
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

N E X T G E N E R A T I O N O F R A N K - B A S E D A L G O R I T H M S
F O R O M E G A A U T O M A T A
NOVÁ GENERACE RANK-BASED ALGORITMŮ PRO OMEGA AUTOMATY

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR BARBORA ŠMAHLÍKOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. ONDŘEJ LENGÁL, Ph.D.
VEDOUCÍ PRÁCE

CONSULTANT Ing. VOJTĚCH HAVLENA, Ph.D.
KONZULTANT PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022

Bachelor's Thesis Specification |||||||||||||||||||||||||
24442

Student: Smahlikova Barbora
Programme: Information Technology
Title: Next Generation of Rank-Based Algorithms for Omega Automata
Category: Theoretical Computer Science
Assignment:

1. Study the theory of Bijchi automata and other omega automata. Furthermore, study rank-
based algorithms for complementation and testing universality and inclusion of such
automata.

2. Propose optimisations of the algorithms from the previous point.
3. Implement the proposed optimisations.
4. Experimentally compare your implementation with other tools using a suitable benchmark

set.
Recommended literature:

• Orna Kupferman, Moshe Y. Vardi: Weak alternating automata are not that weak. ACM
Trans. Comput. Log. 2(3): 408-429 (2001)

• Ehud Friedgut, Orna Kupferman, Moshe Y. Vardi: Bijchi Complementation Made Tighter. Int.
J. Found. Comput. Sci. 17(4): 851-868 (2006)

• Sven Schewe: Bijchi Complementation Made Tight. STACS 2009: 661-672
• Yu-Fang Chen, Vojtech Havlena, Ondrej Lengal: Simulations in Rank-Based Buchi

Automata Complementation. APLAS 2019: 447-467
• Vojtech Havlena, Ondrej Lengal: Reducing (to) the Ranks: Efficient Rank-based Buchi

Automata Complementation. CONCUR 2021
Requirements for the first semester:

• The first item of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Lengal Ondrej, Ing., Ph.D.
Consultant: Havlena Vojtech, Ing., Ph.D., UITS FIT VUT
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022
Approval date: November 3, 2021

Bachelor's Thesis Specification/24442/2021/xsmahlOO Page 1/1

https://www.fit.vut.cz/study/theses/

Abstract
Búch i automata (B A) complementation is a crucial operation for terminat ion analysis of
programs, model checking, or decision procedures for various logics. Despite its prominence,
practically efficient algorithms for B A complementation are s t i l l missing. Th is thesis deals
wi th optimizations of Búch i automata complementation, focusing main ly on rank-based
techniques. The original rank-based algori thm is asymptot ical ly opt imal , but it can s t i l l
generate unnecessarily large state space. For a pract ical usage, it is therefore desirable to
reduce the number of generated states i n the complement as much as possible. We propose
several techniques that can efficiently complement some special types of Búchi automata,
occuring often i n practice, based on their structure. Some of these techniques can also, to
a certain degree, be extended to general Búchi automata. The developed techniques were
implemented as an extension of the tool R A N K E R for Búch i automata complementation
and evaluated on thousands of hard automata. Our optimizations significantly reduce the
generated state space and R A N K E R produces i n the majority of cases a smaller complement
than other state-of-the-art tools.

Abstrakt
Komplementace Búch iho a u t o m a t ů je kl íčovou ope rac í pro t e r m i n a č n í a n a l ý z u p r o g r a m ů ,
model checking nebo rozhodovac í procedury pro r ů z n é logiky. Tato p r á c e se zabývá p řede
vš ím optimalizacemi rank-based komplementace Búch iho a u t o m a t ů . P ů v o d n í rank-based
algoritmus je sice asymptot icky op t imá ln í , p ř e s to m ů ž e generovat n e z b y t n ě velký s t avový
prostor. P r o p rak t i cké použ i t í je tedy žádouc í m a x i m á l n ě redukovat p o č e t vygenerovaných
s t a v ů v komplementu. V t é t o p rác i p ř e d s t a v í m e několik technik pro efekt ivní komple-
mentaci n ě k t e r ý c h speciá ln ích t y p ů Búch iho a u t o m a t ů , čas to se vyskytu j íc ích v praxi , k t e ré
jsou za ložené na jejich s t r u k t u ř e . N ě k t e r é z nav ržených technik lze do u rč i t é m í r y rozšíř i t
i pro obecné Búch iho automaty. Techniky p ř e d s t a v e n é v t é t o p rác i byly i m p l e m e n t o v á n y
jako rozší ření n á s t r o j e R A N K E R pro komplementaci Búch iho a u t o m a t ů . T y t o optimalizace
v ý r a z n ě r eduku j í generovaný s t avový prostor a R A N K E R ve vě tš ině p ř í p a d ů produkuje menš í
komplement než o s t a t n í existuj ící n á s t r o j e pro komplementaci.

Keywords
Búch i Automata , Búch i Complementat ion, Rank-Based Complementat ion, Elevator A u
tomata

Klíčová slova
B ú c h i h o automaty, Komplementace B ú c h i h o a u t o m a t ů , Rank-based komplementace, Ele
vator automaty

Reference
S M A H L Í K O V Á , Barbora . Next Generation of Rank-Based Algorithms for Omega Au
tomata. Brno , 2022. Bachelor's thesis. Brno Universi ty of Technology, Facul ty of In
formation Technology. Supervisor Ing. O n d ř e j Lengá l , P h . D . Consultant Ing. Voj těch
Havlena, P h . D .

Rozšířený abstrakt
B ú c h i h o automaty jsou automaty nad nekonečnými slovy, k t e r é definují t ř í d u w-regulá rn ích
j a z y k ů . Jejich komplementace m á ř a d u využi t í , n a p ř í k l a d v t e r m i n a č n í ana lýze p r o g r a m ů ,
model checkingu, rozhodovac ích p r o c e d u r á c h pro r ů z n é logiky (SIS, E T L , Q P T L , . . .) ,
j azykové ink luz i nebo testu ekvivalence. J e d n á se o velmi n á r o č n o u operaci. P ů v o d n í kom-
p l e m e n t a č n í algoritmus, nav ržený B ů c h i m v roce 1962, produkoval pro n - s t avový automat
komplement s až 22™ stavy. Pro to od t é doby vzn ik la celá ř a d a p ř í s t u p ů , jak B ů c h i h o
automaty komplementovat, se snahou sníži t prostorovou složi tost t é t o operace.

V p r v n í čás t i p r á c e se věnuji z e jména o p t i m a l i z a c í m tzv. rank-based komplementace.
P r o tento p ř í s t u p existuje algoritmus, k t e r ý asymptot icky dosahuje doln í hranice s loži tost i
(0.76n) n [32]. Tento algoritmus ale s tá le produkuje stavy a přechody , k t e r é nejsou v kom-
plementu n e z b y t n ě n u t n é , proto je žádouc í hledat optimalizace, k t e r é tyto stavy nebudou
generovat, a t í m budou redukovat generovaný s t avový prostor. Rank-based komplemen
tace spoč ívá mimo j iné v tom, že k a ž d é m u stavu v a k t u á l n ě dosaž i t e lné m n o ž i n ě s t a v ů
př i řazu je ně jaké číslo (tzv. rank). O b e c n ě je m a x i m á l n í rank k a ž d é h o stavu pro n - s t avový
automat roven 2n — 1. P o č e t nás l edn íků ně jakého makrostavu v komplementu je potom
př ib l ižně roven fak tor iá lu z tohoto m a x i m á l n í h o ranku. P o k u d m á ale automat vhodnou
strukturu, nen í takto vysoký rank p o t ř e b a a velké m n o ž s t v í s t a v ů se generuje zby tečně .
Proto je v t é t o prác i p ř e d s t a v e n algoritmus, k t e r ý u m í efekt ivně snížit m a x i m á l n í rank
s t a v ů m v j edno t l i vých si lně souvis lých k o m p o n e n t á c h u tzv. elevátor a u t o m a t ů . J e d n á se
0 automaty, k t e r é se velmi ča s to vysky tu j í v p rax i a k t e r é ma j í t akové vlastnosti , k t e ré
umožňu j í efekt ivně snížit omezen í na m a x i m á l n í rank s t a v ů m v k a ž d é si lně souvislé kom
p o n e n t ě . Tento algoritmus v ý r a z n ě redukuje generovaný s t avový prostor a lze do j i s t é m í r y
rozšíř i t i pro obecné Bůch iho automaty. P o m o c í techniky insp i rované data flow ana lý
zou jsme p o t é schopni propagovat j i s t á omezen í na ranky n a p ř í č automatem a t í m ranky
j edno t l i vých s t a v ů j e š t ě více omezovat.

Rank-based komplementaci m ů ž e m e použ í t pro jakýkol iv obecný B ů c h i h o automat, ale
j i s té spec iá ln í typy a u t o m a t ů lze komplementaovat efektivněji p o m o c í specia l izovaných pro
cedur. Dalš í čás t p r á c e proto obsahuje optimalizace k o m p l e m e n t a č n í c h a lg o r i tmů pro in-
herently weak a semi -de te rmin i s t i cké automaty.

Všechny optimalizace p rezen tované v t é t o p rác i by ly i m p l e m e n t o v á n y jako rozší ření
ná s t ro j e R A N K E R [14] v C + + , k t e r ý komplementuje B ů c h i h o automaty. B y l a provedena
ř a d a e x p e r i m e n t ů na někol ika t is ících t ěžkých automatech (použ ívaných v prax i i n á h o d n ě
vygene rovaných) . D íky o p t i m a l i z a c í m na omezen í m a x i m á l n í h o ranku dosahujeme čas to
1 exponenc iá lně lepších výs ledků nejenom oproti p ů v o d n í m u rank-based algoritmu, ale
i prot i p ředchoz í verzi n á s t r o j e bez t ě c h t o op t ima l i zac í . Rank-based komplementace se
sama o sobě m ů ž e v n ě k t e r ý c h p ř í p a d e c h jevit jako neefekt ivní , n i c m é n ě př i zapo jen í různých
op t imal izac í m ů ž e konkurovat o s t a t n í m k o m p l e m e n t a č n í m p ř í s t u p ů m a dokonce m ů ž e bý t
v ř a d ě p ř í p a d ů i efektivnější . V praxi se ale velmi čas to vysky tu j í automaty speciá ln ích t y p ů ,
k t e r é lze na zák l adě jejich s t ruktury komplementovat efektivněji , r ů z n ý m i spec ia l izovanými
procedurami. R A N K E R proto podporuje několik op t ima l i zovaných k o m p l e m e n t a č n í c h algo
r i t m ů a na zák ladě typu a v l a s t n o s t í v s t u p n í h o automatu vybere t u p r a v d ě p o d o b n ě neje-
fektivnější , nebo v n ě k t e r ý c h p ř í p a d e c h vyzkouš í procedur více a v r á t í ne jmenš í automat.
K r o m ě s ledování efektu j edno t l i vých op t ima l i zac í p o m o c í s rovnáván í výs ledků s p ředchoz í
verzí n á s t r o j e bylo t a k é provedeno pečl ivé s rovnán í s o s t a t n í m i d o s t u p n ý m i nás t ro j i pro
komplementaci B ů c h i h o a u t o m a t ů , k t e r é používa j í r ů z n é algoritmy. V experimentech jsme
se sous t ředi l i z e jména na výs ledný p o č e t s t a v ů komplementu. R A N K E R produkuje ve větš ině
p ř í p a d ů m e n š í automaty než o s t a t n í d o s t u p n é nás t ro j e .

Next Generation of Rank-Based Algorithms for
Omega Automata

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ondfej Lengal , P h . D . , and w i t h the help of my consultant
Ing. Vojtech Havlena, P h . D . I have listed a l l the l i terary sources, publications and other
sources that were used during the preparation of this thesis.

Barbora Šmahl íková
M a y 10, 2022

Acknowledgements
I would like to thank my supervisor Ondra Lengal and my consultant Voj t a Havlena for
their help, support, and guidance throughout my work on this thesis and other projects.
I am grateful that they are always creating such a friendly atmosphere during our meetings
that I feel comfortable presenting a l l of my ideas. Special thanks go to my loved ones, not
only for always support ing me i n my work, decisions and crazy ideas, but also for showing
me what is t ru ly important in life.

Contents

1 Introduction 3

2 A u t o m a t a T h e o r y 5
2.1 Languages 5
2.2 w-Languages 5
2.3 Omega Au toma ta 6
2.4 B i i c h i A u t o m a t a 6
2.5 Special Types of B i i c h i A u t o m a t a 7
2.6 Simulations 7

3 Complement ing Bi ichi A u t o m a t a 8
3.1 R u n D A G s 9
3.2 Basic Rank-Based Complementat ion 10
3.3 Complementat ion wi th Tight Rankings 11
3.4 O p t i m a l Rank-Based Complementat ion 13
3.5 Inherently Weak B i i c h i A u t o m a t a Complementat ion 14
3.6 Semi-deterministic B i i c h i Au toma ta Complementat ion 15

4 Next Generation of Rank-Based Algori thms for Bi ichi A u t o m a t a 17
4.1 Elevator B i i c h i A u t o m a t a 17

4.1.1 Non-accepting Components 18
4.1.2 Determinist ic Components 19
4.1.3 Inherently Weak Accept ing Components 19
4.1.4 Rank Restr ic t ion for Elevator Au toma ta 19
4.1.5 Refined Ranks for Non-Elevator Au toma ta 22
4.1.6 Efficient Complementat ion of Elevator A u t o m a t a 24

4.2 D a t a F low Analys is 25
4.2.1 Outer Macrostate Analys is 26
4.2.2 Inner Macrostate Analys is 26

4.3 Opt imiza t ion of Inherently Weak B A Complementat ion 28
4.4 Opt imiza t ion of Semi-Determinist ic B A Complementat ion 30

5 Implementation 32
5.1 Archi tecture 32

5.1.1 Preprocessing and Postprocessing 32
5.1.2 Complementat ion 33

6 Experimental Evaluat ion 35

1

6.1 Tools and Evalua t ion Environment 35
6.2 Structure of Experiments 35
6.3 Elevator A u t o m a t a and D a t a F l o w Analys is 36

6.3.1 Datasets 36
6.3.2 Compar ison w i t h Rank-Based Algor i thms 36
6.3.3 Compar ison w i t h Other Tools 36

6.4 Inherently Weak and Semi-Determinist ic B A s 37
6.4.1 Datasets 38
6.4.2 Effect of the New Optimizat ions 38
6.4.3 Compar ison wi th Other Tools 39

7 Conclusion 41
7.1 Future Work 42

Bibl iography 43

2

Chapter 1

Introduction

Omega automata (w-automata, automata on infinite words) were introduced i n 1960s as an
auxi l iary tool for a decision procedure of a fragment of a second-order ari thmeric [8]. This
thesis focuses on complementing B i i c h i automata (B A) , special instance of w-automata,
which is a crucial operation for decision procedures of various logics, such as the monadic
second-order logic SIS [8] or temporal logics E T L and Q P T L [33], as well as for language
inclusion and equivalence testing. Besides the theoretical point of view, B i i c h i automata
complementation became important also i n practice, for example i n model checking of
temporal properties [37] or terminat ion analysis of programs [11, 17, 9].

The purpose of model checking is to automatical ly check whether a system meets its
specification. B o t h the system and the specified (temporal) property can be represented by
a B i i c h i automaton. The problem of system verification is then transformed into the prob
lem of language inclusion of these automata. More precisely, a system meets its specification
if the language of its B i i c h i automaton is a subset of the language of the automaton encod
ing the property. Language inclusion check is performed by complementing the property
automaton and checking i f its intersection wi th the system automaton is empty.

The idea behind terminat ion analysis of programs [11, 17, 9] is to construct a differ
ence of two B i i c h i automata — one representing the program and one representing a set
of paths wi th already proved termination. These paths can be safely removed from the
program automaton. The removal is done using automata difference, which is implemented
as an intersection of the program automaton and the complement of the automaton wi th
terminat ing paths.

