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Abstract
This thesis aims to implement a model capable of separating guitar sounds from a recording
and use it in a practical application. It was necessary to manually create our dataset from
remixes of songs and modify the existing MedleyDB dataset for our purposes. We have
chosen Demucs architecture as a basis for our neural network. We trained it from scratch
to separate audio files into five distinct recordings containing drums, bass, vocals, guitars,
and other accompaniment. We trained five models on MetaCentrum, which we evaluated
objectively and subjectively. The implemented application serves as both a music player
and an educational tool. The main feature is to allow users to listen to isolated instruments,
for example, a guitar, and therefore more easily learn songs by ear. The application was
subjected to user testing, and the knowledge learned will be used in future development.

Abstrakt
Cieľom tejto práce bolo implementovať model na separáciu gitarového zvuku z nahrávky
a použiť ho v praktickej aplikácii. Bolo nutné manuálne vytvoriť vlastný trénovací dataset z
remixov piesní a upraviť existujúci MedleyDB dataset pre naše účely. Ako základ neurónovej
siete sme si vybrali Demucs architektúru, ktorú sme od základu učili rozdeľovať audio súbory
na celkovo päť samostatných nahrávok obsahujúcich bicie, basgitaru, vokály, gitaru a zvyšné
nástroje. Celkovo sme na MetaCentre natrénovali päť rôznych modelov, ktoré boli objek-
tívne aj subjektívne vyhodnotené. Implementovaná aplikácia slúži ako hudobný prehrávač
a zároveň výučbový nástroj. Hlavnou funkcionalitou je, že umožňuje používateľovi počú-
vať izolovaný nástroj, napríklad gitaru, a vďaka tomu sa ľahšie učia piesne podľa sluchu.
Aplikácia bola podrobená užívateľskému testovaniu a zistené poznatky budú využité pri
ďalšom vývoji.
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Rozšírený abstrakt
Táto práca sa zaoberá problematikou separácie gitarového zvuku z hudobnej nahrávky po-
mocou neurónových sietí a následne tvorbou praktickej aplikácie, ktorá využíva natrénovaný
model. Existujúce metódy na separáciu hudobných nástrojov sa nezameriavajú na gitarový
zvuk a nahrávky rozdeľujú iba na vokály, bicie, basgitaru a zvyšok. Nami navrhnutá sieť
stavia na jednej z takýchto metód a upravuje jej architektúru, aby poskytovala jeden výstup
navyše pre gitaru.

V práci popisujeme dve existujúce metódy, ktoré riešia túto problematiku, a to Demucs
a Hybrid Demucs. Demucs je neurónová sieť typu autoenkodér založená na U-Net architek-
túre. Hybrid Demucs priamo rozvíja túto sieť tým, že pridáva konvolučnú rekurentnú časť,
vďaka čomu dosahuje lepšie výsledky. Našu prácu staváme na Demucs architektúre.

Existujúce modely pre separáciu zvuku sú trénované a testované na dátových sadách
MUSB18 a MUSB18-HQ, ktoré ale nie sú použiteľné pre naše účely, pretože neobsahujú
samostatné nahrávky gitary. Z tohto dôvodu sme manuálne vytvorili vlastný dataset z
remixov piesní. Pre zachovanie dobrej variability sme sa obmedzili na jednu skladbu od
daného interpreta. Z tohto datasetu sme vyčlenili časť nahrávok pre validačné účely a časť
na finálne testovanie modelov. Ďalej sme využili existujúci dataset MedleyDB, ktorý ale
samostatne nepostačoval pre úspešné trénovanie neurónových sietí.

Implementácia neurónovej siete prebehla v jazyku Python s využitím knižníc PyTorch
a Torchaudio. Na trénovanie našej metódy založenej na architektúre Demucs sme využili
MetaCentrum. Najprv sme uskutočnili niekoľko menších experimentov na nájdenie na-
jlepších hyperparametrov a následne sme celkovo natrénovali päť rôznych modelov, ktoré
sa líšili veľkosťou trénovacej sady a aj komplexnosťou architektúry. Modely sme potom
podrobili evaluácii na testovacej sade, pri ktorej sme uvádzali metriky používané v oblasti
separácie zvuku, ako je SDR, SIR, ISR a SAR. Na základe výsledkov dotazníka sme subjek-
tívne porovnali jednotlivé modely. Výsledkom objektívneho aj subjektívneho testovania je,
že model natrénovaný na najväčšej datovej sade s najkomplexnejšou architektúrou dosahuje
najlepšie výsledky z nich.

Natrénované modely sú využívané v počítačovej aplikácii, ktorá bola implementovaná v
jazyku Python a s využitím knižnice PyQt. Pri dizajne sme sa zameriavali na jednoduchosť
a ľahkosť navigácie. Aplikácia slúži ako hudobný prehrávač a zároveň výučbový nástroj.
Používateľovi umožňuje počúvať izolovaný hudobný nástroj, ako napríklad gitaru, a vďaka
tomu sa ľahšie učiť piesne podľa sluchu. Aplikácia bola podrobená užívateľskému testovaniu,
ktorého cieľom bolo vyhodnotiť celkový dizajn aplikácie, mieru responzívnosti a prehľadnosť
navigácie. Vďaka tomuto testovaniu sme získali návrhy na ďalšiu možnú funkcionalitu
aplikácie.

Pri našich natrénovaných modeloch je stále priestor na zlepšenie. Napriek tomu, že ne-
dosahujú výsledky porovnateľné s najmodernejšími metódami, slúžia dostatočne na poukázanie
možností a výhod ich zakomponovania do praktickej aplikácie. V budúcnosti sa budeme
sústrediť iba na separáciu gitary a využijeme už predtrénované modely na zvyšné nástroje.
Implementácia aplikácie by mohla profitovať z použitia iného jazyka a knižnice na tvorbu
grafického rozhrania, ktoré by bolo lepšie prispôsobené prehrávaniu audio médií.



Application for Guitar Sound Separation from Mu-
sic Recording

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Ladislav Mošner. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. . . . . . . . . . . . . . . . . . . . . . .
Natália Holková

May 14, 2023

Acknowledgements
I would like to thank my supervisor for his guidance and help with the thesis. Computa-
tional resources were provided by the e-INFRA CZ project (ID:90140), supported by the
Ministry of Education, Youth and Sports of the Czech Republic.



Contents

1 Introduction 3

2 Theory 4
2.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Convolutional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Existing methods for music source separation . . . . . . . . . . . . . . . . . 6
2.2.1 Demucs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Hybrid Demucs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 PyQt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Evaluation Metrics and Datasets 14
3.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Objective metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Subjective metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 Existing datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Creating dataset using existing models to separate songs . . . . . . . 17
3.2.3 Creating dataset using remixes to build up a dataset . . . . . . . . . 18
3.2.4 Additional datasets used . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Design and implementation of neural network model 21
4.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Used technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3 Training environment . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.4 Exporting model and track separation . . . . . . . . . . . . . . . . . 25

5 Design and implementation of a practical application 26
5.1 Initial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Evaluation 35
6.1 Neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.2 Experiments with the neural network on a smaller dataset . . . . . . 35
6.1.3 Models trained with complete datasets . . . . . . . . . . . . . . . . . 36

1



6.1.4 Objective evaluation of models on a test dataset . . . . . . . . . . . 39
6.1.5 Subjective evaluation of models using human respondents . . . . . . 41

6.2 Application testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3 Limitations and plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 45

Bibliography 46

A Contents of the included storage media 50

B Installing the application 51

C Application testing questionnaire 52

2



Chapter 1

Introduction

Music source separation is a field of study that isolates individual sounds or instruments
from a recorded mixture of sounds. The objective is to separate different sources of a song,
such as vocals, drums, and bass, so that they can be manipulated independently. This can
be useful for various applications, such as music production, audio analysis, and learning
musical instruments.

This thesis aims to create a music source separation model capable of separating the
guitar sound from the mix as, to our knowledge, the state-of-the-art methods in the field
have yet to focus on it. Once such a model is created and trained, it will be used in a
practical educational application aimed at amateur musicians and people learning to play
musical instruments. Its purpose is to make transcribing music by ear easier for beginners.

The thesis is organized as follows. Chapter 2 introduces state-of-the-art methods in
music source separation and explains their details. Also, it covers the necessary theory
behind neural networks and creating GUI. Next, Chapter 3 covers the evaluation metrics
and existing datasets used to train models mentioned in the previous chapter. Furthermore,
it also discusses the process and results of creating own dataset. Chapter 4 considers the
process of designing and implementing a waveform-to-waveform neural network capable of
separating instrument tracks in songs. Additionally, it describes the training process.

Next, Chapter 5 focuses solely on creating a practical application that uses the pre-
viously trained model. It discussed the initial design creation and implementation of the
application. Chapter 6 evaluates both the neural network and its application. Concerning
the trained models, it details the various conducted experiments, shows results on bench-
mark datasets, and also presents subjective evaluation. Furthermore, it details the user
testing of the application. Lastly, we discuss the limitations and plans for the future.
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Chapter 2

Theory

This chapter introduces the field of music source separation. First, we briefly touch on
the two main approaches to this problem. Afterward, we briefly discuss the theory behind
neural networks and their building blocks before describing some of the existing state-of-
the-art methods in this field. Lastly, we focus on one of the libraries used for developing
the GUIs, as that is the framework we chose for our application.

Music source separation is the process of separating individual instruments or vocals
from a mixed audio signal. This task has been the subject of extensive research in signal
processing and machine learning, aiming to improve the quality of audio recordings and
perform tasks such as remixing and music transcription.

The methods used for music source separation have evolved significantly, reflecting ad-
vances in signal processing techniques and machine learning. More recently, deep learning
methods have gained popularity for music source separation, using the power of neural
networks to learn complex mappings between mixed audio signals and their sources. These
methods can be divided into spectrogram-based methods, waveform-based, and their com-
bination [5].

Spectrogram-based methods have been a popular approach for music source separation
due to their effectiveness in representing the time-frequency content of audio signals. These
models typically take the spectrogram representation of a mixed audio signal as input and
output the corresponding spectrogram representations of each source. One advantage of
spectrogram-based models is their ability to handle multi-pitch and polyphonic sources.

Waveform-based methods for music source separation are an alternative approach that
operates directly on the time-domain waveform of a mixed audio signal. These methods
typically involve training a model to predict the waveform of each source given the wave-
form of the mixed signal. Waveform-based methods have the advantage of preserving the
temporal information of the audio signal, which can be essential for maintaining the natural
timing and phrasing of individual sources.

This chapter introduces state-of-the-art models for music source separation—namely,
the Demucs [5] and Hybrid Demucs [6]. We will discuss underlying principles of the ap-
proaches, their strengths, and weaknesses.

