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Abstract 
Búch i automata ( B A ) complementation is a crucial operation for terminat ion analysis of 
programs, model checking, or decision procedures for various logics. Despite its prominence, 
practically efficient algorithms for B A complementation are s t i l l missing. Th is thesis deals 
wi th optimizations of Búch i automata complementation, focusing main ly on rank-based 
techniques. The original rank-based algori thm is asymptot ical ly opt imal , but it can s t i l l 
generate unnecessarily large state space. For a pract ical usage, it is therefore desirable to 
reduce the number of generated states i n the complement as much as possible. We propose 
several techniques that can efficiently complement some special types of Búchi automata, 
occuring often i n practice, based on their structure. Some of these techniques can also, to 
a certain degree, be extended to general Búchi automata. The developed techniques were 
implemented as an extension of the tool R A N K E R for Búch i automata complementation 
and evaluated on thousands of hard automata. Our optimizations significantly reduce the 
generated state space and R A N K E R produces i n the majority of cases a smaller complement 
than other state-of-the-art tools. 

Abstrakt 
Komplementace Búch iho a u t o m a t ů je kl íčovou ope rac í pro t e r m i n a č n í a n a l ý z u p r o g r a m ů , 
model checking nebo rozhodovac í procedury pro r ů z n é logiky. Tato p r á c e se zabývá p řede
vš ím optimalizacemi rank-based komplementace Búch iho a u t o m a t ů . P ů v o d n í rank-based 
algoritmus je sice asymptot icky op t imá ln í , p ř e s to m ů ž e generovat n e z b y t n ě velký s t avový 
prostor. P r o p rak t i cké použ i t í je tedy žádouc í m a x i m á l n ě redukovat p o č e t vygenerovaných 
s t a v ů v komplementu. V t é t o p rác i p ř e d s t a v í m e několik technik pro efekt ivní komple-
mentaci n ě k t e r ý c h speciá ln ích t y p ů Búch iho a u t o m a t ů , čas to se vyskytu j íc ích v praxi , k t e ré 
jsou za ložené na jejich s t r u k t u ř e . N ě k t e r é z nav ržených technik lze do u rč i t é m í r y rozšíř i t 
i pro obecné Búch iho automaty. Techniky p ř e d s t a v e n é v t é t o p rác i byly i m p l e m e n t o v á n y 
jako rozší ření n á s t r o j e R A N K E R pro komplementaci Búch iho a u t o m a t ů . T y t o optimalizace 
v ý r a z n ě r eduku j í generovaný s t avový prostor a R A N K E R ve vě tš ině p ř í p a d ů produkuje menš í 
komplement než o s t a t n í existuj ící n á s t r o j e pro komplementaci. 
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Rozšířený abstrakt 
B ú c h i h o automaty jsou automaty nad nekonečnými slovy, k t e r é definují t ř í d u w-regulá rn ích 
j a z y k ů . Jejich komplementace m á ř a d u využi t í , n a p ř í k l a d v t e r m i n a č n í ana lýze p r o g r a m ů , 
model checkingu, rozhodovac ích p r o c e d u r á c h pro r ů z n é logiky (SIS, E T L , Q P T L , . . . ) , 
j azykové ink luz i nebo testu ekvivalence. J e d n á se o velmi n á r o č n o u operaci. P ů v o d n í kom-
p l e m e n t a č n í algoritmus, nav ržený B ů c h i m v roce 1962, produkoval pro n - s t avový automat 
komplement s až 22™ stavy. Pro to od t é doby vzn ik la celá ř a d a p ř í s t u p ů , jak B ů c h i h o 
automaty komplementovat, se snahou sníži t prostorovou složi tost t é t o operace. 

V p r v n í čás t i p r á c e se věnuji z e jména o p t i m a l i z a c í m tzv. rank-based komplementace. 
P r o tento p ř í s t u p existuje algoritmus, k t e r ý asymptot icky dosahuje doln í hranice s loži tost i 
(0.76n) n [32]. Tento algoritmus ale s tá le produkuje stavy a přechody , k t e r é nejsou v kom-
plementu n e z b y t n ě n u t n é , proto je žádouc í hledat optimalizace, k t e r é tyto stavy nebudou 
generovat, a t í m budou redukovat generovaný s t avový prostor. Rank-based komplemen
tace spoč ívá mimo j iné v tom, že k a ž d é m u stavu v a k t u á l n ě dosaž i t e lné m n o ž i n ě s t a v ů 
př i řazu je ně jaké číslo (tzv. rank). O b e c n ě je m a x i m á l n í rank k a ž d é h o stavu pro n - s t avový 
automat roven 2n — 1. P o č e t nás l edn íků ně jakého makrostavu v komplementu je potom 
př ib l ižně roven fak tor iá lu z tohoto m a x i m á l n í h o ranku. P o k u d m á ale automat vhodnou 
strukturu, nen í takto vysoký rank p o t ř e b a a velké m n o ž s t v í s t a v ů se generuje zby tečně . 
Proto je v t é t o prác i p ř e d s t a v e n algoritmus, k t e r ý u m í efekt ivně snížit m a x i m á l n í rank 
s t a v ů m v j edno t l i vých si lně souvis lých k o m p o n e n t á c h u tzv. elevátor a u t o m a t ů . J e d n á se 
0 automaty, k t e r é se velmi ča s to vysky tu j í v p rax i a k t e r é ma j í t akové vlastnosti , k t e ré 
umožňu j í efekt ivně snížit omezen í na m a x i m á l n í rank s t a v ů m v k a ž d é si lně souvislé kom
p o n e n t ě . Tento algoritmus v ý r a z n ě redukuje generovaný s t avový prostor a lze do j i s t é m í r y 
rozšíř i t i pro obecné Bůch iho automaty. P o m o c í techniky insp i rované data flow ana lý 
zou jsme p o t é schopni propagovat j i s t á omezen í na ranky n a p ř í č automatem a t í m ranky 
j edno t l i vých s t a v ů j e š t ě více omezovat. 

Rank-based komplementaci m ů ž e m e použ í t pro jakýkol iv obecný B ů c h i h o automat, ale 
j i s té spec iá ln í typy a u t o m a t ů lze komplementaovat efektivněji p o m o c í specia l izovaných pro
cedur. Dalš í čás t p r á c e proto obsahuje optimalizace k o m p l e m e n t a č n í c h a lg o r i tmů pro in-
herently weak a semi -de te rmin i s t i cké automaty. 

Všechny optimalizace p rezen tované v t é t o p rác i by ly i m p l e m e n t o v á n y jako rozší ření 
ná s t ro j e R A N K E R [14] v C + + , k t e r ý komplementuje B ů c h i h o automaty. B y l a provedena 
ř a d a e x p e r i m e n t ů na někol ika t is ících t ěžkých automatech (použ ívaných v prax i i n á h o d n ě 
vygene rovaných) . D íky o p t i m a l i z a c í m na omezen í m a x i m á l n í h o ranku dosahujeme čas to 
1 exponenc iá lně lepších výs ledků nejenom oproti p ů v o d n í m u rank-based algoritmu, ale 
i prot i p ředchoz í verzi n á s t r o j e bez t ě c h t o op t ima l i zac í . Rank-based komplementace se 
sama o sobě m ů ž e v n ě k t e r ý c h p ř í p a d e c h jevit jako neefekt ivní , n i c m é n ě př i zapo jen í různých 
op t imal izac í m ů ž e konkurovat o s t a t n í m k o m p l e m e n t a č n í m p ř í s t u p ů m a dokonce m ů ž e bý t 
v ř a d ě p ř í p a d ů i efektivnější . V praxi se ale velmi čas to vysky tu j í automaty speciá ln ích t y p ů , 
k t e r é lze na zák l adě jejich s t ruktury komplementovat efektivněji , r ů z n ý m i spec ia l izovanými 
procedurami. R A N K E R proto podporuje několik op t ima l i zovaných k o m p l e m e n t a č n í c h algo
r i t m ů a na zák ladě typu a v l a s t n o s t í v s t u p n í h o automatu vybere t u p r a v d ě p o d o b n ě neje-
fektivnější , nebo v n ě k t e r ý c h p ř í p a d e c h vyzkouš í procedur více a v r á t í ne jmenš í automat. 
K r o m ě s ledování efektu j edno t l i vých op t ima l i zac í p o m o c í s rovnáván í výs ledků s p ředchoz í 
verzí n á s t r o j e bylo t a k é provedeno pečl ivé s rovnán í s o s t a t n í m i d o s t u p n ý m i nás t ro j i pro 
komplementaci B ů c h i h o a u t o m a t ů , k t e r é používa j í r ů z n é algoritmy. V experimentech jsme 
se sous t ředi l i z e jména na výs ledný p o č e t s t a v ů komplementu. R A N K E R produkuje ve větš ině 
p ř í p a d ů m e n š í automaty než o s t a t n í d o s t u p n é nás t ro j e . 
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Chapter 1 

Introduction 

Omega automata (w-automata, automata on infinite words) were introduced i n 1960s as an 
auxi l iary tool for a decision procedure of a fragment of a second-order ari thmeric [8]. This 
thesis focuses on complementing B i i c h i automata ( B A ) , special instance of w-automata, 
which is a crucial operation for decision procedures of various logics, such as the monadic 
second-order logic SIS [8] or temporal logics E T L and Q P T L [33], as well as for language 
inclusion and equivalence testing. Besides the theoretical point of view, B i i c h i automata 
complementation became important also i n practice, for example i n model checking of 
temporal properties [37] or terminat ion analysis of programs [11, 17, 9]. 

The purpose of model checking is to automatical ly check whether a system meets its 
specification. B o t h the system and the specified (temporal) property can be represented by 
a B i i c h i automaton. The problem of system verification is then transformed into the prob
lem of language inclusion of these automata. More precisely, a system meets its specification 
if the language of its B i i c h i automaton is a subset of the language of the automaton encod
ing the property. Language inclusion check is performed by complementing the property 
automaton and checking i f its intersection wi th the system automaton is empty. 

The idea behind terminat ion analysis of programs [11, 17, 9] is to construct a differ
ence of two B i i c h i automata — one representing the program and one representing a set 
of paths wi th already proved termination. These paths can be safely removed from the 
program automaton. The removal is done using automata difference, which is implemented 
as an intersection of the program automaton and the complement of the automaton wi th 
terminat ing paths. 

Due to the high complexity of B i i c h i complementation, different approaches and further 
optimizations have been introduced since the original construction by B i i c h i w i th the state 
complexity 22™ was presented in 1962. A p a r t from reducing the upper bound of the size 
of the complemented automaton, there was also an effort to find the theoretical lower 
bound, finally refined by Y a n to (0.76n) n [38]. In this thesis, we focus on the rank-based 
complementation, which was introduced by Kupferman and V a r d i [20], improved w i t h the 
help of Friedgut [12], and further opt imized by Schewe [32], whose construction produces 
the complement w i th the size matching the lower bound modulo a 0{n2) po lynomia l factor. 

Even though Schewe's construction is asymptot ical ly opt imal , it may s t i l l generate a lot 
of unnecessary states and transitions. Op t imiza t ion heuristics are therefore cr i t ica l for 
good performance i n practice. In rank-based complementation, every state from a set of 
states reachable over the current input is assigned a number (called its rank). The main 
problem responsible for the generated state space blow-up is the amount of nondeterminism, 
caused by a lot of possibilities how to assign ranks to a set of states. The number of 
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possibilities depends combinatorial ly on the m a x i m u m rank that can be assigned. It is 
therefore desirable to reduce the m a x i m u m rank as much as possible. 

In this thesis, we first identify elevator automata, a subclass of B i i c h i automata wi th 
a specific structure, and present an algori thm that assigns a bound for m a x i m u m rank for 
states i n each strongly connected component. Th is a lgori thm can be extended to general 
B A s containing containing elevator automaton as a substructure. We show that elevator 
automata can be complemented in 0 (16" ) space. Secondly, we propose a technique, inspired 
by data flow analysis, that can propagate the rank bounds throughout the automaton and 
restrict the ranks even more. We also carry over the proposed techniques to general B A s . 

Al though the optimizations of rank-based procedure work for a l l B A s , automata wi th 
a more specific structure can, however, be complemented more efficiently, using specialized 
constructions for complementation. We therefore present optimizations for complementing 
inherently weak and semi-deterministic B i i c h i automata. 

Optimizat ions presented throughout this thesis are implemented on top of the tool 
R A N K E R [14], which uses several complementation approaches based on properties of the 
input B i i c h i automaton. We evaluated our approach on thousands of hard automata (oc-
curing i n practice as well as randomly generated). Even though the original rank-based 
complementation algori thm may be quite inefficient, our optimizations can significantly re
duce the generated state space and i n a lot of cases can produce even exponentially better 
results. We show that R A N K E R produces a smaller complement i n the majority of cases 
compared to the other state-of-the-art tools. 
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Chapter 2 

Automata Theory 

In this chapter, we introduce some definitions for w-automata that are necessary for the fol
lowing chapters. We define w-automata i n general, and then we focus on B i i c h i automata 
whose complementation is the main subject of this thesis. We also introduce some spe
cial types of B i i c h i automata that are characterized by a specific structure and for which 
more efficient algorithms for complementation can be used in comparison to general B i i c h i 
automata. 

2.1 Languages 

A n alphabet is a nonempty, finite set of symbols, usually denoted by E . A word a = 
a o « i • • • OLn over alphabet E is a sequence of symbols from E . A n empty word has length 0 
and is denoted by e. The concatenation of two words a = ao ... an and j3 = j3o ... j3m is the 
word a/3 = ao ... an(3o • • • / 3 m . For a word a , we define a0 = e and a k + 1 = aka. 

The set of a l l words over an alphabet E is denoted by E * . A language over E is 
a set of words C C E * . The concatenation of two languages C\ and £ 2 is the language 
C\ • C2 = {a/3 G E * J a G C\ and j3 G C2}. The iteration of a language C C E * is 
the language C* = U«>o w n e r e £ ° = { £ } a n d = £ l • £ for every i > 0. 

