 
to show the impact on small transition probabilities. For this purpose, there is the number 
of iterations per second in the chart. It is clear, that lower rates have huge impact on 
converge time, as the number of iterations per second drastically decreases. 

The same experiment was carried out for the one-by-one method to prove, that chang­
ing transition values doesn't have any impact on the synthesis speed, because steady-state 
distribution is obtained by solving a system of linear equations, rather than using an itera­
tive approach. In the graph 5.16, there is the dashed line, representing the synthesis speed 
of the one-by-one method. Additionally, the one-by-one method was able to prune around 
6000 realizations per second. 

Q5: Optimization propositions based on performed analysis. 
The analysis of the problematic example indicates, that the majority of the synthesis time 
takes model-checking of a tiny subset of families. Additionally, each family of that subset 
represents a maximum of 8 realizations (MCs) and small transition probabilities do not 
impact synthesis using the one-by-one method (model checking MCs) . Therefore, if there 
was a way to predict, that the model-checking time of a concrete quotient M D P would 
take a long time, then it would be reasonable to let the one-by-one method synthesize that 
sub-family. This approach would preserve the synthesis speed of the A R method while the 
outliners would be eliminated. In the presented example, there are around 500 extreme 
values, if all of them would represent a model-checking family of size 8 then it would be 
500 * 8 * 10~ 3 = 4 seconds, instead of 9636 seconds. 

However, predicting if the model-checking of concrete M D P would take more time than 
iterating each realization is not trivial. The prediction could be based on the distribution 
of transition values in the model and the size of the family it represents. Further analysis 
is required to obtain details distinguishing problematic models. For the examined example, 
it could be also interesting to see, if using the one-by-one methods on all families of size 8 
and smaller would be faster. 

Another proposition is to start both synthesis methods for each (sub-)family on sepa­
rated threads and terminate the slower method, once the other one finds a solution. This 
introduces threading overhead, but the fastest possible solution would be used, essentially 
eliminating extreme out-liner model-checking times. 
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Chapter 6 

Conclusion 

The aim of this work was the synthesis of finite-state controllers for partially observable 
Markov decision processes with respect to steady-state properties. It has been achieved 
with the utilization of the Abstraction-Refinement (AR) method. The A R method argues 
about the subset (family) of candidate FSC by creating the abstraction represented with 
an M D P . If the abstraction is too coarse, then the family is refined and two sub-families 
are created. The analysis of sub-families follows and this process is repeated until the 
satisfiable FSC is found. The principles of the counterexample-guided inductive synthesis 
method (CEGIS) were adapted to design a novel algorithm for generating counter-examples 
(CE) wrt. steady-state properties. It was shown, that the generation of C E is not possible 
inside an ergodic M C , because the C E is essentially a sub-system, and the creation of the 
sub-system changes drastically the behavior of system wrt. steady-state properties. Thus, 
the generation is focused on non-ergodic MCs. 

The A R method was compared with a baseline one-by-one exploration algorithm on 
a specially designed benchmark. The benchmark consists of 8 P O M D P problems written 
in the P R I S M language with non-trivial steady-state properties. The A R methods out­
performed the baseline algorithm in 7 out of 8 problems. The A R method was up to 105 

times faster. The one problematic example was examined and it showed, that 504 out of 
434440 model-check calls on M D P s took around 87% percent of the synthesis time. The 
low transition rates have been shown to be responsible for this effect. The A R method was 
used to analyze the benchmark models wrt. reachability properties as well. The nature of 
the A R method implies that synthesis speed depends on the values defining investigated 
properties. Therefore, many different values were examined on both types of properties. 
For steady-state properties, the synthesis times decreased significantly when the best and 
worst possible values were used. The one of largest recorded decreases was from 25 to a 
mere 1.5, while on this model with reachability properties, the synthesis time decreased only 
from 18 to 17. This shows that the analysis wrt. steady-state properties is more difficult, 
however, the method is still applicable to many problems. 

Future work could be the implementation of the proposed CE-finding algorithm. That 
was not included in this work because the C E generation is implemented in the synthesis-
fork of the S T O R M model-checker, rather than in P A Y N T . Based on the performed analysis, 
the A R method could also be improved by occasionally switching to the one-by-one method 
during the execution. Determining the appropriate switching moment is the subject of fu­
ture research. Additionally, future research could be based on developing effective strategies 
for smart splitting families by considering the algorithms computing the steady-state values 
on MDPs , to avoid the current A R limitations. 
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