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Summary 
Due to the complexity of the computed tomography (CT) data acquisition process, the 
noise in captured X-ray images is inevitable and can distort acquired information. There­
fore, the noise should be controlled. Noise reduction in C T data has primarily been 
studied in low-dose medical C T , and there is little known about the properties of noise in 
sub-micron C T and its suppression. The denoising strategies can take place in the X-ray 
images, C T slices, or during the reconstruction process. This work primarily focuses on 
the reduction of noise in X-ray images and C T slices. The first step to finding a complex 
denoising methodology is to determine the distribution and mathematical model of the 
noise in the X-ray images. The model was established using bright field images taken 
under different exposure times. W i t h the estimated model, the artificial noise in a phan­
tom dataset could be simulated. Selected algorithms were tested in the X-ray images and 
the tomogram slices of the phantom and compared subjectively and objectively, through 
visual inspection and image quality metrics. The denoising strategies with the best out­
comes were further evaluated on measured submicron C T datasets from the C T system 
Rigaku nano3DX, and their advantages, limitations, and possible usage were described. 

Abstrakt 
Vzhledem ke komplexnosti procesu akvizice dat výpoče tn í tomografie (CT) je šum v rentge­
nových snímcích nevyhnute lný a může vést ke zkreslení získané informace. Proto by měl 
být co nejvíce pot lačen. Dosud se výzkum zaměřoval předevš ím na redukci šumu v C T 
datech u lékařských C T s nízkými dávkami , za t ímco o šumu a jeho pot lačení v C T datech 
s vysokým rozlišením je z n á m o jen málo . Tato redukce může p rob íha t v oblasti rentge­
nových snímků, v p r ů b ě h u tomografické rekonstrukce nebo v oblasti tomografických řezů. 
Tato práce se zabývá předevš ím redukcí šumu v rentgenových snímcích a tomografických 
řezech. P r v n í m krokem k nalezení komplexní metodiky je určení rozdělení a matema­
tického modelu šumu p ř í tomného v rentgenových snímcích. Tento model byl určen pomocí 
sn ímků bez p ř í t omného vzorku, k te ré byly pořízeny s různými expozičními časy. Pomocí 
s tanoveného modelu byl simulován š u m ve fantomovém datasetu. Vybrané algoritmy byly 
tes továny na projekčních snímcích a tomografických řezech fantomu a porovnávány jak 
subjekt ivně, tak objekt ivně pomocí metrik kvality obrazu. Strategie s nejlepšími výsledky 
byly dále tes továny na naměřených C T datech z C T sys tému Rigaku nano3DX s vysokým 
rozlišením a byly popsány jejich výhody, omezení a možnos t i využi t í . 

Keywords 
X-ray radiation, computed tomography, tomographic reconstruction, projection domain, 
tomogram domain, denoising, noise 
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Rozšířený abstrakt 
Naše vn ímání okolního světa je omezeno na rozsah vlnových délek e lektromagnet ického 
záření, k teré jsou naše oči schopny zachytit. Toto e lektromagnet ické záření nazýváme 
vid i te lným světlem. Vzhledem k úzkému spektru vidi te lného světla však získáváme o světě 
a objektech v n ě m pouze omezené a povrchové informace. Toto omezení lze j ednoduše 
překonat pomocí kra tš ích vlnových délek, k teré dokážou díky vyšší energii proniknout skrz 
mater iá l nep ros tupný pro lidský zrak, a t í m př inést nové poznatky. Do t é to kategorie pa t ř í 
i rentgenové záření. 

Rentgenové záření představovalo revoluční objev, jehož up la tněn í se brzy rozšířilo do 
mnoha oborů. N a základě myšlenky, že se pomocí rentgenového záření dá zrekonstruovat 
celá vn i t řn í struktura objektu, vznikla technika výpoče tn í tomografie (anglicky computed 
tomography - C T ) . C T se rychle stalo popu lá rn ím a efektivním nás t ro jem pro nedestruk­
t ivní zobrazování v mnoha různých odvětvích, od medicíny až po mater iá lové vědy. Díky 
t é t o technice dokážeme zobrazit jak vnější, tak vn i t řn í struktury reálných 3D objek tů 
na základě re tgenových sn ímků zachycených ze sekvence úhlů . Tyto rentgenové snímky 
nazýváme projekcemi. Rekons t rukčn ím algoritmem jsme schopni z projekcí vypoč í t a t 
tomografické řezy a nás ledně zrekonstruovat celý objem objektu. Pomocí mikro a nano 
C T sys témů lze získat sn ímky s vysokým rozlišením, k teré n á m umožňuj í analyzovat 
s t ruk tu rn í změny, mater iá lové charakteristiky nebo odhalit vady, trhliny a póry, k teré 
se mohou v objektu vyskytnout v brzkých stádiích výrobního procesu. Tato ana lýza se 
hojně využívá ve výrobě mikroelektroniky, ba ter i í nebo kompozi tn ích mater iá lů . 

Proces výpoče tn í tomografie od projekcí k finálnímu 3D zrekons t ruovanému objektu je 
však velmi složitý a kvali tu v ý s t u p u může ovlivnit mnoho faktorů. Jeden z nej výraznějších 
faktorů je šum. Sum může způsobi t významné zkreslení získaných informací, nebo i snížení 
kvality a prostorového rozlišení rekonst ruovaných řezů. Proto by měl být šum v procesu 
C T zobrazování co nejvíce pot lačen. Do dnešního dne se mnoho a u t o r ů v odborných 
publikacích zabývalo redukcí šumu v C T datech, ale předevš ím ve spojitosti s medic ínským 
C T při nízkých radiačních dávkách, a není mnoho z n á m o o šumu v C T datech s vysokým 
rozlišením a o možnos tech jeho redukce. Pro volbu vhodných metod redukce šumu je 
proto klíčové nejprve provést charakterizaci tohoto šumu a urči t jeho rozdělení. Samotná 
redukce může být provedena ve t řech stádiích - v oblasti projekcí, v p r ů b ě h u tomografické 
rekonstrukce nebo v tomografických řezech po rekonstrukci. Hlavním cílem t é to práce je 
porovnat p ř í s tupy pot lačení šumu, a to v projekčních datech a tomografických řezech, 
a navrhnout vhodnou metodiku. 

Tato práce je rozdělena do několika kapitol. Kapi to ly 1 a 2 jsou teoretické a dávají 
č tenář i vhled do problematiky výpoče tn í tomografie a šumu. Exper imen tá ln í část práce 
začíná statistickou analýzou šumu v kapitole 3. Samotné tes tování a lgor i tmů pro redukci 
šumu je popsáno v kapitole 4. 

P r v n í kapitola poskytuje základní informace o rentgenovém záření a o jeho chování při 
p růchodu vzorkem. Dále jsou s t ručně popsány zdroje rentgenového záření a detektory pro 
jeho zaznamenání , možnost i geometrie C T sys tému a princip tomografické rekonstrukce. 
Důraz v t é t o kapitole je kladen na popsán í a spek tů v p r ů b ě h u C T zobrazování, k teré 
mohou mí t vl iv na výsledný šum, a to jak negat ivní , tak pozi t ivní . Těchto a spek tů je celá 
řada . Diskutovány jsou faktory ovlivňující poče t detekovaných fotonů, faktory spojené se 
s t ra tegi í v p r ů b ě h u měření , v l iv detektoru a samotné tomografické rekonstrukce. Počet 
detekovaných fotonů můžeme ovlivnit pomocí proudu a n a p ě t í zdroje, expozičního času 



nebo filtrací spektra energií vycházejícího ze zdroje. Strategie měření zahrnuje zejména 
počet projekcí, p růměrování projekčních sn ímků a pozici objektu při měření . Velký vl iv 
na výsledný šum v rekonstrukčních řezech m á i volba rekons t rukčního algoritmu. 

Jelikož je zaznamenaný š u m v projekčních datech kombinací všech vlivů (kromě tomo-
grafické rekonstrukce), jeho rozdělení je neznámé. Určením tohoto rozdělení a nás ledně 
i modelu šumu v projekčních snímcích se věnuje kapitola 3. Pro statistickou analýzu 
byly použi ty projekční sn ímky bez p ř í t omného vzorku zachycené C T sys témem Rigaku 
nano3DX. Celkově bylo analyzováno devět souborů o 10 snímcích, kdy každý soubor byl 
naměřen při rozdílné expozici (1 s - 45 s). Z každého souboru byl vypoč í t án p růměrný 
snímek, k te rý se nás ledně od souboru odečetl . P ř e d určen ím p růměrného sn ímku se ze 
souboru nejdříve musely eliminovat odlehlé hodnoty způsobené impulsn ím šumem. Pro 
detekci těch to pixelů byla použ i t a metoda na základě percent i lů . Po odečtení p růměrného 
sn ímku zůs ta ly matice obsahující informaci pouze o p ř í t o m n é m šumu. Sta t i s t ická analýza 
spočívala předevš ím ve vizuálním posouzení rozdělení šumových hodnot, kdy byly vykres­
leny Q-Q grafy a histogramy. Dále byly spoč í tány stat is t ické momenty - s t řední hodnota, 
rozptyl a špičatost . N a základě t é t o analýzy byl určen model šumu v projekčních datech, 
k terý byl nás ledně popsán i teoreticky. Ověření tohoto modelu spočívalo v simulování 
šumu a jeho vizuálním po rovnán ím s reá lným n a m ě ř e n ý m šumem. 

S využ i t ím tohoto modelu bylo možné simulovat šum v projekcích umělého fantomu, 
k terý byl zvolen pro tes tování metod redukce šumu. Pro důk ladné posouzení robustnosti 
metod by l š u m simulován ve dvou intenzi tách. Díky skutečnost i , že př i tes tování na 
umělém fantomu m á m e k dispozici i z la tý standard - tedy výsledek, ke k t e r ému se chceme 
přiblížit , je možné výsledky objekt ivně zhodnotit pomocí vhodných metrik kvality obrazu. 
B y l y použi ty t ř i metriky, a to peak signal-to-noise ratio ( P S N R ) , s t řední kvadra t ická 
odchylka (MSE) a Structural Similarity Index (SSIM). Celkově bylo tes továno 7 metod pro 
redukci šumu na 2D snímcích a 4 metody pro 3D data. V první fázi byly metody použi ty 
na projekčních datech, kde je rozptyl s imulovaného šumu známý z popsaného modelu. 
Výsledky metod byly porovnávány až po následné rekonstrukci, a to jak subjekt ivně, 
tak objekt ivně pomocí metrik. Dále byla hodnocena i kvali ta au tomat ické segmentace 
pomocí Diceova koeficientu podobnosti. Následně byly vybrané metody použi ty i na 
tomografických snímcích a proces vyhodnocení byl zopakován. Metody byly porovnány 
i na základě jejich výpoče tn ího času. Po tomto tes tování byla provedena diskuze obou 
strategi í redukce šumu. 

Jako nejúčinnější p ř í s tupy byly vyhodnoceny použi t í metody B M 3 D na projekcích, 
metody B M 4 D na projekcích a metody B M 4 D na tomografických řezech. Jelikož jsou 
ale všechny tyto strategie časově náročné , byla k n im v y b r á n a možnost rychlé redukce 
šumu, a to non-local means filtr jak na projekcích, tak v řezech. Všechny metody byly 
otes továny na t řech reálných C T měřeních s vysokým rozlišením. Porovnání výsledků 
bylo provedeno jak subjekt ivně, tak objekt ivně pomocí dvou metrik kvality obrazu, a to 
p ros t ředn ic tv ím p o m ě r u signálu k šumu (signal-to-noise ratio SNR) a p o m ě r u kontrastu 
a signálu (contrast-to-noise ratio C N R ) . B y l a po rovnána i časová náročnos t těch to metod. 
Výsledky byly popsány a následně p roběh la diskuze jejich přednos t í a omezení. N a základě 
t é t o diskuze byly určeny op t imáln í metodiky redukce šumu pro různá kr i tér ia a vzorky. 
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Introduction 
As humans, our perception of the world is l imited by the range of wavelengths of 

electromagnetic radiation that our eyes can detect. This range is called visible light. 
However, the narrow spectrum of visible light provides only a partial and superficial 
picture of the world. One way to overcome these limitations is to use radiation wi th 
shorter wavelengths and higher energies. These types of electromagnetic radiation can 
penetrate materials that are not transparent to our eyes and reveal new information about 
the object. X-rays are an important representative of this group. 

X-ray radiation discovered by Wi lhe lm Conrad Roentgen in 1895 was a revolutionary 
breakthrough and instantly changed the fields of physics and medicine [1]. Based on the 
motivation, that the whole internal structure of an object can be reconstructed using 
X-rays, computed tomography (CT) was developed. Since its invention, the C T become 
a very popular and highly successful non-destructive diagnostic tool in many fields -
from medicine to material sciences. It is a powerful technique in which the external, as 
well as the internal structure of a 3D object is reconstructed based on its X-ray images 
captured from a sequence of angles. These X-ray images are called projections. B y using 
the reconstruction algorithm to the projections, the cross-sectional images of the object 
can be calculated. Thanks to the micro C T and nano C T it is possible to produce high-
resolution images and analyze structural changes, and material characteristics or reveal 
flaws, cracks, and pores present in the measured sample early in the production process. 
This analysis can be very useful for the manufacturing of microelectronics, batteries, and 
composite materials. 

However, the process from projections to the final reconstructed volume is very com­
plex and many influences can affect the quality of the outcome. One of the most serious 
influences is noise. Noise can cause significant distortions to the acquired information 
and downgrade the quality and spatial resolution of the reconstructed images. Therefore, 
effective noise reduction techniques play a crucial role in C T imaging. To this date, many 
papers have been focused on noise reduction in C T data, but mainly in connection wi th 
low-dose medical C T , and there is little known about the properties of noise in sub-micron 
C T and its suppression. That is why the analysis of noise characteristics and its distribu­
tion is crucial for understanding the noise and selecting suitable denoising methods. The 
denoising strategies can take place in the projections, reconstructed C T slices, or during 
the reconstruction process. This work aims to compare the denoising strategies in the 
projections and C T slices and design the optimal strategy for noise reduction. 

This thesis is divided into several parts. In the first chapter, the principles of X -
ray computed tomography and tomographic reconstruction are introduced. This chapter 
covers also a review of the factors that influence noise in C T measurements, both positively 
and negatively. The fundamentals of the digital image and the types of noise that can 
corrupt the digital image are described in the second chapter. Additionally, this chapter 
includes a comprehensive review of noise reduction algorithms and methods. To apply 
suitable denoising techniques to captured projection images, it is essential to determine the 
noise distribution in the projection domain. Chapter 3 deals wi th this problem. The focus 
is on the statistical analysis of the noise and noise model estimation. Finally, chapter 4 is 
devoted to the testing of selected denoising methods. First , noise reduction is performed 
on projections of a simulated phantom, where the noise is generated according to the 
noise model. Next, the same methods are tested on the C T slices and the outcomes are 
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compared using appropriate image quality metrics. Based on this comparison, the most 
promising methods are selected and tested on measured submicron C T datasets, and their 
advantages, limitations, and possible usage are described. 

4 



1. X-RAY COMPUTED TOMOGRAPHY 

1. X-ray computed tomography 
Non-destructive techniques are methods used for testing, inspecting, and evaluating 

the quality, integrity, and characteristics of materials, parts, and products. A large group 
of these techniques is based on X-ray imaging. 

X-rays, like visible light, are a form of electromagnetic radiation that transports energy 
through space. This radiation can be defined by its energy E, that is proportional to its 
wavelength A, such as [2] 

E = ^ = hu, (1.1) 

where h is the Planck's constant, c is the speed of light and v is the frequency of the radia­
tion. The wavelengths of X-rays are in the range of a few picometers to a few nanometers 
- shorter than visible light. Hence, the energy is higher allowing them to penetrate the 
object and visualize its internal structure. When X-ray photons pass through matter, 
they can be absorbed, scattered, or transmitted depending on the photon's energy and 
the material's properties [ ]. 

X- ray computed tomography (CT) is used to visualize the internal structure of an 
object in 3D including its density, shape, and material composition. It can detect internal 
defects such as cracks, porosity, voids, and inclusions that may not be visible from the 
outside. This makes it an essential tool for quality control and product development in 
a variety of industries. 

1.1. Principle of measurement 
Imaging using X-rays to visualize the internal structure of an object is called radiography. 
Because of their high energy, X-rays can easily penetrate an object. A s the X-rays pass 
through a measured sample, they are absorbed or attenuated at different levels resulting 
in changes in the beam's intensity. The intensity J exiting the sample can be expressed 
wi th the attenuation coefficient \i [m - 1 ] as 

/ = I0e-"Ad, (1.2) 

where Jo is the entrance intensity of the beam generated by the source and Ad stands for 
the thickness of the material [2]. X-rays are attenuated exponentially. The attenuation 
coefficient \x determines, how easily the beam can penetrate the object and is specific for 
every material depending on its density. For example, the value of \x for air is nearly 
zero, so the entrance and detected intensity is unchanged. The equation (1.2) is known 
as the Beer-Lambert law, however, in this form, it is only valid for a uniform sample. 
When multiple materials (with different values of /x) are taken into account, the equation 
changes to 

J = j o e - i o A V w d s ; ( L 3 ) 

where s represents the beam direction [ ]. B y dividing the equation by Jo and taking 
the negative logarithm, the attenuation coefficient in the exponent is isolated, and the 
equation (1.3) can be expressed as 

J Ad 
p = - \ n [ - ) = J n(s)ds. (1.4) 
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1.2. X-RAY SO URCES AND DETECTORS 

This equation determines the projection measurement p, which represents the absorption 
of the beam by the sample [ ]. It is valid only for the assumption of the monoenergetic 
nature of the X-ray beam, which is rarely met in real life - an X-ray tube emits a rather 
broad spectrum of energies. In addition, the attenuation coefficient \x can vary wi th X-ray 
energy leading to beam hardening and related artifacts [ ]. W i t h polychromatic beam, 
spectral density j0 and the energy spread of the X-ray spectra dE must be considered 
and the equation (1.4) changes to [ ] 

However, the fundamental problem behind the equations remains the same - to find the 
function p. 

During the C T measurement, a series of projection images of an object is taken from 
different angles. The acquired projections define the space or representation known as the 
projection domain. Using a reconstruction algorithm to the set of projection images it is 
possible to reconstruct a stack of cross-sectional slices of the object [ ]. The reconstructed 
slices define the tomogram domain and together create a 3D volume consisting of voxels 
- volume cubic elements, a 3D analogy of a pixel [1]. 

For a successful reconstruction wi th high quality, a large number of projection images is 
needed. The number can be theoretically determined from the Nyquist-Shannon sampling 
theorem - a unique reconstruction of an object can be obtained if the sampling frequency 
of the object is twice as high as the highest frequency of the object details. Generally, 
the number of projections should be in the same order as the number of pixels in the 
horizontal dimension of a single projection [5]. 

1.2. X-ray sources and detectors 
X-ray source and detector are the core components of each C T system. They are po­
sitioned on each side of the scanner and in between there is a sample stage, where the 
sample is placed. Another crucial part of the whole system is the rotational mechanism. 
In industrial C T , the mechanism rotates the stage wi th the sample on it and the detector 
and source are static. The sample should be secured on the stage, so another movement 
besides rotation is minimized [ ]. 

To provide the essential X-ray beam for the measurement, the X-ray source is needed. 
The principle of generating X-ray photons has stayed unchanged since its discovery in 
1895. In every X-ray tube, there is usually the cathode - electron gun containing the 
heated filament, from where the electrons are emitting, and an anode providing a voltage 
difference for accelerating the electrons. A Wehnelt electrode and magnetic lenses are 
used for focusing the electron beam to a small spot on the target material. The shape 
and size of the spot can affect the quality of the measurement [2], [1]. 

