

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ

FACULTY OF CIVIL ENGINEERING

ÚSTAV VODNÍCH STAVEB

INSTITUTE OF WATER STRUCTURES

VLIV ŠÍŘKY PŘÍTOKOVÉHO KORYTA NA PŘEPAD PŘES TENKOSTĚNNÝ PŘELIV S TROJÚHELNÍKOVÝM VÝŘEZEM

INFLUENCE OF APPROACH CHANNEL WIDTH ON FLOW OVER THIN-PLATE WEIR WITH TRIANGULAR NOTCH

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

Pavel Gabriel

AUTHUR

VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. Zbyněk Zachoval, Ph.D.

BRNO 2023

Zadání bakalářské práce

Ústav:	Ústav vodních staveb
Student:	Pavel Gabriel
Vedoucí práce:	doc. Ing. Zbyněk Zachoval, Ph.D.
Akademický rok:	2022/23
Studijní program:	B3607 Stavební inženýrství
Studijní obor:	Vodní hospodářství a vodní stavby

Děkan Fakulty Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma bakalářské práce:

Vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem

Stručná charakteristika problematiky úkolu:

Práce se zabývá stanovením vlivu šířky přítokového koryta pravoúhlého příčného průřezu na přepad vody přes tenkostěnné přelivy s různými hodnotami úhlů trojúhelníkového výřezu a s nulovou výškou přelivu nad dnem přítokového koryta. Student provede měření průtokových a hladinových charakteristik, na jehož základě vyhodnotí vliv úhlu výřezu a relativní šířky přítokového koryta na součinitel průtoku. Požadovanými součástmi práce jsou pojednání o tenkostěnných přelivech s trojúhelníkovým výřezem, popis experimentálního zařízení, měření a vyhodnocení dat a doporučení pro výpočet.

Cíle a výstupy bakalářské práce:

Stanovení vlivu šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem.

Seznam doporučené literatury a podklady:

Numachi, F., Kurokawa, T., Hutizawa, S., 1940a. On the overflow coefficient of a rightangled triangular weir. J. Soc. Mech. Eng., 43(275), 45. (In Japanese.)

Numachi, F., Kurokawa, T., Hutizawa, S., 1940b. On the overflow coefficient of a rightangled triangular weir). Trans. Jpn. Soc. Mech. Eng., 6(22-3), 10–14. (In Japanese.)

Numachi, F., Hutizawa, S., 1941a. On the overflow coefficient of a right-angled triangular weir) (2. Notice). J. Soc. Mech. Eng., 44(286), 286. (In Japanese.)

Numachi, F., Hutizawa, S., 1941b. On the overflow coefficient of a right-angled triangular weir (2. Notice). Trans. Jpn. Soc. Mech. Eng., 7(27-3), 5–9. (In Japanese.)

Numachi, F., Hutizawa, S., 1942a. On the overflow coefficient of a right-angled triangular weir (3.Notice). J. Soc. Mech. Eng., 45(308), 725. (In Japanese.)

Numachi, F., Hutizawa, S., 1942b. On the overflow coefficient of a right-angled triangular weir (3. Notice). Trans. Jpn. Soc. Mech. Eng., 8(33-3), 37–40. (In Japanese.)

Termín odevzdání bakalářské práce je stanoven časovým plánem akademického roku.

V Brně, dne 17. 10. 2022

doc. Ing. Aleš Dráb, Ph.D.

vedoucí ústavu

doc. Ing. Zbyněk Zachoval, Ph.D.

vedoucí práce

prof. Ing. Rostislav Drochytka, CSc., MBA, dr. h. c.

děkan

Abstrakt

Bakalářská práce pojednávala o stanovení vlivu šířky přítokového koryta na přepad přes tenkostěnné přelivy s trojúhelníkovými výřezy s různými hodnotami úhlů výřezu. Změřená data rozšířila poznání v dané oblasti. Vyjádření vlivu šířky přítokového koryta je provedeno zavedením součinitele vlivu relativní šířky přítokového koryta a doporučena je rovnice, která vliv relativní šířky přítokového koryta v širokém rozsahu hodnot úhlů výřezu vyjadřuje.

Klíčová slova

Součinitel průtoku (součinitel přepadu), tenkostěnný přeliv s trojúhelníkovým výřezem, součinitel vlivu relativní šířky přítokového koryta

Abstract

The bachelor's thesis discussed the determination of the influence of the width of the tributary channel on the overflow through thin-walled spillways with triangular cut-outs with different values of the cut-out angles. The measured data expanded the knowledge in the given area. The expression of the width of the tributary bed is made by introducing the influence of the influence coefficient of the relative width of the tributary bed, and the recommendation is an equation that reflects the influence of the relative width of the tributary bed in a wide range of angle values.

Keywords

Discharge coefficient (discharge coefficient), thin-plate weir with triangular notch, coefficient of influence of the width of the tributary bed

Bibliografická citace

GABRIEL, Pavel. *Vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem*. Brno, 2023. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav vodních staveb. Vedoucí doc. Ing. Zbyněk Zachoval, Ph.D.

Prohlášení o shodě listinné a elektronické formy závěrečné práce

Prohlašuji, že elektronická forma odevzdané bakalářské práce s názvem *Vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem* je shodná s odevzdanou listinnou formou.

V Brně dne 26. 5. 2023

Pavel Gabriel

autor práce

Prohlášení o původnosti závěrečné práce

Prohlašuji, že jsem bakalářskou práci s názvem *Vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem* zpracoval samostatně a že jsem uvedl všechny použité informační zdroje.

V Brně dne 26. 5. 2023

Pavel Gabriel

autor práce

Poděkování

Děkuji panu doc. Ing. Zbyňku Zachovalovi, Ph.D., za vedení, odbornou pomoc, pohotovost a vstřícnost při vypravovávání mojí bakalářské práce, panu Ing. Šimonu Pospíšilíkovi za pomoc a poskytnutá data a v neposlední řadě panu Luboši Pařílkovi za zhotovení experimentálního zařízení a pomůcek. Také děkuji rodině a přátelům za podporu při studiu.

OBSAH

1	Úvc	od a současný stav poznání	12			
	1.1 Popis tenkostěnných přelivů					
	1.2 Rozdělení tenkostěnných přelivů					
	1.3	Požadavky na tenkostěnné přelivy	14			
	1.4	Rovnice průtoku pro tenkostěnný přeliv s trojúhelníkovým výřezem	15			
	1.5	Provedené výzkumy	16			
	1.6	Použití tenkostěnných přelivů s trojúhelníkovým výřezem	18			
2	Cíl µ	oráce a metoda řešení	20			
	2.1	Cíl práce	20			
	2.2	Metoda řešení	20			
3	Exp	erimentální zařízení	22			
	3.1	Experimentální zařízení	23			
	3.2	Měřidla	27			
	3.2	.1 Průtokoměry	27			
	3.2	2 Digitální hrotové měřidlo	28			
	3.2	.3 Délkové měřidlo	29			
4	Měì	ření	30			
	4.1	Rozsah měření	30			
	4.2	Postup měření	30			
4.3		Měření průtoku	30			
	4.4	Měření úrovně hladiny	31			
	4.5	Měření šířky přítokového koryta	32			
	4.6	Chyby a nejistoty měření				
5	Vyh	odnocení a zpracování dat	34			

6	ledky	.46	
7	ěr a zhodnocení	. 49	
8	namy	.50	
8	8.1	Seznam použité literatury	.50
8	8.2	Seznam veličin	51
8	8.3	Seznam zkratek	. 52
8	8.4	Seznam obrázků	.53
8	8.5	Seznam grafů	.53
8	8.6	Seznam tabulek	.54
8	8.7	Seznam příloh	54

1 ÚVOD A SOUČASNÝ STAV POZNÁNÍ

Fyzikální děj, kdy voda přepadá přes přeliv, se nazývá přepad. Při přepadu se poproudně mění režim proudění z říčního přes kritické na bystřinné. Právě vznik kritického proudění je základním předpokladem pro to, aby se pomocí přelivů dalo provádět stanovení průtoku.

Stanovení průtoků vody při přepadu přes tenkostěnné přelivy s trojúhelníkovým výřezem může být v některých aplikačních případech problematické z důvodu zvolení optimálního součinitele přepadu C_{d} . Uvedený součinitel se výrazně liší při malých přepadových výškách a při malých relativních šířkách přítokového koryta, kde doposud neexistují měření a doporučení.

1.1 Popis tenkostěnných přelivů

Tenkostěnné přelivy neboli ostrohranné přelivy se definují tloušťkou koruny přelivu. Tloušťka *t* je dána vztahem [3]

$$t_l < 0,66h,$$
 (1.1)

kde veličina *h* značí výšku přepadového paprsku (přepadovou výšku). Přepadová výška je svislá vzdálenost mezi hladinou a nejnižším bodem koruny přelivu. Za tenkostěnný přeliv se považuje takový, kdy tloušťka stěny v místě koruny je 1–2 mm, přičemž vzdušný líc přelivu se doporučuje zkosit minimálně pod úhlem 45° (viz Obrázek 1). [2]

Obrázek 1 Schéma přelivné hrany [2]

Průtok vody přes přeliv lze relativně přesně stanovit, pokud bude dosaženo dokonalého přepadu, stěny přelivu budou hladké a přepadový paprsek nebude negativně ovlivněn přítokem. Dále pokud přítokové koryto bude dostatečně dlouhé a přímé a bude zachovávat v příčném řezu vodorovnou hladinu. Při výpočtu průtoku je nutné dodržovat omezující podmínky pro umístění přelivu a rozmezí platnosti používaných rovnic. Jednotlivé podmínky jsou definovány v normě ČSN ISO 1438 Hydrometrie – Měření průtoku vody v otevřených korytech pomocí tenkostěnných přelivů [3].

1.2 Rozdělení tenkostěnných přelivů

Tenkostěnné přelivy jsou členěny podle více specifikací. Jednou z nich je tvar příčného průřezu, který může být jednoduchý nebo složený.

Mezi přelivy s jednoduchým tvarem příčného průřezu (tvarem výřezu) patří:

- tenkostěnný přeliv s obdélníkovým výřezem (Ponceletův a Bazinův přeliv),
- tenkostěnný přeliv s trojúhelníkovým výřezem (Thomsonův přeliv),
- tenkostěnný přeliv s lichoběžníkovým výřezem (Cipolettiho přeliv),
- tenkostěnný přeliv s kruhovým výřezem,
- tenkostěnný přeliv s parabolickým výřezem,
- tenkostěnný přeliv s proporcionálním výřezem.

Složený tenkostěnný přeliv je nejčastěji kombinací výše uvedených tvarů výřezu.

U přelivů s obdélníkovým výřezem se rozlišuje přeliv s bočním zúžením a bez bočního zúžení. Přelivy bez bočního zúžení se vyznačují přítokovým korytem s pravoúhlým (obdélníkovým) příčným profilem, které je stejně široké, jako je šířka obdélníkového výřezu. V případě přítokových koryt s pravoúhlým příčným profilem vytvářejí boční zúžení proudu všechny ostatní tvary výřezů přelivů.

Tenkostěnné přelivy se dále člení podle půdorysného tvaru koruny přelivu. Lze rozeznat tenkostěnný přeliv s:

- přímou,
- lomenou,
- zaoblenou,
- křivočarou

korunou.

