
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Informatics and System Engineering

rau
Master's Thesis

University Parking System

Author: Aryana Haji

Supervisor: Ing. Martin Pelikan, Ph.D

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Aryana Ho .

Informatics

Thesis title

University Parking System

Objectives of thesis

Trie main objective of this thesis is to face the problem of Parking in the University Campus by making
a Website with mobile compatible for Parking System.
The mail goal of the website is to help st udents and employees to search and find free space at campus,
And book it easi ly tor specific hours. The benefit of achieving this website is to red uce the tim e ta ken and
the hassle factor of locating an available parking space. Being able to accurately direct a driver to an
available space has many environmental benefits like reduce C02, noise and reduce traffic.

Methodology

The work consists of theoretical and practical part. The theoretical part of the work is generally based on
the study of professional information sources and based on the knowledge gained will describe all the
starting points for the following practical part, namely programming languages, technologies and libraries
used for Web development.

The practical part will consist in the creation of a website focjsed on the creation and display of events.
An analysis of the website and definition of basic functionalities that will be implemented in this diploma
thesis will be pcrornicd. [iascd or this analysis, the layou: cr :hc website m :cmis of navigation will be
perfor med, as we II as the se lection of the necessary tech nol ogi es, I i bra ri es a n d a sJ ita b le data ba se for the
commissioning of this website.

Official document * Czech Umercity of Ufc Sciences Kraijyc * Kanytki 129, ICS 00 Praha - Sudidal

The proposed extent of the thesii

60 arj

Keywords

Web development, HTML, Django, Parking system

Recommended Information sources

Gongjun Van; Wei mlng Vang; Dan da B. Rawat and Stephan Olariu, "Smart Parking: A Secure and
Intelligent Parkiî g System", l£EE Intelligent Transportation Systems Magazine (Volume: 3, Issue: 1.
Spring 2011).

H. Wang and W. He, "A Reservation-based Smart Parking System", Computer Communications Workshops
(INFOCOM WKSHPS) 2011 IEEE Conference on Shanghai, pp. 690-69S, 2011.

Mohan des, M., Derlche, M. r Abuelma'atti, M. T, & Tasadduq, N. (2019). Preference-based smart parking
system in a university campus. IET Intelligent Transport Systems, 13(2),
417-423. https^/doLorg/lO. 1049/let- lts.2D 1S.S207.

Expected date of thesis defence

2022/23 SS-FEW

The Diploma Thesis Supervisor

Ing. Martin Pelikan, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 25.11. 2022

ing. Martin Pellkan, Ph.D.

Head at department

Electronic approval: 28.11. 2022

doc. Ing. Tomas Subrt, Ph.D.

Dean

Prague on 30. 03. 2023

Urtica cfcicirncn! * Cm* UnvEmtv of üfc t : iEn. :E iFr« jE * Kani^ki Its, Do Praha - luchdol

Declaration

I declare that I have worked on my master's thesis titled "University Parking System"

by myself and I have used only the sources mentioned at the end of the thesis. As the author

of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on 31.03.2023

Acknowledgement
Foremost, I would like to send my sincere gratitude to my supervisor Ing. Martin

Pelikan, Ph.D. Dean of the Faculty of Economics and Management, at Czech University of

Life Sciences Prague for the continuous support of my thesis study and research. I express

my deep sense of gratitude for his paintient, motivation, immense knowledge and guidance

in completing my master's thesis.

Besides my advisor, I must express my very profound gratitude to all of my

professors, my fellow students for their unwavering support and ongoing encouragement

during my years of study as well as during the process of conducting research for and writing

this thesis.

Lastly, yet most importantly, I would like to thank my father, Dr. Mohammed Amin

Haji. and my mother, Mrs. Jangeen Abdo, my sibling and my friends for supporting me

emotionally throughout my life and for giving me strength to chase my dreams.

University Parking System

Abstract

This project aims to create and build parking system for University campus in order

to solve the problem of the hassle factor of locating an available parking space and reduce

the time taking while finding an available zone to book. Build a user friendly web application

with efficient functionality, easy and understandable to use and interact with. Improving the

proposed system based on achieving acceptable and scalable web application interface by

utilizing different programming languages together. Provide the ability to have and own

parking account with flexibility to check vacant slots and book it easily recording to users

need.

This paper deal with proposed parking system starting with briefly understanding the

need of implementing it, what get used for achieving the working system and how the system

interact with users. Explain in details the development process and discuss how it could be

improved in future.

Keywords: Web development, H T M L , Django, Parking system

6

Univerzitní parkovací systém

Abstraktní

Tento projekt si klade za cíl vytvořit a vybudovat parkovací systém pro univerzitní kampus,

aby se vyřešil problém s problémem hledání volného parkovacího místa a zkrátila se doba

hledání volné zóny pro rezervaci. Vytvořte uživatelsky přívětivou webovou aplikaci s

efektivní funkčností, snadnou a srozumitelnou pro použití a interakci. Vylepšení navrženého

systému založené na dosažení přijatelného a škálovatelného rozhraní webové aplikace

společným využitím různých programovacích jazyků. Poskytněte možnost mít a vlastnit

parkovací účet s flexibilitou kontrolovat volná místa a snadno si je rezervovat a nahrávat

podle potřeby uživatelů.

Tento článek se zabývá navrhovaným parkovacím systémem počínaje stručným pochopením

potřeby jeho implementace, toho, co se používá k dosažení funkčního systému a jak systém

interaguje s uživateli. Vysvětlete podrobně proces vývoje a diskutujte o tom, jak by se dal v

budoucnu zlepšit.

Klíčová slova: Web development, H T M L , Django, Parking systém

7

Contents

1. Introduction 10
1.1 History of Parking system 11
1.2 History of parking garage 11

2. Objectives and Methodology 13
2.1 Objective 13
2.2 Methodology 13

3. Literature Review (Technologies Used) 16
3.1 Different between website and web application 16
3.2 Front End 18

3.2.1 H T M L 18
3.2.2 CSS 20
3.2.3 Java Script 20
3.2.4 Web design aspects 21
3.2.5 Website layouts 23

3.3 Back End 24
3.3.1 Python 24
3.3.2 Django Framework 25
3.3.3 API 27
3.3.4 Database 27
3.3.5 PyCharm 29

4. Practical Part 31
4.1 System development life cycle 31
4.2 Define the problem 32
4.3 Problem solving 32

Use case diagram 32
4.4 Plan 34

Activity diagram 35
4.4.1 System operation Diagram 36
4.4.2 Booking second location diagram 37

4.5 Design 38
4.6 Create the content 39

4.6.1 Header 39
4.6.2 Footer 40
4.6.3 Login 40
4.6.4 Create an account 41
4.6.5 Sidebar menu 41
4.6.6 Main page 43

8

4.7 Development 43
4.7.1 U R L 44
4.7.2 Booking process code 44
4.7.3 Tickets code 45
4.7.4 Check out code 46
4.7.5 Database of parking zones 46
4.7.6 Database of reserved parking zones 47

4.8 Test 47
4.8.1 Scenario 1: Create an account to get access to the system 48
4.8.2 Scenario 2: Booking free zone at C Z U campus 49
4.8.3 Scenario 3: Booking another zone within the same account 52
4.8.4 Scenario 4: Printing reserved ticked and show all tickets 52

4.9 Maintain 54

5. Results and Discussion 54

6. Conclusion and Future work 55

7. References 56

8. List of Figures 58

9. List of tables 59

10. List of abbreviations 59

11. Appendices 60

Back End code for booking functionality 60
H T M L code for booking view 61
Back end code for login functionality 62
H T M L for login view 62
Sign in code 62
H T M L code for Tickets view 64
Main page section code 64
Header code 66
Footer code 67
Github link 67

9

1. Introduction

Currently, with the growth of population and economic development, the number of

vehicle is also getting increased, searching for vacant parking space is being the main issue

for all drivers. Time wasting while searching for an available spot, parking a vehicle illegally

and a lot of environmental impacts are all reasons to come up with a great and huge solution

to solve and help people to easily with safety find and book vacant spots.

Parking is limited almost in every major city in the world, same things goes on at C Z U

campus where it is always a challenging for employees and students to directly have a slots

for their vehicles. Developing parking system can have a big impact to solve and limit traffic

issues. Defining and improving a system with an interactive user interface, where users can

easily understand it, interact with it, find vacant slot and be able to book it even before a

month or a day is what we are providing in this project. This proposed system can also be

used and implemented in different areas not just University campus. A key aspect of parking

system is efficient use of free zones which allows more vehicles to be parked in such area,

reduce traffic overcrowding, also parking system can have a huge impact in safety and help

in protecting your health by reducing C02 and smart parking system allows drivers to obtain

real-time parking information and alleviates parking contentions, the most important thing

is facilitating the process and time taking for people to find an available spot for their

vehicles. Web development aims to make people aware of your service, understand why

your business are important to them to use. A website offers a straightforward method of

showing the credibility of a business, and the way a person represents his business online is

vital for attracting more customers or visitors. Therefore, your website design should be

handled in the best possible way, because a professional presentation speaks volumes as

testimony to your business. Structuring your website in simple and understanable way for

attracting users.

This paper view the structure of parking system, what technologies get used to improve and

develop the system, how it got implemented with real scenarios in order to facilitate parking

process for people. Web development aims to make people aware of your service, understand

why your business are important to them to use.

10

1.1 History of Parking system

When we go back to 1920s, there was no systematize of parking anywhere yet. People would

park their vehicles anywhere in the streets, while you are at university of you went for

shopping it was illigal to leave your car anywhere and come back to it on anytime. Here

comes to the main reason of facing traffiic congestion problem. The first working parking

meter was designed by Holger George Thuessen and Gerald A . Hale. Hale and Thuessen

started working on the parking meter in 1933 because of the assigned project by Carl Magee.