2.1 Neural networks
Neural networks are a machine learning model inspired by the structure and function of
the human brain. They consist of multiple layers of nodes called neurons that process the
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information. The power of artificial neural networks arises from the interactions between a
large set of neurons [15].

Neural networks are trained using backpropagation, an optimization algorithm that
modifies the weights and biases to minimize a loss function. Initially, the network weights
and biases are initialized with small random values. Afterward follows the forward pass,
where the input is fed into the network, and the output is calculated. Next, the loss is
calculated as the difference between the predicted and true outputs. During the backward
pass, the error is propagated backward through the network to compute the gradients of
the loss function with respect to the weights and biases of the network. Finally, the network
weights and biases are updated using an optimization algorithm like Adam. These steps
are repeated for several epochs until the network performs well on the training data [10].

Next, we introduce some of the building blocks of the neural networks.

2.1.1 Convolutional layer

The convolutional layer is based on learnable filters or kernels, which are small in size. The
filter is convolved across the input volume and computes the dot product between the filter
entries and the input. This produces an activation map of a filter. This way, the network
learns kernels that activate when they see a specific feature at a given input position [22].

The following parameters mainly define convolutional layers:

• the filter/kernel - represented as m×n matrix
• the stride - defines how we slide the filter across
• zero-padding - adding zeroes on the input image border

2.1.2 Loss Functions

The loss or cost function is used to evaluate a candidate solution (the set of weights).
During training, the network iteratively adjusts its weights and biases to minimize the loss.
The choice of loss function depends on the type of problem being solved. Loss functions
include the L1 loss or MSE loss [16].

L1 loss, also called the mean absolute error, is calculated by taking the absolute differ-
ence between the predicted values and the true values. This is expressed in the following
equation:

𝐿1 =
∑︁
𝑖

|𝑦𝑖 − 𝑓(𝑥𝑖)|, (2.1)

where 𝑦𝑖 is the true value and 𝑓(𝑥𝑖) is the estimated value.
Unlike other loss functions, for instance, the mean squared error, L1 loss is more robust

to outliers in the data. This is because it penalizes outliers more heavily than small errors.
It is also computationally less expensive.

On the other hand, in Mean Squared Error loss, also known as L2 loss, the difference
between the predicted value and the actual value is squared. MSE loss is more stable
compared to L1 due to its continuous nature. Unfortunately, it is also more computationally
expensive. The formula for MSE loss is as follows:

𝑀𝑆𝐸 =
∑︁
𝑖

(𝑦𝑖 − 𝑓(𝑥𝑖))
2, (2.2)

where 𝑦𝑖 is the true value and 𝑓(𝑥𝑖) is the estimated value.
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2.2 Existing methods for music source separation

2.2.1 Demucs

Demucs is a waveform-to-waveform model for music source separation [5], which separates
audio into 4 distinct categories: vocals, bass, drums, and other. At the time of its creation,
there were models already using the waveform approach, such as Wave-U-net [31], but all of
them performed significantly worse than their spectrogram-based counterparts. However,
with proper data augmentation, Demucs was able to surpass all of the state-of-the-art
architectures available at the time.

2.2.1.1 Architecture

When designing the model, the authors were inspired by Conv-Tasnet, a model initially
developed for speech source separation [17]. Speech source separation is about separating
multiple speakers’ utterances from a mixture thereof. Compared to the music source sepa-
ration, speech separation only deals with monophonic audio, usually sampled at 8 kHz or
16 kHz. While the adapted Conv-Tasnet architecture in [5] achieved high accuracy, when
listening to the generated audio, listeners observed significant artifacts, mainly in drums
and bass sounds.

Therefore the Demucs’ authors had to make modifications. They chose a new model with
U-Net architecture as the basis. U-Net is a type of convolutional neural network initially
developed for biomedical image processing [26]. It modifies the fully convolutional network
so that it has fewer parameters and better segmentation. They do this by adding new
layers to the normal convolutional network, but the usual pooling operations are replaced
by upsampling. This way the resolution of output increases. The following convolutional
layer can even assemble a precise output.

Demucs makes several changes to the described U-Net architecture. First of all, the
U-Net architecture was initially developed for biomedical image processing, it has to be
adapted to work with sound waveforms.

One such model that uses the U-Net architecture is the Wave-U-Net [31]. This model
was developed for the task of music source separation, too. Moreover, it takes raw audio as
input, much like Demucs. Unfortunately, when it was submitted to the SiSEC campaign
2018 1, it performed poorly compared to its spectrogram counterparts, achieving an aver-
age SDR (explained in 3.1.1.4) of 3.17 dB as opposed to a score of 5.97 dB achieved by
MMDenseLSTM [32], the best-performing model of said campaign.

From the structure of Wave-U-Net Demucs retains its encoder/decoder architecture.
The complete structure can be seen in Figure 2.1. It consists of several main components:

• convolutional encoder
• bidirectional LSTM
• convolutional decoder

The encoder and decoder layers are linked with skip U-Net connections. Skip connec-
tions help deep neural models with degradation in performance as the depth of the model
increases [30]. In essence, they are shortcuts between some layers, feeding the output of
one layer into the input of another. In the U-Net architecture, they enable the network to
use the fine-grained details learned in the encoder to construct an image in the decoder.

1SiSEC campaign official website: https://sisec18.unmix.app/
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Figure 2.1: Demucs architecture [5]

In addition, the authors of Demucs drew inspiration from other fields, namely music note
synthesis [7]. In particular, the use of transposed convolution was motivated by advances
in this field. Moreover, experiments in this area of study have shown that using batch
normalization hurt performance.

Next, we take a closer look at the individual components of the architecture.

Encoder

A single encoder consists of 6 stacked convolutional blocks. As shown in Figure 2.2, each
block is made up of a one-dimensional convolution with a kernel of size 8 and stride 4,
connected to a ReLU activation function. Following that is a 1x1 convolution to make
the network deeper and more expressive at a low cost. Finally, the authors added a GLU
(gated linear units) [4] as an activation which resulted in a performance improvement. The
number of input channels is doubled with each block, starting at 2.

Bidirectional LSTM

Between the encoder and decoder layers lies the bidirectional LSTM (Long short-term
memory).

LSTM is a type of recurrent neural network first proposed in [13]. The main feature of
the network is its ability to hold information for future processing.

Bidirectional LSTM is an extension of the basic LSTM. One can imagine it as two
models, where one learns the normal input sequence and the second learns its reverse. The
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Figure 2.2: Demucs encoder in detail [5]

main advantage of this approach is that this way each component has information about
both the past and future. [40]

An example of the bidirectional LSTM is displayed in Figure 2.3.

Figure 2.3: Structure of bidirectional LSTM [40]

Decoder

The decoder, depicted in Figure 2.4, is for the most part a reverse of the encoder. It, too,
is comprised of 6 stacked layers. Each starts with a convolution with a kernel of size 3
and stride 1 intending to provide context about adjacent time steps. Next follows a ReLU
function. After that, a transposed convolution of size 8 and stride 4 is used.

Transposed convolution is different from deconvolution which simply reverses the oper-
ation. Generally, it is used for upsampling, meaning it generates output with more spatial
dimensions than its input [1]. Alternatively, to achieve upsampling of the signal, linear
interpolation could be used instead, which is what Wave-U-Net uses. However, it has the
disadvantage of not being able to generate high frequencies. Furthermore, for the same
upsampling factor, transposed convolutions require fewer operations and less memory.

Lastly, a ReLU activation function follows the transposed convolution, except for the
final decoder layer. That specific layer is linear as it directly produces all the output
channels, in the case of Demucs, 4 stereo waveforms representing separated vocals, bass,
drum, and other accompaniments.
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Figure 2.4: Demucs decoder in detail [5]

2.2.1.2 Training

Loss

As the reconstruction loss, the authors were deciding between the average absolute error
(denoted here as 𝐿1) and average mean squared error (denoted as 𝐿2) between waveforms.
The losses can be calculated with these equations:

𝐿1(𝑥̂𝑠, 𝑥𝑠) =
1

𝑇

𝑇∑︁
𝑡=1

|𝑥̂𝑠,𝑡 − 𝑥𝑠,𝑡|, (2.3)

𝐿2(𝑥̂𝑠, 𝑥𝑠) =
1

𝑇

𝑇∑︁
𝑡=1

(𝑥̂𝑠,𝑡 − 𝑥𝑠,𝑡)
2, (2.4)

where:

𝑥𝑠 = waveform containing 𝑇 samples representing source 𝑠
𝑥̂𝑠 = predicted waveform for 𝑥𝑠
𝑥𝑠,𝑡/𝑥̂𝑠,𝑡 = 𝑡-th sample of waveform

Both losses are viable for music source separation. For most of the experiments, the
Demucs’ authors used the 𝐿1 loss. Nevertheless, there were no noteworthy differences
between the 𝐿1 and 𝐿2 loss.

Weights initialization

The initialization of weights can be critical to the model’s performance. With the right
initialization, models can be trained even without batch normalization.

The conventional initialization technique for U-Net-style architectures is the Kaiming
(He) initialization introduced in [11]. This method takes into consideration the non-
linearities of the activation functions and should prevent the exponential growth of input
signal magnitudes.

However, the authors chose to instead employ a trick where they use specific learning
rates for each layer. Focusing on a single convolutional layer, we denote its weight as
they were first initialized as 𝑤. We compute 𝛼 = 𝑠𝑡𝑑(𝑤)/𝑎, where 𝑎 is the reference
scale empirically set to 0.1. The weights 𝑤 are then replaced by 𝑤′, which is defined as
𝑤′ = 𝑤/

√
𝛼. This approach leads to better convergence and faster decay of loss. [5]
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Training setup

Demucs was trained on the MusDB dataset(characterized in 3.2.1) as well as on an addi-
tional dataset, where they manually prepared 150 new songs. To provide better variety,
during training sources within one batch were shuffled, channels were randomly switched
and waveforms were randomly scaled.

The model was trained for a duration of 360 epochs or 240 epochs when using extra
data. Other used hyper-parameters were the batch size of 64 and the use of Adam optimizer
with a learning rate set to 3e-4.

2.2.1.3 Evaluation results

Demucs trained only on MusDB achieved an average SDR(described in 3.1.1.4) of 6.28 dB
across all sources and an SDR of 6.79 dB with the use of extra data. In both cases, Demucs
outperforms the best spectrogram-based method at the time, the D3Net [33]. Needless to
say, it surpasses the previous waveform-base method, the Wav-U-Net.

2.2.2 Hybrid Demucs

Hybrid Demucs, introduced in [6], is a hybrid source separation model, meaning it works
in waveform and spectrogram domains. At the time, it was the first model to use this
strategy. We describe it here because it is one of the popular state-of-the-art models. It
was the winner of the Music Demixing Challenge (MDX) 2021. Similarly to all the other
models, it also focuses on separating music tracks into four categories - vocals, bass, drums,
and the rest.

