
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

NEXTGENERATIONOFRANK-BASEDALGORITHMS
FOR OMEGA AUTOMATA
NOVÁ GENERACE RANK-BASED ALGORITMŮ PRO OMEGA AUTOMATY

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR BARBORA ŠMAHLÍKOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

CONSULTANT Ing. VOJTĚCH HAVLENA, Ph.D.
KONZULTANT PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Intelligent Systems (DITS) Academic year 2021/2022

 Bachelor's Thesis Specification

Student: Šmahlíková Barbora
Programme: Information Technology
Title: Next Generation of Rank-Based Algorithms for Omega Automata
Category: Theoretical Computer Science
Assignment:

1. Study the theory of Büchi automata and other omega automata. Furthermore, study rank-
based algorithms for complementation and testing universality and inclusion of such
automata.

2. Propose optimisations of the algorithms from the previous point.
3. Implement the proposed optimisations.
4. Experimentally compare your implementation with other tools using a suitable benchmark

set.
Recommended literature:

Orna Kupferman, Moshe Y. Vardi: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3): 408-429 (2001)
Ehud Friedgut, Orna Kupferman, Moshe Y. Vardi: Büchi Complementation Made Tighter. Int.
J. Found. Comput. Sci. 17(4): 851-868 (2006)
Sven Schewe: Büchi Complementation Made Tight. STACS 2009: 661-672
Yu-Fang Chen, Vojtech Havlena, Ondrej Lengál: Simulations in Rank-Based Büchi
Automata Complementation. APLAS 2019: 447-467
Vojtech Havlena, Ondrej Lengál: Reducing (to) the Ranks: Efficient Rank-based Büchi
Automata Complementation. CONCUR 2021

Requirements for the first semester:
The first item of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Lengál Ondřej, Ing., Ph.D.
Consultant: Havlena Vojtěch, Ing., Ph.D., UITS FIT VUT
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/24442/2021/xsmahl00 Page 1/1

Abstract
Büchi automata (BA) complementation is a crucial operation for termination analysis of
programs, model checking, or decision procedures for various logics. Despite its prominence,
practically efficient algorithms for BA complementation are still missing. This thesis deals
with optimizations of Büchi automata complementation, focusing mainly on rank-based
techniques. The original rank-based algorithm is asymptotically optimal, but it can still
generate unnecessarily large state space. For a practical usage, it is therefore desirable to
reduce the number of generated states in the complement as much as possible. We propose
several techniques that can efficiently complement some special types of Büchi automata,
occuring often in practice, based on their structure. Some of these techniques can also, to
a certain degree, be extended to general Büchi automata. The developed techniques were
implemented as an extension of the tool Ranker for Büchi automata complementation
and evaluated on thousands of hard automata. Our optimizations significantly reduce the
generated state space and Ranker produces in the majority of cases a smaller complement
than other state-of-the-art tools.

Abstrakt
Komplementace Büchiho automatů je klíčovou operací pro terminační analýzu programů,
model checking nebo rozhodovací procedury pro různé logiky. Tato práce se zabývá přede-
vším optimalizacemi rank-based komplementace Büchiho automatů. Původní rank-based
algoritmus je sice asymptoticky optimální, přesto může generovat nezbytně velký stavový
prostor. Pro praktické použití je tedy žádoucí maximálně redukovat počet vygenerovaných
stavů v komplementu. V této práci představíme několik technik pro efektivní komple-
mentaci některých speciálních typů Büchiho automatů, často se vyskytujících v praxi, které
jsou založené na jejich struktuře. Některé z navržených technik lze do určité míry rozšířit
i pro obecné Büchiho automaty. Techniky představené v této práci byly implementovány
jako rozšíření nástroje Ranker pro komplementaci Büchiho automatů. Tyto optimalizace
výrazně redukují generovaný stavový prostor a Ranker ve většině případů produkuje menší
komplement než ostatní existující nástroje pro komplementaci.

Keywords
Büchi Automata, Büchi Complementation, Rank-Based Complementation, Elevator Au-
tomata

Klíčová slova
Büchiho automaty, Komplementace Büchiho automatů, Rank-based komplementace, Ele-
vator automaty

Reference
ŠMAHLÍKOVÁ, Barbora. Next Generation of Rank-Based Algorithms for Omega Au-
tomata. Brno, 2022. Bachelor’s thesis. Brno University of Technology, Faculty of In-
formation Technology. Supervisor Ing. Ondřej Lengál, Ph.D. Consultant Ing. Vojtěch
Havlena, Ph.D.

Rozšířený abstrakt
Büchiho automaty jsou automaty nad nekonečnými slovy, které definují třídu 𝜔-regulárních
jazyků. Jejich komplementace má řadu využití, například v terminační analýze programů,
model checkingu, rozhodovacích procedurách pro různé logiky (S1S, ETL, QPTL, . . .),
jazykové inkluzi nebo testu ekvivalence. Jedná se o velmi náročnou operaci. Původní kom-
plementační algoritmus, navržený Büchim v roce 1962, produkoval pro 𝑛-stavový automat
komplement s až 22

𝑛 stavy. Proto od té doby vznikla celá řada přístupů, jak Büchiho
automaty komplementovat, se snahou snížit prostorovou složitost této operace.

V první části práce se věnuji zejména optimalizacím tzv. rank-based komplementace.
Pro tento přístup existuje algoritmus, který asymptoticky dosahuje dolní hranice složitosti
(0.76𝑛)𝑛 [32]. Tento algoritmus ale stále produkuje stavy a přechody, které nejsou v kom-
plementu nezbytně nutné, proto je žádoucí hledat optimalizace, které tyto stavy nebudou
generovat, a tím budou redukovat generovaný stavový prostor. Rank-based komplemen-
tace spočívá mimo jiné v tom, že každému stavu v aktuálně dosažitelné množině stavů
přiřazuje nějaké číslo (tzv. rank). Obecně je maximální rank každého stavu pro 𝑛-stavový
automat roven 2𝑛 − 1. Počet následníků nějakého makrostavu v komplementu je potom
přibližně roven faktoriálu z tohoto maximálního ranku. Pokud má ale automat vhodnou
strukturu, není takto vysoký rank potřeba a velké množství stavů se generuje zbytečně.
Proto je v této práci představen algoritmus, který umí efektivně snížit maximální rank
stavům v jednotlivých silně souvislých komponentách u tzv. elevator automatů. Jedná se
o automaty, které se velmi často vyskytují v praxi a které mají takové vlastnosti, které
umožňují efektivně snížit omezení na maximální rank stavům v každé silně souvislé kom-
ponentě. Tento algoritmus výrazně redukuje generovaný stavový prostor a lze do jisté míry
rozšířit i pro obecné Büchiho automaty. Pomocí techniky inspirované data flow analý-
zou jsme poté schopni propagovat jistá omezení na ranky napříč automatem a tím ranky
jednotlivých stavů ještě více omezovat.

Rank-based komplementaci můžeme použít pro jakýkoliv obecný Büchiho automat, ale
jisté speciální typy automatů lze komplementaovat efektivněji pomocí specializovaných pro-
cedur. Další část práce proto obsahuje optimalizace komplementačních algoritmů pro in-
herently weak a semi-deterministické automaty.

Všechny optimalizace prezentované v této práci byly implementovány jako rozšíření
nástroje Ranker [14] v C++, který komplementuje Büchiho automaty. Byla provedena
řada experimentů na několika tisících těžkých automatech (používaných v praxi i náhodně
vygenerovaných). Díky optimalizacím na omezení maximálního ranku dosahujeme často
i exponenciálně lepších výsledků nejenom oproti původnímu rank-based algoritmu, ale
i proti předchozí verzi nástroje bez těchto optimalizací. Rank-based komplementace se
sama o sobě může v některých případech jevit jako neefektivní, nicméně při zapojení různých
optimalizací může konkurovat ostatním komplementačním přístupům a dokonce může být
v řadě případů i efektivnější. V praxi se ale velmi často vyskytují automaty speciálních typů,
které lze na základě jejich struktury komplementovat efektivněji, různými specializovanými
procedurami. Ranker proto podporuje několik optimalizovaných komplementačních algo-
ritmů a na základě typu a vlastností vstupního automatu vybere tu pravděpodobně neje-
fektivnější, nebo v některých případech vyzkouší procedur více a vrátí nejmenší automat.
Kromě sledování efektu jednotlivých optimalizací pomocí srovnávání výsledků s předchozí
verzí nástroje bylo také provedeno pečlivé srovnání s ostatními dostupnými nástroji pro
komplementaci Büchiho automatů, které používají různé algoritmy. V experimentech jsme
se soustředili zejména na výsledný počet stavů komplementu. Ranker produkuje ve většině
případů menší automaty než ostatní dostupné nástroje.

Next Generation of Rank-Based Algorithms for
Omega Automata

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Ondřej Lengál, Ph.D., and with the help of my consultant
Ing. Vojtěch Havlena, Ph.D. I have listed all the literary sources, publications and other
sources that were used during the preparation of this thesis.

. .
Barbora Šmahlíková

May 10, 2022

Acknowledgements
I would like to thank my supervisor Ondra Lengál and my consultant Vojta Havlena for
their help, support, and guidance throughout my work on this thesis and other projects.
I am grateful that they are always creating such a friendly atmosphere during our meetings
that I feel comfortable presenting all of my ideas. Special thanks go to my loved ones, not
only for always supporting me in my work, decisions and crazy ideas, but also for showing
me what is truly important in life.

Contents

1 Introduction 3

2 Automata Theory 5
2.1 Languages . 5
2.2 𝜔-Languages . 5
2.3 Omega Automata . 6
2.4 Büchi Automata . 6
2.5 Special Types of Büchi Automata . 7
2.6 Simulations . 7

3 Complementing Büchi Automata 8
3.1 Run DAGs . 9
3.2 Basic Rank-Based Complementation . 10
3.3 Complementation with Tight Rankings . 11
3.4 Optimal Rank-Based Complementation . 13
3.5 Inherently Weak Büchi Automata Complementation 14
3.6 Semi-deterministic Büchi Automata Complementation 15

4 Next Generation of Rank-Based Algorithms for Büchi Automata 17
4.1 Elevator Büchi Automata . 17

4.1.1 Non-accepting Components . 18
4.1.2 Deterministic Components . 19
4.1.3 Inherently Weak Accepting Components 19
4.1.4 Rank Restriction for Elevator Automata 19
4.1.5 Refined Ranks for Non-Elevator Automata 22
4.1.6 Efficient Complementation of Elevator Automata 24

4.2 Data Flow Analysis . 25
4.2.1 Outer Macrostate Analysis . 26
4.2.2 Inner Macrostate Analysis . 26

4.3 Optimization of Inherently Weak BA Complementation 28
4.4 Optimization of Semi-Deterministic BA Complementation 30

5 Implementation 32
5.1 Architecture . 32

5.1.1 Preprocessing and Postprocessing . 32
5.1.2 Complementation . 33

6 Experimental Evaluation 35

1

6.1 Tools and Evaluation Environment . 35
6.2 Structure of Experiments . 35
6.3 Elevator Automata and Data Flow Analysis 36

6.3.1 Datasets . 36
6.3.2 Comparison with Rank-Based Algorithms 36
6.3.3 Comparison with Other Tools . 36

6.4 Inherently Weak and Semi-Deterministic BAs 37
6.4.1 Datasets . 38
6.4.2 Effect of the New Optimizations . 38
6.4.3 Comparison with Other Tools . 39

7 Conclusion 41
7.1 Future Work . 42

Bibliography 43

2

Chapter 1

Introduction

Omega automata (𝜔-automata, automata on infinite words) were introduced in 1960s as an
auxiliary tool for a decision procedure of a fragment of a second-order arithmeric [8]. This
thesis focuses on complementing Büchi automata (BA), special instance of 𝜔-automata,
which is a crucial operation for decision procedures of various logics, such as the monadic
second-order logic S1S [8] or temporal logics ETL and QPTL [33], as well as for language
inclusion and equivalence testing. Besides the theoretical point of view, Büchi automata
complementation became important also in practice, for example in model checking of
temporal properties [37] or termination analysis of programs [11, 17, 9].

The purpose of model checking is to automatically check whether a system meets its
specification. Both the system and the specified (temporal) property can be represented by
a Büchi automaton. The problem of system verification is then transformed into the prob-
lem of language inclusion of these automata. More precisely, a system meets its specification
if the language of its Büchi automaton is a subset of the language of the automaton encod-
ing the property. Language inclusion check is performed by complementing the property
automaton and checking if its intersection with the system automaton is empty.

The idea behind termination analysis of programs [11, 17, 9] is to construct a differ-
ence of two Büchi automata — one representing the program and one representing a set
of paths with already proved termination. These paths can be safely removed from the
program automaton. The removal is done using automata difference, which is implemented
as an intersection of the program automaton and the complement of the automaton with
terminating paths.

Due to the high complexity of Büchi complementation, different approaches and further
optimizations have been introduced since the original construction by Büchi with the state
complexity 22

𝑛 was presented in 1962. Apart from reducing the upper bound of the size
of the complemented automaton, there was also an effort to find the theoretical lower
bound, finally refined by Yan to (0.76𝑛)𝑛 [38]. In this thesis, we focus on the rank-based
complementation, which was introduced by Kupferman and Vardi [20], improved with the
help of Friedgut [12], and further optimized by Schewe [32], whose construction produces
the complement with the size matching the lower bound modulo a 𝒪(𝑛2) polynomial factor.

Even though Schewe’s construction is asymptotically optimal, it may still generate a lot
of unnecessary states and transitions. Optimization heuristics are therefore critical for
good performance in practice. In rank-based complementation, every state from a set of
states reachable over the current input is assigned a number (called its rank). The main
problem responsible for the generated state space blow-up is the amount of nondeterminism,
caused by a lot of possibilities how to assign ranks to a set of states. The number of

3

possibilities depends combinatorially on the maximum rank that can be assigned. It is
therefore desirable to reduce the maximum rank as much as possible.

In this thesis, we first identify elevator automata, a subclass of Büchi automata with
a specific structure, and present an algorithm that assigns a bound for maximum rank for
states in each strongly connected component. This algorithm can be extended to general
BAs containing containing elevator automaton as a substructure. We show that elevator
automata can be complemented in𝒪(16𝑛) space. Secondly, we propose a technique, inspired
by data flow analysis, that can propagate the rank bounds throughout the automaton and
restrict the ranks even more. We also carry over the proposed techniques to general BAs.

Although the optimizations of rank-based procedure work for all BAs, automata with
a more specific structure can, however, be complemented more efficiently, using specialized
constructions for complementation. We therefore present optimizations for complementing
inherently weak and semi-deterministic Büchi automata.

Optimizations presented throughout this thesis are implemented on top of the tool
Ranker [14], which uses several complementation approaches based on properties of the
input Büchi automaton. We evaluated our approach on thousands of hard automata (oc-
curing in practice as well as randomly generated). Even though the original rank-based
complementation algorithm may be quite inefficient, our optimizations can significantly re-
duce the generated state space and in a lot of cases can produce even exponentially better
results. We show that Ranker produces a smaller complement in the majority of cases
compared to the other state-of-the-art tools.

4

Chapter 2

Automata Theory

In this chapter, we introduce some definitions for 𝜔-automata that are necessary for the fol-
lowing chapters. We define 𝜔-automata in general, and then we focus on Büchi automata
whose complementation is the main subject of this thesis. We also introduce some spe-
cial types of Büchi automata that are characterized by a specific structure and for which
more efficient algorithms for complementation can be used in comparison to general Büchi
automata.

2.1 Languages
An alphabet is a nonempty, finite set of symbols, usually denoted by Σ. A word 𝛼 =
𝛼0𝛼1 . . . 𝛼𝑛 over alphabet Σ is a sequence of symbols from Σ. An empty word has length 0
and is denoted by 𝜖. The concatenation of two words 𝛼 = 𝛼0 . . . 𝛼𝑛 and 𝛽 = 𝛽0 . . . 𝛽𝑚 is the
word 𝛼𝛽 = 𝛼0 . . . 𝛼𝑛𝛽0 . . . 𝛽𝑚. For a word 𝛼, we define 𝛼0 = 𝜖 and 𝛼𝑘+1 = 𝛼𝑘𝛼.

The set of all words over an alphabet Σ is denoted by Σ*. A language over Σ is
a set of words ℒ ⊆ Σ*. The concatenation of two languages ℒ1 and ℒ2 is the language
ℒ1 · ℒ2 = {𝛼𝛽 ∈ Σ* | 𝛼 ∈ ℒ1 and 𝛽 ∈ ℒ2}. The iteration of a language ℒ ⊆ Σ* is
the language ℒ* = ⋃︀

𝑖≥0 ℒ𝑖, where ℒ0 = {𝜖} and ℒ𝑖+1 = ℒ𝑖 · ℒ for every 𝑖 ≥ 0.
A regular expression 𝑒 over alphabet Σ is defined by the following grammar

𝑒 ::= ∅ | 𝜖 | 𝑎 | 𝑒1 + 𝑒2 | 𝑒1𝑒2 | 𝑒*

where 𝑎 ∈ Σ and 𝑒1, 𝑒2 are regular expressions. The language ℒ(𝑒) is defined inductively as
(i) ℒ(∅) = ∅, (ii) ℒ(𝜖) = {𝜖}, (iii) ℒ(𝑎) = {𝑎}, (iv) ℒ(𝑒1+𝑒2) = ℒ(𝑒1)∪ℒ(𝑒2), (v) ℒ(𝑒1𝑒2) =
ℒ(𝑒1) · ℒ(𝑒2), and (vi) ℒ(𝑒*) = (ℒ(𝑒))*. A language ℒ is regular iff there is a regular
expression 𝑒 such that ℒ = ℒ(𝑒).

2.2 𝜔-Languages
The symbol 𝜔 is used to denote the set of non-negative integers {0, 1, 2, 3, . . .}. An 𝜔-word 𝛼
over alphabet Σ is represented as a function 𝛼 : 𝜔 −→ Σ where the 𝑖-th symbol is denoted
as 𝛼𝑖. We abuse notation and sometimes represent 𝛼 as an infinite sequence 𝛼 = 𝛼0𝛼1 . . .
The concatenation of a finite word 𝛼 = 𝛼0 . . . 𝛼𝑛 and an 𝜔-word 𝛽 = 𝛽0𝛽1 . . . is the 𝜔-word
𝛼𝛽 = 𝛼0 . . . 𝛼𝑛𝛽0𝛽1 If it is clear from the context, we use simply word instead of 𝜔-word.

We use Σ𝜔 to denote the set of all infinite words over Σ. An 𝜔-language over an
alphabet Σ is a set of 𝜔-words ℒ ⊆ Σ𝜔. The complement of an 𝜔-language ℒ is the

5

𝑝 𝑞

𝑎 𝑏
𝑎

𝑏

Figure 2.1: Büchi automaton 𝒜𝑒𝑥

𝜔-language Σ𝜔 ∖ ℒ, often denoted by ℒ. The concatenation of a language ℒ1 and an 𝜔-
language ℒ2 is the 𝜔-language ℒ1 · ℒ2 = {𝛼𝛽 ∈ Σ𝜔 | 𝛼 ∈ ℒ1 and 𝛽 ∈ ℒ2}. The 𝜔-iteration
of a language ℒ ⊆ Σ* is the 𝜔-language ℒ𝜔 = {𝛼1𝛼2 . . . | 𝛼𝑖 ∈ ℒ ∖ {𝜖} for every 𝑖 ≥ 0}.
(Note that the empty language ∅ can be defined as 𝜖𝜔.)