X-ray photons are generated when the target is bombarded by high-speed electrons. 
The generation of X-ray photons in a typical tube is a very inefficient process - only about 
1% of the input energy is used to produce photons, and the rest is changed to heat. The X -
ray photons beam's intensity (flux) depends on the number of electrons hi t t ing the target 
and on the target's atomic number. On the other hand, the beam's energy is influenced 
by the voltage difference between the cathode and anode. The target material (usually 

(1.5) 
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1. X-RAY COMPUTED TOMOGRAPHY 

C u , M o , or W ) determines the shape of the radiation spectrum. Typical X-ray spectrum 
(see fig. 1.1) is consisting of the lines of characteristic radiation and Bremsstrahlung 
(also called braking radiation). The characteristic radiation is emitted in a process of 
deexcitation of electrons in the target's atoms. First , the accelerated electrons excite the 
electron in the inner shell and when the electron is deexcitated, it emits its energy and 
a photon of characteristic radiation. The Bremsstrahlung radiation is released when the 
incoming electrons are decelerated by the nucleus of the target's atoms. This radiation is 
continuous throughout the whole spectra [2], [1]. 
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Figure 1.1: A n example of a radiation spectrum of an X-ray tube at 120 kVp (peak 
kilovoltage). Image is taken from [2]. 

The detector is another key part of the C T system since it collects information about 
the sample's structure. It has a large impact on the final image quality - especially 
regarding the spatial resolution or the electronic noise. There are several ways, how to 
detect X-ray radiation. The two most common types of detectors are photon-counting 
detectors and scintillation-type detectors [6]. 

The scintillation-type detectors are used in a majority of all C T scanners. These 
detectors use the technology of indirect conversion - the X-ray photons are not detected 
directly, but a layer of scintillating material is used to change the photons into visible 
light. The light is then detected by a photodiode and converted into an electronic signal. 
This output signal is proportional to the total energy of the absorbed photons during 
the measurement period. Therefore, the detector does not provide information about 
the energy of individual photons. Modern detectors used in C T systems are usually 2D 
detectors - especially the C C D (charge-coupled device) or C M O S (complementary metal-
oxide-semiconductor) technologies, but linear array detectors and I D detectors exist and 
are beneficial in some special cases [1], [6]. The C C D and C M O S detectors differ mainly 
in the strategy of transporting the charge - in C M O S arrays, the charge of each pixel 
is handled independently and has its own transport line, whereas, in C C D detectors the 
charge of a row of pixels is transported through the same circuit and amplifier. C C D 
detectors have been widely used in many imaging applications, but in recent years, the 
popularity of C M O S sensors has increased mainly due to their lower power consumption, 
smaller size, and lower cost of production [7]. In the field of C T , C M O S detectors offer 
a significant advantage as they can achieve the same signal wi th lower exposure time, 
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1.3. SCAN GEOMETRIES 

enabling faster measurements. However, C M O S detectors are considered to be more 
sensitive to noise. It has been shown, that the C M O S detector has a higher noise level 
than the C C D sensor, given that an equivalent signal was detected [ ]. This introduces 
another reason, why software-based noise reduction is an important topic and the solution 
to find methods for efficient reduction of noise independent on the detector needs to be 
implemented in order to improve the accuracy and quality of imaging data. 

The photon-counting detectors ( P C D ) in C T systems are a quite new technology wi th 
great potential to improve their performance. The photon-counting detectors use direct 
conversion - every photon is counted individually and its energy is converted directly into 
the output signal. Every photon is absorbed in the semiconductor layer and generates an 
electric pulse. The strength of the pulse depends on the photon's energy. The photon-
counting detectors showed some advantages over the scintillation-type detectors, especially 
when it comes to spatial resolution, reduction of electronic noise, or suppression of some 
artifacts. Despite their advantages, P C D detectors are not yet widely used in practice 
due to technical challenges that need to be overcome [6]. 

1.3. Scan geometries 
The hardware of every C T scanner can be arranged in different ways determining the 
beam geometry. The choice of geometry depends on the specific application and the 
desired image quality and resolution. Each of the geometries, that are described in this 
section, has its advantages and disadvantages. The most common are parallel-beam, 
fan-beam, and cone-beam geometry [2]. 

When all the X-rays that form one projection are parallel to one another, the C T 
geometry is called parallel-beam (fig. 1.2 (a)). It is the simplest geometry. Parallel-beam 
geometry can be achieved by collimating the X-rays into a th in beam and detecting this 
thin beam to a single element on the detector. The beam needs to be moved in a linear 
motion to capture the whole projection. The advantage is that the scattered radiation is 
reduced, but the complex data acquisition results in long measurement times [9]. 

Fan-beam geometry uses a th in fan of X-rays. These rays are captured on a I D 
detector array. The source is usually very small, ideally point-like. If the fan beam is 
wider than the measured sample, only rotation of the sample is performed. This leads to 
shorter measurement times. The detector elements can be arranged either in a line or in 
a circular arch with its center at the X-ray source (fig. 1.2 (b)) [9]. 

Cone beam geometry can be described as multiple fan-beam planes collecting the 
signal simultaneously (fig. 1.2 (c)). This approach needs a large two-dimensional planar 
detector in order to capture a 2D image. The advantage of cone-beam geometry is the 
fast measurement times, but the scattered radiation is not reduced. The fan beam planes 
have different incidence angles on the detector, which is a significant source of image 
artifacts [2]. 

When the beam is divergent from the source spot - in the case of the fan beam and cone 
beam - the effect of geometric magnification occurs. B y this effect, the captured object 
can appear larger on the detector. In an ideal case, when the source can be approximated 
only wi th one point, the geometric magnification is defined as 

M 
SD 

s o r 

8 



1. X-RAY COMPUTED TOMOGRAPHY 

where |SD| stands for the distance between the source and detector and | S 0 | is the distance 
between the source and the measured object. In this case, a high magnification, therefore 
higher resolution, can be obtained either by a very low source-object distance | SO | or by a 
high value of |SD| . But in practice, the source's finite size introduces limits to this effect. 
Also, wi th a higher angle of the beam's cone, typical cone beam artifacts can occur [10]. 

(a) (b) (c) 

Figure 1.2: Illustration of different scan geometries: (a) parallel-beam geometry, (b) 
fan-beam geometry, (c) cone-beam geometry. Adapted from [2]. 

1.4. Tomographic reconstruction 
Image reconstruction from projections is a mathematical process of producing an image 
from estimates of its line integrals. Let 's consider a three-dimensional object 0(x,y,z). 
The object consists of n layers parallel to the plane (x, y) and perpendicular to the z axis. 
Each layer corresponds to one row of pixels on the detector and represents a tomographic 
slice of the object. The slice can be interpreted as a 2D function f(x, y), representing the 
measured object's linear attenuation coefficients // [5]. The goal of computed tomography 
is to reconstruct the slices, therefore the whole object, from its projections taken from 
a series of angles. The problem of C T reconstruction is a simple problem to formulate in 
theory, but the exact solution to this problem is st i l l not known [11]. 

In this section, the two groups of algorithms wi l l be discussed - analytic and iterative 
reconstruction methods. The analytic methods are based on mathematical models such 
as Fourier transform, Radon transform, and Fourier slice theorem. In contrast, iterative 
methods use the principle of linear algebra. 

1.4.1. Analyt ic reconstruction algorithms 
Radon transform and Fourier slice theorem 

The mathematical basics for C T image reconstruction were formulated by J . Radon in 
1917 [2]. He was the first to suggest a solution for the reconstruction of an object from its 
line integrals. Here, the theory behind analytical reconstructions based on his idea wi l l 
be shortly discussed. 

A line integral represents the integral of some object's characteristics along a line, 
for example, the attenuation of a ray passing through an object. A line integral may be 
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1.4. TOMOGRAPHIC RECONSTRUCTION 

parametrized by the two spatial coordinates (x,y), but in the case of C T reconstruction 
it is more suitable to rewrite the line in coordinates (t,0), such as 

x cos 9 + y sin 9 = t, (1.7) 

where the 9 stands for the angle of the line relative to the x axis. Using this formula, 
a line integral can be expressed as 

/

oo /»oo 

/ f(x, y)8{x cos 9 + y sin 9-t)dxdy, (1.8) 
-oo J — oo 

where S is the delta function. This integral transform is called the Radon transform - it 
offers a solution for determining the total density (distribution of attenuation coefficient) 
of the function / . W i t h this definition, a projection can be described as a set of line 
integrals for constant 9 [2],[12]. 

The whole projection dataset can be represented in one 2D image called a sinogram 
(fig. 1.3). The sinogram image has on one axis the angle of the projection and on the 
other the distance of the projection ray to the center of rotation. A horizontal line in the 
sinogram represents each measured projection. 

-150 -100 -50 0 50 100 150 
Distance(pixels) 

Figure 1.3: Shepp-Logan head phantom on the left and its sinogram consisting of 
projections from angles (0,180)° on the right. 

The analytic reconstruction algorithms are built on the principle of the Fourier slice 
theorem, which connects the Radon transform of a 2D function with its Fourier trans­
form. The Fourier transform is an integral transform, that converts the function / to its 
frequency spectrum F. It is generally a complex function and can be separated into two 
parts - amplitude and phase spectrum. Many important characteristics of the original 
function can be obtained from its spectrum. The 2D Fourier transform of a function / is 
defined as 

/

oo poo 
/ f(x,y)e-[2^ux+vy)dxdy, (1.9) 

-oo J—oo 
where u and v represents spatial frequencies. More information about the Fourier trans­
form can be found in [2] or [12]. The Fourier transform of a projection at an angle 9, 
Pe(t) is defined as 

/

oo 

P , ( t ) e - i W d t . (1.10) 
-'OO 
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1. X-RAY COMPUTED TOMOGRAPHY 

Now, let's consider a line in the frequency domain given by v = 0. The equation (1.9) 
wi l l change to 

/»oo /»oo 
F ( u , 0 ) = / / f(x,y)e-i2™xdxdy. (1.11) 

Since the exponent is not dependent on y, the integral can be split such as 

F(u,0) f(x,y)dy 

B y substitution the inner integral with the equation (1.8) for a projection lines wi th 
constant x and 9 = 0, the equation changes to 

F(u,0) = P 0 = o ( x ) e - 1 ^ d x . (1.13) 

Thus, the relationship between the projection at angle 9 = 0 and the 2D Fourier transform 
of the function / of the object can be expressed as 

F(u,0) = Se=0(u). (1.14) 

This equation is the simplest representation of the Fourier slice theorem [12]. 
In words, the Fourier slice theorem states, that the I D Fourier transform of the pro­

jection of an object / taken at an angle 9 is equivalent to a slice going through the origin 
in a 2D Fourier transform of the object / under the same angle 9. 

Now, wi th this theorem in place, the idea behind analytic reconstruction is straight­
forward. If a sufficient number of object projections is captured over the range from 
0 to 7r, they can fill the whole 2D Fourier space. This Fourier spectrum represents the 
object being reconstructed, and with the inverse Fourier transform, the object can be 
recovered [2], [12]. 

The filtered back-projection method 

Even though the Fourier slice theorem gives a simple solution to the reconstruction prob­
lem, it is not perfect and brings some challenging issues that need to be fixed. In practice, 
only a finite set of projections can be captured, so the Fourier spectrum wi l l be known 
only along a finite number of lines going through the origin - the spectrum is sampled in 
polar coordinates. The density of points near the origin is large and is decreasing wi th 
a higher distance from the origin (see fig. 1.4) [12]. 

To apply the inverse Fourier transform, the data needs to be interpolated into a Carte­
sian grid. W i t h the lower density of the point further away from the center - in the higher 
frequencies, the interpolation error is larger. The entire reconstructed image is affected by 
this error, resulting in a blurry appearance and suppressed edges, textures, and details. 
To overcome these issues, the filtered back-projection algorithm ( F B P ) was developed [12]. 

The F B P algorithm works in two steps, first is the filtering part - the projections 
are weighted in the frequency domain, and the second part is the back-projection, which 
can be interpreted as smearing or adding each filtered projection over the image plane 
in the corresponding angles. The two steps can be described mathematically easily. The 
filtering operation can be represented as 

/

oo 

Se(uJ)\uJ\e[2™tduJ, (1.15) 
-oo 
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V 

Figure 1.4: Sampling of the projections in the Fourier spectrum based on the Fourier 
slice theorem, adapted from [12]. 

and the back-projection can be expressed as 

The derivation of both of the equations can be found in [12], [2]. The term \u\ in the 
filtering operation (1.15) represents a frequency response of a filter function (also called 
the ramp filter), and the whole integral corresponds to the inverse Fourier transform of 
the quantity SQ(U)\U\. The QQ can be called the filtered projection. The back-projection 
equation (1.16) simply states that the reconstructed image / is a summation of all filtered 
projections over the interval (0,7r). It is the filtering process, which corrects the low-
frequency blur of the data [12]. 

Note, that based on the important property of the Fourier transform the multiplication 
of two functions in the Fourier space is equivalent to the convolution of these functions 
in the spatial domain. The convolution may be expressed as 

where Pg is the measured projection and p is the inverse Fourier transform of the ramp 
filter [12]. The ramp filter controls the enhancement of higher frequencies and wi th that 
also the amount of noise present in the image, as well as spatial resolution. Therefore, 
by multiplication of the basic filter \u\ wi th a suitable function, the characteristics of the 
reconstructed image can be changed. Generally, the filter function can be written as 

(1.16) 

(1.17) 

u\ • b(üu) (1.18) 

where the function b can be one of the following functions [13]: 

f l Ram-Lak filter 

b(u>) = < 
sine | 

cos I 
^ + (1 — a) cosw 

Shepp-Logan filter, 

Cosine filter, 

Hann (a = 0.5) and Hamming (a = 0.54) filter. 

(1.19) 

In figure 1.5 the different filter functions are shown. 
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frequency UJ 

Figure 1.5: Frequency responses of described filters commonly used in the F B P 
algorithm. Adapted from [13]. 

It is important to say, that the F B P algorithm was derived only for the parallel-
beam geometry. However, in practice, the fan-beam and cone-beam geometries are widely 
used. For fan-beam geometry, the simplest solution is straightforward - it is possible to 
convert fan-beam projections into parallel-beam ones, and then apply the F B P . This so-
called rebinning of the fan-beam projections however results in non-uniform distances 
between the rays and can lead to more errors in the reconstruction. More information 
and derivation of the reconstruction for fan-beam geometry can be found in [12]. 

The cone-beam geometry reconstruction is much more complex since the three-dimen­
sional dataset is being processed. One of the most famous algorithms, that has successfully 
solved the problem, is the Feldkamp-Davis-Kress ( F D K ) algorithm. It is empirically 
derived from the 2D fan-beam F B P - each cone-beam projection row is processed as 
a fan-beam one [11]. 

1.4.2. Iterative reconstruction algorithms 
Another approach to the reconstruction process is based on linear algebra, and the meth­
ods in this group are called iterative reconstruction techniques. A s well as in the previous 
section, the idea behind the methods wi l l be described for the 2D object represented by an 
unknown vector \i and the object's projections p. It can be proved, that the two vectors 
can be linked in a simple formula [2] 

p = A ^ . (1.20) 

Let 's consider, that the final reconstructed image is constructed of the total number 
of TV cells. The one-dimensional vector \x e M.N describes the image values in these 
cells and the vector p e M M stands for the M rays in the measured projections. The 
A e R M x A r is a weight matrix. Each weight factor a^- in the matrix A represents, how the 
corresponding cell contributes to the measured value in the vector p. From this definition, 
it is clear, that the matrix A is sparse due to the fact, that only a small number of cells 
in the object interact wi th the beam [12]. 

B y determining the sparse matrix A the vector fj, can be calculated. For small values 
of M, N it would be possible to invert the system of equation (1.20) easily. But in prac­
tice, both M and N are large, so such inversion would be computationally demanding or 
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even impossible [ ]. However, many solutions to this problem were developed, usually 
using iterative methods. These methods start wi th an init ial guess of the solution fj,^ and 
produce a sequence of vectors fj,(n\ Ideally, this sequence converges to [x. In 
each iteration, the projection vector is calculated, and the difference between this 
projection and the measured projection p is determined. Based on the difference vector, 
the new vector p ( J + 1 ) is estimated. This process is iteratively repeated t i l l a certain crite­
rion is fulfilled or a maximum number of iterations is reached. Also, specific constraints 
can be incorporated into the process for faster convergence, typically non-negativity of 
the fi (the attenuation coefficient cannot be negative in transmission C T ) , etc [ ]. 

The advantage of the iterative techniques is, that the model of the C T acquisition 
can be simulated and integrated into the reconstruction. Such models include the system 
geometry, the position of the rotational axis and its t i l t , shape, and size of the focal spot 
as well as the photon statistics or the electronic noise [15]. 

The most well-known iterative methods are the Algebraic Reconstruction Technique 
( A R T ) , Simultaneous Algebraic Reconstruction Technique ( S A R T ) , or Simultaneous Iter­
ative Technique (SIRT). 

A R T is the simplest and oldest of these techniques. The drawback of this method is 
that it updates the reconstruction only in single rays, thus single pixels. This approach 
usually does not provide very satisfying results, since the computed ray sums are not 
good approximations of measured rays. The SIRT algorithm on the other hand updates 
the reconstruction once after going through all ray sums. The change value, that is used 
for updating each cell is calculated as an average value of all changes in that cell during 
one iteration. The SIRT algorithm is slower in convergence than A R T but results in 
better image quality. A compromise between the A R T and SIRT algorithms is the S A R T 
algorithm - providing a good quality reconstruction with faster convergence than SIRT. 
It simultaneously updates all the rays in one projection and reduces errors in the ray's 
approximation. O n the other hand, a relaxation factor is necessary for the stability of the 
algorithms and for noise reduction [12]. 

Other iterative approaches have been developed in addition to the discussed techniques 
- for example Conjugate Gradient Least Square ( C G L S ) algorithm, Adaptive Statistical 
Iterative Reconstruction (ASIR) , Sinogram-Affirmed Iterative Reconstruction ( S A F I R E ) 
and others. The iterative reconstruction techniques are studied especially for the med­
ical C T systems since they enable a significant dose reduction due to the incorporated 
acquisition modeling. Over the past years, it became clear, that iterative reconstruction 
techniques over-perform the analytical ones, mainly in terms of handling some degrada­
tion of image quality during reconstruction, such as artifacts and noise, and dealing wi th 
a sparsity of data. But the convergence speed of these algorithms is a serious disadvan­
tage [16]. 

Arifacts 

Even though such powerful techniques for C T reconstruction exist, the reconstructed 
slices are not exact representations of the measured volume. Theoretically, any difference 
between the object's actual attenuation coefficients and the estimated ones after recon­
struction can be called artifact. However, this definition is rather broad, so in practice, 
only the artificial features in the reconstructed image, that are significant and downgrade 
the image clarity are considered artifacts [ ]. 
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Generally, the artifacts can be caused by many influences - the C T system, the object 
itself, or the limitations of the software. The most common artifacts are: 

• beam-hardening, 

• ring artifacts, 

• motion artifacts, 

• metal artifacts, 

• scattered radiation-induced artifacts, 

• noise. 

The topic of C T artifacts, their causes, and reduction techniques is wide, but in this work, 
only the noise and noise-related artifacts wi l l be discussed in detail. For more information 
about this topic see [2]. 

1.5. Aspects in the C T measurement affecting the noise 
Noise can be defined as unwanted random variations of the detected signal and contributes 
to the uncertainty and distortion of acquired information. Due to the complexity of the 
entire C T process, noise in projection images is inevitable and consists mainly of electronic 
noise, structural noise, and quantum noise. Many quantities can affect the noise in the C T 
process (see fig. 1.6), especially related to the scan settings, the detector, the measured 
object, or the reconstruction algorithm used. In the following section, some of the most 
important influences are introduced. 
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Figure 1.6: A schematic representation of influences affecting the noise in the whole C T 
process. 

A lot of metrics have been proposed for measuring the noise in images. In this section, 
the influences wi l l be discussed using one of the most frequent ones - signal-to-noise ratio 
(SNR) . The signal-to-noise ratio is an important coefficient for evaluating the detectability 
of an object in a noisy background [ ]. The S N R in a region of interest (ROI) is defined 
as the ratio between the mean value /x 0 and the noise. The noise can be characterized by 
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many quantities, but usually, a standard deviation aQ of the R O I is used. In that case, 
the S N R can be written as [17] 

A low-SNR image has a noise level near the signal, resulting in a noisy image and low 
detectability of the measured object. The increase in the S N R is favorable to improving 
image quality. The very famous Rose criterion generally describes the values of S N R - the 
signal of the object must be at least five times the standard deviation of the background 
to be detectable [18]. 

