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Abstract 
This thesis aims to implement a model capable of separating guitar sounds from a recording 
and use it in a practical application. It was necessary to manually create our dataset from 
remixes of songs and modify the existing MedleyDB dataset for our purposes. We have 
chosen Demucs architecture as a basis for our neural network. We trained it from scratch 
to separate audio files into five distinct recordings containing drums, bass, vocals, guitars, 
and other accompaniment. We trained five models on MetaCentrum, which we evaluated 
objectively and subjectively. The implemented application serves as both a music player 
and an educational tool. The main feature is to allow users to listen to isolated instruments, 
for example, a guitar, and therefore more easily learn songs by ear. The application was 
subjected to user testing, and the knowledge learned will be used in future development. 

Abstrakt 
Cieľom tejto práce bolo implementovat model na separáciu gitarového zvuku z nahrávky 
a použiť ho v praktickej aplikácii. Bolo nutné manuálne vytvoriť vlastný trénovací dataset z 
remixov piesní a upraviť existujúci MedleyDB dataset pre naše účely. Ako základ neurónovej 
siete sme si vybrali Demucs architektúru, ktorú sme od základu učili rozdeľovať audio súbory 
na celkovo päť samostatných nahrávok obsahujúcich bicie, basgitaru, vokály, gitaru a zvyšné 
nástroje. Celkovo sme na MetaCentre natrénovali päť rôznych modelov, ktoré boli objek
tívne aj subjektívne vyhodnotené. Implementovaná aplikácia slúži ako hudobný prehrávač 
a zároveň výučbový nástroj. Hlavnou funkcionalitou je, že umožňuje používateľovi počú
vať izolovaný nástroj, napríklad gitaru, a vďaka tomu sa ľahšie učia piesne podľa sluchu. 
Aplikácia bola podrobená užívateľskému testovaniu a zistené poznatky budú využité pri 
ďalšom vývoji. 
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Rozšírený abstrakt 
Táto práca sa zaoberá problematikou separácie gitarového zvuku z hudobnej nahrávky po
mocou neurónových sietí a následne tvorbou praktickej aplikácie, ktorá využíva natrénovaný 
model. Existujúce metódy na separáciu hudobných nástrojov sa nezameriavajú na gitarový 
zvuk a nahrávky rozdeľujú iba na vokály, bicie, basgitaru a zvyšok. Nami navrhnutá sieť 
stavia na jednej z takýchto metód a upravuje jej architektúru, aby poskytovala jeden výstup 
navyše pre gitaru. 

V práci popisujeme dve existujúce metódy, ktoré riešia tú to problematiku, a to Demucs 
a Hybrid Demucs. Demucs je neurónová sieť typu autoenkodér založená na U-Net architek
túre. Hybrid Demucs priamo rozvíja túto sieť tým, že pridáva konvolučnú rekurentnú časť, 
vďaka čomu dosahuje lepšie výsledky. Našu prácu stáváme na Demucs architektúre. 

Existujúce modely pre separáciu zvuku sú trénované a testované na dátových sadách 
MUSB18 a MUSB18-HQ, ktoré ale nie sú použiteľné pre naše účely, pretože neobsahujú 
samostatné nahrávky gitary. Z tohto dôvodu sme manuálne vytvorili vlastný dataset z 
remixov piesní. Pre zachovanie dobrej variability sme sa obmedzili na jednu skladbu od 
daného interpreta. Z tohto datasetu sme vyčlenili časť nahrávok pre validačné účely a časť 
na finálne testovanie modelov. Ďalej sme využili existujúci dataset MedleyDB, ktorý ale 
samostatne nepostačoval pre úspešné trénovanie neurónových sietí. 

Implementácia neurónovej siete prebehla v jazyku Python s využitím knižníc PyTorch 
a Torchaudio. Na trénovanie našej metódy založenej na architektúre Demucs sme využili 
MetaCentrum. Najprv sme uskutočnili niekoľko menších experimentov na nájdenie na
jlepších hyperparametrov a následne sme celkovo natrénovali päť rôznych modelov, ktoré 
sa líšili veľkosťou trénovacej sady a aj komplexnosťou architektúry. Modely sme potom 
podrobili evaluácii na testovacej sade, pri ktorej sme uvádzali metriky používané v oblasti 
separácie zvuku, ako je SDR, SIR, ISR a SAR. Na základe výsledkov dotazníka sme subjek
tívne porovnali jednotlivé modely. Výsledkom objektívneho aj subjektívneho testovania je, 
že model natrénovaný na najväčšej dátovej sade s najkomplexnejšou architektúrou dosahuje 
najlepšie výsledky z nich. 

Natrénované modely sú využívané v počítačovej aplikácii, ktorá bola implementovaná v 
jazyku Python a s využitím knižnice PyQt. P r i dizajne sme sa zameriavali na jednoduchosť 
a ľahkosť navigácie. Aplikácia slúži ako hudobný prehrávač a zároveň výučbový nástroj. 
Používateľovi umožňuje počúvať izolovaný hudobný nástroj, ako napríklad gitaru, a vďaka 
tomu sa ľahšie učiť piesne podľa sluchu. Aplikácia bola podrobená užívateľskému testovaniu, 
ktorého cieľom bolo vyhodnotiť celkový dizajn aplikácie, mieru responzívnosti a prehľadnosť 
navigácie. Vďaka tomuto testovaniu sme získali návrhy na ďalšiu možnú funkcionalitu 
aplikácie. 

Pr i našich natrénovaných modeloch je stále priestor na zlepšenie. Napriek tomu, že ne
dosahujú výsledky porovnateľné s najmodernejšími metódami, slúžia dostatočne na poukázanie 
možností a výhod ich zakomponovania do praktickej aplikácie. V budúcnosti sa budeme 
sústrediť iba na separáciu gitary a využijeme už predtrénované modely na zvyšné nástroje. 
Implementácia aplikácie by mohla profitovať z použitia iného jazyka a knižnice na tvorbu 
grafického rozhrania, ktoré by bolo lepšie prispôsobené prehrávaniu audio médií. 
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Chapter 1 

Introduction 

Music source separation is a field of study that isolates individual sounds or instruments 
from a recorded mixture of sounds. The objective is to separate different sources of a song, 
such as vocals, drums, and bass, so that they can be manipulated independently. This can 
be useful for various applications, such as music production, audio analysis, and learning 
musical instruments. 

This thesis aims to create a music source separation model capable of separating the 
guitar sound from the mix as, to our knowledge, the state-of-the-art methods in the field 
have yet to focus on it. Once such a model is created and trained, it will be used in a 
practical educational application aimed at amateur musicians and people learning to play 
musical instruments. Its purpose is to make transcribing music by ear easier for beginners. 

The thesis is organized as follows. Chapter 2 introduces state-of-the-art methods in 
music source separation and explains their details. Also, it covers the necessary theory 
behind neural networks and creating GUI . Next, Chapter 3 covers the evaluation metrics 
and existing datasets used to train models mentioned in the previous chapter. Furthermore, 
it also discusses the process and results of creating own dataset. Chapter 1 considers the 
process of designing and implementing a waveform-to-waveform neural network capable of 
separating instrument tracks in songs. Additionally, it describes the training process. 

Next, Chapter 5 focuses solely on creating a practical application that uses the pre
viously trained model. It discussed the initial design creation and implementation of the 
application. Chapter 6 evaluates both the neural network and its application. Concerning 
the trained models, it details the various conducted experiments, shows results on bench
mark datasets, and also presents subjective evaluation. Furthermore, it details the user 
testing of the application. Lastly, we discuss the limitations and plans for the future. 
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Chapter 2 

Theory 

This chapter introduces the field of music source separation. First, we briefly touch on 
the two main approaches to this problem. Afterward, we briefly discuss the theory behind 
neural networks and their building blocks before describing some of the existing state-of-
the-art methods in this field. Lastly, we focus on one of the libraries used for developing 
the GUIs, as that is the framework we chose for our application. 

Music source separation is the process of separating individual instruments or vocals 
from a mixed audio signal. This task has been the subject of extensive research in signal 
processing and machine learning, aiming to improve the quality of audio recordings and 
perform tasks such as remixing and music transcription. 