Dále lze tenkostěnné přelivy rozčlenit dle pohyblivosti konstrukce přelivu. Rozlišují se tenkostěnné přelivy:

- pevné,
- pohyblivé (klapky, stavidla). [3]

1.3 Požadavky na tenkostěnné přelivy

Pro relativně přesné stanovení průtoků jsou na tenkostěnné přelivy kladeny určité požadavky a specifikovány podmínky použití. Uvedené podmínky a požadavky jsou převzaty z normy ČSN ISO 1438 Hydrometrie – Měření průtoku vody v otevřených korytech pomocí tenkostěnných přelivů. [2]

Délka přítokového koryta by měla být ideálně rovna 10násobku šířky přepadového paprsku při maximální přepadové výšce. Po celou dobu měření musí být zachováno ustálené rovnoměrné proudění a klidná hladina bez příčných a podélných vln. Úroveň hladiny vody v odtokovém korytě musí být v takové vzdálenosti od dna žlabu, aby přepadový paprsek nebyl nijak ovlivněn a aby vzdušná hrana výřezu konstrukce tenkostěnného přelivu byla neustále ve styku se vzduchem. Obecně platí, že všechny povrchy přelivu musí být hladké, bez poškození, a rovinné. Přeliv se nesmí vlivem zatížení deformovat. Návodní hrana výřezu přelivu musí být upravena do břitu s úhlem 90° a podélně musí být bez nerovností. Tenkostěnný přeliv musí kolmo navazovat na přítokové koryto a vrchol musí být stejně vzdálený od obou stěn (půdorysná symetrie). Tenkostěnný přeliv musí dokonale přilnout k přítokovému korytu a zajišťovat vodotěsnost.

1.4 Rovnice průtoku pro tenkostěnný přeliv s trojúhelníkovým výřezem

Odvození rovnice průtoku pro přepad je možné několika způsoby. Vybrán je případ, kdy se celková mechanická energie protiproudně před přelivem přemění na kinetickou energii poproudně za přelivem. Nejprve se vyjádří šířka přelivu *y* v úrovni *H–h* (viz Obrázek 2)

$$y = 2 \cdot (H - h) \cdot \tan \frac{\alpha}{2}, \tag{1.2}$$

kde α je úhel výřezu přelivu, *H* svislá vzdálenost hladiny od koruny přelivu (vrcholu výřezu) a svislá vzdálenost těžiště lichoběžníku od hladiny *h*. Rovnice (1.2) se dosadí do rovnice (1.3)

$$Q = C_d \cdot (2g)^{1/2} \cdot \int_0^{h_1} \left(h + \frac{\alpha_0 \cdot v_0^2}{2g} \right)^{1/2} y \, \mathrm{d}h, \tag{1.3}$$

kde C_{σ} je součinitel přepadu, g je gravitační zrychlení, α_0 je Coriolosovo číslo (součinitel kinetické energie) a v₀ přítoková rychlost. V rovnici se zanedbá vliv rychlostní výšky. Dosazením vznikne vztah

$$Q = C_d \cdot (2g)^{1/2} \cdot \int_0^{h_1} h^{1/2} \left[2(H-h) \cdot \tan\frac{\alpha}{2} \right] dh,$$
(1.4)

a následnou integrací se obdrží

$$Q = C_d \cdot 2 \cdot (2g)^{1/2} \cdot \tan \frac{\alpha}{2} \cdot \left[H \cdot \frac{2}{3} h_1^{3/2} - \frac{2}{5} h_1^{5/2} \right].$$
(1.5)

Dle Obrázek 2 je zřejmé, že *H= h₁*. Veličiny *H*, *h*₁ se nahradí přepadovou výškou *h*. Vztah pro výpočet průtoku se zjednoduší na

$$Q = C_d \cdot 2 \cdot (2g)^{1/2} \cdot \tan\frac{\alpha}{2} \cdot \left[\frac{2}{3}h^{5/2} - \frac{2}{5}h^{5/2}\right],$$
(1.6)

a následně

$$Q = C_d \cdot \frac{8}{15} (2g)^{1/2} \left(\tan \frac{\alpha}{2} \right) \cdot h^{5/2}.$$
(1.7)

Obrázek 2 Trojúhelníkový výřez [3]

1.5 Provedené výzkumy

Vliv relativní šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem provedl Numachi spolu s kolegy Kurokawa a Hutizawa v roce 1940 a následně Numachi a Hutizawa v letech 1941 a 1942. Výzkumy byly zaměřené pouze na přeliv s úhlem výřezu 90°. I když bylo provedeno značné množství výzkumů s tenkostěnnými přelivy s trojúhelníkovým výřezem [10], nebyl proveden soustavný výzkum spojený s vlivem relativní šířky přítokového koryta pro jiné úhly výřezu.

V Graf 1 je vyobrazen rozsah dat z roku 1940 a roku 1941, která Numachi a jeho kolegové zkoumali. V grafu je vyobrazen i rozsah zkoumané oblasti autora práce.

Graf 1 Rozsahy zkoumaných oblastí

Na Graf 2 byla porovnána změřená data a změřená data pana F. Numachiho a kol. a Hutizawy v závislosti C_d a b/B.

Graf 2 Rozsah zkoumané oblasti v závislosti C_d a b/B

1.6 Použití tenkostěnných přelivů s trojúhelníkovým výřezem

Tenkostěnné přelivy s trojúhelníkovým výřezem mají širokou škálu využití. Jejich účel a použití se odvíjí od velikosti úhlu výřezu. Menší velikosti úhlu výřezu se používají převážně pro menší průtoky.

Tenkostěnné přelivy s trojúhelníkovým výřezem se používají například na přehradách. Jsou umístěny v injekční štole. Na dně této štoly je odvodňovací žlab, který sbírá veškerou vodu, jenž prosakuje přehradou. Na konci žlabu nebo v některých definovaných sekcích je umístěn přeliv, před nímž je nainstalován snímač úrovně hladiny.

Další použití je například na čistírnách odpadních vod. Používají se v sérii v případech, kdy je třeba rovnoměrné rozdělení průtoku po šířce nádrže.

Mezi jednotlivými objekty se sledují průběžné průtoky vody. Používají se i na odtoku z čistírny odpadaných vod, kde je již voda vyčištěná.

Na úpravnách pitné vody se tenkostěnné přelivy s trojúhelníkovým výřezem nacházejí na boční straně soustavy filtračních nádrží. Jedná se o sérii tenkostěnných trojúhelníkových přelivů, které převádí vyčištěnou vodu dále po úpravně.

Obrázek 3 Tenkostěnné přelivy s trojúhelníkovým výřezem na úpravně vody [11]

2 CÍL PRÁCE A METODA ŘEŠENÍ

2.1 Cíl práce

Cílem práce je stanovení vlivu šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem.

2.2 Metoda řešení

Zvolená metoda řešení je experimentální výzkum provedený pro stanovení hodnoty přepadového součinitele C_d ve vztahu k *b*/*B*, kde *b* je šířka trojúhelníkového výřezu v úrovni průmětu hladiny v profilu pro stanovení přepadové dýšky.

Postup stanovení se skládá z naměření úrovně hladiny pro stanovení přepadové výšky *h* a naměření proteklého objemu vody průtokoměry *V* a čas *t*. Ze zjištěných objemů a času se výpočtem nalezne objemový průtok *Q*. Následně se stanoví součinitel přepadu C_{d} . Ve výpočtu se použije tíhové zrychlení *g* a hodnota úhlu výřezu přelivu α .

Rozsah a podrobnost experimentálního výzkumu pro stanovení součinitele přepadu C_d byly dány přepadovými výškami h = (0,04, 0,06, 0,08, 0,10, 0,12, 0,14, 0,16, 0,18) m šířkami přítokového koryta B = (0,10, 0,20, 0,30, 0,40, 0,50) m a šířkami, při kterých bude dosažena přepadová výška h = 0,18 m (b/B = 1), a úhly výřezu $\alpha = (2,68, 5,25, 10,2, 15,2, 20,2, 25,2, 30,5, 60,7, 91,2)^{\circ}$. Hodnoty menších přepadových výšek nebyly voleny z důvodu vlivu povrchového napětí a ulpívání paprsku na přelivu. Hodnoty menších úhlů výřezu nebyly voleny z důvodu obtíží při výrobě výřezu.

Pro provedení výzkumu bylo zapotřebí vytvořit takové experimentální zařízení, které umožní výměnu tenkostěnných přelivů, změnu šířky přítokového žlabu a změnu průtoku ve žlabu a takové měřicí zařízení, které umožní měření průtoku, úrovní (hladiny, vrcholu výřezu) a délek (šířky žlabu). Úhly výřezu byly pevně dané.

Vyhodnocení bylo zamýšlené především graficky a formou vztahu mezi součinitelem přepadu C_d (5.2) a poměrem b/B dle rovnice

$$Q = C_b \cdot C_{d,0} \cdot \frac{8}{15} \cdot (2g)^{1/2} \cdot \left(\tan\frac{\alpha}{2}\right) \cdot h^{5/2}.$$
 (2.1)

3 EXPERIMENTÁLNÍ ZAŘÍZENÍ

Pro stanovení vlivu šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem byl použit experimentální výzkum v měrném žlabu, který se nachází v Laboratoři vodohospodářského výzkumu na Ústavu vodních staveb Fakulty stavební Vysokého učení technického v Brně. Žlab byl pro potřeby tohoto experimentálního výzkumu modifikován. Modifikace zahrnovaly prodloužení žlabu a výrobu vestavby bočních stěn žlabu umožňujících jejich libovolnou změnu.

Obrázek 4 Celkový pohled na žlab Bylo provedeno několik podpůrných procesů:

 Nejprve se stanovila průtoková křivka čerpadla (závislost mezi průtokem a frekvencí měniče) se závislostí na frekvenci otáček motoru. Pomocí rovnice průtokové křivky bylo možné vypočítat, při jaké frekvenci bude dosažen požadovaný průtok. Křivka průtoku čerpadla se stanovila na okruhu, kde byl zapojen průtokoměr o průměru DN50, a na okruhu, kde byl současně sériově zapojen i průtokoměr o průměru DN10. Zapojení průtokoměru o průměru DN10 mělo za následek vytvoření větších ztrát. Proto bylo nutné používat průtokoměr DN50 zvlášť. Tedy bylo nutné vyhotovit dvě průtokové křivky. • Pokračovalo se v nalezením rozsahu použití průtokoměrů. Průtokoměr o průměru DN50 měřil v rozsahu od $Q_{min} = 0,198 \text{ I}\cdot\text{s}^{-1}$ do $Q_{max} = 12,053 \text{ I}\cdot\text{s}^{-1}$ a průtokoměr o průměru DN10 od $Q_{min} = 0,0159 \text{ I}\cdot\text{s}^{-1}$ do $Q_{max} = 0,5000 \text{ I}\cdot\text{s}^{-1}$. Rozsahem průtoků průtokoměrů bylo možné pokrýt celý rozsah plánovaného měření.

Doporučení pro instalaci tenkostěnných přelivů s trojúhelníkovým výřezem se řídí normou ČSN ISO 1438. Bylo nutné dodržet vodotěsnost a rovinnost měrného žlabu, kolmost stěn vůči dnu a vodotěsnost mezi přelivem a žlabem. Při maximálním průtoku přeliv musel odolat náporu a nesměl se deformovat. Měření úrovně hladiny bylo prováděno ve vzdálenosti 3 *h_{max}*. Proudění v přítokovém korytě muselo být ustálené a rovnoměrné. Všechny stěny musely být hladké bez mechanického poškození. Všechny výše uvedené požadavky byly průběžně kontrolovány.