1.5.1. Number of detected photons 
The number of photons detected by the detector can have a direct impact on image 
quality, affecting not only the level of noise in the final image but also the overall intensity, 
signal, and contrast. The noise, that is related to photon statistics is called shot noise 
(or quantum noise). Shot noise in optical devices comes from the quantum nature of 
light and arises from statistical variations in the rate of photons emitted. This process 
can be modeled with signal-dependent Poisson distribution. From basics about Poisson 
distribution (see section 2.2.4), the S N R can be written as S N R = = V7V, where 
N stands for counts of photons. Therefore, with a larger number of detected photons 
the S N R is increasing, so the shot noise has less power in the image. The factors that 
influence the detected photons are: 

• Source current: The cathode in the X-ray tube must be heated by current to gen­
erate free electrons through the thermoelectric effect. Increasing the source current 
results in more electrons leaving the cathode and interacting wi th the anode, which 
leads to the generation of more photons. The number of detected photons TV is 
linearly related to the source current I. W i t h increasing source current, the number 
of emitted photos is also increasing with the relation \fl [ ]. 

• Source voltage: The energy of electrons leaving the X-ray tube is determined by the 
voltage applied to it. This energy is linked to the energy of the generated photons, 
and photons wi th higher energy have a greater chance of reaching the detector after 
penetrating the object. Therefore, by increasing the voltage the number of detected 
photons is increasing. However, the relationship between the source voltage and 
detected noise is more complex. Determining the appropriate voltage and current 
settings can be challenging since the sample's material, density or geometry need 
to be considered [19]. 

• Exposure time: The relationship here is simple - with longer exposure time, more 
photons are detected per pixel, which results in a higher signal. The number of 
detected photons and exposure time are related linearly, so the S N R is increasing 
with y/t, where t is the exposure time [19]. 

• Pre-filtration: A broad spectrum of energies is emitted from the X-ray source (see 
section 1.2). X-rays with lower energies are more likely to be absorbed by the object 
and thus have a smaller impact on the detected signal. So filtering of these rays is 
a good way to improve the beam quality [ ]. Physical filters consisting of thin plates 

S N R 
0", o 
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of copper or aluminum are placed between the X-ray source and the object. The 
photons wi th lower energies are absorbed by these filters. This results in a lower 
number of detected photons, but the beam has improved quality and some artifacts 
such as beam hardening or cupping artifacts are reduced [19]. 

• Object attenuation coefficient: For each material the attenuation coefficient is known. 
W i t h a higher attenuation coefficient, more photons are attenuated resulting in 
a lower detected signal, thus lower S N R . The attenuation coefficient not only de­
pends on the material composition and density but is strongly related to the photon 
energy - wi th higher energy, the coefficient is decreasing. So, the noise can be sup­
pressed wi th a higher source voltage, but the contrast of the captured image wi l l be 
lower. The attenuation coefficient also sets a l imit on the maximum accumulated 
material thickness that can be penetrated [19]. 

• Object length: Directly from the Beer-Lambert equation it can be concluded that 
the number of detected photons depends on the distance traveled exponentially. 
The longer the distance is the more photons are attenuated resulting in higher shot 
noise, thus lower S N R . This relation directly affects the noise in the reconstructed 
images - the noise wi l l vary spatially across a volume. The non-stationarity of the 
noise is a typical characteristic of the C T images [19]. 

Each of the described aspects can be used to decrease the noise in the captured projection 
images, but it is important to say, that there is always a certain trade-off. For example, 
a higher voltage is used to reduce the noise, but with that, the image contrast wi l l be 
lower. Higher exposure time leads to images wi th a higher signal - higher S N R and 
lower shot noise, but the probability of the sample's movement or structural changes 
due to radiation is increased. So the limits and trade-offs should be acknowledged and 
understood to achieve images wi th good quality [2]. 

1.5.2. Measurement strategy 
The system operator can affect the final quality of the measurement, simply by deter­
mining the right placement and orientation of the scanned object or choosing the overall 
strategy of the measurement - a sufficient number of projections, or averaging of the 
projections. These influences wi l l be discussed in detail: 

• Object placement: Object's position relative to the source and detector and its 
orientation should be also taken into consideration during measurement. A system 
operator should try to find an optimal sample orientation, where the maximum 
thickness of the object to be penetrated is minimized. In the ideal case, the thickness 
of the sample would be constant during the whole measurement - from each angle. 
Otherwise, it can lead to saturation of pixels in the projection, where the object 
is the thinnest. The sample should be oriented that way so that no sharp edges 
are parallel to the X-ray beam avoiding beam scattering and instabilities in 3D 
reconstruction - for example, partial volume effects. The object placement is also 
connected to the geometry of the beam. W i t h a cone beam, placing the object closer 
to the detector within the range of the beam results in a higher magnification of the 
object due to the geometry, known as geometric magnification (see section 1.3) [4]. 

17 



1.5. ASPECTS IN THE CT MEASUREMENT AFFECTING THE NOISE 

• Number of projections: It is obvious, that the number of captured projections has 
a serious impact on the final reconstructed slices, especially when the analytical 
methods are used. It was demonstrated, that the S N R is proportional to the squared 
number of projections Np [20]: 

S N R o c V ^ - (1-22) 

Therefore, with more data, the reconstruction using traditional reconstruction algo­
rithms is more accurate and less noisy. In contrast, an insufficient number Np can 
generate artifacts - dark streaks or noise-like distortions (fig. 1.7). However, the 
trend nowadays is to perform faster measurements - to take less projection. Iter­
ative techniques wi th prior information can reduce the Np significantly, but other 
techniques to reduce the number of projections needed were developed [20]. These 
attempts are focused in the projection domain, i.e. interpolating between sparse pro­
jections, in the reconstruction domain - reconstruction algorithms based on com­
pressed sensing [21] or in the post-processing in the tomogram domain. Neural 
networks and machine learning are widely used in all of these approaches reaching 
great results [ ]. 

(a) (b) (c) 

Figure 1.7: Reconstruction of Shepp-Logan phantom from (a) 180 projections, (b) 60 
projections, (c) 36 projections. W i t h a lower number of projections, artifacts such as 

dark streaks of noise-like distortions are generated. 

• Averaging of projection images: In some C T systems, there can be implemented 
the option to set the number of images captured from each angle under the same 
conditions - temperature, current, voltage, etc. These images are then averaged, 
and only one resulting image is used for further processing. The idea behind this 
procedure is based on the random spatial distribution of photon shot noise across 
the detector pixels. B y averaging multiple images taken under the same conditions, 
these random fluctuations can be reduced by the square root of the number of 
images. In general, this technique can improve the quality of the images but results 
in much higher measurement times, and the reduction of noise is usually not so 
efficient [23]. 
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1.5.3. Detector 
A s stated before, the detector plays a crucial role in the C T system. It affects not only 
the shot noise but also contributes to the final noise with electronic noise. The previous 
section described the factors that determine the number of photons reaching the sample or 
leaving it. In this section, also the relation between the incoming photons and generated 
signal in the detector wi l l be discussed. Only the case of scintillation-type detectors is 
considered. 

The inside structure of the detector itself adds noise to the image. This noise is not 
related to the number of detected photons - it is signal-independent. This noise, known as 
dark current noise, arises from fluctuations in the number of photons generated thermally 
within the detector. These fluctuations are inevitable at any temperature above absolute 
zero and result in a background noise, which is present even when there are no incident 
photons [ ]. The noise level is dependent only on the temperature of the device, meaning 
it can be significantly reduced by cooling the detector. In the process of converting the 
measured charge to a voltage signal, the readout noise is introduced. Readout noise comes 
usually from the on-chip preamplifier. This noise is signal-independent and follows the 
Gaussian distribution. Eventually, before the analog-to-digital converter, the signal is 
usually amplified resulting in further noise [7]. 

Some detectors have the option to use the pixel binning function as a strategy how to 
increase the S N R . But wi th pixel binning, the spatial resolution is compromised and the 
dark current noise becomes more powerful in the image [21]. 

The effectiveness of a detector can be measured using quantum detection efficiency 
( Q D C ) . The Q D C represents the detector's ability to produce high S N R output images 
for a given number of incident photons. In other words, the Q D C can be expressed as 
a fraction of incident photons, that are converted to signal, since the detector doesn't 
detect every photon. Every detector can be described using Q D C in percentages. The 
ideal detector would have the Q D C 100% at all spatial frequencies, meaning that all energy 
is absorbed and contributes to the image signal. High Q D C corresponds to high contrast 
in the final image and the detectability of low-contrast objects is improved [23], [2]. 

1.5.4. Tomographic reconstruction 
Just from the mathematical basics discussed in section 1.4 it is obvious, that the al­
gorithm used for the reconstruction can affect the noise significantly. The principle of 
analytical reconstructing algorithms relies on theorems derived from many simplifications 
and approximations regarding the C T system and continuity of the data - for example, an 
infinitely small point-like X-ray source, monochromatic X-ray beam or an infinite number 
of noise-free projections were considered [15]. Due to the fact, that these conditions are 
never met in practice, the final noise has a strong impact on the reconstructed slices. 
The assumption of infinite projections implies that a larger number of projections wi l l 
result in better quality and less noise. However, since the number of projections is always 
finite, some noise is inevitable. If the number of projections is insufficient, the noise wi l l 
increase significantly, new artifacts wi l l be created and the quality wi l l downgrade (fig. 
1.7). Overall, the F B P algorithm is very robust, fast, and useful, but it is not suitable 
for non-ideal conditions during the measurement, especially when it comes to low dose 
measurement or sparse or irregularly spaced projections [ ]. 
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The iterative algorithms follow a totally different approach based on linear algebra. 
They consider the data to be discrete from the start, so no assumption of continuity is 
involved. They also enable a powerful regularisation step and a high level of modeling of 
the C T system and the whole acquisition process. Thus, they offer an effective reduction 
of noise in the final reconstruction and suppression of generated artifacts. The strengths 
of the iterative algorithms include a very high potential for low-dose reconstruction and 
preserving the quality and spatial resolution using only a fraction of the standard number 
of projections. So, the iterative reconstruction can notably shorten the measurement time, 
but the computational costs are very high, but nowadays a highly efficient GPU-based 
implementation is possible to speed the reconstruction up [15], [16]. 

However, by using iterative reconstruction techniques, the noise magnitude, texture, 
and distribution are changing, so the visual appearance of the reconstructed images is 
different compared to the F B P reconstruction. Also, some studies have demonstrated, 
that they can produce images that look over-smoothed and unnatural [ ]. Nowadays, 
machine learning and deep learning reconstruction techniques are widely studied and de­
veloped in order to reduce noise without changing the underlying structure of the sample. 
However, these techniques usually demand a large database of training data. The training 
stage of the methods is usually very computationally demanding, but once the training is 
complete, the reconstruction is typically faster than wi th iterative techniques [26], [! ]. 

It is important to note, that the choice of reconstruction algorithm depends on the 
quality of the measured dataset, the measurement strategy, and on the amount of time 
available for the reconstruction itself. 
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2. Noise in digital images and its reduction 
In classical photography, the recording of an image is easily done thanks to a light-

sensitive material inside a camera. The image's intensity wi l l be higher where a larger 
number of photons lands during the exposure and conversely. In digital cameras and 
detectors, the principle stays the same, but instead of a light-sensitive material, the digital 
chip is used. The chips are usually rectangular matrices wi th photo-sensitive elements, 
such as photodiodes. Using the photoelectric effect, the photo-diodes transform light 
photons into electric charges. The output image is always in greyscale. To record a color 
image, a color filter needs to be placed before the photodiodes - the most common filter 
is a Bayer mask wi th red, green, and blue filters. When the light travels through the 
mask, it is absorbed and only a part of the spectrum corresponding to one color reaches 
the photo-diode [27]. 

Generally, every real image contains noise. The noise is generated during the acqui­
sition process, during the converting stage, and even during the post-processing of the 
image in the computer - for example from rounding errors. This chapter wi l l cover the 
fundamental basics of the digital image, as well as types of noise that can corrupt the 
image, and a review of the denoising algorithms. 

2.1. Digital image 
The digital image can be represented by a two-dimensional discrete function J , which is 
defined in a series of positions m — 1 , . . . , M , n — 1 , . . . , N. The number N is called the 
image width and M is the image height. Each position (m, n) in the function represents 
one picture element - pixel, and function I donates the response of the pixel. This response 
usually corresponds to the optical intensity. To obtain the digital image, the 2D spatial 
signal / needs to be converted through a sampling process, also called discretization. 
In imaging sensors, such as C C D chips, the discretization happens naturally [ ]. 

In a greyscale image, each pixel contains only one numerical value representing the 
signal (see fig. 2.1 (a)). O n the other hand, pixels in color images carry a vector of 
numbers. I most cases, the vector consists of a triplet of the (R, G , B) components -
values for red, green, and blue colors (see fig. 2.1 (b)). The final color of the pixel is the 
linear combination of the basic colors corresponding to the vector. Another famous color 
model besides the R G B is the C M Y K . The C M Y K model contains four colors - cyan, 
magenta, yellow and black [28]. 

Each digital image can be described wi th a characteristic called bit depth. It defines, 
how many intensity values can be used for describing the signal of the pixel. A n image 
has a bit depth of n bits per pixel (or the image is called n-bit) when the total number of 
tones is 2™. The higher the number n, the more tones are available. The range of possible 
pixel values is called the dynamic range of an image. In practice, 8-bit or 16-bit images 
are the most common. For a 16-bit image, there is 2 1 6 = 65 536 intensity values available 
- the dynamic range is the interval (0,65 535), where the values 0 and 65 535 represent 
the black and white color. For color images, there is one intensity value for each color 
according to the model used (fig. 2.1 (b)) [27]. 
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Figure 2.1: P ixe l values of an 8-bit image in (a) gray-scale, (b) R G B color model. 

2.2. Types of noise 
A s stated at the beginning of this chapter, the noise is always present in an actual image 
as an „unwanted" signal. A higher noise level can lead to degradation of the image quality 
or lower the detectability of the captured object. To reduce the noise, prior knowledge 
about the noise type present in the image is required in order to use suitable denoising 
techniques. Here, the common noise distributions or models wi l l be shortly introduced, 
such as: 

• Gaussian noise, 

• impulse noise, 

• speckle noise, 

• shot noise. 

2.2.1. Gaussian noise 
The Gaussian noise model is probably the most common type of noise and is often used 
in practice for various simulations or testing of denoising algorithms. This additive noise 
has a uniform distribution throughout the image, therefore it is signal-independent at 
any point, and follows the normal distribution. The probabilistic density function ( P D F ) 
of the random variable X representing the noise has a normal Gaussian distribution -
X ~ J\f(p, a2), which P D F is given by [29] 

1 - ( X - n ) 2 

P{X) = e ^ ^ , (2.1) 
<7V2vT 

where /x is the mean value of the noise and a2 is the variance of the noise. The P D F has 
a typical bell shape (fig. 2.2) [30]. A Gaussian noise arises from the inside of the detector, 
such as electronic circuit noise, thermal noise or readout noise. 

A n important representative of this group is the additive white Gaussian noise ( A W G N ) . 
This noise type assumes to be independent and uncorrelated wi th the signal, meaning 
that its value at any given time is not related to its value at any other time, or to the 
value of the signal (fig. 2.3 (a), (e)). The term "white" refers to the fact that the noise is 
spread evenly across all frequencies 
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Figure 2.2: The probabilistic density function of the Gaussian distribution wi th mean 
value \i and variance a2. 

2.2.2. Impulse noise 
This noise is very easy to identify since it occurs as randomly distributed white and black 
pixels. Because of its appearance, the noise is also called the salt and pepper noise (see 
fig. 2.3 (b), (f)). Only those values of the affected pixels are changed - either to 0 or 
1, and there is a possibility of an unaltered pixel's neighborhood. A s a result, there are 
effective filters for reducing noise pixels based on their surroundings [30]. 

The impulse noise can have many origins - dead or hot pixels in the detector, the 
presence of dust particles, cosmic rays, and many more. 

2.2.3. Speckle noise 
Speckle noise affects the image in a different way. This noise is multiplicative, which 
means that the noise values are multiplied by the signal. Since it depends on the pixel 
values, it is signal-dependent (see fig. 2.3 (c), (g)) and thus very challenging to reduce. 
Usually, the P D F of this noise follows the Gamma distribution [30]. 

This noise can corrupt coherent imaging systems, such as radar, laser, or ultrasound 
images, etc. 

2.2.4. Shot noise 
The shot noise (fig. 2.3 (d), (h)) comes from the quantization of the electromagnetic 
radiation and is fluctuating with the number of photons emitted. This fluctuation is 
time-dependent. The noise is characterized by having a variance that is proportional to 
the signal, which means that as the signal intensity increases, the amount of noise also 
increases. The random variable X follows a Poisson distribution X ~ Vo(fi) and the P D F 
is given as [29] 

P{X) = k e No, (2.2) 

where k is the number of occurrences during some interval. When this number k is 
sufficiently high the random variable with Poisson distribution Vo(fi) can be approximated 
wi th normal distribution A/"(/x, /x) due to the central limit theorem. This theorem states 
that the sum of a large number of independent, identically distributed random variables 
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approaches a normal distribution, even if the individual random variables are not normally 
distributed [31]. This approximation is often used in X-ray images. 

Another important property of the Poisson distribution is that the mean value of the 
noise equals the variance, such as [29] 

E(X) = /x, a' (2.3) 

The shot noise and the influences generating the noise were described more in detail 
in the section 1.5.1. 

(e) (f) (g) (h) 
Figure 2.3: The Shepp-Logan head phantom corrupted by (a) Gaussian noise wi th \i = 0 
and cr2 = 0.01, (b) impulse noise with density 2% of pixels, (c) speckle noise, (d) Poisson 
shot noise. Corresponding residual noise images after generating (e) Gaussian noise, (f) 

impulse noise, (g) speckle noise, and (h) Poisson shot noise. 

However, it is important to note, that some level of noise can be also useful. In 
textured images, a small amount of noise can lead to better perceptual quality and an 
even sharper appearance. But on the other hand, the quality metrics such as S N R would 
have worse outcomes. 

2.3. Denoising algorithms review 
In recent years, wi th the development of advanced technology for the recording of im­
ages the need for adequate software to process these images and enhance their perceptual 
quality has been increasing. Denoising is a large topic in this field since noise can sig­
nificantly distort the image. The ideal denoising algorithm would preserve flat regions, 
edges, texture details, and global contrast and it should not introduce new artifacts into 
the image [23]. But denoising is generally a challenging task, because from the mathemat­
ical point of view, it is an inverse problem, and the solution is not unique. Overall, noise 
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reduction algorithms can be divided into these groups: spatial domain filtering, transform 
domain filtering, anisotropic diffusion algorithms, and deep-learning methods. This list is 
still incomplete and new and more progressive denoising algorithms are being developed 
each year. In this review, only the most popular ones wi l l be introduced, starting wi th 
simple methods, such as averaging pixels, to more sophisticated techniques. 

Spatial domain filtering. In filtering in the spatial domain, the operation is done directly 
on the image matrix. Spatial filters can be divided into linear and non-linear filters. 
Traditionally, linear filters are successful in reducing noise, but cannot preserve edges, 
lines, fine details, or texture. A typical example in this group of filters is a mean filter or 
Gaussian smoothing. The mean filter is the simplest method, the pixel intensity is simply 
replaced by the mean value of the pixels in its neighborhood in a given window. The 
gaussian filter is an exemplar of a low-pass filter. These filters reduce higher frequencies 
in the image, thus noise, but also detail, edges, and texture. A Wiener filter [ ] has been 
developed to improve the over-smoothing, but the blurring of the edges is stil l present. 
Non-linear filters are slightly more complex; the pixel's value is based on a weighting of the 
intensity of the pixels in its neighborhood. The best-known filter in this category is the 
median filter. It simply replaces the center value wi th the median value of the intensities 
in a certain neighborhood of the pixel. The median filter can be useful, especially in the 
case of impulse noise and a big advantage is its minimum time costs. Other two impor­
tant filters, that are applied in the spatial domain, are bilateral filter [33] and non-local 
means filter [ ]. In these methods, both grey-level similarity and spatial closeness are 
calculated. The bilateral filter can reduce the noise well while preserving edges and fine 
details but can fail wi th high levels of noise in the image or with fast changes in the noise 
variance. Advanced filters based on bilateral filtering, such as fast adaptive bilateral filter 
[35], and statistical nearest neighbor bilateral filter [36] have been developed. In the non­
local means filter method, the set size of the window around the pixel is searched and the 
pixels, that are the most similar to the examined pixel are found, and this pixel is replaced 
by the weighted average of all similar pixels. This approach is more computationally de­
manding than the bilateral filter, especially when the search window is large or the image 
has few similar areas, but the preservation of edges and texture is very good. For non-local 
means were also developed some improvements, for example, statistical nearest neighbor 
non-local means filter [36] or probabilistic non-local means [37]. In [38] also the extension 
for volumetric datasets was introduced, called the optimized blockwise NL-means, and 
was specially designed for denoising of M R I data. It has shown very good results and was 
able to outperform the classical implementation of non-local means. Based on this algo­
ri thm, the Collaborative Approach for eNhanced Denoising under Low-light Exci ta t ion -
C A N D L E [39], was developed. It was first designed to deal wi th the inhomogeneous noise 
present in laser scanning fluorescence microscopy images but the method was validated 
also on synthetic data and in vivo images. Variance-stabilization transform is present in 
this process to transform the signal-dependent noise into quasi-stationary Gaussian noise 
to improve the noise statistics for better noise reduction, but the overall time costs of this 
method are very high. 