An 𝜔-regular expression 𝑠 over an alphabet Σ is defined by the following grammar

𝑠 ::= 𝑒𝜔 | 𝑒𝑠 | 𝑠1 + 𝑠2

where 𝑠1, 𝑠2 are 𝜔-regular expressions and 𝑒 is a regular expression. The 𝜔-language ℒ(𝑠) ⊆
Σ𝜔 of an 𝜔-regular expression 𝑠 is defined inductively as (i) ℒ(𝑒𝜔) = (ℒ(𝑒))𝜔, (ii) ℒ(𝑒𝑠) =
ℒ(𝑒) · ℒ(𝑠), and (iii) ℒ(𝑠1 + 𝑠2) = ℒ(𝑠1) ∪ ℒ(𝑠2). A language ℒ is 𝜔-regular iff there is an
𝜔-regular expression 𝑠 such that ℒ = ℒ(𝑠).

2.3 Omega Automata
An 𝜔-automaton is a quintuple 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐴𝑐𝑐), where 𝑄 is a finite set of states, Σ is
an alphabet, 𝛿 is a transition function 𝛿 : 𝑄× Σ −→ 2𝑄, 𝐼 ⊆ 𝑄 is a set of initial states, and
𝐴𝑐𝑐 is an acceptance condition. Various types of 𝜔-automata differ from each other in the
definition of the acceptance condition 𝐴𝑐𝑐.

We sometimes treat 𝛿 as a set of transitions of the form 𝑝
𝑎−→ 𝑞, for instance, we use

𝑝
𝑎−→ 𝑞 ∈ 𝛿 to denote that 𝑞 ∈ 𝛿(𝑝, 𝑎). A run of 𝒜 on a word 𝛼 is an infinite sequence

𝜌 = 𝑞0𝑞1𝑞2 . . . such that 𝑞0 ∈ 𝐼 and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝛼𝑖) for every 𝑖 ≥ 0. 𝒜 is complete iff
|𝛿(𝑞, 𝑎)| ≥ 1 for every state 𝑞 ∈ 𝑄 and symbol 𝑎 ∈ Σ.

𝐶 ⊆ 𝑄 is a strongly connected component (SCC) of 𝒜 if for any pair of states 𝑞, 𝑞′ ∈ 𝐶
it holds that 𝑞 is reachable from 𝑞′ and 𝑞′ is reachable from 𝑞. 𝐶 is a maximal strongly
connected component (MSCC) if it is not a proper subset of another SCC. The notation 𝛿|𝑆
for 𝑆 ⊆ 𝑄 is used to denote the restriction of the transition function 𝛿 ∩ (𝑆 × Σ× 𝑆).

2.4 Büchi Automata
A (state-based) Büchi automaton (BA) is an 𝜔-automaton 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) where 𝐹 ⊆ 𝑄
is a set of accepting states.

Let inf(𝜌) denote the set of states occuring infinitely often in the run 𝜌 of 𝒜 on a word 𝛼.
The run 𝜌 is called accepting iff inf(𝜌)∩𝐹 ̸= ∅. The word 𝛼 is accepted by 𝒜 if there exists
an accepting run 𝜌 of 𝒜 on 𝛼. The set of all words accepted by 𝒜 is called the language
of 𝒜, denoted by ℒ(𝒜).

An 𝜔-language is a set of infinite words. According to Büchi’s characterization theorem,
languages that can be recognized by Büchi automata are 𝜔-regular. Such languages can be
defined by 𝜔-regular expressions of Section 2.2.

6

Figure 2.1 shows an example of Büchi automaton 𝒜𝑒𝑥 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) with 𝑄 = {𝑝, 𝑞},
Σ = {𝑎, 𝑏}, 𝐼 = {𝑝}, 𝐹 = {𝑝}, and 𝛿 = {𝑝 𝑎−→ 𝑝, 𝑝

𝑎−→ 𝑞, 𝑞
𝑏−→ 𝑞, 𝑞

𝑏−→ 𝑝}. The language of
𝒜𝑒𝑥 can be described using the 𝜔-regular expression (𝑎𝑏*)𝜔. Intuitively, it is the language
of words with infinitely many occurences of the symbol 𝑎.

A transition-based Büchi automaton (TBA) is an 𝜔-automaton 𝒜𝛿 = (𝑄,Σ, 𝛿, 𝐼, 𝛿𝐹)
where 𝛿𝐹 ⊆ 𝛿 is a set of accepting transitions. Let inf𝛿(𝜌) denote the set of transition
occuring infinitely often in the run 𝜌 of 𝒜𝛿 on a word 𝛼. The run 𝜌 is called accepting iff
inf(𝜌)∩ 𝛿𝐹 ̸= ∅. The word 𝛼 is accepted by 𝒜 if there exists an accepting run 𝜌 of 𝒜𝛿 on 𝛼.

2.5 Special Types of Büchi Automata
In this section, we introduce various types of Büchi automata, characterized by a special
structure, which can be complemented more efficiently than general Büchi automata.

A Büchi automaton 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is

• deterministic if |𝐼| ≤ 1 and |𝛿(𝑞, 𝑎)| ≤ 1 for all 𝑞 ∈ 𝑄 and 𝑎 ∈ Σ,

• semi-deterministic if the automaton (𝑄,Σ, 𝛿, {𝑞𝐹 }, 𝐹) is deterministic for each 𝑞𝐹 ∈ 𝐹
(intuitively, the automaton behaves deterministically after traversing the first accept-
ing state),

• weak if for every MSCC 𝐶 of 𝒜 it holds that either 𝐶 ∩ 𝐹 = ∅ or 𝐶 ∩ 𝐹 = 𝐶,

• inherently weak if for every MSCC 𝐶 of 𝒜 it holds that (i) 𝐶 ∩ 𝐹 = ∅, or (ii) every
cycle in 𝐶 contains at least one accepting state 𝑞𝐹 ∈ 𝐹 , and

• unambiguous if there is at most one accepting run of 𝒜 on any given word.

2.6 Simulations
Direct simulation on a Büchi automaton 𝒜 is the relation ⪯di ⊆ 𝑄 × 𝑄 defined as the
largest relation s.t. 𝑝 ⪯di 𝑞 implies (i) 𝑝 ∈ 𝐹 ⇒ 𝑞 ∈ 𝐹 and (ii) 𝑝

𝑎−→ 𝑝′ ∈ 𝛿 ⇒ ∃𝑞′ ∈ 𝑄 : 𝑞
𝑎−→

𝑞′ ∈ 𝛿 ∧ 𝑝′ ⪯di 𝑞
′ for each 𝑎 ∈ Σ.

Fair simulation on a Büchi automaton 𝒜 is the relation ⪯𝑓⊆ 𝑄 × 𝑄 where 𝑝 ⪯𝑓 𝑞 iff
(i) for all runs 𝜌𝑝 starting in 𝑝 there is a run 𝜌𝑞 starting in 𝑞 over the same word, and (ii) if
𝜌𝑝 is accepting, then 𝜌𝑞 is accepting.

7

Chapter 3

Complementing Büchi Automata

The first complementation algorithm for Büchi automata was introduced by Büchi [8] in
1962. The construction showed that Büchi automata are closed under complementation.
However, Büchi’s approach leads to a doubly exponential blow-up. Various approaches and
their further optimizations have been therefore presented since, with the aim of reducing
the generated state space of BA complementation. In particular, we can distinguish several
complementation approaches, briefly described below.

The complementation approach introduced by Büchi in [8] was Ramsey-based comple-
mentation with 22

𝒪(𝑛) states in the complemented BA. The correctness of this method relies
on a combinatorial result by Ramsey [29] to obtain a periodic decomposition of the possible
behaviors of a BA on an infinite word. This construction was later improved by Sistla et al
in [33] to produce BAs with 2𝒪(𝑛2) states. The complexity was further reduced by Breuers
et al in [7] to 2𝒪(𝑛 log𝑛).

Determinization-based complementation was introduced by Safra [31], producing a com-
plement with 2𝒪(𝑛 log𝑛) states, and further improved by Piterman in [28] and Redziejowski
in [30]. The principle of the determinization-based approach is to convert a (nondeterminis-
tic) Büchi automaton to an equivalent deterministic automaton with a different acceptance
condition (e.g. Rabin automaton) that can be easily complemented. The result is then
converted back into a BA.

Slice-based complementation was proposed by Kähler and Wilke in [18] with the com-
plexity 2𝒪(𝑛 log𝑛). The slice-based approach uses a reduced abstraction on a run tree to
track the acceptance condition.

In this thesis, we focus on rank-based complementation, which was first introduced by
Kupferman and Vardi [20] with the space complexity 2𝒪(𝑛 log𝑛), then improved by Kupfer-
man, Vardi, and Friedgut [12] to 𝒪((0.96𝑛)𝑛) and made asymptotically optimal by Schewe
in [32]. The space complexity of Schewe’s construction matches the theoretical lower bound
𝒪((0.76𝑛)𝑛) given by Yan [38] modulo a quadratic factor 𝒪(𝑛2). Optimizations of this con-
struction were presented in [16].

In this chapter, we describe the principle of rank-based complementation algorithms.
We start with the definition of run DAGs and explain how the ranking procedure works.
Then we present three rank-based algorithms—we start with the original construction by
Kupferman and Vardi [20], then we introduce the complementation with tight rankings
by Friedgut, Kupferman, and Vardi [12], and finally, we describe Schewe’s asymptotically
optimal construction [32], which is the basis for our optimizations presented further in this
thesis. Apart from rank-based complementation, we also present specialized complementa-

8

𝑝 𝑞

𝑎 𝑏
𝑎

𝑏

(a) Büchi automaton 𝒜𝑒𝑥

(𝑝, 0) (𝑝, 2) (𝑝, 3) (𝑝, 4)

(𝑞, 1) (𝑞, 2) (𝑞, 3) (𝑞, 4) . . .

...

𝑎 𝑏 𝑏 𝑏 . . .

(b) Run DAG of 𝒜𝑒𝑥 on 𝛼 = 𝑎𝑏𝜔

(𝑝, 0) (𝑝, 2) (𝑝, 3) (𝑝, 4)

(𝑞, 1) (𝑞, 2) (𝑞, 3) (𝑞, 4) . . .

...

𝑎 𝑏 𝑏 𝑏 . . .

rank 2 rank 0

rank 1

(c) Run DAG of 𝒜𝑒𝑥 on 𝛼 = 𝑎𝑏𝜔 with assigned ranks

Figure 3.1: Example of a run DAG for BA 𝒜𝑒𝑥

tion constructions for inherently weak and semi-deterministic Büchi automata, which are
usually more efficient than rank-based algorithms.

3.1 Run DAGs
In order to determine whether a given word should be accepted by the complement of
a Büchi automaton, we have to examine all possible runs of the automaton on the given
word. If none of these runs is accepting, the complement automaton should accept the
word. Let 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be a BA and let 𝛼 be a word. The set of all possible runs
of 𝒜 on 𝛼 can be represented as a directed acyclic graph 𝒢𝛼 = (𝑉,𝐸), called the run DAG,
with vertices 𝑉 and edges 𝐸, where

• 𝑉 ⊆ 𝑄× 𝜔 s.t. (𝑞, 𝑖) ∈ 𝑉 iff there exists a run 𝜌 of 𝒜 on 𝛼 with 𝜌𝑖 = 𝑞, and

• 𝐸 ⊆ 𝑉 × 𝑉 s.t. ((𝑞, 𝑖), (𝑞′, 𝑖′)) ∈ 𝐸 iff 𝑖′ = 𝑖+ 1 and 𝑞
𝛼𝑖−→ 𝑞′ ∈ 𝛿.

A vertex (𝑞, 𝑖) ∈ 𝑉 is called accepting if 𝑞 ∈ 𝐹 . A path in a run DAG is accepting if it visits
infinitely often an accepting vertex. 𝒜 accepts 𝛼 iff there exists an accepting path in 𝒢𝛼.
Hence, the complement should accept 𝛼 only if there is no accepting path in 𝒢𝛼.

Consider the automaton from Figure 3.1a and a word 𝛼 = 𝑎𝑏𝜔. A corresponding run
DAG is shown in Figure 3.1b. Since there is no accepting run on 𝛼, the word should be
accepted by the complement.

To determine if a given word should be accepted by the complement or not, we start by
assigning a rank to each vertex in the corresponding run DAG. A vertex 𝑣 ∈ 𝒢𝛼 is called
finite if there are only finite number of vertices reachable from 𝑣, and endangered if there
is no accepting vertex reachable from 𝑣.

The ranking procedure is performed as follows: let 𝒢0𝛼 = 𝒢𝛼 and 𝑗 = 0. The following
steps are repeated until 𝑗 > 2|𝑄| or a fixpoint is reached.

1. Assign rank 𝑗 to all finite vertices in 𝒢𝑗𝛼 and set 𝒢𝑗+1
𝛼 to 𝒢𝑗𝛼 minus the vertices with

rank 𝑗.

9

2. Assign rank 𝑗 + 1 to all endangered vertices in 𝒢𝑗+1
𝛼 and set 𝒢𝑗+2

𝛼 to 𝒢𝑗+1
𝛼 minus the

vertices with rank 𝑗 + 1.

3. Increase 𝑗 by 2.

Vertices with no assigned rank have rank 𝜔. It can be shown that if 𝛼 ̸∈ ℒ(𝒜), the maximum
assigned rank is at most 2|𝑄|.

Theorem 3.1 ([20, Corollary 3.3]). If 𝛼 ̸∈ ℒ(𝒜), then 𝒢2|𝑄|+1
𝛼 is empty.

Figure 3.1c shows how ranks are assigned to vertices from the run DAG in Figure 3.1b.

3.2 Basic Rank-Based Complementation
The ranking procedure of a run DAG described in Section 3.1 is used in the rank-based
complementation algorithms in a way that the complemented automaton tracks all runs of
the original automaton on the given word and all possible ranks of each of the runs. Every
state of the complemented automaton is a macrostate containing, among other information,
the set of all currently reachable states of the original automaton with rank assigned to each
of the states. In this section, we present the rank-based algorithm originally proposed by
Kupferman and Vardi [20].

Let us first introduce some necessary definitions and notions. For a given Büchi au-
tomaton 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹), a level ranking is a function 𝑓 : 𝑄 −→ {0, 1, . . . , 2|𝑄|} such that
{𝑓(𝑞𝐹) | 𝑞𝐹 ∈ 𝐹} ⊆ {0, 2, . . . , 2|𝑄|}, i.e., 𝑓 maps all accepting states of 𝒜 to even ranks.
We use ℛ to denote the set of all level rankings of 𝒜 and 𝑜𝑑𝑑(𝑓) to denote the set of states
assigned an odd rank in a level ranking 𝑓 . For a ranking 𝑓 , the rank of 𝑓 is defined as
𝑟𝑎𝑛𝑘(𝑓) = max{𝑓(𝑞) | 𝑞 ∈ 𝑄}. The condition 𝑓 ≤ 𝑓 ′ holds iff for every state 𝑞 ∈ 𝑄 we have
𝑓(𝑞) ≤ 𝑓 ′(𝑞) and 𝑓 < 𝑓 ′ iff 𝑓 ≤ 𝑓 ′ and there is a state 𝑝 ∈ 𝑄 with 𝑓(𝑝) < 𝑓 ′(𝑝).

The procedure proposed by Kupferman and Vardi [20], denoted by KV, constructs the
BA KV(𝒜) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose components are defined as follows:

• 𝑄′ = {(𝑆,𝑂, 𝑓) ∈ 2𝑄 × 2𝑄 ×ℛ | 𝑂 ⊆ 𝑆},

• 𝐼 ′ = {𝐼} × {∅} ×ℛ,

• (𝑆′, 𝑂′, 𝑓 ′) ∈ 𝛿′((𝑆,𝑂, 𝑓), 𝑎) iff

– 𝑆′ = 𝛿(𝑆, 𝑎),
– for every 𝑞 ∈ 𝑆 and 𝑞′ ∈ 𝛿(𝑞, 𝑎) it holds that 𝑓 ′(𝑞′) ≤ 𝑓(𝑞), and

– 𝑂′ =

{︃
𝛿(𝑆, 𝑎) ∖ 𝑜𝑑𝑑(𝑓 ′) if 𝑂 = ∅
𝛿(𝑂, 𝑎) ∖ 𝑜𝑑𝑑(𝑓 ′) otherwise, and

• 𝐹 ′ = 2𝑄 × {∅} ×ℛ.

Theorem 3.2 ([20]). Let 𝒜 be a BA. Then ℒ(KV(𝒜)) = Σ𝜔 ∖ ℒ(𝒜).

The macrostates of KV(𝒜) consist of three components: 𝑆, 𝑂, and 𝑓 . The 𝑆-component
tracks all runs of 𝒜, i.e., it contains all states reachable over the current input. The 𝑂-
component tracks all runs whose rank has been even since the last cut-point (a point where
𝑂 = ∅). The 𝑓 component is a level ranking assigning rank to every state in 𝑆. A run
of KV(𝒜) is accepting iff it empties the 𝑂-component infinitely often, i.e., there is no run

10

𝑝 𝑞

𝑎 𝑏
𝑎

𝑏

(a) Büchi automaton 𝒜𝑒𝑥

({𝑝:4}, ∅)

(∅, ∅)

({𝑝:4, 𝑞:3}, {𝑝})

({𝑝:4, 𝑞:4}, {𝑝, 𝑞})

({𝑝:2, 𝑞:3}, ∅)

({𝑝:2, 𝑞:3}, {𝑝})
𝑏

𝑎, 𝑏

𝑎

𝑎

𝑎, 𝑏

𝑎
𝑎, 𝑏 𝑎

𝑏

𝑏𝑏

. . .

.

(b) KV(𝒜𝑒𝑥)

Figure 3.2: An example of a BA 𝒜𝑒𝑥 and its complement constructed using KV

where states have only even rank from some point, and, therefore, there is no accepting run
of the original automaton on the input word.

Figure 3.2b shows a complement of a Büchi automaton 𝒜𝑒𝑥 given in Figure 3.2a. Only
a part of the automaton is shown due to a quite large state space generated by this procedure
(13 states). In the worst case, KV constructs a BA with approximately (6𝑛)𝑛 states [20].
Note that for a more compact representation of a macrostate we often merge components
𝑆 and 𝑓 and in the first component we assign a rank only to the states present in the
𝑆-component. For example, we represent a macrostate ({𝑝, 𝑞}, {𝑝}, {𝑝 ↦→ 4, 𝑞 ↦→ 3, 𝑟 ↦→ 0})
as ({𝑝:4, 𝑞:3}, {𝑝}).

3.3 Complementation with Tight Rankings
The construction described in Section 3.2 was further improved by Friedgut, Kupferman
and Vardi [12]. They observed that a special condition eventually holds for the ranks of
the run DAG of a rejected word. The constructed automaton is composed of two parts:
the waiting part, which tracks all runs of the original automaton (macrostates store all
states reachable over the current input), and the tight part, which is similar to the KV
construction, except that all level rankings are restricted to the so-called tight rankings.