A regular expression e over alphabet E is defined by the following grammar 

e ::= 0 J e J a J e i + e2 I e\e2 \ e* 

where a G E and e i , e2 are regular expressions. The language £(e) is defined inductively as 
(i) £(0) = 0, (ii) £ ( e ) = {e}, (hi) jC(a) = {a}, (iv) £ ( e i + e 2 ) = £ ( e i ) U £ ( e 2 ) , (v) £ ( e i e 2 ) = 
£ ( e i ) • £ ( e 2 ) , and (vi) £ ( e * ) = ( £ ( e ) ) * . A language C is regular iff there is a regular 
expression e such that £ = C(e). 

2.2 w-Languages 

The symbol u is used to denote the set of non-negative integers { 0 , 1 , 2 , 3 , . . . } . A n ui-word a 
over alphabet E is represented as a function a: UJ —> E where the i - th symbol is denoted 
as a j . We abuse notat ion and sometimes represent a as an infinite sequence a = a^ai ... 
The concatenation of a finite word a = ao ... an and an w-word /3 = Pofii • • • is the w-word 
a/3 = ao • • • a n / 3o /3 i . . . . If it is clear from the context, we use s imply word instead of a;-word. 

We use E w to denote the set of a l l infinite words over E . A n to-language over an 
alphabet E is a set of w-words C C E w . The complement of an a;-language C is the 
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F i gure 2.1: B i i c h i automaton Aex 

w-language E w \ £ , often denoted by £ . The concatenation of a language C\ and an w-
language £ 2 is the w-language £ 1 • £ 2 = 6 S w | a £ £ 1 and j3 G £ 2 } - The co-iteration 
of a language £ C E * is the w-language £ w = {0,10,2 . . . | ai G £ \ {e} for every i > 0}. 
(Note that the empty language 0 can be defined as e w . ) 

A n to-regular expression s over an alphabet E is defined by the following grammar 

s ::= e w | es | s\ + «2 

where si, S2 are w-regular expressions and e is a regular expression. The co-language £ ( s ) C 
E w of an w-regular expression s is defined induct ively as (i) £ ( e w ) = ( £ ( e ) ) w , (ii) £ ( e s ) = 
£ ( e ) • £ ( s ) , and (iii) £ ( s i + « 2 ) = £ ( s i ) U £ ( « 2 ) - A language £ is w-regular iff there is an 
w-regular expression s such that £ = £ ( s ) . 

2.3 Omega Automata 

A n OJ-automaton is a quintuple A = (Q, E , <5, / , Ace), where Q is a finite set of states, E is 
an alphabet, 5 is a t ransi t ion function 5: Q x E -> 2 ^ , I C Q is a set of in i t i a l states, and 
Acc is an acceptance condit ion. Various types of w-automata differ from each other i n the 
definition of the acceptance condit ion Acc. 

We sometimes treat 5 as a set of transitions of the form p A g, for instance, we use 
p —> q £ 5 to denote that q G 5(p,a). A ran of „4, on a word a is an infinite sequence 
P = <7o<7i<?2 •• • such that qo <E I and gj+i G 5(#j,a!j) for every i > 0. .4 is complete iff 
<5(<7, a) I > 1 for every state q £ Q and symbol a G E . 

C C Q is a strongly connected component ( S C C ) of A i f for any pair of states q,q' G C 
it holds that q is reachable from q' and q' is reachable from g. C is a maximal strongly 
connected component ( M S C C ) i f it is not a proper subset of another S C C . The notat ion 8\g 
for S C Q is used to denote the restriction of the transi t ion function 5 C\ (S x T, x S). 

2.4 Bi ich i Automata 

A (state-based) Biichi automaton ( B A ) is an w-automaton A = (Q, E , 5,1, F) where F C Q 
is a set of accepting states. 

Let inf(p) denote the set of states occuring infinitely often i n the run p of A on a word a. 
The run p is called accepting iff inf(p) n F / l The word a is accepted by 4 i f there exists 
an accepting run p of A on a. The set of a l l words accepted by A is called the language 
of A, denoted by C(A). 

A n w-language is a set of infinite words. Accord ing to Bi ich i ' s characterization theorem, 
languages that can be recognized by B i i c h i automata are w-regular. Such languages can be 
defined by w-regular expressions of Section 2.2. 
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Figure 2.1 shows an example of B i i c h i automaton Aex = (Q, E , 5,1, F ) w i th Q = {p, q}, 

E = {a, 6}, / = {p}, F = {p}, and 5 = {p A p,p A q, q —> p}. The language of 
A e x can be described using the w-regular expression (a&*)' J. Intuitively, it is the language 
of words wi th infinitely many occurences of the symbol a. 

A transition-based Biichi automaton ( T B A ) is an w-automaton As = (Q, E , 5,1, dp) 
where 5F Q 5 is a set of accepting transitions. Let m£s(p) denote the set of t ransi t ion 
occuring infinitely often in the run p of As on a word a. The run p is called accepting iff 
inf(p) f l 5F 7̂  0- The word a is accepted by A i f there exists an accepting run p of ^ on a . 

2.5 Special Types of Bi ich i Automata 

In this section, we introduce various types of B i i c h i automata, characterized by a special 
structure, which can be complemented more efficiently than general B i i c h i automata. 

A B i i c h i automaton A = (Q, E , 5,1, F) is 

• deterministic if | / | < 1 and \S(q, a)\ < 1 for a l l q G Q and a G E , 

• semi-deterministic i f the automaton (Q, E , <5, {(/F}, F) is deterministic for each qp G F 
(intuitively, the automaton behaves determinist ically after traversing the first accept
ing state), 

. weak i f for every M S C C C of A it holds that either C n F = 0 o r C n F = C , 

• inherently weak if for every M S C C C of .4 it holds that (i) C f l F = 0, or (ii) every 
cycle i n C contains at least one accepting state qp G F , and 

• unambiguous i f there is at most one accepting run of A on any given word. 

2.6 Simulations 

Direct simulation on a B i i c h i automaton 4 is the relation Q Q x Q defined as the 
largest relation s.t. p Q implies (i) p G F q G F and (ii) p A p ' G 5 3g' G Q : A 
q' <E 5 Ap' <di Q1 for each a G E . 

F a i r simulation on a B i i c h i automaton 4 is the relation ^ j C Q x Q where p ^ j q iff 
(i) for a l l runs pp s tart ing in p there is a run /9g starting i n q over the same word, and (ii) i f 
pp is accepting, then pq is accepting. 
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Chapter 3 

Complementing Biichi Automata 

The first complementation algori thm for B i i c h i automata was introduced by B i i c h i [8] in 
1962. The construction showed that B i i c h i automata are closed under complementation. 
However, Bi ich i ' s approach leads to a doubly exponential blow-up. Various approaches and 
their further optimizations have been therefore presented since, w i th the a i m of reducing 
the generated state space of B A complementation. In particular, we can distinguish several 
complementation approaches, briefly described below. 

The complementation approach introduced by B i i c h i i n [8] was Ramsey-based comple
mentation wi th 22°('N) states i n the complemented B A . The correctness of this method relies 
on a combinatorial result by Ramsey [29] to obtain a periodic decomposition of the possible 
behaviors of a B A on an infinite word. This construction was later improved by Sist la et a l 
in [33] to produce B A s w i t h 2°(N ) states. The complexity was further reduced by Breuers 
et a l in [7] to 2 0 ( - N L O ^ N \ 

Determinization-based complementation was introduced by Safra [31], producing a com
plement w i th 2 c , ( n l o g n ) states, and further improved by P i t e rman i n [28] and Redziejowski 
in [30]. The principle of the determinization-based approach is to convert a (nondeterminis-
tic) B i i c h i automaton to an equivalent deterministic automaton wi th a different acceptance 
condit ion (e.g. R a b i n automaton) that can be easily complemented. The result is then 
converted back into a B A . 

Slice-based complementation was proposed by Kah le r and W i l k e i n [18] w i t h the com
plexity 2 c , ( n l o g n ) . The slice-based approach uses a reduced abstraction on a run tree to 
track the acceptance condit ion. 

In this thesis, we focus on rank-based complementation, which was first introduced by 
Kupferman and V a r d i [20] w i t h the space complexity 2 c , ( n l o g n ) , then improved by Kupfer-
man, Va rd i , and Friedgut [12] to O((0 .96n) n ) and made asymptot ical ly op t imal by Schewe 
in [32]. The space complexity of Schewe's construction matches the theoretical lower bound 
O((0 .76n) n ) given by Y a n [38] modulo a quadratic factor 0{n2). Opt imizat ions of this con
struction were presented in [16]. 

In this chapter, we describe the principle of rank-based complementation algorithms. 
We start w i th the definition of run D A G s and explain how the ranking procedure works. 
Then we present three rank-based algorithms—we start w i t h the original construction by 
Kupferman and V a r d i [20], then we introduce the complementation wi th tight rankings 
by Friedgut, Kupferman, and V a r d i [12], and finally, we describe Schewe's asymptotical ly 
opt imal construction [32], which is the basis for our optimizations presented further i n this 
thesis. A p a r t from rank-based complementation, we also present specialized complementa-

8 



a A EU EH {ggl E M 

p)) ( ? (g, 1))—>[ (g, 2))—>( (g, 3))—»[ (g, 4) 

b a b b b 

(a) Biichi automaton Aex (b) Run D A G of ^ l e a on a = a6 w 

rank 2 rank 0 

[GEjjjji !|[Bl JED GED 

a b b b 

(c) Run D A G of Aex on a = ab" with assigned ranks 

Figure 3.1: Example of a run D A G for B A A, ca

t ion constructions for inherently weak and semi-deterministic B i i c h i automata, which are 
usually more efficient than rank-based algorithms. 

3.1 Run D A G s 

In order to determine whether a given word should be accepted by the complement of 
a B i i c h i automaton, we have to examine a l l possible runs of the automaton on the given 
word. If none of these runs is accepting, the complement automaton should accept the 
word. Let A = (Q, E , 5,1, F) be a B A and let a be a word. The set of a l l possible runs 
of A on a can be represented as a directed acyclic graph Qa = (V,E), called the run D A G , 
w i th vertices V and edges E, where 

• V C Q x to s.t. (q, i) € V iff there exists a run p of A on a w i th pi = q, and 

. E C V x V s.t. ((q, i), (q', i')) G E iff %' = i + 1 and q ̂  q' G 5. 

A vertex (q, i) G V is called accepting if q £ F. A path in a run D A G is accepting i f it visits 
infinitely often an accepting vertex. A accepts a iff there exists an accepting path i n Qa. 
Hence, the complement should accept a only i f there is no accepting path in Qa. 

Consider the automaton from Figure 3.1a and a word a = ab^. A corresponding run 
D A G is shown in Figure 3.1b. Since there is no accepting run on a , the word should be 
accepted by the complement. 

To determine i f a given word should be accepted by the complement or not, we start by 
assigning a rank to each vertex in the corresponding run D A G . A vertex v G Qa is called 
finite i f there are only finite number of vertices reachable from v, and endangered if there 
is no accepting vertex reachable from v. 

The ranking procedure is performed as follows: let Q% = Qa and j = 0. The following 
steps are repeated unt i l j > 2\Q\ or a fixpoint is reached. 

1. Ass ign rank j to a l l finite vertices in Q^a and set Qi^1 to Q3

a minus the vertices w i th 
rank j. 
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2 Assign rank j + 1 to a l l endangered vertices i n Q\ and set Q\ ,3+2 to Q\ minus the 'a 'a 'a 
vertices w i th rank j + 1. 

3. Increase j by 2. 

Vertices w i th no assigned rank have rank UJ. It can be shown that i f a 0 £ (^4) , the max imum 
assigned rank is at most 2\Q\. 

Theorem 3.1 ([20, Corol la ry 3.3]). If a 0 C(A), then g l l Q l + 1 is empty. 

Figure 3.1c shows how ranks are assigned to vertices from the run D A G i n Figure 3.1b. 

3.2 Basic Rank-Based Complementation 

The ranking procedure of a run D A G described i n Section 3.1 is used i n the rank-based 
complementation algorithms i n a way that the complemented automaton tracks a l l runs of 
the original automaton on the given word and a l l possible ranks of each of the runs. Every 
state of the complemented automaton is a macrostate containing, among other information, 
the set of a l l currently reachable states of the original automaton wi th rank assigned to each 
of the states. In this section, we present the rank-based a lgor i thm originally proposed by 
Kupferman and V a r d i [20]. 

Let us first introduce some necessary definitions and notions. For a given B i i c h i au
tomaton A = (Q, E , 5,1, F), a level ranking is a function / : Q —>• { 0 , 1 , . . . , 2\Q\} such that 
{/(IF) I QF £ F} C { 0 , 2 , . . . , 2 |Q |} , i.e., / maps a l l accepting states of A to even ranks. 
We use 1Z to denote the set of a l l level rankings of A and odd(f) to denote the set of states 
assigned an odd rank i n a level ranking / . For a ranking / , the rank of / is defined as 
rank(f) = m&x{f(q) \ q G Q}. The condit ion f < f holds iff for every state q € Q we have 
f{q) < f'(q) and / < / ' iff / < / ' and there is a state p G Q w i th f(p) < f'(p). 

The procedure proposed by Kupferman and V a r d i [20], denoted by K V , constructs the 
B A K V ( ^ 4 ) = (Q1, E , 5', F') whose components are defined as follows: 

. F' = 2 Q x {0} x U. 

Theorem 3.2 ([20]). Let i b e a B A . Then £(KV(A)) = E w \ C{A). 

The macrostates of K V ( ^ 4 ) consist of three components: S, O, and / . The 5-component 
tracks a l l runs of A, i.e., it contains a l l states reachable over the current input . The O-
component tracks a l l runs whose rank has been even since the last cut-point (a point where 
0 = 0). The / component is a level ranking assigning rank to every state in S. A run 
of K V ( . 4 ) is accepting iff it empties the O-component infinitely often, i.e., there is no run 

. Q' = {(S, O, f) e 2 Q x 2 Q x K \ O C S}, 

. r = {/} x {0} x n, 
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(a) Biichi automaton _4 e ; r (b) K~V(Aex) 

Figure 3.2: A n example of a B A Aex and its complement constructed using K V 

where states have only even rank from some point, and, therefore, there is no accepting run 
of the original automaton on the input word. 