Anisotropic diffusion and total variation methods. Methods in this group work also in the 
spatial domain, but the approach they are based on is very specific. The first model was 
proposed by Perona and Mal ik [10], where the problem is formulated using a nonlinear 
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partial differential equation. For the first time, the heat diffusion equation was used in 
image denoising, and this approach was able to smooth the image and at the same time 
preserve edges quite effectively, but stair-casing artifacts are present near edges. Higher-
order anisotropic diffusion models were tested for removing the artifact [11]. Another 
important model was proposed by Rudin, Osher, and Fetami in 1992. Their approach is 
based on the idea, that the denoised image can be estimated as a solution to a minimiza­
tion problem - R O F problem [ ], wi th the use of total variation based on the L 2 norm. 
The Split Bregman algorithm is a flexible method for solving the problem wi th L\ or T V 
regularization. Nowadays many methods based on the Split Bregman method have been 
proposed. But usually, the blocking artifacts are seen near the edges. Recently methods 
based on total variation were improved to generate artifacts-free denoised images, such 
as nonnegativity constrained based T V [43], Split Bregman using exponential T V func­
tion [ ], and coefficients-driven based total variation [15]. 

Transform domain filtering. A s the name suggests, algorithms in this group are working 
on the representation of the image in the transform domain. Initially, transform domain 
methods were developed from the Fourier transform, but more and more transforms are 
introduced to the image denoising, such as wavelet transform, discrete cosine transform 
( D C T ) , curvelet transform, etc. These approaches are based on the property, that in 
the transform domain, the image can be represented by fewer numbers of non-zero coeffi­
cients. That way the noise and signal coefficients can be separated more easily, and that 
way the noise reduction can be more efficient. Wavelet transform is probably the most 
famous and most investigated transform domain denoising method. It can reduce noise 
very well while preserving fine details, but the result heavily depends on the wavelet se­
lection. In the work [ 1(5], the algorithm based was introduced based on the S U R E method 
(Stein's Unbiased Risk Estimator) combined with Linear Expansion of Thresholds ( L E T ) 
- S U R E L E T . The algorithms proposed in the paper are based on discrete wavelet trans­
form and showed big potential. A n example of discrete cosine transform denoising is the 
shape-adaptive D C T method ( S A - D C T ) [47]. Thanks to the shape-adaptive feature it has 
been able to preserve edges well but resulting in large time costs. In 2007, the method 
Block Matching and 3D Transform-Domain Collaborative Fil ter ing ( B M 3 D ) was intro­
duced [48], and it became the state-of-the-art image denoising method. This algorithm, 
motivated by the idea of non-local means, showed a very high level of preserving fine 
details and edges but can be ineffective with a higher level of noise. Hence improvements 
have been investigated, such as bounded B M 3 D [19]. Another approach was to incorpo­
rate the principal component analysis ( P C A ) in B M 3 D resulting in B M 3 D - S A P C A [50] 
or to use deep learning [51] for self-adjustment of the algorithm to the noise level in the 
image. Also, an extension for the volumetric datasets B M 4 D [52] was done and reached 
state-of-the-art denoising performance for noise reduction in 3D datasets. 

Deep-learning and CNN-based methods. In 1989, the first attempts were made to use 
a neural network in denoising [53]. Since then, neural networks became larger and more 
complex. Nowadays, neural networks in image processing are a big trend and can be used 
in a variety of fields - image recognition, segmentation, robotics, self-driving, facial recog­
nition, etc. The research in denoising is continuing, and since the number of developed 
methods is very high, only a few wi l l be introduced. A large advantage of methods in 
this group over the traditional" ones is, that they don't need manually chosen parame-
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ters. The very base for the usage of convolutional neural networks in image denoising is 
introduced in [54] and its architecture is st i l l used. In [ 5], the denoising convolutional 
neural network ( D n C N N ) is described. The main idea of this denoising approach is that 
it doesn't predict the clean image, but rather the residual image, i.e. the difference be­
tween the noisy observation and the clean image. Recently, D n C N N 2 was proposed and 
improves some drawbacks of the D n C N N as well as the noise reduction effect [ ], but 
the computational costs are sti l l high. The disadvantage of these approaches is that the 
networks are trained on images wi th a certain noise level and are not suitable for denoising 
other noise levels. Another method is called N N 3 D [57], which combines local multiscale 
denoising by a C N N and non-local denoising based on the non-local filter. It has shown 
a great ability to exceed the results obtained from each of its components. The fast and 
flexible denoising convolutional neural network - F F D N e t , incorporates also a noise level 
map, so it provides a flexible way to handle different noise levels and inhomogeneous noise 
wi th the use of a single network [58]. This method is very effective and runs fast, but the 
time costs for training are very high. To generalize the C N N denoising, the convolutional 
blind denoising network C B D N e t was developed to denoise a more sophisticated noise 
model present in real-world noisy photographs [59] and has great results. The method 
Noise2Noise [ ] proved, that it is possible to recover a signal without observing clean 
signals, so the recovery is only based on the corrupted image. Addit ionally, this is done 
without any further knowledge about noise distribution and other statistics. This is very 
beneficial in applications, where clean targets are not so easy to create - such as micro­
scope images. Noise2Void [ ] takes this even further and can train directly on a single 
noisy image, so it does not require pairs of noisy images or ground truths. But for suc­
cessful denoising, the assumption of a predictable signal and pixel-wise independent noise 
should be met, otherwise the network wi l l fail and generate artifacts. 
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3. Estimation of the noise model in the 
projection domain 

W i t h everything stated about the C T acquisition process, it is obvious, that noise is 
always present in the projection images. It is one of the important influences, that can 
significantly downgrade the perceptual quality of the final reconstructed images, affecting 
their clarity and overall reliability. 

Since the noise in the projection images is a mixture of all noise contributors - photon 
shot noise, readout noise, dark current noise, and other influences, the distribution of the 
noise in the projection domain is unknown. The first goal of this thesis is to determine 
the noise model. B y understanding the characteristics and distribution of the noise, it 
becomes possible to select effective denoising strategies. 

3.1. Statistical analysis of noise in bright frames 
For estimation of the noise model in the projection domain, the set of bright field images 
taken by the high-resolution C T system Rigaku nano3DX equipped with a C C D camera 
was analyzed. 

Rigaku nano3DX is an X-ray microscope that operates in quasi-parallel beam geom­
etry, which means that the sample is placed very close to the detector. This microscope 
allows a very high resolution due to a high-resolution detector, an X-ray source wi th large 
stability of the output intensity, and a high-precision sample stage. The spatial resolution 
in 2D can reach up to 0.27 /j,m and in 3D the resolution of 0.8 /xm is achieved. The Rigaku 
nano3DX also performs high-contrast imaging wi th an ultra-wide field of view [62]. 

Bright-field image refers to an image without any sample present. For analysis of the 
noise, nine sets of bright field images were captured under different exposure times - from 
1 second to 40 seconds. Each set is consisting of 10 frames sized 1 250 px 1 x 1 648 px. The 
material of the target was copper. The analysis was performed in M A T L A B [63]. 

The workflow for statistical analysis of the noise in bright fields is following: 

1. loading of the bright frames for certain exposure time (fig. 3.1 (a)), 

2. normalizing the data range to interval (0,1), 

3. removing of outliers and hot and cold pixels from the frames, 

4. calculating the average frame from the set (fig. 3.1 (b)), 

5. subtracting this average frame from the set for obtaining noise data (fig. 3.1 (c)), 

6. calculating the statistical moments from the subtracted noise and displaying statis­
tical plots. 

Since the original images are 16-bit, the normalization is done simply by converting the 
images to double precision (divide the values by 2 1 6 ) . The outliers in the frames are 
present in the images in the form of impulse noise. This noise is caused mainly by the 
dead and hot pixels in the camera, scattered radiation, dust particles, or cosmic rays. For 

xpx = pixels 

28 



3. ESTIMATION OF THE NOISE MODEL IN THE PROJECTION DOMAIN 

detecting the outliers in this analysis, the method using percentiles is performed. This 
method detects a pixel value as an outlier if the value is below some given lower percentile 
or above the given higher percentile. B y this method, about 3% of pixels in each set are 
detected and replaced wi th the nearest non-outlier value. After this procedure, simply by 
averaging the frames in each set, the mean frame is calculated and subtracted and only 
the pixel values corresponding to noise are left (fig. 3.1 (c)). 

Figure 3.1: A n example of a bright field image taken under exposure time of 15 s (a) 
and a mean frame calculated from the set of 10 frames for 15 s (b). For statistical 
analysis, the mean frame is subtracted from the set to obtain the noise data (c). 

Now, the statistical analysis of the noise values can be performed. The first thing, that 
can be analyzed is the normality of the data. Since the data is very large for performing 
statistical tests (1250 x 16 480 of values for each set), only the statistical plots wi l l be 
visualized. Also, the statistical moments wi l l be calculated. 

The normality of the data wi l l be analyzed using two plots - a Q-Q plot and a his­
togram. A Q-Q plot (quantile-quantile plot) is a graph used to determine whether a set 
of values follows a particular probability distribution. The quantiles of the observed data 
are plotted against the quantiles of a theoretical distribution, typically the normal distri­
bution. For the construction of a Q-Q plot, the observed data is first sorted in ascending 
order, and then the quantiles are calculated. The theoretical quantiles of the selected dis­
tr ibution are plotted on the x-axis and the observed quantiles are plotted on the y-axis. 
If the observed data is normally distributed, the points on the Q-Q plot are expected to 
lay in a roughly straight line. A histogram is another graph representing the distribution 
of the data. On the x-axis of a histogram, there is the range of values for the variable 
which is divided into intervals, called bins. The y-axis represents the count of observations 
falling within each bin. The bins are regularly spaced. Histograms are commonly used in 
data analysis to examine the shape, center, and spread of the data. The shape of the his­
togram can provide insights into the underlying distribution of the data. A symmetrical, 
bell-shaped histogram suggests that the data may be normally distributed. 

Based on the theoretical introduction to both of these statistical plots, it is possible to 
evaluate the outcomes. In figure 3.2 the Q-Q plot of noise data for each exposure time is 
shown. It is obvious, that wi th exposure times higher than 10 seconds, the points nicely 
follow the straight line corresponding to the normal distribution. For lower exposure times 
- 1 s, 5 s, and 10 s, the deviation from the straight line is larger. The biggest deviation is 
for 1 second exposure time but is decreasing wi th higher exposure time. To support this 
assumption, the mean square error 2 (MSE) of the quantiles of normal distribution and the 

2 M S E = i £ r = i ( ^ - ^ ) 2 
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quantiles of observed data is calculated. The results are listed in table 3.1. The histograms 
are shown in figure 3.3 wi th fitted normal distribution. The same outcomes as for Q-Q 
plots can be stated for histograms - the largest difference between the histogram of normal 
distribution and the histogram of observed data can be seen for a 1-second exposure. The 
higher the exposure, the closer is the experimental histogram to the theoretical one. 

10 s 

15 s 20 s 25 s 

30 s 35 s 40 s 

Figure 3.2: Q-Q plots of noise data for each exposure time versus normal distribution. If 
the data is normally distributed, the points are expected to follow a dashed straight line 

corresponding to the normal distribution. 

Figure 3.3: Histograms for each exposure time and fitted histograms for normal 
distribution - a symmetrical, bell-shaped histogram. 
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Next, the statistical moments of the noise data are calculated - the mean value, 
variance, and kurtosis. Also, the mean value of the signal in each set is calculated. The 
results are listed in table 3.1. 

Table 3.1: Results from statistical analysis of the bright field images. 

Noise mean 

value 

Noise 

variance 
Kurtosis 

M S E of 

Q Q plot 

Mean value 

of the signal 

1 s -7.114-10" 2 2 8.307-10" 7 2.631 0.00190 0.0823 

5 s -2.113-10" 2 0 3.028-10" 6 2.757 0.00078 0.1536 

10 s 6.295-10" 2 0 5.833-10" 6 2.828 0.00045 0.2433 

15 s -6.366-10" 2 0 8.663-10" 6 2.869 0.00028 0.3328 

20 s -1.897e-10" 2 1 1.151-10"5 2.896 0.00021 0.4223 

25 s 3.898-10" 2 0 1.436-10"5 2.913 0.00020 0.5116 

30 s -7.976-10" 2 0 1.721-10"5 2.927 0.00016 0.6007 

35 s 5.700-10" 2 0 2.006-10" 5 2.939 0.00015 0.6897 

40 s -4.087-10" 2 0 2.289-10" 5 2.946 0.00012 0.7786 

The mean values of the noise for each exposure time can be assumed to be zero since 
the numbers are small. Several other things can be observed from the statistical moments 
listed in table 3.1. The kurtosis of noise in each frame is close to the number 3, which 
is the kurtosis for the normal distribution. The biggest deviation from 3 is for 1-second 
and 5-second frames and is decreasing with higher exposure time. The closest kurtosis 
to the ideal value of 3 is in a 40-second bright frame. The M S E of the two quantiles is 
decreasing. These results are in agreement wi th the conclusions based on the Q-Q plots 
and histograms. Another critical remark is, that the variance depends on the signal values 
and is increasing. These relations wi l l be shown graphically in figure 3.4. 

The graphs in figure 3.4 validate the assumptions made - the higher the exposure 
time, the higher the signal, and the closer the distribution of the noise to the normal 
distribution. From the plot 3.4 (a), it is clear that the noise variance is linearly dependent 
on the exposure time. To determine this dependence based on the signal value and not 
on the exposure time, the relation between the noise variance and the mean value of the 
signal wi l l be shown (fig. 3.5). The correlation coefficient R between the mean values of 
the signal and noise variance was calculated, and the value is R — 1. Thus, this relation 
is perfect positive linear and can be expressed wi th a formula 

a2(y(x)) = 3.17 • l^y(x) - 1.85 • 10" 6 . (3.1) 

A n important thing to notice is, that the straight line in the plot 3.5 doesn't cross the 
origin. Theoretically, if the signal is zero, the variance would be negative, which doesn't 
make sense from a mathematical point of view. This problem wi l l be discussed in the 
next section. 

31 



3.1. STATISTICAL ANALYSIS OF NOISE IN BRIGHT FRAMES 

x 1 0 

2.95 

2.9 

2.85 

CO 
'8 2.8 

e 
5 2.75 

2.7 

2.65 

2.6 • 

15 20 25 
Exposure [s] 15 20 25 

Exposure [s] 
(a) (b) 

x10" ' 

10 15 20 25 
Exposure [s] 

30 35 40 15 20 25 
Exposure [s] 

(d) 
Figure 3.4: Results from table 3.1 shown graphically. The relations are between (a) 

exposure time and variance of the noise - linear dependence, (b) exposure time and the 
mean value of the signal in the bright frames - linear dependence, (c) the kurtosis of the 
noise data and the exposure time - the deviation from the value 3 corresponding to the 

normal distribution is decreasing wi th higher exposure times, (d) mean square error 
(MSE) of the Q-Q plot and exposure time - the M S E is decreasing wi th higher exposure 

time. 

0.2 0.4 0.6 0.8 
Mean value of the signal 

Figure 3.5: The relation between the mean signal value of frames and the noise variance 
- linear dependency. 
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Based on the stated outcomes the assumption can be made, that in the range of 
analyzed exposure times the noise in each bright frame can be assumed as zero mean 
Gaussian noise. However, the noise is signal dependent - the variance of the noise varies 
wi th the signal. Based on the theory discussed further in this chapter it is clear, that 
this behavior is typical for mixed Poisson-Gaussian distribution. The Poisson part of the 
noise represents the influence of the number of detected photons - the signal-dependent 
photon shot noise and the Gaussian part of the noise corresponds to the signal-independent 
readout noise, darkcurrent noise, etc. 

The same procedure has been done also for molybdenum target bright frames (voltage 
50 k V ) . The statistical analysis validated the outcomes stated for copper target bright 
frames. For more information about the outcomes see appendix A . However, it should 
be noted that the noise variance is generally higher in the bright frames obtained using 
a molybdenum target. A s a result, wi th similar measured signal to the copper target 
projections, the molybdenum target ones wi l l appear noisier. 

3.2. Theoretical model 
The image wi th signal-dependent noise can be modeled as [64] 

z(x)=y(x) + <r(y(x))S(x), (3.2) 

where x G X is the pixel position in the domain X, z : X —> M. represents the observed 
signal, y : X —> M. is the noise-free signal, £ : X —> M. is independent random noise wi th 
zero mean and standard deviation of one, and finally a : K. —> M + is dependent on the 
signal y and influences the standard deviation of the whole noise component. 

From the experimental results, the assumption was made, that the noise in analyzed 
images can be modeled as a mixture of two mutually independent parts: a Poissonian noise 
r]p, which is signal dependent, and signal independent Gaussian noise TJG- W i t h Poisson 
distribution, the photon shot noise can be modeled (see section 2.2.4) and on the other 
hand, the readout noise and dark current noise are described wi th Gaussian distribution 
(see section 2.2.1). Thus, the second part of the equation 3.2 can be rewritten as [64] 

<r(y(x))£(x) = r]p{y{x)) + rjG(x), (3.3) 

where 

r]G(x) ~ Af{0, b), -(y(x) + vP{y{x))) ~ Vo{-y{x)). (3.4) 
a a 

The a > 0 and b > 0 are real scalar parameters. The term a stands for the photon shot 
noise parameter as per the quantum efficiency of the sensor. The larger the parameter 
a, the higher the number of incident photons to generate a signal. W i t h larger b the 
Gaussian noise has a bigger impact on the image [65]. 

As stated before, the mean value and variance of the Poisson distribution are equal, 
so it can be obtained 

E (-(y(x) + r)p(y(x)))\ = var (-(y(x) + r)p(y(x)))\ = -y(x). (3.5) 
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This equation can be rewritten using the relations for mean values and variance 3 . So, the 
left side of the equation (3.5) can be rewritten as [65] 

E (-(y(x) + Vp(y(x)))) = -y(x) + -E (vP(y(x))) = -y(x), (3.6) 

and the right side of the equation (3.5) can be expressed as [65] 

fl \ 1 1 
var -(y(x) + r]p(y(x))) = —var(r)p(y(x))) = -y(x). (3.7) 

\a ) az a 

Therefore, these relations can be obtained 

E (Vp(y(x))) = 0, var(?7p(y(x))) = ay(x). (3.8) 

The equation for variance proved, that r\p has varying variance depending on the value of 
y(x). Therefore, the overall variance of z can be written as [64] 

a2(y(x)) = ay(x) + b. (3.9) 

This is a very straightforward formula. From the theoretical point of view, this formula 
gives the behavior of the noise depending on the signal. For example, when the signal 
is zero, the variance is cr2(0) = b, so only the signal-independent noise caused by the 
detector and hardware is present. O n the other hand, when the signal approaches the 
value 1 as the largest value of a pixel, the variance is cr 2 (l) = a + b, so these pixels are 
affected by both noises. 