The methods used for music source separation have evolved significantly, reflecting ad
vances in signal processing techniques and machine learning. More recently, deep learning 
methods have gained popularity for music source separation, using the power of neural 
networks to learn complex mappings between mixed audio signals and their sources. These 
methods can be divided into spectrogram-based methods, waveform-based, and their com
bination [5]. 

Spectrogram-based methods have been a popular approach for music source separation 
due to their effectiveness in representing the time-frequency content of audio signals. These 
models typically take the spectrogram representation of a mixed audio signal as input and 
output the corresponding spectrogram representations of each source. One advantage of 
spectrogram-based models is their ability to handle multi-pitch and polyphonic sources. 

Waveform-based methods for music source separation are an alternative approach that 
operates directly on the time-domain waveform of a mixed audio signal. These methods 
typically involve training a model to predict the waveform of each source given the wave
form of the mixed signal. Waveform-based methods have the advantage of preserving the 
temporal information of the audio signal, which can be essential for maintaining the natural 
timing and phrasing of individual sources. 

This chapter introduces state-of-the-art models for music source separation—namely, 
the Demucs [5] and Hybrid Demucs [6]. We will discuss underlying principles of the ap
proaches, their strengths, and weaknesses. 

2.1 Neural networks 

Neural networks are a machine learning model inspired by the structure and function of 
the human brain. They consist of multiple layers of nodes called neurons that process the 
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information. The power of artificial neural networks arises from the interactions between a 
large set of neurons [15]. 

Neural networks are trained using backpropagation, an optimization algorithm that 
modifies the weights and biases to minimize a loss function. Initially, the network weights 
and biases are initialized with small random values. Afterward follows the forward pass, 
where the input is fed into the network, and the output is calculated. Next, the loss is 
calculated as the difference between the predicted and true outputs. During the backward 
pass, the error is propagated backward through the network to compute the gradients of 
the loss function with respect to the weights and biases of the network. Finally, the network 
weights and biases are updated using an optimization algorithm like Adam. These steps 
are repeated for several epochs until the network performs well on the training data [10]. 

Next, we introduce some of the building blocks of the neural networks. 

2.1.1 Convolutional layer 

The convolutional layer is based on learnable filters or kernels, which are small in size. The 
filter is convolved across the input volume and computes the dot product between the filter 
entries and the input. This produces an activation map of a filter. This way, the network 
learns kernels that activate when they see a specific feature at a given input position [22]. 

The following parameters mainly define convolutional layers: 

• the filter/kernel - represented as m x n matrix 

• the stride - defines how we slide the filter across 

• zero-padding - adding zeroes on the input image border 

2.1.2 Loss Functions 

The loss or cost function is used to evaluate a candidate solution (the set of weights). 
During training, the network iteratively adjusts its weights and biases to minimize the loss. 
The choice of loss function depends on the type of problem being solved. Loss functions 
include the L I loss or M S E loss [16]. 

LI loss, also called the mean absolute error, is calculated by taking the absolute differ
ence between the predicted values and the true values. This is expressed in the following 
equation: 

where yi is the true value and f(xi) is the estimated value. 
Unlike other loss functions, for instance, the mean squared error, L I loss is more robust 

to outliers in the data. This is because it penalizes outliers more heavily than small errors. 
It is also computationally less expensive. 

On the other hand, in Mean Squared Error loss, also known as L2 loss, the difference 
between the predicted value and the actual value is squared. M S E loss is more stable 
compared to L I due to its continuous nature. Unfortunately, it is also more computationally 
expensive. The formula for M S E loss is as follows: 

(2.1) 

(2.2) 

where yi is the true value and f(xi) is the estimated value. 
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2.2 Exist ing methods for music source separation 

2.2.1 Demucs 

Demucs is a waveform-to-waveform model for music source separation [5], which separates 
audio into 4 distinct categories: vocals, bass, drums, and other. At the time of its creation, 
there were models already using the waveform approach, such as Wave-U-net [31], but all of 
them performed significantly worse than their spectrogram-based counterparts. However, 
with proper data augmentation, Demucs was able to surpass all of the state-of-the-art 
architectures available at the time. 

2.2.1.1 Architecture 

When designing the model, the authors were inspired by Conv-Tasnet, a model initially 
developed for speech source separation [17]. Speech source separation is about separating 
multiple speakers' utterances from a mixture thereof. Compared to the music source sepa
ration, speech separation only deals with monophonic audio, usually sampled at 8 kHz or 
16 kHz. While the adapted Conv-Tasnet architecture in [5] achieved high accuracy, when 
listening to the generated audio, listeners observed significant artifacts, mainly in drums 
and bass sounds. 

Therefore the Demucs' authors had to make modifications. They chose a new model with 
U-Net architecture as the basis. U-Net is a type of convolutional neural network initially 
developed for biomedical image processing [26]. It modifies the fully convolutional network 
so that it has fewer parameters and better segmentation. They do this by adding new 
layers to the normal convolutional network, but the usual pooling operations are replaced 
by upsampling. This way the resolution of output increases. The following convolutional 
layer can even assemble a precise output. 

Demucs makes several changes to the described U-Net architecture. First of all, the 
U-Net architecture was initially developed for biomedical image processing, it has to be 
adapted to work with sound waveforms. 

One such model that uses the U-Net architecture is the Wave-U-Net [31]. This model 
was developed for the task of music source separation, too. Moreover, it takes raw audio as 
input, much like Demucs. Unfortunately, when it was submitted to the SiSEC campaign 
2018 1 , it performed poorly compared to its spectrogram counterparts, achieving an aver
age SDR (explained in 3.1.1.4) of 3.17 dB as opposed to a score of 5.97 dB achieved by 
MMDenseLSTM [32], the best-performing model of said campaign. 

From the structure of Wave-U-Net Demucs retains its encoder/decoder architecture. 
The complete structure can be seen in Figure 2.1. It consists of several main components: 

• convolutional encoder 

• bidirectional L S T M 

• convolutional decoder 

The encoder and decoder layers are linked with skip U-Net connections. Skip connec
tions help deep neural models with degradation in performance as the depth of the model 
increases [30]. In essence, they are shortcuts between some layers, feeding the output of 
one layer into the input of another. In the U-Net architecture, they enable the network to 
use the fine-grained details learned in the encoder to construct an image in the decoder. 

1 S i S E C campaign official website: https://sisecl8.unmix.app/ 
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Figure 2.1: Dermics architecture [5] 

In addition, the authors of Demucs drew inspiration from other fields, namely music note 
synthesis [7]. In particular, the use of transposed convolution was motivated by advances 
in this field. Moreover, experiments in this area of study have shown that using batch 
normalization hurt performance. 

Next, we take a closer look at the individual components of the architecture. 

Encoder 

A single encoder consists of 6 stacked convolutional blocks. As shown in Figure 2.2, each 
block is made up of a one-dimensional convolution with a kernel of size 8 and stride 4, 
connected to a R e L U activation function. Following that is a l x l convolution to make 
the network deeper and more expressive at a low cost. Finally, the authors added a GLU 
(gated linear units) [4] as an activation which resulted in a performance improvement. The 
number of input channels is doubled with each block, starting at 2. 

Bidirectional L S T M 

Between the encoder and decoder layers lies the bidirectional L S T M (Long short-term 
memory). 

L S T M is a type of recurrent neural network first proposed in [13]. The main feature of 
the network is its ability to hold information for future processing. 

Bidirectional L S T M is an extension of the basic L S T M . One can imagine it as two 
models, where one learns the normal input sequence and the second learns its reverse. The 

7 



I 
Decoder; Encoder^ i or LSTM 

I 
GLU(Convld(C u„i,2C* u u ( , if = 1,5 = 1)) 

/ Rehi(Coiivld(Cm, Cml, K = 8,5 = 4)) \  
t 

Encoder.;.i or input 

Figure 2.2: Demucs encoder in detail [5] 

main advantage of this approach is that this way each component has information about 
both the past and future. [40] 

A n example of the bidirectional L S T M is displayed in Figure 2.3. 

outputs 

backward 
layer 

± 
ara / • 

LSTM 

forward _ 
layer 

inputs X t 

LSTM 

LSTM 

± 
LSTM 

LSTM LSTM 

LSTM 

J — > - • • • — ^ L S T M j 

Figure 2.3: Structure of bidirectional L S T M [40] 

Decoder 

The decoder, depicted in Figure 2.4, is for the most part a reverse of the encoder. It, too, 
is comprised of 6 stacked layers. Each starts with a convolution with a kernel of size 3 
and stride 1 intending to provide context about adjacent time steps. Next follows a R e L U 
function. After that, a transposed convolution of size 8 and stride 4 is used. 