The parking meter they designed was called The Black Maria. The first parking meter was

installed in Oklahoma City on July 16th in the year 1935. Magee wasn't the first one to file

patent for a parking meter. The first patent for a parking meter was filed by Roger W.

Babson on August 30, 1928. Babson was an entrepreneur in the early 20 t h century.

1.2 History of parking garage

Carriage buildings served as the first parking garages as we know them now at the turn

of the 20th century. These areas, which were formerly used to house horses, were repurposed

to house cars, and as cars became more widely available, there was a need for more buildings

specifically designed to shield the exposed interiors from the weather. In order to save space,

several early designs from the 1920s and 1930s had substantial pulley systems that lifted

cars up to various floors in stacked towers. Others resembled standard Art Deco office

buildings with glass windows and big doors. Nobody on the street would likely realize that

these structures were made exclusively to house cars. The Hotel for Autos, a 24-story

skyscraper in New York City that could accommodate more than 1,000 vehicles, was one

such mega-tower for automobiles that was inspired by this. In contrast, only 270 vehicles

can fit in New York City's biggest automated parking garage. Because to the work of many

architects and designers who kept experimenting with parking garages' general designs and

structural capabilities, parking garages were a typical part of life by the 1960s. Bertrand

Goldberg created one of the most well-known parking structures with Chicago's Marina

Tower, combining spaces for people to live, work, play, and park. Around 20 storeys of

workplaces and housing make up a spiraling parking structure.

11

Figure 1: Parking garage (Source https://www.archdaily.comJ)

12

https://www.archdaily.comJ

2. Objectives and Methodology

2.1 Objective

The main objective of this thesis is to face the problem of Parking in the University Campus

by making a Website with mobile compatible for Parking System. The mail goal of the

website is to help students and employees to search and find free space at campus, and book

it easily for specific hours. The benefit of achieving this website is to reduce the time taken

and the hassle factor of locating an available parking space. Being able to accurately direct

a driver to an available space has many environmental benefits like reduce C02, noise and

reduce traffic.

2.2 Methodology

Methodology The work consists of theoretical and practical part. The theoretical part of the

work is generally based on the study of professional information sources and based on the

knowledge gained will describe all the starting points for the following practical part, namely

programming languages, technologies and libraries used for Web development. The

practical part will consist in the creation of a website focused on the creation and display of

events. An analysis of the website and definition of basic functionalities that will be

implemented in this diploma thesis will be performed. Based on this analysis, the layout of

the website in terms of navigation will be performed, as well as the selection of the necessary

technologies, libraries and a suitable database for the commissioning of this website.

After that we started developing the project with a basic design with some functionality till

we reached to the current design. Iteration waterfall development process model has been

used in for this project as shown in figure 2.

13

Figure 2: Project Development Process Model

Iteration waterfall development process model is very simple one, it includes many phases

or steps as shown below:

Requirements: A l l possible requirements of the system to be developed are captured in this

phase and documented in a requirement specification doc.

Design: The requirement specifications from first phase are studied in this phase and system

design is prepared. System Design helps in specifying hardware and system requirements

and also helps in defining overall system architecture.

Implementation: With inputs from system design, the system is first developed in small

programs called units, which are integrated in the next phase. Each unit is developed and

tested for its functionality which is referred to as Unit Testing.

Testing: A l l the units developed in the implementation phase are integrated into a system

after testing of each unit. Post integration the entire system is tested for any faults and

failures.

Maintenance: There are some issues which come up in the development process and

especially in the testing phase. To fix those issues patches are released. Also to enhance the

product some better versions are released. Maintenance is done to deliver these changes in

the customer environment. Maintenance includes: Fixing errors, Updating, Upgrading, and

Adding new functionality.

Organization: This documentation contains five chapters. Each chapter presents the

required information about a part of the whole system. By reading the five chapters, all the

aspects that included in the development of this project will be explained and clarified.

14

The chapters of the documentation are organized as follows:

Chapter 1: Introduction

This chapter gives the reader an introduction on the parking systems and the need of it in
these modern days.

Chapter 2: Objective and Methodology

This chapter showes the objective and methodology of the proposed parking system.

Chapter 3: Literar review

In this chapter, all the technologies, tools, and software components that used to achieve this
proposed system are explained. This chapter is giving a brief introduction to each technology
used, the functionalities of each one of them is also identified.

Chapter 4: Practical part

This chapter present the proposed system for parking system, which work with different
programming languages seprated with building the front end of the website by using HTML,
CSS and Java Script, completing back end of the system by using Python and django
framework as well as sqlite for database saved.

Chapter 5: Conclusion and Future Work

This chapter concludes the documentation by summarizing the overall work and indicating
possible future works of the proposed system that can be done to improve the quality of the
system in general.

15

3. Literature Review (Technologies Used)

In this chapter, the web application technologies and components which have been used to

develop this project are described briefly.

As our parking system based on developing a web application for university which deals

with students and employees need. Before improving the proposed system we need to make

sure of understanding some technologies and terms used.

3.1 Different between website and web application

A website is a group of connected web pages that are kept on a server. The web pages, which

primarily serve informational or promotional purposes, may include text, photographs,

videos, and other types of media. Websites can be seen on a range of gadgets, including

desktop computers, laptops, tablets, and smartphones, and are accessed through a web

browser. There is two type of website, Dynamic and static website. Dynamic is the more

complex one as it could contain a databse as backend to interact with users. Statistic is the

simple one because it doesn't consist of any database that the user can interact with, it's

simply crrated with using H T M L , CSS programming langauges.

On the other hand, a web application is a piece of software that runs on a web server and can

be accessed using a web browser. Online applications, which can include interactive features

and functions like online shopping, social networking, email, and productivity tools, are

frequently more complex than websites. They frequently demand user authentication and

might save user information on a server. There are various types of web apps such as Static

web applications, Dynamic web applications, E-Commerce web applications, Single-page

web applications, Portal web applications, Content management system web applications,

Animated web applications, and Rich Internet web applications.

16

Website Web application

Represent a content of the page where

the user can view and read

Users intaract with the page not only

view it.

Information here is publicly accessible Information here is restricted to
registered users

It's easy to develop since it requires

only the basic web technologies

It's more challenging, because it

requires a higher level of security and

functionalities based on its purpose

Website help to inform Web application serve to assist

Table 1: Website vs Web application

W E B A P P L I C A T I O N W E B S I T E

Figure 3: Difference between website and web application (Source https://gmedia. net, id/)

After understanding the difference between website and web application, will explain in

details what we used for building parking system web application. The main structure of

creating a web application is starting with creating the interface which called front end of

the web, after that connecting it with database and server side which refers to back end of

the web.

17

https://gmedia

Front End
• Markup and web languages such as

HTML, CSS and Javascript
• Asynchronous requests and Ajax
• Specialized web editing software
• Image editing
- Accessibility
• Cross-browser issues
• Search engine optimisation

Back End
• Programming and scripting such as

Python, Ruby and/or Perl
• Server architecture
• Database administration
• Scalability
• Security
• Data transformation
• Backup

Figure 4:Difference between Front end and back end (Source https://www.metasource.co/)

3.2 Front End

Front end is a term which is famous in web development, also known as front face, while

creating your website or web application you need an interface to interact with users. So

users or visitor of your site can easily find the information that they need. Therefor front end

user friendly interface. Front end can be any design, layout, picture, video, color and text

which can be vision and interact to users. Front end developers need to make sure that

website design is good, make it understandable to users, easy to use and interact with.

I used three different languages for creating the web application interface:

3.2.1 HTML

H T M L stand for Hyper Text Markup Language, A markup language is a set of markup tags

and the tags describe document content. When it comes of structuring and organzing your

web page, H T M L are the most commonly used ones, it's a basic programming language

used to define a web stucture content by deviding it into differnet blocks for exmple you can

have a part of your web page as pharagraph, other part as heading. H T M L was first

developed in 1993 by Sir Tim Berners-Lee. Since then this markup language has had many

versions, the latest variation is labeled HTML5.

18

https://www.metasource.co/

H T M L is the most common used language to write web pages. It getting popular due to its
advantage:

1. It is easy to understand and modify.

2. Flexible while creating and building web pages with text.

3. Can be displayed on any platforms like Windows, linux and Macintosh.

4. Provide extra features to your web page by allowing to add videos, sounds and

graphics, which leads to attract more visitors.

5. Ability to add links to the web pages.

<!DOCTYPE html>
<html>
<head>
<title>Page T i t l e < / t i t l e >
</head>
<body>

<hl>My F i r s t Heading</hl>
<p>My f i r s t paragraph.</p>

</body>
</html>

Figure 5: Simple example of HTML document (Source https://www. w 3 schools, com/html/default, asp)

• The < IDOCTYPE html> declaration defines that this document is an HTML5

document.

• The <html> element is the root element of an H T M L page.

• The <head> element contains meta information about the H T M L page.

• The <title> element specifies a title for the H T M L page (which is shown in the

browser's title bar or in the page's tab).

• The <body> element defines the document's body, and is a container for all the

visible contents, such as headings, paragraphs, images, hyperlinks, tables, lists, etc.

• The <hl > element defines a large heading

• The <p> element defines a paragraph

19

https://www

3.2.2 CSS

CSS stands for Cascading Style Sheet, after structing the web page you need to style it by

adding some colors and organizing your paragraph aligns and more features which make

your web page. Basically controlling the way of presenting the H T M L document.

P {

c o l o r : r e d ;

t e x t - a l i g n : c e n t e r ;

}

Figure 6: Simple example of CSS (https://www. w3schools, com/css/default. asp)

• p is a selector in CSS (it points to the H T M L element you want to style.
• color is a property, and red is the property value.
• text-align is a property, and center is the property value.

3.2.3 Java Script

Java Script is high level programming language which used to build and create and

interactive and dynamic web pages and web applications to response to user actions.