From the practical point of view, the Poisson distribution can be approximated wi th 
the Gaussian distribution (see section 2.2.4). This approximation is accurate for a large 
number of detected photons [64]. In the previous section there is shown, that with expo­
sure times higher than 1 second, the approximation can be used. So overall the noise in 
the images can be modeled wi th normal distribution, such as 

rjh(x) ~ Af(0,ay(x) + b). (3.10) 

When comparing the variance of the obtained distribution a2 = ay(x)+b and the variance 
3.1 derived from statistical description, there are certain dissimilarities. In the estimated 
variance the b is negative, which means that based on the earlier statements, the variance 
in a dark frame (an image captured in complete darkness, where y(x) = 0) would be 
also negative. Since the variance is always positive, this result would not make any 
sense. However, in real life, the model in equation (3.10) is not accurate and the digital 
imaging sensor's hardware must be taken into consideration - especially the so-called 
pedestal parameter. The charge, that is collected by the sensor is not processed as it 
is but is always added to some „pedes ta l" level po G M + . This characteristic can be 
mathematically expressed as a shift representing an offset-from-zero in the argument of 
the signal-dependent part of the noise [64] 

z(x) = y(x) + cr(y(x) - po)£(x) = y(x) + rjp(y(x) - p0) + rjG. (3.11) 

3E(X + Y) = E(X) + E(Y), E(a) = a, var(a + bY) = b2 var(F), a, b G K 
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W i t h the definition of the pedestal parameter in place, the variance can be rewritten (in 
a simplified way) to 

(T2(y(x)) = ay(x) + b - ap0. (3.12) 

Note that the signal-in dependent part can be negative when there is a big pedestal po-
For evaluation of the lowest captured signal possible, therefore for validating the ex­

istence of pedestal parameter, the dark frames wi l l be analyzed. The mean value of the 
signal in the dark frame for the C u target is 0.0649 and in the dark frame for the M o 
target it is 0.0648. Therefore, the mean values in dark frames are independent of the 
target material. Practically, this value corresponds to the pedestal parameter itself - the 
lowest signal that can be captured. 

Since the noise according to the noise model wi l l be simulated in artificial images, the 
pedestal value should be added to the pixel values in the images to prevent the negative 
variance for some pixels. So overall, the noise variance can be modeled as 

a2(y(x)) = (3.17 • 10~5y(x) + 0.06) - 1.85 • 10" (3.13) 

corresponding to the signal-dependent mixed Poisson-Gaussian distribution. The appear­
ance of the noise is shown in figure 3.6. 

(a) (b) 

Figure 3.6: A n example of an image with simulated noise according to the noise variance 
model (a) and the noise added to the image (b). The noise-free image is adapted 

from [64]. 

Noise model validation 

For validation of the determined noise model, the comparison between the real noise 
present in the bright field images and simulated noise according to the noise variance 
model wi l l be performed. For that purpose, in each mean frame (in which the noise 
is considered to be reduced) the artificial noise was simulated using the formula (3.1). 
Afterward, the mean frame was subtracted for obtaining only the simulated noise values 
and variance was calculated. The differences between the noise variance of the artificial 
noise and the noise variance determined in the statistical analysis are very small - the 
largest difference is 7.46 • 10~ 8 . 

For comparing the appearance of the simulated and measured noise, a vertical stripe 
from the middle of each noise matrix was taken and placed in the final noise image. These 
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stripes were arranged in the image according to the exposure time - from lower to higher. 
This way a noise image, which contains contributors for each exposure time was generated. 
One image was generated for simulated noise (fig. 3.7 (b)) and one for measured noise 
(fig. 3.7 (a)). These two noise images were compared in line-profile plots (fig. 3.7 (c)) 
going through the middle of both images. 

Upon closer inspection of the measured noise in figure 3.7 (a) and simulated noise 
in 3.7 (b) it can be concluded that the measured noise is slightly stronger although the 
variances are similar. Subjectively in the measured noise data, clusters of brighter and 
darker pixels appear creating a pattern. This indicates potential detector sensitivity or 
hardware imperfections. The artificial noise has a perfect normal distribution and these 
influences are neglected. Since the noise is randomly distributed, the profile plots in the 
figure 3.7 (c) are not identical, but simultaneous changes are visible in the noise standard 
deviations. 

I s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 s • I s 5 s 10 s 15 s 20 s 25 s 30 s 35 s 40 s 
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(c) 
Figure 3.7: A noise image generated using noise data from measured bright frames (a) 
and noise image of simulated noise (b) for each exposure time, (c) profile plot of lines 

going through the middle of the images (a) and (b). 
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4. Noise reduction approaches in computed 
tomography 

As mentioned earlier, noise is a constant factor in every measurement and can in­
troduce challenges in interpreting reconstructed images. Hence, it becomes essential to 
employ effective techniques and strategies for noise reduction in C T imaging. These meth­
ods are crucial for improving image quality, and clarity of details, and enabling further 
processing such as segmentation. 

The denoising methods used in the computed tomography process can be divided into 
three large groups [66]: 

• projection-based methods, 

• reconstruction-based methods, 

• tomogram-based methods. 

The projection domain-based methods are performed on the raw projection data or sino­
gram, so the denoised images enter the reconstruction process. This approach can be 
beneficial since the noise variance model is known and the denoising algorithms adapt ac­
cording to it. However, in projections, there is usually not very high contrast, especially 
when low-attenuating samples are measured (see figure 4.1). W i t h a lack of sharp tran­
sitions between different materials and soft tissues, the algorithms may produce images 
wi th blurred edges and details. 

Figure 4.1: A n example of a projection image of a mouse embryo sample from Rigaku 
nano3DX. 

The methods in the second group mainly refer to the regularised iterative recon­
struction techniques. The use of noise statistics directly in projections throughout the 
reconstruction process is a benefit of these approaches, however, the cost of computing is 
a serious drawback. 

Tomogram domain denoising methods operate directly on the final reconstructed slices. 
Some of these methods can reduce the noise effectively while preserving edges and spatial 
resolution and improving the overall image quality. But on the other hand, they can 
lead to the enhancement of artifacts (such as ring artifacts) and to introducing blocking 
artifacts and further imperfections due to the non-stationarity of the noise [66], [67]. 
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Authors are usually focusing on just one domain, where they perform denoising, but 
no comprehensive study on comparison of these approaches has been done and this is 
another goal of the thesis. The focus is on the comparison of projection-based denoising 
and tomogram-based denoising. 

The experiment consists of several stages. First , selected algorithms are tested on 
simulated projections of an artificial phantom. The same algorithms are then used for 
denoising in the tomogram domain of the phantom. A l l results are compared after re­
construction in the tomogram domain, both subjectively and objectively, through visual 
inspection and image quality metrics. From each domain, the best approaches are selected 
and tested on the measured submicron C T datasets from Rigaku nano3DX. 

The algorithms, that are used in this experiment, were selected based on the literature 
review in the section 2.3. From each group, a representative/representatives were chosen, 
mainly based on their popularity or potential for noise reduction while preserving edges, 
details, and spatial resolution. In high-resolution C T data, the preservation of these 
characteristics is crucial. The tested algorithms, that work wi th two-dimensional data 
are the wiener filter, median filter, non-local means filter, Split Bregman-ROF method 
[68], wavelet filter, S A - D C T method [ ], and B M 3 D [70]. Also, algorithms for three-
dimensional datasets are tested - median for 3D data, non-local means for volumetric data 
[38], C A N D L E method [ ], and B M 4 D [ ]. The wiener filter, median filter, non-local 
means method, and wavelet filter are implemented directly in M A T L A B . Additionally, 
this chapter covers short introductions to the selected algorithms, software packages for 
C T reconstruction, and metrics, that are used for objective evaluation of the algorithms' 
performances. 

4.1. Introduction to selected denoising algorithms 
In this section, the basic ideas behind each selected algorithm are discussed. A short 
introduction can be found in the section 2.3, but here the principles are described in more 
detail to understand the differences between the algorithms. 

The Wiener filter is the first algorithm, that belongs to the spatial domain filtering -
the method works directly wi th the image matrix. The Wiener filter is an adaptive linear 
filter minimizing the mean square error (MSE) between the estimated image and the input 
image in a least-squares sense. It takes into account both the statistical properties of the 
signal and the noise and it estimates the denoised image as a linear combination of these 
properties satisfying the minimal M S E [71]. 

Another filter, that works in the spatial domain, is the median filter. The basic 
principle of this filter is described in the section 2.3. This algorithm can be easily extended 
to the third dimension - the window is considered to be a cube. 

The next method is the non-local means filter. This method is more complex. A win­
dow of a certain size is centered on each pixel in the image. Then, the pixel values wi thin 
an examined window are compared to the pixel values in other windows located elsewhere 
in the image. The similarity between the windows is computed using a distance metric, 
such as the Euclidean distance. The most similar windows are used for calculating the 
weighted average, with weights according to the level of similarity. Finally, the filter 
replaces the center pixel within the examined window with the averaged value [34]. 
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The extension of the non-local means algorithm for the 3D datasets is included in the 
testing. This method uses 3D windows - voxels to compute the weights. Because the 
datasets for processing are usually very large, some simplifications needed to be adapted 
in the filter. These simplifications mainly relate to the approximation of the Euclidean 
distance, preselection of the voxels for computation of weights, or blockwise computa­
tion [38]. 

The C A N D L E algorithm is the last one from the spatial domain denoising group. The 
first step in this method is to perform Anscombe variance stabilization on two images -
the original input image and the input image after median denoising. The main procedure 
of the method is based on the non-local means for 3D datasets, but it uses the denoised 
image by median filtering for computing the similarity between the patches instead of the 
noisy image. After processing each pixel, the inverse Anscombe transform is performed 
to get the result [39]. 

The only representative from the group of methods based on the total variation is 
the Split Bregman R O F method. It is a variation of the Rudin-Osher-Fatemi (ROF) 
model, which is based on total variation (TV) regularization. The Split Bregman-ROF 
method works by minimizing an objective function containing the denoised image, the 
noisy image, the total variation of the denoised image, and the regularization parameter 
that controls the trade-off between the data fidelity term and the total variation term. 
The T V term in the minimization suppresses the oscillations of the solution, but it does 
allow the solution to have discontinuities. Split Bregman is one of the efficient solutions to 
this minimization problem wi th the total variation. The solution is based on the iterative 
Bregman method [68]. 

Next are the transform-based methods, and the first representative is the wavelet filter. 
The wavelet filter works by first decomposing the image into different frequency sub-bands 
using a wavelet transform through the use of the basis function. The wavelet transform is 
a mathematical operation (similar to the Fourier transform) that breaks down an image 
into different frequency components at different scales. The high-frequency sub-bands 
correspond to image details, while the low-frequency sub-bands correspond to the overall 
image structure. The noise components are identified, thresholding to the coefficients in 
each sub-band to remove the noise is performed to suppress the noise, and the signal is 
reconstructed [72]. 

The Shape-Adaptive D C T ( S A - D C T ) method uses another famous operation - the 
discrete cosine transform. This transform is used for computing a sparse representation 
of image blocks and can be used for denoising, but usually fails to restore image edges 
and details. The method S A - D C T was developed as a solution to this problem. The 
algorithm works by first dividing the noisy image into overlapping patches. However, 
unlike the traditional D C T denoising method, the S A - D C T method uses a different set of 
basis functions for each block based on the local image structure. The basis is obtained 
by analyzing the gradient of the image in a window surrounding the patch. Once the 
shape-adaptive D C T is computed for each patch, a thresholding operation is applied to 
the coefficients in the spectra to remove the noise. The threshold is adaptively chosen for 
each coefficient based on a noise estimate derived from the noisy image. The denoised 
image is obtained by taking the inverse shape-adaptive D C T of the thresholded coefficients 
for each patch and merging the patches to form the final image [17]. 

Another transform-based method is the B M 3 D - Block Matching and 3D Filtering. 
The first stage of the process is similar to the non-local means algorithm. The image is 
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divided into small overlapping blocks, which are then compared to each other using some 
similarity metrics, usually the mean squared error or Euclidean distance. After identifying 
the group of similar blocks, the 3D transform is applied. The transform results in a 3D 
signal, that contains information about both the spatial and inter-block similarities. The 
spectrum is highly sparse, allowing clear separation between the noise and the signal. 
A thresholding operation (soft and hard thresholding, or Wiener filtering) is performed 
on the spectrum to suppress the noise, and the modified signal is transformed back by 
inverse 3D transform [48]. 

In the method B M 4 D , the principle stays the same, but the overlapping blocks are 
cubes of voxels. These cubes are stacked in a 4D group and the 4D transform is applied. 
The transformation leads to a highly sparse spectrum, where the noise and the signal can 
be separated, either by thresholding or Wiener filtering. Then the 4D inverse transform 
is performed to get the denoised dataset [52]. 

4.2. Software packages for tomographic reconstruction 
Although the mathematical basics for both analytical and iterative reconstruction meth­
ods are very straightforward (see section 1.4), their computer implementation brings many 
challenges and is not always easy. Fortunately, numerous commercially available software 
packages are developed providing a wide range of implemented algorithms from which 
a user can select. The user only sets the parameters of these algorithms, which carry out 
the computation internally [ ]. 

Maybe one of the most popular packages is the All Scale Tomographic Reconstruction 
Antwerp (ASTRA) Toolbox. It is a platform developed jointly at the University of Antwerp 
in Belgium and the Centrum Wiskunde Informatica (CWI) in Amsterdam. The majority 
of the package is written in C + + and the C U D A language is used to offload the most 
computationally demanding tasks to the G P U (Graphic Processing Units) card. The 
G P U provides acceleration of the calculations. The user has access to the package easily 
through M A T L A B and a Python interface [ ]. For all reconstruction in this work, only 
the A S T R A Toolbox in M A T L A B is used. 

A S T R A Toolbox is flexible, efficient, and easy to use. It is mainly developed for 
research purposes - it supports various non-conventional beam geometries, modeling mis­
alignments, or multi-directional tilt series. The projections or volume data need to be 
stored in data objects wi thin the toolbox in order to perform calculations on this data. 
First , the memory needs to be allocated for the input dataset and then it is copied from 
the user layer to lower layers within the toolbox. Every such procedure returns a special 
identifier or handler, that refers to the data. The information about the corresponding 
scanning geometry of the system is linked to these data objects. The volume geometry sets 
the voxel grid for the reconstruction. The projection geometry represents the positions of 
the X-ray source and detector relative to the volume geometry. In the projection geome­
try, the information about the size and number of pixels in the detector are involved, as 
well as the geometry of the beam. Standard geometries implemented in the Toolbox are 
the parallel beam and fan beam for 2D geometry, and the parallel beam and cone beam 
for 3D (see section 1.3). However, flexible geometries are available in the Toolbox. The 
user can specify an unusual geometry using a series of vectors - this is called vector-based 
geometry [73], [71]. 
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A wide range of reconstruction algorithms is available wi thin the Toolbox. It offers 
analytical reconstruction methods - F B P for parallel and fan-beam geometry, F D K for 
cone geometry, and some iterative reconstruction techniques - A R T , S A R T , SIRT, and 
C G L S . The configuration of the algorithms can be done by l inking the identifiers of the 
geometries and data, and by the configuration of the algorithm's specific parameters (filter 
for F B P and F D K , number of iterations for iterative techniques) [73], [71]. 

A S T R A Toolbox can be also coupled to other software packages. A n example of this 
inclusion is the TomoPy software package. It combines a powerful reconstruction using 
A S T R A Toolbox wi th the complex and user-friendly pre-processing and post-processing 
methods [75]. 

4.3. Metrics used for evaluation 
To get relevant and comparable results from the testing of denoising algorithms, some 
quality assessment of the final images is needed. The quality assessment methods can 
be divided into two groups: subjective and objective methods. The first group requires 
human observers in the evaluation process and since they are the final users, this image 
quality assessment is the most reliable and accurate. O n the other hand, it is very slow, 
expensive, impractical, and highly dependent on the observer. Therefore, it is beneficial to 
develop objective methods - usually mathematical models, that can substitute the human 
factor in the process but predicts the evaluation in agreement wi th the subjective method. 
The objective methods can be further divided based on the availability of a reference image 
(an image without any distortions) into three groups: 

• full-reference metrics, 

• reduced-reference metrics, 

• no-reference metrics. 

For the full-reference quality assessment, the whole reference image is needed. For the 
reduced-reference metrics, only partial information about the reference image is available 
and as the name suggests, the thi rd category refers to methods, where the reference image 
is not accessible. These methods are highly useful in practice since the distortion-free 
image doesn't always exist in many real-life applications [76], [77]. 

In this section, some metrics relevant to the assessment of the final images are intro­
duced as well as their usage, advantages, and drawbacks. From the group of F R metrics, 
it is - structural similarity index (SSIM), mean squared error ( M S E ) , and peak-signal-
to-noise ratio ( P S N R ) . In addition to these three metrics, the metric for assessment of 
segmentation - the Dice similarity coefficient wi l l be introduced. 

4.3.1. Full-reference metrics 
A s stated before, the methods in this group are based on the comparison between the 
perfect distortion-free reference image and the evaluated image. These methods usually 
use mathematical models and formulas, that are fast and easy to understand, compute 
and implement. The three metrics discussed here - SSIM, M S E , and P S N R , are well-
known and well-established in the topic of image processing. M S E and P S N R operate 
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only wi th the intensities of the pixels, on the other hand, S S I M is a higher-level metric, 
which compares the overall similarity between the images. Therefore, each metric captures 
different aspects of image accuracy and perceptual similarity. B y combining these metrics, 
the evaluation of noise reduction techniques can be made from different perspectives. 

Mean squared error ( M S E ) 

The mean square error is a simple metric, that estimates, how different is the test image 
from the reference one - it provides a measure of overall pixel-level distortion. The formula 
is very easy - it is averaged squared difference between the test image / and the reference 
image / , both sized M x N and can be expressed as [76] 

y=Mx=N 2 

y=l x=l 

The lower the M S E value, the closer is the test image to the reference one. The ideal 
value would be zero. 

Even though the M S E is a popular and well-established metric, it has some disadvan­
tages, that need to be acknowledged. Since it is a metric based on pixel-wise differences, 
it can lead to a lack of perceptual relevance. Also, it is very sensitive to outliers, meaning 
that a few pixels that have a much larger difference than the others can have a dispropor­
tionate impact on the M S E , making it less useful as a measure of overall image quality [76]. 
However, the M S E value is very simple to interpret but usually, other metrics are needed 
in addition to M S E to fully evaluate image quality. 

Peak-signal-to-noise ratio ( P S N R ) 

The P S N R is another commonly used metric for evaluating the quality of degraded images 
and quantifying the amount of noise present. It measures the ratio between the maxi­
mum possible power of a signal (the "peak signal") and the power of the signal's noise 
(the difference between the original and the compressed or degraded signal). It can be 
expressed mathematically as [76] 

P S N R = 1 0 1 o g ( ^ ) - <42> 
where P is the maximum possible pixel value of the distorted image. It is calculated in 
decibels. The higher the P S N R , the better the quality of the distorted image. 

Unlike the M S E , the P S N R doesn't depend on the intensity range of the image. It 
is a relative metric - it can be compared across different datasets. The disadvantages of 
P S N R are similar to the ones discussed in the case of M S E , but P S N R is considered to 
be a better indicator of the perceived quality of an image [77]. 

Structural similarity index (SSIM) 

This metric is much more complex than the M S E and P S N R . S S I M is a perceptual-
based metric considering the structural changes in the distorted image. It is designed 
to measure the structural similarity between two images, taking into account both the 
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luminance (brightness) and contrast of the images, as well as their structure (edges and 
texture). The formula is given as [78] 

(2ufUf + C1)(2<Ttt + C2) 
S S I M ( ^ ) ^ ^ ; ^ + C i ) ^ ^ + ^ , ,4.3) 

where the (if, (if are mean values of signals / and / , are standard deviation and 
a^ is a covariance of the pixel values of the signals. The constants C\ and C2 are small 
positive numbers for stabilization. The S S I M index is bounded and the maximum value 
1 is achieved only if / = / . 

The S S I M is more sensitive to human perception of image quality than metrics such as 
M S E and P S N R , and can better evaluate subtle differences in image structure and texture, 
but can be computationally demanding when large datasets are compared [76], [' ]. 

Dice similarity coefficient 

The Dice similarity coefficient is a statistical method used to compare the similarity 
or dissimilarity between two sets of data. Usually, the performance of segmentation 
algorithms can be evaluated - the similarity of two binary images is being compared. The 
Dice similarity coefficient (DSC) measures the spatial overlap and the formula can be 
expressed as [79] 

D S C ( F , F ) = 2 ( F n F ) (4.4) 
F + F 

where F, F are two binary images being compared. The coefficient ranges from 0 to 1, 
where 0 means no similarity and 1 means a perfect match. A value of 0.5 indicates a 50% 
overlap between the two sets [79]. 