Transposed convolution is different from deconvolution which simply reverses the oper
ation. Generally, it is used for upsampling, meaning it generates output with more spatial 
dimensions than its input [1]. Alternatively, to achieve upsampling of the signal, linear 
interpolation could be used instead, which is what Wave-U-Net uses. However, it has the 
disadvantage of not being able to generate high frequencies. Furthermore, for the same 
upsampling factor, transposed convolutions require fewer operations and less memory. 

Lastly, a R e L U activation function follows the transposed convolution, except for the 
final decoder layer. That specific layer is linear as it directly produces all the output 
channels, in the case of Demucs, 4 stereo waveforms representing separated vocals, bass, 
drum, and other accompaniments. 
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Figure 2.4: Demucs decoder in detail [5] 

2.2.1.2 Training 

Loss 

As the reconstruction loss, the authors were deciding between the average absolute error 
(denoted here as L\) and average mean squared error (denoted as Li) between waveforms. 
The losses can be calculated with these equations: 

1 T 

Li(xs,xs) = — y~] \xSit - xSit\, (2.3) 
i=l 

1 T 

L2(xs,xs) = — ̂ 2(xStt - xStt)2, (2.4) 
t=i 

where: 

xs = waveform containing T samples representing source s 
xs = predicted waveform for xs 

xs,t Ixs,t = t-th sample of waveform 

Both losses are viable for music source separation. For most of the experiments, the 
Demucs' authors used the L\ loss. Nevertheless, there were no noteworthy differences 
between the L\ and L2 loss. 

Weights initialization 

The initialization of weights can be critical to the model's performance. Wi th the right 
initialization, models can be trained even without batch normalization. 

The conventional initialization technique for U-Net-style architectures is the Kaiming 
(He) initialization introduced in [11]. This method takes into consideration the non-
linearities of the activation functions and should prevent the exponential growth of input 
signal magnitudes. 

However, the authors chose to instead employ a trick where they use specific learning 
rates for each layer. Focusing on a single convolutional layer, we denote its weight as 
they were first initialized as w. We compute a = std(w)/a, where a is the reference 
scale empirically set to 0.1. The weights w are then replaced by w', which is defined as 
w' = w/y/a. This approach leads to better convergence and faster decay of loss. [5] 
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Training setup 

Dermics was trained on the MusDB dataset(characterized in 3.2.1) as well as on an addi
tional dataset, where they manually prepared 150 new songs. To provide better variety, 
during training sources within one batch were shuffled, channels were randomly switched 
and waveforms were randomly scaled. 

The model was trained for a duration of 360 epochs or 240 epochs when using extra 
data. Other used hyper-parameters were the batch size of 64 and the use of Adam optimizer 
with a learning rate set to 3e-4. 

2.2.1.3 Evaluation results 

Demucs trained only on MusDB achieved an average SDR(described in 3.1.1.4) of 6.28 dB 
across all sources and an SDR of 6.79 dB with the use of extra data. In both cases, Demucs 
outperforms the best spectrogram-based method at the time, the D3Net [33]. Needless to 
say, it surpasses the previous waveform-base method, the Wav-U-Net. 

2.2.2 H y b r i d Demucs 

Hybrid Demucs, introduced in [6], is a hybrid source separation model, meaning it works 
in waveform and spectrogram domains. At the time, it was the first model to use this 
strategy. We describe it here because it is one of the popular state-of-the-art models. It 
was the winner of the Music Demixing Challenge (MDX) 2021. Similarly to all the other 
models, it also focuses on separating music tracks into four categories - vocals, bass, drums, 
and the rest. 

As could be derived from its name, it builds upon the Demucs [5] model from the same 
author. It utilizes its strengths and fixes some of its shortcomings. Namely, while it sur
passed state-of-the-art spectrogram methods at the time in terms of average SDR(3.1.1.4), 
its performance when separating vocals and other accompaniments was slightly inferior. 

2.2.2.1 Architecture 

The model splits into two parallel branches. They are not entirely separate, as they share 
some layers. Both employ the U-Net architecture, with one working in the time domain 
and the second in the frequency domain. 

The time domain branch works directly with sound waveforms and is virtually the 
replica of the original Demucs (detailed in 2.2.1.1). The only significant change is the 
replacement of all R e L U activation functions with Gaussian Error Linear Unit (GELU) . 
G E L U , presented in [12], serves as regularization and activation. Experiments in natural 
language processing showed it improves accuracy when tested against ReLU-only models. 

The frequency, also called the spectral branch, first creates the spectrogram using the 
Short-time Fourier transform (STFT). The spectrogram is a visual representation of the 
spectrum of frequencies in time, typically portrayed as a heat map. It is calculated utilizing 
the Discrete Fourier transform (DFT) of a small sliding window on the input waveform. 
The window and hop length are chosen to match the temporal branch. 

Convolutions are applied to reduce dimensions. Since the branch follows U-Net architec
ture, there as several spectral encoders. After that, a shared layer sums up both inputs from 
both branches. Following that is a decoder part with skip connections from corresponding 
encoders. 
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Next, the output of the frequency branch is transformed into a waveform using the 
Inverse Short-time Fourier transform (ISTFT). Summing the outputs of both branches 
yields the final prediction. The complete architecture can be seen in figure 2.5. 

v / W v 
V 

ISTFT 

•J ' (I;1-

T time steps. T/1024 time steps, 2048 freq. 
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Figure 2.5: Hybrid Demucs architecture [6] 

The benefit of this structure is that the model itself can choose which sound represen
tation to use to separate each instrument. For instance, since Demucs performed best on 
separating drums, Hybrid Demucs might prefer to use the time branch output as the final 
prediction. On the other hand, separating other instruments was less successful for the 
waveform model, therefore a spectral approach will be used here. 

2.2.2.2 Training 

As the model took part in the M D X challenge, it was trained primarily on the MusDB18-
HQ (described more in 3.2.1). A separate version of the model using extra training data 
was also prepared and evaluated. 

The model was implemented using mostly the PyTorch library for Python. 
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To evaluate the model's performance, a new version of the standard SDR metric was 
used. This metric is described more in 3.1.1.5. 

2.2.2.3 Evaluation 

The version of the Hybrid Demucs trained only on MusDB18-HQ achieved an average SDR 
of 7.55 dB, making it the winner of the M D X challenge. The model performed best on 
drums and bass separation, with a score of 8.04 dB and 8.86 dB respectively, similar to 
the original Demucs. For vocals and other instruments separation, it was inferior to the 
KUIELAB-MDX-Net. 

2.3 P y Q t 

PyQt 2 is a set of bindings in Python for the Qt framework - a popular cross-platform GUI 
toolkit written in C++. The Qt Group is currently developing Qt. It can run on numerous 
software and hardware systems, including Windows, MacOS, Linux, or Android. PyQt is 
capable of much more than GUI development. It also provides tools for, for instance, SQL 
databases, network communication, graphics, and much more [37]. 

PyQt also comes with Qt Designer, designed to make the GUI layout much quicker 
using the drag-and-drop mechanism. However, we did not use it as our application did not 
have such a complex design that we could not program it ourselves manually. 

GUI written in PyQt is event-driven. It either responds to events that the user gen
erates, such as a click of a mouse or the press of a key on a keyboard, or an event the 
system generates. The act of responding to these events is known as event handling. The 
application begins listening for events when exec_() is called and does not stop until it 
closes. 

PyQt employs a signals and slots system [9] for communication between objects as an 
alternative to the callback technique. A signal is an event that occurs, whereas slots are the 
methods that are executed as a response to the signal. In other words, widgets send out 
signals, and we collect and use them with slots to force the application to perform actions. 
Widgets have predefined signals and slots, but we can also create custom signals. 

For instance, let's inspect the following code: 

splitButton.clicked.connect(split_song) 

When we push the button, the clicked() signal is emitted. We connect it to a callable 
function split_song() that is executed after clicking the button. 