As could be derived from its name, it builds upon the Demucs [5] model from the same
author. It utilizes its strengths and fixes some of its shortcomings. Namely, while it sur-
passed state-of-the-art spectrogram methods at the time in terms of average SDR(3.1.1.4),
its performance when separating vocals and other accompaniments was slightly inferior.

2.2.2.1 Architecture

The model splits into two parallel branches. They are not entirely separate, as they share
some layers. Both employ the U-Net architecture, with one working in the time domain
and the second in the frequency domain.

The time domain branch works directly with sound waveforms and is virtually the
replica of the original Demucs (detailed in 2.2.1.1). The only significant change is the
replacement of all ReLU activation functions with Gaussian Error Linear Unit (GELU).
GELU, presented in [12], serves as regularization and activation. Experiments in natural
language processing showed it improves accuracy when tested against ReLU-only models.

The frequency, also called the spectral branch, first creates the spectrogram using the
Short-time Fourier transform (STFT). The spectrogram is a visual representation of the
spectrum of frequencies in time, typically portrayed as a heat map. It is calculated utilizing
the Discrete Fourier transform (DFT) of a small sliding window on the input waveform.
The window and hop length are chosen to match the temporal branch.

Convolutions are applied to reduce dimensions. Since the branch follows U-Net architec-
ture, there as several spectral encoders. After that, a shared layer sums up both inputs from
both branches. Following that is a decoder part with skip connections from corresponding
encoders.
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Next, the output of the frequency branch is transformed into a waveform using the
Inverse Short-time Fourier transform (ISTFT). Summing the outputs of both branches
yields the final prediction. The complete architecture can be seen in figure 2.5.

Figure 2.5: Hybrid Demucs architecture [6]

The benefit of this structure is that the model itself can choose which sound represen-
tation to use to separate each instrument. For instance, since Demucs performed best on
separating drums, Hybrid Demucs might prefer to use the time branch output as the final
prediction. On the other hand, separating other instruments was less successful for the
waveform model, therefore a spectral approach will be used here.

2.2.2.2 Training

As the model took part in the MDX challenge, it was trained primarily on the MusDB18-
HQ (described more in 3.2.1). A separate version of the model using extra training data
was also prepared and evaluated.

The model was implemented using mostly the PyTorch library for Python.
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To evaluate the model’s performance, a new version of the standard SDR metric was
used. This metric is described more in 3.1.1.5.

2.2.2.3 Evaluation

The version of the Hybrid Demucs trained only on MusDB18-HQ achieved an average SDR
of 7.33 dB, making it the winner of the MDX challenge. The model performed best on
drums and bass separation, with a score of 8.04 dB and 8.86 dB respectively, similar to
the original Demucs. For vocals and other instruments separation, it was inferior to the
KUIELAB-MDX-Net.

2.3 PyQt

PyQt2 is a set of bindings in Python for the Qt framework – a popular cross-platform GUI
toolkit written in C++. The Qt Group is currently developing Qt. It can run on numerous
software and hardware systems, including Windows, MacOS, Linux, or Android. PyQt is
capable of much more than GUI development. It also provides tools for, for instance, SQL
databases, network communication, graphics, and much more [37].

PyQt also comes with Qt Designer, designed to make the GUI layout much quicker
using the drag-and-drop mechanism. However, we did not use it as our application did not
have such a complex design that we could not program it ourselves manually.

GUI written in PyQt is event-driven. It either responds to events that the user gen-
erates, such as a click of a mouse or the press of a key on a keyboard, or an event the
system generates. The act of responding to these events is known as event handling. The
application begins listening for events when exec_() is called and does not stop until it
closes.

PyQt employs a signals and slots system [9] for communication between objects as an
alternative to the callback technique. A signal is an event that occurs, whereas slots are the
methods that are executed as a response to the signal. In other words, widgets send out
signals, and we collect and use them with slots to force the application to perform actions.
Widgets have predefined signals and slots, but we can also create custom signals.

For instance, let’s inspect the following code:

splitButton.clicked.connect(split_song)

When we push the button, the clicked() signal is emitted. We connect it to a callable
function split_song() that is executed after clicking the button.

In GUI applications attempting to perform long-running background tasks might cause
the application to freeze due to the event-based nature of PyQt. Events are placed into an
event queue and processed sequentially as they arrive. Calling exec_() by the QApplication
object starts the event loop on the so-called GUI thread. Anytime the application executes
code, the communication is frozen. With simple tasks, this freezing is imperceivable. How-
ever, the work must be done outside the GUI thread for more challenging tasks. Otherwise,
the application would appear unresponsive. [8]

One of the approaches for executing independent tasks is to use threads. This is because
threads share the memory space, unlike processes, which do not.

Running jobs in separate threads from the main GUI thread in PyQt can be done
through QRunnable and QThreadPool classes. QRunnable serves as a container for the code

2https://pypi.org/project/PyQt5/
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to perform. QThreadPool handles the execution of the QRunnable workers. Below is an
example of a worker:

class Worker(QRunnable):
def __init__(self):

super(Worker, self).__init__()

@pyqtslot()
def run(self):

# code to perform

To start the worker, we first acquire an instance of QThreadPool and call its start()
method with the worker as an argument:

threadpool = QThreadPool()
worker = Worker()
threadpool.start(worker)

The worker can be further improved to run the desired function with arguments or emit a
signal when it finishes.
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Chapter 3

Evaluation Metrics and Datasets

This chapter introduces several popular metrics used to evaluate music source separation
models. We divide these metrics into objective and subjective. Objective metrics include
the Source-to-Artifacts Ratio, Source-to-Interference Ratio, and Source-to-Distortion Ratio.

Next, we describe the existing datasets for this field of study and discuss their usefulness
for this thesis. Lastly, we explain the process of creating our custom dataset.

3.1 Evaluation Metrics
When it comes to evaluating the performance of music source separation models, there are
two main approaches [18]:

1. objective metrics
2. subjective metrics

While the objective approach relies on calculations comparing original stems (the ground
truth) to the model’s outputs, the subjective approach depends on a listening test by human
participants. Each method has its advantages and disadvantages. For example, while the
objective metrics are fast to calculate, the subjective ones take longer to prepare and are
more expensive. On the other hand, human listeners can compare models more accurately.

3.1.1 Objective metrics

The goal of music source separation is to separate the mixture 𝑠 into 𝐾 sources 𝑠1, ..., 𝑠𝐾 .
The estimate of source 𝑠𝑖, denoted as 𝑠𝑖, is made up of multiple components [18]:

ŝi = starget + einterf + enoise + eartif (3.1)

where:

starget = true source
einterf = interference error
enoise = noise error
eartif = artifacts error

The most widely used objective metrics include the Source-to-Artifacts Ratio (SAR),
Source-to-Interference Ration (SIR), and Source-to-Distortion Ratio (SDR). Python
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package museval 1 provides a reference implementation of these metrics. For the Music
Demixing (MDX) Challenge of 2021 2, the original SDR metric was altered.

3.1.1.1 Source-to-Artifacts Ratio

Source-to-Artifacts Ratio (SAR), described in [35], is:

SAR := 10 log10
||starget + einterf + enoise||2

||eartif ||2
. (3.2)

It stands for the amount of unwanted artifacts in the source estimate.

3.1.1.2 Source-to-Interference Ratio

Source-to-Interference Ration (SIR), introduced in [35], is computed as:

SIR := 10 log10
||starget||2

||einterf ||2
. (3.3)

It represents the ”bleed“, or the extent to which the other sources are audible.

3.1.1.3 Source Image to Spatial distortion Ratio

While the Image to Spatial Distortion Ratio (ISR) metric was initially introduced in image
restoration and super-resolution, it has also been used in music source separation to evaluate
the quality of separated audio signals. It is typically applied to the magnitude spectrograms
of the original and separated audio signals. The use of the ISR metric in music source
separation allows for a quantitative evaluation of the quality of the separated audio signals
in both the frequency and time domains [36].

It is calculated as:
ISR := 10 log10

||starget||2

||enoise||2
. (3.4)

3.1.1.4 Source-to-Distortion Ratio

Source-to-Distortion Ratio (SDR), which was defined in [35], is calculated as:

SDR := 10 log10
||starget||2

||einterf + enoise + eartif ||2
. (3.5)

It is the most widely used metric and is considered to be overall the best measure of
how good the separation is. The higher the SDR score, the better the model performs.

3.1.1.5 New Source-to-Distortion Ratio

The MDX introduced a new definition of SDR, denoted here as nSDR to distinguish it from
the original SDR metric, which is simpler and faster to evaluate [21]:

nSDR := 10 log10
||starget||2 + 𝜖

||starget − ŝ||2 + 𝜖
(3.6)

1Package website: https://github.com/sigsep/sigsep-mus-eval
2Official challenge website: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-

2021
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where 𝜖 is a small constant to avoid zero division.
In the MDX Challenge, the final value reported was the average nSDR across all test

songs.

3.1.2 Subjective metrics

For human evaluations, the Mean opinion score (MOS) is used. This numerical measure
is useful anywhere where human subjective experience is valuable [14]. Common domains
where it is used include video or audio quality evaluation.

As done for the Hybrid Demucs’ assessment [6], subjects were asked to assess several
samples on two main criteria:

• absence of artifacts,
• absence of bleeding.

Subjects evaluated each criterion on a scale from 1 to 5, with 1 meaning ”bad“ and 5
meaning ”excellent“. As individuals tend to avoid the lowest or best ratings, the range of
4.3 to 4.5 is considered an outstanding quality. The final score is the average.

3.2 Datasets

3.2.1 Existing datasets

There are several datasets available for music source separation systems. For this task, apart
from the original mixture, the dataset must contain isolated stems of different instruments
that make up the songs.

The most popular is MUSDB18 [24], which is also one of the benchmark datasets.3
This dataset provides 150 songs from different genres, which total to approximately 10
hours of music. These songs are already divided into train and test subsets. All tracks have
a sampling frequency of 44.1 kHz and are stereo. The entire dataset has only approximately
5.7GB because recordings are encoded in the Native Instruments stem format with .mp4
extension. These audio files are created with Stem Creator 4, which is a free tool used by
DJs and music producers for creating multi-track recordings.

Unfortunately, MUSDB18 only contains stems for vocals, drums, and bass. All the other
instruments, such as the guitar, are grouped, which makes this dataset itself unusable for
our purposes. However, since this dataset was used to train the original Demucs, we took
inspiration from its structure and tools used when creating our dataset which is further
explained in Section 3.2.3.

Another dataset rising in popularity is the MUSDB18-HQ [25]. It was created as
an alternative to the original MUSDB18 for models that work with broader ranges of
frequencies as it uses uncompressed audio format .wav. Other than a different file format,
it is virtually the same as MUSDB18. This dataset was used as the training dataset in the
Music Demixing (MDX) Challenge of 2021 organized by Sony. The state-of-the-art model
Hybrid Demucs [6], one of the models created as a response to this challenge, was trained
using this dataset.