3.1 Experimentální zařízení

Experimentální zařízení, na kterém probíhalo měření, bylo umístěno na recirkulačním okruhu. Z podzemního zásobníku vody o objemu *V* = 45 m³ pomocí ponorného odstředivého čerpadla značky Flygt byla voda tlačena do rozvodného potrubí o průměru DN200. Z něj odbočovala hadice o průměru DN50. Na přítoku byl dále nainstalován elektromagnetický indukční průtokoměr DN50, redukce DN50/DN25 a druhý elektromagnetický indukční průtokoměr DN10, ze kterého voda proudila do měrného žlabu, viz Obrázek 5.

Obrázek 5 Měrný žlab – nátok

Samotný žlab má vnitřní rozměry 3,5 m × 0,5 m × 0,4 m a byl zhotoven z hladké voděodolné překližky. V poproudně první části žlabu se nachází uklidňovací úsek, který je z obou stran vybavený perforovanými stěnami z PVC, kudy protéká voda. Voda v tomto úseku ztratí významnou část energie. Při měření větších průtoků mohla být hladina stále zvlněná. Proto byl za uklidňovací úsek na vodní hladinu pokládán polystyren, viz Obrázek 6.

Obrázek 6 Měrný žlab – uklidňovací prostor a polystyren

Ve druhé části žlabu byla umístěna vestavba umožňující měnit šířku koryta. na vestavbu byly vloženy betonové bločky, které zabraňovaly plování vestavby. Ve třetí části bylo umístěno digitální hrotové měřidlo a rám pro uchycení přelivu. Měřidlo a přeliv byly od sebe vzdáleny 3 *h_{max}*. Přeliv byl uchycen v ocelové rámové konstrukci pomocí vodorovných a svislých ocelových úhelníků, která byla přichycena k závěrné hraně celého žlabu, viz Obrázek 7.

Obrázek 7 Měrný žlab – přeliv

Instalace přelivu se skládala z několika dílčích postupů. Nejprve musely být všechny šrouby uvolněny. Poté se tenkostěnný přeliv osadil do rámové konstrukce, která byla přikotvena na konci konstrukce žlabu. Dvěma šrouby byl přeliv přichycen, aby mohly být namontovány vodorovné vyztužovací úhelníky, viz Obrázek 7. Před tím, než se přeliv definitivně připevnil ke konstrukci, musel být vyvážen do vodorovné roviny a výškově osazen tak, aby vrchol byl nanejvýše 1 mm nade dnem. Výškové osazení se provádělo pomocí válcové metody, kdy se do vrcholu osadil ocelový plech s připevněným válcem o průměru 5 mm. Pomocí hrotového měřidla se stanovila počáteční výška s hodnotou 0,00 mm. Od počáteční výšky se nanesla hodnota α_{i} , jenž stanovovala vzdálenost mezi vrcholem válce a vrcholem trojúhelníkového přelivu. V uvedené vzdálenosti se hrot měřidla nacházel maximálně 1 mm ode dna žlabu. Následně se přichytily ostatní šrouby na rámové konstrukci. Svislé vyztužující prvky se osazovaly v případě nerovností plechu přelivu.

Dále bylo koryto vybaveno vypouštěcí hadicí.

Voda přepadající přes přeliv nebo vytékající vypouštěcí hadicí byla zaústěna do odpadní šachty a následně byla přes podzemní zásobník vody vrácena do oběhu.

3.2 Měřidla

3.2.1 Průtokoměry

Pro měření byly použity 2 elektromagnetické průtokoměry (DN50, DN10), digitální hrotové měřidlo, délkové měřidlo a stopky. Průtokoměrem DN50 byly měřeny průtoky větší než 0,5 l·s⁻¹ a průtokoměrem DN10 průtoky menší než 0,5 l·s⁻¹.

Elektromagnetický indukční průtokoměr DN50

Ke změření průtoku sloužil elektromagnetický indukční průtokoměr o průměru potrubí DN50, viz Obrázek 8. Jedná se o průtokoměr typu MQI 99 CN od firmy ELA, spol. s r.o. Jeho kalibrace byla provedena v rozsahu průtoku od $Q_{min} = 0,198 \text{ I} \cdot \text{s}^{-1}$ do $Q_{max} = 12,053 \text{ I} \cdot \text{s}^{-1}$ při teplotě T = 25,0(1) °C a relativní vlhkosti $\phi = 56,5(1)$ °C. Jako zkušební metoda byla použita objemová metoda letmým startem.

Na obrazovce průtokoměru byla zobrazena hodnota proteklého objemu v jednotkách m³ a k tomu odpovídající průtok v jednotkách l·s⁻¹. Předcházením vzniku chyby měření byl průtokoměr neustále napájen z elektrické sítě. Zachovala se tím vnitřní teplota zařízení.

Obrázek 8 Elektromagnetický indukční průtokoměr DN50

Elektromagnetický indukční průtokoměr DN10

Na přítokové hadici byl osazen další průtokoměr o průměru potrubí DN10 typu MQI 99 CN od firmy ELA, spol. s r.o., viz Obrázek 9. Jeho kalibrace byla provedena v rozsahu průtoku od $Q_{min} = 0,0159 \text{ I} \cdot \text{s}^{-1}$ do $Q_{max} = 0,5000 \text{ I} \cdot \text{s}^{-1}$ při teplotě T = 26,4(1) °Ca relativní vlhkosti $\phi = 45,7(1) \text{ °C}$. Jako zkušební metoda byla použita objemová metoda letmým startem.

Průtokoměr byl vybaven totožnou obrazovkou se stejnými jednotkami a taktéž byl po celou dobu měření zapojen do napájecí sítě.

Obrázek 9 Elektromagnetický indukční průtokoměr DN10

3.2.2 Digitální hrotové měřidlo

Pomocí digitálního hrotového měřidla neboli hloubkového digitálního měřidla byla odečítána úroveň hladiny, viz Obrázek 10. Měřidlo bylo upevněno na hliníkovém profilu, který byl umístěn na stěnách žlabu ve vodorovné poloze. Součástí měřidla byla digitální obrazovka s rozsahem hodnot 0–430 mm a s rozlišovací schopností na 2 desetinná místa. Na spodní části číselného posuvníku byla upevněna tyč s hrotem, díky kterému bylo možné stanovit aktuální úroveň hladiny.

Obrázek 10 Digitální hrotové měřidlo

3.2.3 Délkové měřidlo

Jako délkové měřidlo bylo použito ocelové pravítko délky 500 mm. Pomocí měřidla byly osazovány stěny přítokového koryta od stěn žlabu a nastavována šířka mezi bočními stěnami vestavby. Stupnice byla znázorněna s přesností na milimetry.

Obrázek 11 Délkové měřidlo 500 mm

4 MĚŘENÍ

4.1 Rozsah měření

Rozsah měření spočíval v kombinaci několika přelivů s trojúhelníkovým výřezem o úhlech $\alpha = (2,68, 5,25, 10,18, 15,19, 20,23, 25,21, 30,53, 60,67, 90,17)^{\circ}$ s šířkami přítokového koryta B = (0,10, 0,20, 0,30, 0,40, 0,50) m a tzv. nulovou šířkou koryta B_{α} , jenž označuje šířku přítokového koryta B při výšce přepadového paprsku h = 0,18 m, a v kombinaci měřených přepadových výšek cca h = (0,04, 0,06, 0,08, 0,10, 0,12, 0,14,0,16, 0,18) m. Kombinací uvedených hodnot vzešlo celkem 362 měření. U každého měření byla odečtena teplota vody $T[^{\circ}]$.

4.2 Postup měření

Na začátku měření musely být predikovány součinitele průtoku C_{ch} od kterých se navrhl průtok Q. Průtok Q by měl vytvořit požadovanou přepadovou výšku h. Navržený průtok Q se dosadil do příslušné průtokové křivky čerpadla a zjistila se frekvence čerpadla f, která požadovaný průtok dávala. Vypočtená frekvence f se zadala do ovládací jednotky a vyčkalo se na ustálení průtoku v systému. Ustálení bylo stanoveno v čase neměnnou úrovní vodní hladiny ve žlabu. Po ustálení hladiny započalo měření.

Při spuštění časomíry se odečetl objem proteklé vody V_1 na průtokoměru. Během následujících 3 minut se 5× odečetla úroveň hladiny Z_n , z čehož se vypočítala průměrná hodnota. Po uplynutí 3 minut se opět odečetl objem proteklé vody V_2 a zastavila se časomíra. Z naměřených hodnot se vypočítal průtok Q, viz (5.1), a součinitel průtoku C_n viz (2.1). Uvedený postup se opakoval u všech velikostí výřezů přelivů, příslušných šířek přítokového koryta a s příslušnými úrovněmi hladin.

4.3 Měření průtoku

Požadovaný rozsah průtoků vyžadoval měření pomocí 2 průtokoměrů. Průtokoměr o průměru potrubí DN10 měřil průtoky do $Q_{max} = 0,5 \text{ I} \cdot \text{s}^{-1}$. Větší průtoky byly měřeny druhým průtokoměrem o průměru potrubí DN50. Nejvyšší dosažený průtok, který bylo možné čerpadlem vytlačit, byl Q=10,72 l·s⁻¹.

Na začátku měření se spustila časomíra a odečetla se hodnota proteklého objemu V_1 na průtokoměru. Během následujících minut probíhalo měření úrovní hladin a focení přepadového paprsku. Jakmile bylo doměřeno a současně uplynuly 3 minuty, byla časomíra zastavena a odečetla se doba *t* a ve stejný okamžik byl odečten proteklý objem vody V_2 průtokoměrem zobrazený na obrazovce vyhodnocovací jednotky. Průtok se vypočítal dle vztahu

$$Q = \frac{V_2 - V_1}{t}.$$
 (4.1)

Do vztahu (5.1) se hodnoty dosadily v základních jednotkách $V[m^3]$ a t[s]. Získal se tak průtok $Q[m^3 \cdot s^{-1}]$.

Nebyla odečítána hodnota průměrného průtoku zobrazovaného vyhodnocovací jednotkou z důvodu průměrování v čase a zaokrouhlení hodnoty. Z uvedeného důvodu byla použita objemová metoda pro určení průtoku.

4.4 Měření úrovně hladiny

Nejprve byl nastaven odhadovaný průtok, jenž měl zabezpečit požadovanou přepadovou výšku. Bylo nutné vyčkat určitou dobu, než se hladina vody ustálila. Ověření ustálení hladiny probíhalo ve stejných intervalech, kdy se měřila úroveň hladiny. Sledoval se její pokles nebo nárust. Po ustálení a uklidnění hladiny započalo měření. Odečetl se průtok, spustil čas a provedlo se 5 měření úrovní hladiny. Výsledná úroveň hladiny byla stanovena jako průměr těchto 5 hodnot.

Digitální hrotové měřidlo bylo umístěno ve vzdálenosti 45 cm od přelivné stěny v ose přítokového koryta. Při stanovování úrovně hladiny byla posuvná část měřidla pomalu spouštěna k hladině. Při styku suchého ocelového hrotu a hladiny došlo k tzv. probodnutí hladiny. V dané úrovni vlivem povrchového napětí dojde k přilnutí vody na hrot měřidla.

Během měření výšky hladiny se sledoval trend poklesu či růstu úrovně hladiny pro ověření ustálenosti průtoku. Požadovala se odchylka menší než σ = 0,5 mm.

31

Při některých průtocích nešlo zabránit vlnění hladiny, tudíž byly naměřené úrovně hladiny i s větší odchylkou.