Figure 3.2b shows a complement of a B i i c h i automaton Aex given i n Figure 3.2a. O n l y 
a part of the automaton is shown due to a quite large state space generated by this procedure 
(13 states). In the worst case, K V constructs a B A wi th approximately ( 6 n ) n states [20]. 
Note that for a more compact representation of a macrostate we often merge components 
S and / and i n the first component we assign a rank only to the states present i n the 
S-component. For example, we represent a macrostate ({p, q}, {p}, {p i-> 4, q i-> 3, r i-> 0}) 
as ({p:4, q:3},{p}). 

3.3 Complementation with Tight Rankings 

The construction described i n Section 3.2 was further improved by Friedgut, Kupferman 
and V a r d i [12]. They observed that a special condit ion eventually holds for the ranks of 
the run D A G of a rejected word. The constructed automaton is composed of two parts: 
the waiting part, which tracks a l l runs of the original automaton (macrostates store a l l 
states reachable over the current input) , and the tight part, which is s imilar to the K V 
construction, except that a l l level rankings are restricted to the so-called tight rankings. 

Given a set of states S C Q , a (level) ranking / : Q —>• { 0 , 1 , . . . , 2\Q\} is called S-tight 
if it has an odd rank r , {/(s) | s € S} D { 1 , 3 , . . . , r}, and {f(q) \ q 0 S} = {0}. A ranking 
is tight i f it is Q-tight. 

We use T to denote the set of a l l tight level rankings. Friedgut, Kupfe rman and V a r d i 
observed that for every run D A G Qa w i th a finite rank r , it holds that (i) r is odd and 
(ii) there exists a level I > 0 such that for a l l levels I' > I and a l l odd ranks o € { 1 , 3 , . . . , r } , 
there is a vertex (q, I') G Qa w i th rank((q, I')) = o. 

For I G to, we define the £-th level of Qa as levela(£) = {q \ (q,£) £ Go}- Furthermore, 
we use ff to denote the ranking of level £ of Qa. Formally, 

fa(q) = iranka((Q^)) i f 9 e level a(£), 
' 1 0 otherwise. 

We say that a level £ is tight in Qa i f for a l l k > £ it holds that (i) f£ is tight, and 
(ii) rank(f^) = rank(f^). Let p = SoSi... Og, fe, ie) • • • be a run on a word a in 
F K V ( ^ 4 ) . We say that p is a super-tight run [16] i f = for each k > £. F inal ly , we say 
that a mapping p: 2® —>• 7£ is a ranA; upper bound (TRUB) wrt a iff 

l e w : levela{£) is tight A(Wk>£: p{levela{k)) > / £ ) . (3.2) 
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waiting part 

(a) Biichi automaton Aex (b) FKV(Aex) 

Figure 3.3: A n example of a B A Aex and its complement constructed using F K V 

Intuitively, a T R U B is a ranking that gives an estimate on the necessary ranks of states in 
a super-tight run. 

The procedure that makes use of tight rankings, denoted by F K V , constructs the B A 
F K V ( ^ 4 ) = (Q', E , 8', F') whose components are defined as follows: 

• Q' = Q\ U Q2 where 

- Q i = 2^ and 

- Q2 = {(5, O, f) e 2Q x 2Q x T \ f is 5-tight, O C 5 } , 

• <5' = <5i U 82 U ($3 where 

- ft : Q i x E ->• 2 * such that <5i(5, a) = {5(5, a)}, 

- 82: <5i x E -> 2 ^ 2 such that <J2(S, a) = { (5 ' , 0, / ) G Q 2 | 5 ' = (5(5, a) and / is 
5-tight}, 

- <J3: Q2 x E -> 2 Q 2 such that (5 ' , O ' , / ' ) G <5 3((5,0, / ) , a) iff 

* S' = 8{S,a), 
* for every q G 5 and </ G <5(g, a) it holds that f'(q') < /(?), 

* rank(f) = rank(f'), and 

^ G , = f<y(5 ,o) \odd( / ' ) i f 0 = 0, 

I 8(0, a) \ odd(f') otherwise, and 

. F' = {0} U ( ( 2 Q x {0} x T ) n Q 2 ) . 

Theorem 3.3 ([12]). Let i b e a B A . Then £(FKV(A)) = E w \ C{A). 

The waiting part is composed of the states i n Q\ and the states i n Q2 create the tight 
part. Intuitively, an accepting run on the complemented automaton stays in the wait ing 
part un t i l it holds that a l l successive level rankings are tight. Then it can move to the 
tight part where the word is accepted. See Figure 3.3b for F K V ( ^ l e z ) for the B A Aex from 
Figure 3.3a. Note that FKV (^4 , e x ) w i th 5 states is significantly smaller than K V ( ^ l e z ) w i th 
13 states. In the worst case, F K V constructs a B A wi th O((0 .96n) n ) states [12]. 
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(a) Biichi automaton Aex (b) SCHEWE(^l e a ; ) 

Figure 3.4: A n example of a B A Aex

 a n d its complement constructed using S C H E W E 

3.4 Optimal Rank-Based Complementation 

The improved construction by Friedgut, Kupferman, and V a r d i [12], described i n Sec
t ion 3.3, was finally made asymptot ical ly op t imal by Schewe [32], using a more efficient 
cut-point construction. Instead of checking that no trace has an even rank since the last 
cut-point (O = 0 ) , this procedure, denoted by S C H E W E , cycles through a l l possible even 
ranks and checks that there is eventually no trace wi th this rank since the last cut-point. 
Th is leads to a significant reduction of the generated state space and the construction then 
matches the lower bound of (0 .76n) n established by Y a n [38] modulo a 0(n2) po lynomial 
factor. 

The procedure S C H E W E constructs the B A S C H E W E ( _ 4 ) = (Q', E , 8', I', F') whose com
ponents are defined as follows: 

• Q' = Q\ U Q2 where 

- Q i = 2^ and 

- Q2 = {(5, O, f, i) G 2 « x 2 « x T x {0, 2 , . . . , 2\Q\ - 2} | / is 5-tight and O C 
snf-\i)}, 

• r = {i}, 

• 5' = 5\ U 82 U 83 where 

- Si: Qi x S -> 2Ql such that 5i(S, a) = {8(S, a)}, 

- 5 2 : Q i x E ^ 2 ° 2 such that 82(S,a) = { ( 5 ' , 0 , / ' , 0 ) | S' = 8(S,a),f is 5-t ight}, 
and 

- ( 5 3 : Q 2 x S ^ 2 ° 2 such that (S', O', f, i') G 83((S, O, f, i), a) iff 

* S' = 8{S,a), 
* for every q G S and q' G <5(<7, a) it holds that f'(q') < /(?), 

* rank(f) = rank(f'), 
* and 

o »' = (i + 2) m o d (rank(f') + 1) and O ' = i f O = 0 or 
o i ' = i and O ' = 8(0, a) n Z ' " 1 (i) if O / 0, and 

. F ' = { 0 } U ((29 x { 0 } x T x w) n Q 2 ) . 
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(a) Inherently weak B A A (b) Equivalent weak B A W 

b ((W,M)} 
(d) M I H A Y ( C ) (c) Equivalent co-BA C 

Figure 3.5: A n example of an inherently weak B A A, an equivalent weak B A W , an equiv
alent c o - B A C, and the complement M I H A Y ( C ) 

Theorem 3.4 ([32, Corol la ry 3.3]). Let i b e a B A . Then £ ( S C H E W E ( „ 4 ) ) = S w \ C{A). 

The macrostates (S, O, f, i) i n S C H E W E ( . A ) are composed of four components. The S-
component tracks a l l runs of A over the input word i n the same way as the algorithms 
described in previous sections. The /-component assigns a rank to every state in S. The 
O-component tracks a l l runs having an even rank i since the last cut-point. After another 
cut-point is reached, the i component is increased by 2 modulo the max ima l even rank. A n 
accepting run therefore goes through a l l possible even ranks and checks that there is no 
infinite path having this part icular even rank i n the corresponding run D A G . 

See Figure 3.4b for S C H E W E ( „ 4 , e : r ) for the B A Aex from Figure 3.4a. Note that i n this 
part icular example, S C H E W E ( ^ l e x ) has exactly the same structure as F K V ( „ 4 ) except that 
the i-component was added to macrostates i n the tight part. Th i s is because the original 
automaton has only 2 states and one of them was accepting. Hence, the rank is at most 1 
and the i-component can be only 0. For automata wi th more states and a more involved 
structure, a significant decrease i n generated state space can, however, be observed. 

3.5 Inherently Weak Bi ichi Automata Complementation 

Inherently weak B i i c h i automata can be easily transformed into weak B A s (without adding 
new states) by making a l l states in accepting S C C s accepting. In order to accept an 
input word in the complement, there must not exist a run wi th infinitely many accepting 
states. Since every run stays forever in some S C C and the automaton is weak, it contains 
either infinitely many accepting or infinitely many nonaccepting states. It cannot contain 
infinitely many accepting and nonaccepting states at the same time. It is therefore sufficient 
to check i f every run contains infinitely many nonaccepting states. The idea behind the 
Miyano-Hayashi cut-point construction [26] is to periodical ly sample a l l runs and check i f 
they contain a nonaccepting state. After a l l of them visit an accepting state, a cut-point is 
reached and new runs are sampled. The complement then accepts a word i f there is a run 
where a cut-point is reached infinitely many times on this word. 

Let A = (Q,T,,5,I, F) be an inherently weak B A . We first construct an equivalent 
weak B A W = (Q, X , 5,1, Fw), where F\y contains a l l states from M S C C s containing at 
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least one accepting state of A. We then convert W to an equivalent co-Bi ich i automa
ton C = (Q,Yl,5,I,Fc = Q \ Fyy). A co-Biichi automaton ( co -BA) C = 5,1, Fc) 
accepts an input word a i f there exists a run p such that for every state q G Q occuring 
infinitely often in p it holds that q G Fc- The procedure, denoted by M I H A Y , constructs the 
(deterministic) B A M I H A Y ( C ) = {Q', X , 5', I', F') whose components are defined as follows: 

. Q' = 2 Q x 2<2, 

. I' = {(I,I\FC)}, 

. 5'{{S,B),a) = {S',B') where 

- S' = S(S,a), 

- and 

* B' = S' \ Fc i f B = 0 or 

* B' = (S(B, a) n S') \ Fc if B / 0, and 

. F' = 2® x { 0 } . 

Theorem 3.5 ( [ 2 6 ] ) . Let C = ( Q , £ , o , / , F C ) be a c o - B A . Then £ ( M I H A Y ( C ) ) = T,U\C(C). 

Figure 3.5 shows an example of an inherently weak B i i c h i automaton, equivalent weak 
and co-Bi ich i automata and the complement constructed using M I H A Y . 

3.6 Semi-deterministic Bi ichi Automata Complementation 

Semi-deterministic B i i c h i automata have a specific structure al lowing to use a more efficient 
complementation construction. If a rank-based complementation is used, the max imum 
rank can be bounded by 3. More precisely, ranks of the states in the nondeterministic part 
can be bounded by 3, and states i n the deterministic part by 2 . Even though bounding 
the m a x i m u m rank can significantly reduce the generated state space i n the tight part, the 
complemented automaton can have a lot of states because of the presence of the waiting 
part. Semi-deterministic B A s can be complemented using the N C S B construction [5], 
which does not consider the waiting part and keeps only rough information about the ranks 
in comparison to rank-based algorithms. 

Let A = (Q1UQ2, S , 5iU5tU52,1, F) be a semi-deterministic B i i c h i automaton such that 
Qi is a set of states in the nondeterministic part, Q2 is a set of states i n the deterministic 
part, 01: Q i x S 2QL, 6T: Qx x S 2®2, and 62: Q2 x S -> 2 ^ . The procedure, denoted 
by N C S B , constructs the B A N C S B ( 4 ) = (Q1, S , 5', I', F') whose components are defined 
as follows: 

. Q> = {(N, C, S, B) G 2 * x 2 « 2 x 2 ^ \ F x 2 ^ 2 | B C C}, 

. I' = { ( Q i n / , Q 2 n / , 0 , Q 2 n / ) } , 

. { ' : Q ' x E - > 2 ^ ' such that (JV', C", 5 ' , S ' ) G S'((N, C, S, B),a) iff 

- AT' = oi(A7,a), 

- C'US' = 5t(N, a) U <52(C US,a), 

- a n 5 ' = 0, 

15 



a 

a 

q 
a n 

b 

[({p},{g,r},0,MJ] 
u \ 

{({p},{q}J),{q})) 

(I 

(I 

(I 
(a) Semi-deterministic B A A (b) N C S B ( ^ ) 

Figure 3.6: A n example of a semi-deterministic B A A and its complement N C S B ( „ 4 ) 

- S'D52(S,a), 

-CD S2(C\F,a), and 

- B' = O i f B = 0, otherwise £ ' = <y2(S, a) n C , and 

. F' = {(N, C, S, B) £ Q' \ B = 0 } . 

Theorem 3.6 ([5]). Let 4 = (Q, E , <5,1, F ) be a semi-deterministic B A . Then £ ( N C S B ( 4 ) ) 
= E W \ £ ( 4 ) . 