Given a set of states 𝑆 ⊆ 𝑄, a (level) ranking 𝑓 : 𝑄 −→ {0, 1, . . . , 2|𝑄|} is called 𝑆-tight
if it has an odd rank 𝑟, {𝑓(𝑠) | 𝑠 ∈ 𝑆} ⊇ {1, 3, . . . , 𝑟}, and {𝑓(𝑞) | 𝑞 ̸∈ 𝑆} = {0}. A ranking
is tight if it is 𝑄-tight.

We use 𝒯 to denote the set of all tight level rankings. Friedgut, Kupferman and Vardi
observed that for every run DAG 𝒢𝛼 with a finite rank 𝑟, it holds that (i) 𝑟 is odd and
(ii) there exists a level 𝑙 ≥ 0 such that for all levels 𝑙′ ≥ 𝑙 and all odd ranks 𝑜 ∈ {1, 3, . . . , 𝑟},
there is a vertex (𝑞, 𝑙′) ∈ 𝒢𝛼 with 𝑟𝑎𝑛𝑘((𝑞, 𝑙′)) = 𝑜.

For ℓ ∈ 𝜔, we define the ℓ-th level of 𝒢𝛼 as level𝛼(ℓ) = {𝑞 | (𝑞, ℓ) ∈ 𝒢𝛼}. Furthermore,
we use 𝑓𝛼

ℓ to denote the ranking of level ℓ of 𝒢𝛼. Formally,

𝑓𝛼
ℓ (𝑞) =

{︃
rank𝛼((𝑞, ℓ)) if 𝑞 ∈ level𝛼(ℓ),

0 otherwise.
(3.1)

We say that a level ℓ is tight in 𝒢𝛼 if for all 𝑘 ≥ ℓ it holds that (i) 𝑓𝛼
𝑘 is tight, and

(ii) rank(𝑓𝛼
𝑘) = rank(𝑓𝛼

ℓ). Let 𝜌 = 𝑆0𝑆1 . . . 𝑆ℓ−1(𝑆ℓ, 𝑂ℓ, 𝑓ℓ, 𝑖ℓ) . . . be a run on a word 𝛼 in
FKV(𝒜). We say that 𝜌 is a super-tight run [16] if 𝑓𝑘 = 𝑓𝛼

𝑘 for each 𝑘 ≥ ℓ. Finally, we say
that a mapping 𝜇 : 2𝑄 → ℛ is a tight rank upper bound (TRUB) wrt 𝛼 iff

∃ℓ ∈ 𝜔 : level𝛼(ℓ) is tight ∧ (∀𝑘 ≥ ℓ : 𝜇(level𝛼(𝑘)) ≥ 𝑓𝛼
𝑘). (3.2)

11

𝑝 𝑞

𝑎 𝑏
𝑎

𝑏

(a) Büchi automaton 𝒜𝑒𝑥

{𝑝}

∅

{𝑝, 𝑞}

({𝑝:0, 𝑞:1}, ∅) ({𝑝:0, 𝑞:1}, {𝑝})

𝑏

𝑎, 𝑏

𝑎

𝑎

𝑎, 𝑏

𝑎, 𝑏 𝑏

𝑏

waiting part

tight part

(b) FKV(𝒜𝑒𝑥)

Figure 3.3: An example of a BA 𝒜𝑒𝑥 and its complement constructed using FKV

Intuitively, a TRUB is a ranking that gives an estimate on the necessary ranks of states in
a super-tight run.

The procedure that makes use of tight rankings, denoted by FKV, constructs the BA
FKV(𝒜) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose components are defined as follows:

• 𝑄′ = 𝑄1 ∪𝑄2 where

– 𝑄1 = 2𝑄 and
– 𝑄2 = {(𝑆,𝑂, 𝑓) ∈ 2𝑄 × 2𝑄 × 𝒯 | 𝑓 is 𝑆-tight, 𝑂 ⊆ 𝑆},

• 𝐼 ′ = {𝐼},

• 𝛿′ = 𝛿1 ∪ 𝛿2 ∪ 𝛿3 where

– 𝛿1 : 𝑄1 × Σ −→ 2𝑄1 such that 𝛿1(𝑆, 𝑎) = {𝛿(𝑆, 𝑎)},
– 𝛿2 : 𝑄1 × Σ −→ 2𝑄2 such that 𝛿2(𝑆, 𝑎) = {(𝑆′, ∅, 𝑓) ∈ 𝑄2 | 𝑆′ = 𝛿(𝑆, 𝑎) and 𝑓 is

𝑆-tight},
– 𝛿3 : 𝑄2 × Σ −→ 2𝑄2 such that (𝑆′, 𝑂′, 𝑓 ′) ∈ 𝛿3((𝑆,𝑂, 𝑓), 𝑎) iff

∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ for every 𝑞 ∈ 𝑆 and 𝑞′ ∈ 𝛿(𝑞, 𝑎) it holds that 𝑓 ′(𝑞′) ≤ 𝑓(𝑞),
∗ 𝑟𝑎𝑛𝑘(𝑓) = 𝑟𝑎𝑛𝑘(𝑓 ′), and

∗ 𝑂′ =

{︃
𝛿(𝑆, 𝑎) ∖ 𝑜𝑑𝑑(𝑓 ′) if 𝑂 = ∅,
𝛿(𝑂, 𝑎) ∖ 𝑜𝑑𝑑(𝑓 ′) otherwise, and

• 𝐹 ′ = {∅} ∪ ((2𝑄 × {∅} × 𝒯) ∩𝑄2).

Theorem 3.3 ([12]). Let 𝒜 be a BA. Then ℒ(FKV(𝒜)) = Σ𝜔 ∖ ℒ(𝒜).

The waiting part is composed of the states in 𝑄1 and the states in 𝑄2 create the tight
part. Intuitively, an accepting run on the complemented automaton stays in the waiting
part until it holds that all successive level rankings are tight. Then it can move to the
tight part where the word is accepted. See Figure 3.3b for FKV(𝒜𝑒𝑥) for the BA 𝒜𝑒𝑥 from
Figure 3.3a. Note that FKV(𝒜𝑒𝑥) with 5 states is significantly smaller than KV(𝒜𝑒𝑥) with
13 states. In the worst case, FKV constructs a BA with 𝒪((0.96𝑛)𝑛) states [12].

12

𝑝 𝑞

𝑎 𝑏
𝑎

𝑏

(a) Büchi automaton 𝒜𝑒𝑥

{𝑝}

∅

{𝑝, 𝑞}

({𝑝:0, 𝑞:1}, ∅, 0) ({𝑝:0, 𝑞:1}, {𝑝}, 0)

𝑏

𝑎, 𝑏

𝑎

𝑎

𝑎, 𝑏

𝑎, 𝑏 𝑏

𝑏

waiting part

tight part

(b) Schewe(𝒜𝑒𝑥)

Figure 3.4: An example of a BA 𝒜𝑒𝑥 and its complement constructed using Schewe

3.4 Optimal Rank-Based Complementation
The improved construction by Friedgut, Kupferman, and Vardi [12], described in Sec-
tion 3.3, was finally made asymptotically optimal by Schewe [32], using a more efficient
cut-point construction. Instead of checking that no trace has an even rank since the last
cut-point (𝑂 = ∅), this procedure, denoted by Schewe, cycles through all possible even
ranks and checks that there is eventually no trace with this rank since the last cut-point.
This leads to a significant reduction of the generated state space and the construction then
matches the lower bound of (0.76𝑛)𝑛 established by Yan [38] modulo a 𝒪(𝑛2) polynomial
factor.

The procedure Schewe constructs the BA Schewe(𝒜) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose com-
ponents are defined as follows:

• 𝑄′ = 𝑄1 ∪𝑄2 where

– 𝑄1 = 2𝑄 and
– 𝑄2 = {(𝑆,𝑂, 𝑓, 𝑖) ∈ 2𝑄 × 2𝑄 × 𝒯 × {0, 2, . . . , 2|𝑄| − 2} | 𝑓 is 𝑆-tight and 𝑂 ⊆

𝑆 ∩ 𝑓−1(𝑖)},

• 𝐼 ′ = {𝐼},

• 𝛿′ = 𝛿1 ∪ 𝛿2 ∪ 𝛿3 where

– 𝛿1 : 𝑄1 × Σ −→ 2𝑄1 such that 𝛿1(𝑆, 𝑎) = {𝛿(𝑆, 𝑎)},
– 𝛿2 : 𝑄1 × Σ −→ 2𝑄2 such that 𝛿2(𝑆, 𝑎) = {(𝑆′, ∅, 𝑓 ′, 0) | 𝑆′ = 𝛿(𝑆, 𝑎), 𝑓 is 𝑆-tight},

and
– 𝛿3 : 𝑄2 × Σ −→ 2𝑄2 such that (𝑆′, 𝑂′, 𝑓 ′, 𝑖′) ∈ 𝛿3((𝑆,𝑂, 𝑓, 𝑖), 𝑎) iff

∗ 𝑆′ = 𝛿(𝑆, 𝑎),
∗ for every 𝑞 ∈ 𝑆 and 𝑞′ ∈ 𝛿(𝑞, 𝑎) it holds that 𝑓 ′(𝑞′) ≤ 𝑓(𝑞),
∗ 𝑟𝑎𝑛𝑘(𝑓) = 𝑟𝑎𝑛𝑘(𝑓 ′),
∗ and
∘ 𝑖′ = (𝑖+ 2) mod (𝑟𝑎𝑛𝑘(𝑓 ′) + 1) and 𝑂′ = 𝑓 ′−1(𝑖′) if 𝑂 = ∅ or
∘ 𝑖′ = 𝑖 and 𝑂′ = 𝛿(𝑂, 𝑎) ∩ 𝑓 ′−1(𝑖) if 𝑂 ̸= ∅, and

• 𝐹 ′ = {∅} ∪ ((2𝑄 × {∅} × 𝒯 × 𝜔) ∩𝑄2).

13

𝑝 𝑞 𝑟

𝑎 𝑏
𝑎

𝑏

𝑎

(a) Inherently weak BA 𝒜

𝑝 𝑞 𝑟

𝑎 𝑏
𝑎

𝑏

𝑎

(b) Equivalent weak BA 𝒲

𝑝 𝑞 𝑟

𝑎 𝑏
𝑎

𝑏

𝑎

(c) Equivalent co-BA 𝒞

({𝑝}, ∅)

(∅, ∅)

({𝑝, 𝑞}, {𝑞}) ({𝑝, 𝑞, 𝑟}, {𝑟}) ({𝑝, 𝑞, 𝑟}, ∅)

({𝑟, 𝑞}, {𝑟, 𝑞})

({𝑟}, {𝑟})

({𝑝, 𝑞, 𝑟}, {𝑞, 𝑟})

𝑏

𝑎

𝑎, 𝑏

𝑎

𝑏

𝑎

𝑏

𝑏

𝑎 𝑏𝑎

𝑏

𝑎
𝑎

𝑏

(d) MiHay(𝒞)

Figure 3.5: An example of an inherently weak BA 𝒜, an equivalent weak BA 𝒲, an equiv-
alent co-BA 𝒞, and the complement MiHay(𝒞)

Theorem 3.4 ([32, Corollary 3.3]). Let 𝒜 be a BA. Then ℒ(Schewe(𝒜)) = Σ𝜔 ∖ ℒ(𝒜).
The macrostates (𝑆,𝑂, 𝑓, 𝑖) in Schewe(𝒜) are composed of four components. The 𝑆-

component tracks all runs of 𝒜 over the input word in the same way as the algorithms
described in previous sections. The 𝑓 -component assigns a rank to every state in 𝑆. The
𝑂-component tracks all runs having an even rank 𝑖 since the last cut-point. After another
cut-point is reached, the 𝑖 component is increased by 2 modulo the maximal even rank. An
accepting run therefore goes through all possible even ranks and checks that there is no
infinite path having this particular even rank in the corresponding run DAG.

See Figure 3.4b for Schewe(𝒜𝑒𝑥) for the BA 𝒜𝑒𝑥 from Figure 3.4a. Note that in this
particular example, Schewe(𝒜𝑒𝑥) has exactly the same structure as FKV(𝒜) except that
the 𝑖-component was added to macrostates in the tight part. This is because the original
automaton has only 2 states and one of them was accepting. Hence, the rank is at most 1
and the 𝑖-component can be only 0. For automata with more states and a more involved
structure, a significant decrease in generated state space can, however, be observed.

3.5 Inherently Weak Büchi Automata Complementation
Inherently weak Büchi automata can be easily transformed into weak BAs (without adding
new states) by making all states in accepting SCCs accepting. In order to accept an
input word in the complement, there must not exist a run with infinitely many accepting
states. Since every run stays forever in some SCC and the automaton is weak, it contains
either infinitely many accepting or infinitely many nonaccepting states. It cannot contain
infinitely many accepting and nonaccepting states at the same time. It is therefore sufficient
to check if every run contains infinitely many nonaccepting states. The idea behind the
Miyano-Hayashi cut-point construction [26] is to periodically sample all runs and check if
they contain a nonaccepting state. After all of them visit an accepting state, a cut-point is
reached and new runs are sampled. The complement then accepts a word if there is a run
where a cut-point is reached infinitely many times on this word.

Let 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be an inherently weak BA. We first construct an equivalent
weak BA 𝒲 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝑊), where 𝐹𝑊 contains all states from MSCCs containing at

14

least one accepting state of 𝒜. We then convert 𝒲 to an equivalent co-Büchi automa-
ton 𝒞 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝐶 = 𝑄 ∖ 𝐹𝑊). A co-Büchi automaton (co-BA) 𝒞 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝐶)
accepts an input word 𝛼 if there exists a run 𝜌 such that for every state 𝑞 ∈ 𝑄 occuring
infinitely often in 𝜌 it holds that 𝑞 ∈ 𝐹𝐶 . The procedure, denoted by MiHay, constructs the
(deterministic) BA MiHay(𝒞) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose components are defined as follows:

• 𝑄′ = 2𝑄 × 2𝑄,

• 𝐼 ′ = {(𝐼, 𝐼 ∖ 𝐹𝐶)},

• 𝛿′((𝑆,𝐵), 𝑎) = (𝑆′, 𝐵′) where

– 𝑆′ = 𝛿(𝑆, 𝑎),
– and

∗ 𝐵′ = 𝑆′ ∖ 𝐹𝐶 if 𝐵 = ∅ or
∗ 𝐵′ = (𝛿(𝐵, 𝑎) ∩ 𝑆′) ∖ 𝐹𝐶 if 𝐵 ̸= ∅, and

• 𝐹 ′ = 2𝑄 × {∅}.

Theorem 3.5 ([26]). Let 𝒞 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝐶) be a co-BA. Then ℒ(MiHay(𝒞)) = Σ𝜔 ∖ℒ(𝒞).

Figure 3.5 shows an example of an inherently weak Büchi automaton, equivalent weak
and co-Büchi automata and the complement constructed using MiHay.

3.6 Semi-deterministic Büchi Automata Complementation
Semi-deterministic Büchi automata have a specific structure allowing to use a more efficient
complementation construction. If a rank-based complementation is used, the maximum
rank can be bounded by 3. More precisely, ranks of the states in the nondeterministic part
can be bounded by 3, and states in the deterministic part by 2. Even though bounding
the maximum rank can significantly reduce the generated state space in the tight part, the
complemented automaton can have a lot of states because of the presence of the waiting
part. Semi-deterministic BAs can be complemented using the NCSB construction [5],
which does not consider the waiting part and keeps only rough information about the ranks
in comparison to rank-based algorithms.

Let 𝒜 = (𝑄1∪𝑄2,Σ, 𝛿1∪𝛿𝑡∪𝛿2, 𝐼, 𝐹) be a semi-deterministic Büchi automaton such that
𝑄1 is a set of states in the nondeterministic part, 𝑄2 is a set of states in the deterministic
part, 𝛿1 : 𝑄1×Σ −→ 2𝑄1 , 𝛿𝑡 : 𝑄1×Σ −→ 2𝑄2 , and 𝛿2 : 𝑄2×Σ −→ 2𝑄2 . The procedure, denoted
by NCSB, constructs the BA NCSB(𝒜) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose components are defined
as follows:

• 𝑄′ = {(𝑁,𝐶, 𝑆,𝐵) ∈ 2𝑄1 × 2𝑄2 × 2𝑄2∖𝐹 × 2𝑄2 | 𝐵 ⊆ 𝐶},

• 𝐼 ′ = {(𝑄1 ∩ 𝐼,𝑄2 ∩ 𝐼, ∅, 𝑄2 ∩ 𝐼)},

• 𝛿′ : 𝑄′ × Σ −→ 2𝑄
′ such that (𝑁 ′, 𝐶 ′, 𝑆′, 𝐵′) ∈ 𝛿′((𝑁,𝐶, 𝑆,𝐵), 𝑎) iff

– 𝑁 ′ = 𝛿1(𝑁, 𝑎),
– 𝐶 ′ ∪ 𝑆′ = 𝛿𝑡(𝑁, 𝑎) ∪ 𝛿2(𝐶 ∪ 𝑆, 𝑎),
– 𝐶 ′ ∩ 𝑆′ = ∅,

15

𝑝 𝑞 𝑟

𝑎 𝑞
𝑎

𝑏

𝑎

(a) Semi-deterministic BA 𝒜

({𝑝}, ∅, ∅, ∅)

({𝑝}, {𝑞}, ∅, {𝑞})

({𝑝}, {𝑞, 𝑟}, ∅, {𝑟})

(∅, ∅, ∅, ∅)

({𝑝}, ∅, {𝑞}, ∅)

({𝑝}, {𝑟}, {𝑞}, {𝑟})

(∅, ∅, {𝑞}, ∅)

(∅, {𝑟}, ∅, {𝑟})

(∅, {𝑞}, ∅, {𝑞})

𝑏

𝑎
𝑎

𝑎, 𝑏

𝑎
𝑎

𝑏
𝑏

𝑏

𝑎 𝑏

𝑏

𝑏

𝑏

𝑎

𝑎

𝑏

𝑏

(b) NCSB(𝒜)

Figure 3.6: An example of a semi-deterministic BA 𝒜 and its complement NCSB(𝒜)

– 𝑆′ ⊇ 𝛿2(𝑆, 𝑎),
– 𝐶 ′ ⊇ 𝛿2(𝐶 ∖ 𝐹, 𝑎), and
– 𝐵′ = 𝐶 ′ if 𝐵 = ∅, otherwise 𝐵′ = 𝛿2(𝐵, 𝑎) ∩ 𝐶 ′, and

• 𝐹 ′ = {(𝑁,𝐶, 𝑆,𝐵) ∈ 𝑄′ | 𝐵 = ∅}.

Theorem 3.6 ([5]). Let𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be a semi-deterministic BA. Then ℒ(NCSB(𝒜))
= Σ𝜔 ∖ ℒ(𝒜).

An example of a semi-deterministic Büchi automaton with its complement is shown in
Figure 3.6. Macrostates of NCSB(𝒜) consist of four components: (𝑁,𝐶, 𝑆,𝐵). The 𝑁 -
component tracks runs in the nondeterministic part of the automaton. The 𝐶-component
represents the runs that have entered the deterministic part and are not safe (they did not
visit an accepting state for the last time), whereas the 𝑆-component represents the safe
runs. The last component is a breakpoint that is used to check that no run stays forever
in component 𝐶.