4.5 Měření šířky přítokového koryta

Pomocí délkového měřidla se v požadované vzdálenosti osadila levá strana přítokového koryta do žlabu. Vodováhou byla zajištěna svislost. Stěna byla zajištěna maticemi uchycenými na závitových tyčích, které byly příčně uspořádány ve dvou řadách po 5 ve žlabu (viz Obrázek 12). Pravá stěna byla od levé stěny odsazena pomocí desky, jež měla šířku definující požadovanou šířku žlabu *B*. Pozice stěn se aretovaly maticemi. Poté se přítokové koryto přisunulo na tenkostěnný přeliv, aby bylo dosaženo těsnosti.

Obrázek 12 Deska pro vymezení šířky přítokového koryta

4.6 Chyby a nejistoty měření

Při měření a nastavování (iterační nastavování frekvence čerpadla k zajištění požadovaného průtoku) veškerých hodnot se zcela neobešlo bez vzniku nejistot jejich stanovení. Lidský faktor při měření hraje významnou roli. U měření úrovně hladiny se opticky stanovuje dotek hrotu. Časomíru nelze přesně spustit a zastavit při zobrazení určitého čísla na elektromagnetickém indukčním průtokoměru. Dále nelze vyloučit chybu z dokonalosti rovinnosti přítokového koryta. Koryto mohlo být lokálně vyboulené anebo stěny žlabu nemusely být zcela kolmé ke dnu. U osazení tenkostěnného přelivu bylo opticky dosaženo horizontální roviny pomocí vodováhy. Těsnění mezi žlabem a tenkostěnným přelivem nemuselo dokonale přilnulo k přelivu.

Chyby měření se dělí na:

- náhodné chyby (rozptýlení hodnot za stálých podmínek),
- systematické chyby (omezení metrologických schopností měřicích zařízení).

Mezi nejistoty měření při stanovení součinitele průtoku patří:

- nejistota měření úrovně hladiny a úrovně vrcholu výřezu pro stanovení přepadové výšky,
- nejistota měření šířky přítokového koryta,
- nejistota měření proteklého objemu a času pro stanovení průtoku,
- nejistota měření úhlu výřezu.

5 VYHODNOCENÍ A ZPRACOVÁNÍ DAT

Naměřená data byla zpracována do několika grafů. V grafech byl k úhlu výřezu tenkostěnného přelivu α [°] vztažen průtok $\mathcal{Q}[I \cdot s^{-1}]$ (viz Graf 3), přepadová výška h [m] (viz Graf 4) a poměru b/B (viz Graf 5).

Graf 3 Rozsah měření v závislosti na úhlu výřezu přelivu lpha a průtoku ${\cal Q}$

Graf 4 Rozsah měření v závislosti na úhlu výřezu přelivu α a přepadové výšce h

Graf 5 Rozsah měření v závislosti na úhlu výřezu přelivu α a poměru b/B

Následně byly vytvořeny přehledné grafy všech naměřených hodnot počínaje Graf 6, který znázorňuje závislost přepadové výšky *h* [m] na průtoku Q [l·s⁻¹] při 5 zkoumaných šířkách přítokového koryta *B* [m] a zkoumaným trojúhelníkovým přelivem s úhlem výřezu α = 2,68°.

Dále byly vypracovány grafy, u kterých se zkoumaly stejné faktory, s odlišným úhlem výřezu trojúhelníkového přelivu. Graf 7 značí úhel výřezu α = 5,25°, Graf 8 značí úhel výřezu α = 10,18°, Graf 9 značí úhel výřezu α = 15,19°, Graf 10 značí úhel výřezu α = 20,23°, Graf 11 značí úhel výřezu α = 25,21°, Graf 12 značí úhel výřezu α = 30,53°, Graf 13 značí úhel výřezu α = 60,67° a Graf 14 značí úhel výřezu α = 91,17°.

Graf 8 Rozsah měření při úhlu výřezu α = 10,18°

Graf 10 Rozsah měření při úhlu výřezu α = 20,23°

Graf 12 Rozsah měření při úhlu výřezu α = 30,53°

Graf 14 Rozsah měření při úhlu výřezu α = 91,17°

Pokračování vyhodnocení dat spočívalo ve výpočtu hodnot *b* [m], které byly dány vztahem

$$b = 2h \cdot \tan \frac{\alpha}{2}.$$
 (5.1)

Následovalo nalezení hodnot poměru b/B[-] a stanovení hodnot $C_{d,0}$, při kterých bylo předpokládáno, že šířka přítokového koryta nebude mít vliv na součinitel průtoku C_{d} . Hodnoty $C_{d,0}$ byly určeny pro přítokové koryto o šířce B=0,50 m pro každou měřenou přepadovou výšku zvlášť, a to u každého úhlu výřezu zvlášť, viz Tabulka 1.

α [°]	<i>B</i> [m]	<i>h</i> [m]	<i>Q</i> [l⋅s⁻1]	<i>C</i> _d [-]	<i>C_{d,0}</i> [-]
2,68 0,100		0,0579	0,035	0,799	0,780
2,68	0,100	0,0788	0,071	0,745	0,764
2,68	0,100	0,0984	0,126	0,760	0,748
2,68	0,100	0,1190	0,197	0,741	0,750
2,68	0,100	0,1383	0,285	0,735	0,742
2,68	0,100	0,1581	0,397	0,733	0,730
2,68	0,100	0,1809	0,562	0,729	0,731
2,68	0,200	0,0582	0,035	0,775	
2,68	0,200	0,0787	0,071	0,747	0,764
2,68	0,200	0,1003	0,129	0,743	0,748
2,68	3 0,200	0,1185	0,195	0,739	0,750
2,68	0,200	0,1380	0,283	0,735	0,742
2,68	0,200	0,1583	0,396	0,728	0,730
2,68	0,200	0,1813	0,568	0,734	0,731
2,68	0,500	0,0572	0,033		
2,68	0,500	0,0774	0,069	0,764	0,764
2,68	0,500	0,0985	0,124	0,748	0,748
2,68	0,500	0,1170	0,191	0,750	0,750
2,68	0,500	0,1388	0,290	0,742	0,742
2,68	0,500	0,1591	0,401	0,730	0,730
2,68	0,500	0,1814	0,567	0,731	0,731

Tabulka 1 Znázornění stanovení hodnot $\mathcal{C}_{d,\mathcal{O}}$

V dalším kroku byly nalezeny hodnoty $\mathcal{C}_{b/B}$ pomocí vztahu

$$C_{b/B} = \frac{C_d}{C_{d,0}},$$
(5.2)

které byly vyneseny do Graf 15.

Graf 15 Rozsah měření v závislosti poměru b/B a součinitele přepadu $C_{b/B}$ Z Graf 15 je vidět, že některé hodnoty byly výrazně odchýleny od většiny hodnot. Z tohoto důvodu muselo dojít k analýze použití dat pro vyhodnocení závislosti $C_{b/B}$ na b/B. Graf 16 znázorňuje nedostatečný rozsah hodnot b/B pro vyjádření závislosti u přelivů s úhly výřezu α = 2,68°, 5,25°, proto je nebylo možné použít pro další hodnocení. U přelivů s úhly výřezu α = 60,67°, 91,17° (viz Graf 17) se hodnoty vymykaly trendu oproti většině hodnot (viz Graf 15). Uvedené je způsobené nedostatečně malými hodnotami b/B pro stanovení $C_{d,0}$ (malá šířka žlabu), proto je nebylo možné použít pro další vyhodnocení.

Graf 16 Rozsah měření v závislosti poměru b/Ba součinitele přepadu $C_{b/B}$ pro úhly výřezu α = 2,68°, 5,25°

Graf 17 Rozsah měření v závislosti poměru b/Ba součinitele přepadu $C_{b/B}$ pro úhly výřezu α = 60,67°, 91,17°

Omezením použití dat vznikl Graf 18, který zobrazoval hodnoty směřující k dalšímu vyhodnocení. Hodnoty pro každý úhel výřezu se zvlášť proložily polynomickou spojnicí trendu 2. stupně a lze pozorovat, že jejich vzájemná poloha v grafu je téměř totožná, rozptyl jejich hodnot je cca ±1 %.

Graf 18 Rozsah měření použitých hodnot v závislosti poměru b/Ba součinitele přepadu $\mathcal{C}_{b/B}$

6 VÝSLEDKY

Hlavním výstupem práce je Graf 19, jenž znázorňuje závislost $C_{b/B}$ na b/B. V grafu se nacházejí hodnoty pro tenkostěnné přelivy s trojúhelníkovým výřezem s úhly $\alpha = 10,18^{\circ}-30,53^{\circ}$ s přepadovými výškami h = 0,06-0,18 m, které byly dále použity pro stanovení závislosti $C_{b/B}$ na b/B. Uvedené hodnoty jsou vyobrazeny zelenou barvou. V grafu jsou uvedeny i hodnoty, které byly naměřeny, ale nesplňovaly požadavky pro vyhodnocení. Uvedené hodnoty jsou zobrazeny oranžovou a červenou barvou. Linie zobrazené černou čárkovanou čarou naznačují omezení 2% odchylky od hodnoty $C_{b/B} = 1,00$.

Hodnotami $\mathcal{C}_{b/B}$ splňujícími požadavky pro vyhodnocení byl proložen polynom druhého stupně ve tvaru

$$C_{b/B} = 0.24 \left(\frac{b}{B}\right)^2 - 0.02 \left(\frac{b}{B}\right) + 1.00,$$
 (6.1)

který má koeficient determinace $R^2 = 0.98$.

Graf 19 Závislosti $\mathcal{C}_{b/B}$ na b/B

Uvedený Graf 20 níže vyznačuje detail naměřených hodnot využitých při vyhodnocení závislosti veličin $C_{b/B}$ na b/B. Z detailu je patrné, že pro hodnoty $0,0 \le b/B \le 0,3$ lze vliv poměru b/B považovat za relativně malý (<2 %) a v mnohých praktických případech ho lze zanedbat.

Graf 20 Detail závislosti $\mathcal{C}_{b/B}$ na b/B

7 ZÁVĚR A ZHODNOCENÍ

Ze známých tenkostěnných přelivů byl zkoumán tenkostěnný přeliv s trojúhelníkovým výřezem. Jednalo se o přeliv s bočním zúžením. Vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem byl zkoumán ve žlabu v Laboratoři vodohospodářského výzkumu. Součástí žlabu byly elektromagnetické indukční průtokoměry, hrotové měřidlo a ovládací jednotka čerpadla. Celkově bylo provedeno 362 měření se snahou o minimalizaci nejistot měření. Data byla analyzována a vyhodnocena.

Data vypočítaná ze změřených byla vnesena do grafů, ze kterých byl patrný rozsah měření. Povedlo se docílit rozšíření naměřených dat oproti předchozím výzkumům. Dále byly vytvořeny grafy, kde byl sledován úhel výřezu přelivu α a veličiny: přepadová výška *h*, průtok Q a poměr *b*/*B*. Výsledkem práce je graf znázorňující křivku závislosti $C_{b/B}$ na *b*/*B*. Křivka je vyjádřená rovnicí (6.1). Cíl práce, vliv šířky přítokového koryta na přepad přes tenkostěnný přeliv s trojúhelníkovým výřezem, byl tímto splněn.

Při experimentálním výzkumu byl dosažen relativně velký rozptyl hodnot od jejich trendů při měření malých přepadových výšek, což pravděpodobně bylo způsobeno nepřesnostmi při měření. Zvláště patrné je to u přepadových výšek cca h = 0,04 m a u tenkostěnných přelivů s úhlem výřezu α = 2,68°, 5,25°. U tenkostěnných přelivů s úhlem výřezu α = 2,68°, 5,25°. U tenkostěnných přelivů s úhlem výřezu α = 0,04 m ozádované průtoky u přepadových výšek h = 0,16 m a h = 0,18 m z důvodu velkých ztrát na přítokovém potrubí. O uvedená data bylo nutné vyhodnocení omezit.