3Leaderboard of models using this dataset can be found at https://paperswithcode.com/sota/music-
source-separation-on-musdb18

4Stem Creator official website: https://www.stems-music.com/stem-creator-tool/
6Source: https://sigsep.github.io/datasets/musdb.html
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Figure 3.1: Comparison of the audio frequency range of the MUSDB18 and MUSDB18-HQ
datasets.6

The Slakh2100 [19] dataset offers a much greater selection of songs, totaling over 145
hours of recordings spread over 2100 tracks. This is possible due to the MIDI nature of
instruments present in the dataset. While Slakh2100 contains individual guitar stems, it
instead lacks vocals. Again, this dataset is unsuitable for our purposes.

The MedleyDB [3] and its newer version MedleyDB 2.0 [2] provides exactly what we
need. They feature a wider selection of instruments, including several types of guitars, such
as clean electric sound, distorted, or acoustic. These datasets are available after submitting
a request. Together, they total 196 multi-tracks. Apart from the final mixtures of songs,
they contain both unedited raw recordings of instruments and edited stem tracks, where
multiple recordings of the same instruments are grouped.

Unlike other datasets, MedleyDB contains a much greater amount of annotations, for
instance, pitch and melody, and therefore can be used for a wider range of applications
than just music source separation.

One downside of the dataset is its size. The compressed archive of version 1 is 43,1
GB and newer version 2 is 44,3 GB. The reason behind these enormous sizes is the lossless
audio format that is used (.wav) and the fact that every song has generally more than 10
stem tracks and even more raw recordings. For models that require only the best audio
quality can be perceived as an advantage, but as we will not have such a requirement, it
made handling the dataset slightly problematic.

3.2.2 Creating dataset using existing models to separate songs

Music source separation models such as Wav-U-Net, Demucs, or Hybrid Demucs all focus
on separating audio into 4 categories: vocals, bass, drums, and other accompaniment. This
mirrors the structure of datasets they were trained on. Since this thesis aims to create
a model capable of separating into 5 categories, with the new category being the guitar
category, we cannot use the already established datasets like MUSDB18 or MUSD18-HQ.

Despite MedleyDB technically provides the necessary data to train a neural network,
the amount is not great enough. Deep neural networks require massive amounts of data to
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train properly. Only a small subset of songs in the dataset contains some type of guitar.
Other times, a song has a guitar part, but lacks, for instance, a vocal recording. Although
data augmentation such as multiplying source signals [31] might help with the issue, it
would still not be enough.

The vast majority of state-of-the-art models for music separation apart from the
MUSDB18 dataset use extra data for training. The original Demucs model creates its
private dataset from around 2000 songs from a variety of genres [5] which it then uses for
unsupervised learning.

At first, we intended to go a similar route, meaning the first step was to accumulate a
large number of recordings. Afterward, we would artificially create isolated stems by using
an existing model. At the time of writing, the model with the highest average SDR score
was Hybrid Demucs [6]. The main problem was that to create good guitar stems, no
other instruments apart from drums and bass could be present in the recording. To counter
this, we explored discographies of famous musical trios7, where members vast majority of
times only play those three instruments we seek. Even this does not completely eliminate
the previous issue, as in the studio bands tend to insert occasional flourishes on songs such
as small keyboard parts or similar.

After downloading the discographies of potential artists, it was necessary to manually
at least briefly listen to each of their songs and remove songs that contained unwanted
instruments. This proved a time-consuming activity that also required concentration. A
large portion of tracks was eliminated in the process.

The authors of Hybrid Demucs provided a Google Colab notebook8, where one can use
the model to separate their audio files. We took advantage of the possibility to mount your
own Google Drive to the Colab notebook by uploading the songs there. Separating even a
single album took a long time, but fortunately, it could be run in the background.

While to the human ear the drums and bass stems created by Hybrid Demucs seemed
almost real, the guitars seemed less so. Therefore we chose to abandon this approach as
there was still an unsolved issue of getting samples of other instruments of the network to
learn on.

Moreover, compared to the dataset we acquired using the next method (described in
Section 3.2.3), this dataset would have significantly less variance as a result of including
multiple songs by the same artist.

3.2.3 Creating dataset using remixes to build up a dataset

The other approach to creating a training dataset was to acquire a large amount of multi-
track recordings and then for each mixture reduce the number of tracks down to 5, namely
tracks containing only vocals, bass, drums, guitars, and lastly other accompaniments.

Collecting original mixtures of popular songs with individual stems for each instrument
present is hard to do without connections in the producing industry as these are not publicly
available. Fortunately, there exist sites where users post their recordings so that others may
try their hand at remixing.

The process of creating a single entry for the dataset included the following steps:

1. download an archive containing recordings
7Online article used as a source of inspiration for finding such bands at https://spinditty.com/genres/

Best-Rock-Trios-of-All-Time
8Available at https://colab.research.google.com/drive/1dC9nVxk3V_VPjUADsnFu8EiT-xnU1tGH?usp=

sharing
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2. determine which instrument is played in each stem
3. join together files that contain vocals/bass/drums/guitars/other into a single file for

each category
4. export all files to create the final mixture

At first, we downloaded all remix archives that listed that they contained guitar parts.
However, they often contained many individual recordings, generally more than 15, which
proved problematic. Furthermore, there was no way to automate determining which record-
ing contained which instruments as the filenames did not follow any naming system, and
no metadata were included.

Thankfully, we were able to later find remixes with a smaller number of stems and the
same file structure as follows:

• Bass (Mono).flac – bass recording
• Vocals.flac – recording of vocals
• Guitar.flac – guitar recording
• Cymbals.flac, Snare.flac, Kick (Mono).flac – recording of drums
• Keys.flac – keyboard or piano recording
• Backing.flac – rest of the song not covered in the above

The clear naming system makes it easy to determine which audio file represents which
instrument. If we were to disregard the Backing.flac, it would be possible to automate
the process of creating only a single file for each of our selected categories. In this case only
the separate recordings of individual drum components would have to be merged together.
Note that this way, the only instruments that would appear in the other category in our
dataset would be the keyboard and piano.

Having said that, we have decided to dismiss the option of automation and endure man-
ual labor to acquire a dataset better representing real music. The manual part is listening
to the Backing.flac track and determining what instruments it contains. Oftentimes gui-
tars as well as other instruments play in it. Based on which one prevails and whether
they overlap we remove one or the other. In addition, there is always a drum count-in in
this track that has to be removed. We use the Audacity®9 audio software for editing and
exporting the final audio.

An important decision before proceeding further was to choose the encoding format.
Different datasets use different audio formats. Both MedleyDB and MUSDB18-HQ
use lossless .wav. As we first attempt to adjust the original Demucs architecture to allow
the separating of the guitar, seemingly another option would be the .mp4 format used in
MusDB18. The advantage would be having one file for each song instead of 5 and possibly
using the authors’ data pipeline with minimal editing. However, unfortunately, the tool
authors’ of the mentioned dataset, the Stem Creator, allow importing of only five tracks in
total – drums, bass, synth, vox, and master file. This means we would be short one track
for the guitar. Therefore, we had to dismiss this encoding option completely.

Nevertheless, apart from creating the neural network model, this thesis aims to use it
in a practical application where users will upload files to separate them. In this scenario,
regular users are likelier to use the .mp3, a popular lossy compression format [28]. Therefore,

9Audacity is available at: https://www.audacityteam.org/
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converting the .mp3 back to .wav that existing models use would add additional delay for
users.

For that reason, we decided to use .mp3 with the highest bitrate of 320 kbps and a
sampling rate of 44100 Hz, forcing all tracks to stereo. Also, we tried to adapt the naming
structure of MUSDB18-HQ, the dataset Hybrid Demucs uses for training to be able to use
parts of its data pipeline. Thus the final dataset has the following folder structure:

remix_dataset

train

artist-title

bass.mp3

drums.mp3

guitars.mp3

mixture.mp3

vocals.mp3

other.mp3

valid

test

To increase the variety we chose to include only a single song from one artist in the
dataset. This way we would get a wider representation of possible sounds since interprets
often have similar distinct sound across multiple songs.

The final training dataset created from remixes has a size of 6.2 GB, contains 101 songs,
and a total of 7h 13m 5s of recordings.

3.2.4 Additional datasets used

Despite the fact that MedleyDB and MedleyDB 2.0 by themselves do not provide
enough data to train a complicated neural network, we used them as additional datasets
to enhance the training and provide variety. Both datasets had had to be first filtered by
removing all entries not containing guitars. After some contemplation, we decided to keep
even those mixtures that did not have the other components.

After the cleanup, out of the original 122 songs from MedleyDB remained 36 met our
needs, and from MedleyDB 2.0 we kept 17. Altogether, this additional dataset provided 3h
18m 32s of data, with 2h 6m 14s being from the original MedleyDB and 1h 12m 18s being
from MedleyDB 2.0.
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Chapter 4

Design and implementation of
neural network model

This chapter describes our choice of architecture for the neural network and the necessary
changes needed to adapt it to our specific task. We also focused on the training process,
which was done in MetaCentrum.

4.1 Design
We chose to take an existing model for music source separation as a basis and modify it to
fit our purpose and data. Such a model had to fulfill several criteria. First of all, the model
must have publicly available code with a license permitting us to use it in our project.
Secondly, it needed to have satisfactory results on benchmark datasets. Additionally, it
had to be relatively new, but not so brand new that it would not be used much. Lastly, we
had to consider the effort it takes to train and apply in an application.

After much consideration, we chose two models: Demucs and Hybrid Demucs. Demucs,
at the time of its creation, presented a significant breakthrough in the field. Although it is
from 2019 and there are now better-performing models, Demucs is still used to this day. It
is relatively straightforward and well-documented, making it an ideal starting point.

We initially chose Hybrid Demucs as the next model mainly because it was built upon
Demucs and was designed by the same author. Additionally, we considered experimenting
with Hybrid Transformer Demucs [27], a new iteration of Demucs that introduces a trans-
former [34] encoder block into the architecture. However, we decided against using both
due to the time constraints and computational cost in the case of the Hybrid Transformer
Demucs.

The first thing that needs addressing when modifying these existing models is the data
pipeline. Both models expect specific file structures of their training data. When creating
the dataset of remixes we opted for a file structure resembling that of Hybrid Demucs.
Thanks to this we will only have to slightly adjust its pipeline.

Besides that, the structure of some layers of the neural network will have to be altered.
Namely, the output layer will have to reflect the addition of another track to separate.
Dimensions and parameters of other layers, for instance, the convolutional layers of encoder
and decoder blocks, will be changed if experiments reveal improvement in accuracy.
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4.2 Implementation
This section discusses the implementation details of the neural network model for music
source separation.