In GUI applications attempting to perform long-running background tasks might cause 
the application to freeze due to the event-based nature of PyQt. Events are placed into an 
event queue and processed sequentially as they arrive. Calling exec_ () by the QApplication 
object starts the event loop on the so-called GUI thread. Anytime the application executes 
code, the communication is frozen. Wi th simple tasks, this freezing is imperceivable. How
ever, the work must be done outside the GUI thread for more challenging tasks. Otherwise, 
the application would appear unresponsive. [8] 

One of the approaches for executing independent tasks is to use threads. This is because 
threads share the memory space, unlike processes, which do not. 

Running jobs in separate threads from the main GUI thread in PyQt can be done 
through QRunnable and QThreadPool classes. QRunnable serves as a container for the code 

2https: //pypi.org/project/PyQt5/ 
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to perform. QThreadPool handles the execution of the QRunnable workers. Below is an 
example of a worker: 

class Worker(QRunnable): 

def init (self): 

super(Worker, self). init () 

Qpyqts lo tO 
def run(self): 

# code to perform 

To start the worker, we first acquire an instance of QThreadPool and call its start () 
method with the worker as an argument: 

threadpool = QThreadPool() 

worker = Worker() 

threadpool.start(worker) 

The worker can be further improved to run the desired function with arguments or emit a 
signal when it finishes. 
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Chapter 3 

Evaluation Metrics and Datasets 

This chapter introduces several popular metrics used to evaluate music source separation 
models. We divide these metrics into objective and subjective. Objective metrics include 
the Source-to-Artifacts Ratio, Source-to-Interference Ratio, and Source-to-Distortion Ratio. 

Next, we describe the existing datasets for this field of study and discuss their usefulness 
for this thesis. Lastly, we explain the process of creating our custom dataset. 

3.1 Evaluation Metrics 

When it comes to evaluating the performance of music source separation models, there are 
two main approaches [18]: 

1. objective metrics 

2. subjective metrics 

While the objective approach relies on calculations comparing original stems (the ground 
truth) to the model's outputs, the subjective approach depends on a listening test by human 
participants. Each method has its advantages and disadvantages. For example, while the 
objective metrics are fast to calculate, the subjective ones take longer to prepare and are 
more expensive. On the other hand, human listeners can compare models more accurately. 

3.1.1 Objective metrics 

The goal of music source separation is to separate the mixture s into K sources SI,...,SK-

The estimate of source s;, denoted made up of multiple components [18]: 

where: 

^target = true source 
einterf = interference error 
enoise = noise error 
e artif = artifacts error 

The most widely used objective metrics include the Source-to-Artifacts Ratio (SAR), 
Source-to-interference Ration (SIR), and Source-to-Distortion Ratio (SDR). Python 

Si — St a rget + e ; n t e r f + e noise +
 eartif 
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package museval 1 provides a reference implementation of these metrics. For the Music 
Demixing (MDX) Challenge of 2021 2 , the original SDR metric was altered. 

3.1.1.1 Source-to-Artifacts Ratio 

Source-to-Artifacts Ratio (SAR), described in [35], is: 

I 112 C A T ) m l starget + ©interf + enoise 0 s, 
S A R : = 1 0 1 o g 1 0 - 1| TT^ . (3.2) 

I l^artif 11 
It stands for the amount of unwanted artifacts in the source estimate. 

3.1.1.2 Source-to-interference Ratio 

Source-to-interference Ration (SIR), introduced in [35], is computed as: 

SIR:=101og 1 0

 l | S t a r g e t l | 2

2 - (3.3) 
I l^interf 11 

It represents the „bleed", or the extent to which the other sources are audible. 

3.1.1.3 Source Image to Spatial distortion Ratio 

While the Image to Spatial Distortion Ratio (ISR) metric was initially introduced in image 
restoration and super-resolution, it has also been used in music source separation to evaluate 
the quality of separated audio signals. It is typically applied to the magnitude spectrograms 
of the original and separated audio signals. The use of the ISR metric in music source 
separation allows for a quantitative evaluation of the quality of the separated audio signals 
in both the frequency and time domains [36]. 

It is calculated as: 

I S R : = 101og1 0

 l , l | S t a r g e t | l | l

2

2 . (3.4) 
I l^noise 11 

3.1.1.4 Source-to-Distortion Ratio 

Source-to-Distortion Ratio (SDR), which was defined in [35], is calculated as: 

SDR := 101og1 0 I I W t l l * 1^. (3.5) 
I l^interf T ^noise T ^artif 11 

It is the most widely used metric and is considered to be overall the best measure of 
how good the separation is. The higher the SDR score, the better the model performs. 

3.1.1.5 New Source-to-Distortion Ratio 

The M D X introduced a new definition of SDR, denoted here as nSDR to distinguish it from 
the original SDR metric, which is simpler and faster to evaluate [21]: 

nSDR := 10 log 1 0

 11 S t a r g e * 1 1 , ± " (3.6) 
11 ̂ target S11 + £ 

1Package website: https://github.com/sigsep/sigsep-mus-eval 
2 Official challenge website: https://www.aicrowd.com/challenges/music-demixing-challenge-ismir-

2021 
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where e is a small constant to avoid zero division. 
In the M D X Challenge, the final value reported was the average nSDR across all test 

songs. 

3.1.2 Subjective metrics 

For human evaluations, the Mean opinion score (MOS) is used. This numerical measure 
is useful anywhere where human subjective experience is valuable [14]. Common domains 
where it is used include video or audio quality evaluation. 

As done for the Hybrid Demucs' assessment [6], subjects were asked to assess several 
samples on two main criteria: 

• absence of artifacts, 

• absence of bleeding. 

Subjects evaluated each criterion on a scale from 1 to 5, with 1 meaning „bad" and 5 
meaning „excellent". As individuals tend to avoid the lowest or best ratings, the range of 
4.3 to 4.5 is considered an outstanding quality. The final score is the average. 

3.2 Datasets 

3.2.1 Existing datasets 

There are several datasets available for music source separation systems. For this task, apart 
from the original mixture, the dataset must contain isolated stems of different instruments 
that make up the songs. 

The most popular is MUSDB18 [24], which is also one of the benchmark datasets.3 

This dataset provides 150 songs from different genres, which total to approximately 10 
hours of music. These songs are already divided into train and test subsets. A l l tracks have 
a sampling frequency of 44.1 kHz and are stereo. The entire dataset has only approximately 
5.7GB because recordings are encoded in the Native Instruments stem format with .mp4 
extension. These audio files are created with Stem Creator , which is a free tool used by 
DJs and music producers for creating multi-track recordings. 

Unfortunately, MUSDB18 only contains stems for vocals, drums, and bass. A l l the other 
instruments, such as the guitar, are grouped, which makes this dataset itself unusable for 
our purposes. However, since this dataset was used to train the original Demucs, we took 
inspiration from its structure and tools used when creating our dataset which is further 
explained in Section 3.2.3. 

Another dataset rising in popularity is the M U S D B 1 8 - H Q [25]. It was created as 
an alternative to the original MUSDB18 for models that work with broader ranges of 
frequencies as it uses uncompressed audio format .wav. Other than a different file format, 
it is virtually the same as MUSDB18. This dataset was used as the training dataset in the 
Music Demixing (MDX) Challenge of 2021 organized by Sony. The state-of-the-art model 
Hybrid Demucs [6], one of the models created as a response to this challenge, was trained 
using this dataset. 

3Leaderboard of models using this dataset can be found at https://paperswithcode.com/sota/music-
source-separation-on-musdbl8 

4Stem Creator official website: https://www.stems-music.com/stem-creator-tool/  
6Source: https: //sigsep.github.io/datasets/musdb.html 
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MUSDB18 MUSDB18-HQ 

Figure 3.1: Comparison of the audio frequency range of the MUSDB18 and MUSDB18-HQ 
datasets.6 

The Slakh2100 [19] dataset offers a much greater selection of songs, totaling over 145 
hours of recordings spread over 2100 tracks. This is possible due to the MIDI nature of 
instruments present in the dataset. While Slakh2100 contains individual guitar stems, it 
instead lacks vocals. Again, this dataset is unsuitable for our purposes. 