8 SEZNAMY

8.1 Seznam použité literatury

- [1] BOOR, Boris, Jiří KUNŠTÁTSKÝ a Cyril PATOČKA. Hydraulika pro vodohospodářské stavby. Praha: SNTL-Nakladatelství technické literatury, 1968, 520 s.
- [2] ČSN ISO 1438. Hydrometrie: Měření průtoku vody v otevřených korytech pomocí tenkostěnných přelivů. Praha: ÚNMZ, 2012
- [3] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno, 2006. Studijní opora.
 VUT v Brně.
- [4] NUMACHI, F. a S. HUTIZAWA. Uber den Uberfallbeiwert eines Rechtwinkligdreieckigen Messwehrs (2. Mitteilung). Journal of the Society of Mechanical Engineers. Japan, 1941, 44(286), 286. ISSN 2424-2675. Dostupné z: doi:doi.org/10.1299/jsmemag.44.286_5_1
- [5] NUMACHI, F. a S. HUTIZAWA. Uber den Uberfallbeiwert eines rechtwinkligdreieckigen Messwehrs (2. Mitteilung). Transactions of the Japan Society of Mechanical Engineers. Japan, 1941, 7(27-3), 5–9. ISSN 2185-9485. Dostupné z: doi:doi.org/10.1299/kikai1938.7.27-3_5
- [6] NUMACHI, F. a S. HUTIZAWA. Uber den Uberfallbeiwert eines rechtwinkligdreieckigen Messwehrs (3 Mitteilung). Transactions of the Japan Society of Mechanical Engineers. Japan, 1942, 8(33-3), 37–40. ISSN 2185-9485. Dostupné z: doi:doi.org/10.1299/kikai1938.8.33-3_37
- [7] NUMACHI, F. a S. HUTIZAWA. Ueber den Ueberfallbeiwert eines rechtwinkligdreieckigen Messwehrs (3. Mitteilung). Journal of the Society of Mechanical Engineers. Japan, 1942, 45(308), 725. ISSN 2424-2675. Dostupné z: doi:doi.org/10.1299/jsmemag.45.308_725_2
- [8] NUMACHI, F., T. KUROKAWA a S. HUTIZAWA. Ueber den Ueberfalbeiwert eines rechtwinkligdreieckigen Messwehrs. Transactions of the Japan Society of Mechanical Engineers. Japan, 1940, 6(22-3), 10-14. ISSN 2185-9485. Dostupné z: doi:doi.org/10.1299/kikai1938.6.22-3_10

- [9] NUMACHI, F., T. KUROKAWA a S. HUTIZAWA. Ueber den Ueberfallbeiwert elnes rechtwinkligdreieckigen Messwehrs. Journal of the Society of Mechanical Engineers. Japan, 1940, 43(275), 45. ISSN 2424-2675. Dostupné z: doi:doi.org/10.1299/jsmemag.43.275_45_2
- [10] POSPÍŠILÍK, Šimon. Analýza rozsahu prozkoumanosti přepadu přes tenkostěnné přelivy s trojúhelníkovým výřezem. In: *Juniorstav 2022 sborník příspěvků* [online]. Vysoké učení technické v Brně, Fakulta stavební, 2021, s. 468-474 [cit. 2023-05-26]. ISBN 978-80-86433-76-9. Dostupné z: doi:10.13164/juniorstav.2022.468
- [11] ŠAROUNOVÁ, Irena. Destilovaná voda z jihlavského vodovodu nikdy nepoteče [online]. 16. 3. 2015, 1 [cit. 2023-05-26]. Dostupné z: https://vysocina.rozhlas.cz/destilovana-voda-z-jihlavskeho-vodovodu-nikdynepotece-7128338

8.2 Seznam veličin

Značka	Název veličiny	Jednotka
b	šířka přepadového paprsku	[m]
В	šířka přítokového koryta	[m]
<i>B</i> ₀	šířka přítokového koryta při maximální přepadové výšce	[m]
$\mathcal{C}_{b/B}$	součinitel vlivu relativní šířky přítokového žlabu	[-]
\mathcal{C}_{d}	součinitel průtoku	[-]
$\mathcal{C}_{d,\mathcal{O}}$	součinitel průtoku neovlivnění relativní šířkou přítokového žlabu	[-]
f	frekvence	[Hz]
g	tíhové zrychlení	[m⋅s ⁻²]
h	přepadová výška	[m]
h ₀	svislá vzdálenost těžiště plochy lichoběžníku od hladiny	[m]

ħ	svislá vzdálenost hladiny od vrcholu trojúhelníkového výřezu	[m]
h _{max}	maximální přepadová výška	[m]
Н	svislá vzdálenost hladiny od vrcholu trojúhelníkového výřezu	[m]
Q	průtok	[m³⋅s¹]
\mathcal{Q}_{max}	maximální průtok	[m³⋅s¹]
\mathcal{Q}_{min}	minimální průtok	[m³⋅s¹]
t	čas	[s]
t_l	tloušťka stěny přelivu	[m]
Τ	teplota	[°C]
ν_0	přítoková rychlost	[m⋅s¹]
V	objem	[m³]
И	počáteční objem	[m³]
<i>V</i> ₂	koncový objem	[m³]
φ	relativní vlhkost	[-]
σ	odchylka	[m]
α	úhel výřezu trojúhelníkového přelivu	[°]
α_0	Coriolisovo číslo	[-]
a 1	svislá vzdálenost od vrcholu válce a vrcholu přelivu	[m]

8.3 Seznam zkratek

ČSN Česká státní norma ISO Mezinárodní organizace pro normalizaci

DN	jmenovitý vnitřní průměr potrubí
----	----------------------------------

PVC polyvinylchlorid

8.4 Seznam obrázků

Obrázek 1 Schéma přelivné hrany [2]	13
Obrázek 2 Trojúhelníkový výřez [3]	16
Obrázek 3 Tenkostěnné přelivy s trojúhelníkovým výřezem na úpravně voc	ły [11] 19
Obrázek 4 Celkový pohled na žlab	22
Obrázek 5 Měrný žlab – nátok	24
Obrázek 6 Měrný žlab – uklidňovací prostor a polystyren	25
Obrázek 7 Měrný žlab – přeliv	
Obrázek 8 Elektromagnetický indukční průtokoměr DN50	27
Obrázek 9 Elektromagnetický indukční průtokoměr DN10	
Obrázek 10 Digitální hrotové měřidlo	29
Obrázek 11 Délkové měřidlo 500 mm	29
Obrázek 12 Deska pro vymezení šířky přítokového koryta	

8.5 Seznam grafů

Graf 1 Rozsahy zkoumaných oblastí	17
Graf 2 Rozsah zkoumané oblasti v závislosti \mathcal{C}_{d} a <i>b$B_{ ext{$</i>	18
Graf 3 Rozsah měření v závislosti na úhlu výřezu přelivu $lpha$ a průtoku ${\cal Q}$.34
Graf 4 Rozsah měření v závislosti na úhlu výřezu přelivu $lpha$ a přepadové výšce $h_{\!}$.35
Graf 5 Rozsah měření v závislosti na úhlu výřezu přelivu $lpha$ a poměru b/B	.35
Graf 6 Rozsah měření při úhlu výřezu $lpha$ = 2,68°	.36
Graf 7 Rozsah měření při úhlu výřezu $lpha$ = 5,25°	37
Graf 8 Rozsah měření při úhlu výřezu $lpha$ = 10,18°	37
Graf 9 Rozsah měření při úhlu výřezu $lpha$ = 15,19°	.38
Graf 10 Rozsah měření při úhlu výřezu $lpha$ = 20,23°	.38
Graf 11 Rozsah měření při úhlu výřezu $lpha$ = 25,21°	.39

Graf 12 Rozsah měření při úhlu výřezu α = 30,53°
Graf 13 Rozsah měření při úhlu výřezu α = 60,67°40
Graf 14 Rozsah měření při úhlu výřezu α = 91,17°40
Graf 15 Rozsah měření v závislosti poměru b/B a součinitele přepadu $C_{b/B}$
Graf 16 Rozsah měření v závislosti poměru b/B a součinitele přepadu $C_{b/B}$ pro úhly
výřezu α = 2,68°, 5,25°
Graf 17 Rozsah měření v závislosti poměru $b\!/B$ a součinitele přepadu $\mathcal{C}_{b\!/B}$ pro úhly
výřezu α = 60,67°, 91,17°
Graf 18 Rozsah měření použitých hodnot v závislosti poměru b/B a součinitele
přepadu $\mathcal{C}_{b/B}$
Graf 19 Závislosti <i>C</i> _{b/B} na <i>b</i> / <i>B</i> 47
Graf 20 Detail závislosti <i>C</i> _{b/B} na <i>b</i> / <i>B</i>

8.6 Seznam tabulek

Tabulka 1 Znázornění stanovení hodnot $\mathcal{C}_{d,0}$	4	1
---	---	---

8.7 Seznam příloh

Příloha 1 Změřená data

Příloha 1 Změřená data

 α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	<i>V</i> ₂ [m ³]	<i>t</i> [s]	<i>Q</i> [l⋅s⁻1]	C_d [-]
2,68	0,100	17,8	0,0391	122,2756	122,2784	231,38	0,012	0,733
2,68	0,100	17,8	0,0579	122,3960	122,4060	284,21	0,035	0,799
2,68	0,100	17,8	0,0788	122,6860	122,7030	240,05	0,071	0,745
2,68	0,100	17,8	0,0984	122,8800	122,9030	182,80	0,126	0,760
2,68	0,100	17,8	0,1190	123,0000	123,0370	187,77	0,197	0,741
2,68	0,100	17,8	0,1383	123,1960	123,2530	200,13	0,285	0,735
2,68	0,100	17,8	0,1581	123,5550	123,6300	188,92	0,397	0,733
2,68	0,100	17,8	0,1809	1948,3050	1948,4100	186,94	0,562	0,729
2,68	0,200	17,5	0,0411	120,7420	120,7453	228,95	0,014	0,772
2,68	0,200	17,5	0,0582	120,8240	120,8310	202,89	0,035	0,775
2,68	0,200	17,5	0,0787	120,9600	120,9740	197,89	0,071	0,747
2,68	0,200	17,5	0,1003	121,1000	121,1330	255,64	0,129	0,743
2,68	0,200	17,6	0,1185	121,3020	121,3380	184,88	0,195	0,739
2,68	0,200	17,6	0,1380	121,6270	121,6800	186,99	0,283	0,735
2,68	0,200	17,7	0,1583	122,0950	122,1730	197,05	0,396	0,728
2,68	0,200	17,8	0,1813	1946,2400	1946,3550	202,39	0,568	0,734
2,68	0,300	17,7	0,0396	119,0640	119,0665	216,58	0,012	0,679
2,68	0,300	17,7	0,0580	119,1605	119,1680	214,51	0,035	0,790
2,68	0,300	17,7	0,0772	119,3110	119,3240	182,41	0,071	0,790
2,68	0,300	17,7	0,1001	119,4960	119,5260	231,30	0,130	0,751
2,68	0,300	17,7	0,1210	119,7850	119,8230	182,48	0,208	0,751
2,68	0,300	17,7	0,1397	120,0950	120,1590	217,62	0,294	0,739
2,68	0,300	17,8	0,1580	120,5100	120,6000	225,34	0,399	0,738
2,68	0,300	17,9	0,1808	1943,0200	1943,1500	230,30	0,564	0,734
2,68	0,400	17,6	0,0404	115,2953	115,2976	185,28	0,012	0,693
2,68	0,400	17,5	0,0579	115,3950	115,4030	241,73	0,033	0,753
2,68	0,400	17,5	0,0780	115,5330	115,5460	182,50	0,071	0,770
2,68	0,400	17,5	0,0987	115,6950	115,7185	186,50	0,126	0,754
2,68	0,400	17,5	0,1189	116,7720	116,8110	196,01	0,199	0,749
2,68	0,400	17,5	0,1388	117,0210	117,0770	193,62	0,289	0,739
2,68	0,400	17,5	0,1579	118,7620	118,8430	203,77	0,398	0,736
2,68	0,400	17,6	0,1775	1936,4150	1936,5350	223,12	0,538	0,732
2,68	0,500	17,3	0,0400	113,4625	113,4655	233,18	0,013	0,739
2,68	0,500	17,3	0,0572	113,5855	113,5920	195,38	0,033	0,780
2,68	0,500	17,3	0,0774	113,6750	113,6910	230,86	0,069	0,764
2,68	0,500	17,4	0,0985	113,9650	113,9890	193,52	0,124	0,748
2,68	0,500	17,4	0,1170	114,1760	114,2200	229,87	0,191	0,750
2,68	0,500	17,5	0,1388	114,4330	114,4920	203,29	0,290	0,742
2,68	0,500	17,1	0,1591	115,0830	115,1570	184,39	0,401	0,730
2,68	0,500	17,5	0,1814	1935,3000	1935,4150	202,89	0,567	0,731
5,25	0,100	16,8	0,0408	108,5710	108,5760	207,55	0,024	0,686