16

Chapter 4

Next Generation of Rank-Based
Algorithms for Büchi Automata

Even though Schewe’s rank-based complementation construction described in Section 3.4
asymptotically matches the lower bound of (0.76𝑛)𝑛 [32], it still produces a complemented
automaton with potentially unnecessary states or transitions and, due to the high space
complexity, further optimizations of this algorithm are crucial for practical applications.
In this chapter, we first introduce elevator automata [15], a large class of Büchi automata
with a specific structure, occuring often in practice. We analyze run DAGs of these au-
tomata and present an algorithm for reducing the bound on maximum rank of states in
each strongly connected component. We also extend this algorithm for general Büchi au-
tomata. Moreover, we show that elevator automata can be complemented in 𝒪(16𝑛) space.
Secondly, we present a technique based on data flow analysis that can be used to propagate
rank restrictions throughout the automaton and thus reduce the ranks even more. In the
next part of the thesis, we focus on optimizations for specialized complementation construc-
tions for inherently weak and semi-deterministic automata. Thanks to their properties, we
are able to use more efficient procedures for their complementation than the rank-based
construction.

4.1 Elevator Büchi Automata
In this section, we introduce elevator automata, a class of Büchi automata with a specific
structure. We analyze run DAGs for all types of strongly connected components of elevator
automata and present an algorithm assigning bounds on maximum rank for states in each
component. Finally, we show that elevator automata can be complemented in 𝒪(16𝑛) space.

Let 𝐶 be an MSCC of a given Büchi automaton𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) and𝒜|𝒞 = (𝐶,Σ, 𝛿|𝐶 , 𝐼
∩ 𝐶,𝐹 ∩ 𝐶). We say that 𝐶 is deterministic iff the BA 𝒜|𝒞 is deterministic, non-accepting
iff 𝐶 ∩ 𝐹 = ∅, inherently weak accepting iff every cycle in the transition diagram of 𝒜|𝐶
contains an accepting state 𝑞𝐹 ∈ 𝐹 , and trivial iff |𝐶| = 1 and 𝛿|𝐶 = ∅.

A Büchi automaton 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) is an elevator (Büchi) automaton if for every
MSCC 𝐶 of 𝒜 it holds that 𝐶 is (i) deterministic (D), (ii) inherently weak accepting (IWA),
or (iii) non-accepting (N). An example of an elevator automaton with assigned type to each
strongly connected component is shown in Figure 4.1.

The number of successors of a given macrostate in rank-based complementation is given
by the number of possible tight rankings, which rises combinatorially with the macrostate’s

17

q0 q1 q2 q3

q4

q5

q6

q7 q8 q9

q10

q11 q12

q13

a, b
a

c

c

b

a

a
b

a

c b

a

b

a
b a

b
a, b

a

a
a

b

b

a

c

a b

c

b

ca

c

NA

D

IWA

NA

IWA D

Figure 4.1: An example of an elevator automaton

maximum rank. More precisely, for a given set of states, the number of possible tight
rankings corresponds to the Stirling number of the second kind of the maximum rank [12].
For general BAs, the bound on maximum rank for all states of the automaton is 2|𝑄| −
1. However, this bound is often unnecessarily high and many redundant states can be
generated. Thanks to the specific structure of elevator automata, we can reduce the bound
on maximum rank for states in every MSCC. Before we formally describe the rank restriction
for elevator automata, let us give an intuition behind the maximum rank reduction by
analyzing run DAGs of a BA containing only one MSCC of one of the three types that can
be present in an elevator automaton.

4.1.1 Non-accepting Components

Let 𝒜 be a BA with only one non-accepting MSCC and 𝛼 ̸∈ ℒ(𝒜) be an input word. In 𝒢1𝛼,
constructed by the ranking procedure from Section 3.1, all finite vertices are removed. Since
𝒜 contains no accepting state, all vertices in 𝒢1𝛼 are endangered, and therefore the maximum
rank can be bounded by 1. See Figure 4.2a for an example of a BA with one non-accepting

𝑝 𝑞

𝑎
𝑎

𝑏

(a) Non-accepting BA

(𝑞, 1) (𝑞, 2) (𝑞, 3) (𝑞, 4)

(𝑝, 0) (𝑝, 1) (𝑝, 2) (𝑝, 3) (𝑝, 4) . . .

...

𝑎 𝑎 𝑎 𝑎 . . .

rank 0

rank 1

(b) Run DAG

Figure 4.2: The run DAG of a non-accepting MSCC over word 𝑎𝜔

18

𝑝 𝑞

𝑏
𝑎

𝑎

(a) Deterministic BA

(𝑝, 0) (𝑝, 2)

(𝑞, 1) (𝑞, 3) (𝑞, 4) (𝑞, 5) . . .

𝑎 𝑎 𝑎 𝑏 𝑏 . . .

rank 2

rank 1

(b) Run DAG

Figure 4.3: The run DAG of a deterministic MSCC over word 𝑎𝑎𝑎𝑏𝜔

MSCC. The corresponding run DAG 𝒢𝛼 with assigned ranks for a word 𝛼 = 𝑎𝜔 is shown in
Figure 4.2b.

4.1.2 Deterministic Components

Let 𝒜 be a deterministic BA with only one MSCC and 𝛼 ̸∈ ℒ(𝒜) be an input word. Since
the automaton is deterministic, there is at most one run of 𝒜 on 𝛼. The corresponding run
DAG 𝒢𝛼 therefore contains at most one vertex in each level, and because there are only
finitely many accepting states in the run of 𝒜 on 𝛼, there is a level 𝑙 such that for all levels
𝑙′ ≥ 𝑙 it holds that all vertices in level 𝑙′ are endangered. All vertices in level 𝑙′ ≥ 𝑙 have
rank 1. Due to the determinism, 𝒢2𝛼 is always finite. All vertices in levels smaller than 𝑙 have
therefore rank 2 and a greater rank is not needed. (Note that the maximal rank restriction
also holds if the automaton has more than one initial state.) Consider the deterministic
BA with one MSCC in Figure 4.3a and the word 𝛼 = 𝑎𝑎𝑎𝑏𝜔. The corresponding run DAG
with assigned ranks is shown in Figure 4.3b.

4.1.3 Inherently Weak Accepting Components

Let 𝒜 be a BA with only one inherently weak accepting MSCC and 𝛼 ̸∈ ℒ(𝒜) be an input
word. Since every cycle of 𝒜 contains an accepting state and 𝛼 ̸∈ ℒ(𝒜), all possible runs
of 𝒜 on 𝛼 must be finite. The whole run DAG 𝒢𝛼 is therefore finite and the maximal rank
is 0. See Figure 4.4a for an example of a BA with only one inherently weak accepting
MSCC. Figure 4.4b shows the corresponding run DAG 𝒢𝛼 with assigned ranks for 𝛼 = 𝑎𝑏𝜔.

4.1.4 Rank Restriction for Elevator Automata

In this section, we present an algorithm that assigns each MSCC a label of the form
TYPE:rank with the type of MSCC and the bound on the maximum rank of its states.

𝑝 𝑞

𝑎𝑎
𝑎

𝑏

(a) Inherently weak accepting BA

(𝑞, 1)

(𝑝, 0) (𝑝, 1) (𝑝, 2)

𝑎 𝑎 𝑏 . . .

rank 0

(b) Run DAG

Figure 4.4: The run DAG of an inherently weak accepting MSCC over word 𝑎𝑎𝑏𝜔

19

The assignment is performed from terminal MSCCs (i.e., MSCCs that cannot reach to any
other MSCC) towards MSCCs with initial states. More precisely, a label can be assigned to
MSCC 𝐶 only if (i) 𝐶 is terminal or (ii) a label was already assigned to all MSCCs reach-
able from 𝐶. Note that there can be more options how to assign a type for some MSCCs.
The algorithm assigns the type that is most suitable in terms of keeping the rank bound
as low as possible in a greedy way (i.e., based on local information). This can be different
for every MSCC, depending on the labels of its successors. For the following algorithm, we
assume that an elevator automaton contains no useless states (there is therefore no terminal
non-accepting MSCC).

For a terminal MSCC 𝐶, we assign the following label:

1. IWA:0 if 𝐶 is inherently weak accepting,

2. D:2 otherwise (i.e., if 𝐶 is deterministic accepting).

Note that the previous two options are complete because the automaton contains no
useless states. For non-terminal MSCCs, we use the corresponding rules from Figure 4.5.
Children nodes denote already processed successive MSCCs. In particular, a child node of
the form k:ℓ𝑘 denotes an aggregate of all siblings of the type k with ℓ𝑘 being the maximum
rank of these siblings. For a non-terminal MSCC 𝐶, the rules for assigning a label are the
following:

1. If 𝐶 is trivial, we try both rules from Figure 4.5a and Figure 4.5c and use the one
with the smaller rank.

2. Else if 𝐶 is IWA, we use the rule in Figure 4.5a.

3. Else if 𝐶 is deterministic accepting, we use the rule in Figure 4.5b.

4. Else if 𝐶 is deterministic and non-accepting, we use one of the rules in Figure 4.5b
and Figure 4.5c that gives us a smaller rank.

5. Else if 𝐶 is nondeterministic and non-accepting, we use the rule in Figure 4.5c.

The maximum rank of each MSCC is then assigned to all its states and macrostates with
higher ranks are not generated. We denote the procedure as ElevBound. Formally, the
result of the algorithm is a mapping 𝜒 : 𝑄→ 𝜔 that gives a bound on the maximum rank to
each state of the automaton. This mapping can be plugged in, e.g., Schewe to prune the
generated state space. Figure 4.6a shows an elevator automaton 𝒜𝑒𝑙 with assigned label for

IWA:ℓ

ℓ = max{ℓ𝐷, ℓ𝑁 + 1, ℓ𝑊 }
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊

(a) 𝐶 is IWA

D:ℓ

ℓ = max{ℓ𝐷 + 2 , ℓ𝑁 + 1, ℓ𝑊 + 2 , 2}
𝐶 :

D:ℓ𝐷

2

N:ℓ𝑁 IWA:ℓ𝑊

2

(b) 𝐶 is D

N:ℓ

ℓ = max{ℓ𝐷 + 1, ℓ𝑁 , ℓ𝑊 + 1}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊

(c) 𝐶 is N

Figure 4.5: Rules for assigning types and rank bounds to MSCCs. The symbols 2 and 2 are
interpeted as 0 if all the corresponding edges from the components having rank ℓ𝐷 and ℓ𝑊 ,
respectively, are deterministic; otherwise they are interpreted as 2. Transitions between
two components 𝐶1 and 𝐶2 are deterministic if the BA (𝐶, 𝛿|𝐶 , ∅, ∅) is deterministic for
𝐶 = 𝛿(𝐶1,Σ) ∩ (𝐶1 ∪ 𝐶2).

20

𝑝 𝑞 𝑟 𝑠

IWA:0N:1N:1

𝑏 𝑎

𝑎𝑏
𝑎

𝑏

(a) Elevator automaton 𝒜𝑒𝑙

{𝑝}

{𝑝, 𝑞}

{𝑞, 𝑟}

{𝑞, 𝑟, 𝑠} {𝑟} {𝑠}

∅

({𝑝:1, 𝑞:0}, ∅)({𝑝:1, 𝑞:0}, {𝑞})

({𝑝:1, 𝑞:1}, ∅)

({𝑝:3, 𝑞:1}, ∅)

({𝑝:1, 𝑞:3}, ∅)({𝑞:1, 𝑟:0}, {𝑟})

({𝑞:3, 𝑟:2, 𝑠:1}, ∅)({𝑞:1, 𝑟:0, 𝑠:0}, ∅)

({𝑞:1, 𝑟:0, 𝑠:0}, {𝑟, 𝑠})

({𝑞:1, 𝑟:0, 𝑠:0}, {𝑠})

({𝑞:1, 𝑟:2, 𝑠:3}, ∅)

({𝑞:1, 𝑟:0, 𝑠:3}, ∅)

({𝑞:1, 𝑟:0, 𝑠:1}, ∅)

({𝑞:3, 𝑟:0, 𝑠:1}, ∅)

({𝑞:0, 𝑟:0, 𝑠:1}, ∅)

𝑎

𝑎

𝑎

𝑎

𝑎
𝑎

𝑏

𝑏

𝑎

𝑎

𝑏

𝑎
𝑏

𝑎

𝑏

𝑏

𝑎

𝑏

𝑏

𝑏

𝑏

𝑏𝑎

𝑎

𝑏

𝑏

𝑎, 𝑏

(b) Complement of 𝒜𝑒𝑙. Our procedure will not generate
the red states (and their successors, which are not shown in
the figure).

Figure 4.6: An example of an elevator BA with its complement

each MSCC. The complement of 𝒜𝑒𝑙 is in Figure 4.6b. Red macrostates are not generated
because the value assigned to some state is higher than the rank bound on the maximum
rank – for example a macrostate ({𝑞:0, 𝑟:0, 𝑠:1}, ∅) was not generated, because state 𝑠 is
assigned the rank 1, which is higher than the rank bound 0 given by our algorithm.

Lemma 4.1. Let 𝒜 be an elevator automaton. ElevBound(𝒜) is a TRUB.

Proof. Consider an elevator automaton 𝒜. Let 𝒢𝛼 be a run DAG over some word 𝛼 /∈ ℒ(𝒜)
and 𝐶 be an MSCC of 𝒜. We proceed by induction on the structure of 𝒜. We start with
the base case.
Claim 1: Let 𝐶 be a terminal IWA component in 𝒢𝛼. Then, all vertices of 𝒢𝛼 labelled by 𝐶
will have the rank 0.
Proof: All cycles in inherently weak accepting components are accepting. Since 𝛼 /∈ ℒ(𝒜),
there is no run staying in 𝐶 forever. All vertices labelled by a state from 𝐶 are therefore
finite in 𝒢𝛼 and are, therefore, assigned rank 0. �

Claim 2: Let 𝐶 be a terminal D component in 𝒢𝛼. Then, all vertices of 𝒢𝛼 labelled by 𝐶
will have the rank at most 2.
Proof: We prove that 𝒢2𝛼 contains only finite vertices labelled by 𝐶. If it is not true, either
𝛼 ∈ ℒ(𝒜) or 𝐶 is not terminal and deterministic. �

Now we prove the main lemma by induction on given rules. We prove that if a state 𝑞
was assigned rank 𝑘, then 𝒢𝑘+1

𝛼 does not contain a node labelled by 𝑞.

• Base case: If a terminal component 𝐶 is IWA, from Claim 1 we get that all states
from 𝐶 will have the rank 0. If a terminal component is D, then from Claim 2 we
have that all states from 𝐶 will have the rank bounded by 2.

• Inductive case: Assume that for all states 𝑞 from already processed components, if 𝑞
were assigned rank 𝑚, 𝒢𝑚+1

𝛼 does not contain node labelled by 𝑞. Note that inside each

21

rule we can investigate cases D,N, and IWA separately since the adjacent components
do not affect each other.

Figure 4.5a Observe that after ℓ = max{ℓ𝐷, ℓ𝑁 + 1, ℓ𝑊 } steps of the ranking procedure,
in the worst case, all vertices labelled by 𝐶 in 𝒢ℓ𝛼 are finite (otherwise it is
a contradiction with induction hypothesis). Therefore, in 𝒢ℓ+1

𝛼 there are no
vertices labelled by 𝐶. The ranks of vertices labelled by 𝐶 is hence max{ℓ𝐷, ℓ𝑁+
1, ℓ𝑊 }.

Figure 4.5b We prove that in 𝒢ℓ𝛼 all vertices labelled by 𝐶 are finite (ℓ is from the rule). From
the induction hypothesis, after ℓ−1 steps (in the worst case) all vertices labelled
by adjacent D, IWA components are finite in 𝒢ℓ𝛼 (provided that the transitions are
deterministic). Vertices labelled by adjacent N components are not present in 𝒢ℓ𝛼.
Therefore, if there is some vertex 𝑣 labelled by 𝐶 in 𝒢ℓ𝛼 that is not finite, the only
possibility is that for each 𝑣′ ∈ reach𝒢ℓ

𝛼
(𝑣) we reach in 𝒢ℓ𝛼 from 𝑣′ some vertex

labelled by a state from the D, IWA components. However, it is a contradiction
with the transition determinism.

Figure 4.5c We prove that in 𝒢ℓ𝛼 all vertices labelled by 𝐶 are endangered. This follows from
the fact that after ℓ− 1 steps no vertex labelled by the adjacent D, IWA compo-
nents is present in 𝒢ℓ𝛼 (induction hypothesis). Therefore, all vertices labelled by
𝐶 in 𝒢ℓ𝛼 are endangered.

4.1.5 Refined Ranks for Non-Elevator Automata

The algorithm from Section 4.1.4 computing bound on the maximum rank for states in each
MSCC of an elevator automaton can be extended to general BAs. Non-elevator automata
contain at least one nondeterministic accepting component. We refer to these MSCCs as
general components and denote them as G. For deterministic, nonaccepting, or inherently
weak MSCCs, we are able to set a rank bound independently of the number of states
they contain, thanks to the structure of run DAGs for every possible word. However, for
general MSCCs, the rank bound depends on the number of states, more precisely on the
number of nonaccepting states in the component. This follows the original argument that
maximum rank for each state in a Büchi automaton with 𝑛 states is bounded by 2|𝑄|. Since
a maximum rank of a tight ranking depends only on the number of nonaccepting states, we
can bound maximum rank in a general component 𝐶 to 2|𝐶 ∖ 𝐹 |.

For a terminal MSCC 𝐶, we extend the algorithm assigning a label to each MSCC as
follows (in the given order):

1. IWA:0 if 𝐶 is inherently weak accepting,

2. D:2 if 𝐶 is deterministic accepting, and

3. G:2|𝐶 ∖ 𝐹 | otherwise.

For non-terminal MSCCs, we use the rules from Figure 4.7. The structure of these rules
is the same as for elevator automata in Section 4.1.4. For a non-terminal MSCC 𝐶, the
rules for assigning a label are the following (in the given order):

1. If 𝐶 is trivial, we try both rules from Figure 4.7a and Figure 4.7c and use the one
with the smaller rank.

2. If 𝐶 is IWA, we use the rule in Figure 4.7a.

22

IWA:ℓ

ℓ = max{ℓ𝐷, ℓ𝑁 + 1, ℓ𝑊 , ℓ𝐺}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

(a) 𝐶 is IWA

D:ℓ

ℓ = max{ℓ𝐷 + 2 , ℓ𝑁 + 1, ℓ𝑊 + 2 , ℓ𝐺 + 2, 2}
𝐶 :

D:ℓ𝐷

2

N:ℓ𝑁 IWA:ℓ𝑊

2

G:ℓ𝐺

(b) 𝐶 is D

N:ℓ

ℓ = max{ℓ𝐷 + 1, ℓ𝑁 , ℓ𝑊 + 1, ℓ𝐺 + 1}
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

(c) 𝐶 is N

G:ℓ

ℓ = max{ℓ𝐷, ℓ𝑁 + 1, ℓ𝑊 , ℓ𝐺}+ 2|𝐶 ∖ 𝐹 |
𝐶 :

D:ℓ𝐷 N:ℓ𝑁 IWA:ℓ𝑊 G:ℓ𝐺

(d) 𝐶 is G

Figure 4.7: Rules assigning types and rank bounds for non-elevator automata.