Due to the high complexity of B i i c h i complementation, different approaches and further
optimizations have been introduced since the original construction by B i i c h i w i th the state
complexity 22™ was presented in 1962. A p a r t from reducing the upper bound of the size
of the complemented automaton, there was also an effort to find the theoretical lower
bound, finally refined by Y a n to (0.76n) n [38]. In this thesis, we focus on the rank-based
complementation, which was introduced by Kupferman and V a r d i [20], improved w i t h the
help of Friedgut [12], and further opt imized by Schewe [32], whose construction produces
the complement w i th the size matching the lower bound modulo a 0{n2) po lynomia l factor.

Even though Schewe's construction is asymptot ical ly opt imal , it may s t i l l generate a lot
of unnecessary states and transitions. Op t imiza t ion heuristics are therefore cr i t ica l for
good performance i n practice. In rank-based complementation, every state from a set of
states reachable over the current input is assigned a number (called its rank). The main
problem responsible for the generated state space blow-up is the amount of nondeterminism,
caused by a lot of possibilities how to assign ranks to a set of states. The number of

3

possibilities depends combinatorial ly on the m a x i m u m rank that can be assigned. It is
therefore desirable to reduce the m a x i m u m rank as much as possible.

In this thesis, we first identify elevator automata, a subclass of B i i c h i automata wi th
a specific structure, and present an algori thm that assigns a bound for m a x i m u m rank for
states i n each strongly connected component. Th is a lgori thm can be extended to general
B A s containing containing elevator automaton as a substructure. We show that elevator
automata can be complemented in 0 (16") space. Secondly, we propose a technique, inspired
by data flow analysis, that can propagate the rank bounds throughout the automaton and
restrict the ranks even more. We also carry over the proposed techniques to general B A s .

Al though the optimizations of rank-based procedure work for a l l B A s , automata wi th
a more specific structure can, however, be complemented more efficiently, using specialized
constructions for complementation. We therefore present optimizations for complementing
inherently weak and semi-deterministic B i i c h i automata.

Optimizat ions presented throughout this thesis are implemented on top of the tool
R A N K E R [14], which uses several complementation approaches based on properties of the
input B i i c h i automaton. We evaluated our approach on thousands of hard automata (oc-
curing i n practice as well as randomly generated). Even though the original rank-based
complementation algori thm may be quite inefficient, our optimizations can significantly re
duce the generated state space and i n a lot of cases can produce even exponentially better
results. We show that R A N K E R produces a smaller complement i n the majority of cases
compared to the other state-of-the-art tools.

4

Chapter 2

Automata Theory

In this chapter, we introduce some definitions for w-automata that are necessary for the fol
lowing chapters. We define w-automata i n general, and then we focus on B i i c h i automata
whose complementation is the main subject of this thesis. We also introduce some spe
cial types of B i i c h i automata that are characterized by a specific structure and for which
more efficient algorithms for complementation can be used in comparison to general B i i c h i
automata.

2.1 Languages

A n alphabet is a nonempty, finite set of symbols, usually denoted by E . A word a =
a o « i • • • OLn over alphabet E is a sequence of symbols from E . A n empty word has length 0
and is denoted by e. The concatenation of two words a = ao ... an and j3 = j3o ... j3m is the
word a/3 = ao ... an(3o • • • / 3 m . For a word a , we define a0 = e and a k + 1 = aka.

The set of a l l words over an alphabet E is denoted by E * . A language over E is
a set of words C C E * . The concatenation of two languages C\ and £ 2 is the language
C\ • C2 = {a/3 G E * J a G C\ and j3 G C2}. The iteration of a language C C E * is
the language C* = U«>o w n e r e £ ° = { £ } a n d = £ l • £ for every i > 0.

A regular expression e over alphabet E is defined by the following grammar

e ::= 0 J e J a J e i + e2 I e\e2 \ e*

where a G E and e i , e2 are regular expressions. The language £(e) is defined inductively as
(i) £(0) = 0, (ii) £ (e) = {e}, (hi) jC(a) = {a}, (iv) £ (e i + e 2) = £ (e i) U £ (e 2) , (v) £ (e i e 2) =
£ (e i) • £ (e 2) , and (vi) £ (e *) = (£ (e)) * . A language C is regular iff there is a regular
expression e such that £ = C(e).

2.2 w-Languages

The symbol u is used to denote the set of non-negative integers { 0 , 1 , 2 , 3 , . . . } . A n ui-word a
over alphabet E is represented as a function a: UJ —> E where the i - th symbol is denoted
as a j . We abuse notat ion and sometimes represent a as an infinite sequence a = a^ai ...
The concatenation of a finite word a = ao ... an and an w-word /3 = Pofii • • • is the w-word
a/3 = ao • • • a n / 3o /3 i If it is clear from the context, we use s imply word instead of a;-word.

We use E w to denote the set of a l l infinite words over E . A n to-language over an
alphabet E is a set of w-words C C E w . The complement of an a;-language C is the

5

b

F i gure 2.1: B i i c h i automaton Aex

w-language E w \ £ , often denoted by £ . The concatenation of a language C\ and an w-
language £ 2 is the w-language £ 1 • £ 2 = 6 S w | a £ £ 1 and j3 G £ 2 } - The co-iteration
of a language £ C E * is the w-language £ w = {0,10,2 . . . | ai G £ \ {e} for every i > 0}.
(Note that the empty language 0 can be defined as e w .)

A n to-regular expression s over an alphabet E is defined by the following grammar

s ::= e w | es | s\ + «2

where si, S2 are w-regular expressions and e is a regular expression. The co-language £ (s) C
E w of an w-regular expression s is defined induct ively as (i) £ (e w) = (£ (e)) w , (ii) £ (e s) =
£ (e) • £ (s) , and (iii) £ (s i + « 2) = £ (s i) U £ (« 2) - A language £ is w-regular iff there is an
w-regular expression s such that £ = £ (s) .

2.3 Omega Automata

A n OJ-automaton is a quintuple A = (Q, E , <5, / , Ace), where Q is a finite set of states, E is
an alphabet, 5 is a t ransi t ion function 5: Q x E -> 2 ^ , I C Q is a set of in i t i a l states, and
Acc is an acceptance condit ion. Various types of w-automata differ from each other i n the
definition of the acceptance condit ion Acc.

We sometimes treat 5 as a set of transitions of the form p A g, for instance, we use
p —> q £ 5 to denote that q G 5(p,a). A ran of „4, on a word a is an infinite sequence
P = <7o<7i<?2 •• • such that qo <E I and gj+i G 5(#j,a!j) for every i > 0. .4 is complete iff
<5(<7, a) I > 1 for every state q £ Q and symbol a G E .

C C Q is a strongly connected component (S C C) of A i f for any pair of states q,q' G C
it holds that q is reachable from q' and q' is reachable from g. C is a maximal strongly
connected component (M S C C) i f it is not a proper subset of another S C C . The notat ion 8\g
for S C Q is used to denote the restriction of the transi t ion function 5 C\ (S x T, x S).

2.4 Bi ich i Automata

A (state-based) Biichi automaton (B A) is an w-automaton A = (Q, E , 5,1, F) where F C Q
is a set of accepting states.

Let inf(p) denote the set of states occuring infinitely often i n the run p of A on a word a.
The run p is called accepting iff inf(p) n F / l The word a is accepted by 4 i f there exists
an accepting run p of A on a. The set of a l l words accepted by A is called the language
of A, denoted by C(A).

A n w-language is a set of infinite words. Accord ing to Bi ich i ' s characterization theorem,
languages that can be recognized by B i i c h i automata are w-regular. Such languages can be
defined by w-regular expressions of Section 2.2.

G

Figure 2.1 shows an example of B i i c h i automaton Aex = (Q, E , 5,1, F) w i th Q = {p, q},

E = {a, 6}, / = {p}, F = {p}, and 5 = {p A p,p A q, q —> p}. The language of
A e x can be described using the w-regular expression (a&*)' J. Intuitively, it is the language
of words wi th infinitely many occurences of the symbol a.

A transition-based Biichi automaton (T B A) is an w-automaton As = (Q, E , 5,1, dp)
where 5F Q 5 is a set of accepting transitions. Let m£s(p) denote the set of t ransi t ion
occuring infinitely often in the run p of As on a word a. The run p is called accepting iff
inf(p) f l 5F 7̂ 0- The word a is accepted by A i f there exists an accepting run p of ^ on a .

2.5 Special Types of Bi ich i Automata

In this section, we introduce various types of B i i c h i automata, characterized by a special
structure, which can be complemented more efficiently than general B i i c h i automata.

A B i i c h i automaton A = (Q, E , 5,1, F) is

• deterministic if | / | < 1 and \S(q, a)\ < 1 for a l l q G Q and a G E ,

• semi-deterministic i f the automaton (Q, E , <5, {(/F}, F) is deterministic for each qp G F
(intuitively, the automaton behaves determinist ically after traversing the first accept
ing state),

. weak i f for every M S C C C of A it holds that either C n F = 0 o r C n F = C ,

• inherently weak if for every M S C C C of .4 it holds that (i) C f l F = 0, or (ii) every
cycle i n C contains at least one accepting state qp G F , and

• unambiguous i f there is at most one accepting run of A on any given word.

2.6 Simulations

Direct simulation on a B i i c h i automaton 4 is the relation Q Q x Q defined as the
largest relation s.t. p Q implies (i) p G F q G F and (ii) p A p ' G 5 3g' G Q : A
q' <E 5 Ap' <di Q1 for each a G E .

F a i r simulation on a B i i c h i automaton 4 is the relation ^ j C Q x Q where p ^ j q iff
(i) for a l l runs pp s tart ing in p there is a run /9g starting i n q over the same word, and (ii) i f
pp is accepting, then pq is accepting.

7

Chapter 3

Complementing Biichi Automata

The first complementation algori thm for B i i c h i automata was introduced by B i i c h i [8] in
1962. The construction showed that B i i c h i automata are closed under complementation.
However, Bi ich i ' s approach leads to a doubly exponential blow-up. Various approaches and
their further optimizations have been therefore presented since, w i th the a i m of reducing
the generated state space of B A complementation. In particular, we can distinguish several
complementation approaches, briefly described below.

The complementation approach introduced by B i i c h i i n [8] was Ramsey-based comple
mentation wi th 22°('N) states i n the complemented B A . The correctness of this method relies
on a combinatorial result by Ramsey [29] to obtain a periodic decomposition of the possible
behaviors of a B A on an infinite word. This construction was later improved by Sist la et a l
in [33] to produce B A s w i t h 2°(N) states. The complexity was further reduced by Breuers
et a l in [7] to 2 0 (- N L O ^ N \

Determinization-based complementation was introduced by Safra [31], producing a com
plement w i th 2 c , (n l o g n) states, and further improved by P i t e rman i n [28] and Redziejowski
in [30]. The principle of the determinization-based approach is to convert a (nondeterminis-
tic) B i i c h i automaton to an equivalent deterministic automaton wi th a different acceptance
condit ion (e.g. R a b i n automaton) that can be easily complemented. The result is then
converted back into a B A .

Slice-based complementation was proposed by Kah le r and W i l k e i n [18] w i t h the com
plexity 2 c , (n l o g n) . The slice-based approach uses a reduced abstraction on a run tree to
track the acceptance condit ion.

In this thesis, we focus on rank-based complementation, which was first introduced by
Kupferman and V a r d i [20] w i t h the space complexity 2 c , (n l o g n) , then improved by Kupfer-
man, Va rd i , and Friedgut [12] to O((0 .96n) n) and made asymptot ical ly op t imal by Schewe
in [32]. The space complexity of Schewe's construction matches the theoretical lower bound
O((0 .76n) n) given by Y a n [38] modulo a quadratic factor 0{n2). Opt imizat ions of this con
struction were presented in [16].

In this chapter, we describe the principle of rank-based complementation algorithms.
We start w i th the definition of run D A G s and explain how the ranking procedure works.
Then we present three rank-based algorithms—we start w i t h the original construction by
Kupferman and V a r d i [20], then we introduce the complementation wi th tight rankings
by Friedgut, Kupferman, and V a r d i [12], and finally, we describe Schewe's asymptotical ly
opt imal construction [32], which is the basis for our optimizations presented further i n this
thesis. A p a r t from rank-based complementation, we also present specialized complementa-

8

a A EU EH {ggl E M

p)) (? (g, 1))—>[(g, 2))—>((g, 3))—»[(g, 4)

b a b b b

(a) Biichi automaton Aex (b) Run D A G of ^ l e a on a = a6 w

rank 2 rank 0

[GEjjjji !|[Bl JED GED

a b b b

(c) Run D A G of Aex on a = ab" with assigned ranks

Figure 3.1: Example of a run D A G for B A A, ca

t ion constructions for inherently weak and semi-deterministic B i i c h i automata, which are
usually more efficient than rank-based algorithms.

3.1 Run D A G s

In order to determine whether a given word should be accepted by the complement of
a B i i c h i automaton, we have to examine a l l possible runs of the automaton on the given
word. If none of these runs is accepting, the complement automaton should accept the
word. Let A = (Q, E , 5,1, F) be a B A and let a be a word. The set of a l l possible runs
of A on a can be represented as a directed acyclic graph Qa = (V,E), called the run D A G ,
w i th vertices V and edges E, where

• V C Q x to s.t. (q, i) € V iff there exists a run p of A on a w i th pi = q, and

. E C V x V s.t. ((q, i), (q', i')) G E iff %' = i + 1 and q ̂ q' G 5.

A vertex (q, i) G V is called accepting if q £ F. A path in a run D A G is accepting i f it visits
infinitely often an accepting vertex. A accepts a iff there exists an accepting path i n Qa.
Hence, the complement should accept a only i f there is no accepting path in Qa.

Consider the automaton from Figure 3.1a and a word a = ab^. A corresponding run
D A G is shown in Figure 3.1b. Since there is no accepting run on a , the word should be
accepted by the complement.

To determine i f a given word should be accepted by the complement or not, we start by
assigning a rank to each vertex in the corresponding run D A G . A vertex v G Qa is called
finite i f there are only finite number of vertices reachable from v, and endangered if there
is no accepting vertex reachable from v.

The ranking procedure is performed as follows: let Q% = Qa and j = 0. The following
steps are repeated unt i l j > 2\Q\ or a fixpoint is reached.

1. Ass ign rank j to a l l finite vertices in Q^a and set Qi^1 to Q3

a minus the vertices w i th
rank j.

9

2 Assign rank j + 1 to a l l endangered vertices i n Q\ and set Q\ ,3+2 to Q\ minus the 'a 'a 'a
vertices w i th rank j + 1.

3. Increase j by 2.

Vertices w i th no assigned rank have rank UJ. It can be shown that i f a 0 £ (^4) , the max imum
assigned rank is at most 2\Q\.

Theorem 3.1 ([20, Corol la ry 3.3]). If a 0 C(A), then g l l Q l + 1 is empty.

Figure 3.1c shows how ranks are assigned to vertices from the run D A G i n Figure 3.1b.

3.2 Basic Rank-Based Complementation

The ranking procedure of a run D A G described i n Section 3.1 is used i n the rank-based
complementation algorithms i n a way that the complemented automaton tracks a l l runs of
the original automaton on the given word and a l l possible ranks of each of the runs. Every
state of the complemented automaton is a macrostate containing, among other information,
the set of a l l currently reachable states of the original automaton wi th rank assigned to each
of the states. In this section, we present the rank-based a lgor i thm originally proposed by
Kupferman and V a r d i [20].

Let us first introduce some necessary definitions and notions. For a given B i i c h i au
tomaton A = (Q, E , 5,1, F), a level ranking is a function / : Q —>• { 0 , 1 , . . . , 2\Q\} such that
{/(IF) I QF £ F} C { 0 , 2 , . . . , 2 |Q |} , i.e., / maps a l l accepting states of A to even ranks.
We use 1Z to denote the set of a l l level rankings of A and odd(f) to denote the set of states
assigned an odd rank i n a level ranking / . For a ranking / , the rank of / is defined as
rank(f) = m&x{f(q) \ q G Q}. The condit ion f < f holds iff for every state q € Q we have
f{q) < f'(q) and / < / ' iff / < / ' and there is a state p G Q w i th f(p) < f'(p).