_	α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	<i>V</i> ₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻1]	$\mathcal{C}_{d}[-]$
	5,25	0,100	16,9	0,0604	108,7790	108,7930	210,07	0,067	0,686
	5,25	0,100	17,0	0,0802	109,0970	109,1260	213,60	0,136	0,701
	5,25	0,100	17,0	0,0998	109,3010	109,3570	237,81	0,235	0,694
	5,25	0,100	17,0	0,1196	109,5050	109,5800	204,03	0,368	0,696
	5,25	0,100	16,6	0,1380	1912,7500	1912,8500	187,53	0,533	0,694
	5,25	0,100	16,8	0,1583	1913,3400	1913,5200	241,77	0,745	0,686
	5,25	0,100	16,8	0,1784	1913,9500	1914,1400	191,62	0,992	0,676
	5,25	0,200	17,0	0,0407	109,7180	109,7240	252,36	0,024	0,691
	5,25	0,200	16,9	0,0610	109,8870	109,9020	223,13	0,067	0,706
	5,25	0,200	16,9	0,0810	110,0050	110,0310	190,57	0,136	0,703
	5,25	0,200	16,9	0,1003	110,1660	110,2150	207,88	0,236	0,698
	5,25	0,200	16,9	0,1208	110,3570	110,4380	215,47	0,376	0,698
	5,25	0,200	16,9	0,1424	1917,1700	1917,2900	210,51	0,570	0,698
	5,25	0,200	17,0	0,1585	1917,6800	1917,8300	202,38	0,741	0,688
	5,25	0,200	17,0	0,1788	1919,0200	1919,2500	232,07	0,991	0,677
	5,25	0,300	17,2	0,0414	111,2445	111,2495	208,76	0,024	0,644
	5,25	0,300	17,1	0,0602	111,1460	111,1585	185,69	0,067	0,708
	5,25	0,300	17,1	0,0802	111,0900	111,1150	184,23	0,136	0,697
	5,25	0,300	17,1	0,1000	110,9720	111,0160	185,60	0,237	0,703
	5,25	0,300	17,0	0,1204	110,7670	110,8350	181,91	0,374	0,697
	5,25	0,300	17,0	0,1385	1920,4300	1920,5400	204,58	0,538	0,695
	5,25	0,300	17,0	0,1586	1920,7900	1920,9600	228,08	0,745	0,686
	5,25	0,300	17,0	0,1786	1921,7000	1921,9600	261,84	0,993	0,679
	5,25	0,400	17,3	0,0397	112,3785	112,3835	215,45	0,023	0,668
	5,25	0,400	17,3	0,0616	112,3360	112,3500	197,24	0,071	0,685
	5,25	0,400	17,3	0,0822	112,2270	112,2560	199,41	0,145	0,684
	5,25	0,400	17,2	0,0998	112,0320	112,0960	273,00	0,234	0,694
	5,25	0,400	17,1	0,1200	111,7130	111,7990	231,23	0,372	0,694
	5,25	0,400	17,1	0,1403	1924,2600	1924,3800	215,46	0,557	0,688
	5,25	0,400	17,1	0,1576	1924,9100	1925,1600	340,45	0,734	0,683
	5,25	0,400	17,1	0,1790	1926,2700	1926,4700	201,14	0,994	0,676
	5,25	0,500	17,1	0,0403	112,5090	112,5150	251,72	0,024	0,672
	5,25	0,500	17,2	0,0607	112,7250	112,7380	195,33	0,067	0,695
	5,25	0,500	17,2	0,0808	112,9150	112,9470	230,58	0,139	0,698
	5,25	0,500	17,2	0,1000	113,0280	113,0840	238,97	0,234	0,701
	5,25	0,500	17,2	0,1196	113,2510	113,3220	193,15	0,368	0,696
	5,25	0,500	17,2	0,1379	1929,1000	1929,2050	197,56	0,531	0,696
	5,25	0,500	17,3	0,1595	1930,1800	1930,3300	198,76	0,755	0,689
	5,25	0,500	17,3	0,1807	1930,9700	1931,2200	245,93	1,017	0,681
	10,18	0,032	16,7	0,0402	107,5910	107,6010	217,50	0,046	0,685
	10,18	0,032	16,7	0,0629	107,7620	107,7920	207,27	0,145	0,703
	10,18	0,032	16,7	0,0803	107,9650	108,0150	185,32	0,270	0,713
	10,18	0,032	16,7	0,0994	108,3420	108,4300	189,23	0,465	0,720

_	α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И₁[m³]	I∕₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻1]	$\mathcal{C}_{d}[-]$
_	10,18	0,032	16,8	0,1204	1905,0400	1905,1900	192,86	0,778	0,735
	10,18	0,032	16,9	0,1386	1906,0000	1906,2700	238,03	1,134	0,754
	10,18	0,032	16,8	0,1593	1907,4900	1907,8500	220,53	1,632	0,767
	10,18	0,032	16,8	0,1792	1908,9800	1909,4700	220,16	2,226	0,778
	10,18	0,100	16,7	0,0402	106,3510	106,3600	195,92	0,046	0,668
	10,18	0,100	16,7	0,0608	106,6330	106,6580	194,14	0,129	0,694
	10,18	0,100	16,7	0,0792	106,7680	106,8320	255,66	0,250	0,686
	10,18	0,100	16,7	0,0988	107,1070	107,1920	195,68	0,434	0,682
	10,18	0,100	16,7	0,1192	1897,7000	1897,8300	186,72	0,696	0,675
	10,18	0,100	16,7	0,1385	1898,7300	1898,9300	198,54	1,007	0,664
	10,18	0,100	16,7	0,1584	1899,9300	1900,2000	194,42	1,389	0,648
	10,18	0,100	16,8	0,1784	1900,8500	1901,1900	182,27	1,865	0,648
	10,18	0,200	16,5	0,0453	105,2700	105,2830	216,91	0,060	0,674
	10,18	0,200	16,6	0,0625	105,4170	105,4570	285,18	0,140	0,694
	10,18	0,200	16,6	0,0801	105,6100	105,6580	187,05	0,257	0,687
	10,18	0,200	16,6	0,0996	105,9170	106,0000	189,09	0,439	0,683
	10,18	0,200	16,7	0,1179	1892,4100	1892,6100	295,72	0,676	0,674
	10,18	0,200	16,7	0,1372	1893,1200	1893,3700	256,51	0,975	0,666
	10,18	0,200	16,7	0,1576	1894,3700	1894,6200	183,90	1,359	0,651
	10,18	0,200	16,7	0,1787	1895,7500	1896,1000	189,61	1,846	0,648
	10,18	0,300	16,5	0,0446	104,1440	104,1570	219,49	0,059	0,681
	10,18	0,300	16,6	0,0598	104,2470	104,2700	184,80	0,124	0,688
	10,18	0,300	16,6	0,0790	104,4600	104,5150	219,47	0,251	0,689
	10,18	0,300	16,6	0,0985	104,7810	104,8600	183,81	0,430	0,681
	10,18	0,300	16,5	0,1218	1886,1100	1886,2450	184,08	0,733	0,673
	10,18	0,300	16,5	0,1393	1886,6900	1886,8800	187,25	1,015	0,666
	10,18	0,300	16,5	0,1584	1887,6900	1887,9500	189,77	1,370	0,653
	10,18	0,300	16,5	0,1781	1888,8700	1889,2100	186,26	1,825	0,649
	10,18	0,400	16,3	0,0423	101,7940	101,8045	204,28	0,051	0,664
	10,18	0,400	16,3	0,0605	101,8930	101,9180	193,18	0,129	0,693
	10,18	0,400	16,4	0,0795	102,0830	102,1320	192,99	0,254	0,683
	10,18	0,400	16,6	0,0992	102,7550	102,8400	193,80	0,439	0,677
	10,18	0,400	16,3	0,1207	1873,2650	1873,4250	223,09	0,717	0,673
	10,18	0,400	16,3	0,1394	1874,1500	1874,3350	182,14	1,016	0,664
	10,18	0,400	16,3	0,1585	1875,1600	1875,4100	182,69	1,368	0,655
	10,18	0,400	16,3	0,1788	1876,5850	1876,9500	198,04	1,843	0,650
	10,18	0,500	16,5	0,0424	103,2360	103,2455	185,81	0,051	0,683
	10,18	0,500	16,5	0,0634	103,3760	103,4030	185,57	0,145	0,682
	10,18	0,500	16,5	0,0804	103,5530	103,6040	195,70	0,261	0,685
	10,18	0,500	16,6	0,0986	103,9550	104,0450	208,40	0,432	0,684
	10,18	0,500	16,6	0,1169	1880,3300	1880,4600	196,11	0,663	0,674
	10,18	0,500	16,6	0,1367	1881,2100	1881,4200	217,59	0,965	0,671
	10,18	0,500	16,6	0,1587	1883,4500	1883,7200	197,36	1,368	0,662