JavaScript is used in conjunction with CSS and H T M L which help to provide functionality

to our web page or web application.

Java Script can be used also for creating web based games, developing mobile application,

also building server side application with platforms like Node.js.

<body>

<h2>My F i r s t JavaScript</h2>

<button type="button"
onclick="docunnent.getElementByld('demo'). inner-HTML = Date()">
C l i c k trie t o d i s p l a y Date and Time.</button>

<p id="demo"></p>

</body>

Figure 7: Java script example (Source https://www. w3schools, com/is/default, asp)

20

https://www
https://www

3.2.4 Web design aspects

User experience: The process of creating physical and digital goods that are useful,

pleasurable, and practical for people is known as user experience (UX) design. By

incorporating elements of branding, design, usability, and function, U X design aims to

provide products that offer people meaningful and pertinent experiences. Focusing on the

user's interaction with a product, U X designers strive to make it useful, approachable, and

enjoyable to use. Graphic design, architecture, interior design, software development, and

industrial design are just a few of the talents and knowledge that go into U X design. To

create a product that deal with users wants and expectations, the U X design process often

entails research, prototyping, testing, and iteration.

User interface: Designing the appearance, feel, and interactivity of a digital product, such

as a website or mobile app, is known as user interface (UI) design. The user interface (UI)

includes a product's visual elements and interactive elements, such as the color, text, buttons,

and animations that users interact with. Despite the fact that the two frequently overlap, UI

and U X design are distinct disciplines. While UI design is in charge of a product's

appearance, interactivity, usability, behaviour. The graphical components of digital

products, such as mobile applications, websites, and devices, are created by UI designers

who aim to make them both aesthetically pleasing and simple to use.

Figure 8: UX vs UI (Source https://www. mobitechspv. com/)

21

https://www

Usability: Is described by ISO 9241-210 as the degree to which a product, system, or service

can be used by particular users to accomplish particular goals with effectiveness, efficiency,

and satisfaction in a particular context of usage. Usability focuses on how the user completes

their intended tasks, the tools they use to complete them, and the extent to which their

demands are satisfied.

1. Learnability: The ease of learning the operation and behavior of the system for

inexperienced users.

2. Efficiency: The level of productivity attainable once the expert user has already

learned the system. The greater the usability of a system, the faster the user is using

it, and the work is done faster.

3. Memorability: The ease of remembering the functionality of the system, so that

the occasional user when returning to the system after an inactive period, does not

have the need to learn how to use it again.

4. Errors: The system must have a low error rate, that is, users make few mistakes

while using the system, and in case they make them help them recover easily.

5. Satisfaction: This is the most subjective attribute. It is the extent to which the user

finds the system pleasant to use.

Figure 9: Usability

22

3.2.5 Website layouts

There is four different types of website layouts, Static, liquid, adaptive and responsive.

Static Layout: A static layout has a fixed width and does not change based on the width of

the browser. This means that it is only responsive when scaling content in response to

changes in the viewport's size. In this instance, the entire layout is static and only the

elements' sizes are altered to display the entire template on a single screen. In other words,

static layouts only allow for the desktop version of a website to be viewed on a mobile or

tablet browser.

Liquid Layout: A liquid layout, also known as a fluid layout, it helps in changing the page

size based on the browser width or screen size.

Adaptive layout: An adaptive layout refers to the process of adapting to the screen

resolution for example mobile, tablet or disktop. It's directly understand the size of the

browser of screen and make the changes according to that. Because adaptive layouts don't

provide completely responsive websites that properly fit every device size, they are most

effective when users merely wish to accommodate a variety of devices and screen resolutions

for their website. Only fixed website versions for specific screen resolutions will be

produced by an adaptive page layout; not all screen resolutions will display the website

flawlessly.

The biggest drawback of this type of adaptive layout is that it may leave too much or not

enough space between the main container and the edges of the browser depending on the

screen resolution.

Responsive layout: The most difficult and efficient method for designing websites that will

display flawlessly on screens of any size is a responsive layout. This method combines

adaptive break points with fluid relative units to create a page layout that is a hybrid of the

two.

23

3.3 Back End

Backend is a part of a web application or software, after completing the Front end of your

web application you need to take the next step forward the Backend which is a server side

of a web development that helps in managing the data storage, underline logic and processing

user requests. Back-end developers are responsible for creating the website's structure,

writing code, and verifying that the code works. Technologies that developers can used for

building complex web applications are some of programming languages such as Java, Ruby,

PHP and Python the one that I used to develop my University Parking System. Creating and

administering databases, managing server requests and answers, and assuring the security

and scalability of a website or application are all part of back-end development. For dynamic,

interactive websites and applications that can handle a lot of data and traffic, back-end

development is crucial.

Reasons of the need of Backend:

1. Security: Backend is responsible to manage the security of the web application like

authentication, authorization.

2. Integration: Backend helps application to communicate with other and external

services by integrating with other systems and APIs.

3. Data Storage: Storing and managing data is one of the responsibilities of the

Backend.

4. Scaling: To handle huge volume of data, Backend is easy to scale as much as your

application need.

3.3.1 Python

Python is a high level programming language which is used in web development, machine

learning, data analysis and more. First released in 1991 and was created by Guido van

Rossum. Python's use of indentation to separate code chunks rather than curly brackets or

other symbols is one of its distinguishing characteristics. This facilitates the reading and

comprehension of Python code, but it also means that proper indentation is essential to the

efficient operation of the code. Python key features are simplicity and readability, which

helps to make it easy to use and learn. Also it can be used on different platforms like windows

24

and linux. Python is an interpreted language, therefore it doesn't require compilation in order

to run. The Python interpreter, on the other hand, reads the source code and runs it directly.

This eliminates the requirement for a separate compilation phase and enables rapid code

writing and testing. Python also can be used as backend language in many different areas for

example as web frameworks, API development, data analysis and task automation.

• Web frameworks: To develop a web application Python have several frameworks

which can be used to provide structure of building your web application and handle

many tasks as managing databases and routes. Most popular frameworks are Django

and Flask.

• API development: Developing APIs will help to communicates with other services

and applications.

• Data analysis: NumPy and Scikit-lear libraries are most often used for analysing data

in Python. While building your Backend you might need to process and work with

data so Python might be a good option for you.

• Task automation: You might need to have and write a script that response and

automate for a task, such as system manipulation or data cleaning.

3.3.2 Django Framework

When it comes to security, fast development, scalability and large community Django

framework is the best choice for building a web application. It was developed in 2003 by a

team of developers at Lawrence Journal World, get progressive in 2005 as an open source

project. Django framework pursue the model view controller " M V C " architectural pattern

which refer to model view template " M V T " also include build in features which make web

development easier and faster, such as Object Relational Mapping " O R M " layer. The key

principles of this framework is don't repeat yourself " D R Y " which supports developers to

avoid twofold of code and makes the maintenance easier for them and reduce development

time.

25

Steps to start using Django framework:

1- Install Django in your computer by running this command

P i p i n s t a l l django
2- Create your django project within your project name

Django-admin s t a r t p r o j e c t p a r k i n g - s y s t e m
3- Create new django app with the app name

Python manage.py s t a r t a p p p a r k i n g

4 - Data model definition by creating new file called models.py

5 - Create database tables

Python manage.py makemigrations python manage.py m i g r a t e
6- Define your views for handling user requests and return HTTP responses.

7- Define U R L for mapping URLS to views.

8 - Define Templates which refer to the presentation layer of your application.

9 - Run Django server
Python manage.py r u n s e r v e r

edureka!

User Django

Figure 10: Django process Diagram (Source https://www. edureka. co/)

26

https://www

3.3.3 API

Application Programming Interface is a tool used by developers for web development which

allow applications to interact and communicate with each other. There is a lot of purposes

of using API but the main one is helping with integration which means integrating different

software applications with each other for sharing data and communication. Software

developers can extract and communicate information using an APIs' set of protocols,

routines, and developer tools, which also allows apps to interact in a user-friendly way. APIs

can be used for a variety of tasks that call for communication across various applications or

systems, including retrieving data from servers, sending data to servers, and more.

The following are some characteristics of APIs that make them beneficial for software

development:

1. Interoperability: Regardless of the programming language or platform on which they are

developed, APIs enable communication between various applications.

2. Modularity: APIs let programmers divide complicated programs into smaller, easier-to-

manage parts that can be independently created and tested.

3. Reusability: APIs can be applied to a variety of applications, cutting down on expenses

and development time.

4. Scalability: APIs are great for creating scalable applications since they can manage

massive amounts of data and traffic.

5. Security: To guarantee that only authorized users can access sensitive data or

functionality, APIs can be guarded using authentication and permission techniques.

3.3.4 Database

A database is a structured collection of data that can be electronically stored and accessed

via a computer system. Databases are created to make it easier to store, retrieve, edit, and

delete data while carrying out various data-processing tasks. The data is managed and

information is extracted from the database using a database management system (DBMS).

Databases can range in size from tiny file system-based databases to big ones housed on

computer clusters or on the cloud. Database design encompasses both formal methods and

pragmatic factors, such as data modelling and effective data storage. Large volumes of data

are stored and managed via databases in a variety of applications, such as e-commerce,

healthcare, banking, and social media.

27

There are various kinds of databases, such as:

1. Relational databases: These databases keep information organized in tables with

established connections between them. They are based on the Structured Query Language

and are frequently used in corporate applications (SQL).

2. Document databases: These databases keep data in documents that are either X M L ,

JSON, or BSON. They can hold hierarchical data structures and are adaptable.

3. Key-value stores: These databases are utilized for session management and caching, and

they store data as key-value pairs.

4. Column-oriented databases: These databases handle enormous volumes of data quickly

because they store data in columns rather than rows.

5. Graph databases: These databases can handle complicated interactions between data

points because they store data in nodes and edges.