A n example of a semi-deterministic B i i c h i automaton wi th its complement is shown in 
Figure 3.6. Macrostates of N C S B ( 4 ) consist of four components: (N,C,S,B). The N-
component tracks runs in the nondeterministic part of the automaton. The C-component 
represents the runs that have entered the deterministic part and are not safe (they d id not 
visit an accepting state for the last t ime), whereas the 5-component represents the safe 
runs. The last component is a breakpoint that is used to check that no run stays forever 
i n component C. 
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Chapter 4 

Next Generation of Rank-Based 
Algorithms for Biichi Automata 

Even though Schewe's rank-based complementation construction described in Section 3.4 
asymptotical ly matches the lower bound of (0 .76n) n [32], it s t i l l produces a complemented 
automaton wi th potential ly unnecessary states or transitions and, due to the high space 
complexity, further optimizations of this a lgori thm are crucial for pract ical applications. 
In this chapter, we first introduce elevator automata [15], a large class of B i i c h i automata 
wi th a specific structure, occuring often in practice. We analyze run D A G s of these au
tomata and present an a lgor i thm for reducing the bound on m a x i m u m rank of states in 
each strongly connected component. We also extend this a lgori thm for general B i i c h i au
tomata. Moreover, we show that elevator automata can be complemented i n 0 (16" ) space. 
Secondly, we present a technique based on data flow analysis that can be used to propagate 
rank restrictions throughout the automaton and thus reduce the ranks even more. In the 
next part of the thesis, we focus on optimizations for specialized complementation construc
tions for inherently weak and semi-deterministic automata. Thanks to their properties, we 
are able to use more efficient procedures for their complementation than the rank-based 
construction. 

4.1 Elevator Bi ichi Automata 

In this section, we introduce elevator automata, a class of B i i c h i automata w i t h a specific 
structure. We analyze run D A G s for a l l types of strongly connected components of elevator 
automata and present an algori thm assigning bounds on m a x i m u m rank for states i n each 
component. Final ly , we show that elevator automata can be complemented in 0 (16" ) space. 

Let C be an M S C C of a given B i i c h i automaton A = (Q, E , 5,1, F) and A\c = (C, E , 6\c I 
n C , F n C ) . We say that C is deterministic iff the B A A\c is deterministic, non-accepting 
iff C n F = 0, inherently weak accepting iff every cycle i n the transi t ion diagram of A\c 
contains an accepting state qF G F, and trivial iff \C\ = 1 and 5\q = 0. 

A B i i c h i automaton A = (Q,TI,5,I,F) is an elevator (Biichi) automaton i f for every 
M S C C C of A it holds that C is (i) deterministic (D) , (ii) inherently weak accepting ( I W A ) , 
or (iii) non-accepting ( N ) . A n example of an elevator automaton wi th assigned type to each 
strongly connected component is shown in Figure 4.1. 

The number of successors of a given macrostate i n rank-based complementation is given 
by the number of possible tight rankings, which rises combinatorial ly w i th the macrostate's 
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Figure 4.1: A n example of an elevator automaton 

max imum rank. More precisely, for a given set of states, the number of possible tight 
rankings corresponds to the St i r l ing number of the second k ind of the m a x i m u m rank [12]. 
For general B A s , the bound on m a x i m u m rank for a l l states of the automaton is 2\Q\ — 
1. However, this bound is often unnecessarily high and many redundant states can be 
generated. Thanks to the specific structure of elevator automata, we can reduce the bound 
on m a x i m u m rank for states in every M S C C . Before we formally describe the rank restriction 
for elevator automata, let us give an in tui t ion behind the m a x i m u m rank reduction by 
analyzing run D A G s of a B A containing only one M S C C of one of the three types that can 
be present i n an elevator automaton. 

4.1.1 N o n - a c c e p t i n g C o m p o n e n t s 

Let A be a B A wi th only one non-accepting M S C C and a 0 C(A) be an input word. In 
constructed by the ranking procedure from Section 3.1, a l l finite vertices are removed. Since 
A contains no accepting state, a l l vertices i n Q\ are endangered, and therefore the max imum 
rank can be bounded by 1. See Figure 4.2a for an example of a B A w i t h one non-accepting 

rank 0 

a 
^ rank 1 'jfal)] fjggj) fjggj) jjggj] 

a a a a 

P) (<1 

(a) Non-accepting B A (b) Run D A G 

Figure 4.2: The run D A G of a non-accepting M S C C over word a' 
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rank 2 

0. 1 \ . >* x! rank 1 

0. a a a 6 6 

(a) Deterministic B A (b) Run D A G 

Figure 4.3: The run D A G of a deterministic M S C C over word aaabi 

M S C C . The corresponding run D A G Qa w i th assigned ranks for a word a = is shown in 
Figure 4.2b. 

4.1.2 D e t e r m i n i s t i c C o m p o n e n t s 

Let A be a deterministic B A w i t h only one M S C C and a 0 C(A) be an input word. Since 
the automaton is deterministic, there is at most one run of A on a. The corresponding run 
D A G Qa therefore contains at most one vertex in each level, and because there are only 
finitely many accepting states in the run of A on a, there is a level I such that for a l l levels 
V > I it holds that a l l vertices i n level I' are endangered. A l l vertices in level I' > I have 
rank 1. Due to the determinism, Q2 is always finite. A l l vertices in levels smaller than I have 
therefore rank 2 and a greater rank is not needed. (Note that the max ima l rank restriction 
also holds i f the automaton has more than one in i t i a l state.) Consider the deterministic 
B A wi th one M S C C i n Figure 4.3a and the word a = aaab^. The corresponding run D A G 
wi th assigned ranks is shown in Figure 4.3b. 

4.1.3 Inherent ly W e a k A c c e p t i n g C o m p o n e n t s 

Let A be a B A w i t h only one inherently weak accepting M S C C and a 0 C(A) be an input 
word. Since every cycle of A contains an accepting state and a 0 £(A), a l l possible runs 
of A on a must be finite. The whole run D A G Qa is therefore finite and the max ima l rank 
is 0. See Figure 4.4a for an example of a B A wi th only one inherently weak accepting 
M S C C . Figure 4.4b shows the corresponding run D A G Qa w i th assigned ranks for a = abw. 

4.1.4 R a n k R e s t r i c t i o n for E l e v a t o r A u t o m a t a 

In this section, we present an algori thm that assigns each M S C C a label of the form 
TYPE:rank w i th the type of M S C C and the bound on the m a x i m u m rank of its states. 

rank 0 

b a a b 

(a) Inherently weak accepting B A (b) Run D A G 

Figure 4.4: The run D A G of an inherently weak accepting M S C C over word aab( 
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The assignment is performed from terminal M S C C s (i.e., M S C C s that cannot reach to any 
other M S C C ) towards M S C C s wi th in i t i a l states. More precisely, a label can be assigned to 
M S C C C only if (i) C is terminal or (ii) a label was already assigned to a l l M S C C s reach
able from C. Note that there can be more options how to assign a type for some M S C C s . 
The algori thm assigns the type that is most suitable in terms of keeping the rank bound 
as low as possible i n a greedy way (i.e., based on local information). Th is can be different 
for every M S C C , depending on the labels of its successors. For the following algori thm, we 
assume that an elevator automaton contains no useless states (there is therefore no terminal 
non-accepting M S C C ) . 

For a terminal M S C C C, we assign the following label: 

1. I W A : 0 i f C is inherently weak accepting, 

2. D:2 otherwise (i.e., if C is deterministic accepting). 

Note that the previous two options are complete because the automaton contains no 
useless states. For non-terminal M S C C s , we use the corresponding rules from Figure 4.5. 
Chi ld ren nodes denote already processed successive M S C C s . In particular, a chi ld node of 
the form k:lk denotes an aggregate of a l l siblings of the type k wi th 1^ being the max imum 
rank of these siblings. For a non-terminal M S C C C, the rules for assigning a label are the 
following: 

1. If C is t r iv ia l , we t ry both rules from Figure 4.5a and Figure 4.5c and use the one 
wi th the smaller rank. 

2. Else i f C is I W A , we use the rule i n Figure 4.5a. 

3. Else i f C is deterministic accepting, we use the rule in Figure 4.5b. 

4. Else if C is deterministic and non-accepting, we use one of the rules i n Figure 4.5b 
and Figure 4.5c that gives us a smaller rank. 

5. Else i f C is nondeterministic and non-accepting, we use the rule in Figure 4.5c. 

The m a x i m u m rank of each M S C C is then assigned to a l l its states and macrostates wi th 
higher ranks are not generated. We denote the procedure as E L E V B O U N D . Formally, the 
result of the a lgor i thm is a mapping x '• Q ~~̂  ^ that gives a bound on the m a x i m u m rank to 
each state of the automaton. This mapping can be plugged in , e.g., S C H E W E to prune the 
generated state space. Figure 4.6a shows an elevator automaton Aei w i th assigned label for 

= max{£o,^N + 1, £w} 
C: [\\NAl] 

t = max-JXc + 2 ,£N + IJw + 2 ,2} £ = max{£D + 1,£N,£W + 1} 

C: \N:£ 

[ D i l p j (N:l;y) (\\NA:£W) 

(a) C is IWA 

C: (d!7) 

[D-£D) (N:ijr) [\\NA:£W] {pjp] [N:£N] [\\NA:£W] 

(b) C is D (c) C is N 

Figure 4.5: Rules for assigning types and rank bounds to M S C C s . The symbols 2 and 2 are 
interpeted as 0 if a l l the corresponding edges from the components having rank and £w, 
respectively, are deterministic; otherwise they are interpreted as 2. Transitions between 
two components C\ and C2 are deterministic i f the B A (C, <5| ,0 , 0) is deterministic for 

c = < 5 ( C i , E ) n ( C i u c 2 ) . 
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161 
* 

N : l N : l IWA:0 

(a) Elevator automaton Aei (b) Complement of Aei- Our procedure will not generate 
the red states (and their successors, which are not shown in 
the figure). 

Figure 4.6: A n example of an elevator B A wi th its complement 

each M S C C . The complement of Ae\ is i n Figure 4.6b. R e d macrostates are not generated 
because the value assigned to some state is higher than the rank bound on the max imum 
rank - for example a macrostate ({q.O, r :0, s:l}, 0) was not generated, because state s is 
assigned the rank 1, which is higher than the rank bound 0 given by our algori thm. 

L e m m a 4.1. Let A be an elevator automaton. E L E V B O U N D ( „ 4 . ) is a T R U B . 

Proof. Consider an elevator automaton A. Let Qa be a run D A G over some word a ^ C(A) 
and C be an M S C C of A. We proceed by induct ion on the structure of A. We start w i th 
the base case. 

C l a i m 1: Let C be a terminal I W A component in Qa. Then, all vertices of Qa labelled by C 
will have the rank 0. 
Proof: A l l cycles in inherently weak accepting components are accepting. Since a ^ C(A), 
there is no run staying in C forever. A l l vertices labelled by a state from C are therefore 
finite i n Qa and are, therefore, assigned rank 0. • 

C l a i m 2: Let C be a terminal D component in Qa. Then, all vertices of Qa labelled by C 
will have the rank at most 2. 
Proof: We prove that Q\ contains only finite vertices labelled by C. If it is not true, either 
a £ C{A) or C is not terminal and deterministic. • 

Now we prove the ma in lemma by induct ion on given rules. We prove that if a state q 
was assigned rank k, then G&+1 does not contain a node labelled by q. 

• Base case: If a terminal component C is I W A , from C l a i m 1 we get that a l l states 
from C w i l l have the rank 0. If a terminal component is D, then from C l a i m 2 we 
have that a l l states from C w i l l have the rank bounded by 2. 

• Inductive case: Assume that for a l l states q from already processed components, if q 
were assigned rank m, G™+1 does not contain node labelled by q. Note that inside each 
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rule we can investigate cases D , N , and I W A separately since the adjacent components 
do not affect each other. 

Figure 4.5a Observe that after £ = max{£o, £N + Ij^w/} steps of the ranking procedure, 
in the worst case, a l l vertices labelled by C i n Qa are finite (otherwise it is 
a contradiction wi th induct ion hypothesis). Therefore, in Q^1 there are no 
vertices labelled by C. The ranks of vertices labelled by C is hence m a x j f o , £N + 

Figure 4.5b We prove that i n Qa a l l vertices labelled by C are finite {£ is from the rule). F r o m 
the induct ion hypothesis, after £ — 1 steps (in the worst case) a l l vertices labelled 
by adjacent D , I W A components are finite i n (provided that the transitions are 
deterministic). Vertices labelled by adjacent N components are not present i n Qa. 
Therefore, if there is some vertex v labelled by C in Q~, that is not finite, the only 
possibili ty is that for each v' £ reachgiJyV) we reach in Qa from v' some vertex 
labelled by a state from the D , I W A components. However, it is a contradiction 
wi th the transi t ion determinism. 

Figure 4.5c We prove that i n Q~, a l l vertices labelled by C are endangered. This follows from 
the fact that after £ — 1 steps no vertex labelled by the adjacent D , I W A compo
nents is present i n Q~, ( induction hypothesis). Therefore, a l l vertices labelled by 
C i n Q1- are endangered. • 

4.1.5 Re f ined R a n k s for N o n - E l e v a t o r A u t o m a t a 

The a lgori thm from Section 4.1.4 computing bound on the m a x i m u m rank for states i n each 
M S C C of an elevator automaton can be extended to general B A s . Non-elevator automata 
contain at least one nondeterministic accepting component. We refer to these M S C C s as 
general components and denote them as G . For deterministic, nonaccepting, or inherently 
weak M S C C s , we are able to set a rank bound independently of the number of states 
they contain, thanks to the structure of run D A G s for every possible word. However, for 
general M S C C s , the rank bound depends on the number of states, more precisely on the 
number of nonaccepting states i n the component. Th is follows the original argument that 
max imum rank for each state i n a B i i c h i automaton w i t h n states is bounded by 2\Q\. Since 
a m a x i m u m rank of a tight ranking depends only on the number of nonaccepting states, we 
can bound m a x i m u m rank i n a general component C to 2\C\F\. 