3. If 𝐶 is deterministic accepting, we use the rule in Figure 4.7b.

4. If 𝐶 is deterministic and non-accepting, we use one of the rules in Figure 4.7b and
Figure 4.7c that gives us a smaller rank.

5. If 𝐶 is nondeterministic and non-accepting, we use the rule in Figure 4.7c.

6. Otherwise, we use the rule in Figure 4.7d.

The maximum rank of each MSCC is assigned to all its states and macrostates with
higher ranks are not generated. We denote the procedure as NonElevBound. Formally,
the result of the algorithm is a mapping 𝜒 : 𝑄 → 𝜔 that gives a bound on the maximum
rank to each state of the automaton.

Lemma 4.2. Let 𝒜 be a Büchi automaton. NonElevBound(𝒜) is a TRUB.

Proof. Consider some BA 𝒜. Let 𝒢𝛼 be a run DAG over some word 𝛼 /∈ ℒ(𝒜). In this
proof, we use the claims and notation introduced in the proof of Lemma 4.1.

Claim 3: Let 𝐶 be a terminal G component in 𝒢2𝑘+1
𝛼 . Then, all vertices in 𝒢𝛼 labelled by 𝐶

will have the rank at most 2𝑘 + 2|𝐶 ∖𝑄𝐹 |.
Proof: Since 2𝑘 + 1 > 0, 𝒢2𝑘+1

𝛼 does not contain any finite vertices. Since 𝐶 is a terminal
component, there is some 𝑖 ∈ 𝜔 s.t. ∀𝑗 > 𝑖 : |level𝒢2𝑘+1

𝛼
(𝑗) ∩ 𝐶| < |level𝒢2𝑘+2

𝛼
(𝑗) ∩ 𝐶| (if

we remove an endangered vertex, we decrease the width of the run DAG from some level
at least by 1). Moreover, since endangered vertices do not contain accepting states, the
previous observation can be refined to |(level𝒢2𝑘+1

𝛼
(𝑗)∩𝐶)∖𝑄𝐹 | < |(level𝒢2𝑘+2

𝛼
(𝑗)∩𝐶)∖𝑄𝐹 |.

If we apply the reasoning multiple times, we get that in 𝒢2𝑘+2|𝐶∖𝑄𝐹 |
𝛼 , there remain only

finite vertices labelled by a state from 𝐶, therefore the rank is at most 2𝑘 + 2|𝐶 ∖𝑄𝐹 |. �
Now we prove the main lemma. First, observe that after application of any rule, we

have that D, IWA, and G components have an even rank and N components have an odd
rank. We prove the lemma by induction on certain rules. In particular, we prove that if a
state 𝑞 was assigned rank 𝑘, 𝒢𝑘+1

𝛼 does not contain any node labelled by 𝑞.

• Base case: If a terminal component 𝐶 is IWA, from Claim 1 we obtain all states from
𝐶 will have the rank 0. If a terminal component is D, then from Claim 2 we have
that all states from 𝐶 will have the rank bounded by 2. If a terminal component is G,
from Claim 3 we have that all states from 𝐶 will have the rank bounded by 2|𝐶 ∖𝑄𝐹 |.

23

• Inductive case: Assume that for all states 𝑞 from already processed components, if 𝑞
was assigned by rank 𝑚, 𝒢𝑚+1

𝛼 does not contain any node labelled by 𝑞.

Figure 4.7a Observe that after ℓ = max{ℓ𝐷, ℓ𝑁+1, ℓ𝑊 , ℓ𝐺}−1 steps of the ranking procedure,
in the worst case, all vertices labelled by 𝐶 in 𝒢ℓ𝛼 are finite (otherwise it is
a contradiction with the induction hypothesis). Therefore, in 𝒢ℓ+1

𝛼 there are no
vertices labelled by 𝐶. The ranks of vertices labelled by 𝐶 is hence max{ℓ𝐷, ℓ𝑁+
1, ℓ𝑊 , ℓ𝐺}.

Figure 4.7b We prove that in 𝒢ℓ𝛼 all vertices labelled by 𝐶 are finite (ℓ is from the rule). From
the induction hypothesis, after ℓ−1 steps (in the worst case) all vertices labelled
by adjacent D and IWA components are finite in 𝒢ℓ𝛼 (provided that the transitions
are deterministic). Vertices labelled by adjacent N components are not present
in 𝒢ℓ𝛼. Vertices labelled by adjacent G components are finite in 𝒢ℓ𝛼. Therefore, if
there is some vertex 𝑣 labelled by 𝐶 in 𝒢ℓ𝛼 which is not finite, the only possibility
is that for each 𝑣′ ∈ reach𝒢ℓ

𝛼
(𝑣) we reach in 𝒢ℓ𝛼 from 𝑣′ some vertex labelled by

a state from the D, IWA components. This is however a contradiction with the
transition determinism.

Figure 4.7c We prove that in 𝒢ℓ𝛼 all vertices labelled by 𝐶 are endangered. This follows from
the fact that after ℓ− 1 steps no vertex labelled by the adjacent D, IWA,G com-
ponents is present in 𝒢ℓ𝛼 (induction hypothesis). Therefore, all vertices labelled
by 𝐶 in 𝒢ℓ𝛼 are endangered.

Figure 4.7d From the induction hypothesis we have that in 𝒢ℓ𝛼 where ℓ = max{ℓ𝐷, ℓ𝑁 +
1, ℓ𝑊 , ℓ𝐺} all vertices labelled by adjacent D, IW,G components are finite. Ver-
tices labelled by adjacent N components are not present in 𝒢ℓ𝛼. Therefore, 𝐶 is
terminal in 𝒢ℓ+1

𝛼 . From Claim 3 we have that the rank of 𝐶 is bounded by
ℓ+ 2|𝐶 ∖𝑄𝐹 |.

4.1.6 Efficient Complementation of Elevator Automata

The algorithm for assigning rank bounds to MSCCs of an elevator automaton, presented in
Section 4.1.4, can in practice have a huge impact on the generated state space. However,
we cannot bound the maximum rank by a constant, because it depends, among other, on
the number of MSCCs. In this section, we show that it is possible to bound the rank by
a constant if we construct an equivalent automaton with at most double the size of the
input elevator automaton.

The increment of maximum rank for two successive MSCCs depends mainly on the al-
ternation of accepting components and some nondeterminism. We can change the structure
of an input elevator automaton such that for every possible run we start in a nonaccepting
MSCC and then take a transition to deterministic or inherently weak MSCC at most once.

Let𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be an elevator automaton. The deelevated automaton Deelev(𝒜)
= (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) is given as follows:

• 𝑄′ = 𝑄× {1, 2},

• 𝐼 ′ = 𝐼 × {1},

• 𝛿′ = 𝛿1 ∪ 𝛿2 such that

– 𝛿1((𝑞, 1), 𝑎) = 𝛿(𝑞, 𝑎)× {1, 2},

24

p q r s t
b

b

a

a b

b
a

a

b

D:2N:3IWA:4N:5

(a) Elevator automaton 𝒜𝑒𝑙

(p, 1) (q, 1) (r, 1) (s, 1) (t, 1)
b

b

a

a b

b
a

a

b

(q, 2) (s, 2) (t, 2)

b

a

b

a
a

b

IWA:0 D:2

N:3

(b) Deelev(𝒜𝑒𝑙)

Figure 4.8: An example of an elevator automaton 𝒜𝑒𝑙 and a deelevated automaton
Deelev(𝒜𝑒𝑙). The bound on the maximum rank is decreased from 5 to 3.

– 𝛿2((𝑞, 2), 𝑎) = 𝛿(𝑞, 𝑎)× {2}, and

• 𝐹 ′ = 𝐹 × {2}.

Intuitively, we copy each MSCC with an accepting state and all transitions going to this
MSCC, and we remove accepting conditions from the original MSCC. It is easy to see from
the construction that the number of states of Deelev(𝒜) is bounded by 2|𝑄|. Any possible
run on Deelev(𝒜) starts in a nonaccepting MSCC, and it either stays in some nonaccepting
MSCC or it moves to a deterministic accepting or inherently weak accepting MSCC where
it stays forever. The bound on the maximum rank for Deelev(𝒜) is therefore always 3,
which gives us the upper bound 𝒪(16𝑛) for complementing elevator automata. This is
based on the number of possible tight rankings for an automaton with sufficiently many
states 𝑛 and rank bound 3. An example of a deelevated automaton is given in Figure 4.8.

Lemma 4.3. Let 𝒜 be a BA. Then, ℒ(𝒜) = ℒ(Deelev(𝒜)).

Proof. Let 𝛼 ∈ ℒ(𝒜) be a word. There is an accepting run 𝜌 = 𝑞0𝑞1 . . . of 𝒜 on 𝛼. For an
accepting run 𝜌, there is an MSCC 𝐶 and some 𝑖 ∈ 𝜔 such that 𝜌𝑘 ∈ 𝐶 for all 𝑘 ≥ 𝑖. There
is an accepting run 𝜌′ = (𝑞0, 1) . . . (𝑞𝑖−1, 1)(𝑞𝑖, 2)(𝑞𝑖+1, 2) . . . on Deelev(𝒜).

Let 𝛼 ∈ Deelev(𝒜) be a word. There is an accepting run 𝜌 = (𝑞0, 1) . . . (𝑞𝑖−1, 1)(𝑞𝑖, 2)
(𝑞𝑖+1, 2) . . . on Deelev(𝒜). States 𝑞𝑖, 𝑞𝑖+1, . . . are in the same MSCC. There is therefore
an accepting run 𝜌′ = 𝑞0𝑞1 . . . of 𝒜 on 𝛼.

4.2 Data Flow Analysis
In this section, we propose a way to get bounds for maximum rank based on the structure
of the automaton using data flow analysis [27]. In particular, rank bounds can be decreased
based on the ranks and rankings of the local neighbourhood of the macrostates. For an
input BA 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹), the analysis is performed on the BA 𝒦𝒜 = (2𝑄,Σ, 𝛿′, ∅, ∅)
where 𝛿′ = {𝑅 𝑎−→ 𝑆 | 𝑆 = 𝛿(𝑅, 𝑎)}. The structure of 𝒦𝒜 is similar to the structure of the
waiting part of Schewe(𝒜). We are, however, not interested in the language of 𝒦𝒜, but
only in its structure. We get the bounds for states in a macrostate based on the bounds of
the states of its predecessors.

For a function 𝑓 : 𝑋 → 𝑌 and a set 𝑆 ⊆ 𝑋, we define 𝑓(𝑆) = {𝑓(𝑥) | 𝑥 ∈ 𝑆}. In the
following, we use 𝑓 ▷ {𝑥 ↦→ 𝑦} to denote the function (𝑓 ∖ {𝑥 ↦→ 𝑓(𝑥)})∪{𝑥 ↦→ 𝑦} for 𝑥 ∈ 𝑋
and 𝑦 ∈ 𝑌 . For 𝑖 ∈ 𝜔 we use ⌊⌊𝑖⌋⌋ to denote the largest even number smaller or equal to 𝑖.

25

4.2.1 Outer Macrostate Analysis

Our first analysis, called outer macrostate analysis, is based on the sizes of macrostates and
is used for estimating their ranks. Since the rank of a run in Schewe(𝒜) does not decrease
once it enters a tight part, we can set a rank bound for each cycle of 𝒦𝒜 to 2𝑚−1 where 𝑚
is the smallest number of nonaccepting states of macrostates in this cycle. The maximum
rank of the macrostate is then given by the maximum rank of all the cycles going through
this macrostate. The rank of each cycle can also be estimated by our elevator analysis from
Section 4.1.

Since the number of cycles in 𝒦𝒜 can be double-exponential to the size of 𝒜, we use
data flow analysis instead of enumerating all cycles. The function 𝜇 : 2𝑄 → 𝜔 gives a max-
imum rank to each macrostate. For a macrostate 𝑆 and its predecessors 𝑅1, . . . , 𝑅𝑖, we
use the update function 𝑢𝑝𝑜𝑢𝑡 : (2𝑄 → 𝜔) × (2𝑄)𝑖+1 → 𝜔, which is defined as follows:
𝑢𝑝𝑜𝑢𝑡(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑖) = min{𝜇(𝑆),max{𝜇(𝑅1), . . . , 𝜇(𝑅𝑖)}}. The new bound on the max-
imum rank of 𝑆 is set to the smaller of the previous bound 𝜇(𝑆) and the largest of the
bounds of all predecessors of 𝑆. The new value is propagated forward by the data flow
analysis until the fixpoint is reached.

Lemma 4.4. If 𝜇 is a TRUB, then 𝜇C {𝑆 ↦→ upout(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)} is a TRUB.

Proof. Let 𝛼 /∈ ℒ(𝒜) and 𝒢𝛼 be the run DAG of 𝒜 over 𝛼. Further, let us use 𝜇′ = 𝜇C{𝑆 ↦→
upout(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)}.

1. There are finitely many 𝑖 ∈ 𝜔 such that level𝛼(𝑖) = 𝑆. Let 𝑘 be the last level of 𝒢𝛼
where 𝑆 occurs (or 0 if 𝑆 does not occur on any level of 𝒢𝛼). Then we can set the ℓ
in the definition of a TRUB in (3.2) to be the least ℓ > 𝑘 such that ℓ is a tight level.
Then the condition holds trivially.

2. There are infinitely many 𝑖 ∈ 𝜔 such that level𝛼(𝑖) = 𝑆. Then, since 𝜇 is a TRUB,
let ℓ be the ℓ in (3.2) for which 𝜇 satisfies (3.2). We need to show that for every 𝑘 > ℓ
such that level𝛼(𝑘) = 𝑆, it holds that 𝜇′(𝑆) ≥ 𝑓𝛼

𝑘 . Let 𝒫 ⊆ {𝑅1, . . . , 𝑅𝑚} be the
set of predecessors of all occurrences of 𝑆 on 𝒢𝛼 below ℓ, i.e., for all 𝑘 > ℓ such
that level𝛼(𝑘) = 𝑆, we have level𝛼(𝑘 − 1) ∈ 𝒫. Since the ranks of levels in a run
DAG are lower for levels that are higher, it is sufficient to consider only the first such
a 𝑘. Let 𝑅 be the predecessor of 𝑆 at 𝑘, i.e., 𝑅 = level𝛼(𝑘 − 1). Since we do not
know which particular 𝑅𝑗 ∈ 𝒫 it is, we need to consider all 𝑅𝑗 ∈ 𝒫. Since 𝑘 − 1
is already a tight position, we have that 𝜇′′ = 𝜇 C {𝑆 ↦→ max{𝜇(𝑅1), . . . , 𝜇(𝑅𝑚)}}
is a TRUB for the same ℓ′′ = ℓ in (3.2). Further, 𝜇 is also a TRUB, therefore,
𝜇′ = 𝜇C {𝑆 ↦→ min{𝜇′′(𝑆), 𝜇(𝑆)}} for ℓ.

Corollary 4.5. When started with a TRUB 𝜇0, the outer macrostate analysis terminates
and returns a TRUB 𝜇*

out .

Proof. Let 𝜇 be a TRUB and 𝜇′ = 𝜇 C {𝑆 ↦→ upout(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)}. From Lemma 4.4
we have that 𝜇′ is a TRUB as well, which means that starting from 𝜇0 using upout we
get TRUBs only. Moreover, 𝜇(𝑃) ≥ 𝜇′(𝑃) and 𝜇′(𝑃) ≥ 0 for each 𝑃 ∈ 2𝑄. The fixpoint
evaluation hence eventually stabilizes.

4.2.2 Inner Macrostate Analysis

Inner macrostate analysis is used for estimating rankings within macrostates. In a super-
tight run, the rank of a state 𝑞 ∈ 𝑆 is bounded by the rank of the predecessors of 𝑞. The

26

function 𝜇 : 2𝑄 → ℛ, where ℛ denotes the set of all rankings, gives a ranking for each
macrostate.

Let 𝑓, 𝑓 ′ ∈ ℛ be rankings. We use 𝑓 ⊔ 𝑓 ′ to denote the ranking {𝑞 ↦→ max{𝑓(𝑞), 𝑓 ′(𝑞)} |
𝑞 ∈ 𝑄}, and 𝑓 ⊓ 𝑓 ′ to denote the ranking {𝑞 ↦→ min{𝑓(𝑞), 𝑓 ′(𝑞)} | 𝑞 ∈ 𝑄}. Moreover, we
define max-succ-rank𝑎𝑆(𝑓) = max≤{𝑓 ′ ∈ ℛ | 𝑓 ′(𝑞′) ≤ 𝑓(𝑞) for each 𝑞 ∈ 𝑆 and 𝑞′ ∈ 𝛿(𝑞, 𝑎)}
and a function dec : ℛ → ℛ such that dec(𝜃) is the ranking 𝜃′ for which

𝜃′(𝑞) =

⎧⎪⎨⎪⎩
𝜃(𝑞)− 1 if 𝜃(𝑞) = rank(𝜃) and 𝑞 /∈ 𝐹,

⌊⌊𝜃(𝑞)− 1⌋⌋ if 𝜃(𝑞) = rank(𝜃) and 𝑞 ∈ 𝐹,

𝜃(𝑞) otherwise.
(4.1)

Intuitively, max-succ-rank𝑎𝑆(𝑓) is the maximum ranking that can be reached from macrostate 𝑆
with ranking 𝑓 over 𝑎 and dec(𝜃) decreases the maximum ranks in a ranking 𝜃 by one (or by
two for even maximum ranks and accepting states).

For a macrostate 𝑆 and its predecessors 𝑅1, . . . , 𝑅𝑖, we use the update function 𝑢𝑝𝑖𝑛 : (2
𝑄

→ ℛ)× (2𝑄)𝑖+1 → ℛ, which is defined by the following algorithm:

1 upin(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚):
2 foreach 1 ≤ 𝑖 ≤ 𝑚 and 𝑎 ∈ Σ do
3 if 𝛿(𝑅𝑖, 𝑎) = 𝑆 then
4 𝑔𝑎𝑖 ← max-succ-rank𝑎𝑅𝑖

(𝜇(𝑅𝑖))

5 𝜃 ← 𝜇(𝑆) ⊓⨆︀{𝑔𝑎𝑖 | 𝑔𝑎𝑖 is defined};
6 if rank(𝜃) is even then 𝜃 ← dec(𝜃);
7 return 𝜃;

The update function updates 𝜇(𝑞) for every 𝑞 ∈ 𝑆 to hold the maximum rank compatible
with the rank of its predecessors.

Lemma 4.6. If 𝜇 is a TRUB, then 𝜇C {𝑆 ↦→ upin(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)} is a TRUB.

Proof. Let 𝛼 /∈ ℒ(𝒜) and 𝒢𝛼 be the run DAG of 𝒜 over 𝛼. Further, let us use 𝜇′ = 𝜇C{𝑆 ↦→
upin(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)}. First, we prove the following claim:

Claim 4: Let 𝜇1, 𝜇2 be two TRUBs wrt 𝛼. Then 𝜇′, defined as 𝜇′(𝑆) := 𝜇1(𝑆) ⊓ 𝜇2(𝑆) is
a TRUB wrt 𝛼.
Proof: The proof follows from the definition (with choosing ℓ′ = max{ℓ1, ℓ2}) where ℓ1 is
from the definition of a TRUB for 𝜇1 and ℓ2 is for 𝜇2. �

We need to consider the following two cases:

1. There are finitely many 𝑖 ∈ 𝜔 such that level𝛼(𝑖) = 𝑆. Let 𝑘 be the last level of 𝒢𝛼
where 𝑆 occurs (or 0 if 𝑆 does not occur on any level of 𝒢𝛼). Then we can set the ℓ
in the definition of a TRUB in (3.2) to be the least ℓ > 𝑘 such that ℓ is a tight level.
Then the condition holds trivially.