Time-series databases, object-oriented databases, and NoSQL databases are some other

varieties of databases. The specific needs of the application, such as the amount of data to

be stored, the complexity of the data, and the demand for scalability and performance, will

determine which database type should be used.

SQL

A programming language called Structured Query Language (SQL) is used to control and

work with data that is kept in relational databases. It is the common language for

communicating with relational databases like Oracle, MySQL, Microsoft SQL Server,

PostgreSQL, and SQLite. It is used to create, change, and query databases. Data definition

language (DDL) instructions are used to create and edit database objects like tables, views,

and indexes, whereas data manipulation language (DML) commands are used to insert,

update, and delete data. To manage and analyse huge amounts of data, SQL is frequently

used in data-driven applications, such as e-commerce, banking, healthcare, and social media.

For anyone dealing with relational databases, SQL is a valuable tool for managing data.

28

SQLite

SQLite is a database engine, software library that provides a relational database management

system RDMS, that I have used for building this system. It is designed to be linked into an

application and provide a rich set of APIs for accessing and manipulating data. So it's not

stand alone application and can't run separately unlike other databases. Features of using

SQLite as database management system is portability, Simplicity, compatibility by

supporting most SQL standard syntaxes, fast and efficient and providing security features

by including encryption and authentication. Open-source SQLite is free to use and

distributed under the public domain license. It has a variety of capabilities, including

transactions, triggers, and views, and it supports conventional SQL syntax. For developers

looking for an easy-to-use, standalone database solution, SQLite is a popular choice due to

its minimal size, excellent performance, and stability. It is extensively utilized in the creation

of mobile applications, including well-known ones like WhatsApp, Skype, and Firefox.

3.3.5 PyCharm

An integrated development environment (IDE) for Python called PyCharm is made to assist

professional developers in writing more effective, self-assured, and clean code. PyCharm

Pro and PyCharm Community are the two versions that it comes in, both of which are created

by the Czech company JetBrains. Out of the box, PyCharm supports the entire Python

workflow, including frontend technologies, databases, and web frameworks. An intelligent

code editor, code analysis, a graphical debugger, an integrated unit tester, and integration

with version control systems are just a few of the features it offers. Along with cross-

technology development, PyCharm also supports JavaScript, CoffeeScript, TypeScript,

Cython, SQL, HTML/CSS, template languages, AngularJS, Node.js, and other languages.

Professional Python developers frequently use PyCharm, which is renowned for its

intelligent code editor, syntax, and error highlighting, and enhanced code comprehension

and readability.

29

Some of the key features of Pycharm:

1. Intelligent code editor: PyCharm has an intelligent code editor that makes it easier to

write Python code of the highest caliber. The use of various color schemes for

keywords, classes, and functions, often known as syntax and error highlighting,

improves code comprehension and readability.

2. PyCharm offers code analysis to assist in finding faults and other problems in the

code.

3. Graphical debugger: PyCharm comes with a graphical debugger that lets

programmers navigate through code and find problems.

4. Built-in unit tester: PyCharm provides an inbuilt unit tester that enables programmers

to test their code and find bugs before distributing it.

5. Version control system integration: PyCharm interacts with well-known version

control systems like Git, making it easier for developers to maintain their code and

work with others.

6. Support for multiple technologies: In addition to Python, PyCharm also supports

JavaScript, CoffeeScript, TypeScript, Cython, SQL, HTML/CSS, template

languages, AngularJS, and Node.js.

30

4. Practical Part

This chapter present the proposed parking system, to understand the work of the proposed

system and its functionalities and events. This chapter includes the system development life

cycle of parking system web application with brief explanation of each phase. The

implementation phase of system development, where the system is actually built and put into

use, is referred to as the practical element of a system. This step involves writing code,

configuring hardware and software, testing and debugging the system, and deploying it for

end users.

4.1 System development life cycle

A project management model is essentially what a system development life cycle, or SDLC,

is. It outlines the various steps required to take a project from its inception or inception to

deployment and later maintenance. Phases of the SDLC allow you to swiftly develop high-

quality software that is well-tested and prepared for usage in production. Development

Process of creating a website of web application refers to sequence of steps involves in

building, designing and deploying a website. Development process steps are Define the

problem, find a solution for the problem, Planning, designing, Create the content,

development, testing and maintain the website.

Figure 11: System development life cycle

31

4.2 Define the problem

Traffic congestion, time taking while finding a vacant zone, safety and health impact and

environmental hazard are all reasons occurs nowadays due to the huge increase of vehicles

number. This issue is not limited only in big cities, but we are facing it at C Z U campus as

well. Students are always being late for lectures and university and a lot of time they are not

able even to park at university campus.

4.3 Problem solving

Problem solving is the process of achieving specific goal that deal with finding a solution

for an issue in order to help and make things easier for people. Related to our topic, we

decided to build a system for university campus where students and employees can have

their own account and interact with the system by finding vacant zones and book it for

specific days. Users will be able to login and access their account on anytime and anywhere

to meet what they need.

Use case diagram

A use case diagram graphically depicts the system's behaviour. It is used to show how

various system actors and the software interact with one another. A use case diagram can be

created using programs like Microsoft Visio, U M L Class Diagram, or Open U M L . Use case

diagrams are used to illustrate needs as seen from the perspective of the user. They are

created top-down and offer a summary of all possible outcomes for a given system.

Related to our parking system, the use case diagram is showing how actor can interact with

system.

• Register or login to the system

• Check vacant zones

• Booking

• Print ticket

• Check out from parking zone

• Log out from the system

32

we have two different users use cases, first one is new user and second one is already

registered user.

Figure 12: System Use case

33

4.4 Plan

Planning means completing a number of tasks in order to design and develop the website

that will be able to draw visitors. Determining the target audience, the website's aims and

objectives, and the features and functionality needed to achieve those goals all fall under this

category. A content strategy and information architecture may also be developed during the

planning phase, as well as wireframes or prototypes of the website's layout and design. In

order to ensure that the website or application is created in a way that meet the demands of

the target audience and accomplishes the specified goals and objectives, the planning phase

is a crucial step in the web development process. The main goal of creating this system is to

build an interactive and useable parking system which helps users to easily book an available

zone in three different locations. Planned to have different interfaces in order to meet user

scopes. The scope of my project is to let the user create an account in parking system

application in order to log in to their account and be able to view application contents, free

zones, book a zone, print out the ticket details, check out from reserved zone and log out

from the account.

Home Page

Create Account Log in

Reserve Free zone

Check o Jt

Print Ticket

All Tickets

Log out

Figure 13: Basic plan diagram of parking system

34

Activity diagram

Activity diagram is type of U M L (Unified Modelling Language) diagram, refers to sequence

of actions and activities within a system or process. The activity diagram consists of a series

of nodes and edges that represent the steps and transitions between them. The nodes

represent the activities or actions, while the edges represent the transitions or flows between

them. It can be used as business workflows, software systems and manufacturing process.

Activity diagrams can be created using various tools, including SmartDraw, Venngage,

and Lucidchart.

Elements of activity diagram:

1. Actions: In an activity diagram, each step or task that makes up a process is

represented by an action. They can be straightforward, like sending an email, or

intricate, like running a calculation.

2. Control flow: Arrows are used in activity diagrams to show how control moves from

one action to another. These arrows, which can also include decision points and

loops, represent the order in which actions are carried out.

3. Activity diagrams can be divided into swimlanes, which stand in for the many

participants or departments in the process. This makes it clearer who is in charge of

each action.

4. Forks and joins: Activity diagrams can depict parallel processing using forks and

joins. A join brings these paths back together when a fork divides the control flow

into several different paths.

Activity diagrams feature distinct start and finish points that signify the beginning and

conclusion of the process being depicted.

35

4.4.1 System operation Diagram

The boundary between a system and its environment is defined by a system operation

diagram, which also depicts the entities that interact with the system. It is a straightforward

and cooperative diagram that can assist a team in gaining a thorough grasp of a system. As

first activity diagram for our parking system, it shows how the process start and all activities

that can be done by users.

Prnt Ticket

Check all achieve
tickets

Home Page

Reqiste1

Duhok city

CZU campus

Kauf and

Check out from
parking

Log out from
account

NO
< £xist Account

Yes

Login Check vacant zone

NO

Boot
Yes

Figure 14: Activity diagram of System operation

36

4.4.2 Booking second location diagram

This activity diagram shows the process of booking another vacant place with already valid

one. As our system doesn't support having multiple booking, you have to check out from

the previous one first to be able to have a new booking.

O

Home page

Reserve vacant
pliict1

Fill in booking form
No

< <

>

Successfully
booked

h *

Yes f Check out from
previous

reservation

Successfully
checked out

Figure 15: Booking second location use case

37

4.5 Design

Design phase is when your website takes the shape including the creation of all visual

content, such as images, videos and all information that was gathered through the planning

phase. This includes first step of the website structure and website visual design, will consist

of Header, Footer, Side bar, Table and image.

Header shows on the top of your page usually involves important section about your website

like contact details, website logo, navigation menu and different sections that user can access

it to provide more information about the website.

Footer take place in the end of your web page, I used for copyright of the website.

Header

Side Bar

-co:e i'

Figure 16: Basic design of login page

38

Header

Side Bar

=oote r

Figure 17: Parking System Interface

4.6 Create the content

This steps contain developing content for the website, including text, image and other

multimedia.

4.6.1 Header

A web page's header is a crucial component that often contains a company name, logo, search

bar, navigational tags, and more. It can be seen on all pages of the website and is often at the

top of the screen. Both H T M L and CSS can be used to construct a header.

The header can be modified using CSS to alter the font size, editing the text, add padding.

The user experience can be enhanced and the website's navigation made simpler with a well-

designed header.

Figure 18: Header of parking system web application

39

4.6.2 Footer

A web page's footer, which is normally found at the bottom of the page, is a crucial

component that includes details like copyright notices, contact details, and links to other

pages on the website. The global site footer, which typically contains copyright notices,

contact information, and links to other pages on the website, can also be defined using the

H T M L "footer" element.