For a terminal M S C C C , we extend the a lgori thm assigning a label to each M S C C as 
follows (in the given order): 

1. I W A : 0 i f C is inherently weak accepting, 

2. D:2 i f C is deterministic accepting, and 

3. Q:2\C\F\ otherwise. 

For non-terminal M S C C s , we use the rules from Figure 4.7. The structure of these rules 
is the same as for elevator automata i n Section 4.1.4. For a non-terminal M S C C C , the 
rules for assigning a label are the following (in the given order): 

1. If C is t r iv ia l , we t ry both rules from Figure 4.7a and Figure 4.7c and use the one 
wi th the smaller rank. 

2. If C is I W A , we use the rule i n Figure 4.7a. 
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i = max{£D,£N + l,£w,£G} 
C: (lWA:l) 

[Pife] (Nig] ( IWA:^) [GiJc] 

(a) C is IWA 

£ = max{fe + 1, eN, ew + l,£G + 1} 

C: ffU] 

: maxjfc + 2 ,^JV + 1,% + 2 , + 2, 2} 

C-. (pTe 
/ \#~ 

fPife) (Nig) ( i W A : ^ ) [G^G] 

(b) C is D 

= max{fo, £ w + 1, to, fc} + 2 |C \ F | 

C : [Gl«l 

(c) C is N 

Figure 4.7: Rules assigning types and rank bounds for non-elevator automata. 

( D * D ) (N ig ] (lWA:£iy) ( G ^ c ] 

(d) C is G 

3. If C is deterministic accepting, we use the rule in Figure 4.7b. 

4. If C is deterministic and non-accepting, we use one of the rules in Figure 4.7b and 
Figure 4.7c that gives us a smaller rank. 

5. If C is nondeterministic and non-accepting, we use the rule in Figure 4.7c. 

6. Otherwise, we use the rule in Figure 4.7d. 

The m a x i m u m rank of each M S C C is assigned to a l l its states and macrostates w i th 
higher ranks are not generated. We denote the procedure as N O N E L E V B O U N D . Formally, 
the result of the a lgori thm is a mapping x '• Q ~~̂  ̂  that gives a bound on the max imum 
rank to each state of the automaton. 

L e m m a 4 . 2 . Let i b e a B i i c h i automaton. N O N E L E V B O U N D ( y 4 . ) is a T R U B . 

Proof. Consider some B A A. Let Qa be a run D A G over some word a ^ C(A). In this 
proof, we use the claims and notat ion introduced i n the proof of L e m m a 4.1. 

C l a i m 3: Let C be a terminal G component in Q^+1. Then, all vertices in Qa labelled by C 
will have the rank at most 2k + 2\C \ QF\ • 
Proof: Since 2k + 1 > 0, Q^+1 does not contain any finite vertices. Since C is a terminal 
component, there is some i G UJ s.t. V j > i : \levelr2k+i(j) n CI < \levelr2k+2(j) n CI (if 
we remove an endangered vertex, we decrease the wid th of the run D A G from some level 
at least by 1). Moreover, since endangered vertices do not contain accepting states, the 
previous observation can be refined to {(levelg2k+i(j)nC)\QF\ < {(levelg2k+2(j)nC)\QF\-
If we apply the reasoning mult iple times, we get that i n g 2 f c + 2 | c \ Q F | ^ ^gj-g r e m a j n only 
finite vertices labelled by a state from C , therefore the rank is at most 2k + 2 | C \ Q F \ - B 

Now we prove the ma in lemma. Fi rs t , observe that after appl icat ion of any rule, we 
have that D , I W A , and G components have an even rank and N components have an odd 
rank. We prove the lemma by induct ion on certain rules. In particular, we prove that if a 
state q was assigned rank k, Ga+1 does not contain any node labelled by q. 

• Base case: If a terminal component C is I W A , from C l a i m 1 we obtain a l l states from 
C w i l l have the rank 0. If a terminal component is D , then from C l a i m 2 we have 
that a l l states from C w i l l have the rank bounded by 2. If a terminal component is G , 
from C l a i m 3 we have that a l l states from C w i l l have the rank bounded by 21C \ QF \ • 
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• Inductive case: Assume that for a l l states q from already processed components, if q 
was assigned by rank m, G™+1 does not contain any node labelled by q. 

Figure 4.7a Observe that after £ = max{£o, £w-> ^G}~ 1 steps of the ranking procedure, 
in the worst case, a l l vertices labelled by C i n Qa are finite (otherwise it is 
a contradiction wi th the induct ion hypothesis). Therefore, i n G^1 there are no 
vertices labelled by C. The ranks of vertices labelled by C is hence m a x j f o , £N + 

Figure 4.7b We prove that i n Ga a l l vertices labelled by C are finite {£ is from the rule). F r o m 
the induct ion hypothesis, after £ — 1 steps (in the worst case) a l l vertices labelled 
by adjacent D and I W A components are finite i n Ga (provided that the transitions 
are deterministic). Vertices labelled by adjacent N components are not present 
in G&• Vertices labelled by adjacent G components are finite i n G&- Therefore, i f 
there is some vertex v labelled by C in Ga which is not finite, the only possibil i ty 
is that for each v' £ reachge(v) we reach in Qa from v' some vertex labelled by 
a state from the D , I W A components. This is however a contradiction wi th the 
transi t ion determinism. 

Figure 4.7c We prove that i n Ga a l l vertices labelled by C are endangered. This follows from 
the fact that after £ — 1 steps no vertex labelled by the adjacent D , I W A , G com
ponents is present i n Ga ( induction hypothesis). Therefore, a l l vertices labelled 
by C in Ga are endangered. 

Figure 4.7d F r o m the induct ion hypothesis we have that i n Ga where £ = max{^£>,^jv + 
1>AV>^G} a n vertices labelled by adjacent D , I W , G components are finite. Ver
tices labelled by adjacent N components are not present in Ga- Therefore, C is 
terminal i n Ga

+1- F r o m C l a i m 3 we have that the rank of C is bounded by 
£ + 2\C\QF\. • 

4.1.6 Efficient C o m p l e m e n t a t i o n of E l e v a t o r A u t o m a t a 

The algori thm for assigning rank bounds to M S C C s of an elevator automaton, presented in 
Section 4.1.4, can in practice have a huge impact on the generated state space. However, 
we cannot bound the m a x i m u m rank by a constant, because it depends, among other, on 
the number of M S C C s . In this section, we show that it is possible to bound the rank by 
a constant i f we construct an equivalent automaton wi th at most double the size of the 
input elevator automaton. 

The increment of m a x i m u m rank for two successive M S C C s depends mainly on the al
ternation of accepting components and some nondeterminism. We can change the structure 
of an input elevator automaton such that for every possible run we start i n a nonaccepting 
M S C C and then take a transi t ion to deterministic or inherently weak M S C C at most once. 

Let A = (Q, E , 5,I, F) be an elevator automaton. The deelevated automaton D E E L E V ( ^ I ) 

= (Q', E , 5', I', F') is given as follows: 

. Q' = Qx {1,2}, 

. I' = Ix{l}, 

• 5' = 5\ U 62 such that 

- S1((q,l),a) = S(q,a) x {1,2}, 
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N:5 IWA:4 N:3 D:2 IWA:0 D:2 

(a) Elevator automaton Aei (b) DEELEv(^4 e;) 

Figure 4.8: A n example of an elevator automaton Aei and a deelevated automaton 
D E E L E v ( ^ l e ; ) . The bound on the m a x i m u m rank is decreased from 5 to 3. 

- S2((q, 2), a) = S(q, a) x {2}, and 

. F' = F x {2}. 

Intuitively, we copy each M S C C w i t h an accepting state and a l l transitions going to this 
M S C C , and we remove accepting conditions from the original M S C C . It is easy to see from 
the construction that the number of states of D E E L E V ( ^ I ) is bounded by 2\Q\. A n y possible 
run on D E E L E V ( „ 4 ) starts in a nonaccepting M S C C , and it either stays i n some nonaccepting 
M S C C or it moves to a deterministic accepting or inherently weak accepting M S C C where 
it stays forever. The bound on the m a x i m u m rank for D E E L E V ( . A ) is therefore always 3, 
which gives us the upper bound 0 (16" ) for complementing elevator automata. Th is is 
based on the number of possible tight rankings for an automaton w i t h sufficiently many 
states n and rank bound 3. A n example of a deelevated automaton is given i n Figure 4.8. 

L e m m a 4 . 3 . Let A be a B A . Then, C(A) = £ ( D E E L E V ( „ 4 ) ) . 

Proof. Let a G £(A) be a word. There is an accepting run p = q$qi... of A on a. For an 
accepting run p, there is an M S C C C and some i £ w such that pk £ C for a l l k > i. There 
is an accepting run p' = (qo, 1 ) . . . (qi-i, 1)(%, 2 ) ( q j + i , 2 ) . . . on D E E L E V ( „ 4 ) . 

Let a G D E E L E V ( . A ) be a word. There is an accepting run p = (qo, 1) . . . (qi-i, l)(g«, 2) 
(qi+i, 2 ) . . . on D E E L E V ( ^ I ) . States qi+i, • • • are i n the same M S C C . There is therefore 
an accepting run p' = q$qi... of A on a. • 

4.2 Data Flow Analysis 

In this section, we propose a way to get bounds for m a x i m u m rank based on the structure 
of the automaton using data flow analysis [27]. In particular, rank bounds can be decreased 
based on the ranks and rankings of the local neighbourhood of the macrostates. For an 
input B A A = (Q, E , 5,1, F), the analysis is performed on the B A K,A = (2Q, E , 5', 0, 0) 
where 5' = {R A S \ S = S(R, a)}. The structure of K.jy is s imilar to the structure of the 
wait ing part of S C H E W E ( ^ I ) . We are, however, not interested i n the language of £ 4 , but 
only i n its structure. We get the bounds for states i n a macrostate based on the bounds of 
the states of its predecessors. 

For a function / : X —> Y and a set S C X, we define f(S) = {f(x) \ x G S}. In the 
following, we use /<i{x i-> y} to denote the function f(x)}) U{x ^ y} for x G X 
and y G Y. For i G w w e use \i\ to denote the largest even number smaller or equal to i. 
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4.2.1 O u t e r M a c r o s t a t e A n a l y s i s 

Our first analysis, called outer macrostate analysis, is based on the sizes of macrostates and 
is used for estimating their ranks. Since the rank of a run in S C H E W E ( ^ I ) does not decrease 
once it enters a tight part, we can set a rank bound for each cycle of JC^ to 2m — 1 where m 
is the smallest number of nonaccepting states of macrostates in this cycle. The max imum 
rank of the macrostate is then given by the m a x i m u m rank of a l l the cycles going through 
this macrostate. The rank of each cycle can also be estimated by our elevator analysis from 
Section 4.1. 

Since the number of cycles i n /C4 can be double-exponential to the size of A, we use 
data flow analysis instead of enumerating a l l cycles. The function /j : 2^ —>• UJ gives a max
i m u m rank to each macrostate. For a macrostate S and its predecessors R\,...,Ri, we 
use the update function upout : (2*3 —>• OJ) x (29)l+1 —>• OJ, which is defined as follows: 
uPouti^-, S, R\,..., Ri) = min{/x(5), m a x { / x ( i ? i ) , . . . , fx(Ri)}}. The new bound on the max
i m u m rank of S is set to the smaller of the previous bound n(S) and the largest of the 
bounds of a l l predecessors of S. The new value is propagated forward by the data flow 
analysis un t i l the fixpoint is reached. 

L e m m a 4.4. If /j is a T R U B , then fx < {S i-> upout(fx, S,Ri,..., Rm)} is a T R U B . 

Proof. Let a £ C(A) and Qa be the run D A G of A over a. Further, let us use fx' = fx<{S i-> 

UPout(^S, Rl, • • -,Rm)}-

1. There are finitely many i G OJ such that levela{i) = S. Let k be the last level of Qa 

where S occurs (or 0 i f S does not occur on any level of Qa). Then we can set the £ 
in the definition of a T R U B i n (3.2) to be the least £ > k such that £ is a tight level. 
Then the condit ion holds t r ivial ly. 

2. There are infinitely many i G OJ such that levela{i) = S. Then, since \x is a T R U B , 
let £ be the £ in (3.2) for which /j, satisfies (3.2). We need to show that for every k > £ 
such that levela{k) = S, it holds that fx'(S) > fj*. Let V C {R\,...,Rm} be the 
set of predecessors of a l l occurrences of S on Qa below £, i.e., for a l l k > £ such 
that levela(k) = S, we have levela(k — 1) G V. Since the ranks of levels in a run 
D A G are lower for levels that are higher, it is sufficient to consider only the first such 
a k. Let R be the predecessor of S at k, i.e., R = levela(k — 1). Since we do not 
know which part icular Rj G V it is, we need to consider a l l Rj G V. Since k — 1 
is already a tight posit ion, we have that fx" = fx <l {S i-> m a x { / x ( i ? i ) , . . . , /x( .R m )}} 
is a T R U B for the same = £ in (3.2). Further, /x is also a T R U B , therefore, 
li'= li<{Si-nnm{ii"(S),ii(S)}} fori • 

Corol lary 4.5. W h e n started w i t h a T R U B / /Q , the outer macrostate analysis terminates 
and returns a T R U B fx*ut. 

Proof. Let /x be a T R U B and fx' = fx < {S 1 i-> upout(fx, S,Ri,..., i ? m ) } . F r o m L e m m a 4.4 
we have that / / is a T R U B as well, which means that starting from /Jo using u ] ) o u i we 
get T R U B s only. Moreover, / j (P) > / j ' (P) and / i ' ( P ) > 0 for each P G 21?. The fixpoint 
evaluation hence eventually stabilizes. • 

4.2.2 Inner M a c r o s t a t e A n a l y s i s 

Inner macrostate analysis is used for estimating rankings wi th in macrostates. In a super-
tight run, the rank of a state q G S is bounded by the rank of the predecessors of q. The 
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function \x : 2® —>• 1Z, where 1Z denotes the set of a l l rankings, gives a ranking for each 
macrostate. 

Let / , / ' € TZ be rankings. We use / U / ' to denote the ranking {q i-> max{ / (q ) , f'(q)} \ 
q G <5}, and / l~l / ' to denote the ranking {q i-> m i n { / ( q ) , f'(q)} \ q G Q } . Moreover, we 
define max-succ-rankg(f) = m a x < { / ' G 7?- | / ' ( ? ' ) < /(<?) for each q <E S and G <5((/,a)} 
and a function (iec: 1Z —> 1Z such that dec(9) is the ranking 9' for which 

if 9(q) = rank(9) and q ^ F, 

f(Q) = { L % ) ~ 1J ^ % ) = ran&(6>) and q G F , (4.1) 

otherwise. 