4.2.1 Used technologies

4.2.1.1 PyTorch

PyTorch is a machine learning framework developed by Meta AI [23]. It is based on
Python programming language and Torch library which is written in Lua. Presently, it is
ranked among the most popular machine learning frameworks due to its ease of use and
flexibility.

The main features of PyTorch are its tensor computations, GPU acceleration support,
and automatic differentiation when creating neural networks.

4.2.1.2 Torchaudio

Another crucial tool when developing the music separation model was Torchaudio. Tor-
chaudio is a library for audio and signal processing [39]. It is designed to work with the
PyTorch framework. Apart from simply supporting the use of audio, it also provides tools
for transformation, augmentation, or feature extraction from audio data.

4.2.1.3 Hydra

Hydra [38] is an open-source Python framework developed by Meta. It allows users to
create a hierarchical configuration and even override it with additional configuration files
or command line arguments [29].

Traditionally, Python parses arguments using the argparse library. When used in deep
learning applications where all hyperparameters are passed this way, the code can soon
become difficult to change. The advantage of Hydra is that one can edit parameters and
constants without touching the code, leading to increased reproducibility.

The configuration file has the .yaml extension. Its location and name are defined in
code with annotation typically above the main function. It is important to note that using
Hydra changes the current working directory.

4.2.2 Neural network

As a basis for implementation, we took the code for Hybrid Demucs1, which is written
in Python and uses the PyTorch framework. The original Demucs code2 used the clas-
sic Python library argparse to deal with command line arguments setting various model
properties for different runs. The Hybrid Demucs changed this as it instead uses configu-
ration files processed by the Hydra library. It also allows us to switch between the Demucs
architecture and Hybrid Demucs easily.

This makes it easy to switch between the Demucs or Hybrid Demucs, as the model is
chosen based on the variable model in the configuration file config.yaml. Furthermore, all
model hyperparameters, such as depth or kernel size, are defined therein. Before proceeding

1Code for Hybrid Demucs is available at https://github.com/facebookresearch/demucs/tree/v3
2Code for Demucs is available at https://github.com/facebookresearch/demucs/tree/v2
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further, we changed the dataset location and names of output sources to include the guitar
track.

The first major hurdle when adapting the model appeared when we tried loading the
remix dataset using torchaudio.load(). The newer versions removed the support for
loading mp3 files. So the solution was to limit the version of torchaudio to 0.11.0 and the
PyTorch framework to 1.11.0. Thanks to this, we could use the code to create custom
dataloader in mp3.py.

Original Hybrid Demucs evaluates the model on the test dataset at the end of each train-
ing session. We removed this feature because we intended only to evaluate the final models
once. To do this, we removed a portion of the code in function train() in solver.py.

The code for the evaluation on the test dataset is inside the evaluate.py file. Initially,
the dataset was loaded using the musdb library instead of fetching the files from storage.
We iterate through the test directory and manually load the audio files for the mixture and
individual sources.

Because we execute the evaluation with only a single worker thread, testing on songs
longer the approximately 30 seconds caused the program to crash. We solve this by split-
ting the estimates acquired from apply_model() and ground truth references into smaller
segments. We can do this since models in music separation report the average metric value
across all songs. However, this might negatively impact the score as the model has less
context with shorter recordings.

We calculate the number of segments to split each track as follows:

number of segments = total length/framerate/desired segment length + 1 (4.1)

Specific segments that contain only silence are removed from the evaluation as this
would negatively affect the score. We use the try-except structure to catch those segments.

4.2.3 Training environment

MetaCentrum VO is a virtual organization available to researchers and students of aca-
demic and scientific institutions in the Czech Republic [20]. This organization allows using
its computational and storage resources for computations that would be otherwise too de-
manding when performed locally. To become a member, it is first necessary to submit the
application form and await the results.

MetaCentrum offers resources for grid computing, with a grid representing a network
of interconnected computers with different properties such as RAM, CPU, or GPU. Batch
jobs system PBS 3 tracks the grid’s resources and organizes the computational jobs into
queues until there are enough resources for execution. First, users prepare and submit their
jobs on frontends. Then, the computations themselves are performed on computational
nodes.

To access the grid, the user has to log into one of the frontends4. Users prepare and
submit their jobs there. However, frontends are not meant for the execution of resources-
intensive computations. Instead, those should be handled on one of the computational
nodes.

Submitted jobs fall into two categories: batch jobs and interactive jobs. Batch jobs
execute commands from a batch script prepared in advance. Alternatively, the interactive

3Scheduling system used is more described at: https://wiki.metacentrum.cz/wiki/
About_scheduling_system

4List of all available frontends is at https://wiki.metacentrum.cz/wiki/Frontend
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job allows users to run commands manually in real time instead of reading them from a
script. This allows greater flexibility in handling errors. Interactive jobs are better suited
for small tests or environment setups. It ends when the user logs out of the assigned
computational node or the requested resources, such as the wall time, have been used up.

We need specific versions of certain libraries to train our version of Demucs for guitar
sound separation. Most notably, the PyTorch framework requires versions older than 1.11.0
due to removed support for loading .mp3 files. Torchaudio library needs version 0.11.0 at
the newest for the same reason. Usually, MetaCentrum users can load PyTorch in their
jobs through the command module load pytorch. However, this version is not compatible
with our neural network.

Therefore, we use the Anaconda 5 instead to install our preferred versions of libraries.
After loading the Anaconda module, we create a new ”conda“ environment. Due to space
quotas on MetaCentrum, we save this environment into our home directory. With the

”conda“ environment activated, we first install PyTorch, torchaudio, and the appropriate
cuda toolkit. The rest of the libraries needed for training are installed through pip, as some
of them, such as Dora-search, are unavailable through Anaconda. Thus, the whole setup is
best done using an interactive job to verify the installation’s success. Listing 4.1 contains
the exact setup script.

cd $HOME_DIR
module load anaconda3-2019.10
conda create --prefix=$CONDA_ENV_NAME
source activate $HOME_DIR/$CONDA_ENV_NAME
conda install pytorch==1.10.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt --no-cache-dir

Listing 4.1: Metacentrum environment setup script

The training was done on GPU nodes to speed up the training. Users can reserve such
nodes using the -q GPU option and specify the required GPUs with ngpus=X. However,
jobs on GPU nodes can run for a maximum of 24 hours. This means the model cannot be
trained during a single run and must be trained across multiple sessions.

Some GPU nodes, such as the Konos, could not train our models due to their GPU
memory size. The final models trained on either the full remix dataset, Medley dataset, or
their combination were trained almost exclusively on Adan and Galdor machines. These
machines have the following properties:

• Adan – 32 × CPU, 2 × GPU nVidia Tesla T4 16GB, 192 GB RAM
• Galdor – 64 × CPU, 4 × nVidia A40 48GB, 512 GB RAM

When initially training on other nodes, frequently, the program would end with a run-
time error reporting that CUDA ran out of memory while trying to load the model. Specific
steps could be taken to solve this problem, such as reducing the batch size, clearing the
PyTorch cache, or lowering the number of channels produced by the convolutional layers
and the depth of the model representing the number of recurrent layers.

However, lowering the batch size increases the training time, and we risk failing to
complete even a single epoch before the allocated time is up. Also, while lowering model
complexity reduces memory requirements, the model, at some point it is not able to learn
correctly. Therefore it is necessary to reach some compromise.

5Anaconda’s official website: https://www.anaconda.com/
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Most of the time, we trained only using a single GPU. While using multiple GPUs can
speed up training when appropriately utilized, jobs with multiple GPUs take longer to get
assigned computational nodes. If we did not care which hardware executes the job, it would
not be problematic to wait a few hours to begin execution. However, limited to only two
viable machines in the cluster, we would have to manually search through all nodes and
select only one at a time to execute the job. Otherwise, we could be assigned a node with
insufficient GPU memory. We still do this when training the final models on a single GPU,
but the probability of finding a viable node with free resources is much higher.

To train the model, we prepared the bash script 4.2:

#PBS -l select=1:ncpus=4:mem=32gb:scratch_local=20gb:ngpus=1
#PBS -l vnode=$NODE_NAME
#PBS -q gpu
#PBS -l walltime=24:00:00
#PBS -N $JOB_NAME
#PBS -m abe
module load anaconda3-2019.10
module load ffmpeg
cd $HOME_DIR
source activate $HOME_DIR/$CONDA_ENV_NAME
dora -P demucs run [config overrides]

Listing 4.2: Metacentrum training script

We requested 4 CPUs, 32GB of CPU RAM, and a single GPU in the script. Variable
$NODE_NAME represents the exact name of the chosen node on which to run the job. Option
-m allows users to receive updates about job status through email. After activating the
prepared Anaconda environment, the training is initiated with the command dora run.
We specify the location of the neural network’s code with the switch -P. We can also run
a model with different hyperparameters without changing the configuration file. When
training a new model, we must specify this by adding –clear to the command. We can
override the configuration property continue_from to load and prepare a specific model
on any subsequent run.

4.2.4 Exporting model and track separation

To use a trained model to separate a song into individual instruments, it needs to be first
exported. For this, we use the existing script exportModel.py. By default, after training,
we save the models in $HOME_DIR/demucs/outputs/xps, each in its folder named after their
signature. The model’s signature is printed out at the start of each training session. The
saved trained model can be exported by running the command:

python exportModel.py $SIGNATURE [-o path_where_to_store]

This saves the models in a single .th file, which can be more easily loaded. To finally
use the model for splitting music, we modified the script separatedTracks.py, namely
removing unnecessary assertions. Then, we execute it in the following manner:

python separateTracks.py $MP3_LOCATION -n $SIGNATURE --mp3 -d cpu/cuda

By default, results from separation will appear in folder separated/$SIGNATURE/track_name.
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Chapter 5

Design and implementation of a
practical application

Many people pick up musical instruments, for example, the guitar, to learn their favorite
songs. Plenty of instructional videos or tablature exist for popular songs – a musical
notation used by guitarists. Unfortunately, there is no such option for the less popular
music. Instead, the aspiring musicians have to figure out how the song is played on their
own.

This process is called transcribing, and it is an essential skill for a musician to have. It
trains ears to listen and analyze recordings 1. However, especially at the beginning, it can
be challenging.

A beginner’s ears might still need to be more accustomed to active listening and ana-
lyzing music. In addition to that, they have to filter out other instruments in the song to
focus only on a single one they are trying to transcribe.

Part of this thesis was to create an application that would separate guitar sounds from
recordings. The application integrates the neural networks described in Chapter 4. It is an
educational tool for musicians, especially beginner to intermediate guitarists. By splitting
the recording into individual tracks, the user can listen to isolated instruments. Listening
to solo instruments should make it easier to transcribe the desired songs.