The procedure proposed by Kupferman and V a r d i [20], denoted by K V , constructs the
B A K V (^ 4) = (Q1, E , 5', F') whose components are defined as follows:

. F' = 2 Q x {0} x U.

Theorem 3.2 ([20]). Let i b e a B A . Then £(KV(A)) = E w \ C{A).

The macrostates of K V (^ 4) consist of three components: S, O, and / . The 5-component
tracks a l l runs of A, i.e., it contains a l l states reachable over the current input . The O-
component tracks a l l runs whose rank has been even since the last cut-point (a point where
0 = 0). The / component is a level ranking assigning rank to every state in S. A run
of K V (. 4) is accepting iff it empties the O-component infinitely often, i.e., there is no run

. Q' = {(S, O, f) e 2 Q x 2 Q x K \ O C S},

. r = {/} x {0} x n,

10

(7

-4({p-A}, 0)|L-g-.(({p:4, g : 3 } , { p })] — ^ f (p ^ 3 p)

Hi o, 6 (la
f O T I [({P=4,g=4},{p,g})] (({p=2, g=3},{p»l •••

0,6 a, 6

(a) Biichi automaton _4 e ; r (b) K~V(Aex)

Figure 3.2: A n example of a B A Aex and its complement constructed using K V

where states have only even rank from some point, and, therefore, there is no accepting run
of the original automaton on the input word.

Figure 3.2b shows a complement of a B i i c h i automaton Aex given i n Figure 3.2a. O n l y
a part of the automaton is shown due to a quite large state space generated by this procedure
(13 states). In the worst case, K V constructs a B A wi th approximately (6 n) n states [20].
Note that for a more compact representation of a macrostate we often merge components
S and / and i n the first component we assign a rank only to the states present i n the
S-component. For example, we represent a macrostate ({p, q}, {p}, {p i-> 4, q i-> 3, r i-> 0})
as ({p:4, q:3},{p}).

3.3 Complementation with Tight Rankings

The construction described i n Section 3.2 was further improved by Friedgut, Kupferman
and V a r d i [12]. They observed that a special condit ion eventually holds for the ranks of
the run D A G of a rejected word. The constructed automaton is composed of two parts:
the waiting part, which tracks a l l runs of the original automaton (macrostates store a l l
states reachable over the current input) , and the tight part, which is s imilar to the K V
construction, except that a l l level rankings are restricted to the so-called tight rankings.

Given a set of states S C Q , a (level) ranking / : Q —>• { 0 , 1 , . . . , 2\Q\} is called S-tight
if it has an odd rank r , {/(s) | s € S} D { 1 , 3 , . . . , r}, and {f(q) \ q 0 S} = {0}. A ranking
is tight i f it is Q-tight.

We use T to denote the set of a l l tight level rankings. Friedgut, Kupfe rman and V a r d i
observed that for every run D A G Qa w i th a finite rank r , it holds that (i) r is odd and
(ii) there exists a level I > 0 such that for a l l levels I' > I and a l l odd ranks o € { 1 , 3 , . . . , r } ,
there is a vertex (q, I') G Qa w i th rank((q, I')) = o.

For I G to, we define the £-th level of Qa as levela(£) = {q \ (q,£) £ Go}- Furthermore,
we use ff to denote the ranking of level £ of Qa. Formally,

fa(q) = iranka((Q^)) i f 9 e level a(£),
' 1 0 otherwise.

We say that a level £ is tight in Qa i f for a l l k > £ it holds that (i) f£ is tight, and
(ii) rank(f^) = rank(f^). Let p = SoSi... Og, fe, ie) • • • be a run on a word a in
F K V (^ 4) . We say that p is a super-tight run [16] i f = for each k > £. F inal ly , we say
that a mapping p: 2® —>• 7£ is a ranA; upper bound (TRUB) wrt a iff

l e w : levela{£) is tight A(Wk>£: p{levela{k)) > / £) . (3.2)

11

waiting part

(a) Biichi automaton Aex (b) FKV(Aex)

Figure 3.3: A n example of a B A Aex and its complement constructed using F K V

Intuitively, a T R U B is a ranking that gives an estimate on the necessary ranks of states in
a super-tight run.

The procedure that makes use of tight rankings, denoted by F K V , constructs the B A
F K V (^ 4) = (Q', E , 8', F') whose components are defined as follows:

• Q' = Q\ U Q2 where

- Q i = 2^ and

- Q2 = {(5, O, f) e 2Q x 2Q x T \ f is 5-tight, O C 5 } ,

• <5' = <5i U 82 U ($3 where

- ft : Q i x E ->• 2 * such that <5i(5, a) = {5(5, a)},

- 82: <5i x E -> 2 ^ 2 such that <J2(S, a) = { (5 ' , 0, /) G Q 2 | 5 ' = (5(5, a) and / is
5-tight},

- <J3: Q2 x E -> 2 Q 2 such that (5 ' , O ' , / ') G <5 3((5,0, /) , a) iff

* S' = 8{S,a),
* for every q G 5 and </ G <5(g, a) it holds that f'(q') < /(?),

* rank(f) = rank(f'), and

^ G , = f<y(5 ,o) \odd(/ ') i f 0 = 0,

I 8(0, a) \ odd(f') otherwise, and

. F' = {0} U ((2 Q x {0} x T) n Q 2) .

Theorem 3.3 ([12]). Let i b e a B A . Then £(FKV(A)) = E w \ C{A).

The waiting part is composed of the states i n Q\ and the states i n Q2 create the tight
part. Intuitively, an accepting run on the complemented automaton stays in the wait ing
part un t i l it holds that a l l successive level rankings are tight. Then it can move to the
tight part where the word is accepted. See Figure 3.3b for F K V (^ l e z) for the B A Aex from
Figure 3.3a. Note that FKV (^4 , e x) w i th 5 states is significantly smaller than K V (^ l e z) w i th
13 states. In the worst case, F K V constructs a B A wi th O((0 .96n) n) states [12].

12

w a i t i n g par t

a, b

(a) Biichi automaton Aex (b) SCHEWE(^l e a ;)

Figure 3.4: A n example of a B A Aex

 a n d its complement constructed using S C H E W E

3.4 Optimal Rank-Based Complementation

The improved construction by Friedgut, Kupferman, and V a r d i [12], described i n Sec
t ion 3.3, was finally made asymptot ical ly op t imal by Schewe [32], using a more efficient
cut-point construction. Instead of checking that no trace has an even rank since the last
cut-point (O = 0) , this procedure, denoted by S C H E W E , cycles through a l l possible even
ranks and checks that there is eventually no trace wi th this rank since the last cut-point.
Th is leads to a significant reduction of the generated state space and the construction then
matches the lower bound of (0 .76n) n established by Y a n [38] modulo a 0(n2) po lynomial
factor.

The procedure S C H E W E constructs the B A S C H E W E (_ 4) = (Q', E , 8', I', F') whose com
ponents are defined as follows:

• Q' = Q\ U Q2 where

- Q i = 2^ and

- Q2 = {(5, O, f, i) G 2 « x 2 « x T x {0, 2 , . . . , 2\Q\ - 2} | / is 5-tight and O C
snf-\i)},

• r = {i},

• 5' = 5\ U 82 U 83 where

- Si: Qi x S -> 2Ql such that 5i(S, a) = {8(S, a)},

- 5 2 : Q i x E ^ 2 ° 2 such that 82(S,a) = { (5 ' , 0 , / ' , 0) | S' = 8(S,a),f is 5-t ight},
and

- (5 3 : Q 2 x S ^ 2 ° 2 such that (S', O', f, i') G 83((S, O, f, i), a) iff

* S' = 8{S,a),
* for every q G S and q' G <5(<7, a) it holds that f'(q') < /(?),

* rank(f) = rank(f'),
* and

o »' = (i + 2) m o d (rank(f') + 1) and O ' = i f O = 0 or
o i ' = i and O ' = 8(0, a) n Z ' " 1 (i) if O / 0, and

. F ' = { 0 } U ((29 x { 0 } x T x w) n Q 2) .

13

a b a b

a

b b

(a) Inherently weak B A A (b) Equivalent weak B A W

b ((W,M)}
(d) M I H A Y (C) (c) Equivalent co-BA C

Figure 3.5: A n example of an inherently weak B A A, an equivalent weak B A W , an equiv
alent c o - B A C, and the complement M I H A Y (C)

Theorem 3.4 ([32, Corol la ry 3.3]). Let i b e a B A . Then £ (S C H E W E („ 4)) = S w \ C{A).

The macrostates (S, O, f, i) i n S C H E W E (. A) are composed of four components. The S-
component tracks a l l runs of A over the input word i n the same way as the algorithms
described in previous sections. The /-component assigns a rank to every state in S. The
O-component tracks a l l runs having an even rank i since the last cut-point. After another
cut-point is reached, the i component is increased by 2 modulo the max ima l even rank. A n
accepting run therefore goes through a l l possible even ranks and checks that there is no
infinite path having this part icular even rank i n the corresponding run D A G .

See Figure 3.4b for S C H E W E („ 4 , e : r) for the B A Aex from Figure 3.4a. Note that i n this
part icular example, S C H E W E (^ l e x) has exactly the same structure as F K V („ 4) except that
the i-component was added to macrostates i n the tight part. Th i s is because the original
automaton has only 2 states and one of them was accepting. Hence, the rank is at most 1
and the i-component can be only 0. For automata wi th more states and a more involved
structure, a significant decrease i n generated state space can, however, be observed.

3.5 Inherently Weak Bi ichi Automata Complementation

Inherently weak B i i c h i automata can be easily transformed into weak B A s (without adding
new states) by making a l l states in accepting S C C s accepting. In order to accept an
input word in the complement, there must not exist a run wi th infinitely many accepting
states. Since every run stays forever in some S C C and the automaton is weak, it contains
either infinitely many accepting or infinitely many nonaccepting states. It cannot contain
infinitely many accepting and nonaccepting states at the same time. It is therefore sufficient
to check i f every run contains infinitely many nonaccepting states. The idea behind the
Miyano-Hayashi cut-point construction [26] is to periodical ly sample a l l runs and check i f
they contain a nonaccepting state. After a l l of them visit an accepting state, a cut-point is
reached and new runs are sampled. The complement then accepts a word i f there is a run
where a cut-point is reached infinitely many times on this word.

Let A = (Q,T,,5,I, F) be an inherently weak B A . We first construct an equivalent
weak B A W = (Q, X , 5,1, Fw), where F\y contains a l l states from M S C C s containing at

14

least one accepting state of A. We then convert W to an equivalent co-Bi ich i automa
ton C = (Q,Yl,5,I,Fc = Q \ Fyy). A co-Biichi automaton (co -BA) C = 5,1, Fc)
accepts an input word a i f there exists a run p such that for every state q G Q occuring
infinitely often in p it holds that q G Fc- The procedure, denoted by M I H A Y , constructs the
(deterministic) B A M I H A Y (C) = {Q', X , 5', I', F') whose components are defined as follows:

. Q' = 2 Q x 2<2,

. I' = {(I,I\FC)},

. 5'{{S,B),a) = {S',B') where

- S' = S(S,a),

- and

* B' = S' \ Fc i f B = 0 or

* B' = (S(B, a) n S') \ Fc if B / 0, and

. F' = 2® x { 0 } .

Theorem 3.5 ([2 6]) . Let C = (Q , £ , o , / , F C) be a c o - B A . Then £ (M I H A Y (C)) = T,U\C(C).

Figure 3.5 shows an example of an inherently weak B i i c h i automaton, equivalent weak
and co-Bi ich i automata and the complement constructed using M I H A Y .

3.6 Semi-deterministic Bi ichi Automata Complementation

Semi-deterministic B i i c h i automata have a specific structure al lowing to use a more efficient
complementation construction. If a rank-based complementation is used, the max imum
rank can be bounded by 3. More precisely, ranks of the states in the nondeterministic part
can be bounded by 3, and states i n the deterministic part by 2 . Even though bounding
the m a x i m u m rank can significantly reduce the generated state space i n the tight part, the
complemented automaton can have a lot of states because of the presence of the waiting
part. Semi-deterministic B A s can be complemented using the N C S B construction [5],
which does not consider the waiting part and keeps only rough information about the ranks
in comparison to rank-based algorithms.

Let A = (Q1UQ2, S , 5iU5tU52,1, F) be a semi-deterministic B i i c h i automaton such that
Qi is a set of states in the nondeterministic part, Q2 is a set of states i n the deterministic
part, 01: Q i x S 2QL, 6T: Qx x S 2®2, and 62: Q2 x S -> 2 ^ . The procedure, denoted
by N C S B , constructs the B A N C S B (4) = (Q1, S , 5', I', F') whose components are defined
as follows:

. Q> = {(N, C, S, B) G 2 * x 2 « 2 x 2 ^ \ F x 2 ^ 2 | B C C},

. I' = { (Q i n / , Q 2 n / , 0 , Q 2 n /) } ,

. { ' : Q ' x E - > 2 ^ ' such that (JV', C", 5 ' , S ') G S'((N, C, S, B),a) iff

- AT' = oi(A7,a),

- C'US' = 5t(N, a) U <52(C US,a),

- a n 5 ' = 0,

15

a

a

q
a n

b

[({p},{g,r},0,MJ]
u \

{({p},{q}J),{q}))

(I

(I

(I
(a) Semi-deterministic B A A (b) N C S B (^)

Figure 3.6: A n example of a semi-deterministic B A A and its complement N C S B („ 4)

- S'D52(S,a),

-CD S2(C\F,a), and

- B' = O i f B = 0, otherwise £ ' = <y2(S, a) n C , and

. F' = {(N, C, S, B) £ Q' \ B = 0 } .

Theorem 3.6 ([5]). Let 4 = (Q, E , <5,1, F) be a semi-deterministic B A . Then £ (N C S B (4))
= E W \ £ (4) .

A n example of a semi-deterministic B i i c h i automaton wi th its complement is shown in
Figure 3.6. Macrostates of N C S B (4) consist of four components: (N,C,S,B). The N-
component tracks runs in the nondeterministic part of the automaton. The C-component
represents the runs that have entered the deterministic part and are not safe (they d id not
visit an accepting state for the last t ime), whereas the 5-component represents the safe
runs. The last component is a breakpoint that is used to check that no run stays forever
i n component C.

16

Chapter 4

Next Generation of Rank-Based
Algorithms for Biichi Automata

Even though Schewe's rank-based complementation construction described in Section 3.4
asymptotical ly matches the lower bound of (0 .76n) n [32], it s t i l l produces a complemented
automaton wi th potential ly unnecessary states or transitions and, due to the high space
complexity, further optimizations of this a lgori thm are crucial for pract ical applications.
In this chapter, we first introduce elevator automata [15], a large class of B i i c h i automata
wi th a specific structure, occuring often in practice. We analyze run D A G s of these au
tomata and present an a lgor i thm for reducing the bound on m a x i m u m rank of states in
each strongly connected component. We also extend this a lgori thm for general B i i c h i au
tomata. Moreover, we show that elevator automata can be complemented i n 0 (16") space.
Secondly, we present a technique based on data flow analysis that can be used to propagate
rank restrictions throughout the automaton and thus reduce the ranks even more. In the
next part of the thesis, we focus on optimizations for specialized complementation construc
tions for inherently weak and semi-deterministic automata. Thanks to their properties, we
are able to use more efficient procedures for their complementation than the rank-based
construction.

4.1 Elevator Bi ichi Automata

In this section, we introduce elevator automata, a class of B i i c h i automata w i t h a specific
structure. We analyze run D A G s for a l l types of strongly connected components of elevator
automata and present an algori thm assigning bounds on m a x i m u m rank for states i n each
component. Final ly , we show that elevator automata can be complemented in 0 (16") space.