4.4. Phantom denoising 
The first stage of this experiment is focused on the artificial phantom dataset - foam 
phantom [80]. The phantom dataset consists of a cylinder made of a single material wi th 
many non-overlapping spheres inside made of other materials. This dataset was chosen, 
because it offers many advantages. One of the advantages is that the phantom consists 
of many features, which makes the dataset challenging for obtaining exact reconstruction 
and can be a good representative of real-life samples (see fig. 4.2). The phantom dataset 
can be modified according to the user's needs - a custom number of projections, width, 
and height of the projections, or the difficulty of the phantom in terms of the number of 
spheres generated inside of the cylinder [80]. 

Using a simulated dataset offers the advantage of evaluating the tested denoising algo­
rithms on simulated noise and comparing the results to ground truth using full-reference 
metrics. This allows a proper comparison of approaches for noise reduction in both pro­
jection and tomogram domains. 

For this task, a foam phantom dataset of 360 projections sized 512 px x 512 px was 
generated. A slice of the ground truth volume of the cylinder is shown in figure 4.3 (a). 
The generated noise-free projections were reconstructed using the F B P reconstruction 
algorithm from the A S T R A Toolbox wi th the Ram-Lak filter and the corresponding slice 
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Graphite foam Liquid foam Generated foam phantom 
(Evans er a/., 2019) (Raufaste et al., 2015) 

Figure 4.2: Examples of tomograms of foam-like real samples on the left and middle 
image, the generated foam phantom on the right image. Adapted from [80]. 

is shown in figure 4.3 (b). The reconstruction itself changed the appearance of the slice -
the contrast is decreased, and some features (red arrows in the figure 4.3 (a), (b)) are lost. 
There are also visible typical artifacts from analytical reconstruction, such as streak-like 
artifacts on the edges of the image and noise. 

For testing of the denoising algorithms, artificial noise was generated in the projection 
domain in two levels - a lower level of noise, which was generated according to the noise 
variance model (3.13) described in the previous chapter, and a higher level of noise, 
where the noise variance was additionally multiplied 10 times. The higher level of noise 
corresponds to a non-ideal measurement or the influence of the molybdenum target. B y 
denoising of the higher level noise, the robustness and complexity of the algorithms and 
the range of their usage can be tested. The reconstructed slices from both sets of noisy 
projections using the F B P algorithm are shown in figure 4.3 (c), (d). 

As stated in the introduction to this chapter, first, the denoising algorithms are tested 
on the projections of both noisy datasets. The algorithms are evaluated based on full-
reference metrics, time duration, subjective evaluation, and line-profile plots. The metrics 
used for the comparison are S S I M , P S N R , M S E and Dice similarity coefficient (DSC) . The 
same procedure is repeated in the tomogram domain. In both domains, the metrics are 
evaluated in the tomograms wi th the ground truth volume as a reference to get comparable 
results. 

4.4.1. Denoising in the projection domain 
The denoising in the projection domain is straightforward because the noise distribution 
and variance model are known, making it easy to set the algorithms' parameters. Al though 
the noise is signal-dependent, and the variance changes throughout each projection, the 
changes are not significant in the region of interest (ROI) of the sample. Therefore, 
algorithms should work efficiently without requiring additional pre-processing. 

Each of the selected algorithms has various parameters that can be adjusted to max­
imize their performance. The following methods have the noise variance or standard de­
viation as part of their settings: Wiener filter, non-local means (nlm), S A - D C T , B M 3 D , 
B M 4 D , C A N D L E , and non-local means 3D ( N L M 3 D ) . The universal optimal parameters 
for both noise levels were determined so that the full reference metrics would produce the 
best results with noise-free projections as a reference. These parameters are presented 
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(c) (d) 
Figure 4.3: A slice of the ground truth volume of the foam phantom dataset (a), 

a corresponding reconstructed slice using F B P reconstruction algorithm from noise-free 
projections (b), a reconstructed slice using F B P algorithm from projections wi th 

generated artificial noise according to the noise variance model (c), a reconstructed slice 
using F B P algorithm from projections wi th generated noise according to the noise model 

multiplied by 10 (d). Central regions of the images are zoomed in. 

in Appendix B . The parameters remain the same for both noisy datasets, with only the 
noise variance/standard deviation changing, as the sample itself is the same. 

Once the most suitable parameters were found, the range of projections (generally 
the angle range) to be processed at once was established for the 3D algorithms. This 
was done similarly - the results were compared to the noise-free projections. The angle 
range for median filter was set to (0°, 60°) and for the B M 4 D method it was (0°, 36°). 
For C A N D L E filtering, the whole dataset can be processed, since the algorithm has its 
internal function to divide the input 3D data into batches of 64 projections. The non-local 
means 3D method was applied to the full 180° angle range of projections, but it should 
be noted that memory issues may appear with larger datasets. 

After applying denoising to each set of projections, the datasets were reconstructed 
using the F B P algorithm from the A S T R A Toolbox. The Ram-Lak filter was used in 
the reconstruction, so the noise in the reconstructed slices is not modified by the filter 
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in any way. Then, the reconstructed volume was compared to the ground-truth volume. 
The results of full-reference metrics are listed in Table 4.1. Furthermore, the outcomes 
of these metrics for the noisy datasets and the reconstruction from noise-free projections 
are also included in the table. 

Section 1.5.2 describes how averaging of projections can be used in the projection 
domain to suppress noise. This approach is also employed in the testing to assess whether 
the software-based methods perform better in metrics or time duration. Two datasets 
of projections wi th different noise values were generated and averaged to create a final 
dataset. After averaging, this dataset was reconstructed and the slices were compared to 
the ground-truth volume. This was done for both noise levels. Additionally, the same 
procedure was done for three projections. The results of full-reference metrics are listed 
in the table 4.1 (2 proj., 3 proj.). 

Table 4.1: Outcomes of full-reference metrics for denoising in the projection domain. 
The best results are highlighted in the table - blue for the lower noise level, and yellow 

for the higher noise level. 

S S I M M S E P S N R D S C 

Lower Higher Lower Higher Lower Higher Lower Higher 

noise noise noise noise noise noise noise noise 

noise-free 0.6133 0.0348 20.6044 0.9844 

noisy 0.5286 0.3942 0.0498 0.0939 19.0492 16.2950 0.9814 0.9626 

2 proj. 0.5548 0.4417 0.0456 0.0758 19.4326 17.2220 0.9817 0.9679 

3 proj. 0.5706 0.4714 0.0421 0.0657 19.7751 17.8452 0.9830 0.9748 

wiener 0.5638 0.4213 0.0429 0.0820 19.6959 16.8809 0.9815 0.9631 

median 0.5053 0.4255 0.0570 0.0809 18.4630 16.9410 0.9737 0.9573 

nlm 0.5362 0.5080 0.0482 0.0558 19.1942 18.5551 0.9815 0.9625 

S B R O F 0.6262 0.4579 0.0334 0.0692 20.7804 17.6197 0.9743 0.9659 

wavelet 0.6344 0.5799 0.0318 0.0413 20.9964 19.8593 0.9768 0.9540 

S A - D C T 0.6449 0.5608 0.0301 0.0452 21.2350 19.4723 0.9805 0.9277 

B M 3 D 0.5826 0.5771 0.0395 0.0414 20.0593 19.8462 0.9824 0.9620 

median 3D 0.5357 0.3974 0.0489 0.0921 19.1281 16.3780 0.9749 0.9569 

C A N D L E 0.5589 0.4408 0.0442 0.0751 19.5607 17.2658 0.9805 0.9598 

N L M 3 D 0.6029 0.5406 0.0369 0.0503 20.3515 19.0076 0.9778 0.9652 

B M 4 D 0.5921 0.5912 0.0379 0.0406 20.2383 19.9314 0.9826 0.9646 

In an ideal case, the metrics would have close or even better results than those obtained 
for reconstruction from noise-free projections. The best outcomes are highlighted in the 
table 4.1 - blue for lower noise, and yellow for higher noise. For each metric, the 4 best 
outcomes are highlighted. A n important thing to notice is that wi th better metrics values, 
the Dice coefficient is lower and the other way around. This relationship is linked to the 
degree of noise suppression, where higher noise reduction tends to result in less sharp 
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edges. Thus, finding a compromise between the metrics and the Dice coefficient is crucial. 
Additionally, it is worth mentioning that the metrics align well wi th each other. That 
means, that each result image is consistent in all evaluated features - similarity, noise and 
distortions. 

From the highlighted outcomes for lower noise it can be inferred that although the 
S B R O F , wavelet, S A - D C T , and N L M 3 D methods yield excellent results, the edges appear 
blurred according to the Dice coefficient. The same observation can be made for the higher 
noise level - the wavelet filter and S A - D C T perform very well in terms of metrics, but 
the edges are blurred. For both datasets, the B M 3 D and B M 4 D methods are the best 
compromise between the metrics and Dice coefficient outcomes. 

Another important thing to notice is, how the outcomes of the metrics for each algo­
r i thm changed wi th the higher noise. The smaller the differences, the more adaptable the 
algorithm is to various noise levels. The B M 4 D and B M 3 D methods have the smallest 
differences suggesting their capability to adapt to different measurements. 

Even though the averaging of projections was able to improve the metrics' values, 
the software-based denoising results in better noise suppression according to the metrics. 
O n the other hand, the averaging was able to increase the Dice coefficient, especially 
the averaging of 3 projections have superior outcomes compared to the software-based 
denoising. In conclusion, with higher noise in the projection domain, the averaging of 
three projections can be beneficial, especially when the sample's small features, edges, 
and details cannot be compromised in any way. However, the reconstructed slices may 
still be noisy as the improvement in metrics was not substantial. 

The subjective evaluation of the reconstructed volumes after denoising is based on 
one slice from each dataset, in particular, zoomed regions of the slice are shown - the 
lower noise level denoising in figure 4.5, and higher noise denoising in figure 4.6. The 
selected regions for comparison are illustrated in figure 4.4. The sharpness of the edges is 
compared in line-profile plots in figures 4.7 (a), 4.7 (b). The line-profile plots are drawn 
along the green line in figure 4.4. 

Figure 4.4: A noisy reconstructed slice wi th highlighted regions for analysis of 
algorithms' performances. The yellow and blue squares are used for subjective 

evaluation, the green line is used for line-profile comparison. 
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noisy 2 proj. 3 proj. wiener median non-local SBROF 

wavelet SA-DCT BM3D median3D CANDLE NLM3D BM4D 

Figure 4.5: Zoomed selected regions from the reconstructed slices after denoising using 
tested algorithms in the projection domain with lower noise level. The regions are 

depicted in the figure 4.4. 

First , the subjective evaluation of results in figure 4.5 for lower noise denoising is 
done. Upon closer inspection of the details in the second and fourth row, it can be stated 
that median, S B R O F , wavelet, and S A - D C T filtering lead to the blurring of the dot. 
This blurriness can also be seen in the top row, where the edges of the circles are visibly 
blurred. The median filter is not suitable for denoising in the projection domain, since it 
generates new artifacts. Another thing that can be noticed is that median3D and N L M 3 D 
can preserve the dot detail very nicely, but the circles at the edge of the cylinder become 
slightly more blurred. Based on subjective evaluation, the B M 3 D and B M 4 D methods 
produce the best appearance in the zoomed regions. Wiener filter, non-local means filter 
and C A N D L E also show good results. 

The averaging of projections outcomes has a similar appearance to the noisy regions. 
For the outcome from averaging three projections, a small improvement in noise reduction 
can be observed. 

The same discussion can be made also for the line-profile plot in figure 4.7 (a). The 
lines for the median, S B R O F , S A - D C T , and wavelet filters don't reach high peaks in­
dicating a reduced distinction between the circles. Other filters follow the line in the 
noisy slice, but B M 3 D and B M 4 D improved the contrast - the lines at the beginning and 
the end of the plot reach lower values. The N L M 3 D method exhibits the highest peak, 
indicating sharp transitions. 

Figure 4.6 shows the same regions of the reconstructed slices after denoising of the 
higher noise level in the projection domain. It is apparent that the quality of the regions 
and details significantly decreased for all algorithms. The details of the dot in the second 
and fourth rows are mostly blurry, making it unrecognizable. However, the best distin-
guishment of the dot can be seen for the C A N D L E , N L M 3 D , and B M 4 D methods. But 
for higher noise level denoising, the typical behavior of the 3D algorithms can be noticed 
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noisy 2 proj. 3 proj. wiener median non-local SBROF  

wavelet SA-DCT BM3D median3D CANDLE NLM3D BM4D 

Figure 4.6: Zoomed selected regions from the reconstructed slices after denoising using 
tested algorithms in the projection domain wi th higher noise level. The regions are 

depicted in the figure 4.4. 

4 6 8 10 12 4 6 8 10 12 

(a) (b) 

Figure 4.7: A line-profile plots comparing the edge sharpness in each reconstructed slice 
after denoising of the (a) lower noise level and (b) higher noise level in the projection 

domain. The profile plots are drawn along the green line in figure 4.4. 

- the distance from the center of the R O I is connected to its blurriness. A t the edges 
of the cylinder, the circles become notably more blurred, and streak-like artifacts can 
appear. None of the 2D algorithms was able to perform denoising without damaging the 
slice. The shape of the circles is compromised and the edges are blurred. The S B R O F 
method preserves sharp edges the most, but the noise suppression is not satisfactory. The 
non-local means algorithm was able to suppress the noise quite effectively and the blurri­
ness is not as significant as in other slices. The B M 3 D method can be considered a viable 
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option for denoising of higher-level noise, due to its effective noise suppression. However, 
the method may introduce some blurriness. 

The best results from the subjective evaluation of the higher noise level denoising 
are for the averaging of projections. Here, the improvement of both the dot details and 
the noise suppression in the zoomed regions is significant compared to software-based 
denoising. 

The line-profiles comparison in figure 4.7 (b) is not as straightforward as for the 
lower noise level, since the edges are more blurred. The worst in this comparison is the 
median filter and median 3D filter. The B M 3 D , non-local means filter ( N L M ) , B M 4 D , 
and N L M 3 D have probably the best edge enhancement and contrast. 

4.4.2. Denoising in the tomogram domain 
A s demonstrated, the noise in the projection images can be well described and its model 
can be estimated making it easy to simulate in the test projections. The same statements 
cannot be made for the noise in the tomogram domain. The noise model in the tomogram 
domain is very complex and hard to describe. After the F B P analytical reconstruction, 
the noise is generally non-stationary because the attenuation coefficient is varying along 
the line integrals [81]. This effect results in typical noise appearance in the reconstructed 
slices - in the center, the noise has an isotropic grain structure, and closer to the edges 
of the R O I the noise variance decreases and the noise becomes more oriented. This 
behavior of the noise is visible also in the simulated datasets (see figure 4.8). Al though 
a variance stabilization transform could solve this issue, it is unnecessary since the noise 
remains approximately consistent and homogenous within the R O I . Therefore, denoising 
algorithms wi l l be tested without any additional pre-processing. 

Figure 4.8: A slice of the higher noise level dataset demonstrating the typical behavior 
of the noise in the tomogram domain. The noise is non-stationary - the variance is 

decreasing with a higher distance from the center. 

In this section, the selected denoising algorithms are directly used on the reconstructed 
slices of both noisy datasets - lower noise level and higher noise level. The noise estimation 
function introduced in [82] was adapted for the calculation of the noise standard deviation 
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in the R O I for setting this parameter to the methods. The search for universal optimal 
parameters for each algorithm and the range of projections for 3D algorithms was carried 
out in the same way as for the projection domain, with the ground-truth slices taken as 
a reference. For median filtering in the 3D and C A N D L E method, the whole batch of 512 
slices can be processed and for the B M 4 D method and non-local means in 3D, the dataset 
was divided into 4 batches of 128 slices. The optimal parameters used for denoising can 
be found in Appendix B . 

After determining the optimal parameters, denoising was performed, and the entire 
volume was evaluated using full-reference metrics with the ground-truth volume as a ref­
erence. The evaluation of metrics for each method can be found in table 4.2. 

Table 4.2: Metrics outcomes for denoising in the tomogram domain. The best results 
are highlighted in the table - blue for the lower noise level, and yellow for the higher 

noise level. 

S S I M M S E P S N R D S C 

Lower Higher Lower Higher Lower Higher Lower Higher 

noise noise noise noise noise noise noise noise 

noise-free 0.6133 0.0348 20.6044 0.9 844 

noisy 0.5286 0.3942 0.0498 0.0939 19.0492 16.2950 0.9814 0.9626 

wiener 0.5876 0.4187 0.0384 0.0830 20.1750 16.8314 0.9815 0.9658 

median 0.6299 0.4703 0.0321 0.0664 20.9525 17.7961 0.9758 0.9603 

nlm 0.5590 0.4517 0.0430 0.0710 19.6819 17.5066 0.9890 0.9704 

S B R O F 0.9552 0.6093 0.0040 0.0365 29.9633 20.4041 0.9734 0.9635 

wavelet 0.6423 0.4856 0.0304 0.0615 21.1990 18.1311 0.9827 0.9693 

S A - D C T 0.9699 0.9680 0.0055 0.0091 28.6099 26.4282 0.9814 0.9670 

B M 3 D 0.6468 0.5282 0.0295 0.0499 21.3253 19.0411 0.9841 0.9708 

median 3D 0.6074 0.4430 0.0356 0.0743 20.5041 17.3136 0.9766 0.9626 

C A N D L E 0.9520 0.9504 0.0185 0.0236 23.3576 22.2919 0.9813 0.9614 

N L M 3 D 0.5286 0.3945 0.0498 0.0937 19.0491 16.3014 0.9814 0.9627 

B M 4 D 0.6968 0.5887 0.0229 0.0382 22.4160 20.2058 0.9848 0.9754 

The 4 best outcomes in the table are highlighted in the same way as in the previous 
section - blue color for the lower level of noise and yellow for the higher level of noise. 
It's important to note that the metrics outcomes are overall higher than for the denoising 
in the projection domain. This is because the methods suppress also the noise that arises 
during the reconstruction process, resulting in smoother regions. The trade-off between 
the full-reference metrics and the Dice coefficient must be considered - the higher noise 
suppression results in higher blurring of the edges and thus more uncertain segmentation. 
The same conclusion can be made regarding the alignment of methods for these outcomes, 
as for the projection domain. This suggest, that the amount of evaluated metrics could 
be reduced for future experiments with this phantom. 
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Methods S B R O F , S A - D C T , C A N D L E , and B M 4 D have the best outcomes in the ta­
ble. The values are excellent, especially the SSIM results are very high. But on the other 
hand, only the B M 4 D was able to improve the values of the Dice coefficient significantly, 
suggesting the highest sharpness of the edges and shapes. Even though the metrics out­
comes for the B M 3 D method are not as good as for the highlighted methods, it can also 
be considered a good compromise between the full-reference metrics and the Dice coef­
ficient. The N L M 3 D method wasn't able to improve the metrics outcomes for the lower 
noise level dataset. There is only a slight improvement of the higher noise level dataset, 
suggesting that the N L M 3 D is not suitable for denoising in the tomogram domain. 

Similarly, as in the previous section, the subjective evaluation of the outcomes wi l l be 
done on the selected regions in figure 4.4. Only regions of one slice from each denoised 
dataset wi l l be shown - the lower noise level denoising in figure 4.9 and the higher noise 
level in figure 4.10. The sharpness of the edges and edge enhancement wi l l be compared 
in a line-profile plot in figures 4.11 (a) and (b). The line-profile plots are drawn along the 
green line in figure 4.4. 

noisy wiener median non-local SBROF wavelet 

SA-DCT B M 3 D median3D C A N D L E N L M 3 D B M 4 D 

Figure 4.9: Zoomed selected regions from the reconstructed slices after denoising using 
tested algorithms in the tomograms wi th lower noise level. The regions are depicted in 

the figure 4.4. 