5.1 Initial design
When considering the potential design of the application, the main criterion was the ease
of use. The application should be intuitive and without distractions. It would function as
a music player with the additional option to separate songs. For inspiration, we explored
existing music players and editors. Ultimately we chose to base our program on the Audacity
audio software 2.

Audacity is a multi-platform open-source audio editor and recording software. Initially
released in 2000, it remains among the most popular free audio programs. It supports a
variety of post-processing effects for audio tracks. A notable visual feature we would like
to imitate is the vertically organized tracks with a waveform graphs of the audio signals.
Figure 5.1 shows the user interface of the Audacity audio software.

1More about transcribing music: https://www.leanmusician.com/post/transcribing-music
2Official website of Audacity: https://www.audacityteam.org/
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Figure 5.1: Audacity audio software

We created the initial design using Figma. Figma3 is a tool for graphical design estab-
lished in 2016. With more than 4 million users, it is well-known tool designers use for tasks
such as brainstorming, creating prototypes, or even project management. It has a free plan
or several paid options. For this thesis, the free tier was more than enough.

Figures 5.2 and 5.3 show the application interface design before and after the neural
network splits the song into components. The program should provide functionality ex-
pected from a music player, including opening and playing audio files, adjusting the overall
volume, or jumping to a specific position in a song. Functionality related to an audio
separator includes an easily visible option to split songs into individual instruments.

In this design prototype, the intention was to always split the mixture into all five tracks
– the bass, drums, guitars, vocals, and accompaniment. However, user tests showed that
users would welcome the ability to choose which separated instruments to display. For
example, a guitarist attempting to transcribe a song only cares about the guitar sounds.
We have taken into account this suggestion during the implementation.

Each track is labeled according to the instrument played, and the final product should
display the waveform graph of its soundwave. There is a button to mute each track to allow
users to listen to isolated tracks. In the prototype, we also intended to allow adjusting the
volume of individual tracks but did not implement this feature for reasons described in
the next section. As shown in Figure 5.3, we can visually distinguish the currently muted
tracks from the active ones.

3Official website of Figma: https://www.figma.com/
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Figure 5.2: Design of application – before the song is split into individual instruments

5.2 Implementation
Upon launching the application, users are welcomed by the mostly empty screen, as showed
in Figure 5.4. The toolbar is disabled at first. Therefore, the only possible actions are to
load an audio file, adjust settings, or quit the application.

We organized the code for the application into separate .py files based on different
aspects that make up the graphical interface. For instance, the class Toolbar, responsible
for the display and functionality of the bar containing standard options related to playing
music, is located in the file toolbar.py. Similarly, classes for the main window, or timeline
displaying a song’s current and total time, are placed in their separate files.

The application uses the neural network described in Chapter 4 to separate audio files
into individual instruments. All source code files must be present in the directory with ap-
plication implementation for the trained model to work. In addition, of course, all exported
models we want to use must also be present. We can change their location in the settings
dialog.

Settings

We implemented the settings menu as a custom dialog class SettingsDialog that inherits
from QDialog class. QDialog is a widget appearing in front of the rest of the windows, and
its job is to collect responses from the user. During initialization, the settings dialog loads
the separation_config.json file and sets the default setting values accordingly. When
settings are modified, current setting values related to audio separation are converted into
a dictionary saved to the same json file. These settings include:
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Figure 5.3: Design of application – after the song is split into individual instruments

1. Users can, as previously mentioned, choose a directory for the exported models.
2. We can edit the specific model signature to use in the application.
3. Users can switch between running the neural network on the CPU or GPU.

For this, we employ the QComboBox object, which shows the items added to it in a
dropdown form. After clicking the OK button, the new settings are gathered from their
respective forms and written back into the same .json configuration file. At the start of
the separation process, we reread this file.

Opening file and loading song

Before the user can use the application as a music player or a learning tool, they must open
an audio file by selecting the desired song in a standard file dialog. The option to choose
a file is in the traditional menu bar. The application’s main window, an instance of the
QMainWindow class, provides an empty QMenuBar object that can be filled by whatever we
choose and is accessible through .menuBar(). The action to open the file dialog connects
to the menu bar. The advantage of using QAction class is that the command performs the
same way regardless of whether the menu or a keyboard invokes it.

Triggering the open action runs the choose_file() method inside the main window.
First, a QFileDialog, a file selection widget, is created. The application only supports
loading .mp3 audio files, the network’s input. Selecting a file from the file dialog returns its
absolute path, which must be first convert to a QUrl object before passing it to the media
player. Figure 5.5 shows the application after a file is opened.

The core functionality the application needs to satisfy for practical use is playing audio.
PyQt5 achieves this using the QMediaPlayer class that allows playing various media types.
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Figure 5.4: Application after launch

Unfortunately, the media player can only play a single file at a time, which poses a significant
obstacle after artificial intelligence separates a song. In addition, we want to mute or unmute
certain tracks.

We employ the PyDub library which focuses on audio manipulation to solve this is-
sue. When the neural network splits the song, we save the individual tracks produced by
the Demucs model into a temporary directory initialized at program start-up using the
tempfile module. Then, all separated tracks are overlayed, and the resulting mix is saved
back into the temporary folder and fed into the media player. The user no longer listens
to the original song, even when no tracks are muted. Instead, they listen to a sum of all
sources. We do this because we assume that when the user splits a song, they do this to
focus on only some aspects of the song, for instance, the bass.

After the player loads a song, a few more tasks must be completed before the user can
finally listen. Firstly, we generate a waveform plot of the audio signal using matplotlib.
After that, we only show the signal by turning off all axes and reducing the margins and
paddings. Unfortunately, due to using a tight layout while saving the figure, we cannot
directly save the graph with exactly specified dimensions. Because of this, we need to resize
the image to the desired size using the resize() function from the PIL library.

The background image on the progress bar widget can be set using setStylesheet() to
display a specific image, in our case, the generated waveform plot. The background image
location is specified in the CSS format. Unfortunately, the image does not automatically
resize to the widget, as could be done in CSS. For this reason, we need to resize the graphs
manually.

The final graph is set as a progress bar’s background inside our custom Track widget.
The Track class implemented in track.py is responsible mainly for visualizing the position
in played audio. It does this by showing the above graph and filling the progress bar with a
semi-transparent color as the song keeps playing. The Track widget contains an info panel
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Figure 5.5: Application after opening an audio file

with the track name and mute button, and next to it, a progress bar. It uses a horizontal
layout to separate the info panel from the progress bar. The info panel is a frame with
a vertical layout because we wanted to include a mute track button at the bottom. This
button is not present in the initial mixture the user loads, only in the separated tracks.

Playing song

The Timeline widget below the toolbar must update the total duration after the media
player loads a song. It does this by accessing the duration property, which returns the time
in milliseconds.

Users can toggle between playing a song and stopping it by clicking a button on the
toolbar or pressing the space key. Both trigger the function play_pause_song(). The
function changes the button’s icon to reflect the current state and either pause the song
using pause() or starts it up again with the play() method implemented in QMediaPlayer.

When the song is playing, it periodically triggers the signal positionChanged. This
signal is connected to changing the timeline widget’s current time and moving the progress
bar in the Track widgets. We set the bar’s range to the song’s duration in milliseconds.
Every time player’s positionChanged signal is triggered, the progress bar’s value property
changes to reflect the player’s position. This change has the effect that the overlay on the
waveform graph accurately shows for how long the song has been playing.

Pressing the left or right arrows will rewind or forward the song by 5 seconds. We
override the main window’s keyReleaseEvent triggered on any key release to implement
this feature. First, we acquire the pressed key from the event.key() and compare it to an
array of keys. Then, we simply deduct an appropriate amount from the player’s current
position to rewind the song. Similarly, we implement the forwarding, except we add the
amount.
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Another standard features in the toolbar of a music player are the buttons to jump to
the beginning or end of a song. The player position is set to 0 to move the song to start.
Setting the player’s position to duration will move a song to the end. Additionally, the user
can choose the exact moment in the song where to jump to by clicking on the graph.

To achieve this, we created a custom ProgressBar class inheriting from the QProgressBar
and overriding the mousePressEvent. Next, we acquire the x coordinate relative to the
clicked widget from event.x() and convert it to a percentage by dividing it by the wid-
get’s width. Lastly, the main window moves the song to position according to the calculated
percentage.

Separating song into components

The feature to split audio into individual components sets this program apart from regular
music players. The split button is connected to the function split_song() by the signal
clicked. Based on the feedback from initial testing, we added a special dialog to choose
which instruments to keep as individual tracks while the rest would be combined into a
single ’other’ track. The SplitInputDialog indicates this with checkboxes, as is shown in
Figure 5.6. It returns the selection as a dictionary of track names with the corresponding
checkbox’s state. Later we use this dictionary after the separation process is complete.

Figure 5.6: Dialog for the split selection and a warning dialog

We use multithreading, as described in Section 2.3, to prevent the application from
becoming unresponsive and crashing during separation because it is a long-running task
that blocks other events. A popup warning dialog warns the user that they might wait a
while, depending on the song’s length. However, they may still use the application to play
music until the process finishes, which would not be possible without multithreading.

We task a worker with executing the function split_song_thread(). First, we call a
slightly modified function separate_track() from the original Demucs source code inside.
Results from separation are saved to the temporary folder. Settings used during the process
are from the previously mentioned json configuration file. The thread then generates graphs
for newly created tracks. Finally, the tracks not chosen during split selection are overlayed
together along with the default ’other’ output representing the rest of the components apart
from the four main ones – the bass, drums, vocals, and guitars.

After the thread finishes the separation, it signals the worker to execute the method
where we stop the audio, and the player’s media content changes. This action triggers
the timeline to change. The Track widget for the original loaded mixture is replaced with
multiple new widgets for chosen separated tracks, as shown in Figure 5.7.
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Figure 5.7: Application after separation and with muted tracks

Status bar

We added a simple status bar to the bottom of the screen that was not present in the
original Figma design. We added it after the feedback from a tester who mentioned he would
appreciate something to inform him of progress while waiting for separation to complete.
It is implemented as a singular label that changes text during certain events. For example,
the user is informed while the separation is in progress or when the waveform plots are
generated, as those are the two most time-consuming tasks. The status bar is shown in
Figure 5.5 at the bottom, informing the user that the song is paused.

Muting tracks

Another important feature is the ability to mute individual tracks until only one plays.
Clicking the mute button on the selected track triggers the toggle_track() function. The
status bar informs the user of what is happening. We temporarily block signals to the
media player to prevent the sudden disappearance and reappearance of the progress bar
that would otherwise occur due to incoming signals notifying the Track widget of a change
in audio position when the media is swapped. The selected track is either added to or
removed from the array containing all active tracks. Newly active tracks are overlayed
together using the PyDub library, as was already described.