Let C be an M S C C of a given B i i c h i automaton A = (Q, E , 5,1, F) and A\c = (C, E , 6\c I
n C , F n C) . We say that C is deterministic iff the B A A\c is deterministic, non-accepting
iff C n F = 0, inherently weak accepting iff every cycle i n the transi t ion diagram of A\c
contains an accepting state qF G F, and trivial iff \C\ = 1 and 5\q = 0.

A B i i c h i automaton A = (Q,TI,5,I,F) is an elevator (Biichi) automaton i f for every
M S C C C of A it holds that C is (i) deterministic (D) , (ii) inherently weak accepting (I W A) ,
or (iii) non-accepting (N) . A n example of an elevator automaton wi th assigned type to each
strongly connected component is shown in Figure 4.1.

The number of successors of a given macrostate i n rank-based complementation is given
by the number of possible tight rankings, which rises combinatorial ly w i th the macrostate's

17

Figure 4.1: A n example of an elevator automaton

max imum rank. More precisely, for a given set of states, the number of possible tight
rankings corresponds to the St i r l ing number of the second k ind of the m a x i m u m rank [12].
For general B A s , the bound on m a x i m u m rank for a l l states of the automaton is 2\Q\ —
1. However, this bound is often unnecessarily high and many redundant states can be
generated. Thanks to the specific structure of elevator automata, we can reduce the bound
on m a x i m u m rank for states in every M S C C . Before we formally describe the rank restriction
for elevator automata, let us give an in tui t ion behind the m a x i m u m rank reduction by
analyzing run D A G s of a B A containing only one M S C C of one of the three types that can
be present i n an elevator automaton.

4.1.1 N o n - a c c e p t i n g C o m p o n e n t s

Let A be a B A wi th only one non-accepting M S C C and a 0 C(A) be an input word. In
constructed by the ranking procedure from Section 3.1, a l l finite vertices are removed. Since
A contains no accepting state, a l l vertices i n Q\ are endangered, and therefore the max imum
rank can be bounded by 1. See Figure 4.2a for an example of a B A w i t h one non-accepting

rank 0

a
^ rank 1 'jfal)] fjggj) fjggj) jjggj]

a a a a

P) (<1

(a) Non-accepting B A (b) Run D A G

Figure 4.2: The run D A G of a non-accepting M S C C over word a'

18

rank 2

0. 1 \ . >* x! rank 1

0. a a a 6 6

(a) Deterministic B A (b) Run D A G

Figure 4.3: The run D A G of a deterministic M S C C over word aaabi

M S C C . The corresponding run D A G Qa w i th assigned ranks for a word a = is shown in
Figure 4.2b.

4.1.2 D e t e r m i n i s t i c C o m p o n e n t s

Let A be a deterministic B A w i t h only one M S C C and a 0 C(A) be an input word. Since
the automaton is deterministic, there is at most one run of A on a. The corresponding run
D A G Qa therefore contains at most one vertex in each level, and because there are only
finitely many accepting states in the run of A on a, there is a level I such that for a l l levels
V > I it holds that a l l vertices i n level I' are endangered. A l l vertices in level I' > I have
rank 1. Due to the determinism, Q2 is always finite. A l l vertices in levels smaller than I have
therefore rank 2 and a greater rank is not needed. (Note that the max ima l rank restriction
also holds i f the automaton has more than one in i t i a l state.) Consider the deterministic
B A wi th one M S C C i n Figure 4.3a and the word a = aaab^. The corresponding run D A G
wi th assigned ranks is shown in Figure 4.3b.

4.1.3 Inherent ly W e a k A c c e p t i n g C o m p o n e n t s

Let A be a B A w i t h only one inherently weak accepting M S C C and a 0 C(A) be an input
word. Since every cycle of A contains an accepting state and a 0 £(A), a l l possible runs
of A on a must be finite. The whole run D A G Qa is therefore finite and the max ima l rank
is 0. See Figure 4.4a for an example of a B A wi th only one inherently weak accepting
M S C C . Figure 4.4b shows the corresponding run D A G Qa w i th assigned ranks for a = abw.

4.1.4 R a n k R e s t r i c t i o n for E l e v a t o r A u t o m a t a

In this section, we present an algori thm that assigns each M S C C a label of the form
TYPE:rank w i th the type of M S C C and the bound on the m a x i m u m rank of its states.

rank 0

b a a b

(a) Inherently weak accepting B A (b) Run D A G

Figure 4.4: The run D A G of an inherently weak accepting M S C C over word aab(

19

The assignment is performed from terminal M S C C s (i.e., M S C C s that cannot reach to any
other M S C C) towards M S C C s wi th in i t i a l states. More precisely, a label can be assigned to
M S C C C only if (i) C is terminal or (ii) a label was already assigned to a l l M S C C s reach
able from C. Note that there can be more options how to assign a type for some M S C C s .
The algori thm assigns the type that is most suitable in terms of keeping the rank bound
as low as possible i n a greedy way (i.e., based on local information). Th is can be different
for every M S C C , depending on the labels of its successors. For the following algori thm, we
assume that an elevator automaton contains no useless states (there is therefore no terminal
non-accepting M S C C) .

For a terminal M S C C C, we assign the following label:

1. I W A : 0 i f C is inherently weak accepting,

2. D:2 otherwise (i.e., if C is deterministic accepting).

Note that the previous two options are complete because the automaton contains no
useless states. For non-terminal M S C C s , we use the corresponding rules from Figure 4.5.
Chi ld ren nodes denote already processed successive M S C C s . In particular, a chi ld node of
the form k:lk denotes an aggregate of a l l siblings of the type k wi th 1^ being the max imum
rank of these siblings. For a non-terminal M S C C C, the rules for assigning a label are the
following:

1. If C is t r iv ia l , we t ry both rules from Figure 4.5a and Figure 4.5c and use the one
wi th the smaller rank.

2. Else i f C is I W A , we use the rule i n Figure 4.5a.

3. Else i f C is deterministic accepting, we use the rule in Figure 4.5b.

4. Else if C is deterministic and non-accepting, we use one of the rules i n Figure 4.5b
and Figure 4.5c that gives us a smaller rank.

5. Else i f C is nondeterministic and non-accepting, we use the rule in Figure 4.5c.

The m a x i m u m rank of each M S C C is then assigned to a l l its states and macrostates wi th
higher ranks are not generated. We denote the procedure as E L E V B O U N D . Formally, the
result of the a lgor i thm is a mapping x '• Q ~~̂ ^ that gives a bound on the m a x i m u m rank to
each state of the automaton. This mapping can be plugged in , e.g., S C H E W E to prune the
generated state space. Figure 4.6a shows an elevator automaton Aei w i th assigned label for

= max{£o,^N + 1, £w}
C: [\\NAl]

t = max-JXc + 2 ,£N + IJw + 2 ,2} £ = max{£D + 1,£N,£W + 1}

C: \N:£

[D i l p j (N:l;y) (\\NA:£W)

(a) C is IWA

C: (d!7)

[D-£D) (N:ijr) [\\NA:£W] {pjp] [N:£N] [\\NA:£W]

(b) C is D (c) C is N

Figure 4.5: Rules for assigning types and rank bounds to M S C C s . The symbols 2 and 2 are
interpeted as 0 if a l l the corresponding edges from the components having rank and £w,
respectively, are deterministic; otherwise they are interpreted as 2. Transitions between
two components C\ and C2 are deterministic i f the B A (C, <5| ,0 , 0) is deterministic for

c = < 5 (C i , E) n (C i u c 2) .

20

file:////NAl

161
*

N : l N : l IWA:0

(a) Elevator automaton Aei (b) Complement of Aei- Our procedure will not generate
the red states (and their successors, which are not shown in
the figure).

Figure 4.6: A n example of an elevator B A wi th its complement

each M S C C . The complement of Ae\ is i n Figure 4.6b. R e d macrostates are not generated
because the value assigned to some state is higher than the rank bound on the max imum
rank - for example a macrostate ({q.O, r :0, s:l}, 0) was not generated, because state s is
assigned the rank 1, which is higher than the rank bound 0 given by our algori thm.

L e m m a 4.1. Let A be an elevator automaton. E L E V B O U N D („ 4 .) is a T R U B .

Proof. Consider an elevator automaton A. Let Qa be a run D A G over some word a ^ C(A)
and C be an M S C C of A. We proceed by induct ion on the structure of A. We start w i th
the base case.

C l a i m 1: Let C be a terminal I W A component in Qa. Then, all vertices of Qa labelled by C
will have the rank 0.
Proof: A l l cycles in inherently weak accepting components are accepting. Since a ^ C(A),
there is no run staying in C forever. A l l vertices labelled by a state from C are therefore
finite i n Qa and are, therefore, assigned rank 0. •

C l a i m 2: Let C be a terminal D component in Qa. Then, all vertices of Qa labelled by C
will have the rank at most 2.
Proof: We prove that Q\ contains only finite vertices labelled by C. If it is not true, either
a £ C{A) or C is not terminal and deterministic. •

Now we prove the ma in lemma by induct ion on given rules. We prove that if a state q
was assigned rank k, then G&+1 does not contain a node labelled by q.

• Base case: If a terminal component C is I W A , from C l a i m 1 we get that a l l states
from C w i l l have the rank 0. If a terminal component is D, then from C l a i m 2 we
have that a l l states from C w i l l have the rank bounded by 2.

• Inductive case: Assume that for a l l states q from already processed components, if q
were assigned rank m, G™+1 does not contain node labelled by q. Note that inside each

21

rule we can investigate cases D , N , and I W A separately since the adjacent components
do not affect each other.

Figure 4.5a Observe that after £ = max{£o, £N + Ij^w/} steps of the ranking procedure,
in the worst case, a l l vertices labelled by C i n Qa are finite (otherwise it is
a contradiction wi th induct ion hypothesis). Therefore, in Q^1 there are no
vertices labelled by C. The ranks of vertices labelled by C is hence m a x j f o , £N +

Figure 4.5b We prove that i n Qa a l l vertices labelled by C are finite {£ is from the rule). F r o m
the induct ion hypothesis, after £ — 1 steps (in the worst case) a l l vertices labelled
by adjacent D , I W A components are finite i n (provided that the transitions are
deterministic). Vertices labelled by adjacent N components are not present i n Qa.
Therefore, if there is some vertex v labelled by C in Q~, that is not finite, the only
possibili ty is that for each v' £ reachgiJyV) we reach in Qa from v' some vertex
labelled by a state from the D , I W A components. However, it is a contradiction
wi th the transi t ion determinism.

Figure 4.5c We prove that i n Q~, a l l vertices labelled by C are endangered. This follows from
the fact that after £ — 1 steps no vertex labelled by the adjacent D , I W A compo
nents is present i n Q~, (induction hypothesis). Therefore, a l l vertices labelled by
C i n Q1- are endangered. •

4.1.5 Re f ined R a n k s for N o n - E l e v a t o r A u t o m a t a

The a lgori thm from Section 4.1.4 computing bound on the m a x i m u m rank for states i n each
M S C C of an elevator automaton can be extended to general B A s . Non-elevator automata
contain at least one nondeterministic accepting component. We refer to these M S C C s as
general components and denote them as G . For deterministic, nonaccepting, or inherently
weak M S C C s , we are able to set a rank bound independently of the number of states
they contain, thanks to the structure of run D A G s for every possible word. However, for
general M S C C s , the rank bound depends on the number of states, more precisely on the
number of nonaccepting states i n the component. Th is follows the original argument that
max imum rank for each state i n a B i i c h i automaton w i t h n states is bounded by 2\Q\. Since
a m a x i m u m rank of a tight ranking depends only on the number of nonaccepting states, we
can bound m a x i m u m rank i n a general component C to 2\C\F\.

For a terminal M S C C C , we extend the a lgori thm assigning a label to each M S C C as
follows (in the given order):

1. I W A : 0 i f C is inherently weak accepting,

2. D:2 i f C is deterministic accepting, and

3. Q:2\C\F\ otherwise.

For non-terminal M S C C s , we use the rules from Figure 4.7. The structure of these rules
is the same as for elevator automata i n Section 4.1.4. For a non-terminal M S C C C , the
rules for assigning a label are the following (in the given order):

1. If C is t r iv ia l , we t ry both rules from Figure 4.7a and Figure 4.7c and use the one
wi th the smaller rank.

2. If C is I W A , we use the rule i n Figure 4.7a.

22

i = max{£D,£N + l,£w,£G}
C: (lWA:l)

[Pife] (Nig] (IWA:^) [GiJc]

(a) C is IWA

£ = max{fe + 1, eN, ew + l,£G + 1}

C: ffU]

: maxjfc + 2 ,^JV + 1,% + 2 , + 2, 2}

C-. (pTe
/ \#~

fPife) (Nig) (i W A : ^) [G^G]

(b) C is D

= max{fo, £ w + 1, to, fc} + 2 |C \ F |

C : [Gl«l

(c) C is N

Figure 4.7: Rules assigning types and rank bounds for non-elevator automata.

(D * D) (N ig] (lWA:£iy) (G ^ c]

(d) C is G

3. If C is deterministic accepting, we use the rule in Figure 4.7b.

4. If C is deterministic and non-accepting, we use one of the rules in Figure 4.7b and
Figure 4.7c that gives us a smaller rank.

5. If C is nondeterministic and non-accepting, we use the rule in Figure 4.7c.

6. Otherwise, we use the rule in Figure 4.7d.

The m a x i m u m rank of each M S C C is assigned to a l l its states and macrostates w i th
higher ranks are not generated. We denote the procedure as N O N E L E V B O U N D . Formally,
the result of the a lgori thm is a mapping x '• Q ~~̂ ̂ that gives a bound on the max imum
rank to each state of the automaton.

L e m m a 4 . 2 . Let i b e a B i i c h i automaton. N O N E L E V B O U N D (y 4 .) is a T R U B .

Proof. Consider some B A A. Let Qa be a run D A G over some word a ^ C(A). In this
proof, we use the claims and notat ion introduced i n the proof of L e m m a 4.1.

C l a i m 3: Let C be a terminal G component in Q^+1. Then, all vertices in Qa labelled by C
will have the rank at most 2k + 2\C \ QF\ •
Proof: Since 2k + 1 > 0, Q^+1 does not contain any finite vertices. Since C is a terminal
component, there is some i G UJ s.t. V j > i : \levelr2k+i(j) n CI < \levelr2k+2(j) n CI (if
we remove an endangered vertex, we decrease the wid th of the run D A G from some level
at least by 1). Moreover, since endangered vertices do not contain accepting states, the
previous observation can be refined to {(levelg2k+i(j)nC)\QF\ < {(levelg2k+2(j)nC)\QF\-
If we apply the reasoning mult iple times, we get that i n g 2 f c + 2 | c \ Q F | ^ ^gj-g r e m a j n only
finite vertices labelled by a state from C , therefore the rank is at most 2k + 2 | C \ Q F \ - B

Now we prove the ma in lemma. Fi rs t , observe that after appl icat ion of any rule, we
have that D , I W A , and G components have an even rank and N components have an odd
rank. We prove the lemma by induct ion on certain rules. In particular, we prove that if a
state q was assigned rank k, Ga+1 does not contain any node labelled by q.

• Base case: If a terminal component C is I W A , from C l a i m 1 we obtain a l l states from
C w i l l have the rank 0. If a terminal component is D , then from C l a i m 2 we have
that a l l states from C w i l l have the rank bounded by 2. If a terminal component is G ,
from C l a i m 3 we have that a l l states from C w i l l have the rank bounded by 21C \ QF \ •

23

file:///Qf/-

• Inductive case: Assume that for a l l states q from already processed components, if q
was assigned by rank m, G™+1 does not contain any node labelled by q.