A t first sight at the results in figure 4.9, the difference between the tomogram domain 
and projection domain denoising is apparent. A s previously mentioned, the algorithms 
in the tomogram domain tend to suppress the noise originating from the reconstruction 
process too, which results in images wi th overall lower noise levels. O n the other hand, 
it should be noted that the algorithms can introduce new artifacts, such as visible blocks 
of pixels in the C A N D L E slice. 
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The non-local means, S B R O F , S A - D C T , B M 3 D , and B M 4 D methods show the highest 
noise suppression ability, while the wiener, median, and median 3D filters only slightly 
reduce the noise. The N L M 3 D method fails to change the slice significantly corresponding 
to the conclusions made based on metrics. The algorithms S B R O F and S A - D C T improved 
the contrast significantly and the appearance of the slice is similar to the ground-truth 
slice (see figure 4.3 (a)) but in the S A - D C T slice an effect of blockiness can be noticed. 
The same effect is present also in the non-local means image, but here the blocks are 
mainly around the edges. Subjectively, the B M 3 D slice seems to be slightly blurred. The 
B M 4 D method performs the best in terms of noise reduction, artifacts, sharpness, and 
detail maintenance. 

In the line-profile plot in figure 4.11 (a) the overlap of N L M 3 D and the noisy line is 
evident validating its poor performance. The S A - D C T and S B R O F methods also suppress 
the grey level inside the spheres to the value of 0 and provide significant edge enhancement, 
wi th a difference of 0.4 between the lowest and highest point. The B M 4 D and B M 3 D 
methods can suppress the noise while maintaining sharp peaks. O n the other hand, the 
median filter, median filter for 3D data, wiener filter, and non-local means ( N L M ) methods 
do not perform as well, wi th less sharp peaks and poorer noise suppression. 

SA-DCT B M 3 D median3D C A N D L E N L M 3 D B M 4 D 

Figure 4.10: Zoomed selected regions from the reconstructed slices after denoising using 
tested algorithms in the tomograms wi th higher noise level. The regions are depicted in 

the figure 4.4. 

As the noise level increases (fig. 4.10), the imperfections of the denoising algorithms 
become more visible, particularly in terms of blockiness and generation of new artifacts. 
The effect of blockiness is remarkably worse in the slices after denoising with C A N D L E , 
S A - D C T , and non-local means methods. Also, some inconsistencies and flaws can be 
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noticed in the B M 3 D and S B R O F slices. W i t h the higher noise level, the quality of the 
B M 4 D slice decreased too, but the smoothness of the edges is superior to other methods. 

Figure 4.11 (b) shows the comparison of edge enhancement in slices after denoising of 
the higher level of noise. The overlap between the line for the noisy slice and the N L M 3 D 
slice is visible again. The decrease of edge enhancement for S A - D C T and S B R O F methods 
can be noticed, but st i l l , the contrast and noise suppression are very good. The B M 3 D 
and B M 4 D lines exhibit similar performance. The median filter and median filter for 
3D data fail to maintain the sharpness of the edge. The non-local means method was 
also able to suppress the noise quite well, but the contrast is decreased. The best edge 
enhancement from this comparison can be seen in the S A - D C T , B M 3 D , and B M 4 D slices. 

Figure 4.11: A line-profile plots comparing the edge sharpness in each reconstructed 
slice after denoising of the (a) lower noise level and (b) higher noise level in the 
projection domain. The profile plots are drawn along the green line in figure 4.4. 

4.4.3. Time duration 
The time taken for denoising is an important factor to consider in the comparison of 
algorithms, especially in computed tomography where the datasets are usually large. To 
make denoising feasible, the processing time for each projection or slice must be as low 
as possible. 

Table 4.3 shows the time required by each algorithm to process one image (either 
a projection or a slice) in the dataset. Whole datasets were processed - 360 projections 
and 512 tomograms. The time consumption of the algorithms is dependent on the size 
of the processed image and the chosen parameters. The images in the projection domain 
and the tomogram domain are of equal size (512 px x 512 px), but the parameters can 
significantly impact the processing time. This is especially true for the algorithms like 
non-local means, C A N D L E , or N L M 3 D , where the sizes of windows for searching and 
comparison can affect the time notably. However, in the case of images sized 512 px x 
512 px, the differences between domains in the case of non-local means and N L M 3 D are 
only fractions of a second and one second for the C A N D L E method. Therefore, only 
the higher time from the domains is listed in the table. The computer used for this 
evaluation has a processor Intel i7 wi th 128 G B R A M . The most time-efficient algorithms 
are those implemented in M A T L A B and have simple principles - wiener filter, median 
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Table 4.3: Time duration of each algorithm for processing one image. 

algorithm time per image [s] 

wiener 0.006 

median 0.005 

nlm 0.551 

S B R O F 0.101 

wavelet 1.244 

S A - D C T 11.49 

B M 3 D 11.30 

median 3D 0.008 

C A N D L E 51.84 

N L M 3 D 1.872 

B M 4 D 10.67 

filter, and median 3D. The non-local means filter is also not very time-consuming. Among 
the n o n - M A T L A B algorithms, the S B R O F method is the fastest. The processing time 
of one image for S A - D C T , B M 3 D , and B M 4 D filtering is nearly the same. However, 
when considering the number of images for processing (360 projections, 512 slices), the 
time required by these algorithms extends to over an hour. The worst in terms of time 
consumption is the C A N D L E method making it impractical for denoising of C T data. 

The averaging of projections cannot be included in table 4.3, since the time consump­
tion of this approach is connected to the exposure time. But generally, the averaging of 
2 projections increases the measurement time twice, and the 3 projections three times. 

It is important to note, that the typical datasets from Rigaku Nano3DX are sized 1648 
px x 1250 px x 800 projections, therefore, the processing times for real datasets wi l l be 
significantly higher. 

4.4.4. Discussion of the phantom denoising results 
The reduction of noise in the projection domain can be very beneficial and has many 
advantages. The denoising is very subtle - the appearance and nature of the reconstructed 
slice are not changing dramatically, but the contrast can be improved. However, it is 
not effective in suppressing artifacts from reconstruction, such as noise and streak-like 
artifacts. So there wi l l always be some residual noise left. The software-based denoising 
in the projections can lead to improvement in quality and good noise suppression wi th 
detail preservation, but only wi th a lower noise level. When the noise level is higher, the 
algorithms tend to blur the edges of objects and suppress details. The 3D algorithms, 
especially the N L M 3 D and B M 4 D methods have overall superior performance over most 
of the 2D algorithms. St i l l , wi th the higher noise level, the effect of blurriness of features 
further from the center of the sample appears and is a serious drawback. 

Subjective evaluation and metrics should both be considered when deciding on the 
best approach for noise reduction. From the metrics comparison, the B M 3 D and B M 4 D 
are chosen as the best compromise between the metrics values and the Dice coefficient. 
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However, when dealing with the higher level of noise, the metrics outcomes are not ac­
curate, since both the B M 3 D and B M 4 D slices are blurred. This indicates, that relying 
only on metrics outcomes is insufficient for evaluation of image quality. The non-local 
means algorithm could be a compromise between the subjective evaluation and metrics 
outcomes. Bu t it is important to note, that the software-based denoising of the higher 
noise level in the projections is not ideal, and some information would probably get lost 
during the process. 

The technique of averaging three projections has many benefits, especially when deal­
ing wi th high levels of noise. It can reasonably suppress the noise and enhance the details 
in the reconstructed slices. Nevertheless, it is important to note that this method needs 
triple the measurement time, making it impractical in many situations. Addit ionally, it is 
a pre-measurement consideration and cannot be applied to previously obtained datasets. 
In summary, software-based denoising is a more universal approach wi th better outcomes. 

The nature of denoising in the tomogram domain is completely different. The noise 
reduction is more efficient since it reduces the noise both from the measurement and 
reconstruction process. It increases the contrast of the slice and the results are closer 
to the ground-truth volume. The reduction of the higher level of noise is more effective. 
However, the technique can create new artifacts and flaws, such as blockiness, which can 
make the slice appear unnatural. Nevertheless, the denoising in this domain tends not 
to blur the edges of circles as much as in the projection domain, resulting in sharper 
transitions between spheres and the cylinder volume. 

The metrics outcomes in the tomogram domain align more wi th subjective evaluations 
but don't take into consideration the blockiness, newly generated artifacts, or inconsis­
tencies in the pixel values. The outcomes of the Dice coefficient are overall higher in 
the tomogram domain than in the projection domain, suggesting a larger potential for 
more reliable segmentation. Overall, the B M 4 D algorithm has superior performance in 
the tomogram domain denoising at both noise levels. It demonstrates great performance 
in terms of metrics, Dice coefficients, and subjective evaluation. The usage of the 3D 
method also resolves pixel inconsistencies and blockiness that may occur along the z axis 
between the slices. The S B R O F algorithm can be considered as a viable option, but wi th 
higher noise levels the blockiness and pixel inconsistencies are significant. 

A wide range of reconstruction algorithms is available wi thin the Toolbox. It offers 
analytical reconstruction methods - F B P for parallel and fan-beam geometry, F D K for 
cone geometry, and some iterative reconstruction techniques - A R T , S A R T , SIRT, and 
C G L S . The configuration of the algorithms can be done by l inking the identifiers of the 
geometries and data, and by the configuration of the algorithm's specific parameters (filter 
for F B P and F D K , number of iterations for iterative techniques) [73], [71]. 

A S T R A Toolbox can be also coupled to other software packages. A n example of this 
inclusion is the TomoPy software package. It combines a powerful reconstruction using 
A S T R A Toolbox wi th the complex and user-friendly pre-processing and post-processing 
methods [75]. 

In conclusion, in the projection domain, the B M 3 D and B M 4 D methods were selected 
as the best, but only for denoising of the lower level of noise. Their abilities to effectively 
reduce noise in the projections, improve contrast, and simultaneously preserve details 
and sharpness of edges were described. W i t h the higher level of noise, the user needs to 
be aware of a certain amount of blur by using these methods. B y reduction of noise in 
the projection domain, the slice wi l l have a natural appearance, and increased contrast, 
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but some noise wi l l be still present. In the tomogram domain, the B M 4 D method is 
considered to be the compromise between the performance in terms of metrics, blurriness, 
and generation of new artifacts. 

However, the processing times of both the B M 3 D and B M 4 D methods listed in table 
4.3 are quite high and with large datasets, the time consumption wi l l increase. Such 
a slow noise reduction can be inconvenient in some industrial applications so a faster 
solution would be beneficial. In theory, the combination of noise reduction in both the 
projection and tomogram domains has the potential to produce high-quality results and 
potentially even up the performance of the best individual methods. In the projection 
domain, the non-local means filter is a suitable choice, as it effectively reduces noise while 
preserving the clarity of details. Once the denoised dataset is reconstructed, the non-local 
means algorithm can be applied again to further reduce residual noise. Whi le it doesn't 
perform that well in the tomogram domain, it remains one of the best options in terms 
of processing speed and maintaining edge sharpness, as indicated by the Dice coefficient. 

4.5. Measured dataset denoising 
Based on the discussion made in the previous chapter, the algorithms that were selected 
as the best, are tested also on the measured submicron C T datasets. This way, the 
advantages and disadvantages of the algorithms stated for the phantom denoising can 
be validated or disproved. From the projection domain denoising, the B M 3 D and B M 4 D 
methods are tested. In contrast, the non-local means filter is applied in both the projection 
and tomogram domains to determine if it can achieve comparable quality to the other 
advanced methods but with significantly reduced processing time. There is the possibility 
to use the advanced techniques in both of the domains, but the computational time of 
processing one measured dataset would be extensive (see section 4.5.1). 

Three samples are used for denoising - a toothpick, a polyethylene (PE) rod wi th 
carbon fibers, and a mouse embryo. The parameters of the measurement are listed in 
table 4.4. Each of the samples is different in terms of morphology, contrast, and noise 
level. The toothpick dataset [83] (see figure 4.12 (a)) has a very characteristic structure 
consisting of wooden cells. The sample is larger than the detector, so the R O I is the center 
of the toothpick. The noise in the dataset has a strong pattern probably caused during the 
reconstruction process by the large amount of cells and sharp transitions. However, the 
dataset has a very good contrast. The second dataset consists of a polyethylene (PE) rod 
wi th carbon fibers wi th a density of fibers of 15-20%. One slice of the sample is shown in 
figure 4.12 (b). The white dots are carbon fibers. The measurement was performed using 
a molybdenum target resulting in higher noise variance. From a subjective evaluation, 
the dataset is much noisier than the toothpick and the contrast is low. The thi rd sample 
is the mouse embryo. In the slice in figure 4.12 (c) there are visible fine features and 
details, that need to be preserved during the processing. A molybdenum target was also 
used for this measurement. 

The assessment is performed using two measures - signal-to-noise ratio and contrast-
to-noise ratio, along wi th subjective evaluation, line-profile comparison, and time con­
sumption. 

The denoising approaches were performed on the three samples. The optimal param­
eters for the methods were found experimentally by subjective evaluation and can be 
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(c) 

Figure 4.12: A slice of each sample with zoomed central regions - (a) a slice from the 
toothpick sample, (b) a slice from the polyethylene sample wi th carbon fibers, and (c) 

a slice from the mouse embryo sample. 
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found in Appendix C . A l l datasets were reconstructed using C T R e c software developed 
in the C E I T E C C T L A B . This software is based on M A T L A B implementation of A S T R A 
Toolbox. The F D K filter was used for the reconstruction wi th a cosine filter wi th a cut-off 
frequency of 0.85, which is taken as an ideal solution for measured samples. 

Table 4.4: Parameters for the measurement of analyzed samples. 

Sample 
Target 

material 

Exposure 

time 
Voltage Current Binning Optics 

Toothpick C u 23 s 40 k V 30 m A 2 L0270 

P E Mo 5 s 50 k V 24 m A 2 L0270 

Mouse embryo Mo 5 s 50 k V 24 m A 2 L1080 

The outcomes are compared using two metrics - signal-to-noise ratio (SNR) and 
contrast-to-noise ratio ( C N R ) . The formula 1.21 defined earlier was used for computing 
the S N R . The C N R can be calculated wi th a formula 

C N R I/-to - (M (4.5) 

where \i0 is the mean signal value in the R O I , //& is the mean value, and <r& is the standard 
deviation of the signal in the background. The regions used for calculation of the values 
are illustrated in figure 4.13 - blue regions represent the object, and the green squares 
illustrate the backgrounds. The regions were selected to be homogeneous. The results of 
the metrics are listed in table 4.5 wi th the best outcomes highlighted in bold. 

Figure 4.13: Regions used for computing of S N R and C N R . The blue shapes and the 
green squares illustrate the object region and the background, respectively. 

Several observations can be made from the results presented in table 4.5. The impor­
tant thing is, that all of the approaches improved the S N R and C N R values compared 
to the unprocessed measurements. In most cases, the B M 4 D algorithm applied to the 
tomograms produces the best results. However, the B M 4 D and B M 3 D in the projections 
also notably improved the values, especially for the P E and embryo samples. The dou­
ble non-local means approach also achieved relatively high values. The most significant 
improvement in metrics for the double non-local means was observed in the toothpick 
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Table 4.5: Signal-to-noise ration and contrast-to-noise ratio calculated from one slice for 
each denoised dataset. Figure 4.13 depicts the regions used in the formulas. The best 

results are in bold. 

S N R C N R 

Toothpick P E Embryo Toothpick P E Embryo 

measured 7.25 7.29 6.66 1.05 0.24 0.91 

B M 3 D - proj 7.59 17.1 18.8 1.44 0.94 5.52 

B M 4 D - proj 8.65 17.7 19.8 2.04 1.09 5.62 

B M 4 D - tomo 14.2 22.8 19.4 5.74 0.91 6.65 

double n lm 13.0 10.1 13.4 5.68 0.82 2.46 

sample, while lower values were obtained for the embryo and P E samples, probably due 
to less effective noise suppression. 

Figure 4.14 shows zoomed regions of the denoised slices. A l l images for each sample 
are shown in the same intensity range enabling the evaluation of contrast improvement. 

measured B M 3 D - p r o j B M 4 D - p r o j B M 4 D - t o m o double nlm 

Figure 4.14: Comparison of zoomed regions of one slice after denoising using selected 
algorithms. Top row: the toothpick sample, middle row: the polyethylene wi th carbon 
fibres sample and bottom row: mouse embryo sample. A l l images for each sample are 

shown in the same intensity range. 

The subjective evaluation is made based on the images in figure 4.14. Overall, there is 
a noticeable improvement in the quality of all denoised images, but certain observations 
should be highlighted. 
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First of al l , the structured noise is st i l l visible in the toothpick images after the re­
duction of noise in the projection domain. This suggests, that this noise truly has its 
foundations in the reconstruction process and cannot be effectively reduced by denoising 
in the projection domain. However, the contrast is improved, especially for the B M 4 D im­
age. Denoising in the projection domain reduces the ring artifacts, which can be observed 
in the toothpick images indicated by white arrows. O n the other hand, the tomogram 
domain denoising was able to partially suppress the noise pattern while maintaining the 
features and details. The contrast is also improved, but both the approaches - the B M 4 D 
in the tomograms and the double non-local means generated new artifacts. There is 
visible the effect of blockiness and residuals of the noise pattern. 

In the images of the P E sample, the noise is well suppressed even by denoising in 
the projection domain. The dots and structures are clearer and sharper than in the 
measured image. The dots and structures appear clearer and sharper compared to the 
measured image. However, the image resulting from B M 4 D in the projection domain 
shows higher blurriness, especially of the features at the edge of the R O I - focus on 
the features with white arrows. This corresponds to the statements made in the section 
4.4.1 for the simulated dataset. The double non-local means filter managed to suppress 
a certain amount of noise and improve the image quality and definition of the dots, but 
the noise reduction is not perfect. In the image after B M 4 D denoising in the tomogram 
domain, the artifacts and side effects of the noise reduction are noticeable. 

For the mouse embryo images, it can be observed that the B M 3 D method applied 
to the projections leads to the blurring of features and details. The features are still 
recognizable, but the sharpness of the shapes is compromised. The same can be stated 
for the B M 4 D method in the projection domain but here also the blurriness at the edge of 
the sample can be noticed - focus on the white arrow at the slice. However, B M 4 D in the 
tomogram domain improves the visibil i ty and detectability of features while effectively 
suppressing the noise. Among all images of this sample, the features and shapes are the 
clearest. A s in the case of other samples, the double non-local means method leads to 
some noise suppression, but the slice still appears noisy. Nevertheless, the details are 
more clearly detectable compared to the measured image. The black arrows in the images 
highlight a detail where the differences between the approaches can be observed. 

Now, the line-profile plots are visualized for comparison of edge enhancement and 
sharpness. 

The comparison of the edges of the toothpick slice is shown in figure 4.15. The profiles 
are drawn along the white line illustrated in the slice. The profile plots are a result of 
averaging 5 lines. It is evident that all denoising approaches enhance the edges. In this 
comparison, the B M 3 D in the projections seems to be affected by the noise the most. 
The B M 4 D method in the projections results in smaller peaks in the line-profile plot 
suggesting better noise suppression. The B M 4 D in the tomograms smooths the edges of 
the boundaries, but the differences between the highest and lowest points are sti l l high. 
The double non-local means filter ( N L M in the legend) offers a compromise between 
denoising in the tomogram and projection domains. It is not as smooth as the B M 4 D in 
the tomograms, but it preserves better edge sharpness. 

Figure 4.16 illustrates the edge enhancement of the polyethylene and air pore border­
line. The focus of this comparison is on the two peaks of the edge, which can be easily 
observed in the plot. The B M 4 D method in the tomograms is effective in suppressing the 
noise, but it also smooths the edge, resulting in a lesser difference between the highest 

61 



4.5. MEASURED DATASET DENOISING 

and lowest points of the line. The double non-local means ( N L M ) line shows many sec­
ondary peaks suggesting a noisy appearance. The best in this comparison is the B M 3 D 
and B M 4 D projection domain outcomes. The results are independent of the noisy profile, 
making the edge enhancement more apparent. Bo th B M 3 D and B M 4 D in the projection 
domain successfully suppress the noise and smooth the line outside the edge. 

For the line-profile comparison for the mouse embryo sample (see fig. 4.17), the region, 
where there are quick changes in the grey value is selected. Ideally, the methods should 
preserve sharp transitions and maintain the differences between the grey values. The 
highest peak in the brightest region is observed in the B M 4 D method in the projection 
domain. However, the transition between the region and the background appears less 
sharp, suggesting possible blurring. The B M 3 D method in the projections and the B M 4 D 
in the tomograms on the other hand have very sharp transitions - the decrease of grey 
values at the edge of the region is apparent. The double non-local means profile plot is 
noticeably affected by noise. 