_	α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	I∕₂ [m³]	<i>t</i> [s]	<i>Q</i> [l⋅s⁻1]	$\mathcal{C}_{d}[-]$
	10,18	0,500	16,6	0,1771	1882,6700	1883,0200	194,42	1,800	0,660
	15,19	0,048	16,5	0,0445	99,3455	99,3630	195,14	0,090	0,656
	15,19	0,048	16,5	0,0600	99,4640	99,5000	190,51	0,189	0,671
	15,19	0,048	16,5	0,0792	99,6750	99,7550	209,88	0,381	0,663
	15,19	0,048	16,4	0,0989	1838,6350	1838,7800	213,56	0,679	0,658
	15,19	0,048	16,4	0,1192	1839,1800	1839,3800	182,08	1,098	0,645
	15,19	0,048	16,4	0,1382	1839,8800	1840,2100	202,72	1,628	0,637
	15,19	0,048	16,4	0,1583	1840,9700	1841,4500	204,79	2,344	0,628
	15,19	0,048	16,4	0,1797	1843,1200	1843,8100	208,75	3,305	0,626
	15,19	0,100	16,3	0,0416	98,8070	98,8225	213,86	0,072	0,669
	15,19	0,100	16,3	0,0604	98,9160	98,9510	186,58	0,188	0,675
	15,19	0,100	16,3	0,0793	99,0700	99,1430	199,63	0,366	0,666
	15,19	0,100	16,3	0,0987	1832,7450	1832,8700	195,31	0,640	0,660
	15,19	0,100	16,3	0,1187	1833,4800	1833,6700	188,67	1,007	0,648
	15,19	0,100	16,4	0,1389	1834,4600	1834,7600	203,11	1,477	0,641
	15,19	0,100	16,4	0,1592	1835,4300	1835,8200	187,79	2,077	0,632
	15,19	0,100	16,4	0,1803	1836,8000	1837,4800	238,97	2,846	0,631
	15,19	0,200	16,5	0,0413	99,9895	100,0065	234,52	0,072	0,672
	15,19	0,200	16,5	0,0605	100,0920	100,1260	181,19	0,188	0,671
	15,19	0,200	16,5	0,0791	100,2830	100,3510	186,45	0,365	0,664
	15,19	0,200	16,0	0,0977	1846,8200	1846,9400	192,70	0,623	0,655
	15,19	0,200	16,0	0,1183	1847,6000	1847,8050	207,90	0,986	0,649
	15,19	0,200	16,1	0,1373	1848,8800	1849,1500	190,17	1,420	0,642
	15,19	0,200	16,1	0,1576	1849,7700	1850,1500	192,55	1,974	0,633
	15,19	0,200	16,1	0,1777	1851,3100	1852,0300	270,91	2,658	0,630
	15,19	0,300	16,2	0,0388	100,4960	100,5090	210,14	0,062	0,675
	15,19	0,300	16,3	0,0597	100,6100	100,6450	193,22	0,181	0,670
	15,19	0,300	16,3	0,0795	100,8300	100,9150	231,49	0,367	0,667
	15,19	0,300	16,2	0,0991	1854,2700	1854,3900	188,06	0,638	0,662
	15,19	0,300	16,2	0,1183	1855,2050	1855,4050	202,97	0,985	0,651
	15,19	0,300	16,2	0,1378	1856,0500	1856,3400	203,53	1,425	0,646
	15,19	0,300	16,2	0,15/4	1857,2500	1857,6900	224,31	1,962	0,635
	15,19	0,300	16,2	0,1/69	1859,1000	1859,6100	195,27	2,612	0,634
	15,19	0,400	16,2	0,0414	101,0900	101,1050	206,/9	0,073	0,660
	15,19	0,400	16,2	0,0606	101,2280	101,2630	185,06	0,189	0,674
	15,19	0,400	16,2	0,0792	101,4950	101,5860	249,60	0,365	0,666
	15,19	0,400	16,2	0,0985	1861,/150	1861,8550	221,32	0,633	0,664
	15,19	0,400	16,3	0,11/9	1862,2000	1862,4150	220,58	0,975	0,659
	15,19	0,400	16,3	0,13/3	1863,1200	1863,3800	184,31	1,411	0,653
	15,19	0,400	16,3	0,15/8	1864,0100	1864,4400	218,51	1,968	0,652
	15,19	0,400	16,3	U,I//4	1865,1800	1865,/900	231,35	2,63/	0,654
	15,19	0,500	16,4	0,0412	98,6225	98,6395	242,85	U,U/U	0,692
	15,19	0,500	16,3	U,U6UU	97,8250	97,8590	185,10	U,184	0,690

α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	I∕₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻¹]	$\mathcal{C}_{d}[-]$
15,19	0,500	16,4	0,0800	98,0700	98,1400	187,73	0,373	0,697
15,19	0,500	16,3	0,0993	1825,5150	1825,6350	186,27	0,644	0,700
15,19	0,500	16,3	0,1190	1826,5500	1826,7600	211,58	0,993	0,711
15,19	0,500	16,3	0,1387	1827,4100	1827,6900	194,56	1,439	0,727
15,19	0,500	16,3	0,1581	1828,4600	1828,9100	228,73	1,967	0,746
15,19	0,500	16,3	0,1783	1829,9000	1830,6300	275,79	2,647	0,766
20,23	0,064	16,3	0,0417	97,1330	97,1515	182,12	0,102	0,694
20,23	0,064	16,3	0,0597	97,2510	97,2970	188,07	0,245	0,673
20,23	0,064	16,3	0,0775	97,4900	97,5820	196,33	0,469	0,655
20,23	0,064	16,3	0,0996	1814,1850	1814,3600	194,08	0,902	0,639
20,23	0,064	16,3	0,1189	1814,9800	1815,2700	203,32	1,426	0,634
20,23	0,064	16,3	0,1383	1816,0500	1816,4800	201,64	2,133	0,627
20,23	0,064	16,3	0,1579	1817,5200	1818,2000	222,33	3,059	0,621
20,23	0,064	16,3	0,1785	1821,3200	1822,3400	236,02	4,322	0,618
20,23	0,100	16,1	0,0362	96,2500	96,2650	227,29	0,066	0,683
20,23	0,100	16,1	0,0592	96,3740	96,4250	217,43	0,235	0,662
20,23	0,100	16,1	0,0780	96,6800	96,7700	192,33	0,468	0,651
20,23	0,100	16,3	0,1002	1802,4700	1802,7000	262,56	0,876	0,642
20,23	0,100	16,3	0,1203	1803,2100	1803,4800	195,29	1,383	0,635
20,23	0,100	16,3	0,1401	1804,8500	1805,4700	305,15	2,032	0,631
20,23	0,100	15,9	0,1612	1808,3300	1809,1600	284,73	2,915	0,624
20,23	0,100	15,9	0,1813	1810,5100	1811,6100	277,55	3,963	0,621
20,23	0,200	16,5	0,0403	94,7775	94,7960	209,64	0,088	0,677
20,23	0,200	16,5	0,0598	94,9955	95,0525	241,06	0,236	0,663
20,23	0,200	16,7	0,0788	95,3820	95,4700	186,69	0,471	0,652
20,23	0,200	16,5	0,1005	1781,0900	1781,2850	222,98	0,875	0,642
20,23	0,200	16,5	0,1196	1781,8500	1782,1500	226,20	1,326	0,638
20,23	0,200	16,5	0,1382	1782,9200	1783,2900	195,31	1,894	0,628
20,23	0,200	16,5	0,1588	1784,5700	1785,0900	195,70	2,657	0,623
20,23	0,200	16,5	0,1789	1786,3000	1787,4300	315,91	3,577	0,623
20,23	0,300	16,3	0,0442	94,0610	94,0830	191,09	0,115	0,652
20,23	0,300	16,4	0,0619	93,9080	93,9670	225,34	0,262	0,651
20,23	0,300	16,4	0,0830	1767,9400	1768,0450	192,77	0,545	0,652
20,23	0,300	16,2	0,1037	1760,4100	1760,6550	261,54	0,937	0,649
20,23	0,300	16,2	0,1243	1761,2900	1761,5700	191,17	1,465	0,636
20,23	0,300	16,2	0,1466	1762,3500	1763,0600	325,97	2,178	0,633
20,23	0,300	16,3	0,1690	1763,7700	1764,3700	194,68	3,082	0,628
20,23	0,300	16,3	0,1906	1765,2500	1766,1500	216,19	4,163	0,627
20,23	0,400	16,1	0,0426	95,7095	95,7300	192,79	0,106	0,639
20,23	0,400	16,1	0,0605	95,8490	95,8950	186,11	0,247	0,661
20,23	0,400	16,2	0,0787	96,0700	96,1570	184,91	0,470	0,663
20,23	0,400	16,3	0,1001	1795,0850	1795,2850	233,26	0,857	0,654
20,23	0,400	16,3	0,1193	1795,8500	1796,0900	182,49	1,315	0,654

α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	I∕₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻1]	$\mathcal{C}_{d}[-]$
20,23	0,400	16,3	0,1380	1796,8900	1797,2400	186,06	1,881	0,657
20,23	0,400	16,3	0,1582	1798,4300	1798,9300	190,93	2,619	0,664
20,23	0,400	16,3	0,1788	1800,3300	1801,3600	291,21	3,537	0,672
20,23	0,500	16,5	0,0349	94,4075	94,4200	191,45	0,065	0,690
20,23	0,500	16,5	0,0563	94,3070	94,3455	183,25	0,210	0,677
20,23	0,500	16,4	0,0831	1769,0850	1769,1950	199,89	0,550	0,675
20,23	0,500	16,4	0,1044	1769,7000	1769,8800	190,02	0,947	0,683
20,23	0,500	16,4	0,1246	1770,4600	1770,7300	184,40	1,464	0,695
20,23	0,500	16,4	0,1467	1771,4800	1771,9000	192,86	2,178	0,712
20,23	0,500	16,4	0,1547	1776,0500	1776,5700	211,03	2,464	0,733
20,23	0,500	16,4	0,1748	1778,0200	1778,6500	189,26	3,329	0,762
25,21	0,080	16,1	0,0377	92,7320	92,7530	224,99	0,093	0,666
25,21	0,080	16,1	0,0571	93,0000	93,0690	259,67	0,266	0,653
25,21	0,080	16,2	0,0716	1754,9000	1754,9950	198,75	0,478	0,639
25,21	0,080	16,1	0,0947	1723,0350	1723,3050	277,53	0,973	0,636
25,21	0,080	16,1	0,1123	1723,9700	1724,3100	225,96	1,505	0,622
25,21	0,080	16,1	0,1299	1725,2300	1725,8400	276,69	2,205	0,618
25,21	0,080	16,1	0,1474	1727,6500	1728,2300	186,50	3,110	0,615
25,21	0,080	16,2	0,1784	1739,7000	1740,8500	216,74	5,306	0,612
25,21	0,100	16,0	0,0362	91,1920	91,2080	189,49	0,084	0,650
25,21	0,100	16,1	0,0571	91,3930	91,4430	187,97	0,266	0,655
25,21	0,100	16,1	0,0774	1704,0300	1704,1350	182,55	0,575	0,659
25,21	0,100	16,1	0,0953	1704,4600	1704,6500	196,59	0,966	0,667
25,21	0,100	16,1	0,1131	1705,1800	1705,4800	201,32	1,490	0,674
25,21	0,100	16,1	0,1312	1706,3100	1706,7100	183,58	2,179	0,687
25,21	0,100	16,1	0,1494	1708,1600	1708,7400	189,59	3,059	0,705
25,21	0,100	16,1	0,1668	1710,7400	1711,6000	210,48	4,086	0,747
25,21	0,200	16,2	0,0373	90,1250	90,1600	377,86	0,093	0,653
25,21	0,200	16,3	0,0573	90,6000	90,6740	277,98	0,266	0,656
25,21	0,200	16,3	0,0781	1680,2500	1680,4000	258,47	0,580	0,653
25,21	0,200	16,3	0,0964	1680,8200	1681,1300	319,19	0,971	0,652
25,21	0,200	16,3	0,1153	1682,0500	1682,4800	286,74	1,500	0,656
25,21	0,200	16,3	0,1342	1683,6400	1684,2800	291,92	2,192	0,662
25,21	0,200	16,3	0,1542	1686,7000	1687,8500	373,29	3,081	0,671
25,21	0,200	16,3	0,1743	1689,0300	1691,1500	508,28	4,171	0,681
25,21	0,300	16,3	0,0400	93,5120	93,5320	182,78	0,109	0,651
25,21	0,300	15,9	0,0575	89,7270	89,8020	278,10	0,270	0,650
25,21	0,300	16,0	0,0787	1667,7050	1667,8700	280,88	0,587	0,640
25,21	0,300	16,0	0,0965	1668,3600	1668,6100	257,79	0,970	0,633
25,21	0,300	16,0	0,1145	1669,1100	1669,5600	305,54	1,473	0,630
25,21	0,300	15,8	0,1350	1671,9100	1672,5000	266,77	2,212	0,622
25,21	0,300	15,9	0,1551	1673,6200	1674,5200	289,44	3,109	0,618
25,21	0,300	16,0	0,1753	1675,8000	1677,2500	345,73	4,194	0,612