Figure 4.7a Observe that after £ = max{£o, £w-> ^G}~ 1 steps of the ranking procedure,
in the worst case, a l l vertices labelled by C i n Qa are finite (otherwise it is
a contradiction wi th the induct ion hypothesis). Therefore, i n G^1 there are no
vertices labelled by C. The ranks of vertices labelled by C is hence m a x j f o , £N +

Figure 4.7b We prove that i n Ga a l l vertices labelled by C are finite {£ is from the rule). F r o m
the induct ion hypothesis, after £ — 1 steps (in the worst case) a l l vertices labelled
by adjacent D and I W A components are finite i n Ga (provided that the transitions
are deterministic). Vertices labelled by adjacent N components are not present
in G&• Vertices labelled by adjacent G components are finite i n G&- Therefore, i f
there is some vertex v labelled by C in Ga which is not finite, the only possibil i ty
is that for each v' £ reachge(v) we reach in Qa from v' some vertex labelled by
a state from the D , I W A components. This is however a contradiction wi th the
transi t ion determinism.

Figure 4.7c We prove that i n Ga a l l vertices labelled by C are endangered. This follows from
the fact that after £ — 1 steps no vertex labelled by the adjacent D , I W A , G com
ponents is present i n Ga (induction hypothesis). Therefore, a l l vertices labelled
by C in Ga are endangered.

Figure 4.7d F r o m the induct ion hypothesis we have that i n Ga where £ = max{^£>,^jv +
1>AV>^G} a n vertices labelled by adjacent D , I W , G components are finite. Ver
tices labelled by adjacent N components are not present in Ga- Therefore, C is
terminal i n Ga

+1- F r o m C l a i m 3 we have that the rank of C is bounded by
£ + 2\C\QF\. •

4.1.6 Efficient C o m p l e m e n t a t i o n of E l e v a t o r A u t o m a t a

The algori thm for assigning rank bounds to M S C C s of an elevator automaton, presented in
Section 4.1.4, can in practice have a huge impact on the generated state space. However,
we cannot bound the m a x i m u m rank by a constant, because it depends, among other, on
the number of M S C C s . In this section, we show that it is possible to bound the rank by
a constant i f we construct an equivalent automaton wi th at most double the size of the
input elevator automaton.

The increment of m a x i m u m rank for two successive M S C C s depends mainly on the al
ternation of accepting components and some nondeterminism. We can change the structure
of an input elevator automaton such that for every possible run we start i n a nonaccepting
M S C C and then take a transi t ion to deterministic or inherently weak M S C C at most once.

Let A = (Q, E , 5,I, F) be an elevator automaton. The deelevated automaton D E E L E V (^ I)

= (Q', E , 5', I', F') is given as follows:

. Q' = Qx {1,2},

. I' = Ix{l},

• 5' = 5\ U 62 such that

- S1((q,l),a) = S(q,a) x {1,2},

24

N:5 IWA:4 N:3 D:2 IWA:0 D:2

(a) Elevator automaton Aei (b) DEELEv(^4 e;)

Figure 4.8: A n example of an elevator automaton Aei and a deelevated automaton
D E E L E v (^ l e ;) . The bound on the m a x i m u m rank is decreased from 5 to 3.

- S2((q, 2), a) = S(q, a) x {2}, and

. F' = F x {2}.

Intuitively, we copy each M S C C w i t h an accepting state and a l l transitions going to this
M S C C , and we remove accepting conditions from the original M S C C . It is easy to see from
the construction that the number of states of D E E L E V (^ I) is bounded by 2\Q\. A n y possible
run on D E E L E V („ 4) starts in a nonaccepting M S C C , and it either stays i n some nonaccepting
M S C C or it moves to a deterministic accepting or inherently weak accepting M S C C where
it stays forever. The bound on the m a x i m u m rank for D E E L E V (. A) is therefore always 3,
which gives us the upper bound 0 (16") for complementing elevator automata. Th is is
based on the number of possible tight rankings for an automaton w i t h sufficiently many
states n and rank bound 3. A n example of a deelevated automaton is given i n Figure 4.8.

L e m m a 4 . 3 . Let A be a B A . Then, C(A) = £ (D E E L E V („ 4)) .

Proof. Let a G £(A) be a word. There is an accepting run p = q$qi... of A on a. For an
accepting run p, there is an M S C C C and some i £ w such that pk £ C for a l l k > i. There
is an accepting run p' = (qo, 1) . . . (qi-i, 1)(%, 2) (q j + i , 2) . . . on D E E L E V („ 4) .

Let a G D E E L E V (. A) be a word. There is an accepting run p = (qo, 1) . . . (qi-i, l)(g«, 2)
(qi+i, 2) . . . on D E E L E V (^ I) . States qi+i, • • • are i n the same M S C C . There is therefore
an accepting run p' = q$qi... of A on a. •

4.2 Data Flow Analysis

In this section, we propose a way to get bounds for m a x i m u m rank based on the structure
of the automaton using data flow analysis [27]. In particular, rank bounds can be decreased
based on the ranks and rankings of the local neighbourhood of the macrostates. For an
input B A A = (Q, E , 5,1, F), the analysis is performed on the B A K,A = (2Q, E , 5', 0, 0)
where 5' = {R A S \ S = S(R, a)}. The structure of K.jy is s imilar to the structure of the
wait ing part of S C H E W E (^ I) . We are, however, not interested i n the language of £ 4 , but
only i n its structure. We get the bounds for states i n a macrostate based on the bounds of
the states of its predecessors.

For a function / : X —> Y and a set S C X, we define f(S) = {f(x) \ x G S}. In the
following, we use /<i{x i-> y} to denote the function f(x)}) U{x ^ y} for x G X
and y G Y. For i G w w e use \i\ to denote the largest even number smaller or equal to i.

25

4.2.1 O u t e r M a c r o s t a t e A n a l y s i s

Our first analysis, called outer macrostate analysis, is based on the sizes of macrostates and
is used for estimating their ranks. Since the rank of a run in S C H E W E (^ I) does not decrease
once it enters a tight part, we can set a rank bound for each cycle of JC^ to 2m — 1 where m
is the smallest number of nonaccepting states of macrostates in this cycle. The max imum
rank of the macrostate is then given by the m a x i m u m rank of a l l the cycles going through
this macrostate. The rank of each cycle can also be estimated by our elevator analysis from
Section 4.1.

Since the number of cycles i n /C4 can be double-exponential to the size of A, we use
data flow analysis instead of enumerating a l l cycles. The function /j : 2^ —>• UJ gives a max
i m u m rank to each macrostate. For a macrostate S and its predecessors R\,...,Ri, we
use the update function upout : (2*3 —>• OJ) x (29)l+1 —>• OJ, which is defined as follows:
uPouti^-, S, R\,..., Ri) = min{/x(5), m a x { / x (i ? i) , . . . , fx(Ri)}}. The new bound on the max
i m u m rank of S is set to the smaller of the previous bound n(S) and the largest of the
bounds of a l l predecessors of S. The new value is propagated forward by the data flow
analysis un t i l the fixpoint is reached.

L e m m a 4.4. If /j is a T R U B , then fx < {S i-> upout(fx, S,Ri,..., Rm)} is a T R U B .

Proof. Let a £ C(A) and Qa be the run D A G of A over a. Further, let us use fx' = fx<{S i->

UPout(^S, Rl, • • -,Rm)}-

1. There are finitely many i G OJ such that levela{i) = S. Let k be the last level of Qa

where S occurs (or 0 i f S does not occur on any level of Qa). Then we can set the £
in the definition of a T R U B i n (3.2) to be the least £ > k such that £ is a tight level.
Then the condit ion holds t r ivial ly.

2. There are infinitely many i G OJ such that levela{i) = S. Then, since \x is a T R U B ,
let £ be the £ in (3.2) for which /j, satisfies (3.2). We need to show that for every k > £
such that levela{k) = S, it holds that fx'(S) > fj*. Let V C {R\,...,Rm} be the
set of predecessors of a l l occurrences of S on Qa below £, i.e., for a l l k > £ such
that levela(k) = S, we have levela(k — 1) G V. Since the ranks of levels in a run
D A G are lower for levels that are higher, it is sufficient to consider only the first such
a k. Let R be the predecessor of S at k, i.e., R = levela(k — 1). Since we do not
know which part icular Rj G V it is, we need to consider a l l Rj G V. Since k — 1
is already a tight posit ion, we have that fx" = fx <l {S i-> m a x { / x (i ? i) , . . . , /x(.R m)}}
is a T R U B for the same = £ in (3.2). Further, /x is also a T R U B , therefore,
li'= li<{Si-nnm{ii"(S),ii(S)}} fori •

Corol lary 4.5. W h e n started w i t h a T R U B / /Q , the outer macrostate analysis terminates
and returns a T R U B fx*ut.

Proof. Let /x be a T R U B and fx' = fx < {S 1 i-> upout(fx, S,Ri,..., i ? m) } . F r o m L e m m a 4.4
we have that / / is a T R U B as well, which means that starting from /Jo using u]) o u i we
get T R U B s only. Moreover, / j (P) > / j ' (P) and / i ' (P) > 0 for each P G 21?. The fixpoint
evaluation hence eventually stabilizes. •

4.2.2 Inner M a c r o s t a t e A n a l y s i s

Inner macrostate analysis is used for estimating rankings wi th in macrostates. In a super-
tight run, the rank of a state q G S is bounded by the rank of the predecessors of q. The

26

function \x : 2® —>• 1Z, where 1Z denotes the set of a l l rankings, gives a ranking for each
macrostate.

Let / , / ' € TZ be rankings. We use / U / ' to denote the ranking {q i-> max{ / (q) , f'(q)} \
q G <5}, and / l~l / ' to denote the ranking {q i-> m i n { / (q) , f'(q)} \ q G Q } . Moreover, we
define max-succ-rankg(f) = m a x < { / ' G 7?- | / ' (? ') < /(<?) for each q <E S and G <5((/,a)}
and a function (iec: 1Z —> 1Z such that dec(9) is the ranking 9' for which

if 9(q) = rank(9) and q ^ F,

f(Q) = { L %) ~ 1J ^ %) = ran&(6>) and q G F , (4.1)

otherwise.

Intuitively, max-succ-rankg(f) is the m a x i m u m ranking that can be reached from macrostate S
wi th ranking / over a and dec(9) decreases the m a x i m u m ranks i n a ranking 9 by one (or by
two for even m a x i m u m ranks and accepting states).

For a macrostate S and its predecessors R\,..., Ri, we use the update function upin : (2^
—> 7£) x (2 ^) * + 1 —>• 7£, which is defined by the following algori thm:

l upin(n,S,Ri,...,Rm):
2
3
4

5
6
7

foreach 1 < i < m and a G E do
if <5(i?j, a) = S then

<?f max-succ-rank%.(^(Ri))
9 <- /x(5) n U l s ? I 2? is defined};
if rank{9) is even then 6> <— dec(9):
return #:

The update function updates fi(q) for every q G 5 to hold the m a x i m u m rank compatible
w i th the rank of its predecessors.

L e m m a 4.6. If fx is a T R U B , then / i < {S i-> upin(fx, S,Ri,..., i ? m) } is a T R U B .

Proof. Let a ^ >C(̂ 4) and C/Q, be the run D A G of „4, over a . Further, let us use p! = p<{S i->
upin(p, S, Ri,..., - R m) } . F i rs t , we prove the following claim:

C l a i m 4: L e i / i i , / i 2 &e two TRUBs wrt a. Then p!, defined as p'(S) := pi(S) l~l P2(S) is
a TRUB wrt a.

Proof: The proof follows from the definition (with choosing = m a x j l i , ^ }) where £i is

from the definition of a T R U B for /xi and £2 is for //2- B

We need to consider the following two cases:

1. There are finitely many i G OJ such that levela(i) = S. Let k be the last level of Qa

where S occurs (or 0 i f S does not occur on any level of Qa). Then we can set the £
in the definition of a T R U B i n (3.2) to be the least £ > k such that £ is a tight level.
Then the condit ion holds t r ivial ly.

2. There are infinitely many i G OJ such that levela(i) = S. Then, since p is a T R U B ,
let £ be the £ in (3.2) for which p satisfies (3.2). We need to show that for every k > £
such that levela(k) = S, it holds that p'(S) > f%. Let V C { i ? i , . . . , Rm} be the
set of predecessors of a l l occurrences of S on Qa below £, i.e., for a l l k > £ such
that levela(k) = S, we have levela(k — 1) G V. Since the ranks of levels in a run
D A G are lower for levels that are higher, it is sufficient to consider only the first

27

such a k. Let R be the predecessor of S at k, i.e., R = level a(k — 1). Since we
do not know which part icular Rj G V it is, we need to consider a l l Rj G P . Let
M = {max-succ-rankc^.(p(Rj)) \ Rj G V,a G E } . Then, since // is a T R U B , | J M w i l l
also be a T R U B . Moreover, from C l a i m 4, # = //(iS) n | J M w i l l also be a T R U B , and
so # > fff. Then , if the rank of 9 is even, we can decrease it to the nearest odd rank,
since tight rankings are, by definition, of an odd rank. •

Corol lary 4.7. W h e n started wi th a T R U B po, the inner macrostate analysis terminates
and returns a T R U B p*n.

Proof. Let p be a T R U B and p! = p < {S i-> upin(p, S, R\,..., i ? m) } . F r o m L e m m a 4.6
we have that / / is a T R U B as well, which means that start ing from po using upin we get
T R U B s only. Moreover, p(P) > p'(P) and p'(P) > {q H-> 0 | q G Q} for each P G 2 ^ . The
fixpoint evaluation hence eventually stabilizes. •

4.3 Optimization of Inherently Weak B A Complementation

In this section, we introduce new optimizations of inherently weak B i i c h i automata comple
mentation. Our optimizations are based on the Miyano-Hayashi construction [26] described
in Section 3.5. Our two optimizations are inspired by optimizations of the determinization
algori thm for automata over finite words [13] and by macrostates saturation in rank-based
complementation of B i i c h i automata [9]. In both opt imizat ion, s imulat ion relations are
used in order to construct a smaller automaton. We either t ry to make the macrostates of
the complement as smal l as possible (pruning) or as big as possible (saturating). Th is con
struction can help reducing the generated state space, because more states obtained from
the original Miyano-Hayashi construction [26] can be mapped to one pruned or saturated
macrostate.

Let A = (Q, E , 5,1, F) be an inherently weak B A . We first construct an equivalent B A
W = (Q, E , 5,1, F\Y)-, where F\y contains a l l states from inherently weak accepting M S C C s
of A. We then convert W to an equivalent co-Bi ich i automaton C = (Q,Yl,5,I,Fc =
Q\F\y). We use to denote a direct simulation on W and ^ to denote a fair simulation
on C. A fair s imulat ion ^ can be approximated by a direct s imulat ion ^ ^ V .

Let C be a relation on the states of C defined as follows: p C q iff (i) p -<f, (ii) q is
reachable from p i n C, and (iii) either p is not reachable from q in C or p = q.

We define two adjustment functions pr, sat: 2Q 2<2 for each S C Q as follows:

• pruning: pr(S) = S' where S' C S is the lexicographically smallest set (given a fixed
ordering on Q) such that Vg G S3q' G S': q C q' and

• saturating: sat(S) = L«SJ^e, where L»SJ^e = {p € Q \ 3q G Q: p ^c

f q}.

For a given c o - B A C and an adjustment function 9 : 2® —>• 2^ , the construction MiHAYg
produces a B A M I H A Y # (C) = (Q', E , 5', I', F'), whose components are defined as follows:

. Q' = 2Q x 2<2,

. I' = {(9(I),9(I)\FC)},

. 5'((S,B),a) = (S',B') where

- S' = 9(5(S,a)),

28

— and

* B' = S' \ Fc i f B = 0 or
* B' = (S(B, a) n S') \ Fc if B / 0, and

. F' = 2® x {0}.