The MedleyDB [3] and its newer version MedleyDB 2.0 [2] provides exactly what we 
need. They feature a wider selection of instruments, including several types of guitars, such 
as clean electric sound, distorted, or acoustic. These datasets are available after submitting 
a request. Together, they total 196 multi-tracks. Apart from the final mixtures of songs, 
they contain both unedited raw recordings of instruments and edited stem tracks, where 
multiple recordings of the same instruments are grouped. 

Unlike other datasets, MedleyDB contains a much greater amount of annotations, for 
instance, pitch and melody, and therefore can be used for a wider range of applications 
than just music source separation. 

One downside of the dataset is its size. The compressed archive of version 1 is 43,1 
G B and newer version 2 is 44,3 G B . The reason behind these enormous sizes is the lossless 
audio format that is used (. wav) and the fact that every song has generally more than 10 
stem tracks and even more raw recordings. For models that require only the best audio 
quality can be perceived as an advantage, but as we will not have such a requirement, it 
made handling the dataset slightly problematic. 

3.2.2 Creating dataset using existing models to separate songs 

Music source separation models such as Wav-U-Net, Demucs, or Hybrid Demucs all focus 
on separating audio into 4 categories: vocals, bass, drums, and other accompaniment. This 
mirrors the structure of datasets they were trained on. Since this thesis aims to create 
a model capable of separating into 5 categories, with the new category being the guitar 
category, we cannot use the already established datasets like MUSDB18 or MUSD18-HQ. 

Despite MedleyDB technically provides the necessary data to train a neural network, 
the amount is not great enough. Deep neural networks require massive amounts of data to 
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train properly. Only a small subset of songs in the dataset contains some type of guitar. 
Other times, a song has a guitar part, but lacks, for instance, a vocal recording. Although 
data augmentation such as multiplying source signals [31] might help with the issue, it 
would still not be enough. 

The vast majority of state-of-the-art models for music separation apart from the 
MUSDB18 dataset use extra data for training. The original Dermics model creates its 
private dataset from around 2000 songs from a variety of genres [5] which it then uses for 
unsupervised learning. 

At first, we intended to go a similar route, meaning the first step was to accumulate a 
large number of recordings. Afterward, we would artificially create isolated stems by using 
an existing model. At the time of writing, the model with the highest average SDR score 
was Hybrid Demucs [6]. The main problem was that to create good guitar stems, no 
other instruments apart from drums and bass could be present in the recording. To counter 
this, we explored discographies of famous musical trios , where members vast majority of 
times only play those three instruments we seek. Even this does not completely eliminate 
the previous issue, as in the studio bands tend to insert occasional flourishes on songs such 
as small keyboard parts or similar. 

After downloading the discographies of potential artists, it was necessary to manually 
at least briefly listen to each of their songs and remove songs that contained unwanted 
instruments. This proved a time-consuming activity that also required concentration. A 
large portion of tracks was eliminated in the process. 

The authors of Hybrid Demucs provided a Google Colab notebook8, where one can use 
the model to separate their audio files. We took advantage of the possibility to mount your 
own Google Drive to the Colab notebook by uploading the songs there. Separating even a 
single album took a long time, but fortunately, it could be run in the background. 

While to the human ear the drums and bass stems created by Hybrid Demucs seemed 
almost real, the guitars seemed less so. Therefore we chose to abandon this approach as 
there was still an unsolved issue of getting samples of other instruments of the network to 
learn on. 

Moreover, compared to the dataset we acquired using the next method (described in 
Section 3.2.3), this dataset would have significantly less variance as a result of including 
multiple songs by the same artist. 

3.2.3 Creating dataset using remixes to build up a dataset 

The other approach to creating a training dataset was to acquire a large amount of multi-
track recordings and then for each mixture reduce the number of tracks down to 5, namely 
tracks containing only vocals, bass, drums, guitars, and lastly other accompaniments. 

Collecting original mixtures of popular songs with individual stems for each instrument 
present is hard to do without connections in the producing industry as these are not publicly 
available. Fortunately, there exist sites where users post their recordings so that others may 
try their hand at remixing. 

The process of creating a single entry for the dataset included the following steps: 

1. download an archive containing recordings 
T Online article used as a source of inspiration for finding such bands at https: / /spinditty .com/genres/ 

Best-Rock-Trios-of-Ail-Time 
8 Available at https: //colab.research.google.com/drive/ldC9nVxk3V_VPjUADsnFu8EiT-xnUltGH?usp= 

sharing 
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2. determine which instrument is played in each stem 

3. join together files that contain vocals/bass/drums/guitars/other into a single file for 
each category 

4. export all files to create the final mixture 

At first, we downloaded all remix archives that listed that they contained guitar parts. 
However, they often contained many individual recordings, generally more than 15, which 
proved problematic. Furthermore, there was no way to automate determining which record
ing contained which instruments as the filenames did not follow any naming system, and 
no metadata were included. 

Thankfully, we were able to later find remixes with a smaller number of stems and the 
same file structure as follows: 

• Bass (Mono) . f lac - bass recording 

• Vocals. f lac - recording of vocals 

• Guitar. f lac - guitar recording 

• Cymbals.f lac, Snare.f lac, Kick (Mono) .flac - recording of drums 

• Keys.flac - keyboard or piano recording 

• Backing.flac - rest of the song not covered in the above 

The clear naming system makes it easy to determine which audio file represents which 
instrument. If we were to disregard the Backing.flac, it would be possible to automate 
the process of creating only a single file for each of our selected categories. In this case only 
the separate recordings of individual drum components would have to be merged together. 
Note that this way, the only instruments that would appear in the other category in our 
dataset would be the keyboard and piano. 

Having said that, we have decided to dismiss the option of automation and endure man
ual labor to acquire a dataset better representing real music. The manual part is listening 
to the Backing.flac track and determining what instruments it contains. Oftentimes gui
tars as well as other instruments play in it. Based on which one prevails and whether 
they overlap we remove one or the other. In addition, there is always a drum count-in in 
this track that has to be removed. We use the Audacity® 9 audio software for editing and 
exporting the final audio. 

A n important decision before proceeding further was to choose the encoding format. 
Different datasets use different audio formats. Both MedleyDB and M U S D B 1 8 - H Q 
use lossless .wav. As we first attempt to adjust the original Demucs architecture to allow 
the separating of the guitar, seemingly another option would be the .mp4 format used in 
MusDB18. The advantage would be having one file for each song instead of 5 and possibly 
using the authors' data pipeline with minimal editing. However, unfortunately, the tool 
authors' of the mentioned dataset, the Stem Creator, allow importing of only five tracks in 
total - drums, bass, synth, vox, and master file. This means we would be short one track 
for the guitar. Therefore, we had to dismiss this encoding option completely. 

Nevertheless, apart from creating the neural network model, this thesis aims to use it 
in a practical application where users will upload files to separate them. In this scenario, 
regular users are likelier to use the .mp3, a popular lossy compression format [28]. Therefore, 

9Audacity is available at: https://www.audacityteam.org/ 
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converting the .mp3 back to .wav that existing models use would add additional delay for 
users. 

For that reason, we decided to use .mp3 with the highest bitrate of 320 kbps and a 
sampling rate of 44100 Hz, forcing all tracks to stereo. Also, we tried to adapt the naming 
structure of MUSDB18-HQ, the dataset Hybrid Demucs uses for training to be able to use 
parts of its data pipeline. Thus the final dataset has the following folder structure: 

remix_dataset 

train 

L a r t i s t - t i t l e 

-[^ bass .mp3 

-[^ drums. mp3 

-[^ guitars.mp3 

-[^ mixture. mp3 

vocals .mp3 

other.mp3 

valid 

L test 

To increase the variety we chose to include only a single song from one artist in the 
dataset. This way we would get a wider representation of possible sounds since interprets 
often have similar distinct sound across multiple songs. 

The final training dataset created from remixes has a size of 6.2 G B , contains 101 songs, 
and a total of 7h 13m 5s of recordings. 

3.2.4 Additional datasets used 

Despite the fact that MedleyDB and MedleyDB 2.0 by themselves do not provide 
enough data to train a complicated neural network, we used them as additional datasets 
to enhance the training and provide variety. Both datasets had had to be first filtered by 
removing all entries not containing guitars. After some contemplation, we decided to keep 
even those mixtures that did not have the other components. 