α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И [m³]	I∕₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻1]	$\mathcal{C}_{d}[-]$
25,21	0,400	16,2	0,0366	91,5510	91,5710	230,41	0,087	0,656
25,21	0,400	16,2	0,0571	91,6700	91,7240	204,95	0,263	0,654
25,21	0,400	16,1	0,0783	1712,8600	1712,9850	215,30	0,581	0,640
25,21	0,400	16,1	0,0968	1713,3000	1713,4800	184,74	0,974	0,635
25,21	0,400	16,1	0,1153	1714,0200	1714,3200	199,95	1,500	0,628
25,21	0,400	16,1	0,1350	1714,8100	1715,2200	186,36	2,200	0,626
25,21	0,400	16,1	0,1555	1716,1100	1716,6700	180,11	3,109	0,622
25,21	0,400	16,2	0,1756	1718,2000	1718,9700	184,34	4,177	0,618
25,21	0,500	16,3	0,0379	91,8010	91,8195	191,13	0,097	0,661
25,21	0,500	16,3	0,0572	91,9130	91,9630	188,26	0,266	0,650
25,21	0,500	16,3	0,0781	1720,1950	1720,3100	199,80	0,576	0,645
25,21	0,500	16,3	0,0964	1720,6200	1720,8050	190,73	0,970	0,637
25,21	0,500	16,4	0,1159	1751,8400	1752,1750	223,19	1,501	0,629
25,21	0,500	16,3	0,1350	1745,4600	1746,0000	247,32	2,183	0,629
25,21	0,500	16,3	0,1547	1747,7500	1748,3200	186,30	3,060	0,625
25,21	0,500	16,3	0,1739	1750,0000	1750,8300	203,47	4,079	0,622
30,53	0,098	17,5	0,0392	125,9120	125,9350	188,71	0,122	0,619
30,53	0,098	17,5	0,0598	126,0400	126,1090	195,12	0,354	0,627
30,53	0,098	17,5	0,0785	1951,5600	1951,6950	188,33	0,717	0,623
30,53	0,098	17,5	0,0985	1952,1200	1952,3550	185,07	1,270	0,617
30,53	0,098	17,5	0,1175	1952,8800	1953,2800	198,47	2,015	0,614
30,53	0,098	17,5	0,1369	1953,7900	1954,5100	237,10	3,037	0,609
30,53	0,098	17,5	0,1556	1955,9700	1956,7500	181,85	4,289	0,605
30,53	0,098	17,6	0,1773	1958,7700	1960,2000	228,87	6,248	0,607
30,53	0,200	17,6	0,0392	126,2780	126,3020	195,34	0,123	0,633
30,53	0,200	17,6	0,0602	126,4520	126,5200	192,02	0,354	0,626
30,53	0,200	17,6	0,0786	1961,5600	1961,7050	205,91	0,704	0,627
30,53	0,200	17,6	0,0992	1963,3600	1963,6100	199,63	1,252	0,619
30,53	0,200	17,6	0,1190	1962,4300	1962,8300	204,20	1,959	0,615
30,53	0,200	17,7	0,1388	1964,5500	1965,1500	207,40	2,893	0,610
30,53	0,200	17,7	0,1584	1965,9000	1966,7800	219,56	4,008	0,606
30,53	0,200	17,7	0,1771	1968,1000	1969,1600	197,21	5,375	0,610
30,53	0,300	17,7	0,0402	126,6500	126,6780	216,49	0,129	0,629
30,53	0,300	17,7	0,0600	126,7900	126,8600	199,67	0,351	0,627
30,53	0,300	17,7	0,0785	1970,6450	1970,7900	207,39	0,699	0,627
30,53	0,300	17,7	0,0990	1971,2300	1971,4650	191,13	1,230	0,619
30,53	0,300	17,7	0,1184	1972,3900	1972,7400	182,43	1,919	0,616
30,53	0,300	17,7	0,1393	1973,5000	1974,0700	199,09	2,863	0,613
30,53	0,300	17,7	0,1590	1975,2300	1976,0800	214,40	3,965	0,610
30,53	0,300	17,7	0,1787	1978,3000	1979,3000	187,23	5,341	0,614
30,53	0,400	17,8	0,0405	126,9930	127,0190	196,03	0,133	0,634
30,53	0,400	17,8	0,0599	127,1540	127,2180	183,49	0,349	0,626
30,53	0,400	17,8	0,0775	1982,1500	1982,3000	221,94	0,676	0,630

α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	И ₁ [m³]	<i>V</i> ₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻¹]	$\mathcal{C}_{d}[-]$
30,53	0,400	17,8	0,0983	1982,6600	1982,9000	198,36	1,210	0,627
30,53	0,400	17,8	0,1184	1983,5200	1983,9200	209,19	1,912	0,622
30,53	0,400	17,8	0,1387	1984,5800	1985,1600	205,76	2,819	0,625
30,53	0,400	17,8	0,1588	1986,2300	1987,1700	239,22	3,929	0,622
30,53	0,400	17,8	0,1781	1989,5500	1990,5000	180,22	5,271	0,632
30,53	0,500	17,8	0,0412	127,3250	127,3530	207,25	0,135	0,631
30,53	0,500	17,8	0,0601	127,4730	127,5370	181,96	0,352	0,637
30,53	0,500	17,9	0,0785	1991,7200	1991,8500	187,51	0,693	0,644
30,53	0,500	17,9	0,0986	1992,4400	1992,7000	213,81	1,216	0,647
30,53	0,500	17,9	0,1179	1993,3800	1993,7500	195,52	1,892	0,661
30,53	0,500	17,9	0,1386	1994,5000	1995,0500	195,88	2,808	0,679
30,53	0,500	17,9	0,1588	1996,2800	1997,1400	219,62	3,916	0,696
30,53	0,500	17,9	0,1785	2000,2000	2001,2500	199,42	5,265	0,732
60,67	0,211	17,9	0,0400	128,7420	128,7910	187,41	0,261	0,598
60,67	0,211	18,0	0,0586	2049,3650	2049,5050	200,39	0,699	0,601
60,67	0,211	18,0	0,0787	2049,7500	2050,0200	183,38	1,472	0,603
60,67	0,211	18,0	0,0990	2050,3500	2050,8700	196,02	2,653	0,598
60,67	0,211	18,0	0,1198	2051,3700	2052,3500	224,69	4,362	0,598
60,67	0,211	18,0	0,1419	2053,4700	2054,8200	197,72	6,828	0,600
60,67	0,211	18,0	0,1649	2056,5000	2058,4000	183,27	10,367	0,600
60,67	0,211	18,0	0,1668	2059,4500	2061,5000	192,01	10,677	0,601
60,67	0,300	17,9	0,0401	128,5610	128,6100	186,54	0,263	0,594
60,67	0,300	17,9	0,0584	2035,9650	2036,1100	211,49	0,686	0,596
60,67	0,300	17,9	0,0777	2036,3350	2036,6100	195,14	1,409	0,603
60,67	0,300	17,9	0,0977	2036,9300	2037,3900	183,86	2,502	0,599
60,67	0,300	17,9	0,1175	2038,5800	2039,3700	198,54	3,979	0,595
60,67	0,300	17,9	0,1376	2040,0000	2041,2700	212,70	5,971	0,604
60,67	0,300	17,9	0,1588	2042,5000	2044,1000	184,14	8,689	0,610
60,67	0,300	17,9	0,1/21	2045,/000	2048,1500	228,54	10,/20	0,613
60,67	0,400	17,8	0,0403	128,2050	128,2560	193,26	0,264	0,598
60,67	0,400	17,8	0,05/3	2023,0950	2023,2500	238,92	0,649	0,602
60,67	0,400	17,8	0,07/6	2023,4900	2023,7750	203,61	1,400	0,606
60,67	0,400	17,8	0,0981	2024,0200	2024,5250	202,32	2,496	0,607
60,67	0,400	17,8	0,11/3	2025,0600	2025,/900	188,45	3,874	0,608
60,67	0,400	17,8	0,1393	2026,5500	2027,8000	206,51	6,053	0,615
60,67	0,400	17,8	0,1513	2028,8000	2030,6500	210,14	8,804	0,626
60,67	0,400	17,8	0,1/39	2032,0000	2034,5500	238,52	10,691	0,632
60,67	0,500	18,0	0,039/	127,8730	127,9310	226,76	0,255	0,602
60,67	0,500	18,0	0,0581	2005,6100	2005,/350	184,86	U,6/6	0,609
	0,500	18,U	0,0782	2005,9950	2006,2550	182,/4	1,423	0,613
6U,6/	0,500	18,U	0,0988	2006,6300		100.10	2,535	0,622
6U,6/	0,500	17,9	0,1192	2007,7800	2008,5500	190,19	4,049	0,636
6U,6/	U,5UU	17,7	0,1397	2013,5000	2014,6500	189,91	ь,U55	0,651

_	α [°]	<i>B</i> [m]	7[°C]	<i>h</i> [m]	I∕ ₁ [m³]	<i>V</i> ₂ [m³]	<i>t</i> [s]	<i>Q</i> [l·s⁻1]	$\mathcal{C}_{d}[-]$
	60,67	0,500	17,7	0,1622	2016,1000	2017,7500	187,75	8,788	0,679
	60,67	0,500	17,7	0,1753	2019,0500	2021,1000	191,71	10,693	0,680
	91,17	0,367	18,0	0,0392	128,9910	129,0710	187,66	0,426	0,589
	91,17	0,367	18,0	0,0584	2062,5350	2062,7500	181,57	1,184	0,593
	91,17	0,367	18,0	0,0781	2063,6000	2064,0500	182,31	2,468	0,595
	91,17	0,367	18,0	0,0984	2064,7100	2065,6100	202,45	4,446	0,604
	91,17	0,367	18,0	0,1196	2067,4000	2068,9000	201,56	7,442	0,612
	91,17	0,367	18,0	0,1374	2070,5500	2073,2500	252,08	10,711	0,614
	91,17	0,400	18,1	0,0386	129,2880	129,3800	223,81	0,411	0,591
	91,17	0,400	18,1	0,0580	2076,4300	2076,7200	249,64	1,162	0,596
	91,17	0,400	18,1	0,0771	2077,1800	2077,6200	184,42	2,386	0,599
	91,17	0,400	18,1	0,0975	2080,1700	2080,9700	185,00	4,324	0,605
	91,17	0,400	18,1	0,1169	2082,1500	2083,6500	216,43	6,931	0,615
	91,17	0,400	18,1	0,1378	2085,3000	2087,9000	243,48	10,678	0,628
	91,17	0,500	18,2	0,0393	129,5510	129,6300	183,99	0,429	0,590
	91,17	0,500	18,2	0,0587	2088,9850	2089,2050	183,93	1,196	0,596
	91,17	0,500	18,2	0,0793	2090,0000	2090,4800	188,94	2,540	0,602
	91,17	0,500	18,2	0,0975	2091,0200	2091,8000	180,23	4,328	0,608
	91,17	0,500	18,2	0,1177	2092,7600	2094,0500	183,98	7,012	0,624
	91,17	0,500	18,2	0,1391	2099,0500	2101,0000	182,58	10,680	0,634