2. There are infinitely many 𝑖 ∈ 𝜔 such that level𝛼(𝑖) = 𝑆. Then, since 𝜇 is a TRUB,
let ℓ be the ℓ in (3.2) for which 𝜇 satisfies (3.2). We need to show that for every 𝑘 > ℓ
such that level𝛼(𝑘) = 𝑆, it holds that 𝜇′(𝑆) ≥ 𝑓𝛼

𝑘 . Let 𝒫 ⊆ {𝑅1, . . . , 𝑅𝑚} be the
set of predecessors of all occurrences of 𝑆 on 𝒢𝛼 below ℓ, i.e., for all 𝑘 > ℓ such
that level𝛼(𝑘) = 𝑆, we have level𝛼(𝑘 − 1) ∈ 𝒫. Since the ranks of levels in a run
DAG are lower for levels that are higher, it is sufficient to consider only the first

27

such a 𝑘. Let 𝑅 be the predecessor of 𝑆 at 𝑘, i.e., 𝑅 = level𝛼(𝑘 − 1). Since we
do not know which particular 𝑅𝑗 ∈ 𝒫 it is, we need to consider all 𝑅𝑗 ∈ 𝒫. Let
𝑀 = {max-succ-rank𝑎𝑅𝑗

(𝜇(𝑅𝑗)) | 𝑅𝑗 ∈ 𝒫, 𝑎 ∈ Σ}. Then, since 𝜇 is a TRUB,
⨆︀
𝑀 will

also be a TRUB. Moreover, from Claim 4, 𝜃 = 𝜇(𝑆)⊓⨆︀𝑀 will also be a TRUB, and
so 𝜃 ≥ 𝑓𝛼

𝑘 . Then, if the rank of 𝜃 is even, we can decrease it to the nearest odd rank,
since tight rankings are, by definition, of an odd rank.

Corollary 4.7. When started with a TRUB 𝜇0, the inner macrostate analysis terminates
and returns a TRUB 𝜇*

in .

Proof. Let 𝜇 be a TRUB and 𝜇′ = 𝜇 C {𝑆 ↦→ upin(𝜇, 𝑆,𝑅1, . . . , 𝑅𝑚)}. From Lemma 4.6
we have that 𝜇′ is a TRUB as well, which means that starting from 𝜇0 using upin we get
TRUBs only. Moreover, 𝜇(𝑃) ≥ 𝜇′(𝑃) and 𝜇′(𝑃) ≥ {𝑞 ↦→ 0 | 𝑞 ∈ 𝑄} for each 𝑃 ∈ 2𝑄. The
fixpoint evaluation hence eventually stabilizes.

4.3 Optimization of Inherently Weak BA Complementation
In this section, we introduce new optimizations of inherently weak Büchi automata comple-
mentation. Our optimizations are based on the Miyano-Hayashi construction [26] described
in Section 3.5. Our two optimizations are inspired by optimizations of the determinization
algorithm for automata over finite words [13] and by macrostates saturation in rank-based
complementation of Büchi automata [9]. In both optimization, simulation relations are
used in order to construct a smaller automaton. We either try to make the macrostates of
the complement as small as possible (pruning) or as big as possible (saturating). This con-
struction can help reducing the generated state space, because more states obtained from
the original Miyano-Hayashi construction [26] can be mapped to one pruned or saturated
macrostate.

Let 𝒜 = (𝑄,Σ, 𝛿, 𝐼, 𝐹) be an inherently weak BA. We first construct an equivalent BA
𝒲 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝑊), where 𝐹𝑊 contains all states from inherently weak accepting MSCCs
of 𝒜. We then convert 𝒲 to an equivalent co-Büchi automaton 𝒞 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝐶 =
𝑄∖𝐹𝑊). We use ⪯𝒲

𝑑𝑖 to denote a direct simulation on𝒲 and ⪯𝒞
𝑓 to denote a fair simulation

on 𝒞. A fair simulation ⪯𝒞
𝑓 can be approximated by a direct simulation ⪯𝒲

𝑑𝑖 .
Let ⊑ be a relation on the states of 𝒞 defined as follows: 𝑝 ⊑ 𝑞 iff (i) 𝑝 ⪯𝒞

𝑓 , (ii) 𝑞 is
reachable from 𝑝 in 𝒞, and (iii) either 𝑝 is not reachable from 𝑞 in 𝒞 or 𝑝 = 𝑞.

We define two adjustment functions pr , sat : 2𝑄 → 2𝑄 for each 𝑆 ⊆ 𝑄 as follows:

• pruning: pr(𝑆) = 𝑆′ where 𝑆′ ⊆ 𝑆 is the lexicographically smallest set (given a fixed
ordering on 𝑄) such that ∀𝑞 ∈ 𝑆∃𝑞′ ∈ 𝑆′ : 𝑞 ⊑ 𝑞′ and

• saturating: sat(𝑆) = ⌊𝑆⌋⪯𝒞
𝑓
, where ⌊𝑆⌋⪯𝒞

𝑓
= {𝑝 ∈ 𝑄 | ∃𝑞 ∈ 𝑄 : 𝑝 ⪯𝒞

𝑓 𝑞}.

For a given co-BA 𝒞 and an adjustment function 𝜃 : 2𝑄 → 2𝑄, the construction Mihay𝜃

produces a BA Mihay𝜃(𝒞) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′), whose components are defined as follows:

• 𝑄′ = 2𝑄 × 2𝑄,

• 𝐼 ′ = {(𝜃(𝐼), 𝜃(𝐼) ∖ 𝐹𝐶)},

• 𝛿′((𝑆,𝐵), 𝑎) = (𝑆′, 𝐵′) where

– 𝑆′ = 𝜃(𝛿(𝑆, 𝑎)),

28

– and
∗ 𝐵′ = 𝑆′ ∖ 𝐹𝐶 if 𝐵 = ∅ or
∗ 𝐵′ = (𝛿(𝐵, 𝑎) ∩ 𝑆′) ∖ 𝐹𝐶 if 𝐵 ̸= ∅, and

• 𝐹 ′ = 2𝑄 × {∅}.
In the following we fix a co-BA 𝒞 = (𝑄,Σ, 𝛿, 𝐼, 𝐹𝐶). We use 𝑝 𝑞 to denote that

𝑞 is reachable from 𝑝. Let 𝛼 ∈ Σ𝜔 be a word. Let Π,Π′ be sets of traces over 𝛼. We
say that Π and Π′ are acc-equivalent, denoted as Π ∼ Π′ if ∃𝜋 ∈ Π : 𝜋 is accepting in
𝒞 iff ∃𝜋′ ∈ Π′ : 𝜋′ is accepting in 𝒞. Let 𝜌 = 𝑆1𝑆2 . . . be a sequence of sets of states
and 𝛼 be a word. We define Π𝜌 to be a set of traces over 𝛼 matching the sets of states.
Formally, Π𝜌 = {𝜋 | 𝜋 over 𝛼, 𝜋𝑖 ∈ 𝑆𝑖 for each 𝑖}. For a trace 𝜋 = 𝜋0𝜋1 . . . we use 𝜋𝑖 : 𝜔
to denote a trace 𝜋𝑖:𝜔 = 𝜋𝑖𝜋𝑖+1 Moreover, for a set of traces Π𝜌, we define Π𝜌𝑖:𝜔 as
Π𝜌𝑖:𝜔 = {𝜋𝑗:𝜔 | 𝜋 ∈ Π𝜌 and 𝑗 ≥ 𝑖 }. We also define Π∪

𝜌 =
⋃︀

𝑖∈𝜔 Π𝜌𝑖:𝜔 . Further, for a set of
states 𝐵 we use 𝜌𝐵𝛼 to denote the sequence 𝑆1𝑆2 . . . s.t. 𝑆1 = 𝐵, 𝑆𝑖+1 = 𝛿(𝑆𝑖, 𝛼𝑖) for each
𝑖 ∈ 𝜔. We use 𝜌𝛼 to denote 𝜌𝐼𝛼. Moreover, for a given mapping 𝜃 : 2𝑄 → 2𝑄 and a sequence
of sets of states 𝜌 we define 𝜃(𝜌) = 𝜃(𝜌1)𝜃(𝜌2) A trace 𝜋 is eventually fair-simulated by
𝜋′ if there is some 𝑖 ∈ 𝜔 s.t. 𝜋𝑖:𝜔 ⪯𝒞

𝑓 𝜋′
𝑖:𝜔.

Lemma 4.8. Let 𝛼 be a word, Π𝜌𝛼 ∼ Π𝜌′𝛼 , and Π𝜌𝛼 ⊆ Π𝜌′𝛼 . Then, Π𝜌𝛼 ∼ Π∪
𝜌′𝛼

.

Proof. Assume that Π𝜌𝛼 ∼ Π𝜌′𝛼 and Π𝜌𝛼 ⊆ Π𝜌′𝛼 . Since Π𝜌′𝛼 ⊆ Π∪
𝜌′𝛼

, it means that if there is
an accepting trace in Π𝜌𝛼 , there is the same accepting trace in Π∪

𝜌′𝛼
. If there is no accepting

trace in Π𝜌𝛼 , it means that all traces contain infinitely many accepting states. Hence, every
infinite suffix is also an accepting trace and, therefore, Π∪

𝜌′𝛼
contains all traces that are not

accepting in 𝒞 (i.e., with infinitely many accepting states).

Lemma 4.9. Let 𝛼 be a word. Then, Π𝜌𝛼 ∼ Πpr(𝜌𝛼).

Proof. Since Πpr(𝜌𝛼) ⊆ Π𝜌𝛼 , it suffices to show that if there is an accepting trace 𝜋 ∈ Π𝜌𝛼 ,
there is also an accepting trace 𝜋′ ∈ Πpr(𝜌𝛼). We show that there is 𝜋′ ∈ Πpr(𝜌𝛼) s.t. 𝜋
is eventually fair-simulated by 𝜋′. If 𝜋′ = 𝜋, we are done. Now, assume that 𝜋′ ̸= 𝜋 and
that there is a maximum set of traces 𝑃 = {𝜋1, 𝜋2, . . . } ⊆ Π𝜌𝛼 with indices ℓ1 < ℓ2 < . . .
s.t. 𝑝𝑖 = 𝜋𝑖

ℓ𝑖
⊑ 𝜋𝑖+1

ℓ𝑖
= 𝑝′𝑖 for each 𝑖, and moreover 𝜋1 = 𝜋. We show that 𝑃 is finite by

showing that 𝑝′𝑖 ̸= 𝑝′𝑗 for each 𝑖 ̸= 𝑗. Assume that 𝑝′𝑗 = 𝑝′𝑖 for some 𝑖 < 𝑗. But then we have
𝑝′𝑖 𝑝𝑗 ⊑ 𝑝′𝑗 = 𝑝′𝑖 meaning that 𝑝′𝑖 𝑝′𝑗 (from the definition of ⊑). From the definition
of ⊑ we also have that 𝑝𝑗 is not reachable from 𝑝′𝑗 = 𝑝′𝑖, which is a contradiction. Since
the set 𝑃 = {𝜋1, . . . , 𝜋𝑛} is maximal and finite, we have 𝜋𝑛 ∈ Πpr(𝜌𝛼). Moreover, 𝜋′ = 𝜋𝑛
eventually fair-simulates 𝜋, which concludes the proof.

Lemma 4.10. Let 𝛼 be a word. Then, Π𝜌𝛼 ∼ Π∪
sat(𝜌𝛼)

.

Proof. First observe that Π𝜌𝛼 ⊆ Π∪
sat(𝜌𝛼)

. Therefore, it suffices to show that if there is an
accepting trace 𝜋 ∈ Π∪

sat(𝜌𝛼)
, there is also an accepting trace 𝜋′ ∈ Π𝜌𝛼 . We fix 𝜌 = 𝜌𝛼.

Consider some accepting trace 𝜋 ∈ Π∪
sat(𝜌𝛼)

. If 𝜋 ∈ Π𝜌𝛼 , we are done. If not, there is some
position ℓ s.t. 𝜋 ∈ Π𝜌ℓ:𝜔 and 𝜋1 ⪯𝑓 𝑞 where 𝑞 ∈ 𝜌ℓ. Therefore, there is some trace 𝜋′ ∈ 𝜌
s.t. 𝜋′

ℓ = 𝑞. Moreover, 𝜋 is accepting, hence there is a trace 𝜋′′ leading from 𝑞, which is
accepting as well. Hence, 𝜋′

1:ℓ.𝜋
′′ ∈ 𝜌 and moreover this trace is accepting.

Lemma 4.11. Let 𝜃 be an adjustment function. If Π𝜌𝛼 ∼ Π∪
𝜃(𝜌𝛼)

for each 𝛼 ∈ Σ𝜔 then
ℒ(MiHay𝜃(𝒞)) = Σ𝜔 ∖ ℒ(𝒞).

29

Proof. Consider a word 𝛼 ∈ ℒ(𝒞). Hence, there is an accepting trace 𝜋 ∈ Π𝜌𝛼 and also an
accepting trace 𝜋′ ∈ Π𝜃(𝜌𝛼)𝑘:𝜔 for some 𝑘 ∈ 𝜔. Since 𝜋′ emerges eventually in the 𝐵 set,
𝛼 is not accepted by ℒ(MiHay𝜃(𝒞)).

Conversely, assume that 𝛼 ̸∈ ℒ(𝒞). Then, all traces in Π𝜌𝛼 as well as in Π∪
𝜃(𝜌𝛼)

contain
infinitely many accepting states. Hence, we flush 𝐵-set infinitely many times yielding
𝛼 ∈ ℒ(MiHay𝜃(𝒞)).

Lemma 4.12. For a co-BA 𝒞, ℒ(MiHaysat(𝒞)) = ℒ(MiHaypr (𝒞)) = Σ𝜔 ∖ ℒ(𝒞).
Proof. We get the proof for Lemma 4.12 directly from the fact that Πpr(𝜌𝛼) ⊆ Π𝜌𝛼 for
any word 𝛼, and from Lemmas 4.8, 4.9, and 4.11. The correctness of the construction for
MiHaysat(𝒞) is given by Lemmas 4.10 and 4.11.

4.4 Optimization of Semi-Deterministic BA Complementa-
tion

A problem with the NCSB algorithm for complementing semi-deterministic Büchi automata
described in Section 3.6 is a high degree of nondeterminism. In this section, we propose an
optimization of the original NCSB construction, inspired by the MaxRank construction
in rank-based complementation from [16], which we denote as NCSB-MaxRank.

Let 𝒜 = (𝑄1 ⊎ 𝑄2,Σ, 𝛿 = 𝛿1 ⊎ 𝛿2 ⊎ 𝛿𝑡, 𝐼, 𝐹) be a semi-deterministic BA where 𝑄2

is the set of states reachable from some accepting state and 𝑄1 is the rest, 𝛿1 = 𝛿|𝑄1
,

𝛿2 = 𝛿𝑄2 , and 𝛿𝑡 is the transition function between 𝑄1 and 𝑄2. The NCSB-MaxRank
construction produces a BA NCSB-MaxRank(𝒜) = (𝑄′,Σ, 𝛿′, 𝐼 ′, 𝐹 ′) whose components
are the following:

• 𝑄′ = {(𝑁,𝐶, 𝑆,𝐵) ∈ 2𝑄1 × 2𝑄2 × 2𝑄2∖𝐹 × 2𝑄2 | 𝐵 ⊆ 𝐶},

• 𝐼 ′ = {(𝑄1 ∩ 𝐼,𝑄2 ∩ 𝐼, ∅, 𝑄2 ∩ 𝐼)},

• 𝛿′ = 𝛾1 ∪ 𝛾2 where

– 𝛾1((𝑁,𝐶, 𝑆,𝐵), 𝑎) = {(𝑁 ′, 𝐶 ′, 𝑆′, 𝐵′)} where
∗ 𝑁 ′ = 𝛿1(𝑁, 𝑎),
∗ 𝑆′ = 𝛿2(𝑆, 𝑎),
∗ 𝐶 ′ = (𝛿𝑡(𝑁, 𝑎) ∪ 𝛿2(𝐶, 𝑎)) ∖ 𝑆′, and
∗ 𝐵′ = 𝐶 ′ if 𝐵 = ∅, otherwise 𝐵′ = 𝛿2(𝐵, 𝑎) ∩ 𝐶 ′,

– If 𝐵′∩𝐹 ̸= ∅, then 𝛾2((𝑁,𝐶, 𝑆,𝐵), 𝑎) = ∅. Otherwise, we set 𝛾2((𝑁,𝐶, 𝑆,𝐵), 𝑎) =
{𝑁 ′, 𝐶 ′′, 𝑆′′, 𝐵′′} with

∗ 𝐵′′ = ∅,
∗ 𝑆′′ = 𝑆′ ∪𝐵′, and
∗ 𝐶 ′′ = 𝐶 ′ ∖ 𝑆′′.

• 𝐹 ′ = {(𝑁,𝐶, 𝑆,𝐵) ∈ 𝑄′ | 𝐵 = ∅}.
NCSB-MaxRank reduces the degree of nondeterminism by providing at most two

choices for each macrostate. The first choice is to keep all states in 𝐵 and the second choice
is to move all states from 𝐵 to 𝑆 if 𝐵 contains no accepting state. The construction is
incomparable to the original NCSB algorithm [5] due to the condition 𝐶 ′ ⊆ 𝛿2(𝐶 ∖ 𝐹, 𝑎),
which does not generally hold in NCSB-MaxRank.

30

Lemma 4.13. Let 𝐵 ⊆ 𝑄2 be a set of deterministic states and let 𝛼 be a word. If 𝛼 /∈ ℒ(𝒜),
then ∃𝑘 : ∀ℓ ≥ 𝑘 : (𝜌𝐵𝛼)ℓ ∩ 𝐹 = ∅.

Proof. Assume that 𝛼 /∈ ℒ(𝒜). Since 𝐵 is a set of states of the deterministic part, we have
|Π𝜌𝐵𝛼

| ≤ |𝐵|. Moreover, for each trace 𝜋 ∈ Π𝜌𝐵𝛼
there is some 𝑘𝜋 s.t. 𝜋ℓ /∈ 𝐹 for each ℓ ≥ 𝑘𝜋.

Taking 𝑘 = max{𝑘𝜋 | 𝜋 ∈ Π𝜌𝐵𝛼
}, we fulfill the condition of the lemma.

Lemma 4.14. Let 𝒜 be an SDBA. Then ℒ(NCSB-MaxRank(𝒜)) = Σ𝜔 ∖ ℒ(𝒜).