We visually darken a muted track to further indicate whether a track is active. For
this purpose, we created a custom Overlay widget filled with semi-transparent color. Each
Track is assigned its Overlay with the same dimensions and hides until the track is muted.
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Exporting audio

The user can export the mix of active tracks using the Export action inside the main menu.
We already saved the mixture in the temporary folder as mixed.mp3. So we simply copy it
to a new location chosen through the file dialog.
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Chapter 6

Evaluation

This chapter presents experiments testing various neural network structures on a partial
dataset. Next, we introduce several trained models using complete datasets and evaluate
them using objective and subjective methods. Then, we present results obtained through
a questionnaire filled in by human respondents that tested our implemented application.
Lastly, we discuss the limitations of both the trained neural networks and the application
and propose possible plans for future development.

6.1 Neural network

6.1.1 Experimental setup

During the training, we used the Adam optimizer with a learning rate of 0.0003, a decay
rate for the momentum term of 0.9, and a decay rate for the velocity term of 0.999. In
addition, weight decay is set to 0. Batch size varied from 8 to 32 max, depending on the
computational node used. The number of epochs done in a single training session also
varied based on the number of CPUs requested. We do not modify the original network
structure apart from changing the number of channels output by the convolutional layers,
the number of recurrent layers, and the length of the input segment.

The models were trained on one of the three datasets: Remix dataset only, MedleyDB
dataset only, or a combination of the two datasets. The Remix dataset consisted of 101
songs which totaled 7h 13m 5s of audio. MedleyDB comprised 53 examples with a total
length of 3h 18m 32s. The combined dataset had 154 training songs and a length of 10h
31m 37s.

All models shared the same validation dataset, created by randomly selecting songs
from the original Remix dataset. It contains 14 samples, up to 1h 3m 31s of audio. The
test dataset used for the final objective evaluation was likewise created from the Remix
dataset. Similarly, it had 14 samples and a length of 1h 9m 56s. We ensured that samples
from the validation and test dataset did not appear in the training dataset.

6.1.2 Experiments with the neural network on a smaller dataset

We performed several different experiments with neural networks to determine the best
hyperparameters. In these experiments, we examined the effects of, among others, batch
size, loss function, or model depth. We used a smaller dataset to acquire results quickly.
This smaller dataset was a subset of the regular remixes dataset from which we randomly
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Table 6.1: Comparison of parameters and results of experiments on a partial dataset.

Experiment # Input segment [s] Channels Depth Loss Valid loss nSDR [dB]
1 6 24 6 L1 0.1647 -1.157
2 6 24 6 MSE 0.5873 -3.308
3 4 24 6 L1 0.1684 -1.664
4 4 4 2 L1 0.2040 -3.765

selected approximately 20% of training examples. The partial dataset for experiments had
20 training tracks and four validation songs. For all experiments, we only used the original
Demucs architecture.

Experiments 1 and 2 studied the effects of changing a loss function, specifically L1 loss
and the MSE loss, respectively. In both experiments, we reduced the number of channels
the convolutional layers output and the number of recurrent layers, signifying the model’s
depth, to even load the model. We ran experiment 1 for 32 epochs and experiment 2 for 23
epochs as we reached a clear conclusion based on the achieved nSDR score.

Since we used various loss functions, we cannot look at the loss to determine which
experiment performed better. However, a quick look at the SDR metric during validation
shows that the neural network configuration used in experiment 1 performs better than the
one in experiment 2. Experiment 2 achieved the best nSDR of -3.308 dB, while experiment
1 scored an nSDR of -1.157 dB (which can be seen in Table 6.1), possibly even better if
we continued training. As a result, we trained all future models using L1 loss exclusively.

Experiment 3 investigated the effect of changing the input segment length. The rest
of the model parameters remained the same as in experiment 1. Herefore, we could only
experiment with reducing the segment length, as increasing the segment length above 6
seconds always resulted in a memory error. We trained this model for 28 epochs before we
concluded that it performed worse than the model from experiment 1.

As we trained this model for approximately the same number of epochs as in experiment
1, we can compare the achieved nSDR scores. The best score from this experiment with
an input length of 4 seconds was -1.664 dB, as is shown in Table 6.1. We conclude that
shortening the input segment length adversely affects model performance.

Experiment 4 studied a very shallow version of the Demucs architecture and whether
it could learn anything. We took the model hyperparameters from an example Makefile
from the official repository1. This model was trained for 36 epochs before we determined
it could only learn a little. The best nSDR score it attained was -3.765 dB (as is shown
in Table 6.1).

Table 6.1 summarizes the model parameters for each experiment. Apart from the pa-
rameters, we also include the best-achieved loss scores and nSDR scores.

6.1.3 Models trained with complete datasets

After initial experiments with model architecture and hyperparameters, we trained models
on more extensive datasets. Finally, we will use the best-performing model in a practical
desktop application.

1Available at https://github.com/facebookresearch/demucs/blob/main/Makefile
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Firstly, we trained three models with the same architecture using different training
datasets. The first model utilized the full remix dataset instead of the small subset used in
the previous experiments. The next model relied only on the MedleyDB dataset. Lastly,
the final model used a combination of those two datasets. However, all the models share
the validation dataset.

Compared to the previous experiments, these models were shallower. Therefore, the
models’ channels and depth were reduced to half to speed up training - reducing the channels
to 12 from the initial 24 and depth to 3 instead of 6. Also, we wanted to see if an increased
training dataset would even out the loss in model complexity. Furthermore, when we
initially trained at Metacentrum using only a single GPU and CPU, more complex models
could not finish even a single epoch. However, we could later train two deeper models
thanks to increasing the number of CPUs used to help with mainly data loading.

We trained all three shallow models for a total of 70 epochs to be able to compare results
more accurately. First, we present figures showing training and validation loss evolution
and the nSDR metric computed during validation for each model. We especially highlight
the boundary of 0 dB as the ratio between noise and actual signal in produced result shifts
to contain more signal than the noise.

Figure 6.1 corresponds to the first model trained only on the remix dataset. Next,
Figure 6.2 shows the model using only MedleyDB. Lastly, Figure 6.3 displays the model
using a combination of datasets.

Figure 6.1: Loss and nSDR evolution for the Remix (12 channels, 3 depth) model.

Without any surprise, the model trained on the most extensive dataset achieved the
best results out of the three, earning the best nSDR score on the validation dataset of
0.566 dB. On the other hand, the MedleyDB model could not surpass the model using our
remix dataset with the best nSDR of 0.035 dB, most probably due to this dataset being
shorter in total duration. The model trained on the remix dataset could, at best, achieve
an nSDR of 0.224 dB. The results are shown in Table 6.2. We selected the checkpoint
during the last training session for the evaluation that yielded the best nSDR.

We must point out that none of these models achieve satisfactory performance judging
from the SDR metric and are unsuitable for our desktop application. Because of that, we
decided to train additional models.

Those deeper models using the combined dataset yield the best results. The first addi-
tional model doubled in size compared to previously trained ones. With 24 channels and a
depth of 6, it copied the structure of experiment 1, the only difference being the size of the
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Figure 6.2: Loss and nSDR evolution for the Medley (12 channels, 3 depth) model.

Figure 6.3: Loss and nSDR evolution for the Remix + Medley (12 channels, 3 depth) model.

training dataset. The second model had even more channels, a total of 28. Unfortunately,
we could not further increase complexity, as this caused training models to run out of GPU
memory after each epoch.

Figures 6.4 and 6.5 present the evolution of loss and nSDR during the training these two
models, respectively. We did not limit ourselves to a specific number of epochs; instead, we
trained models for as long as possible – both models were trained for 81 epochs.

From the very beginning, both models surpassed the previously trained models and
quickly rose above the negative nSDR, something the shallower models could do only after
tens of epochs. Figure 6.6 compares the validation loss across all models trained on the
full dataset and Figure 6.7 the nSDR metric. Without any doubt, both 24-channel and
28-channel models performed significantly better. Examining these two more closely, we
could argue that the 24-channel model slightly exceeds the 28-channel. It may be because
this model requires even more data to learn correctly.

Table 6.2 describes the model parameters and the best-achieved validation loss and
SDR.
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Figure 6.4: Loss and nSDR evolution for the Remix + Medley (24 channels, 6 depth) model.

Figure 6.5: Loss and nSDR evolution for the Remix + Medley (28 channels, 6 depth) model.

6.1.4 Objective evaluation of models on a test dataset

We evaluated the five main models on a prepared test dataset. This test dataset was
created by randomly selecting songs from initially downloaded remixes, making sure that
these songs or their interprets do not appear in the train and validation datasets. We present
four distinct metrics for better comparison - the nSDR, SIR, ISR, and SAR. These metrics
are described in Chapter 3. First, table 6.3 shows the nSDR metric on the benchmark
dataset for all models, table 6.4 shows the SIR, table 6.5 the ISR metric, and Table 6.6
shows the SAR results.

Unsurprisingly, the shallower models performed poorly, with the model trained only on
MedleyDB being the worst overall. The two more complex models, the Remix + Medley
(24/6) and (28/6), performed very similarly. While the 28-channel version outperformed
the 24-channel one on nSDR and SIR metrics, it performed slightly worse on the ISR. In
the SAR, there is no better model.

All models achieved better nSDR on the test dataset than on validation. We are unsure
as to what is the cause for this. It is possible that overall the randomly selected songs for
the test dataset were more similar to the training dataset.
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Table 6.2: Comparison of parameters and results of training on a full dataset.

Dataset Input segment [s] Channels Depth Loss Valid loss nSDR [dB]
Remix 6 12 3 L1 0.1986 0.224
Medley 6 12 3 L1 0.2074 0.035
Remix + Medley 6 12 3 L1 0.1994 0.566
Remix + Medley 6 24 6 L1 0.1586 2.488
Remix + Medley 6 28 6 L1 0.1578 2.593

Table 6.3: nSDR results on test dataset.

Test nSDR [dB] ↑
Model All Bass Drums Guitars Vocals Other
Remix (12/3) 2.204 3.728 3.897 0.778 2.567 0.052
Medley (12/3) 1.811 3.112 3.498 0.927 1.504 0.013
Remix + Medley (12/3) 2.138 3.603 3.958 0.886 2.181 0.060
Remix + Medley (24/6) 4.035 6.610 7.230 1.732 4.554 0.051
Remix + Medley (28/6) 4.137 6.669 7.481 1.791 4.662 0.082

Table 6.4: SIR results on test dataset.

Test SIR [dB] ↑
Model All Bass Drums Guitars Vocals Other
Remix (12/3) -14.563 -8.459 -10.851 -15.747 -12.815 -24.943
Medley (12/3) -31.010 -7.737 -12.767 -17.693 -16.383 -31.010
Remix + Medley (12/3) -14.903 -7.777 -14.089 -16.427 -12.703 -23.552
Remix + Medley (24/6) -11.199 -4.340 -9.083 -12.599 -10.880 -19.094
Remix + Medley (28/6) -10.670 -4.512 -9.018 -12.382 -9.895 -17.545

Table 6.5: ISR results on test dataset.