© 2023 All Rights Reserved. Design by AryanD Haji

Figure 19: Footer of parking system web application

4.6.3 Login

A website's login page, which enables users to access their accounts by entering their login

information, is a crucial component. H T M L may be used to add inputs for each field and

wrap them in a "form" element to process the input to produce a login page.

Figure 20: Login Page

40

4.6.4 Create an account

H T M L can be used to create a sign-up form in web development to establish an account

page. To process the input, the sign-up form can be enclosed in a "form" element, and inputs

can be inserted for each field, including "name," "email," "password," and "confirm

password." CSS can be used to style the sign-up form to add a border, padding, and a certain

background color.

Figure 21: Create account page

4.6.5 Sidebar menu

A sidebar menu is a navigation menu with links to various website parts that is often found

on the left or right side of a web page. The sidebar may be made using the H T M L div>

element, and it can be styled using CSS with a certain width, height, position, and

background color. By keeping crucial navigation links visible and reachable on the screen

even as the user scrolls down the page, a sidebar menu in web design can enhance user

41

experience. By keeping the call-to-action button or contact form on the screen and in the

user's thoughts, a sidebar menu can also aid in increasing conversions.

Home

Register

Login

Figure 22: Menu bar before logging in

Home

Account: Aryana

Print Ticket

All Tickets

Reserve Parking

Checkout Parking

Logout

Figure 23: Menu bar after login to the account

42

4.6.6 Main page

The homepage, the initial page a visitor sees when arriving at a website, serves as its main

page. A website's main page should give visitors a quick summary of the site's content and

direct them to the relevant pages. Links to other website pages, such as the About Us, Contact

Us, or Services pages, may also be found there. For a good user experience, a website's home

page should be well-designed, aesthetically pleasing, and simple to navigate.

str

Figure 24: Main page of parking system

4.7 Development

Development process means how to turn out all programming languages works together in

order to build the website or web application. The actual construction of the website or web

application takes place during the development stage of web development. This stage, which

comes after the planning and design phases, entails creating the website's or application's

functional component. While front-end developers create the user interface and make sure

the website is responsive and user-friendly, back-end developers construct the website's

framework, write code, and confirm that the code functions. The website or application can

be deployed and launched for end users after it has been created and tested. This part will

include some section of code used in building parking system.

43

4.7.1 U R L

Started with page U R L which refer to Uniform Resource Locator, related to typed address

browsers to get page access in internet. Each page of the system will have different U R L

named. URLs can be used to link to external resources like photos, videos, or other websites

as well as to connect multiple sections of a website together.

u r l p a t t e r n s = [
p a t h (' ', i n c l u d e (' s o u r c e . u r l s 1)) ,
p a t h (' a d m i n / 1 , a d m i n . s i t e . u r l s) ,
p a t h (' u s e r / s i g n u p / ' , u s e r s v i e w s . s i g n u p v i e w , name='signup'),
p a t h (' u s e r / l o g i n ' , u s e r s v i e w s . u s e r l o g i n , name= 1 l o g i n ') ,
p a t h (' u s e r / l o g o u t / ' , u s e r s v i e w s . u s e r l o g o u t , n a m e = ' l o g o u t 1) ,
p a t h (' b o o k / ' ,

l o g i n r e q u i r e d (p a r k i n g z o n e v i e w s . R e s e r v a t i o n V i e w . a s v i e w ()) ,
name='book'),

p a t h (' t i c k e t / ' ,
l o g i n r e q u i r e d (p a r k i n g z o n e v i e w s . T i c k e t P d f . a s v i e w ()) ,
n a me='ticket') ,

p a t h (' a l l _ t i c k e t s / ' ,
l o g i n r e q u i r e d (p a r k i n g z o n e v i e w s . D i s p l a y T i c k e t s . a s v i e w ()) ,
n a m e = ' a l l - t i c k e t s ') ,

p a t h (' c h e c k o u t / ' , p a r k i n g z o n e v i e w s . c h e c k o u t , name='checkout')
]

4.7.2 Booking process code

c l a s s R e s e r v a t i o n V i e w (V i e w) :
def g e t (s e l f , r e q u e s t) :

t r y :
u s e r r e s e r v a t i o n =

R e s e r v a t i o n . o b j e c t s . g e t (c u s t o m e r = r e q u e s t . u s e r , c h e c k e d o u t = F a l s e)
i f u s e r r e s e r v a t i o n :

m e s s a g e s . w a r n i n g (s e l f . r e q u e s t , 'Please Check Coat
Your P r e v i o u s R e s e r v a t i o n ')

r e t u r n r e d i r e c t (' i n d e x ')
e xcept O b j e c t D o e s N o t E x i s t :

pass

r e s e r v a t i o n = R e s e r v a t i o n F o r m ()

r e t u r n r e n d e r (r e q u e s t , 'parking_zones/booking.html',
{'form': r e s e r v a t i o n })

def p o s t (s e l f , r e q u e s t) :
t r y :

u s e r r e s e r v a t i o n =
R e s e r v a t i o n . o b j e c t s . g e t (c u s t o m e r = r e q u e s t . u s e r , c h e c k e d o u t = F a l s e)

i f u s e r r e s e r v a t i o n :
m e s s a g e s . w a r n i n g (s e l f . r e q u e s t , 'Please Check Out

Your P r e v i o u s R e s e r v a t i o n ')

44

r e t u r n r e d i r e c t (' i n d e x ')

e xcept O b j e c t D o e s N o t E x i s t :
pass

r e s e r v a t i o n f o r m = R e s e r v a t i o n F o r m (d a t a = r e q u e s t . P O S T)

i f r e s e r v a t i o n f o r m . i s v a l i d () :
s t a r t d a t e =

r e s e r v a t i o n f o r m . c l e a n e d d a t a [' s t a r t _ d a t e ']
f i n i s h d a t e =

r e s e r v a t i o n f o r m . c l e a n e d d a t a [' f i n i s h _ d a t e ']
p a r k i n g z o n e =

r e s e r v a t i o n f o r m . c l e a n e d d a t a [' p a r k i n g _ z o n e ']
p l a t e number =

r e s e r v a t i o n f o r m . c l e a n e d d a t a [' p l a t e _ n u m b e r ']

p a r k i n g z o n e =
P a r k i n g Z o n e . o b j e c t s . g e t (n a m e = p a r k i n g z o n e)

i f p a r k i n g z o n e . v a c a n t s l o t s == 0:
m e s s a g e s . w a r n i n g (s e l f . r e q u e s t , 'Parking Zone

F u l l ! ')
r e t u r n r e d i r e c t (' i n d e x ')

r e s e r v a t i o n = r e s e r v a t i o n f o r m . s a v e (c o m m i t = F a l s e)
r e s e r v a t i o n . c u s t o m e r = r e q u e s t . u s e r
r e s e r v a t i o n . p a r k i n g z o n e = p a r k i n g z o n e
r e s e r v a t i o n . t i c k e t c o d e = c r e a t e t i c k e t c o d e ()
r e s e r v a t i o n . s a v e ()
#parkingzone =

Parking Zone.objects.get (name=parking zone)
p a r k i n g z o n e . o c c u p i e d s l o t s += 1
p a r k i n g z o n e . s a v e ()
v a c a n t s l o t s = i n t (p a r k i n g z o n e . n u m o f s l o t s) -

i n t (p a r k i n g z o n e . o c c u p i e d s l o t s)
p a r k i n g z o n e . v a c a n t s l o t s = v a c a n t s l o t s
p a r k i n g z o n e . s a v e ()
m e s s a g e s . i n f o (r e q u e s t , ' S u c c e s s f u l l y Booked')
r e t u r n r e d i r e c t (' i n d e x ')

r e t u r n r e n d e r (r e q u e s t , 'parking_zones/booking.html',
{'form': r e s e r v a t i o n f o r m })

4.7.3 Tickets code

c l a s s T i c k e t _ P d f (V i e w) :

def g e t (s e l f , r e q u e s t) :

t o d a y = t i m e z o n e . n o w
r e s e r v a t i o n =

45

R e s e r v a t i o n . o b j e c t s . f i l t e r (Q (c u s t o m e r = r e q u e s t . u s e r ,
c h e c k e d o u t = F a l s e) | Q (c u s t o m e r = r e q u e s t . u s e r ,
c h e c k e d out=True)) . f i r s t ()

i f r e s e r v a t i o n :
p a rams = {

'today': t o d a y ,
' r e s e r v a t i o n ' : r e s e r v a t i o n ,
'request': r e q u e s t

}
r e t u r n R e n d e r . r e n d e r (' p a r k i n g _ z o n e s / t i c k e t . h t m l ' ,

p a r a m s)
e l s e :

m e s s a g e s . w a r n i n g (s e l f . r e q u e s t , f'No P a r k i n g
r e s e r v a t i o n e x i s t s f o r { s e l f . r e q u e s t . u s e r } ')

r e t u r n r e d i r e c t (' i n d e x ')

4.7.4 Check out code

def c h e c k o u t (r e q u e s t) :
t r y :

r e s e r v a t i o n =
R e s e r v a t i o n . o b j e c t s . g e t (c u s t o m e r = r e q u e s t . u s e r , c h e c k e d o u t = F a l s e)

i f r e s e r v a t i o n :
r e s e r v a t i o n . c h e c k e d o u t = True
r e s e r v a t i o n . s a v e ()
p a r k i n g z o n e name = r e s e r v a t i o n . p a r k i n g zone.name
p a r k i n g z o n e =