Intuitively, max-succ-rankg(f) is the m a x i m u m ranking that can be reached from macrostate S 
wi th ranking / over a and dec(9) decreases the m a x i m u m ranks i n a ranking 9 by one (or by 
two for even m a x i m u m ranks and accepting states). 

For a macrostate S and its predecessors R\,..., Ri, we use the update function upin : (2^ 
—> 7£) x ( 2 ^ ) * + 1 —>• 7£, which is defined by the following algori thm: 

l upin(n,S,Ri,...,Rm): 
2 
3 
4 

5 
6 
7 

foreach 1 < i < m and a G E do 
if <5(i?j, a) = S then 

<?f max-succ-rank%.(^(Ri)) 
9 <- /x(5) n U l s ? I 2? is defined}; 
if rank{9) is even then 6> <— dec(9): 
return #: 

The update function updates fi(q) for every q G 5 to hold the m a x i m u m rank compatible 
w i th the rank of its predecessors. 

L e m m a 4.6. If fx is a T R U B , then / i < {S i-> upin(fx, S,Ri,..., i ? m ) } is a T R U B . 

Proof. Let a ^ >C(̂ 4) and C/Q, be the run D A G of „4, over a . Further, let us use p! = p<{S i-> 
upin(p, S, Ri,..., - R m ) } . F i rs t , we prove the following claim: 

C l a i m 4: L e i / i i , / i 2 &e two TRUBs wrt a. Then p!, defined as p'(S) := pi(S) l~l P2(S) is 
a TRUB wrt a. 

Proof: The proof follows from the definition (with choosing = m a x j l i , ^ } ) where £i is 

from the definition of a T R U B for /xi and £2 is for //2- B 

We need to consider the following two cases: 

1. There are finitely many i G OJ such that levela(i) = S. Let k be the last level of Qa 

where S occurs (or 0 i f S does not occur on any level of Qa). Then we can set the £ 
in the definition of a T R U B i n (3.2) to be the least £ > k such that £ is a tight level. 
Then the condit ion holds t r ivial ly. 

2. There are infinitely many i G OJ such that levela(i) = S. Then, since p is a T R U B , 
let £ be the £ in (3.2) for which p satisfies (3.2). We need to show that for every k > £ 
such that levela(k) = S, it holds that p'(S) > f%. Let V C { i ? i , . . . , Rm} be the 
set of predecessors of a l l occurrences of S on Qa below £, i.e., for a l l k > £ such 
that levela(k) = S, we have levela(k — 1) G V. Since the ranks of levels in a run 
D A G are lower for levels that are higher, it is sufficient to consider only the first 
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such a k. Let R be the predecessor of S at k, i.e., R = level a(k — 1). Since we 
do not know which part icular Rj G V it is, we need to consider a l l Rj G P . Let 
M = {max-succ-rankc^.(p(Rj)) \ Rj G V,a G E } . Then, since // is a T R U B , | J M w i l l 
also be a T R U B . Moreover, from C l a i m 4, # = //(iS) n | J M w i l l also be a T R U B , and 
so # > fff. Then , if the rank of 9 is even, we can decrease it to the nearest odd rank, 
since tight rankings are, by definition, of an odd rank. • 

Corol lary 4.7. W h e n started wi th a T R U B po, the inner macrostate analysis terminates 
and returns a T R U B p*n. 

Proof. Let p be a T R U B and p! = p < {S i-> upin(p, S, R\,..., i ? m ) } . F r o m L e m m a 4.6 
we have that / / is a T R U B as well, which means that start ing from po using upin we get 
T R U B s only. Moreover, p(P) > p'(P) and p'(P) > {q H-> 0 | q G Q} for each P G 2 ^ . The 
fixpoint evaluation hence eventually stabilizes. • 

4.3 Optimization of Inherently Weak B A Complementation 

In this section, we introduce new optimizations of inherently weak B i i c h i automata comple
mentation. Our optimizations are based on the Miyano-Hayashi construction [26] described 
in Section 3.5. Our two optimizations are inspired by optimizations of the determinization 
algori thm for automata over finite words [13] and by macrostates saturation in rank-based 
complementation of B i i c h i automata [9]. In both opt imizat ion, s imulat ion relations are 
used in order to construct a smaller automaton. We either t ry to make the macrostates of 
the complement as smal l as possible (pruning) or as big as possible (saturating). Th is con
struction can help reducing the generated state space, because more states obtained from 
the original Miyano-Hayashi construction [26] can be mapped to one pruned or saturated 
macrostate. 

Let A = (Q, E , 5,1, F) be an inherently weak B A . We first construct an equivalent B A 
W = (Q, E , 5,1, F\Y)-, where F\y contains a l l states from inherently weak accepting M S C C s 
of A. We then convert W to an equivalent co-Bi ich i automaton C = (Q,Yl,5,I,Fc = 
Q\F\y). We use to denote a direct simulation on W and ^ to denote a fair simulation 
on C. A fair s imulat ion ^ can be approximated by a direct s imulat ion ^ ^ V . 

Let C be a relation on the states of C defined as follows: p C q iff (i) p -<f, (ii) q is 
reachable from p i n C, and (iii) either p is not reachable from q in C or p = q. 

We define two adjustment functions pr, sat: 2Q 2<2 for each S C Q as follows: 

• pruning: pr(S) = S' where S' C S is the lexicographically smallest set (given a fixed 
ordering on Q) such that Vg G S3q' G S': q C q' and 

• saturating: sat(S) = L«SJ^e, where L»SJ^e = {p € Q \ 3q G Q: p ^c

f q}. 

For a given c o - B A C and an adjustment function 9 : 2® —>• 2^ , the construction MiHAYg 
produces a B A M I H A Y # ( C ) = (Q', E , 5', I', F'), whose components are defined as follows: 

. Q' = 2Q x 2<2, 

. I' = {(9(I),9(I)\FC)}, 

. 5'((S,B),a) = (S',B') where 

- S' = 9(5(S,a)), 
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— and 

* B' = S' \ Fc i f B = 0 or 
* B' = (S(B, a) n S') \ Fc if B / 0, and 

. F' = 2® x {0}. 

In the following we fix a c o - B A C = (Q,YJ,5,I ,Fc). We use p g to denote that 
g is reachable from p. Let a 6 S u be a word. Let LT, IT be sets of traces over a. We 
say that II and IT are acc-equivalent, denoted as LT ~ LT' if 3TT G LT : TT is accepting in 
C iff 3TT' G LT' : 7r' is accepting i n C. Let p = S1S2 • • • be a sequence of sets of states 
and a be a word. We define LTp to be a set of traces over a matching the sets of states. 
Formally, LTp = {TT \ TT over a,7Tj G Si for each i}. For a trace TT = TTOTTI . . . we use 7Tj: u 

to denote a trace -Ki:u) = itiiti+i . . . . Moreover, for a set of traces LT p, we define npi.^ as 
^piuj = {ftj'-w I TT G LTP and j > i }. We also define LTp = \JI&U) n P i.w. Further, for a set of 
states B we use p^ to denote the sequence S1S2 • • • s.t. Si = B, Si+i = 5(Si, a>i) for each 
i £ u . We use pa to denote pa. Moreover, for a given mapping 9 : 2® -> 21? and a sequence 
of sets of states p we define #(p) = 9{pi)9{p2).... A trace 7r is eventually fair-simulated by 
7r' i f there is some i £ w s.t. 7Tj:a; ^ 71^. 

L e m m a 4.8. Let a be a word, L T P a ~ np^, and L T P a C ILy^. Then , L T P a ~ LT^, . 

Proof. Assume that L T P a ~ LT p^ and L T P a C I I p ^ . Since LT p^ C 11^, , it means that if there is 
an accepting trace i n LTP , there is the same accepting trace i n LT4 . If there is no accepting 

" fa 

trace i n I I P a , it means that a l l traces contain infinitely many accepting states. Hence, every 
infinite suffix is also an accepting trace and, therefore, n4 contains a l l traces that are not 

Pa 

accepting i n C (i.e., w i th infinitely many accepting states). • 

L e m m a 4.9. Let a be a word. Then, n P a ~ Iipr^Pay 

Proof. Since Iipr^Pa^ C n p a , it suffices to show that if there is an accepting trace ir G n p a , 
there is also an accepting trace TT' G Ilpr(Pay We show that there is TT' G n p r(P a) s.t. 7r 
is eventually fair-simulated by TT'. If TT' = TT, we are done. Now, assume that TT' ^ TT and 
that there is a m a x i m u m set of traces P = {TT1, TT2, ... } C n p a w i t h indices £1 < £2 < • • • 
s.t. pi = 7r| C TT1^1 = p\ for each i, and moreover 7ri = IT. We show that P is finite by 
showing that p\ 7̂  p'j for each i / j. Assume that p'j = p\ for some i < j . B u t then we have 
Pi Pj — Pj = Pi meaning that p\ p'j (from the definition of C ) . F r o m the definition 
of C we also have that pj is not reachable from p1- = p^, which is a contradiction. Since 
the set P = {TTI, ... ,7rn} is max ima l and finite, we have 7rn G Ilpr(Pay Moreover, TT' = 7rn 

eventually fair-simulates TT, which concludes the proof. • 
L e m m a 4.10. Let a be a word. Then , n p a ~ ^at(p v 

Proof. F i r s t observe that n P a C H)!at(p \ • Therefore, it suffices to show that i f there is an 
accepting trace TT G ^AT^P \, there is also an accepting trace TT' G n p a . We fix p = pa. 
Consider some accepting trace TT G ^ a t ^ p y If 7r G n p a , we are done. If not, there is some 
posit ion £ s.t. 7r G np<1.^ and TTI <f q where q G p£. Therefore, there is some trace TT' G p 
s.t. 7r'e = q. Moreover, TT is accepting, hence there is a trace ir" leading from q, which is 
accepting as well . Hence, 7r^.7r" G p and moreover this trace is accepting. • 

L e m m a 4.11. Let 9 be an adjustment function. If n p a ~ ^e(p ) ^ o r e a c n a ^ ^ then 
£ ( M i H A Y e ( C ) ) = S w \C(C). 
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Proof. Consider a word a G £(C). Hence, there is an accepting trace ir G IiPa and also an 
accepting trace TT' G ^0(pa)k.u f ° r some k G u. Since TT' emerges eventually in the B set, 
a is not accepted by £ (MlHAYg(C)) . 

Conversely, assume that a G" £ ( C ) . Then, a l l traces i n IiPa as well as i n n ^ , N contain 
infinitely many accepting states. Hence, we flush 5-set infinitely many times yielding 
a G £ ( M I H A Y „ ( C ) ) . • 

L e m m a 4.12. For a c o - B A C, £ ( M i H A Y s a i ( C ) ) = £ ( M i H A Y p r ( C ) ) = S w \ £ ( C ) . 

Proof. We get the proof for L e m m a 4.12 direct ly from the fact that I\.prrp\ C IiPa for 
any word a, and from Lemmas 4.8, 4.9, and 4.11. The correctness of the construction for 
M i H A Y s a i ( C ) is given by Lemmas 4.10 and 4.11. • 

4.4 Optimization of Semi-Deterministic B A Complementa
tion 

A problem wi th the N C S B algori thm for complementing semi-deterministic B i i c h i automata 
described i n Section 3.6 is a high degree of nondeterminism. In this section, we propose an 
opt imizat ion of the original N C S B construction, inspired by the M A X R A N K construction 
in rank-based complementation from [16], which we denote as N C S B - M A X R A N K . 

Let A = (Qi t±J Q2,^,S = Si W S2 U St, I,F) be a semi-deterministic B A where Q2 
is the set of states reachable from some accepting state and Q\ is the rest, 5\ = £ I Q I ; 

$2 = SQ2, and St is the transi t ion function between Q\ and Q2- The N C S B - M A X R A N K 
construction produces a B A N C S B - M A X R A N K ( ^ I ) = (Q',T,,S',I',F') whose components 
are the following: 

. Q> = {(N, C, S, B) G 2 * x 2 Q 2 x 2 ^ F x 2 ° 2 | B C C}, 

. / ' = { ( Q i n / , g 2 n / , 0 , g 2 n / ) } , 

• S' = 71 U 72 where 

- 71 ((JV, C, S, B), a) = {(N', C, S', B')} where 

* N' = 6i(N,a), 
* S' = 52(S,a), 
* C' = (St(N, a) U S2(C, a)) \ S', and 
* B' = O i f B = 0, otherwise B' = S2(B, a) D C, 

- UB'HF / 0 , t h e n 7 2 ( ( A ^ , C , 5 , S ) , a ) = 0. Otherwise, we set 72((iV, C, S, B), a) = 
{N',C",S",B"} w i t h 

* B" = 0, 
* S" = S'U B', and 
* C" = C \ S". 

. F' = {(N, C, S, B) £ Q' \ B = 0}. 

N C S B - M A X R A N K reduces the degree of nondeterminism by providing at most two 
choices for each macrostate. The first choice is to keep a l l states i n B and the second choice 
is to move a l l states from B to S i f B contains no accepting state. The construction is 
incomparable to the original N C S B a lgori thm [5] due to the condit ion C' C 82 (C \ F,a), 
which does not generally hold i n N C S B - M A X R A N K . 
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L e m m a 4.13. Let B C Q2 be a set of deterministic states and let a be a word. If a 4 £(A), 
then 3k :V£ > k : ( p f )g D F = 0. 

Proof. Assume that a ^ £ („4 ) . Since I? is a set of states of the deterministic part, we have 
I I „ B | < \B\. Moreover, for each trace TT G I L B there is some k^ s.t. -Kg 4 F for each £ > kw. 

i fJa i l l /va / 
Taking k = maxjA;^ | TT G I I p s } , we fulfill the condi t ion of the lemma. • 
L e m m a 4.14. Let A be an S D B A . Then £ ( N C S B - M A X R A N K ( „ 4 ) ) = S w \ C(A). 