After the cleanup, out of the original 122 songs from MedleyDB remained 36 met our 
needs, and from MedleyDB 2.0 we kept 17. Altogether, this additional dataset provided 3h 
18m 32s of data, with 2h 6m 14s being from the original MedleyDB and l h 12m 18s being 
from MedleyDB 2.0. 
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Chapter 4 

Design and implementation of 
neural network model 

This chapter describes our choice of architecture for the neural network and the necessary 
changes needed to adapt it to our specific task. We also focused on the training process, 
which was done in MetaCentrum. 

4.1 Design 

We chose to take an existing model for music source separation as a basis and modify it to 
fit our purpose and data. Such a model had to fulfill several criteria. First of all, the model 
must have publicly available code with a license permitting us to use it in our project. 
Secondly, it needed to have satisfactory results on benchmark datasets. Additionally, it 
had to be relatively new, but not so brand new that it would not be used much. Lastly, we 
had to consider the effort it takes to train and apply in an application. 

After much consideration, we chose two models: Demucs and Hybrid Demucs. Demucs, 
at the time of its creation, presented a significant breakthrough in the field. Although it is 
from 2019 and there are now better-performing models, Demucs is still used to this day. It 
is relatively straightforward and well-documented, making it an ideal starting point. 

We initially chose Hybrid Demucs as the next model mainly because it was built upon 
Demucs and was designed by the same author. Additionally, we considered experimenting 
with Hybrid Transformer Demucs [27], a new iteration of Demucs that introduces a trans
former [34] encoder block into the architecture. However, we decided against using both 
due to the time constraints and computational cost in the case of the Hybrid Transformer 
Demucs. 

The first thing that needs addressing when modifying these existing models is the data 
pipeline. Both models expect specific file structures of their training data. When creating 
the dataset of remixes we opted for a file structure resembling that of Hybrid Demucs. 
Thanks to this we will only have to slightly adjust its pipeline. 

Besides that, the structure of some layers of the neural network will have to be altered. 
Namely, the output layer will have to reflect the addition of another track to separate. 
Dimensions and parameters of other layers, for instance, the convolutional layers of encoder 
and decoder blocks, will be changed if experiments reveal improvement in accuracy. 
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4.2 Implementation 

This section discusses the implementation details of the neural network model for music 
source separation. 

4.2.1 Used technologies 

4.2.1.1 PyTorch 

PyTorch is a machine learning framework developed by Meta AI [23]. It is based on 
Python programming language and Torch library which is written in Lua. Presently, it is 
ranked among the most popular machine learning frameworks due to its ease of use and 
flexibility. 

The main features of PyTorch are its tensor computations, G P U acceleration support, 
and automatic differentiation when creating neural networks. 

4.2.1.2 Torchaudio 

Another crucial tool when developing the music separation model was Torchaudio. Tor
chaudio is a library for audio and signal processing [39]. It is designed to work with the 
PyTorch framework. Apart from simply supporting the use of audio, it also provides tools 
for transformation, augmentation, or feature extraction from audio data. 

4.2.1.3 Hydra 

Hydra [38] is an open-source Python framework developed by Meta. It allows users to 
create a hierarchical configuration and even override it with additional configuration files 
or command line arguments [29]. 

Traditionally, Python parses arguments using the argparse library. When used in deep 
learning applications where all hyperparameters are passed this way, the code can soon 
become difficult to change. The advantage of Hydra is that one can edit parameters and 
constants without touching the code, leading to increased reproducibility. 

The configuration file has the .yaml extension. Its location and name are defined in 
code with annotation typically above the main function. It is important to note that using 
Hydra changes the current working directory. 

4.2.2 Neural network 

As a basis for implementation, we took the code for Hybrid Dermics1, which is written 
in Python and uses the PyTorch framework. The original Demucs code 2 used the clas
sic Python library argparse to deal with command line arguments setting various model 
properties for different runs. The Hybrid Demucs changed this as it instead uses configu
ration files processed by the Hydra library. It also allows us to switch between the Demucs 
architecture and Hybrid Demucs easily. 

This makes it easy to switch between the Demucs or Hybrid Demucs, as the model is 
chosen based on the variable model in the configuration file conf ig.yaml. Furthermore, all 
model hyperparameters, such as depth or kernel size, are defined therein. Before proceeding 

1Code for Hybrid Demucs is available at https://github.com/facebookresearch/demucs/tree/v3  
2Code for Demucs is available at https://github.com/facebookresearch/demucs/tree/v2 
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further, we changed the dataset location and names of output sources to include the guitar 
track. 

The first major hurdle when adapting the model appeared when we tried loading the 
remix dataset using torchaudio. load (). The newer versions removed the support for 
loading mp3 files. So the solution was to limit the version of torchaudio to 0.11.0 and the 
PyTorch framework to 1.11.0. Thanks to this, we could use the code to create custom 
dataloader in mp3.py. 

Original Hybrid Demucs evaluates the model on the test dataset at the end of each train
ing session. We removed this feature because we intended only to evaluate the final models 
once. To do this, we removed a portion of the code in function train() in solver .py. 

The code for the evaluation on the test dataset is inside the evaluate .py file. Initially, 
the dataset was loaded using the musdb library instead of fetching the files from storage. 
We iterate through the test directory and manually load the audio files for the mixture and 
individual sources. 

Because we execute the evaluation with only a single worker thread, testing on songs 
longer the approximately 30 seconds caused the program to crash. We solve this by split
ting the estimates acquired from apply_model () and ground truth references into smaller 
segments. We can do this since models in music separation report the average metric value 
across all songs. However, this might negatively impact the score as the model has less 
context with shorter recordings. 

We calculate the number of segments to split each track as follows: 

number of segments = total length/framerate/desired segment length + 1 (4.1) 

Specific segments that contain only silence are removed from the evaluation as this 
would negatively affect the score. We use the try-except structure to catch those segments. 

4.2.3 Training environment 

MetaCentrum V O is a virtual organization available to researchers and students of aca
demic and scientific institutions in the Czech Republic [20]. This organization allows using 
its computational and storage resources for computations that would be otherwise too de
manding when performed locally. To become a member, it is first necessary to submit the 
application form and await the results. 

MetaCentrum offers resources for grid computing, with a grid representing a network 
of interconnected computers with different properties such as R A M , C P U , or G P U . Batch 
jobs system P B S 3 tracks the grid's resources and organizes the computational jobs into 
queues until there are enough resources for execution. First, users prepare and submit their 
jobs on frontends. Then, the computations themselves are performed on computational 
nodes. 

To access the grid, the user has to log into one of the frontends1. Users prepare and 
submit their jobs there. However, frontends are not meant for the execution of resources-
intensive computations. Instead, those should be handled on one of the computational 
nodes. 

Submitted jobs fall into two categories: batch jobs and interactive jobs. Batch jobs 
execute commands from a batch script prepared in advance. Alternatively, the interactive 

scheduling system used is more described at: https://wiki.metacentrum.cz/wiki/ 
About_scheduling_system 

4List of all available frontends is at https://wiki.metacentrum.cz/wiki/Frontend 
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job allows users to run commands manually in real time instead of reading them from a 
script. This allows greater flexibility in handling errors. Interactive jobs are better suited 
for small tests or environment setups. It ends when the user logs out of the assigned 
computational node or the requested resources, such as the wall time, have been used up. 

We need specific versions of certain libraries to train our version of Demucs for guitar 
sound separation. Most notably, the PyTorch framework requires versions older than 1.11.0 
due to removed support for loading .mp3 files. Torchaudio library needs version 0.11.0 at 
the newest for the same reason. Usually, MetaCentrum users can load PyTorch in their 
jobs through the command module load pytorch. However, this version is not compatible 
with our neural network. 

Therefore, we use the Anaconda 5 instead to install our preferred versions of libraries. 
After loading the Anaconda module, we create a new „conda" environment. Due to space 
quotas on MetaCentrum, we save this environment into our home directory. Wi th the 
„conda" environment activated, we first install PyTorch, torchaudio, and the appropriate 
cuda toolkit. The rest of the libraries needed for training are installed through pip, as some 
of them, such as Dora-search, are unavailable through Anaconda. Thus, the whole setup is 
best done using an interactive job to verify the installation's success. Listing 4.1 contains 
the exact setup script. 

cd $H0ME_DIR 

module load anaconda3-2019.10 

conda create —pref ix=$CONDA_ENV_NAME 

source activate $H0ME_DIR/$C0NDA_ENV_NAME 

conda install pytorch==l.10.0 torchaudio==0.10.0 cudatoolkit=ll.3 -c pytorch 

pip install -r requirements.txt —no-cache-dir 

Listing 4.1: Metacentrum environment setup script 

The training was done on G P U nodes to speed up the training. Users can reserve such 
nodes using the -q G P U option and specify the required GPUs with ngpus=X. However, 
jobs on G P U nodes can run for a maximum of 24 hours. This means the model cannot be 
trained during a single run and must be trained across multiple sessions. 