P a r k i n g Z o n e . o b j e c t s . g e t (n a m e = p a r k i n g z o n e name)
p a r k i n g z o n e . o c c u p i e d s l o t s -= 1
p a r k i n g z o n e . v a c a n t s l o t s += 1
p a r k i n g z o n e . s a v e ()
m e s s a g e s . i n f o (r e q u e s t , ' S u c c e s s f u l l y Checked Out')

except O b j e c t D o e s N o t E x i s t :
m e s s a g e s . w a r n i n g (r e q u e s t , f'No P a r k i n g r e s e r v a t i o n

e x i s t s f o r { r e q u e s t . u s e r } ')

r e t u r n r e d i r e c t (' i n d e x ')

4.7.5 Database of parking zones

,., G + Tx: Auto v DDL Q CSV v -j- •+

T- W H E R E ="- O R D E R B Y

51 name * 5S s l u g t 51 num_of_ s l o t s ; 11 1 o c c u p i e d _ s l o t s : 51 a d d r e s s * 51 p r i c e t 11 v a c a n t _ s l o t s :
1 l Duhok C i t y BBB 3 1 K u r d i s t a n R e g i o n 9G 2
2 2 CZU Campus AAA 5 3 16566 Prag u e 56 2
3 3 K a u f l a n d P a r k i n g CCC 10 3 N a d r a z i podbaba 36 7

Table 2: Database of parking zones

46

4.7.6 Database of reserved parking zones

10 ro G + Tx: Auto DDL Q, CSV v l_
T- ;HERE = - :1RDE ;R BY

H " J l s t a r t _ d a t e i J l f i n i s h _ d a t e ; J l p l a t e _mjmber i J l phdne_number - J 3 c u s t o m e n _ i d - J 3 p a r k i n g _ z d n e _ i d - J

1 i 2023-03-02 2023 -Q3- 02 KJH456M 895698469 1 1
2 2 2023-03-11 2023 -03- 11 KJH456M 895698469 1 1
3 3 2023-03-11 2023 -03- 11 KJH456M 895698469 1 1
4 4 2023-03-11 2023 -03- 11 KJH456M 895698469 1 2
5 5 2023-03-11 2023 -03- 11 KJH456M 895698469 1 3
6 £ 2023-03-12 2023 -03- 12 KJH456M 895698469 1 2
7 7 2023-03-13 2023 -03- 13 KJH456M 773064610 1 2
s B 2023-03-13 2023 -03- 13 KJH456M 895698469 1 2
9 9 2023-03-17 2023 -03- 18 KJH456M 773065615 1 2
ID ID 2023-03-2G 2023 -03- 21 KJH456M 773064618 1 2

JS c h e c k e c L o u t - 19 t i c k e t _ c o d e - J ! c r e a t e d _ c n $

1 x w l c u g 2 0 2 3 - 0 3 - 0 2 1 3 : 1 8 : 2 3 . 9 6 7 4 7 5

1 1 4 0] e h 2 0 2 3 - 0 3 - 1 1 1 5 : 3 2 : 5 5 . 5 9 1 3 5 5

1 9 4 h c e 4 2 0 2 3 - 0 3 - 1 1 1 5 : 3 6 : 3 0 . 1 8 2 7 4 5

1 p i z z m p 2 0 2 3 - 0 3 - 1 1 1 6 : 1 8 : 3 7 . 0 0 3 5 5 1

1 9 m e 9 q n 2 0 2 3 - 0 3 - 1 1 1 6 : 2 1 : 2 4 . 5 2 1 6 9 3

1 0 c l] 5 O 2 0 2 3 - 0 3 - 1 2 2 1 : 0 3 : 4 1 . 2 1 6 5 3 9

1 s n j 5 o 5 2 0 2 3 - 0 3 - 1 3 1 2 : 0 1 : 2 9 . 5 4 2 9 8 4

1 w a n s r l 2 0 2 3 - 0 3 - 1 3 1 5 : 0 2 : 2 8 . 5 6 2 6 1 3

1 7 s r d m c 2 0 2 3 - 0 3 - 1 6 1 1 : 1 2 : 1 3 . 6 9 3 6 6 4

0 d r j x n m 2 0 2 3 - 0 3 - 1 6 1 1 : 4 3 : 2 0 . 0 5 0 6 4 3

Table 3: Database of reserved parking zones

4.8 Test

Implementing and testing the website to make sure everything is working, it is user friendly

and meet all the requirement. The website or application is tested during this phase, which

comes after the development phase, for usability, performance, security, and compatibility

with various devices and browsers. To find and address any problems or faults in the website

or application, developers may use a variety of testing approaches at this phase, including

unit testing, integration testing, system testing, and acceptance testing. To interact with

parking system and check if it's responding to users need, I have done different scenarios.

47

In web development, there are various testing kinds, each with a distinct goal and scope.

Some of the most typical forms of testing used in web development are listed below:

1. Unit testing: With this style of testing, individual web application modules or
components are tested separately. In order to ensure that each component performs
as planned and to identify any faults or defects early in the development process, unit
testing is used. Using testing frameworks like Jest, Mocha, or Jasmine, unit testing
is frequently automated.

2. Integration testing: Checking the interrelationships between various web application
components is known as integration testing. Integrity testing checks the
interoperability of the various components of the program and looks for any defects
or issues that might develop due to component interaction. Integration testing can be
done manually or using automated testing methods.

3. Functional testing: Testing the functionality of the web application as a whole is
known as functional testing. Functional testing is done to make sure that an
application complies with all requirements and specifications and performs as
expected from the user's point of view. Functional testing can be carried out manually
or automatically utilizing testing software.

4. Performance testing: Performance testing entails evaluating how well a web
application performs under various conditions, such as high traffic or a heavy load.
Performance testing checks if an application can manage the anticipated load and
operates effectively under pressure. Tools like Apache JMeter or LoadRunner can be
used for performance testing.

5. Security testing: Testing for security involves examining the online application's
security for flaws like SQL injection, cross-site scripting (XSS), and cross-site
request forgery (CSRF). To make sure the application is secure and that sensitive
data is secured, security testing is done. Security testing can be carried out manually
or automatically using testing software.

6. User Acceptance Testing (UAT): To make sure the online application satisfies users'
needs and expectations, U A T entails testing it with actual users. UAT's goal is to
make sure the program is user-friendly and offers a positive user experience.
Usability testing (UAT) is normally performed manually and may include focus
groups, surveys, or other methods.

4.8.1 Scenario 1: Create an account to get access to the system

A l l you need as first step to get access and interact with the system is to create your own

account with your name and generate a strong password under the requirement conditions

of strong password. As you can see in figure 25, that the system interacted with the user with

48

providing an error message about the provided password. After you meet the requirement

and generate strong password your account will be created and you will get notified message

as shown in figure 26.

Password confirmation*

This password is too short It
must contain at least 8
characters.
Enter the s a m e p a s s w o r d a s before, for

veri f icat ion.

CREATE ACCOUNT

Figure 25: Error message for generated password

Succesfully Created user Jankin. You can now login

Figure 26: Account Created

4.8.2 Scenario 2: Booking free zone at CZU campus

Main point of this system is to help users to book free zones in three different locations, after

logging in to your account you will be able to view different parking location with available

zones and the price of each location. Booking a zone can be done by clicking into "Reserve"

bottom which will show book page for the user where they are able to book it for specific

days, select specific location and insert plate and phone number. As shown in Figure 4.13.

Before booking an available zone let's focus how many free spaces we have at C Z U campus

to make sure the system is working by seeing the changes in available zones number from

before and after booking. As shown in figure 4. There are 3 available zones in C Z U campus.

49

Parking Zone Location Vacant Slots Price

Duhok City Kurdistan Region 2 90

CZU C a m p u s 16500 Prague 3 50

Table 4: Number of Vacant slots in CZU campus before booking

Figure 27: Book a parking process

50

Book Parking

Start date*

02/16/2023 n
Finish date*

02/17/2023 •
Parking zone*

CZU Campus V

Plate number*

KJH456M

Phone number*

773065615

BOOK

Successful ly Booked

Figure 28: Parking booked

Parking Zone Location Vacant Slots Price

Duhok City Kurdistan Region 2 90

CZU C a m p u s 16500 Prague 2 50

Table 5: Vacant slots in CZU campus after booking

51

4.8.3 Scenario 3: Booking another zone within the same account

This system was built on the base of each account should only have one reservation.

You as a user you are not allowed to have multiple reservation under one account, this system

will avoid empty reservations.

As third scenario of implementing this system, if you try to have new booking with already

existing one, system will notify you to check out first from the previous reservation as shown

in figure 4.

Please Check Out Your Previous Reservation

Figure 29: Notification for checking out

4.8.4 Scenario 4: Printing reserved ticked and show all tickets

One of important feature of this system is user friendly which means it's easy to use and

meet what user need. System provide you with the ability of printing your tickets with all

details included, also it's archiving all your previous tickets that you can go back to it when

needed.

52

Ticket Code - drjxnm

Reservation on : March 16, 2023, 11:43 a.m.

Name: Aryana

Parking Status: Active

Start Finish Parking Plate Phone
Date Date Zone Number Number

March March CZU KJH456M 773064616
20,2023 21,2023 Campus

Figure 30: Print ticket details

Date - 16/03/2023

Start

Date

Finish

Date

Poking

Zone

Plate

Number Status

March 20,

2023

March 21,

2023

CZU

C a m p u s

KJH456M Active

March 17,

2023

March 18,

2023

CZU

C a m p u s

KJH456M Checked

Out

March 13,

2023

March 13,

2023

CZU

C a m p u s

KJH456M Checked

Out

March 13,

2023

March 13,

2023

CZU

C a m p u s

KJH456M Checked

Out

March 12,

2023

March 12,

2023

CZU

C a m p u s

KJH456M Checked

Out

Figure 31: All recorded tickets

53

4.9 Maintain

The life cycle of web development includes a crucial step called maintenance.

It incorporates elements of the development life cycle's testing and development phases.