In the following we fix a c o - B A C = (Q,YJ,5,I ,Fc). We use p g to denote that
g is reachable from p. Let a 6 S u be a word. Let LT, IT be sets of traces over a. We
say that II and IT are acc-equivalent, denoted as LT ~ LT' if 3TT G LT : TT is accepting in
C iff 3TT' G LT' : 7r' is accepting i n C. Let p = S1S2 • • • be a sequence of sets of states
and a be a word. We define LTp to be a set of traces over a matching the sets of states.
Formally, LTp = {TT \ TT over a,7Tj G Si for each i}. For a trace TT = TTOTTI . . . we use 7Tj: u

to denote a trace -Ki:u) = itiiti+i Moreover, for a set of traces LT p, we define npi.^ as
^piuj = {ftj'-w I TT G LTP and j > i }. We also define LTp = \JI&U) n P i.w. Further, for a set of
states B we use p^ to denote the sequence S1S2 • • • s.t. Si = B, Si+i = 5(Si, a>i) for each
i £ u . We use pa to denote pa. Moreover, for a given mapping 9 : 2® -> 21? and a sequence
of sets of states p we define #(p) = 9{pi)9{p2).... A trace 7r is eventually fair-simulated by
7r' i f there is some i £ w s.t. 7Tj:a; ^ 71^.

L e m m a 4.8. Let a be a word, L T P a ~ np^, and L T P a C ILy^. Then , L T P a ~ LT^, .

Proof. Assume that L T P a ~ LT p^ and L T P a C I I p ^ . Since LT p^ C 11^, , it means that if there is
an accepting trace i n LTP , there is the same accepting trace i n LT4 . If there is no accepting

" fa

trace i n I I P a , it means that a l l traces contain infinitely many accepting states. Hence, every
infinite suffix is also an accepting trace and, therefore, n4 contains a l l traces that are not

Pa

accepting i n C (i.e., w i th infinitely many accepting states). •

L e m m a 4.9. Let a be a word. Then, n P a ~ Iipr^Pay

Proof. Since Iipr^Pa^ C n p a , it suffices to show that if there is an accepting trace ir G n p a ,
there is also an accepting trace TT' G Ilpr(Pay We show that there is TT' G n p r(P a) s.t. 7r
is eventually fair-simulated by TT'. If TT' = TT, we are done. Now, assume that TT' ^ TT and
that there is a m a x i m u m set of traces P = {TT1, TT2, ... } C n p a w i t h indices £1 < £2 < • • •
s.t. pi = 7r| C TT1^1 = p\ for each i, and moreover 7ri = IT. We show that P is finite by
showing that p\ 7̂ p'j for each i / j. Assume that p'j = p\ for some i < j . B u t then we have
Pi Pj — Pj = Pi meaning that p\ p'j (from the definition of C) . F r o m the definition
of C we also have that pj is not reachable from p1- = p^, which is a contradiction. Since
the set P = {TTI, ... ,7rn} is max ima l and finite, we have 7rn G Ilpr(Pay Moreover, TT' = 7rn

eventually fair-simulates TT, which concludes the proof. •
L e m m a 4.10. Let a be a word. Then , n p a ~ ^at(p v

Proof. F i r s t observe that n P a C H)!at(p \ • Therefore, it suffices to show that i f there is an
accepting trace TT G ^AT^P \, there is also an accepting trace TT' G n p a . We fix p = pa.
Consider some accepting trace TT G ^ a t ^ p y If 7r G n p a , we are done. If not, there is some
posit ion £ s.t. 7r G np<1.^ and TTI <f q where q G p£. Therefore, there is some trace TT' G p
s.t. 7r'e = q. Moreover, TT is accepting, hence there is a trace ir" leading from q, which is
accepting as well . Hence, 7r^.7r" G p and moreover this trace is accepting. •

L e m m a 4.11. Let 9 be an adjustment function. If n p a ~ ^e(p) ^ o r e a c n a ^ ^ then
£ (M i H A Y e (C)) = S w \C(C).

29

Proof. Consider a word a G £(C). Hence, there is an accepting trace ir G IiPa and also an
accepting trace TT' G ^0(pa)k.u f ° r some k G u. Since TT' emerges eventually in the B set,
a is not accepted by £ (MlHAYg(C)) .

Conversely, assume that a G" £ (C) . Then, a l l traces i n IiPa as well as i n n ^ , N contain
infinitely many accepting states. Hence, we flush 5-set infinitely many times yielding
a G £ (M I H A Y „ (C)) . •

L e m m a 4.12. For a c o - B A C, £ (M i H A Y s a i (C)) = £ (M i H A Y p r (C)) = S w \ £ (C) .

Proof. We get the proof for L e m m a 4.12 direct ly from the fact that I\.prrp\ C IiPa for
any word a, and from Lemmas 4.8, 4.9, and 4.11. The correctness of the construction for
M i H A Y s a i (C) is given by Lemmas 4.10 and 4.11. •

4.4 Optimization of Semi-Deterministic B A Complementa
tion

A problem wi th the N C S B algori thm for complementing semi-deterministic B i i c h i automata
described i n Section 3.6 is a high degree of nondeterminism. In this section, we propose an
opt imizat ion of the original N C S B construction, inspired by the M A X R A N K construction
in rank-based complementation from [16], which we denote as N C S B - M A X R A N K .

Let A = (Qi t±J Q2,^,S = Si W S2 U St, I,F) be a semi-deterministic B A where Q2
is the set of states reachable from some accepting state and Q\ is the rest, 5\ = £ I Q I ;

$2 = SQ2, and St is the transi t ion function between Q\ and Q2- The N C S B - M A X R A N K
construction produces a B A N C S B - M A X R A N K (^ I) = (Q',T,,S',I',F') whose components
are the following:

. Q> = {(N, C, S, B) G 2 * x 2 Q 2 x 2 ^ F x 2 ° 2 | B C C},

. / ' = { (Q i n / , g 2 n / , 0 , g 2 n /) } ,

• S' = 71 U 72 where

- 71 ((JV, C, S, B), a) = {(N', C, S', B')} where

* N' = 6i(N,a),
* S' = 52(S,a),
* C' = (St(N, a) U S2(C, a)) \ S', and
* B' = O i f B = 0, otherwise B' = S2(B, a) D C,

- UB'HF / 0 , t h e n 7 2 ((A ^ , C , 5 , S) , a) = 0. Otherwise, we set 72((iV, C, S, B), a) =
{N',C",S",B"} w i t h

* B" = 0,
* S" = S'U B', and
* C" = C \ S".

. F' = {(N, C, S, B) £ Q' \ B = 0}.

N C S B - M A X R A N K reduces the degree of nondeterminism by providing at most two
choices for each macrostate. The first choice is to keep a l l states i n B and the second choice
is to move a l l states from B to S i f B contains no accepting state. The construction is
incomparable to the original N C S B a lgori thm [5] due to the condit ion C' C 82 (C \ F,a),
which does not generally hold i n N C S B - M A X R A N K .

30

L e m m a 4.13. Let B C Q2 be a set of deterministic states and let a be a word. If a 4 £(A),
then 3k :V£ > k : (p f)g D F = 0.

Proof. Assume that a ^ £ („4) . Since I? is a set of states of the deterministic part, we have
I I „ B | < \B\. Moreover, for each trace TT G I L B there is some k^ s.t. -Kg 4 F for each £ > kw.

i fJa i l l /va /
Taking k = maxjA;^ | TT G I I p s } , we fulfill the condi t ion of the lemma. •
L e m m a 4.14. Let A be an S D B A . Then £ (N C S B - M A X R A N K („ 4)) = S w \ C(A).

Proof. F i r s t , we prove that i f a G C(A), then a 4 £ (N C S B - M A X R A N K („ 4)) . In that case,
there is an accepting run p on a i n A. Moreover, pz G Q2 for some £ G UJ and for a l l
k>l. Therefore, for every run R = (N1,C1, S1, B^ ... on a i n N C S B - M A X R A N K (^ I) , we
have that either pi G Si or pi G Cg. Now assume the first case, pi G Sg. A t some point,
we reach an accepting state i n p (p& <E QF, k > £). pt G 5^ therefore means that i? is a
finite trace of at most k — 1 elements. Now we tu rn to the second case, G C V . In that
case, either pi G C\ and G B\ for each Z > IQ > £, or we apply 72 and move p to S,
i.e., p m G Sm for some m > £. In the first case, I? is not empty anymore, hence R is not
accepting. In the latter, we get the case similar to the first examined run pg G Sell. Hence,
a 4 £ (N C S B - M A X R A N K (^)) .

Now, we prove that i f a 4 £(A), then a G £ (N C S B - M A X R A N K („ 4)) . We construct an
accepting run R on a i n A. Let Ro be a macrostate Ro = (Ni, C\,Si,Bi) = (Qi n / , Q2 fl
7,0, Q 2 n i ") . F r o m L e m m a 4.13 we have that there is a k\ s.t. ^£>k1: (p^gDF = 0. We
set -Rj+i = 7i(-R«) for 1 < i < k. Further, we set Rk+i = 72(Rk)- Then, we use L e m m a 4.13
(on aki:Ui) to obtain a posit ion ki g iving us the point where 72 is applied. Such a constructed
run R is infinite, because L e m m a 4.13 ensures that we cannot reach an accepting state from
S on a. It remains to show that R is accepting. F r o m the construction, we have that 72

was used infinitely many times (and each successor of 72 is an accepting state). The run
therefore contains infinitely many accepting states. •

31

Chapter 5

Implementation

The optimizations presented in this thesis are implemented in the tool R A N K E R [14] i n C + + .
We added these optimizations on top of the techniques from [16] . R A N K E R uses optimized
rank-based complementation for general B A s and also opt imized special constructions for
complementing inherently weak and semi-deterministic automata.

5.1 Architecture

R A N K E R [14] is a publ ic ly available command line tool for complementing B i i c h i automata,
wri t ten in C + + . It accepts input B i i c h i automata in the H O A [3] or the B A [1] format. B o t h
state-based and transition-based input B i i c h i automata are supported. The architecture is
shown in Figure 5 . 1 . After preprocessing, the input automaton is complemented using
a complementation procedure chosen based on the structural properties of the automaton,
and then postprocessed.

5.1.1 P r e p r o c e s s i n g a n d Pos tprocess ing

R A N K E R supports various options for preprocessing, including reduction of the input au
tomaton, deelevation, saturation of accepting states, or feature extraction.

In order to reduce the input automaton before complementation, R A N K E R uses quo-
tienting based on direct simulation [25] (—preprocess=red). Inherently weak and semi-
deterministic automata are also transformed into equivalent transition-based B A s (T B A) ,
since this may reduce the number of states. We do not transform other B A s into T B A s .
Even though it could reduce the number of states, our optimizations of rank-based comple
mentation procedure are more effective on state-based automata. For elevator automata, we
can use some of the deelevation strategies. Deelevation decreases the rank bounds for rank-
based complementation at the cost of at most doubling the number of states. R A N K E R sup
ports three different deelevation strategies: (i) —preprocess=copyall where every com
ponent is deelevated (as described i n Section 4 . 1 . 6) , (ii) —preprocess=copyiwa where only
inherently weak accepting components are deelevated, and (hi) —preprocess=copyheur
which combines two previous methods: i f the input B A is inherently weak and the the rank
bound estimation is at least 5 , then a l l M S C C s w i t h an accepting state/ t ransi t ion are deel
evated; i f on a l l paths from a l l in i t i a l states, the first non- t r iv ia l M S C C is non-accepting,
then the in i t i a l part of the B A (up to the first non- t r iv ia l M S C C) is determinized and the
sizes of macrostates i n the rank-based complementation are therefore reduced.

3 2

—preprocess=c

r e d u c t i o n
c G { r e d , no- red}

dee leva t ion

c G { copyheur , c o p y a l l ,

copyiwa}
F/5p s a t u r a t i o n
c G { a c c s a t }
feature e x t r a c t i o n

A
preprocessing

features

—best
— l i g h t

var ious c o m
p l e m e n t a t i o n
approaches

(T)BA I
complement

-postprocess=c

a u t o m a t o n t r i m m i n g

r e d u c t i o n
c G {red}

postprocessing
Ac

Figure 5.1: Overview of the architecture of R A N K E R wi th the most important command-
line options. Default settings are highlighted i n blue. F and 5F denote accepting states
and transitions, respectively.

Using —preprocess=accsat, R A N K E R can saturate accepting states or transitions in
the input B A . The reason for this is that a higher number of accepting states reduces the
max imum rank in the rank-based complementation. O n the other hand, this technique is
not always beneficial for other optimizations, since it may, for example, break the structure
for elevator rank estimation.

Dur ing preprocessing, R A N K E R also extracts information about the input B A that helps
the complementation procedure: for example the type of the B A , therank bound for indi
v idua l states, etc.

The preprocessed automaton is then complemented and the result is postprocessed.
R A N K E R removes useless states of the complement and optionally reduces the result using
direct simulation [25] (—postprocess=red).

5.1.2 C o m p l e m e n t a t i o n

The complementation procedure is chosen based on the type of the input B i i c h i automa
ton. We have a different procedure for each of the following types: inherently weak,
semi-deterministic, and other B A s (ordered by decreasing pr ior i ty) . See Figure 5.2 for
an overview of complementation approaches used i n R A N K E R .

inherently weak

SDBA

otherwise

• Miyano-Hayashi construction
• Macrostates simulation-based prun

ing/saturation optimizat ion

• N C S B - L A Z Y construction
• N C S B - M A X R A N K construction
• Opt imized Rank-based construction

• Opt imized Rank-based construction
• Backoff: SPOT

Figure 5.2: Overview of complementation approaches used i n R A N K E R .

33

For inherently weak B A s , both the Miyano-Hayashi construction [26] and its opt imiza
t ion for macrostates saturation (described i n Section 4 . 3) are used. B y default (—best),
R A N K E R constructs the complement using both approaches and then outputs the smaller
result. For the option — l i g h t , only the opt imized construction is used.

For semi-deterministic B A s , by default (—best) bo th N C S B - M A X R A N K (described in
Section 4 . 4) and opt imized rank-based construction wi th advanced rank estimation [16, 15]
is used and the smaller result is picked. For the option — l i g h t , only N C S B - M A X R A N K
is used. We can also tu rn on the NCSB-Lazy construction from [9] by using —ncsb-lazy,
but this a lgori thm usually gives worse results.

For other B A s , we use the opt imized rank-based complementation construction from
[16, 15] w i th S P O T as the backoff [16] . R A N K E R can determine i f the input automaton has
a structure bad for the rank-based procedure and use another approach.

3 4

Chapter 6

Experimental Evaluation

In this chapter, we compare R A N K E R w i t h other state-of-the-art tools for B i i c h i automata
complementation and show that it can produce a s tr ic t ly smaller complement than other
state-of-the-art tools in the majority of cases. Moreover, we show that even i f the original
rank-based complementation is not very efficient, w i th a l l our optimizations it becomes
competitive to other B A complementation approaches.

6.1 Tools and Evaluation Environment

In our experiments, we compared R A N K E R wi th other state-of-the-art tools, namely, G O A L
[36] (implementing P I T E R M A N [28], S A F R A [31], and F R I B O U R G [2]), S P O T 2.9.3 [10] (im

plementing Redziejowski's a lgori thm [30]), S E M I N A T O R 2 [4], L T L 2 D S T A R 0.5.4 [19], and
R O L L [21]. A l l tools were set to the mode where they output a state-based B A .

We tested the correctness of R A N K E R using S P O T ' S autcross on a l l B A s in our bench
mark. The experimental evaluation was performed on a 64-bit G N U / L I N U X D E B I A N work
station w i t h an Intel(R) Xeon(R) C P U E5-2620 running at 2.40 G H z wi th 32 G i B of R A M
and using a timeout of 5 minutes.

6.2 Structure of Experiments

In this chapter, we present results of two sets of experiments. The first set was performed
after the opt imized rank-based construction for elevator automata and data flow analysis
(described in Section 4.1) were implemented on top of the previous version of R A N K E R
from [16]. The results of these optimizations were published i n [15]. The second set was
performed on the version of R A N K E R w i t h optimizations from Sections 4.3 and 4.4 imple
mented on top of the version from [15]. In our experiments, we focus mainly on the number
of states of the complement. Axes in a l l scatter plots are logarithmic.