Some G P U nodes, such as the Konos, could not train our models due to their G P U 
memory size. The final models trained on either the full remix dataset, Medley dataset, or 
their combination were trained almost exclusively on Adan and Galdor machines. These 
machines have the following properties: 

. Adan - 32 x C P U , 2 x G P U nVidia Tesla T4 16GB, 192 G B R A M 

. Galdor - 64 x C P U , 4 x nVidia A40 48GB, 512 G B R A M 

When initially training on other nodes, frequently, the program would end with a run
time error reporting that C U D A ran out of memory while trying to load the model. Specific 
steps could be taken to solve this problem, such as reducing the batch size, clearing the 
PyTorch cache, or lowering the number of channels produced by the convolutional layers 
and the depth of the model representing the number of recurrent layers. 

However, lowering the batch size increases the training time, and we risk failing to 
complete even a single epoch before the allocated time is up. Also, while lowering model 
complexity reduces memory requirements, the model, at some point it is not able to learn 
correctly. Therefore it is necessary to reach some compromise. 

5 Anaconda's official website: https://www.anaconda.com/ 
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Most of the time, we trained only using a single G P U . While using multiple GPUs can 
speed up training when appropriately utilized, jobs with multiple GPUs take longer to get 
assigned computational nodes. If we did not care which hardware executes the job, it would 
not be problematic to wait a few hours to begin execution. However, limited to only two 
viable machines in the cluster, we would have to manually search through all nodes and 
select only one at a time to execute the job. Otherwise, we could be assigned a node with 
insufficient G P U memory. We still do this when training the final models on a single G P U , 
but the probability of finding a viable node with free resources is much higher. 

To train the model, we prepared the bash script 4.2: 

#PBS -1 select=l:ncpus=4:mem=32gb:scratch_local=20gb:ngpus=l 
#PBS -1 vnode=$NODE_NAME 
#PBS -q gpu 

#PBS -1 walltime=24:00:00 
#PBS -N $J0B_NAME 

#PBS -m abe 

module load anaconda3-2019.10 

module load ffmpeg 

cd $H0ME_DIR 

source activate $H0ME_DIR/$C0NDA_ENV_NAME 

dora -P demucs run [config overrides] 

Listing 4.2: Metacentrum training script 

We requested 4 CPUs, 32GB of C P U R A M , and a single G P U in the script. Variable 
$N0DE_NAME represents the exact name of the chosen node on which to run the job. Option 
-m allows users to receive updates about job status through email. After activating the 
prepared Anaconda environment, the training is initiated with the command dora run. 
We specify the location of the neural network's code with the switch -P. We can also run 
a model with different hyperparameters without changing the configuration file. When 
training a new model, we must specify this by adding -clear to the command. We can 
override the configuration property continue_from to load and prepare a specific model 
on any subsequent run. 

4.2.4 Export ing model and track separation 

To use a trained model to separate a song into individual instruments, it needs to be first 
exported. For this, we use the existing script exportModel .py. By default, after training, 
we save the models in $HOME_DIR/demucs/outputs/xps, each in its folder named after their 
signature. The model's signature is printed out at the start of each training session. The 
saved trained model can be exported by running the command: 

python exportModel.py $SIGNATURE [-o path_where_to_store] 

This saves the models in a single .th file, which can be more easily loaded. To finally 
use the model for splitting music, we modified the script separatedTracks.py, namely 
removing unnecessary assertions. Then, we execute it in the following manner: 

python separateTracks.py $MP3_L0CATI0N -n $SIGNATURE —mp3 -d cpu/cuda 

By default, results from separation will appear in folder separated/$SIGNATURE/track_name. 
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Chapter 5 

Design and implementation of a 
practical application 

Many people pick up musical instruments, for example, the guitar, to learn their favorite 
songs. Plenty of instructional videos or tablature exist for popular songs - a musical 
notation used by guitarists. Unfortunately, there is no such option for the less popular 
music. Instead, the aspiring musicians have to figure out how the song is played on their 
own. 

This process is called transcribing, and it is an essential skill for a musician to have. It 
trains ears to listen and analyze recordings 1 . However, especially at the beginning, it can 
be challenging. 

A beginner's ears might still need to be more accustomed to active listening and ana
lyzing music. In addition to that, they have to filter out other instruments in the song to 
focus only on a single one they are trying to transcribe. 

Part of this thesis was to create an application that would separate guitar sounds from 
recordings. The application integrates the neural networks described in Chapter 4. It is an 
educational tool for musicians, especially beginner to intermediate guitarists. By splitting 
the recording into individual tracks, the user can listen to isolated instruments. Listening 
to solo instruments should make it easier to transcribe the desired songs. 

5.1 Initial design 

When considering the potential design of the application, the main criterion was the ease 
of use. The application should be intuitive and without distractions. It would function as 
a music player with the additional option to separate songs. For inspiration, we explored 
existing music players and editors. Ultimately we chose to base our program on the Audacity 
audio software 2 . 

Audacity is a multi-platform open-source audio editor and recording software. Initially 
released in 2000, it remains among the most popular free audio programs. It supports a 
variety of post-processing effects for audio tracks. A notable visual feature we would like 
to imitate is the vertically organized tracks with a waveform graphs of the audio signals. 
Figure 5.1 shows the user interface of the Audacity audio software. 

1 M o r e about transcribing music: https://www.leanmusician.com/post/transcribing-music  
2 Official website of Audacity: https://www.audacityteam.org/ 
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Figure 5.1: Audacity audio software 

We created the initial design using Figma. Figma is a tool for graphical design estab
lished in 2016. Wi th more than 4 million users, it is well-known tool designers use for tasks 
such as brainstorming, creating prototypes, or even project management. It has a free plan 
or several paid options. For this thesis, the free tier was more than enough. 

Figures 5.2 and 5.3 show the application interface design before and after the neural 
network splits the song into components. The program should provide functionality ex
pected from a music player, including opening and playing audio files, adjusting the overall 
volume, or jumping to a specific position in a song. Functionality related to an audio 
separator includes an easily visible option to split songs into individual instruments. 

In this design prototype, the intention was to always split the mixture into all five tracks 
- the bass, drums, guitars, vocals, and accompaniment. However, user tests showed that 
users would welcome the ability to choose which separated instruments to display. For 
example, a guitarist attempting to transcribe a song only cares about the guitar sounds. 
We have taken into account this suggestion during the implementation. 

Each track is labeled according to the instrument played, and the final product should 
display the waveform graph of its soundwave. There is a button to mute each track to allow 
users to listen to isolated tracks. In the prototype, we also intended to allow adjusting the 
volume of individual tracks but did not implement this feature for reasons described in 
the next section. As shown in Figure 5.3, we can visually distinguish the currently muted 
tracks from the active ones. 

30fficial website of Figma: https://www.figma.com/ 
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Figure 5.2: Design of application - before the song is split into individual instruments 

5.2 Implementation 

Upon launching the application, users are welcomed by the mostly empty screen, as showed 
in Figure 5.4. The toolbar is disabled at first. Therefore, the only possible actions are to 
load an audio file, adjust settings, or quit the application. 

We organized the code for the application into separate .py files based on different 
aspects that make up the graphical interface. For instance, the class Toolbar, responsible 
for the display and functionality of the bar containing standard options related to playing 
music, is located in the file toolbar .py. Similarly, classes for the main window, or timeline 
displaying a song's current and total time, are placed in their separate files. 

The application uses the neural network described in Chapter 4 to separate audio files 
into individual instruments. A l l source code files must be present in the directory with ap
plication implementation for the trained model to work. In addition, of course, all exported 
models we want to use must also be present. We can change their location in the settings 
dialog. 