In order to ensure that the web application continues to function effectively and satisfy user

needs, this stage entails monitoring and updating it. A few examples of maintenance tasks

are quality assurance testing, problem solving, and ongoing technical assistance. Regression

tests should be run after the creation of new features to verify compatibility. Throughout the

maintenance phase, you can also create new features, add new integrations, and make regular

upgrades to adapt to changing business requirements.

5. Results and Discussion

Building and improving a web application with easy and understandable functionality that

aims to deal with users in order to find and book vacant spots was the main solution of this

thesis. As my goal was to build this system by using H T M L , CSS and python with Django

framework, I always get into the discussion to the reason of using this type of technologies.

For example, why no Java or WordPress which is getting so familiar in designing and

building great websites. My answer would always be because of Python adaptability,

readability, and simplicity. It is frequently used for artificial intelligence, machine learning,

data analysis, and web development. A high-level Python web framework called Django is

intended for quick development and simple, practical design. It offers a collection of tools

and packages, including as a potent O R M (Object-Relational Mapping) system, a templating

engine, and built-in support for user authentication and security, that make it easier to

construct complicated online applications. Model-View-Controller (MVC) architecture,

which is used by Django, divides application functionality into three interrelated parts: the

model, the view, and the controller. This frees up developers to concentrate on building

clean, reusable code and makes it simple to scale and manage online applications. Also for

future work and improving this system and make it working with some sensors, Python is

easy and useful for that as well. As PySensors packageis only one of the many libraries and

tools available in Python that make it simple to interact with sensors and gather data.

54

6. Conclusion and Future work

Parking system is a hot field of research due to it is wide range and diversity of applications.

Today, most parking system work for people in big cities, malls, companies, and

everywhere. Parking system is an effective way that provides you with safe and protected

place to park your vehicles. Having parking system in your company or university or even

when you are going foe shopping it redusing the congestion, time wasting while finding free

zone and protects the environment from pollution. Also building a web application that

interact with people for parking is an efficent and modern way to track with technology and

make the process eaiser for people. Having this kind of system in our university campus will

mainly solve a big issue that is facing our students, university staff and employees with

finding a free space to park their vehicles. As well as it will provide us with an idea about

the number of cars that entering C Z U campus, maybe we will need to build new parking

zones to meet the capacity of our university popultion.

Finally , as the technology improves, there will be new ways to use parking system which

will help more in soliving the problems that we are facing it every day and make parking

process easier and more safe to us.

The proposed system can be improved in future with using more technologies which help to

use it in a wide range and be useful in many other places. I will recommend connecting web

application with different type of sensors like camera, which can show a visual

representation of the region behind the car, and laser sensors, which measure the separation

between the vehicle and an object using laser beams. Electromagnetic and ultrasonic

proximity sensors, as an object enters the electromagnetic field at the front or rear of the

vehicle as it moves forward or backward, electromagnetic sensors create an electromagnetic

field there and alert the driver to the object's presence. Ultrasonic sensors are more prevalent

and employ sound waves to measure the distance between a vehicle and an item, giving the

driver an audible warning when the vehicle approaches an object too closely, would be a

great achievement for future. Also another plan for improving parking system is using Cloud

based parking system. A parking management system that employs cloud computing

technology to store and process parking-related data, such as occupancy, availability, and

payment information, is known as a cloud-based parking system.

55

7. References

1- Mohandes, M . , Deriche, M . , Abuelma'atti, M . T., & Tasadduq, N . (2019). Preference-
based smart parking system in a university campus. IET Intelligent Transport Systems,
13(2), 417^123. https://doi.org/10.1049/iet-its.2018.5207.

2- Sadhukhan, P. (2017). An IoT-based E-parking system for smart cities. In International
Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp.
1062-1066), Udupi. https://doi.org/10.1109/ICACCI.2017.8125982.

3- Geng Y , Cassandras C G (2012) A new "smart parking" system infrastructure and
implementation. Procedia Soc Behav Sci 54:1278-1287.

4- N . H. H. M . Hanif, M . H. Badiozaman and H. Daud, "Smart parking reservation system
using short message services (SMS)", Intelligent and Advanced Systems (ICIAS) 2010
International Conference on 2010, pp. 1-5.

5- Quinones, D., Rusu, C., Rusu, V. : A methodology to develop usability/user experience
heuristics. Comput. Stand. Interfaces 59, 109-129 (2018).

6- World Wide Web Consortium (W3C): Making the Web Accessible
(2020). https://www.w3.org/WAI/. Accessed 29 Jan 2020.

7- H. Wang and W. He, "A Reservation-based Smart Parking System", Computer
Communications Workshops (INFOCOM WKSHPS) 2011 IEEE Conference on
Shanghai, pp. 690-695, 2011.

8- https://www.simbla.com/Whv-Is-Website-Development-Important.

9- Gongjun Yan; Weiming Yang; Danda B. Rawat and Stephan Olariu, "SmartParking: A
Secure and Intelligent Parking System", IEEE Intelligent Transportation Systems
Magazine (Volume: 3, Issue: 1, Spring 2011).

10- https ://www.parking.net/about-parking/history-of-parking

11- http://www.myreadingroom.co.in/notes-and-studymaterial/69-html/826-features-of-

html.html

12- Dania Delgado, Daniela Zamora, Daniela Quinones, Cristian Rusu, & Virginica Rusu,

User experience Heuristics for National Park Websites. First Online: 10 July 2020.

13- https://www.clouddefense.ai/blog/svstem-development-life-cycle

14- https://www.archdaily.com/993988/exploring-the-history-and-future-of-parking-

garage-designs

15- http://www.myreadingroom.co.in/notes-and-studymaterial/69-html/826-features-of-

html.html

56

https://doi.org/10.1049/iet-its.2018.5207
https://doi.org/10.1109/ICACCI.2017.8125982
https://www.w3.org/WAI/
https://www.simbla.com/Whv-Is-Website-Development-Important
http://www.parking.net/about-parking/history-of-parking
http://www.myreadingroom.co.in/notes-and-studymaterial/69-html/826-features-of-
https://www.clouddefense.ai/blog/svstem-development-life-cycle
https://www.archdaily.com/993988/exploring-the-history-and-future-of-parking-
http://www.myreadingroom.co.in/notes-and-studymaterial/69-html/826-features-of-

16- https://www.freecodecamp.org/news/difference-between-a-website-and-a-w

application/

17- http://www.dikonia.com/blog/how-to-extend-a-wordpress-website-into-a-business-

web-app/

18- Best Parking Sensors (Review & Buying Guide) in 2023 | The Drive

19- Parking Sensors | Front. Rear. Curb. Back Up. Garage - CARiD.com

20- Reading a Sensor with Python - Problem Solving with Python

21- W3Schools Online Web Tutorials

22- M D N Web Docs (mozilla.org)

23- https://gmedia.net.id/info/news/detail/711/WEBSITE-VS-WEB-APPLICATIQN

24- https://www.metasource.co/fullstack developer Vietnam pros cons/front-end-and-

back-end/

25- https://www.edureka.co/blog/django-tutorial/

26- https://www.mobitechspy.com/design-challenges-with-ui-ux-and-solutions/

57

https://www.freecodecamp.org/news/difference-between-a-website-and-a-w
http://www.dikonia.com/blog/how-to-extend-a-wordpress-website-into-a-business-
http://CARiD.com
http://mozilla.org
https://gmedia.net.id/info/news/detail/711/WEBSITE-VS-WEB-APPLICATIQN
https://www.metasource.co/fullstack
https://www.edureka.co/blog/django-tutorial/
https://www.mobitechspy.com/design-challenges-with-ui-ux-and-solutions/

8. List of Figures
Figure 1: Parking garage 12

Figure 2: Project Development Process Model 14

Figure 3: Difference between website and web application 17

Figure 4:Difference between Front end and back end 18

Figure 5: Simple example of H T M L document 19

Figure 6: Simple example of CSS 20

Figure 7: Java script example 20

Figure 8: U X vs UI 21

Figure 9: Usability 22

Figure 10: Django process Diagram 26

Figure 11: System development life cycle 31

Figure 12: System Use case 33

Figure 13: Basic plan diagram of parking system 34

Figure 14: Activity diagram of System operation 36

Figure 15: Booking second location use case 37

Figure 16: Basic design of login page 38

Figure 17: Parking System Interface 39

Figure 18: Header of parking system web application 39

Figure 19: Footer of parking system web application 40

Figure 20: Login Page 40

Figure 21: Create account page 41

Figure 22: Menu bar before logging in 42

Figure 23: Menu bar after login to the account 42

Figure 24: Main page of parking system 43

Figure 25: Error message for generated password 49

Figure 26: Account Created 49

Figure 27: Book a parking process 50

Figure 28: Parking booked 51

Figure 29: Notification for checking out 52

Figure 30: Print ticket details 53

Figure 31: A l l recorded tickets 53

58

9. List of tables

Table 1 Website vs Web application 17

Table 2 Database of parking zones 46

Table 3 Database of reserved parking zones 47

Table 4 Number of Vacant slots in C Z U campus before booking 50

Table 5 Vacant slots in C Z U campus after booking 51

10. List of abbreviations

H T M L : HyperText Markup Language

CSS: Cascading Style Sheets

URL: Uniform Resource Locators

API: Application Programming Interfaces

U X : User Experience

UI: User Interface

SQL: Structured Query Language

SDLC: System Development Life cycle

59

11. Appendices

This part includes some part of backend code, and view how it is reflecting in the real web

application of the university parking system.