Proof. F i r s t , we prove that i f a G C(A), then a 4 £ ( N C S B - M A X R A N K ( „ 4 ) ) . In that case, 
there is an accepting run p on a i n A. Moreover, pz G Q2 for some £ G UJ and for a l l 
k>l. Therefore, for every run R = (N1,C1, S1, B^ ... on a i n N C S B - M A X R A N K ( ^ I ) , we 
have that either pi G Si or pi G Cg. Now assume the first case, pi G Sg. A t some point, 
we reach an accepting state i n p (p& <E QF, k > £). pt G 5^ therefore means that i? is a 
finite trace of at most k — 1 elements. Now we tu rn to the second case, G C V . In that 
case, either pi G C\ and G B\ for each Z > IQ > £, or we apply 72 and move p to S, 
i.e., p m G Sm for some m > £. In the first case, I? is not empty anymore, hence R is not 
accepting. In the latter, we get the case similar to the first examined run pg G Sell. Hence, 
a 4 £ ( N C S B - M A X R A N K ( ^ ) ) . 

Now, we prove that i f a 4 £(A), then a G £ ( N C S B - M A X R A N K ( „ 4 ) ) . We construct an 
accepting run R on a i n A. Let Ro be a macrostate Ro = (Ni, C\,Si,Bi) = (Qi n / , Q2 fl 
7,0, Q 2 n i " ) . F r o m L e m m a 4.13 we have that there is a k\ s.t. ^£>k1: (p^gDF = 0. We 
set -Rj+i = 7i(-R«) for 1 < i < k. Further, we set Rk+i = 72(Rk)- Then, we use L e m m a 4.13 
(on aki:Ui) to obtain a posit ion ki g iving us the point where 72 is applied. Such a constructed 
run R is infinite, because L e m m a 4.13 ensures that we cannot reach an accepting state from 
S on a. It remains to show that R is accepting. F r o m the construction, we have that 72 

was used infinitely many times (and each successor of 72 is an accepting state). The run 
therefore contains infinitely many accepting states. • 
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Chapter 5 

Implementation 

The optimizations presented in this thesis are implemented in the tool R A N K E R [14] i n C + + . 
We added these optimizations on top of the techniques from [16] . R A N K E R uses optimized 
rank-based complementation for general B A s and also opt imized special constructions for 
complementing inherently weak and semi-deterministic automata. 

5.1 Architecture 

R A N K E R [14] is a publ ic ly available command line tool for complementing B i i c h i automata, 
wri t ten in C + + . It accepts input B i i c h i automata in the H O A [3] or the B A [1] format. B o t h 
state-based and transition-based input B i i c h i automata are supported. The architecture is 
shown in Figure 5 . 1 . After preprocessing, the input automaton is complemented using 
a complementation procedure chosen based on the structural properties of the automaton, 
and then postprocessed. 

5.1.1 P r e p r o c e s s i n g a n d Pos tprocess ing 

R A N K E R supports various options for preprocessing, including reduction of the input au
tomaton, deelevation, saturation of accepting states, or feature extraction. 

In order to reduce the input automaton before complementation, R A N K E R uses quo-
tienting based on direct simulation [25] (—preprocess=red). Inherently weak and semi-
deterministic automata are also transformed into equivalent transition-based B A s ( T B A ) , 
since this may reduce the number of states. We do not transform other B A s into T B A s . 
Even though it could reduce the number of states, our optimizations of rank-based comple
mentation procedure are more effective on state-based automata. For elevator automata, we 
can use some of the deelevation strategies. Deelevation decreases the rank bounds for rank-
based complementation at the cost of at most doubling the number of states. R A N K E R sup
ports three different deelevation strategies: (i) —preprocess=copyall where every com
ponent is deelevated (as described i n Section 4 . 1 . 6 ) , (ii) —preprocess=copyiwa where only 
inherently weak accepting components are deelevated, and (hi) —preprocess=copyheur 
which combines two previous methods: i f the input B A is inherently weak and the the rank 
bound estimation is at least 5 , then a l l M S C C s w i t h an accepting state/ t ransi t ion are deel
evated; i f on a l l paths from a l l in i t i a l states, the first non- t r iv ia l M S C C is non-accepting, 
then the in i t i a l part of the B A (up to the first non- t r iv ia l M S C C ) is determinized and the 
sizes of macrostates i n the rank-based complementation are therefore reduced. 
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—preprocess=c 

r e d u c t i o n 
c G { r e d , no- red} 

dee leva t ion 

c G { copyheur , c o p y a l l , 

copyiwa} 
F/5p s a t u r a t i o n 
c G { a c c s a t } 
feature e x t r a c t i o n 

A 
preprocessing 

features 

—best 
— l i g h t 

var ious c o m 
p l e m e n t a t i o n 
approaches 

(T)BA I 
complement 

-postprocess=c 

a u t o m a t o n t r i m m i n g 

r e d u c t i o n 
c G {red} 

postprocessing 
Ac 

Figure 5.1: Overview of the architecture of R A N K E R wi th the most important command-
line options. Default settings are highlighted i n blue. F and 5F denote accepting states 
and transitions, respectively. 

Using —preprocess=accsat, R A N K E R can saturate accepting states or transitions in 
the input B A . The reason for this is that a higher number of accepting states reduces the 
max imum rank in the rank-based complementation. O n the other hand, this technique is 
not always beneficial for other optimizations, since it may, for example, break the structure 
for elevator rank estimation. 

Dur ing preprocessing, R A N K E R also extracts information about the input B A that helps 
the complementation procedure: for example the type of the B A , therank bound for indi
v idua l states, etc. 

The preprocessed automaton is then complemented and the result is postprocessed. 
R A N K E R removes useless states of the complement and optionally reduces the result using 
direct simulation [25] (—postprocess=red). 

5.1.2 C o m p l e m e n t a t i o n 

The complementation procedure is chosen based on the type of the input B i i c h i automa
ton. We have a different procedure for each of the following types: inherently weak, 
semi-deterministic, and other B A s (ordered by decreasing pr ior i ty) . See Figure 5.2 for 
an overview of complementation approaches used i n R A N K E R . 

inherently weak 

SDBA 

otherwise 

• Miyano-Hayashi construction 
• Macrostates simulation-based prun

ing/saturation optimizat ion 

• N C S B - L A Z Y construction 
• N C S B - M A X R A N K construction 
• Opt imized Rank-based construction 

• Opt imized Rank-based construction 
• Backoff: SPOT 

Figure 5.2: Overview of complementation approaches used i n R A N K E R . 
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For inherently weak B A s , both the Miyano-Hayashi construction [26] and its opt imiza
t ion for macrostates saturation (described i n Section 4 . 3 ) are used. B y default (—best), 
R A N K E R constructs the complement using both approaches and then outputs the smaller 
result. For the option — l i g h t , only the opt imized construction is used. 

For semi-deterministic B A s , by default (—best) bo th N C S B - M A X R A N K (described in 
Section 4 . 4 ) and opt imized rank-based construction wi th advanced rank estimation [16, 15] 
is used and the smaller result is picked. For the option — l i g h t , only N C S B - M A X R A N K 
is used. We can also tu rn on the NCSB-Lazy construction from [9] by using —ncsb-lazy, 
but this a lgori thm usually gives worse results. 

For other B A s , we use the opt imized rank-based complementation construction from 
[16, 15] w i th S P O T as the backoff [16] . R A N K E R can determine i f the input automaton has 
a structure bad for the rank-based procedure and use another approach. 
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Chapter 6 

Experimental Evaluation 

In this chapter, we compare R A N K E R w i t h other state-of-the-art tools for B i i c h i automata 
complementation and show that it can produce a s tr ic t ly smaller complement than other 
state-of-the-art tools in the majority of cases. Moreover, we show that even i f the original 
rank-based complementation is not very efficient, w i th a l l our optimizations it becomes 
competitive to other B A complementation approaches. 

6.1 Tools and Evaluation Environment 

In our experiments, we compared R A N K E R wi th other state-of-the-art tools, namely, G O A L 
[36] (implementing P I T E R M A N [28], S A F R A [31], and F R I B O U R G [2]), S P O T 2.9.3 [10] (im

plementing Redziejowski's a lgori thm [30]), S E M I N A T O R 2 [4], L T L 2 D S T A R 0.5.4 [19], and 
R O L L [21]. A l l tools were set to the mode where they output a state-based B A . 

We tested the correctness of R A N K E R using S P O T ' S autcross on a l l B A s in our bench
mark. The experimental evaluation was performed on a 64-bit G N U / L I N U X D E B I A N work
station w i t h an Intel(R) Xeon(R) C P U E5-2620 running at 2.40 G H z wi th 32 G i B of R A M 
and using a timeout of 5 minutes. 

6.2 Structure of Experiments 

In this chapter, we present results of two sets of experiments. The first set was performed 
after the opt imized rank-based construction for elevator automata and data flow analysis 
(described in Section 4.1) were implemented on top of the previous version of R A N K E R 
from [16]. The results of these optimizations were published i n [15]. The second set was 
performed on the version of R A N K E R w i t h optimizations from Sections 4.3 and 4.4 imple
mented on top of the version from [15]. In our experiments, we focus mainly on the number 
of states of the complement. Axes in a l l scatter plots are logarithmic. 

The first experiment from each set shows the effectiveness of our heuristics for reducing 
the generated state space by comparing the sizes of complemented B A s w i t h other rank-
based algorithms without postprocessing. These results are useful for applications where 
postprocessing is not needed, for example language inclusion or equivalence checking. We 
compare R A N K E R wi th S C H E W E (the version Reduced Average Outdegree from [32], im
plemented i n G O A L under -m rank - t r -ro), and also wi th its previous version to see the 
impact of our new optimizations. 
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The second experiment from each set compares R A N K E R w i t h other state-of-the-art 
tools. It compares sizes of output B A s , therefore, each automaton was postprocessed wi th 
autf i l t (simplification level —high). The statistics for each set of experiments are shown 
in a table. For the second experiment, scatter plots compare R A N K E R wi th S P O T and 
R O L L , which currently give the best results among other state-of-the-art tools. 

6.3 Elevator Automata and Data Flow Analysis 

In this section, we show the effect of our opt imized rank-based construction for elevator au
tomata and data-flow analysis. We implemented these optimizations on top of the previous 
version of R A N K E R from [16]. 

6.3.1 Datasets 

We used two datasets for our experiments: (i) random w i th 11,000 B A s over a two letter 
alphabet used i n [35], which were randomly generated v i a the Tabakov-Vardi approach [34], 
starting from 15 states and wi th various different parameters, and (ii) LTL containing 1,721 
B A s over larger alphabets (up to 128 symbols) used i n [4], obtained from L T L formulae 
from literature (221) or randomly generated (1500). The automata were preprocessed using 
R A B I T [24] and S P O T ' S autf i l t (using the —high s implification level), transformed to 
state-based acceptance B A s (if they were not already), and converted to the H O A format [3]. 
F rom this set, we removed automata that were (i) semi-deterministic, (ii) inherently weak, 
(iii) unambiguous, or (iv) having an empty language, since for these automata types there 
exist more efficient complementation procedures than for unrestricted B A s [5, 4, 6, 23]. 
In the end, we were left w i th 2 592 (random) and 414 (LTL) hard automata. We use a l l to 
denote their union (3 006 B A s ) . O f these hard automata, 458 were elevator automata. 

6.3.2 C o m p a r i s o n w i t h R a n k - B a s e d A l g o r i t h m s 

Our first experiment shows the effectiveness of our optimizations by comparing the sizes of 
complemented B i i c h i automata without postprocessing. Figure 6.1 compares the number of 
states of the automata generated by R A N K E R wi th the automata generated by S C H E W E [32] 
and the previous version of R A N K E R from [16], denoted as R A N K E R Q L D - We can see that 
the improvement was i n many cases exponential when compared not only wi th S C H E W E , 
but also wi th the previous optimizations i n R A N K E R O L D -

The upper part of Table 6.3 gives summary statistics. The number of timeouts decreased 
by 23% and the median decreased by 44% w.r.t. R A N K E R O L D -

6.3.3 C o m p a r i s o n w i t h O t h e r Too l s 

Our second experiment compares the number of states of the complement generated by 
R A N K E R wi th other state-of-the-art tools w i th postprocessing. Scatter plots i n Figure 6.2 
show a comparison of R A N K E R wi th S P O T and R O L L . Figure 6.2a shows that R A N K E R 
produces a smaller B A than S P O T i n the majority of cases, especially on B A s from random. 
R O L L uses a learning-based approach, which is completely different from any other tool . 
Th is approach can output a much smaller automaton i n some cases, but it is a more 
heavyweight technique and the number of timeouts is therefore much higher compared to 
other tools. 
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Figure 6 . 1 : Compar ison of the state space generated by our optimizations and other rank-
based procedures (horizontal and vert ical dashed lines represent t imeouts). Blue data points 
are from random and red data points are from LTL. Axes are logarithmic. 

Summary statistics are i n the lower part of Table 6 . 3 . R A N K E R has the second lowest 
mean (after R O L L ) and the th i rd lowest median (after R O L L and S E M I N A T O R 2 ) . Columns 
wins and losses show the number of cases where R A N K E R outputs a str ict ly smaller or 
str ict ly bigger automaton, respectively. Observe that in comparison wi th a l l other tools, 
R A N K E R gives more wins than losses. 

The number of timeouts of R A N K E R is s t i l l higher than of some other tools, especially 
S P O T , P I T E R M A N , and F R I B O U R G . 