Test ISR [dB] ↑
Model All Bass Drums Guitars Vocals Other
Remix (12/3) 3.852 7.424 6.895 1.198 3.687 0.055
Medley (12/3) 2.902 4.541 6.391 1.901 1.666 0.012
Remix + Medley (12/3) 3.565 5.943 7.648 1.533 2.633 0.070
Remix + Medley (24/6) 7.042 11.429 12.325 4.682 6.518 -0.647
Remix + Medley (28/6) 7.036 11.186 11.754 4.643 7.079 0.518
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Figure 6.6: Comparison of validation loss across all trained models.

Table 6.6: SAR results on testing dataset.

Test SAR [dB] ↑
Model All Bass Drums Guitars Vocals Other
Remix (12/3) 0.268 0.598 0.179 0.210 0.315 0.039
Medley (12/3) 0.210 0.610 0.154 0.149 0.050 -0.002
Remix + Medley (12/3) 0.212 0.572 0.089 0.212 0.122 0.062
Remix + Medley (24/6) 0.372 1.070 0.395 0.245 0.147 0.003
Remix + Medley (28/6) 0.379 0.977 0.376 0.310 0.226 0.006

6.1.5 Subjective evaluation of models using human respondents

At first, we attempt to evaluate the trained models by listening to separated tracks. We
randomly selected 3 songs from the test dataset for this purpose. The three smaller models
fare worse as there is much noise in the records, especially in the guitars, vocals, and the
other track. The bass track sounds the best, followed by the drum track. However, even
there is still a bleed from the rest.

Examining the separated tracks, the difference between the two deeper models takes
much work to notice. Again, both perform best at separating bass and drums. While the
vocals and guitars are separated better than with the smaller models, noise and unwanted
artifacts remain. Vocals tend to bleed into the guitar track and vice versa, although slightly
less.

We created a questionnaire to determine which model performs the best according to
independent evaluators:
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Figure 6.7: Comparison of validation nSDR across all trained models.

Rating
Model Bass Drums Guitars Vocals All
Remix (12/3) 4 4 3 3 3
Medley (12/3) 5 5 5 5 5
Remix + Medley (12/3) 3 3 4 4 4
Remix + Medley (24/6) 2 2 2 2 2
Remix + Medley (28/6) 1 1 1 1 1

Table 6.7: Results of users evaluating the models.

1. We select and separate 20-second long excerpts from three tracks and ask respondents
to listen to all of them. The respondents do not know which model separated the
track.

2. For each instrument category, namely the bass, drums, guitars, and vocals, we ask
them to order tracks from what they believe is the worst separated to the best.

3. We average out their responses to get the final results.

We present the results in Table 6.7. In total, 11 people filled out the questionnaire. The
models are ordered in each category, from 5 being the worst to 1 representing the best.

The previous objective testing showed that the most complex 28-channel model achieved
the best result in several metrics. First, the respondents considered this model the best
across all categories. Next, they felt that the 24-channel model was the second best.

The worst of all models was the Medley (12/3) model, which we anticipated based on
previous tests. The 12-channel model trained on only the Remix dataset overall received
better scores than the similarly complex model trained on a larger dataset. It only received
worse scores on bass and drums separation.

We are aware that three short song segments are not enough for a thorough evaluation.
However, we had to consider the time necessary to listen to all separated excepts by five
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# of votes
Rating 1 2 3 4 5 Average
Design 0 0 1 6 6 4.38
Navigation clarity 0 0 0 3 10 4.77
Responsivity 0 0 6 6 1 3.62
Likelihood of using the application again 0 1 2 6 4 4.00

Table 6.8: Responses of users testing the application.

different models across multiple songs. If the respondent can order the models with repeat
listening, the listening portion of the questionnaire would take 20 minutes. Unfortunately,
we could not find many respondents that would commit to a questionnaire even longer than
that.

6.2 Application testing
We subjected the created application to testing by human volunteers. Afterward, they
would answer the questionnaire about their experience. The full transcript of the ques-
tionnaire is in Appendix C. Due to the application’s straightforward nature, there was
no specific use case for the user to perform. Instead, they were encouraged to use the
application as much as possible and try the separation process on at least one provided
song.

In the questionnaire, the respondents had to rate the application on a scale from 1 being
the worst to 5 being the best in several categories:

• overall design
• responsivity
• navigation clarity
• possibility of further usage

We also inquired about their preferred choice of operating system to determine if we
should port the application in the future. Apart from their likes and dislikes about the
application, we also asked for suggestions about potential new functionality.

In total, 13 users tested the application. Table 6.8 shows the results from the part of the
questionnaire where the respondents graded various aspects of the application. Overall, the
application design received a positive rating. In addition, the testers deemed the application
to be easy to navigate, which was to be expected. On the other hand, the responsivity
received the worst ratings, with an average of 3.56, making it the most crucial aspect of
the application to improve in the future.

Most of the users indicated they would likely use the application again in the future.
With most users indicating that they use the Windows operating system, attempting to
port to other systems would be beneficial.

Users praised the simplicity of the application, its ease of use, and the feature to split
songs into separate instruments. However, during testing, they disliked the occasional
minor bugs and long waiting time for the separation process to finish. In addition, some
complained about the lack of ability to load multiple songs into different tabs.
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The questionnaire helped suggesting new features to add in the future. One of them is
the ability to loop parts of the song. Another addition would be the option to change the
volume of individual tracks. The rest of the suggestions would be easier to implement, such
as renaming the tracks or a better progress indicator.

Lastly, the respondents indicated that they would use the program again in guitar-
related tasks. For example, learning guitar directly from the application or just separating
the guitar sound.

6.3 Limitations and plans
Based on the objective evaluation of trained neural networks, there is still room for improve-
ment. The models achieved results well below those of existing state-of-the-art methods.
However, these models do not separate guitar sounds, unlike our models. Therefore it is
expected they would perform at least slightly worse. Nonetheless, they serve well enough to
demonstrate integrating a neural network into a practical application. Our models would
benefit from additional training time. Fortunately, it is simple to swap models in the
application if needed.

The next step in future development would be to use different architecture for the neural
network, namely the Hybrid Demucs. Unfortunately, we could not do this in this thesis
due to time constraints. Nevertheless, using this architecture should help improving guitar
sound separation performance.

User testing of the application concluded that there are possible ways to improve, rang-
ing from new functionality to improvement in responsivity. During the planning stages,
we intended to include a looping mechanism allowing users to replay a small portion of
the song. However, due to the complexity of the task and time constraints, we decided to
abandon this feature to focus on improving base functionality.

Another feature users would welcome, the volume control over individual tracks, is
impossible to add to the current application because PyQt does not support playing multiple
audio files at once. If we were to change the volume on, for instance, the bass track, we
would have to overlay all tracks together, which takes a couple of seconds. This additional
delay would detract from the user experience.

In the future, we intend to continue working on the application. In addition, we are
considering reworking it thoroughly using a different GUI framework that would provide
better audio control.
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Chapter 7

Conclusion

In conclusion, this thesis presented the development of an application for guitar sound
separation which utilizes a neural network.

Work involved the creation of a custom dataset from remixes of popular songs and
adjusting the existing MedleyDB dataset.

Next, we adapted the Demucs model to include additional output – the guitar sound.
We trained and evaluated five distinct models in MetaCentrum. These models varied in
training dataset used and architecture – namely, the number of feature maps produced by
each convolutional layer and the number of recurrent layers in the model.

All models were evaluated on the test portion of the prepared dataset, and we present
several metrics for objective evaluation. None of the trained models achieve results compa-
rable to state-of-the-art methods but are usable in a practical application. This is mainly
because these methods do not separate guitar sounds. Furthermore, the models were sub-
jectively assessed by human listeners to rate their performance relative to each other.

We implemented an application for separating songs into five components – the bass,
drums, guitars, vocals, and rest. In addition, the application serves as a music player and an
educational tool for learning musical instruments. The application was evaluated through
a questionnaire. The findings also suggest that the application has the potential to be a
valuable tool for musicians and sound engineers.

Future research could explore the new architectures of neural networks, namely swapping
the current Demucs architecture for the Hybrid Demucs. In addition, the application would
benefit from additional functionality suggested by respondents, such as the looping function
or more robust audio controls.
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Appendix A

Contents of the included storage
media

The included medium contains:

• documentation – directory with thesis text source code and pdf

• demucs – directory with code and datasets used for training the neural networks

• musicSeparationGUI – directory with code and instructions on how to launch the
practical application

• examples – directory with examples of separated songs

• music_separation_training.xlsx – an Excel file containing more information on
the training process and results
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Appendix B

Installing the application

The application was primarily developed and tested on Ubuntu 22.04.

Prerequisites
• python >=3.8
• pip
• virtualenv
• ffmpeg

If any of them are not present in your system, install them using the following commands:

sudo apt install python3
sudo apt install python3-pip
sudo apt install python3-venv
sudo apt install ffmpeg

Installation
Navigate to the directory with the application code and run the install.sh or execute the
following commands in given order:

python3 -m venv musicSeparatorEnv
source musicSeparatorEnv/bin/activate
python3 -m pip install -r requirements_app.txt

Launch
To launch the application, run the run.sh or:

source musicSeparatorEnv/bin/activate
python3 main.py

On certain versions of Ubuntu, there are known issues with playing media using PyQt,
which can be fixed by applying the following:

sudo apt-get install libqt5multimedia5-plugins
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Appendix C

Application testing questionnaire

Your task is to open the prepared example song in the application and separate the guitar
track. Then, mute all the other channels except for the guitar. To be sure, try listening
to it. Finally, export the guitar sound. After you are finished, please answer the following
questions:

On a scale from 1 to 5 (1 being the worst and 5 being the best) rate:

1. Application design
1:□ 2:□ 3:□ 4:□ 5:□

2. Navigating the application without explaining the controls
1:□ 2:□ 3:□ 4:□ 5:□

3. Application responsivity
1:□ 2:□ 3:□ 4:□ 5:□

4. How likely you are to use the application again outside of this testing
1:□ 2:□ 3:□ 4:□ 5:□

Answer the next set of questions by writing one or more sentences:

1. What operating system do you usually use?

...............................................................................................................

2. What did you like the best about the application?

...............................................................................................................

3. What did you dislike the most about the application?

...............................................................................................................

4. Is there any other functionality you would welcome or feel needs to be added?

...............................................................................................................

5. Have you experienced any bugs during testing?

...............................................................................................................
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6. If you previously answered that you would use the application again, what would you
use it for?

...............................................................................................................
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