The first experiment from each set shows the effectiveness of our heuristics for reducing
the generated state space by comparing the sizes of complemented B A s w i t h other rank-
based algorithms without postprocessing. These results are useful for applications where
postprocessing is not needed, for example language inclusion or equivalence checking. We
compare R A N K E R wi th S C H E W E (the version Reduced Average Outdegree from [32], im
plemented i n G O A L under -m rank - t r -ro), and also wi th its previous version to see the
impact of our new optimizations.

35

The second experiment from each set compares R A N K E R w i t h other state-of-the-art
tools. It compares sizes of output B A s , therefore, each automaton was postprocessed wi th
autf i l t (simplification level —high). The statistics for each set of experiments are shown
in a table. For the second experiment, scatter plots compare R A N K E R wi th S P O T and
R O L L , which currently give the best results among other state-of-the-art tools.

6.3 Elevator Automata and Data Flow Analysis

In this section, we show the effect of our opt imized rank-based construction for elevator au
tomata and data-flow analysis. We implemented these optimizations on top of the previous
version of R A N K E R from [16].

6.3.1 Datasets

We used two datasets for our experiments: (i) random w i th 11,000 B A s over a two letter
alphabet used i n [35], which were randomly generated v i a the Tabakov-Vardi approach [34],
starting from 15 states and wi th various different parameters, and (ii) LTL containing 1,721
B A s over larger alphabets (up to 128 symbols) used i n [4], obtained from L T L formulae
from literature (221) or randomly generated (1500). The automata were preprocessed using
R A B I T [24] and S P O T ' S autf i l t (using the —high s implification level), transformed to
state-based acceptance B A s (if they were not already), and converted to the H O A format [3].
F rom this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak,
(iii) unambiguous, or (iv) having an empty language, since for these automata types there
exist more efficient complementation procedures than for unrestricted B A s [5, 4, 6, 23].
In the end, we were left w i th 2 592 (random) and 414 (LTL) hard automata. We use a l l to
denote their union (3 006 B A s) . O f these hard automata, 458 were elevator automata.

6.3.2 C o m p a r i s o n w i t h R a n k - B a s e d A l g o r i t h m s

Our first experiment shows the effectiveness of our optimizations by comparing the sizes of
complemented B i i c h i automata without postprocessing. Figure 6.1 compares the number of
states of the automata generated by R A N K E R wi th the automata generated by S C H E W E [32]
and the previous version of R A N K E R from [16], denoted as R A N K E R Q L D - We can see that
the improvement was i n many cases exponential when compared not only wi th S C H E W E ,
but also wi th the previous optimizations i n R A N K E R O L D -

The upper part of Table 6.3 gives summary statistics. The number of timeouts decreased
by 23% and the median decreased by 44% w.r.t. R A N K E R O L D -

6.3.3 C o m p a r i s o n w i t h O t h e r Too l s

Our second experiment compares the number of states of the complement generated by
R A N K E R wi th other state-of-the-art tools w i th postprocessing. Scatter plots i n Figure 6.2
show a comparison of R A N K E R wi th S P O T and R O L L . Figure 6.2a shows that R A N K E R
produces a smaller B A than S P O T i n the majority of cases, especially on B A s from random.
R O L L uses a learning-based approach, which is completely different from any other tool .
Th is approach can output a much smaller automaton i n some cases, but it is a more
heavyweight technique and the number of timeouts is therefore much higher compared to
other tools.

36

10 100

(a) R A N K E R vs S C H E W E

1000 10000 100000
Ranker

10 100 1000 10000 100000
Ranker

(b) R A N K E R vs R A N K E R Q L D

Figure 6 . 1 : Compar ison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vert ical dashed lines represent t imeouts). Blue data points
are from random and red data points are from LTL. Axes are logarithmic.

Summary statistics are i n the lower part of Table 6 . 3 . R A N K E R has the second lowest
mean (after R O L L) and the th i rd lowest median (after R O L L and S E M I N A T O R 2) . Columns
wins and losses show the number of cases where R A N K E R outputs a str ict ly smaller or
str ict ly bigger automaton, respectively. Observe that in comparison wi th a l l other tools,
R A N K E R gives more wins than losses.

The number of timeouts of R A N K E R is s t i l l higher than of some other tools, especially
S P O T , P I T E R M A N , and F R I B O U R G .

6.4 Inherently Weak and Semi-Deterministic B A s

In this section, we present the results of our second set of experiments, w i th optimizations of
the complementation of inherently weak and semi-deterministic B i i c h i automata, described
in Sections 4 . 3 and 4 . 4 . For this set of experiments, we denote the version of R A N K E R from
[15], described in Section 6 . 3 , as R A N K E R O L D -

Table 6 . 1 : Statistics for our experiments. The upper part compares various optimizations
of the rank-based procedure (no postprocessing). The lower part compares R A N K E R to
other approaches (with postprocessing). The left-hand side compares sizes of complement
B A s and the right-hand side runtimes of the tools. The wins and losses columns give the
number of times when R A N K E R was str ic t ly better and worse. The values are given for the
three datasets as " a l l (random : LTL)". Approaches in G O A L are labelled w i t h ©.

method mean median wins losses mean runtime [s] median runtime [s] timeouts
R A N K E R 3812 (4452 207) 79 (93 26) 7.83 (8 !)!) 1.30) 0.51 (0.84 0.04) 279 (276 3)
RANKEROLD 7398 (8688 358) 141 (197 29) 2190 (2011 179) 1 11 (107 9.37 (10 73 1.99) 0.61 (1.04 0.04) 365 (360 5)
SCHEWE © 4550 (5495 665) 439 (774 35) 2640 (2315 325) 55 (1 54) 21.05 (24 28 7.80) 6.57 (7.39 5.21) 937 (928 9)

R A N K E R 47 (52 18) 22 (27 10) 7.83 (8 99 1.30) 0.51 (0.84 0.04) 279 (276 3)
PITERMAN © 73 (82 22) 28 (34 14) 1435 (1124 311) 416 (360 56) 7.29 (7 39 6.65) 5.99 (6.04 5.62) 14 (12 2)
SAFRA © 83 (91 30) 29 (35 17) 1562 (1211 351) 387 (350 37) 14.11 (15 05 8.37) 6.71 (6.92 5.79) 172 (158 14)

SPOT 75 (85 15) 24 (32 10) 1087 (936 151) 683 (501 182) 0.86 (0 99 0.06) 0.02 (0.02 0.02) 13 (13 0)
FRIBOURG © 91 (104 13) 23 (31 9) 1120 (1055 65) 601 (376 225) 17.79 (19 53 7.22) 9.25 (10.15 5.48) 81 (80 1)
L T L 2 D S T A R 73 (82 21) 28 (34 13) 1465 (1195 270) 465 (383 82) 3.31 (3 84 0.11) 0.04 (0.05 0.02) 136 (130 6)
SEMINATOR 2 79 (91 15) 21 (29 10) 1266 (1131 135) 571 (367 204) 9.51 (11 25 0.08) 0.22 (0.39 0.02) 363 (362 1)
R O L L 18 (19 14) 10 (9 11) 2116 (1858 258) 569 (443 126) 31.23 (37 85 7.28) 8.19 (12.23 2.74) 1109 (1106 3)

3 7

I 1 1 1 1 INI im HIHI um HIHI IUI 1
• j

; /

K&.
•

if ji

•

if ji ijJP
-

1000

o

100

10

i i I M i nun

e • .SUB** :

• • • »jto$ w am im e

10 100
Ranker

1000 10 100
Ranker

1000

(a) R A N K E R VS S P O T (b) R A N K E R VS R O L L

Figure 6.2: Compar ison of the complement size obtained by R A N K E R and other state-of-the-
art tools (horizontal and vert ical dashed lines represent t imeouts). Axes are logarithmic.

6.4.1 Datasets

For this set of experiments, we used automata from theh following three datasets: (i) random,
(ii) LTL, and (iii) A u t o m i z e r . The first two datasets are the same as i n the first set of ex
periments from Section 6.3.1. A u t o m i z e r contains 906 B A s over larger alphabets (up to 2 3 5

symbols) used i n [9], obtained from the U L T I M A T E A U T O M I Z E R tool . We d id not use the
last benchmark in our previous experiments, because we focused mainly on hard automata
and most of the automata form A u t o m i z e r are semi-deterministic.

In contrast to the first set of experiments, where we removed some special types of au
tomata from the dataset, i n this experiment we removed only t r i v i a l one-state B A s , because
R A N K E R contains a more efficient implementat ion for complementing these automata, es
pecially inherently weak and semi-deterministic B A s . The final dataset contains 7,155 B A s
(denoted as a l l) w i th 4,533 random, 1,716 LTL, and 906 A u t o m i z e r automata.

6.4.2 Effect of the N e w O p t i m i z a t i o n s

In the first experiment, we measured the effect of our optimizations for inherently weak and
semi-deterministic B i i c h i automata without postprocessing. The evaluation was performed
on LTL and A u t o m i z e r benchmarks. We use both to denote their union. Most of the
automata from these benchmarks are either inherently weak or semi-deterministic.

Table 6.2: Effects of our optimizations for I W and S D B A automata. Sizes of output B A s
are given as "both (LTL : Automizer)" .

method mean median

M l H A Y p r 43.4 (7.3 : 140.7) 7 (5 : 21)
M I H A Y 46.1 (10.9 : 141.3) 7 (6 : 23)

N C S B - M A X R A N K 30 (20.3 : 38.3) 12 (8 : 28)
N C S B - L A Z Y 35.7 (25.1 : 44.8) 13 (9 : 32)

38

10000

1000

ro
X ± 100

10

1 1 II Mil Hill 111 /

—*

/
a

/
/

/
icy

t Is

.IMF
r

/

E

10000

1000
>>
N ro

go 100
u

10

1 1 1 Mill r i J /
/

/ -

y
/

/
-

— «

/

•-
E

10 100 1000 10000
MiHay-Prune

10 100 1000 10000
NCSB-MaxRank

(a) M i H A Y p r vs M I H A Y (b) N C S B - M A X R A N K VS N C S B - L A Z Y

Figure 6.3: Eva lua t ion of the effect of our optimizations for I W and S D B A automata.

We first compared the number of states generated by M I H A Y and by the opt imizat ion
M m A Y p r from Section 4.3 on inherently weak B A s (1,308 B A s - 948 from LTL and 360
from A u t o m i z e r) . The scatter plot is shown i n Figure 6.3a and summary statistics are in
the upper part of Table 6.2. The opt imizat ion clearly reduces the number of states of the
complement, especially for automata from L T L , and it decreases both the mean and the
median.

We also compared the number of states generated by N C S B - L A Z Y [9] and N C S B -
M A X R A N K from Section 4.4 on semi-deterministic B A s that are not inherently weak (735 B A s
- 328 from LTL and 407 from A u t o m i z e r) . The scatter plot is i n Figure 6.3b and summary
statistics are in the lower part of Table 6.2. Our opt imizat ion works better especially for big
automata on the output. B o t h the mean and the median are lower for N C S B - M A X R A N K .

6.4.3 C o m p a r i s o n w i t h O t h e r Too l s

In the second experiment, we compared R A N K E R wi th other state-of-the-art tools for B i i c h i
automata complementation. We focused on the number of states of the output automata af
ter postprocessing. Compar ison of the number of states of automata generated by R A N K E R ,

Table 6.3: Statistics for our experiments. The table compares the sizes of complement B A s
obtained by R A N K E R and other approaches (after postprocessing). The wins and losses
columns give the number of times when R A N K E R was str ict ly better and worse. The values
are given for the three datasets as " a l l (random : LTL : Automize r) " . Approaches in G O A L
are labelled wi th ©.

method mean median wins losses timeouts

RANKER 38 (44 9 67) 11 (18 5 22) 158 (53 0 105)

R A N K E R O L D 30 (38 10 32) 12 (18 6 22) 1554 (356 650 548) 264 (142 69 53) 458 (259 7 192)
PlTER.MAN © 43 (56 12 38) 14 (19 8 24) 2881 (1279 966 636) :»2 (263 68 61) 309 (12 4 293)
SAFRA © 49 (60 17 56) 15 (18 10 24) 3109 (1348 1117 644) 274 (229 31 14) 599 (160 30 409)
SPOT 46 (57 8 66) 11 (18 5 18) 1347 (935 339 73) 1057 (327 343 387) 73 (13 0 60)
FRIBOURG © 49 (68 8 27) 11 (18 6 19) 2223 (1177 503 543) 586 (245 207 134) 399 (93 2 304)

L T L 2 D S T A R 44 (56 12 47) 14 (19 7 24) 2794 (1297 924 573) 448 (283 88 77) 288 (130 13 145)
SEMINATOR 2 46 (58 8 64) 11 (17 5 21) 1626 (1297 291 38) lll:{ (286 398 429) 419 (368 1 50)
ROLL 18 (15 11 54) 9 (8 8 28) 6050 (3824 1551 675) 620 (369 125 126) 1893 (1595 8 290)

39

I 1 1 1 1 INI i l l i n i u m — •lll l l 1 1

• % 8 8

c Ü
•

• Si

• •••

10 100 1000
Ranker

10 100 1000
Ranker

(a) R A N K E R VS R A N K E R 0 L D (b) R A N K E R VS S P O T

Figure 6.4: Compar ison of the complement size obtained by R A N K E R , R A N K E R O L D ; and

S P O T (horizontal and vert ical dashed lines represent timeouts).

R A N K E R O L D J and S P O T are given i n Figure 6.4. Summariz ing statistics are i n Table 6.3. The
backoff strategy was applied i n 278 cases (264 for random, 1 for LTL, and 13 for A u t o m i z e r) .

The number of t imeouts was reduced by 65% w.r.t . R A N K E R O L D _ this is the reason of
the higher mean. R A N K E R also has the th i rd smallest mean and median, after R O L L and
R A N K E R O L D J but they have a much higher number of timeouts. F r o m the columns wins
and losses we can see that R A N K E R gives a s t r ic t ly smaller automaton i n the majority of
cases compared to a l l other tools.

Regarding runtimes, we can see from Table 6.4 that R A N K E R is comparable to S E M I -
N A T O R 2. S P O T s t i l l remains the fastest tool for B A complementation.

Table 6.4: R u n times of the tools given as " a l l (random : LTL : A u t o m i z e r) "

method mean median

R A N K E R 3.72 (4 .34 0.45 7.30) 0 .05 (0 .10 0 .04 0.08)

R A N K E R O L D 4.62 (5 .33 0 .72 9.69) 0 .07 (0 .19 0 .03 0.15)
PlTERMAN © 8.06 (6 .07 5 .95 28 .38) 5 .12 (4.96 5.08 8.68)
S A F R A © 11.58 (10.41 6 .51 38 .65) 5.41 (5.32 5.26 9.02)

S P O T 0.64 (0 .57 0 .02 2 .28) 0.02 (0.02 0.01 0.02)

F R I B O U R G © 13 .13 (14 .14 6 .06 23 .88) 5.69 (6.82 4 .92 6.57)
L T L 2 D S T A R 2.1 (2 .25 0 .34 5.15) 0.02 (0.02 0.01 0.05)
S E M I N A T O R 2 4 . 1 6 (6 .33 0 .03 1.88) 0.03 (0.08 0.01 0.03)
R O L L 23 .65 (29.82 3.88 49 .02) 3 .34 (6 .19 1.71 17.14)

40

Chapter 7

Conclusion

In this thesis, we presented several optimizations for efficient complementation of B i i c h i
automata. Fi rs t ly , we focused on rank-based complementation. We identified the main
source of a state space blow-up, which is often an unnecessarily high bound on max imum
rank for each state, and observed that i f an automaton has a specific structure, we can
reduce the rank bound for states i n each strongly connected component of the automaton.
We identified a subclass of B i i c h i automata, called elevator automata, whose structure
enables to reduce the rank bound. We presented an algori thm assigning rank bound for
states i n each strongly connected component of the automaton. This a lgori thm can also to
a certain degree be extended to general B i i c h i automata wi th no specific structure. Then
we presented a technique based on data flow analysis that enables propagation of rank
restrictions throughout the automaton. Moreover, we showed that elevator automata can
be complemented i n 0 (16") space. The definition of elevator automata has already been
used by other members of the research community [22].