Proof. First, we prove that if 𝛼 ∈ ℒ(𝒜), then 𝛼 /∈ ℒ(NCSB-MaxRank(𝒜)). In that case,
there is an accepting run 𝜌 on 𝛼 in 𝒜. Moreover, 𝜌ℓ ∈ 𝑄2 for some ℓ ∈ 𝜔 and for all
𝑘 ≥ 𝑙. Therefore, for every run 𝑅 = (𝑁1, 𝐶1, 𝑆1, 𝐵1) . . . on 𝛼 in NCSB-MaxRank(𝒜), we
have that either 𝜌ℓ ∈ 𝑆ℓ or 𝜌ℓ ∈ 𝐶ℓ. Now assume the first case, 𝜌ℓ ∈ 𝑆ℓ. At some point,
we reach an accepting state in 𝜌 (𝜌𝑘 ∈ 𝑄𝐹 , 𝑘 ≥ ℓ). 𝜌𝑘 ∈ 𝑆𝑘 therefore means that 𝑅 is a
finite trace of at most 𝑘 − 1 elements. Now we turn to the second case, 𝜌ℓ ∈ 𝐶ℓ. In that
case, either 𝜌𝑙 ∈ 𝐶𝑙 and 𝜌𝑙 ∈ 𝐵𝑙 for each 𝑙 ≥ 𝑙0 ≥ ℓ, or we apply 𝛾2 and move 𝜌 to 𝑆,
i.e., 𝜌𝑚 ∈ 𝑆𝑚 for some 𝑚 ≥ ℓ. In the first case, 𝐵 is not empty anymore, hence 𝑅 is not
accepting. In the latter, we get the case similar to the first examined run 𝜌ℓ ∈ 𝑆𝑒𝑙𝑙. Hence,
𝛼 /∈ ℒ(NCSB-MaxRank(𝒜)).

Now, we prove that if 𝛼 /∈ ℒ(𝒜), then 𝛼 ∈ ℒ(NCSB-MaxRank(𝒜)). We construct an
accepting run 𝑅 on 𝛼 in 𝒜. Let 𝑅0 be a macrostate 𝑅0 = (𝑁1, 𝐶1, 𝑆1, 𝐵1) = (𝑄1 ∩ 𝐼,𝑄2 ∩
𝐼, ∅, 𝑄2∩ 𝐼). From Lemma 4.13 we have that there is a 𝑘1 s.t. ∀ℓ ≥ 𝑘1 : (𝜌

𝐵1
𝛼)ℓ∩𝐹 = ∅. We

set 𝑅𝑖+1 = 𝛾1(𝑅𝑖) for 1 ≤ 𝑖 < 𝑘. Further, we set 𝑅𝑘+1 = 𝛾2(𝑅𝑘). Then, we use Lemma 4.13
(on 𝛼𝑘1:𝜔) to obtain a position 𝑘2 giving us the point where 𝛾2 is applied. Such a constructed
run 𝑅 is infinite, because Lemma 4.13 ensures that we cannot reach an accepting state from
𝑆 on 𝛼. It remains to show that 𝑅 is accepting. From the construction, we have that 𝛾2
was used infinitely many times (and each successor of 𝛾2 is an accepting state). The run
therefore contains infinitely many accepting states.

31

Chapter 5

Implementation

The optimizations presented in this thesis are implemented in the tool Ranker [14] in C++.
We added these optimizations on top of the techniques from [16]. Ranker uses optimized
rank-based complementation for general BAs and also optimized special constructions for
complementing inherently weak and semi-deterministic automata.

5.1 Architecture
Ranker [14] is a publicly available command line tool for complementing Büchi automata,
written in C++. It accepts input Büchi automata in the HOA [3] or the BA [1] format. Both
state-based and transition-based input Büchi automata are supported. The architecture is
shown in Figure 5.1. After preprocessing, the input automaton is complemented using
a complementation procedure chosen based on the structural properties of the automaton,
and then postprocessed.

5.1.1 Preprocessing and Postprocessing

Ranker supports various options for preprocessing, including reduction of the input au-
tomaton, deelevation, saturation of accepting states, or feature extraction.

In order to reduce the input automaton before complementation, Ranker uses quo-
tienting based on direct simulation [25] (--preprocess=red). Inherently weak and semi-
deterministic automata are also transformed into equivalent transition-based BAs (TBA),
since this may reduce the number of states. We do not transform other BAs into TBAs.
Even though it could reduce the number of states, our optimizations of rank-based comple-
mentation procedure are more effective on state-based automata. For elevator automata, we
can use some of the deelevation strategies. Deelevation decreases the rank bounds for rank-
based complementation at the cost of at most doubling the number of states. Ranker sup-
ports three different deelevation strategies: (i) --preprocess=copyall where every com-
ponent is deelevated (as described in Section 4.1.6), (ii) --preprocess=copyiwa where only
inherently weak accepting components are deelevated, and (iii) --preprocess=copyheur
which combines two previous methods: if the input BA is inherently weak and the the rank
bound estimation is at least 5, then all MSCCs with an accepting state/transition are deel-
evated; if on all paths from all initial states, the first non-trivial MSCC is non-accepting,
then the initial part of the BA (up to the first non-trivial MSCC) is determinized and the
sizes of macrostates in the rank-based complementation are therefore reduced.

32

preprocessing complement postprocessing

• reduction
c∈{ red , no-red}

• deelevation
c∈{ copyheur , copyall,

copyiwa}
• F/δF saturation
c∈{accsat}

• feature extraction

• various com-
plementation
approaches

• automaton trimming

• reduction
c ∈ {red}

--preprocess=c

--best

--light --postprocess=c

(T)BAA AC

features

Figure 5.1: Overview of the architecture of Ranker with the most important command-
line options. Default settings are highlighted in blue. 𝐹 and 𝛿𝐹 denote accepting states
and transitions, respectively.

Using --preprocess=accsat, Ranker can saturate accepting states or transitions in
the input BA. The reason for this is that a higher number of accepting states reduces the
maximum rank in the rank-based complementation. On the other hand, this technique is
not always beneficial for other optimizations, since it may, for example, break the structure
for elevator rank estimation.

During preprocessing, Ranker also extracts information about the input BA that helps
the complementation procedure: for example the type of the BA, therank bound for indi-
vidual states, etc.

The preprocessed automaton is then complemented and the result is postprocessed.
Ranker removes useless states of the complement and optionally reduces the result using
direct simulation [25] (--postprocess=red).

5.1.2 Complementation

The complementation procedure is chosen based on the type of the input Büchi automa-
ton. We have a different procedure for each of the following types: inherently weak,
semi-deterministic, and other BAs (ordered by decreasing priority). See Figure 5.2 for
an overview of complementation approaches used in Ranker.

• Miyano-Hayashi construction
• Macrostates simulation-based prun-

ing/saturation optimization

• NCSB-Lazy construction
• NCSB-MaxRank construction
• Optimized Rank-based construction

• Optimized Rank-based construction
• Backoff: Spot

type

inherently weak

SDBA

otherwise

Figure 5.2: Overview of complementation approaches used in Ranker.

33

For inherently weak BAs, both the Miyano-Hayashi construction [26] and its optimiza-
tion for macrostates saturation (described in Section 4.3) are used. By default (--best),
Ranker constructs the complement using both approaches and then outputs the smaller
result. For the option --light, only the optimized construction is used.

For semi-deterministic BAs, by default (--best) both NCSB-MaxRank (described in
Section 4.4) and optimized rank-based construction with advanced rank estimation [16, 15]
is used and the smaller result is picked. For the option --light, only NCSB-MaxRank
is used. We can also turn on the NCSB-Lazy construction from [9] by using --ncsb-lazy,
but this algorithm usually gives worse results.

For other BAs, we use the optimized rank-based complementation construction from
[16, 15] with Spot as the backoff [16]. Ranker can determine if the input automaton has
a structure bad for the rank-based procedure and use another approach.

34

Chapter 6

Experimental Evaluation

In this chapter, we compare Ranker with other state-of-the-art tools for Büchi automata
complementation and show that it can produce a strictly smaller complement than other
state-of-the-art tools in the majority of cases. Moreover, we show that even if the original
rank-based complementation is not very efficient, with all our optimizations it becomes
competitive to other BA complementation approaches.

6.1 Tools and Evaluation Environment
In our experiments, we compared Ranker with other state-of-the-art tools, namely, Goal
[36] (implementing Piterman [28], Safra [31], and Fribourg [2]), Spot 2.9.3 [10] (im-
plementing Redziejowski’s algorithm [30]), Seminator 2 [4], LTL2dstar 0.5.4 [19], and
Roll [21]. All tools were set to the mode where they output a state-based BA.

We tested the correctness of Ranker using Spot’s autcross on all BAs in our bench-
mark. The experimental evaluation was performed on a 64-bit GNU/Linux Debian work-
station with an Intel(R) Xeon(R) CPU E5-2620 running at 2.40 GHz with 32 GiB of RAM
and using a timeout of 5 minutes.

6.2 Structure of Experiments
In this chapter, we present results of two sets of experiments. The first set was performed
after the optimized rank-based construction for elevator automata and data flow analysis
(described in Section 4.1) were implemented on top of the previous version of Ranker
from [16]. The results of these optimizations were published in [15]. The second set was
performed on the version of Ranker with optimizations from Sections 4.3 and 4.4 imple-
mented on top of the version from [15]. In our experiments, we focus mainly on the number
of states of the complement. Axes in all scatter plots are logarithmic.

The first experiment from each set shows the effectiveness of our heuristics for reducing
the generated state space by comparing the sizes of complemented BAs with other rank-
based algorithms without postprocessing. These results are useful for applications where
postprocessing is not needed, for example language inclusion or equivalence checking. We
compare Ranker with Schewe (the version Reduced Average Outdegree from [32], im-
plemented in Goal under -m rank -tr -ro), and also with its previous version to see the
impact of our new optimizations.

35

The second experiment from each set compares Ranker with other state-of-the-art
tools. It compares sizes of output BAs, therefore, each automaton was postprocessed with
autfilt (simplification level --high). The statistics for each set of experiments are shown
in a table. For the second experiment, scatter plots compare Ranker with Spot and
Roll, which currently give the best results among other state-of-the-art tools.

6.3 Elevator Automata and Data Flow Analysis
In this section, we show the effect of our optimized rank-based construction for elevator au-
tomata and data-flow analysis. We implemented these optimizations on top of the previous
version of Ranker from [16].

6.3.1 Datasets

We used two datasets for our experiments: (i) random with 11,000 BAs over a two letter
alphabet used in [35], which were randomly generated via the Tabakov-Vardi approach [34],
starting from 15 states and with various different parameters, and (ii) LTL containing 1,721
BAs over larger alphabets (up to 128 symbols) used in [4], obtained from LTL formulae
from literature (221) or randomly generated (1500). The automata were preprocessed using
Rabit [24] and Spot’s autfilt (using the --high simplification level), transformed to
state-based acceptance BAs (if they were not already), and converted to the HOA format [3].
From this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) having an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted BAs [5, 4, 6, 23].
In the end, we were left with 2 592 (random) and 414 (LTL) hard automata. We use all to
denote their union (3 006 BAs). Of these hard automata, 458 were elevator automata.

6.3.2 Comparison with Rank-Based Algorithms

Our first experiment shows the effectiveness of our optimizations by comparing the sizes of
complemented Büchi automata without postprocessing. Figure 6.1 compares the number of
states of the automata generated by Ranker with the automata generated by Schewe [32]
and the previous version of Ranker from [16], denoted as RankerOld. We can see that
the improvement was in many cases exponential when compared not only with Schewe,
but also with the previous optimizations in RankerOld.

The upper part of Table 6.3 gives summary statistics. The number of timeouts decreased
by 23% and the median decreased by 44% w.r.t. RankerOld.

6.3.3 Comparison with Other Tools

Our second experiment compares the number of states of the complement generated by
Ranker with other state-of-the-art tools with postprocessing. Scatter plots in Figure 6.2
show a comparison of Ranker with Spot and Roll. Figure 6.2a shows that Ranker
produces a smaller BA than Spot in the majority of cases, especially on BAs from random.
Roll uses a learning-based approach, which is completely different from any other tool.
This approach can output a much smaller automaton in some cases, but it is a more
heavyweight technique and the number of timeouts is therefore much higher compared to
other tools.

36

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000
Sc

he
we

(a) Ranker vs Schewe

10 100 1000 10000 100000
Ranker

10

100

1000

10000

100000

Ra
nk

er
Ol

d

(b) Ranker vs RankerOld

Figure 6.1: Comparison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vertical dashed lines represent timeouts). Blue data points
are from random and red data points are from LTL. Axes are logarithmic.

Summary statistics are in the lower part of Table 6.3. Ranker has the second lowest
mean (after Roll) and the third lowest median (after Roll and Seminator 2). Columns
wins and losses show the number of cases where Ranker outputs a strictly smaller or
strictly bigger automaton, respectively. Observe that in comparison with all other tools,
Ranker gives more wins than losses.

The number of timeouts of Ranker is still higher than of some other tools, especially
Spot, Piterman, and Fribourg.

6.4 Inherently Weak and Semi-Deterministic BAs
In this section, we present the results of our second set of experiments, with optimizations of
the complementation of inherently weak and semi-deterministic Büchi automata, described
in Sections 4.3 and 4.4. For this set of experiments, we denote the version of Ranker from
[15], described in Section 6.3, as RankerOld.

Table 6.1: Statistics for our experiments. The upper part compares various optimizations
of the rank-based procedure (no postprocessing). The lower part compares Ranker to
other approaches (with postprocessing). The left-hand side compares sizes of complement
BAs and the right-hand side runtimes of the tools. The wins and losses columns give the
number of times when Ranker was strictly better and worse. The values are given for the
three datasets as “all (random : LTL)”. Approaches in Goal are labelled with G.

method mean median wins losses mean runtime [s] median runtime [s] timeouts
Ranker 3812 (4452 : 207) 79 (93 : 26) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
RankerOld 7398 (8688 : 358) 141 (197 : 29) 2190 (2011 : 179) 111 (107 : 4) 9.37 (10.73 : 1.99) 0.61 (1.04 : 0.04) 365 (360 : 5)
Schewe G 4550 (5495 : 665) 439 (774 : 35) 2640 (2315 : 325) 55 (1 : 54) 21.05 (24.28 : 7.80) 6.57 (7.39 : 5.21) 937 (928 : 9)
Ranker 47 (52 : 18) 22 (27 : 10) 7.83 (8.99 : 1.30) 0.51 (0.84 : 0.04) 279 (276 : 3)
Piterman G 73 (82 : 22) 28 (34 : 14) 1435 (1124 : 311) 416 (360 : 56) 7.29 (7.39 : 6.65) 5.99 (6.04 : 5.62) 14 (12 : 2)
Safra G 83 (91 : 30) 29 (35 : 17) 1562 (1211 : 351) 387 (350 : 37) 14.11 (15.05 : 8.37) 6.71 (6.92 : 5.79) 172 (158 : 14)
Spot 75 (85 : 15) 24 (32 : 10) 1087 (936 : 151) 683 (501 : 182) 0.86 (0.99 : 0.06) 0.02 (0.02 : 0.02) 13 (13 : 0)
Fribourg G 91 (104 : 13) 23 (31 : 9) 1120 (1055 : 65) 601 (376 : 225) 17.79 (19.53 : 7.22) 9.25 (10.15 : 5.48) 81 (80 : 1)
LTL2dstar 73 (82 : 21) 28 (34 : 13) 1465 (1195 : 270) 465 (383 : 82) 3.31 (3.84 : 0.11) 0.04 (0.05 : 0.02) 136 (130 : 6)
Seminator 2 79 (91 : 15) 21 (29 : 10) 1266 (1131 : 135) 571 (367 : 204) 9.51 (11.25 : 0.08) 0.22 (0.39 : 0.02) 363 (362 : 1)
Roll 18 (19 : 14) 10 (9 : 11) 2116 (1858 : 258) 569 (443 : 126) 31.23 (37.85 : 7.28) 8.19 (12.23 : 2.74) 1109 (1106 : 3)

37

1 10 100 1000
Ranker

1

10

100

1000
Sp

ot

(a) Ranker vs Spot

1 10 100 1000
Ranker

1

10

100

1000

RO
LL

(b) Ranker vs Roll

Figure 6.2: Comparison of the complement size obtained by Ranker and other state-of-the-
art tools (horizontal and vertical dashed lines represent timeouts). Axes are logarithmic.

6.4.1 Datasets

For this set of experiments, we used automata from theh following three datasets: (i) random,
(ii) LTL, and (iii) Automizer. The first two datasets are the same as in the first set of ex-
periments from Section 6.3.1. Automizer contains 906 BAs over larger alphabets (up to 235

symbols) used in [9], obtained from the Ultimate Automizer tool. We did not use the
last benchmark in our previous experiments, because we focused mainly on hard automata
and most of the automata form Automizer are semi-deterministic.

In contrast to the first set of experiments, where we removed some special types of au-
tomata from the dataset, in this experiment we removed only trivial one-state BAs, because
Ranker contains a more efficient implementation for complementing these automata, es-
pecially inherently weak and semi-deterministic BAs. The final dataset contains 7,155 BAs
(denoted as all) with 4,533 random, 1,716 LTL, and 906 Automizer automata.

6.4.2 Effect of the New Optimizations

In the first experiment, we measured the effect of our optimizations for inherently weak and
semi-deterministic Büchi automata without postprocessing. The evaluation was performed
on LTL and Automizer benchmarks. We use both to denote their union. Most of the
automata from these benchmarks are either inherently weak or semi-deterministic.

Table 6.2: Effects of our optimizations for IW and SDBA automata. Sizes of output BAs
are given as “both (LTL : Automizer)”.

method mean median
MiHaypr 43.4 (7.3 : 140.7) 7 (5 : 21)
MiHay 46.1 (10.9 : 141.3) 7 (6 : 23)
NCSB-MaxRank 30 (20.3 : 38.3) 12 (8 : 28)
NCSB-Lazy 35.7 (25.1 : 44.8) 13 (9 : 32)

38

1 10 100 1000 10000
MiHay-Prune

1

10

100

1000

10000
M

iH
ay

(a) MiHaypr vs MiHay

1 10 100 1000 10000
NCSB-MaxRank

1

10

100

1000

10000

NC
SB

-L
az

y

(b) NCSB-MaxRank vs NCSB-Lazy

Figure 6.3: Evaluation of the effect of our optimizations for IW and SDBA automata.

We first compared the number of states generated by Mihay and by the optimization
Mihay𝑝𝑟 from Section 4.3 on inherently weak BAs (1,308 BAs – 948 from LTL and 360
from Automizer). The scatter plot is shown in Figure 6.3a and summary statistics are in
the upper part of Table 6.2. The optimization clearly reduces the number of states of the
complement, especially for automata from LTL, and it decreases both the mean and the
median.

We also compared the number of states generated by NCSB-Lazy [9] and NCSB-
MaxRank from Section 4.4 on semi-deterministic BAs that are not inherently weak (735 BAs
– 328 from LTL and 407 from Automizer). The scatter plot is in Figure 6.3b and summary
statistics are in the lower part of Table 6.2. Our optimization works better especially for big
automata on the output. Both the mean and the median are lower for NCSB-MaxRank.