Booking View

Book Parking

Start date*

mm/dd/yyyy Q

Finish date*

mm/dd/yyyy o

Parking zone*

V
Plate number*

Phone number*

BOOK

Figure 32: Book parking view

Back End code for booking functionality

c l a s s R e s e r v a t i o n F o r m (M o d e l F o r m) :
c l a s s M e t a :

m o d e l = R e s e r v a t i o n
e x c l u d e = [1 t i c k e t _ c o d e 1 , 'customer', 'checked_out']
V a l i d a t i n g form f i e l d s using widgets
w i d g e t s = {

' s t a r t _ d a t e ' : D a t e I n p u t (a t t r s = { ' t y p e ' : 'date'}),
' f i n i s h _ d a t e ' : D a t e l n p u t (a t t r s = { ' t y p e ' : 'date'}),
'plate_number': T e x t l n p u t (a t t r s = { ' p a t t e r n ' : , A K [A -

Z]{2}[0-9]{3}[A-Z]$', ' t i t l e ' : 'Enter a v a l i d p a r k i n g space
number'}),

'phone_number': T e x t l n p u t (a t t r s = { ' p a t t e r n ' : '[0-9]+',
' t i t l e ' : 'Enter d i g i t s o n l y '}),

}

60

HTML code for booking view

<div class="container">
<div class="row">

<div class="col-sm-9 col-md-7 col - l g - 5 mx-auto">
<div class="card card-signin my-5">

<div class="card-body">
<h5 c l a s s = " c a r d - t i t l e text-center">Book Parking</h5>
<form class="form-signin" method="POST">

<div class="form-label-group">
{% csrf_token %}
{{form| crispy}}

</div>
<hr class="my-2">
<button class="btn b t n - l g btn-primary text-uppercase"

type="submit">Book</button>
<hr class="my-3">

</form>
{{ message }}

</div>
</div>

</div>
</div>

</div>

Login View

Login

Username*

Password*

LOG IN

Need an account? Sign In

Figure 33: Log in view

61

Back end code for login functionality

def u s e r l o g i n (r e q u e s t) :
f o r m = A u t h e n t i c a t i o n F o r m ()
i f r e q u e s t . m e t h o d == 'POST':

u s e r n a m e = r e q u e s t . POST [' user-name1]
p a s s w o r d = r e q u e s t . P O S T [' p a s s w o r d ']
u s e r = a u t h e n t i c a t e (u s e r n a m e = u s e r n a m e , p a s s w o r d = p a s s w o r d)
i f u s e r i s not None:

l o g i n (r e q u e s t , u s e r)
i f u s e r . i s a u t h e n t i c a t e d :

m e s s a g e s . s u c c e s s (r e q u e s t , f ' U s e r { u s e r n a m e }
S u c c e s s f u l l y Logged i n ')

r e t u r n r e d i r e c t (' i n d e x ')

e l s e :
m e s s a g e s . w a r n i n g (r e q u e s t , ' i n v a l i d C r e d e n t i a l s ')

c o n t e x t = {
'form': f o r m

}

r e t u r n r e n d e r (r e q u e s t , ' u s e r s / l o g i n . h t m l ' , c o n t e x t)

HTML for login view
<div c l a s s = " c o n t a i n e r " >

<div class="row">
<div class="col-sm-9 col-md-7 c o l - l g - 5 mx-auto">

<div c l a s s = " c a r d c a r d - s i g n i n my-5">
<div class="card-body">

<h5 c l a s s = " c a r d - t i t l e t ext-center">Login</h5>
<form c l a s s = " f o r m - s i g n i n " method="POST">

<div class="form-label-group">
{% c s r f _ t o k e n %}
{{formI c r i s p y } }

</div>
<hr class="my-2">
<button c l a s s = " b t n b t n - l g b t n - p r i m a r y t e x t -

uppercase" type="submit">Log in</button>
<hr class="my-3">

</form>
<div c l a s s = " b o r d e r - t o p pt-2">

<small class="text-muted">Need a n a c c o u n t ? S i g n In</small>

</div>
</div>

</div>
</div>

62

</div>
</div>

Sign in code

def s i g n u p v i e w (r e q u e s t) :
i f r e q u e s t . m e t h o d == 'POST':

f o r m = U s e r C r e a t i o n F o r m (r e q u e s t . P O S T)
i f f o r m . i s v a l i d () :

f o r m . s a v e ()
u s e r n a m e = f o r m . c l e a n e d d a t a . g e t (' u s e r n a m e 1)
m e s s a g e s . s u c c e s s (r e q u e s t , f 1 S u c c e s f u l l y C r e a t e d u s e r

{ u s e r n a m e } . You can now l o g i n ')
r e t u r n r e d i r e c t (' l o g i n ')

e l s e :
f o r m = U s e r C r e a t i o n F o r m ()

c o n t e x t = {
'form' : f o r m

}
r e t u r n r e n d e r (r e q u e s t , 'users/signup.html' , c o n t e x t)

Print ticket view

Ticket Code - drjxnm

Reservation on : March 16, 2023, 11:43 a.m.

Name: Aryan a

Parking Status: Checked Out

Start Finish Parkin g Plate Phone
Date Date Zone Number Number

March March CZU KJH456M 773064618
20.2023 21.2023 Campus

Figure 34: Print ticket view

63

HTML code for Tickets view

<body>

<div c l a s s = " c o n t a i n e r " >
<div class="card">

<div class="card-header">
< h 3 > T i c k e t Code - {{reservation.ticket_code}}</h3>
< h 3 > R e s e r v a t i o n on : {{reservation.created_on}}</h3>

</div>

<div c l a s s = " l i s t - g r o u p " >
<p>Name: {{ r e q u e s t . u s e r }}</p>
{% i f r e s e r v a t i o n . c h e c k e d _ o u t i s True %}

< p > P a r k i n g S t a t u s : C h e c k e d Out</p>
{% e l s e %}

< p > P a r k i n g S t a t u s : A c t i v e < / p >
{% e n d i f %}

</div>

<table c l a s s = " t a b l e " >
<thead>
<tr>

< t h > S t a r t Date</th>
< t h > F i n i s h Date</th>
< t h > P a r k i n g Zone</th>
< t h > P l a t e Number</th>
<th>Phone Number</th>

</tr>
</thead>
<tbody>

<tr>
<td>{{ r e s e r v a t i o n . s t a r t _ d a t e }}</td>
<td>{{ r e s e r v a t i o n . f i n i s h _ d a t e }}</td>
<td>{{ r e s e r v a t i o n . p a r k i n g _ z o n e }}</td>
<td>{{ r e s e r v a t i o n . p l a t e _ n u m b e r }}</td>
<td>{{ reservation.phone_number }}</td>

</tr>
</tbody>

</table>
</div>

</div>

</body>

Main page section code

<section>
<div class="container-fluid">

<div class="row">
<div class="col-md-5">

<div c l a s s = " f u l l slider_cont_section">
<h4>{{parking_zone.name}}</h4>

64

<p>{{parking_zone.address}}</p>
<!-- <div class="button section">

Book Spot
</div> —>

</div>
</div>
<div class="col-md-7">

<div class="col-lg-8">
<div class="card mb-4">

<div class="card-header">
<i class="fas fa- t a b l e m r - l " x / i >

</div>
<div class="card-body">

<div class="table-responsive">
<table class="table table-bordered"

id="dataTable" width="100%" cellspacing="0">
<thead>

<tr>
<th>Total Slots</th>
<th>Vacant Slots</th>
<th>Price</th>

</tr>
</thead>
<tbody>
<tr>

<td> { {parking_zone . num_of_slots } } </td>
<td>{{ parking_zone.vacant_slots

}}</td>
<td>{{parking_zone.price}}</td>
<td>

<button class="btn btn-

</td>

primary">Book Parking</button>

</tr>

</tbody>
</table>

</div>
</div>

</div>
</div>

</div>
</div>

</div>
</section>

65

Header code

<header>
<!-- header inner -->
<div c l a s s = " c o n t a i n e r " >

<div class="row">
<div c l a s s = " c o l - l g - 3 l o g o _ s e c t i o n " >

<div c l a s s = " f u l l " >
<div class="center-desk">

<!-- <div class="round">
<input name="q" id="search" type="text"

placeholder="Enter Name/Location" />
</div>
<div c l a s s = " i n p u t - f i e l d third-wrap">

<button class="btn btn-primary"
type="submit">Search</button>

</div> —>
<!— <div class="logo"> <a href="/"Ximg src="{%

s t a t i c ' source/images/logo.png' %}" alt="#"X/a> </div>-
</div>

</div>
</div>
<div c l a s s = " c o l - l g - 9 " >

<div c l a s s = " r i g h t _ h e a d e r _ i n f o " >

< l i x i m g s t y l e = " m a r g i n - r i g h t : 15px;" src="{%
s t a t i c 'source/images/phone_icon.png 1 %}" alt="#" />+420 773 064 610

< l i x i m g s t y l e = " m a r g i n - r i g h t : 15px;" src="{%
s t a t i c 1 source/images/mail_icon.png 1 %}" alt="#" />ParkingSystem@gmail.com

<!—
<input type="image" placeholder="Enter Name

or Location" src="{% s t a t i c 1 source/images/search_icon.png 1 %}"
alt="">

 —>

<button type="button" i d = " s i d e b a r C o l l a p s e " >
<img src="{% s t a t i c

1 source/images/menu i con. jpncj"' % }" alt="#" />
</button>

</ l i >

</div>
</div>

</div>
</div>
<!-- end header inner -->

</header>

66

Footer code

<footer>
<div c l a s s = " c o n t a i n e r " >

</div>
</footer>
<!-- end footer -->

<!-- copyright -->

<div c l a s s = " c p y _ r i g h t " >
<div c l a s s = " c o n t a i n e r " >

<div class="row">
<div class="col-md-12">

<div c l a s s = " f u l l " >
<p>© 2023 A l l R i g h t s R e s e r v e d . D e s i g n b y

<a h r e f = " " > A r y a n a Haji</p>
</div>

</div>
</div>

</div>
</div>

<!-- right copyright -->

</div>
</div>

Github link

https://github.com/Aryanaa3/Universitv-Parking-Svstem.git

67

https://github.com/Aryanaa3/Universitv-Parking-Svstem.git