6.4 Inherently Weak and Semi-Deterministic B A s 

In this section, we present the results of our second set of experiments, w i th optimizations of 
the complementation of inherently weak and semi-deterministic B i i c h i automata, described 
in Sections 4 . 3 and 4 . 4 . For this set of experiments, we denote the version of R A N K E R from 
[15], described in Section 6 . 3 , as R A N K E R O L D -

Table 6 . 1 : Statistics for our experiments. The upper part compares various optimizations 
of the rank-based procedure (no postprocessing). The lower part compares R A N K E R to 
other approaches (with postprocessing). The left-hand side compares sizes of complement 
B A s and the right-hand side runtimes of the tools. The wins and losses columns give the 
number of times when R A N K E R was str ic t ly better and worse. The values are given for the 
three datasets as " a l l (random : LTL)". Approaches in G O A L are labelled w i t h ©. 

method mean median wins losses mean runtime [s] median runtime [s] timeouts 
R A N K E R 3812 (4452 207) 79 (93 26) 7.83 (8 !)!) 1.30) 0.51 (0.84 0.04) 279 (276 3) 
RANKEROLD 7398 (8688 358) 141 (197 29) 2190 (2011 179) 1 11 (107 9.37 (10 73 1.99) 0.61 (1.04 0.04) 365 (360 5) 
SCHEWE © 4550 (5495 665) 439 (774 35) 2640 (2315 325) 55 (1 54) 21.05 (24 28 7.80) 6.57 (7.39 5.21) 937 (928 9) 

R A N K E R 47 (52 18) 22 (27 10) 7.83 (8 99 1.30) 0.51 (0.84 0.04) 279 (276 3) 
PITERMAN © 73 (82 22) 28 (34 14) 1435 (1124 311) 416 (360 56) 7.29 (7 39 6.65) 5.99 (6.04 5.62) 14 (12 2) 
SAFRA © 83 (91 30) 29 (35 17) 1562 (1211 351) 387 (350 37) 14.11 (15 05 8.37) 6.71 (6.92 5.79) 172 (158 14) 

SPOT 75 (85 15) 24 (32 10) 1087 (936 151) 683 (501 182) 0.86 (0 99 0.06) 0.02 (0.02 0.02) 13 (13 0) 
FRIBOURG © 91 (104 13) 23 (31 9) 1120 (1055 65) 601 (376 225) 17.79 (19 53 7.22) 9.25 (10.15 5.48) 81 (80 1) 
L T L 2 D S T A R 73 (82 21) 28 (34 13) 1465 (1195 270) 465 (383 82) 3.31 (3 84 0.11) 0.04 (0.05 0.02) 136 (130 6) 
SEMINATOR 2 79 (91 15) 21 (29 10) 1266 (1131 135) 571 (367 204) 9.51 (11 25 0.08) 0.22 (0.39 0.02) 363 (362 1) 
R O L L 18 (19 14) 10 (9 11) 2116 (1858 258) 569 (443 126) 31.23 (37 85 7.28) 8.19 (12.23 2.74) 1109 (1106 3) 
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Figure 6.2: Compar ison of the complement size obtained by R A N K E R and other state-of-the-
art tools (horizontal and vert ical dashed lines represent t imeouts). Axes are logarithmic. 

6.4.1 Datasets 

For this set of experiments, we used automata from theh following three datasets: (i) random, 
(ii) LTL, and (iii) A u t o m i z e r . The first two datasets are the same as i n the first set of ex
periments from Section 6.3.1. A u t o m i z e r contains 906 B A s over larger alphabets (up to 2 3 5 

symbols) used i n [9], obtained from the U L T I M A T E A U T O M I Z E R tool . We d id not use the 
last benchmark in our previous experiments, because we focused mainly on hard automata 
and most of the automata form A u t o m i z e r are semi-deterministic. 

In contrast to the first set of experiments, where we removed some special types of au
tomata from the dataset, i n this experiment we removed only t r i v i a l one-state B A s , because 
R A N K E R contains a more efficient implementat ion for complementing these automata, es
pecially inherently weak and semi-deterministic B A s . The final dataset contains 7,155 B A s 
(denoted as a l l ) w i th 4,533 random, 1,716 LTL, and 906 A u t o m i z e r automata. 

6.4.2 Effect of the N e w O p t i m i z a t i o n s 

In the first experiment, we measured the effect of our optimizations for inherently weak and 
semi-deterministic B i i c h i automata without postprocessing. The evaluation was performed 
on LTL and A u t o m i z e r benchmarks. We use both to denote their union. Most of the 
automata from these benchmarks are either inherently weak or semi-deterministic. 

Table 6.2: Effects of our optimizations for I W and S D B A automata. Sizes of output B A s 
are given as "both (LTL : Automizer )" . 

method mean median 

M l H A Y p r 43.4 (7.3 : 140.7) 7 (5 : 21) 
M I H A Y 46.1 (10.9 : 141.3) 7 (6 : 23) 

N C S B - M A X R A N K 30 (20.3 : 38.3) 12 (8 : 28) 
N C S B - L A Z Y 35.7 (25.1 : 44.8) 13 (9 : 32) 

38 



10000 

1000 

ro 
X ± 100 

10 

1 1 II Mil Hill 111 / 

—* 

/ 
a 

/ 
/ 

/ 
icy 

t Is 

.IMF 
r 

/ 

E 

10000 

1000 
>> 
N ro 

go 100 
u 

10 

1 1 1 Mill r i J / 
/ 

/ -

y 
/ 

/ 
-

— « 

/ 

•-
E 

10 100 1000 10000 
MiHay-Prune 

10 100 1000 10000 
NCSB-MaxRank 

(a) M i H A Y p r vs M I H A Y (b) N C S B - M A X R A N K VS N C S B - L A Z Y 

Figure 6.3: Eva lua t ion of the effect of our optimizations for I W and S D B A automata. 

We first compared the number of states generated by M I H A Y and by the opt imizat ion 
M m A Y p r from Section 4.3 on inherently weak B A s (1,308 B A s - 948 from LTL and 360 
from A u t o m i z e r ) . The scatter plot is shown i n Figure 6.3a and summary statistics are in 
the upper part of Table 6.2. The opt imizat ion clearly reduces the number of states of the 
complement, especially for automata from L T L , and it decreases both the mean and the 
median. 

We also compared the number of states generated by N C S B - L A Z Y [9] and N C S B -
M A X R A N K from Section 4.4 on semi-deterministic B A s that are not inherently weak (735 B A s 
- 328 from LTL and 407 from A u t o m i z e r ) . The scatter plot is i n Figure 6.3b and summary 
statistics are in the lower part of Table 6.2. Our opt imizat ion works better especially for big 
automata on the output. B o t h the mean and the median are lower for N C S B - M A X R A N K . 

6.4.3 C o m p a r i s o n w i t h O t h e r Too l s 

In the second experiment, we compared R A N K E R wi th other state-of-the-art tools for B i i c h i 
automata complementation. We focused on the number of states of the output automata af
ter postprocessing. Compar ison of the number of states of automata generated by R A N K E R , 

Table 6.3: Statistics for our experiments. The table compares the sizes of complement B A s 
obtained by R A N K E R and other approaches (after postprocessing). The wins and losses 
columns give the number of times when R A N K E R was str ict ly better and worse. The values 
are given for the three datasets as " a l l (random : LTL : Automize r ) " . Approaches in G O A L 
are labelled wi th ©. 

method mean median wins losses timeouts 

RANKER 38 (44 9 67) 11 (18 5 22) 158 (53 0 105) 

R A N K E R O L D 30 (38 10 32) 12 (18 6 22) 1554 (356 650 548) 264 (142 69 53) 458 (259 7 192) 
PlTER.MAN © 43 (56 12 38) 14 (19 8 24) 2881 (1279 966 636) :»2 (263 68 61) 309 (12 4 293) 
SAFRA © 49 (60 17 56) 15 (18 10 24) 3109 (1348 1117 644) 274 (229 31 14) 599 (160 30 409) 
SPOT 46 (57 8 66) 11 (18 5 18) 1347 (935 339 73) 1057 (327 343 387) 73 (13 0 60) 
FRIBOURG © 49 (68 8 27) 11 (18 6 19) 2223 (1177 503 543) 586 (245 207 134) 399 (93 2 304) 

L T L 2 D S T A R 44 (56 12 47) 14 (19 7 24) 2794 (1297 924 573) 448 (283 88 77) 288 (130 13 145) 
SEMINATOR 2 46 (58 8 64) 11 (17 5 21) 1626 (1297 291 38) lll:{ (286 398 429) 419 (368 1 50) 
ROLL 18 (15 11 54) 9 (8 8 28) 6050 (3824 1551 675) 620 (369 125 126) 1893 (1595 8 290) 
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Figure 6.4: Compar ison of the complement size obtained by R A N K E R , R A N K E R O L D ; and 

S P O T (horizontal and vert ical dashed lines represent timeouts). 

R A N K E R O L D J and S P O T are given i n Figure 6.4. Summariz ing statistics are i n Table 6.3. The 
backoff strategy was applied i n 278 cases (264 for random, 1 for LTL, and 13 for A u t o m i z e r ) . 

The number of t imeouts was reduced by 65% w.r.t . R A N K E R O L D _ this is the reason of 
the higher mean. R A N K E R also has the th i rd smallest mean and median, after R O L L and 
R A N K E R O L D J but they have a much higher number of timeouts. F r o m the columns wins 
and losses we can see that R A N K E R gives a s t r ic t ly smaller automaton i n the majority of 
cases compared to a l l other tools. 

Regarding runtimes, we can see from Table 6.4 that R A N K E R is comparable to S E M I -
N A T O R 2. S P O T s t i l l remains the fastest tool for B A complementation. 

Table 6.4: R u n times of the tools given as " a l l (random : LTL : A u t o m i z e r ) " 

method mean median 

R A N K E R 3.72 (4 .34 0.45 7.30) 0 .05 (0 .10 0 .04 0.08) 

R A N K E R O L D 4.62 (5 .33 0 .72 9.69) 0 .07 (0 .19 0 .03 0.15) 
PlTERMAN © 8.06 (6 .07 5 .95 28 .38) 5 .12 (4.96 5.08 8.68) 
S A F R A © 11.58 (10.41 6 .51 38 .65) 5.41 (5.32 5.26 9.02) 

S P O T 0.64 (0 .57 0 .02 2 .28) 0.02 (0.02 0.01 0.02) 

F R I B O U R G © 13 .13 (14 .14 6 .06 23 .88) 5.69 (6.82 4 .92 6.57) 
L T L 2 D S T A R 2.1 (2 .25 0 .34 5.15) 0.02 (0.02 0.01 0.05) 
S E M I N A T O R 2 4 . 1 6 (6 .33 0 .03 1.88) 0.03 (0.08 0.01 0.03) 
R O L L 23 .65 (29.82 3.88 49 .02) 3 .34 (6 .19 1.71 17.14) 
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Chapter 7 

Conclusion 

In this thesis, we presented several optimizations for efficient complementation of B i i c h i 
automata. Fi rs t ly , we focused on rank-based complementation. We identified the main 
source of a state space blow-up, which is often an unnecessarily high bound on max imum 
rank for each state, and observed that i f an automaton has a specific structure, we can 
reduce the rank bound for states i n each strongly connected component of the automaton. 
We identified a subclass of B i i c h i automata, called elevator automata, whose structure 
enables to reduce the rank bound. We presented an algori thm assigning rank bound for 
states i n each strongly connected component of the automaton. This a lgori thm can also to 
a certain degree be extended to general B i i c h i automata wi th no specific structure. Then 
we presented a technique based on data flow analysis that enables propagation of rank 
restrictions throughout the automaton. Moreover, we showed that elevator automata can 
be complemented i n 0 (16" ) space. The definition of elevator automata has already been 
used by other members of the research community [22]. 

In the second part of the thesis, we focused on optimizations of specialized comple
mentation constructions for inherently weak and semi-deterministic B i i c h i automata. Due 
to special properties of these types of B A s , we can use more efficient algorithms than the 
rank-based construction. We presented an opt imizat ion removing states from a macrostate 
of the complement of an inherently weak automaton based on direct s imulat ion. The op
t imiza t ion of semi-deterministic B A complementation was inspired by an opt imizat ion of 
rank-based construction. 

A l l techniques presented in this thesis were implemented as an extension of the tool 
R A N K E R for complementation of B i i c h i automata. We performed a thorough experimental 
evaluation on thousand of hard B i i c h i automata occuring in practice, as well as randomly 
generated automata. Our optimizations significantly reduced the generated state space 
compared to the previous version of R A N K E R . The algori thm for efficient complementation 
of elevator automata caused an exponential improvement i n a lot of cases. We also compared 
the results w i th other state-of-the-art tools for B i i c h i automata complementation. R A N K E R 
produces a smaller automaton than any other tool i n the majority of cases. Even though the 
original rank-based construction may be quite inefficient, w i th the optimizations presented 
in this paper, together w i th some previous optimizations implemented i n R A N K E R , we get 
a tool that is competitive wi th other state-of-the-art tools and that can i n the majority of 
cases even produce smaller automata than any other tool . 

The ideas presented i n this thesis are a part of my research on which we worked together 
w i th my supervisor and my consultant. M y own contr ibution is especially the extension of 
the definition of elevator automata (originally without inherently weak accepting compo-
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nents), some optimizations, the implementat ion of the a lgor i thm assigning rank bounds to 
states of each strongly connected component, and the implementat ion of complementation 
algorithms for inherently weak and semi-deterministic B i i c h i automata, as well as their op
t imizations. The first part of the thesis, i n part icular the algorithms for elevator automata 
and data flow analysis, is a part of a paper published at T A C A S ' 2 2 [15], and the second 
part, including the implementation of R A N K E R , is a part of a tool paper at the t ime of 
wr i t ing condit ionally accepted at C A V ' 2 2 . 

7.1 Future Work 

We plan to extend the rank-based complementation algori thm and some of the optimizations 
to (transition-based) Emerson-Lei automata ( T E L A ) - w-automata w i t h a richer acceptance 
condit ion than B i i c h i automata. Due to the richer acceptance condit ion, T E L A s enable 
a more compact representation than B A s . 

The next subject of our future work is a decomposition-based B i i c h i automata comple
mentation. The idea is that we keep information about each strongly connected component 
of the automaton separately and using a round-robin strategy, we inspect the runs i n only 
one component at the same time. This strategy should reduce the degree of nondeterminism 
and thus reduce the number of generated states of the complement. 
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