10 20 30 40 50 

Figure 4.15: Line-profile plots comparing the edge enhancement in the reconstructed 
slices after denoising wi th selected approaches. The plots are drawn along the white line 

in the slice of the toothpick sample on the left. 

NLM 

5 10 15 20 25 30 35 40 

Figure 4.16: Line-profile plots comparing the edge enhancement in the reconstructed 
slices after denoising wi th selected approaches. The plots are drawn along the white line 

in the slice of the P E sample on the left. 
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measured 
BM3D proj 
BM4D proj 
BM4D tomo 
NLM 

10 20 30 40 50 
Figure 4.17: Line-profile plots comparing the edge enhancement in the reconstructed 

slices after denoising wi th selected approaches. The plots are drawn along the white line 
in the slice of the mouse embryo sample on the left. 

Another thing to consider is the possibility and quality of automatic segmentation 
of the measured and denoised datasets. For this discussion, only the toothpick sample 
wi l l be analyzed, as it is well-suited for automatic segmentation. The segmentation is 
performed using the Otsu method. 

Figure 4.18 shows the central regions of the segmented slices for each method. There 
are also shown histograms of the denoised slices used for the segmentation. 

measured 
»2 

BM3D - proj B M 4 D - p r o j BM4D - tomo double nlm 

Figure 4.18: Automatic segmentation using the Otsu method of one slice from each 
dataset of the toothpick sample. The zoomed central region of each segmented slice and 

histograms of denoised slices before segmentation are shown. 

The histograms in the bottom row of figure 4.18 provide insights into the segmentation 
outcomes. In the histogram for the B M 3 D method in the projection domain, there is not 
much difference from the histogram of the measured slice. The distribution of grey values 
appears uniform, indicating a connection between the signal and the noise. This can be 
seen in the segmented image - the noise cannot be effectively separated without the loss of 
some information. In the histogram for the B M 4 D method in the projections, almost two 
peaks are visible. This suggests that the noise separation is more effective than the B M 3 D 
method in the projections, although some residual noise still affects the segmentation. The 
last two histograms correspond to the B M 4 D method in the tomogram domain and the 
double non-local means filter. In both cases, the peaks of the grey values are separated, 
indicating successful separation of the noise and the signal. The segmented slice after 
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B M 4 D denoising in the tomogram domain has smoother regions wi th fewer voids than 
the non-local means, but in this case, it is up to the user to decide, what outcome is closer 
to the reality. 

4.5.1. Time duration 
For real datasets, the time duration is even more important. The images for processing 
are larger in size (1648 px x 1250 px x 800 projections and 1648 px x 1648 px x 1250 
tomograms) so the time needed for reduction of noise is a major contributor to the whole 
processing time. 

Table 4.6: Time consumption of tested approaches for processing of one image from the 
real dataset. 

algorithm time per image [s] time per dataset [h] 

B M 3 D - projections 65 14.4 

B M 4 D - projections 61 13.6 

B M 4 D - tomograms 77 26.7 

double non-local means 3.6 + 1.5 1.32 

The number of seconds needed for processing one image and the time for processing 
the whole dataset in hours is listed in table 4.6. It is important to note that these times 
are approximate and can vary depending on the dataset, but for simplicity, an average 
value is provided. The double non-local means filter shows the largest variation in the 
processing time of the datasets, as the parameter can affect the duration. However, for all 
three datasets, the processing time for one projection and one tomogram was in the range 
of 4-6 seconds. The time consumption of the whole dataset was computed by multiplying 
the time per image by the corresponding number of images - 800 for projections, and 
1250 for tomograms. 

The table clearly shows that the processing times of both the algorithms B M 3 D and 
B M 4 D are very long. Specifically, the B M 4 D method in the tomogram domain takes 
almost twice as long as the methods in the projections due to the bigger sizes of the 
images and the fact, that over 400 images more need to be processed. The fastest in this 
comparison is the non-local means filter, even though the processing is in both of the 
domains. 

4.5.2. Discussion of the results of measured datasets denoising 
It is obvious that a l l of the proposed approaches have significantly improved the quality 
of the three datasets. This improvement is supported by the calculated metrics such as 
S N R and C N R , as well as the line-profile plots. However, there are notable differences 
among the outcomes of the different methods. 

When it comes to determining the optimal parameters for the methods, the B M 3 D 
method offers a significant advantage over the B M 4 D approaches for 3D data. This is 
because the parameters can be tested on a sub-region of the 2D image, making the process 
much faster compared to the 3D methods that require processing a batch of images. 

64 



4. NOISE REDUCTION APPROACHES IN COMPUTED TOMOGRAPHY 

The B M 3 D method in the projection domain has greatly enhanced contrast, edges, 
detectability, and differentiation of details. It can be used for every sample, since it 
improved the quality significantly without generating new artifacts. However, in the case 
of low-attenuation samples, such as the mouse embryo sample, finer details appear blurred. 
Similar outcomes can be observed for the B M 4 D method in the projection domain. In 
the reconstructed slices of the P E sample and the mouse embryo, the blurring effect on 
features located farther away from the center is noticeable. This suggests that the B M 4 D 
method in the projection domain is not well-suited for denoising samples that are fully 
within the field of view. This behaviour can be also partially caused by the higher amount 
of noise in the molybdenum measurements. 

In summary, the projection domain approaches are not very optimal for denoising 
of low-attenuation biological samples. Soft tissues in these samples are typically not 
very contrasting (see figure 4.1), and the differences in attenuation coefficients are not 
very high, leading to blurred edges and fine details. On the other hand, the B M 4 D 
method in the tomogram domain improved the clarity of the fine details in the biological 
sample significantly. In the other two samples, the results are also satisfactory, but the 
method can lead to slight smoothing of the edges. The noise is effectively suppressed, 
although some blockiness from the algorithm itself may be observed. The double non­
local means filtering managed to improve the quality notably, but the noise suppression is 
only mediocre. However, the performance is optimal for the computational time needed 
for the processing. The comparison of automatic segmentation for the toothpick sample 
suggests, that the tomogram domain denoising is more suitable for this task delivering 
better results. 

4.6. Proposed denoising strategies 
Based on the discussion and testing of the selected approaches, certain rules and l imita­
tions have been identified. This section wi l l provide a quick summary of the advantages 
and disadvantages and guidelines for better understanding the capabilities, constraints, 
and possible usage of the denoising methods. Mult ip le criteria wi l l be considered, mainly 
regarding the user's expectations and the sample for processing. 

General advantages and characteristics observed from the testing are summarized in 
the table 4.7. 

For segmentation, either automatic or manual, the tomogram domain denoising wi th 
B M 4 D is the optimal approach. Manual segmentation is relevant mostly for biological 
samples, and there the definition and clarity of the fine details and features are the best. 
For the segmentation, the possible artifacts from the reconstruction are not relevant. 

When the user wants to improve the quality, but has limited time for processing, 
the double non-local means filter can be used. Some residual noise can be left in the 
reconstructed slices, but the contrast and the clarity of the fine details improve. 

For a generation of state-of-the art images, the selection of appropriate denoising is 
dependent on the sample. For low-attenuation samples, the denoising in the projection 
domain can lead to the blurring of fine details, so the tomogram domain approach - B M 4 D 
should be used. For high-attenuation samples, the projection domain denoising is 
a safer option. It cannot affect the slices as much as the tomogram domain denoising. 
Mostly, the B M 3 D in the projections is the better and more universal approach. This 
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approach can be used for both copper target and molybdenum target measurements. The 
B M 4 D method can be used only wi th samples, that are larger than the field of view and 
only for C u target. In the tomogram domain, the user needs to be aware of the artifacts 
that the denoising can bring. But wi th the right parameters, it can be minimized. 

In conclusion, the choice between denoising in the projection domain and tomogram 
domain depends on the specific requirements of the dataset and the expectations of the 
user. Understanding the advantages and disadvantages described in this section can help 
determine the most suitable approach for denoising different types of samples. 

Table 4.7: Summary of the denoising approaches in the projection and tomogram 
domain. 

Projection domain denoising Tomogram domain denoising 

• subtle denoising • better definition of fine details 
and features 

• ring artifacts suppression 
• better noise suppression 

• contrast enhancement 
contrast enhancement • 

• no artifacts from the denoising 
• slight smoothing of the edges 

• not suitable for low-attenuation 
samples 

• generation of new artifacts from 
the denoising 

• residual noise present 
• better suitable for segmentation 
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Conclusion 
The X-ray computed tomography (CT) is a very powerful non-destructive diagnostic 

technique. It is used in a wide range of applications, including medical diagnosis, indus­
tr ial inspection, materials analysis, and archaeological research. However, during each 
measurement and reconstruction process, noise is generated in the images. Images wi th 
high levels of noise can be difficult to interpret, as the noise can obscure important details 
and structures. Therefore, the amount of noise should be minimized in C T images to 
improve their accuracy. 

Since the captured noise in the projection images is a mixture of many influences, its 
distribution is unknown. Therefore, the statistical analysis of the noise in bright field im­
ages captured using the high-resolution C T system Rigaku nano3DX was performed. The 
noise can be described with mixed Gaussian-Poisson distribution. For practical purposes, 
the Poisson part of the noise was approximated by Gaussian distribution. Therefore, the 
noise can be modeled wi th Gaussian distribution with zero mean and signal-dependent 
variance. The exact model of the noise variance was determined and validated by com­
parison to the actual noise present in the bright field images. 

Based on the estimated noise variance model, the artificial noise could be generated 
in the projection images of a simulated phantom. Seven methods for noise reduction 
for 2D images and four denoising methods for volumetric datasets were tested on the 
projections. The evaluation was made on the reconstructed slices both objectively and 
subjectively. The same methods were tested in the tomogram domain and the evaluation 
process was repeated. The results from both domains were discussed and promising 
approaches were selected for testing on real datasets. The selected approaches were the 
B M 3 D and B M 4 D methods in the projections and the B M 4 D method in the tomogram 
domain. In the tomogram domain, this 3D method has superior performance over the 2D 
methods. Additionally, the non-local means filter in both the projection domain and the 
tomogram domain was chosen as a fast alternative for noise reduction. 

A l l of the proposed strategies were able to improve the quality of the measured sub-
micron C T datasets. The outcomes were compared objectively by image quality metrics 
and subjectively by visual inspection. The possibility of automatic segmentation was also 
discussed. Based on this comparison, the optimal usage of each denoising strategy was 
proposed considering multiple criteria, and the advantages and disadvantages of both de­
noising in the projection and tomogram domain were summarized. The B M 3 D in the 
projection domain was selected to be the safest and the most universal strategy. It can 
be used for both molybdenum and copper measurements. However, the possible blur 
wi th low-attenuation slices should be taken into consideration. The time consumption 
is high, but the quality of the reconstructed slices is significantly improved without cre­
ating artifacts from the denoising. For the task of segmentation, the B M 4 D method in 
the tomogram domain is the best option independent of the target material. When fast 
denoising is required, the non-local means filtering both in the projection domain and the 
tomogram domain can be performed. Some residual noise wi l l be left in the reconstructed 
slices, but the contrast and the clarity of details and features wi l l improve. However, the 
user needs to be aware, that by denoising in the tomogram domain, the artifacts from the 
algorithms could be generated. 

This thesis gave a comprehensive comparison of the advantages and disadvantages of 
denoising in the projection and tomogram domain and can lead to a better understanding 
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and awareness of the usage and limitations of the approaches. However, the search for 
new, better, and faster noise reduction strategies should continue. 
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nlm, N L M non-local means 
N N 3 D nonlocality-reinforced convolutional neural networks for 

image denoising 
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A. STATISTICAL ANALYSIS OF NOISE IN BRIGHT FRAMES WITH MO TARGET 

A . Statistical analysis of noise in bright 
frames with M o target 

The same workflow used for the analysis of copper bright field images has been per­
formed also for the molybdenum target bright field images. Since the molybdenum target 
operates at a higher voltage - 50 kV, for the same exposure time the mean value of the 
signal is higher than for the copper target. Therefore, only the exposure times up to 
35 seconds wi l l be analyzed. The Q-Q plots and histograms of the noise data wi l l be 
visualized. 

Figure A . l : Q-Q plots of noise data for each exposure time versus normal distribution. 
If the data is normally distributed, the points are expected to follow a dashed straight 

line corresponding to the normal distribution. 

Figure A . 2 : Histograms for each exposure time and fitted histograms for normal 
distribution. 

It is obvious, that the Q-Q plots in figure A . l and histograms in figure A . 2 look similar 
to the plots displayed in the section statistical analysis of C u bright frames - equivalent 
outcomes can be stated. The largest deviation from the straight line representing a normal 
distribution in Q-Q plots can be seen for the 1-second and 5-second frames. W i t h higher 
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exposure time, the deviation gets smaller and the points follow nicely the straight line. 
This assumption is proved by calculating the M S E of quantiles of normal distribution and 
the calculated quantiles of observed data. The results are listed in the table A . l . The 
histograms are displayed wi th fitted normal distribution - the same conclusions can be 
formulated as for the Q-Q plots. The higher the exposure, the closer is the experimental 
histogram to the theoretical one. 

Next, the statistical moments of the noise data wi l l be calculated - noise mean value, 
noise variance, and kurtosis. The outcomes wi l l be listed in the table A . l wi th the results 
of M S E of Q-Q plots and mean values of the signal. 

Table A . l : Results from statistical analysis of the bright field images. 

Noise mean 

value 

Noise 

variance 
Kurtosis 

M S E of 

Q Q plot 

Mean value 

of the signal 

1 s -2.057-10" 2 0 9.962-10" -7 2.642 1.811-10" -3 0.086 

5 s -2.070-10" 2 0 3.835-10" -6 2.779 6.403-10" -4 0.173 

10 s -4.484-10" 2 1 7.520-10" -6 2.850 3.678-10" -4 0.282 

15 s 3.001-10" 2 0 1.108-10" -5 2.890 2.520-10" -4 0.390 

20 s 1.479-10" 2 0 1.466-10" -5 2.910 2.205-10" -4 0.497 

25 s -1.080-10" 1 9 1.829-10" -5 2.926 1.533-10" -4 0.602 

30 s 8.364-10" 2 0 2.188-10" -5 2.940 1.606-10" -4 0.709 

35 s 5.100-10" 2 0 2.538-10" -5 2.948 1.665-10" -4 0.814 

The results are similar to the ones for C u frames - the noise mean value can be 
assumed to be zero, the noise variance is increasing wi th the exposure time. The kurtosis 
is reaching the value 3 (the ideal value of normal distribution) and the M S E is decreasing. 
It is important to note that the mean values of the signal are overall higher than for the 
C u frames. 

A l l of the relations described wi l l be shown graphically in plots in figure A . 3 to validate 
the assumptions. W i t h higher exposure time, the deviations from the normal distribution 
are decreasing. It has been shown in figure A . 3 (a), that the variance is dependent on the 
exposure time - linear dependency. The graph of the relation between the mean value 
of the signal and the variance wi l l be displayed in figure A . 4 - the variance is linearly 
dependent on the mean value of the signal. The correlation coefficient R — 1, which 
means perfect positive linear dependence, and the relation can be described with formula 

a2(y(x)) = 3.36 • 10~5y(x) - 1.95 • 10" 6 . ( A . l ) 

It has been proven, that the conclusions made for C u bright frames are valid also for the 
M o target. In the sets of bright frames in the ranges of analyzed exposure times, the noise 
can be assumed to be described with mixed Poisson-Gaussian distribution. 
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A. STATISTICAL ANALYSIS OF NOISE IN BRIGHT FRAMES WITH MO TARGET 
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Figure A . 3 : Results from table A . l shown graphically. The relations are between (a) 

exposure time and variance of the noise - linear dependence, (b) exposure time and the 
mean value of the signal in the bright frames - linear dependence, (c) the kurtosis of the 
noise data and the exposure time - the deviation from the value 3 corresponding to the 

normal distribution is decreasing wi th higher exposure times, (d) mean square error 
(MSE) of the Q-Q plot and exposure time - the M S E is decreasing wi th higher exposure 

time. 

x10 

0.2 0.4 0.6 
Mean value of signal 

Figure A .4 : The relation between the mean signal value of frames and the noise variance 
- linear dependency. 
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B . Selected parameters for denoising of 
simulated dataset 

In this section, the parameters chosen for reduction of noise using selected methods 
are listed in table B . l for projection domain and in table B.2 for tomogram domain. 
The value of maximum noise variance/standard deviation is determined from the noise 
variance matrix, that has been used for generating the noise in the projection domain. In 
the tomogram domain, the function for noise estimation described in [82] was used. This 
function estimates the standard deviation of the noise - degree of smoothing (DoS). 

Table B . l : Parameters of all tested methods for denoising of simulated dataset in the 
projection domain. 

Method Parameters 

wiener [5, 3], maximum noise variance 
median [3,1] 
nlm 'DegreeOfSmoothing', maximum noise standard deviation, 

'ComparisonWindowSize', 3, 'SearchWindowSize', 25 
S B R O F 0.6, 10" 3 

wavelet 2, 'Wavelet', 'rbio5.5', 'DenoisingMethod', ' S U R E ' , 'CycleSpinning' , 3 
S A - D C T 1.45 x maximum noise standard deviation 
B M 3 D maximum noise standard deviation, 'refilter' 

median 3D [1, 1, 3] 
C A N D L E 5, 5, maximum noise standard deviation, 0 
N L M 3 D 3, 2, 0.5 x maximum noise standard deviation 
B M 4 D 'Gauss', 1.1 x maximum noise standard deviation 

Table B.2: Parameters of all tested methods for denoising of simulated dataset in the 
tomogram domain. 

Method Parameters 

wiener [3, 1], 2 x D o S 2 

median [3,1] 
nlm 'DegreeOfSmoothing', 1.5 x DoS, 

'ComparisonWindowSize', 5, 'SearchWindowSize', 17 
S B R O F 4.5, 10" 3 

wavelet 2, 'Wavelet', 'rbio5.5', 'DenoisingMethod', ' S U R E ' , 'CycleSpinning' , 3 
S A - D C T 1.5 x DoS 
B M 3 D 2 x DoS, 'refilter' 

median 3D [1, 1, 3] 
C A N D L E 4, 4, DoS, 0 
N L M 3 D 7, 5, 5 x DoS 
B M 4 D 'Gauss', 2 x DoS 
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C. SELECTED PARAMETERS FOR DENOISING OF MEASURED DATASET 

C. Selected parameters for denoising of 
measured dataset 

Table C . l shows optimal parameters for the selected approaches for al l tested real 
samples. The noise estimation function described in [82] was used for approximation of 
noise standard deviation. In the table it is expressed as DoS - degree of smoothing. 

Table C . l : Parameters of all tested methods for denoising of measured datasets -
toothpick sample, P E rod wi th carbon fibers sample, mouse embryo samle. 

Toothpick 

Method Parameters 

B M 3 D - proj 2 x DoS 

B M 4 D - proj 'Gauss', 5 x DoS 

B M 4 D - tomo 'Gauss', 175 x DoS 

nlm - proj 'DegreeOfSmoothing ;', 1 x DoS, 'ComparisonWindowSize', 3, 

'SearchWindowSize', 25 

n lm - tomo 'DegreOfSmoothing' , 10 x DoS, 'ComparisonWindowSize' , 3, 

'SearchWindowSize', 21 

P E 

Method Parameters 

B M 3 D - proj 1.1 x DoS 

B M 4 D - proj 'Gauss', 1.2 x DoS 

B M 4 D - tomo 'Gauss', 15 x DoS 

nlm - proj 'DegreeOfSmoothing ;', 1 x DoS, 'ComparisonWindowSize', 3, 

'SearchWindowSize', 25 

n lm - tomo 'DegreOfSmoothing' , 2.2 x DoS, 'ComparisonWindowSize' , 7, 

'SearchWindowSize', 29 

Mouse embryo 

Method Parameters 

B M 3 D - proj 1.1 x DoS 

B M 4 D - proj 'Gauss', 1.2 x DoS 

B M 4 D - tomo 'Gauss', 20 x DoS 

nlm - proj 'DegreeOfSmoothing ;', 0.75 x DoS, 'ComparisonWindowSize', 3, 

'SearchWindowSize', 25 

n lm - tomo 'DegreOfSmoothing' , 2.5 x DoS, 'ComparisonWindowSize' , 5, 

'SearchWindowSize', 29 
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