6.4.3 Comparison with Other Tools

In the second experiment, we compared Ranker with other state-of-the-art tools for Büchi
automata complementation. We focused on the number of states of the output automata af-
ter postprocessing. Comparison of the number of states of automata generated by Ranker,

Table 6.3: Statistics for our experiments. The table compares the sizes of complement BAs
obtained by Ranker and other approaches (after postprocessing). The wins and losses
columns give the number of times when Ranker was strictly better and worse. The values
are given for the three datasets as “all (random : LTL : Automizer)”. Approaches in Goal
are labelled with G.

method mean median wins losses timeouts
Ranker 38 (44 : 9 : 67) 11 (18 : 5 : 22) 158 (53 : 0 : 105)
RankerOld 30 (38 : 10 : 32) 12 (18 : 6 : 22) 1554 (356 : 650 : 548) 264 (142 : 69 : 53) 458 (259 : 7 : 192)
Piterman G 43 (56 : 12 : 38) 14 (19 : 8 : 24) 2881 (1279 : 966 : 636) 392 (263 : 68 : 61) 309 (12 : 4 : 293)
Safra G 49 (60 : 17 : 56) 15 (18 : 10 : 24) 3109 (1348 : 1117 : 644) 274 (229 : 31 : 14) 599 (160 : 30 : 409)
Spot 46 (57 : 8 : 66) 11 (18 : 5 : 18) 1347 (935 : 339 : 73) 1057 (327 : 343 : 387) 73 (13 : 0 : 60)
Fribourg G 49 (68 : 8 : 27) 11 (18 : 6 : 19) 2223 (1177 : 503 : 543) 586 (245 : 207 : 134) 399 (93 : 2 : 304)
LTL2dstar 44 (56 : 12 : 47) 14 (19 : 7 : 24) 2794 (1297 : 924 : 573) 448 (283 : 88 : 77) 288 (130 : 13 : 145)
Seminator 2 46 (58 : 8 : 64) 11 (17 : 5 : 21) 1626 (1297 : 291 : 38) 1113 (286 : 398 : 429) 419 (368 : 1 : 50)
Roll 18 (15 : 11 : 54) 9 (8 : 8 : 28) 6050 (3824 : 1551 : 675) 620 (369 : 125 : 126) 1893 (1595 : 8 : 290)

39

1 10 100 1000
Ranker

1

10

100

1000
Ol

dR
an

ke
r

(a) Ranker vs RankerOld

1 10 100 1000
Ranker

1

10

100

1000

Sp
ot

(b) Ranker vs Spot

Figure 6.4: Comparison of the complement size obtained by Ranker, RankerOld, and
Spot (horizontal and vertical dashed lines represent timeouts).

RankerOld, and Spot are given in Figure 6.4. Summarizing statistics are in Table 6.3. The
backoff strategy was applied in 278 cases (264 for random, 1 for LTL, and 13 for Automizer).

The number of timeouts was reduced by 65% w.r.t. RankerOld – this is the reason of
the higher mean. Ranker also has the third smallest mean and median, after Roll and
RankerOld, but they have a much higher number of timeouts. From the columns wins
and losses we can see that Ranker gives a strictly smaller automaton in the majority of
cases compared to all other tools.

Regarding runtimes, we can see from Table 6.4 that Ranker is comparable to Semi-
nator 2. Spot still remains the fastest tool for BA complementation.

Table 6.4: Run times of the tools given as “all (random : LTL : Automizer)”

method mean median
Ranker 3.72 (4.34 : 0.45 : 7.30) 0.05 (0.10 : 0.04 : 0.08)
RankerOld 4.62 (5.33 : 0.72 : 9.69) 0.07 (0.19 : 0.03 : 0.15)
Piterman G 8.06 (6.07 : 5.95 : 28.38) 5.12 (4.96 : 5.08 : 8.68)
Safra G 11.58 (10.41 : 6.51 : 38.65) 5.41 (5.32 : 5.26 : 9.02)
Spot 0.64 (0.57 : 0.02 : 2.28) 0.02 (0.02 : 0.01 : 0.02)
Fribourg G 13.13 (14.14 : 6.06 : 23.88) 5.69 (6.82 : 4.92 : 6.57)
LTL2dstar 2.1 (2.25 : 0.34 : 5.15) 0.02 (0.02 : 0.01 : 0.05)
Seminator 2 4.16 (6.33 : 0.03 : 1.88) 0.03 (0.08 : 0.01 : 0.03)
Roll 23.65 (29.82 : 3.88 : 49.02) 3.34 (6.19 : 1.71 : 17.14)

40

Chapter 7

Conclusion

In this thesis, we presented several optimizations for efficient complementation of Büchi
automata. Firstly, we focused on rank-based complementation. We identified the main
source of a state space blow-up, which is often an unnecessarily high bound on maximum
rank for each state, and observed that if an automaton has a specific structure, we can
reduce the rank bound for states in each strongly connected component of the automaton.
We identified a subclass of Büchi automata, called elevator automata, whose structure
enables to reduce the rank bound. We presented an algorithm assigning rank bound for
states in each strongly connected component of the automaton. This algorithm can also to
a certain degree be extended to general Büchi automata with no specific structure. Then
we presented a technique based on data flow analysis that enables propagation of rank
restrictions throughout the automaton. Moreover, we showed that elevator automata can
be complemented in 𝒪(16𝑛) space. The definition of elevator automata has already been
used by other members of the research community [22].

In the second part of the thesis, we focused on optimizations of specialized comple-
mentation constructions for inherently weak and semi-deterministic Büchi automata. Due
to special properties of these types of BAs, we can use more efficient algorithms than the
rank-based construction. We presented an optimization removing states from a macrostate
of the complement of an inherently weak automaton based on direct simulation. The op-
timization of semi-deterministic BA complementation was inspired by an optimization of
rank-based construction.

All techniques presented in this thesis were implemented as an extension of the tool
Ranker for complementation of Büchi automata. We performed a thorough experimental
evaluation on thousand of hard Büchi automata occuring in practice, as well as randomly
generated automata. Our optimizations significantly reduced the generated state space
compared to the previous version of Ranker. The algorithm for efficient complementation
of elevator automata caused an exponential improvement in a lot of cases. We also compared
the results with other state-of-the-art tools for Büchi automata complementation. Ranker
produces a smaller automaton than any other tool in the majority of cases. Even though the
original rank-based construction may be quite inefficient, with the optimizations presented
in this paper, together with some previous optimizations implemented in Ranker, we get
a tool that is competitive with other state-of-the-art tools and that can in the majority of
cases even produce smaller automata than any other tool.

The ideas presented in this thesis are a part of my research on which we worked together
with my supervisor and my consultant. My own contribution is especially the extension of
the definition of elevator automata (originally without inherently weak accepting compo-

41

nents), some optimizations, the implementation of the algorithm assigning rank bounds to
states of each strongly connected component, and the implementation of complementation
algorithms for inherently weak and semi-deterministic Büchi automata, as well as their op-
timizations. The first part of the thesis, in particular the algorithms for elevator automata
and data flow analysis, is a part of a paper published at TACAS’22 [15], and the second
part, including the implementation of Ranker, is a part of a tool paper at the time of
writing conditionally accepted at CAV’22.

7.1 Future Work
We plan to extend the rank-based complementation algorithm and some of the optimizations
to (transition-based) Emerson-Lei automata (TELA) – 𝜔-automata with a richer acceptance
condition than Büchi automata. Due to the richer acceptance condition, TELAs enable
a more compact representation than BAs.

The next subject of our future work is a decomposition-based Büchi automata comple-
mentation. The idea is that we keep information about each strongly connected component
of the automaton separately and using a round-robin strategy, we inspect the runs in only
one component at the same time. This strategy should reduce the degree of nondeterminism
and thus reduce the number of generated states of the complement.

42

Bibliography

[1] Abdulla, P. A., Chen, Y., Clemente, L., Holík, L., Hong, C.-D. et al.
Simulation Subsumption in Ramsey-based Büchi Automata Universality and
Inclusion Testing. In: Springer. Proc. of CAV’10. 2010, p. 132–147.

[2] Allred, J. D. and Ultes Nitsche, U. A Simple and Optimal Complementation
Algorithm for Büchi Automata. In: Proceedings of the Thirty third Annual IEEE
Symposium on Logic in Computer Science (LICS 2018). IEEE Computer Society
Press, July 2018, p. 46–55.

[3] Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J. et al.
The Hanoi Omega-Automata Format. In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. Springer, 2015, vol. 9206, p. 479–486. Lecture Notes in
Computer Science. DOI: 10.1007/978-3-319-21690-4_31. Available at:
https://doi.org/10.1007/978-3-319-21690-4_31.

[4] Blahoudek, F., Duret Lutz, A. and Strejček, J. Seminator 2 Can Complement
Generalized Büchi Automata via Improved Semi-Determinization. In: Proceedings of
the 32nd International Conference on Computer-Aided Verification (CAV’20).
Springer, July 2020, vol. 12225, p. 15–27. Lecture Notes in Computer Science.

[5] Blahoudek, F., Heizmann, M., Schewe, S., Strejček, J. and Tsai, M.
Complementing Semi-deterministic Büchi Automata. In: Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings.
Springer, 2016, vol. 9636, p. 770–787. Lecture Notes in Computer Science. DOI:
10.1007/978-3-662-49674-9_49. Available at:
https://doi.org/10.1007/978-3-662-49674-9_49.

[6] Boigelot, B., Jodogne, S. and Wolper, P. On the Use of Weak Automata for
Deciding Linear Arithmetic with Integer and Real Variables. In: Automated
Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings. Springer, 2001, vol. 2083, p. 611–625. Lecture Notes in
Computer Science. DOI: 10.1007/3-540-45744-5_50. Available at:
https://doi.org/10.1007/3-540-45744-5_50.

[7] Breuers, S., Löding, C. and Olschewski, J. Improved Ramsey-Based Büchi
Complementation. In: Proc. of FOSSACS’12. Springer, 2012, p. 150–164.

43

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/3-540-45744-5_50

[8] Büchi, J. R. On a Decision Method in Restricted Second Order Arithmetic.
In: Proc. of International Congress on Logic, Method, and Philosophy of Science
1960. Stanford Univ. Press, Stanford, 1962.

[9] Chen, Y., Heizmann, M., Lengál, O., Li, Y., Tsai, M. et al. Advanced
automata-based algorithms for program termination checking. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. ACM, 2018,
p. 135–150. DOI: 10.1145/3192366.3192405. Available at:
https://doi.org/10.1145/3192366.3192405.

[10] Duret Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, É.
et al. Spot 2.0 — A Framework for LTL and 𝜔-Automata Manipulation.
In: Automated Technology for Verification and Analysis. Cham: Springer
International Publishing, 2016, p. 122–129. ISBN 978-3-319-46520-3.

[11] Fogarty, S. and Vardi, M. Y. Büchi complementation and size-change
termination. In: Springer. Proc. of TACAS’09. 2009, p. 16–30.

[12] Friedgut, E., Kupferman, O. and Vardi, M. Büchi Complementation Made
Tighter. International Journal of Foundations of Computer Science. 2006, vol. 17,
p. 851–868.

[13] Glabbeek, R. and Ploeger, B. Five Determinisation Algorithms. In: Proc. of
CIAA’08. Springer, 2008, p. 161–170. ISBN 978-3-540-70843-8.

[14] Havlena, V., Lengál, O. and Šmahlíková, B. Ranker. 2021.
https://github.com/vhavlena/ranker.

[15] Havlena, V., Lengál, O. and Šmahlíková, B. Sky Is Not the Limit: Tighter Rank
Bounds for Elevator Automata in Buchi Automata Complementation. In: Proceedings
of TACAS’22. Springer Verlag, 2022. ISSN 0302-9743.

[16] Havlena, V. and Lengál, O. Reducing (To) the Ranks: Efficient Rank-Based
Büchi Automata Complementation. In: 32nd International Conference on
Concurrency Theory (CONCUR 2021). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, vol. 203, p. 2:1–2:19. Leibniz International
Proceedings in Informatics (LIPIcs). DOI: 10.4230/LIPIcs.CONCUR.2021.2. ISBN
978-3-95977-203-7. ISSN: 1868-8969. Available at:
https://drops.dagstuhl.de/opus/volltexte/2021/14379.

[17] Heizmann, M., Hoenicke, J. and Podelski, A. Termination Analysis by Learning
Terminating Programs. In: Springer. Proc. of CAV’14. 2014, p. 797–813.

[18] Kähler, D. and Wilke, T. Complementation, Disambiguation, and Determinization
of Büchi Automata Unified. In: Springer. Proc. of ICALP’08. 2008, p. 724–735.

[19] Klein, J. and Baier, C. On-the-Fly Stuttering in the Construction of Deterministic
omega -Automata. In: Implementation and Application of Automata, 12th
International Conference, CIAA 2007, Prague, Czech Republic, July 16-18, 2007,
Revised Selected Papers. Springer, 2007, vol. 4783, p. 51–61. Lecture Notes in
Computer Science. DOI: 10.1007/978-3-540-76336-9_7. Available at:
https://doi.org/10.1007/978-3-540-76336-9_7.

44

https://doi.org/10.1145/3192366.3192405
https://github.com/vhavlena/ranker
https://drops.dagstuhl.de/opus/volltexte/2021/14379
https://doi.org/10.1007/978-3-540-76336-9_7

[20] Kupferman, O. and Vardi, M. Y. Weak alternating automata are not that weak.
ACM Trans. Comput. Log. 2001, vol. 2, no. 3, p. 408–429. DOI:
10.1145/377978.377993. Available at: https://doi.org/10.1145/377978.377993.

[21] Li, Y., Sun, X., Turrini, A., Chen, Y. and Xu, J. ROLL 1.0: 𝜔-Regular Language
Learning Library. In: Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part I. Springer, 2019, vol. 11427,
p. 365–371. Lecture Notes in Computer Science. DOI: 10.1007/978-3-030-17462-0_23.
Available at: https://doi.org/10.1007/978-3-030-17462-0_23.

[22] Li, Y., Turrini, A., Feng, W., Vardi, M. and Zhang, L. Divide-and-Conquer
Determinization of Büchi Automata based on SCC Decomposition. In: Proc. of
CAV’22. 2022. To appear.

[23] Li, Y., Vardi, M. Y. and Zhang, L. On the Power of Unambiguity in Büchi
Complementation. In: Proceedings 11th International Symposium on Games,
Automata, Logics, and Formal Verification, Brussels, Belgium, September 21-22,
2020. Open Publishing Association, 2020, vol. 326, p. 182–198. Electronic
Proceedings in Theoretical Computer Science. DOI: 10.4204/EPTCS.326.12.

[24] Mayr, R. and Clemente, L. Advanced automata minimization. In: Proc. of
POPL’13. 2013, p. 63–74.

[25] Mayr, R. and Clemente, L. Efficient Reduction of Nondeterministic Automata
with Application to Language Inclusion Testing. Logical Methods in Computer
Science. Episciences. org. 2019, vol. 15.

[26] Miyano, S. and Hayashi, T. Alternating finite automata on 𝜔-words. Theoretical
Computer Science. 1984, vol. 32, no. 3, p. 321–330. DOI:
https://doi.org/10.1016/0304-3975(84)90049-5. ISSN 0304-3975. Available at:
https://www.sciencedirect.com/science/article/pii/0304397584900495.

[27] Nielson, F., Nielson, H. R. and Hankin, C. Principles of program analysis.
Springer, 1999. ISBN 978-3-540-65410-0. Available at:
https://doi.org/10.1007/978-3-662-03811-6.

[28] Piterman, N. From Nondeterministic Büchi and Streett Automata to Deterministic
Parity Automata. In: IEEE. Proc. of LICS’06. 2006, p. 255–264.

[29] Ramsey, F. P. On a Problem of Formal Logic. Proceedings of the London
Mathematical Society. 1930, no. 1, p. 264–286. DOI: 10.1112/plms/s2-30.1.264. ISSN
0024-6115. Available at: https://doi.org/10.1112/plms/s2-30.1.264.

[30] Redziejowski, R. R. An Improved Construction of Deterministic Omega-automaton
Using Derivatives. Fundam. Informaticae. 2012, vol. 119, 3-4, p. 393–406. DOI:
10.3233/FI-2012-744. Available at: https://doi.org/10.3233/FI-2012-744.

[31] Safra, S. On the Complexity of 𝜔-automata. In: IEEE. Proc. of FOCS’88. 1988,
p. 319–327.

45

https://doi.org/10.1145/377978.377993
https://doi.org/10.1007/978-3-030-17462-0_23
https://www.sciencedirect.com/science/article/pii/0304397584900495
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.3233/FI-2012-744

[32] Schewe, S. Büchi Complementation Made Tight. In: 26th International Symposium
on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009,
Freiburg, Germany, Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2009, vol. 3, p. 661–672. LIPIcs. DOI: 10.4230/LIPIcs.STACS.2009.1854.
Available at: https://doi.org/10.4230/LIPIcs.STACS.2009.1854.

[33] Sistla, A. P., Vardi, M. Y. and Wolper, P. The Complementation Problem for
Büchi Automata with Applications to Temporal Logic. Theoretical Computer
Science. Elsevier. 1987, vol. 49, 2-3, p. 217–237.

[34] Tabakov, D. and Vardi, M. Y. Experimental Evaluation of Classical Automata
Constructions. In: Proc. of LPAR’05. Springer, 2005, p. 396–411. ISBN
978-3-540-31650-3.

[35] Tsai, M., Fogarty, S., Vardi, M. Y. and Tsay, Y. State of Büchi
Complementation. In: Implementation and Application of Automata. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, p. 261–271. ISBN 978-3-642-18098-9.

[36] Tsai, M., Tsay, Y. and Hwang, Y. GOAL for Games, Omega-Automata, and
Logics. In: Computer Aided Verification. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, p. 883–889. ISBN 978-3-642-39799-8.

[37] Vardi, M. Y. and Wolper, P. An Automata-Theoretic Approach to Automatic
Program Verification. In: IEEE. Proceedings of the First Symposium on Logic in
Computer Science. 1986, p. 322–331.

[38] Yan, Q. Lower Bounds for Complementation of 𝜔-Automata Via the Full Automata
Technique. In: Automata, Languages and Programming. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2006, p. 589–600. ISBN 978-3-540-35908-1.

46

https://doi.org/10.4230/LIPIcs.STACS.2009.1854

	Introduction
	Automata Theory
	Languages
	-Languages
	Omega Automata
	Büchi Automata
	Special Types of Büchi Automata
	Simulations

	Complementing Büchi Automata
	Run DAGs
	Basic Rank-Based Complementation
	Complementation with Tight Rankings
	Optimal Rank-Based Complementation
	Inherently Weak Büchi Automata Complementation
	Semi-deterministic Büchi Automata Complementation

	Next Generation of Rank-Based Algorithms for Büchi Automata
	Elevator Büchi Automata
	Non-accepting Components
	Deterministic Components
	Inherently Weak Accepting Components
	Rank Restriction for Elevator Automata
	Refined Ranks for Non-Elevator Automata
	Efficient Complementation of Elevator Automata

	Data Flow Analysis
	Outer Macrostate Analysis
	Inner Macrostate Analysis

	Optimization of Inherently Weak BA Complementation
	Optimization of Semi-Deterministic BA Complementation

	Implementation
	Architecture
	Preprocessing and Postprocessing
	Complementation

	Experimental Evaluation
	Tools and Evaluation Environment
	Structure of Experiments
	Elevator Automata and Data Flow Analysis
	Datasets
	Comparison with Rank-Based Algorithms
	Comparison with Other Tools

	Inherently Weak and Semi-Deterministic BAs
	Datasets
	Effect of the New Optimizations
	Comparison with Other Tools

	Conclusion
	Future Work

	Bibliography