In the second part of the thesis, we focused on optimizations of specialized comple
mentation constructions for inherently weak and semi-deterministic B i i c h i automata. Due
to special properties of these types of B A s , we can use more efficient algorithms than the
rank-based construction. We presented an opt imizat ion removing states from a macrostate
of the complement of an inherently weak automaton based on direct s imulat ion. The op
t imiza t ion of semi-deterministic B A complementation was inspired by an opt imizat ion of
rank-based construction.

A l l techniques presented in this thesis were implemented as an extension of the tool
R A N K E R for complementation of B i i c h i automata. We performed a thorough experimental
evaluation on thousand of hard B i i c h i automata occuring in practice, as well as randomly
generated automata. Our optimizations significantly reduced the generated state space
compared to the previous version of R A N K E R . The algori thm for efficient complementation
of elevator automata caused an exponential improvement i n a lot of cases. We also compared
the results w i th other state-of-the-art tools for B i i c h i automata complementation. R A N K E R
produces a smaller automaton than any other tool i n the majority of cases. Even though the
original rank-based construction may be quite inefficient, w i th the optimizations presented
in this paper, together w i th some previous optimizations implemented i n R A N K E R , we get
a tool that is competitive wi th other state-of-the-art tools and that can i n the majority of
cases even produce smaller automata than any other tool .

The ideas presented i n this thesis are a part of my research on which we worked together
w i th my supervisor and my consultant. M y own contr ibution is especially the extension of
the definition of elevator automata (originally without inherently weak accepting compo-

41

nents), some optimizations, the implementat ion of the a lgor i thm assigning rank bounds to
states of each strongly connected component, and the implementat ion of complementation
algorithms for inherently weak and semi-deterministic B i i c h i automata, as well as their op
t imizations. The first part of the thesis, i n part icular the algorithms for elevator automata
and data flow analysis, is a part of a paper published at T A C A S ' 2 2 [15], and the second
part, including the implementation of R A N K E R , is a part of a tool paper at the t ime of
wr i t ing condit ionally accepted at C A V ' 2 2 .

7.1 Future Work

We plan to extend the rank-based complementation algori thm and some of the optimizations
to (transition-based) Emerson-Lei automata (T E L A) - w-automata w i t h a richer acceptance
condit ion than B i i c h i automata. Due to the richer acceptance condit ion, T E L A s enable
a more compact representation than B A s .

The next subject of our future work is a decomposition-based B i i c h i automata comple
mentation. The idea is that we keep information about each strongly connected component
of the automaton separately and using a round-robin strategy, we inspect the runs i n only
one component at the same time. This strategy should reduce the degree of nondeterminism
and thus reduce the number of generated states of the complement.

42

Bibliography

[1] A B D U L L A , P . A . , C H E N , Y . , C L E M E N T E , L . , H O L Í K , L . , H O N G , C . - D . et al .

Simulat ion Subsumption i n Ramsey-based B i i c h i A u t o m a t a Universal i ty and
Inclusion Testing. In: Springer. Proc. of CAV'10. 2010, p. 132-147.

[2] A L L R E D , J . D . and U L T E S N I T S C H E , U . A Simple and O p t i m a l Complementat ion

A l g o r i t h m for B i i c h i Au tomata . In: Proceedings of the Thirty third Annual IEEE
Symposium on Logic in Computer Science (LICS 2018). I E E E Computer Society
Press, Ju ly 2018, p. 46-55.

[3] B A B I A K , T . , B L A H O U D E K , F . , D U R E T - L U T Z , A . , K L E I N , J . , K Ř E T Í N S K Ý , J . et a l .

The Hano i Omega-Automata Format . In: Computer Aided Verification - 27th
International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I. Springer, 2015, vol . 9206, p. 479-486. Lecture Notes i n
Computer Science. D O I : 10.1007/978-3-319-21690-4_31. Available at:
ht tps: / /doi .org/10.1007/978-3-319-21690-4_31.

[4] B L A H O U D E K , F . , D U R E T L U T Z , A . and S T R E J Č E K , J . Seminator 2 C a n Complement

Generalized B i i c h i Au toma ta v i a Improved Semi-Determinizat ion. In: Proceedings of
the 32nd International Conference on Computer-Aided Verification (CAV'20).
Springer, Ju ly 2020, vol . 12225, p. 15-27. Lecture Notes i n Computer Science.

[5] B L A H O U D E K , F . , H E I Z M A N N , M . , S C H E W E , S., S T R E J Č E K , J . and T S A I , M .

Complementing Semi-deterministic B i i c h i Au tomata . In: Tools and Algorithms for
the Construction and Analysis of Systems - 22nd International Conference, TACAS
2016, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings.
Springer, 2016, vol . 9636, p. 770-787. Lecture Notes i n Computer Science. D O I :
10.1007/978-3-662-49674-9_49. Available at:
ht tps: / /doi .org/10.1007/978-3-662-49674-9_49.

[6] B O I G E L O T , B . , J O D O G N E , S. and W O L P E R , P . O n the Use of Weak A u t o m a t a for

Deciding Linear Ar i thme t i c w i th Integer and R e a l Variables. In: Automated
Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings. Springer, 2001, vol . 2083, p. 611-625. Lecture Notes i n
Computer Science. D O I : 10.1007/3-540-45744-5_50. Available at:
ht tps: / /doi .org/10.1007/3-540-45744-5_50.

[7] B R E U E R S , S., L Ó D I N G , C . and O L S C H E W S K I , J . Improved Ramsey-Based B i i c h i
Complementat ion. In: Proc. of FOSSACS'12. Springer, 2012, p. 150-164.

43

https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1007/978-3-662-49674-9_49
https://doi.org/10.1007/3-540-45744-5_50

[8] BÜCHi, J . R . O n a Decision M e t h o d i n Restr icted Second Order Ar i thmet ic .
In: Proc. of International Congress on Logic, Method, and Philosophy of Science
1960. Stanford U n i v . Press, Stanford, 1962.

[9] C H E N , Y . , H E I Z M A N N , M . , L E N G Ä L , O. , L I , Y . , T S A I , M . et a l . Advanced

automata-based algorithms for program terminat ion checking. In: Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. A C M , 2018,
p. 135-150. D O I : 10.1145/3192366.3192405. Available at:
https://doi.org/10.1145/3192366.3192405.

[10] D U R E T L U T Z , A . , L E W K O W I C Z , A . , F A U C H I L L E , A . , M I C H A U D , T. , R E N A U L T , E .

et a l . Spot 2.0 — A Framework for L T L and UJ-Automata Manipu la t ion .
In: Automated Technology for Verification and Analysis. C h a m : Springer
International Publ i sh ing , 2016, p. 122-129. I S B N 978-3-319-46520-3.

[11] F O G A R T Y , S. and V A R D I , M . Y . B i i c h i complementation and size-change
terminat ion. In: Springer. Proc. of TACAS'09. 2009, p. 16-30.

[12] F R I E D G U T , E . , K U P F E R M A N , O . and V A R D I , M . B i i c h i Complementat ion Made

Tighter . International Journal of Foundations of Computer Science. 2006, vol . 17,
p. 851-868.

[13] G L A B B E E K , R . and P L O E G E R , B . F ive Determinisat ion Algor i thms. In: Proc. of
CIAA'08. Springer, 2008, p. 161-170. I S B N 978-3-540-70843-8.

[14] H A V L E N A , V . , L E N G Ä L , O . and S M A H L I K O V Ä , B . RANKER. 2021.

https: //github.com/vhavlena/ranker.

[15] H A V L E N A , V . , L E N G Ä L , O . and S M A H L I K O V Ä , B . Sky Is Not the L i m i t : Tighter R a n k

Bounds for Elevator A u t o m a t a i n Buch i A u t o m a t a Complementat ion. In: Proceedings
of TACAS'22. Springer Verlag, 2022. I S S N 0302-9743.

[16] H A V L E N A , V . and L E N G Ä L , O . Reducing (To) the Ranks : Efficient Rank-Based
B i i c h i A u t o m a t a Complementat ion. In: 32nd International Conference on
Concurrency Theory (CONCUR 2021). Dagstuhl , Germany: Schloss D a g s t u h l -
Leibniz-Zent rum für Informatik, 2021, vol . 203, p. 2:1-2:19. Leibniz International
Proceedings in Informatics (LIPIcs) . D O I : 10 .4230 /LIP Ic s .CONCUR.2021 .2 . I S B N
978-3-95977-203-7. I S S N : 1868-8969. Available at:
https: //drops.dagstuhl.de/opus/volltexte/2021/14379.

[17] H E I Z M A N N , M . , H O E N I C K E , J . and P O D E L S K I , A . Terminat ion Analys is by Learning

Terminat ing Programs. In: Springer. Proc. of CAV'14- 2014, p. 797-813.

[18] K A H L E R , D . and W I L K E , T . Complementat ion, Disambiguat ion, and Determinizat ion
of Büch i Au toma ta Unified. In: Springer. Proc. of ICALP'08. 2008, p. 724-735.

[19] K L E I N , J . and B A I E R , C . On- the-Fly Stut ter ing i n the Construct ion of Determinist ic
omega -Automata . In: Implementation and Application of Automata, 12th
International Conference, CIA A 2007, Prague, Czech Republic, July 16-18, 2007,
Revised Selected Papers. Springer, 2007, vol . 4783, p. 51-61. Lecture Notes i n
Computer Science. D O I : 10.1007/978-3-540-76336-9_7. Available at:
https://doi.org/10.1007/978-3-540-76336-9_7.

44

https://doi.org/10.1145/3192366.3192405
https://doi.org/10.1007/978-3-540-76336-9_7

[20] K U P F E R M A N , O . and V A R D I , M . Y . Weak alternating automata are not that weak.
ACM Trans. Comput. Log. 2001, vol . 2, no. 3, p. 408-429. D O I :
10.1145/377978.377993. Available at: https://doi.org/10.1145/377978.377993.

[21] L i , Y . , S U N , X . , T U R R I N I , A . , C H E N , Y . and X u , J . R O L L 1.0: w-Regular Language
Learning Library . In: Tools and Algorithms for the Construction and Analysis of
Systems - 25th International Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, Part I. Springer, 2019, vol . 11427,
p. 365-371. Lecture Notes in Computer Science. D O I : 10.1007/978-3-030-17462-0_23.
Available at: https://doi.org/10.1007/978-3-030-17462-0_23.

[22] L i , Y . , T U R R I N I , A . , F E N G , W . , V A R D I , M . and Z H A N G , L . Divide-and-Conquer
Determinizat ion of B i i c h i Au toma ta based on S C C Decomposi t ion. In: Proc. of
CAV'22. 2022. To appear.

[23] L i , Y . , V A R D I , M . Y . and Z H A N G , L . O n the Power of Unambigui ty i n B i i c h i
Complementat ion. In: Proceedings 11th International Sympos ium on Games,
Automata, Logics, and Formal Verification, Brussels, Be lg ium, September 21-22,
2020. Open Publ i sh ing Associat ion, 2020, vol . 326, p. 182-198. Electronic
Proceedings in Theoret ical Computer Science. D O I : 10 .4204/EPTCS.326.12 .

[24] M A Y R , R . and C L E M E N T E , L . Advanced automata minimiza t ion . In: Proc. of
POPL'13. 2013, p. 63-74.

[25] M A Y R , R . and C L E M E N T E , L . Efficient Reduct ion of Nondeterminist ic Au toma ta
w i t h App l i ca t i on to Language Inclusion Testing. Logical Methods in Computer
Science. Episciences. org. 2019, vol . 15.

[26] M I Y A N O , S. and H A Y A S H I , T . Al te rna t ing finite automata on w-words. Theoretical
Computer Science. 1984, vol . 32, no. 3, p. 321-330. D O I :
https://doi.org/10.1016/0304-3975(84)90049-5. I S S N 0304-3975. Available at:
https: //www. sciencedirect.com/science/article/pii /0304397584900495.

[27] N I E L S O N , F . , N I E L S O N , H . R . and H A N K I N , C . Principles of program analysis.
Springer, 1999. I S B N 978-3-540-65410-0. Available at:
https://doi.org/10.1007/978-3-662-03811-6.

[28] P I T E R M A N , N . F r o m Nondeterminist ic B i i c h i and Streett A u t o m a t a to Determinist ic
Pa r i t y Automata . In: I E E E . Proc. of LICS'06. 2006, p. 255-264.

[29] R A M S E Y , F . P . O n a P rob lem of Formal Logic . Proceedings of the London
Mathematical Society. 1930, no. 1, p. 264-286. D O I : 10.1112/plms/s2-30.1.264. I S S N
0024-6115. Available at: https://doi.org/10.1112/plms/s2-30.1.264.

[30] R E D Z I E J O W S K I , R . R . A n Improved Const ruct ion of Determinist ic Omega-automaton
Using Derivatives. Fundam. Informaticae. 2012, vol . 119, 3-4, p. 393-406. D O I :
10.3233/FI-2012-744. Available at: https://doi.org /10.3233/FI-2012-744.

[31] S A F R A , S. O n the Complex i ty of w-automata. In: I E E E . Proc. of FOCS'88. 1988,
p. 319-327.

45

https://doi.org/10.1145/377978.377993
https://doi.org/10.1007/978-3-030-17462-0_23
https://doi.org/10.1016/0304-3975(84)90049-5
http://sciencedirect.com/science/article/pii/0304397584900495
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1112/plms/s2-30
https://doi.org/10.3233/FI-2012-744

[32] S C H E W E , S. B i i c h i Complementat ion Made Tight . In: 26th International Symposium
on Theoretical Aspects of Computer Science, STACS 2009, February 26-28, 2009,
Freiburg, Germany, Proceedings. Schloss Dagstuhl - Le ibniz-Zent rum fuer Informatik,
Germany, 2009, vol . 3, p. 661-672. L IPIcs . D O I : 10.4230/LIPIcs .STACS.2009.1854.
Available at: https://doi.org/10.4230/LIPIcs.STACS.2009.1854.

[33] S I S T L A , A . P. , V A R D I , M . Y . and W O L P E R , P . The Complementat ion Prob lem for

B i i c h i A u t o m a t a w i th Appl ica t ions to Temporal Logic . Theoretical Computer
Science. Elsevier. 1987, vol . 49, 2-3, p. 217-237.

[34] T A B A K O V , D . and V A R D I , M . Y . Exper imenta l Evalua t ion of Classical Au toma ta
Constructions. In: Proc. of LPAR'05. Springer, 2005, p. 396-411. I S B N
978-3-540-31650-3.

[35] T S A I , M . , F O G A R T Y , S., V A R D I , M . Y . and T S A Y , Y . State of B i i c h i

Complementat ion. In: Implementation and Application of Automata. Ber l in ,
Heidelberg: Springer Be r l i n Heidelberg, 2011, p. 261-271. I S B N 978-3-642-18098-9.

[36] T S A I , M . , T S A Y , Y . and H W A N G , Y . G O A L for Games, Omega-Automata , and

Logics. In: Computer Aided Verification. Ber l in , Heidelberg: Springer Ber l in
Heidelberg, 2013, p. 883-889. I S B N 978-3-642-39799-8.

[37] V A R D I , M . Y . and W O L P E R , P . A n Automata-Theoret ic Approach to Automat ic
Program Verification. In: I E E E . Proceedings of the First Symposium on Logic in
Computer Science. 1986, p. 322-331.

[38] Y A N , Q . Lower Bounds for Complementat ion of UJ-Automata V i a the F u l l Au toma ta
Technique. In: Automata, Languages and Programming. Ber l in , Heidelberg: Springer
B e r l i n Heidelberg, 2006, p. 589-600. I S B N 978-3-540-35908-1.

46

https://doi.org/10.4230/LIPIcs.STACS.2009.1854