Settings 

We implemented the settings menu as a custom dialog class SettingsDialog that inherits 
from QDialog class. QDialog is a widget appearing in front of the rest of the windows, and 
its job is to collect responses from the user. During initialization, the settings dialog loads 
the separation_config. json file and sets the default setting values accordingly. When 
settings are modified, current setting values related to audio separation are converted into 
a dictionary saved to the same j son file. These settings include: 
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Figure 5.3: Design of application - after the song is split into individual instruments 

1. Users Cctll 5 ctS previously mentioned, choose a directory for the exported models. 

2. We can edit the specific model signature to use in the application. 

3. Users can switch between running the neural network on the C P U or G P U . 

For this, we employ the QComboBox object, which shows the items added to it in a 
dropdown form. After clicking the O K button, the new settings are gathered from their 
respective forms and written back into the same . json configuration file. At the start of 
the separation process, we reread this file. 

Opening file and loading song 

Before the user can use the application as a music player or a learning tool, they must open 
an audio file by selecting the desired song in a standard file dialog. The option to choose 
a file is in the traditional menu bar. The application's main window, an instance of the 
QMainWindow class, provides an empty QMenuBar object that can be filled by whatever we 
choose and is accessible through . menuBar (). The action to open the file dialog connects 
to the menu bar. The advantage of using QAction class is that the command performs the 
same way regardless of whether the menu or a keyboard invokes it. 

Triggering the open action runs the choose_f ile() method inside the main window. 
First, a QFileDialog, a file selection widget, is created. The application only supports 
loading .mp3 audio files, the network's input. Selecting a file from the file dialog returns its 
absolute path, which must be first convert to a QUrl object before passing it to the media 
player. Figure 5.5 shows the application after a file is opened. 

The core functionality the application needs to satisfy for practical use is playing audio. 
PyQt5 achieves this using the QMediaPlayer class that allows playing various media types. 
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Music Separator 

File Settings 

S I N 

Figure 5.4: Application after launch 

Unfortunately, the media player can only play a single file at a time, which poses a significant 
obstacle after artificial intelligence separates a song. In addition, we want to mute or unmute 
certain tracks. 

We employ the PyDub library which focuses on audio manipulation to solve this is
sue. When the neural network splits the song, we save the individual tracks produced by 
the Demucs model into a temporary directory initialized at program start-up using the 
tempf i l e module. Then, all separated tracks are overlayed, and the resulting mix is saved 
back into the temporary folder and fed into the media player. The user no longer listens 
to the original song, even when no tracks are muted. Instead, they listen to a sum of all 
sources. We do this because we assume that when the user splits a song, they do this to 
focus on only some aspects of the song, for instance, the bass. 

After the player loads a song, a few more tasks must be completed before the user can 
finally listen. Firstly, we generate a waveform plot of the audio signal using matplotlib. 
After that, we only show the signal by turning off all axes and reducing the margins and 
paddings. Unfortunately, due to using a tight layout while saving the figure, we cannot 
directly save the graph with exactly specified dimensions. Because of this, we need to resize 
the image to the desired size using the resize () function from the PIL library. 

The background image on the progress bar widget can be set using setStylesheet () to 
display a specific image, in our case, the generated waveform plot. The background image 
location is specified in the CSS format. Unfortunately, the image does not automatically 
resize to the widget, as could be done in CSS. For this reason, we need to resize the graphs 
manually. 

The final graph is set as a progress bar's background inside our custom Track widget. 
The Track class implemented in track.py is responsible mainly for visualizing the position 
in played audio. It does this by showing the above graph and filling the progress bar with a 
semi-transparent color as the song keeps playing. The Track widget contains an info panel 
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Paused... 

Figure 5.5: Application after opening an audio file 

with the track name and mute button, and next to it, a progress bar. It uses a horizontal 
layout to separate the info panel from the progress bar. The info panel is a frame with 
a vertical layout because we wanted to include a mute track button at the bottom. This 
button is not present in the initial mixture the user loads, only in the separated tracks. 

Playing song 

The Timeline widget below the toolbar must update the total duration after the media 
player loads a song. It does this by accessing the duration property, which returns the time 
in milliseconds. 

Users can toggle between playing a song and stopping it by clicking a button on the 
toolbar or pressing the space key. Both trigger the function play_pause_song(). The 
function changes the button's icon to reflect the current state and either pause the song 
using pause () or starts it up again with the play () method implemented in QMediaPlayer. 

When the song is playing, it periodically triggers the signal positionChanged. This 
signal is connected to changing the timeline widget's current time and moving the progress 
bar in the Track widgets. We set the bar's range to the song's duration in milliseconds. 
Every time player's positionChanged signal is triggered, the progress bar's value property 
changes to reflect the player's position. This change has the effect that the overlay on the 
waveform graph accurately shows for how long the song has been playing. 

Pressing the left or right arrows will rewind or forward the song by 5 seconds. We 
override the main window's keyReleaseEvent triggered on any key release to implement 
this feature. First, we acquire the pressed key from the event.key() and compare it to an 
array of keys. Then, we simply deduct an appropriate amount from the player's current 
position to rewind the song. Similarly, we implement the forwarding, except we add the 
amount. 
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Another standard features in the toolbar of a music player are the buttons to jump to 
the beginning or end of a song. The player position is set to 0 to move the song to start. 
Setting the player's position to duration will move a song to the end. Additionally, the user 
can choose the exact moment in the song where to jump to by clicking on the graph. 

To achieve this, we created a custom ProgressBar class inheriting from the QProgressBar 
and overriding the mousePressEvent. Next, we acquire the x coordinate relative to the 
clicked widget from event. x () and convert it to a percentage by dividing it by the wid
get's width. Lastly, the main window moves the song to position according to the calculated 
percentage. 

Separating song into components 

The feature to split audio into individual components sets this program apart from regular 
music players. The split button is connected to the function split_song() by the signal 
clicked. Based on the feedback from initial testing, we added a special dialog to choose 
which instruments to keep as individual tracks while the rest would be combined into a 
single 'other' track. The SplitlnputDialog indicates this with checkboxes, as is shown in 
Figure 5.6. It returns the selection as a dictionary of track names with the corresponding 
checkbox's state. Later we use this dictionary after the separation process is complete. 

Split selection 

Select which tracks to separate: 

Bass E l 

Drums 0 

Guitars 0 

Vocals 0 

I ©Can 

Splitting song 

Please wait, the song is being separated into individual 
instruments. Separated tracks will be automatically 
displayed when process is Finished. 

I ©OK 

Figure 5.6: Dialog for the split selection and a warning dialog 

We use multithreading, as described in Section 2.3, to prevent the application from 
becoming unresponsive and crashing during separation because it is a long-running task 
that blocks other events. A popup warning dialog warns the user that they might wait a 
while, depending on the song's length. However, they may still use the application to play 
music until the process finishes, which would not be possible without multithreading. 

We task a worker with executing the function split_song_thread(). First, we call a 
slightly modified function separate_track() from the original Demucs source code inside. 
Results from separation are saved to the temporary folder. Settings used during the process 
are from the previously mentioned json configuration file. The thread then generates graphs 
for newly created tracks. Finally, the tracks not chosen during split selection are overlayed 
together along with the default 'other' output representing the rest of the components apart 
from the four main ones - the bass, drums, vocals, and guitars. 

After the thread finishes the separation, it signals the worker to execute the method 
where we stop the audio, and the player's media content changes. This action triggers 
the timeline to change. The Track widget for the original loaded mixture is replaced with 
multiple new widgets for chosen separated tracks, as shown in Figure 5.7. 
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Figure 5.7: Application after separation and with muted tracks 

Status bar 

We added a simple status bar to the bottom of the screen that was not present in the 
original Figma design. We added it after the feedback from a tester who mentioned he would 
appreciate something to inform him of progress while waiting for separation to complete. 
It is implemented as a singular label that changes text during certain events. For example, 
the user is informed while the separation is in progress or when the waveform plots are 
generated, as those are the two most time-consuming tasks. The status bar is shown in 
Figure 5.5 at the bottom, informing the user that the song is paused. 

Mut ing tracks 

Another important feature is the ability to mute individual tracks until only one plays. 
Clicking the mute button on the selected track triggers the toggle_track() function. The 
status bar informs the user of what is happening. We temporarily block signals to the 
media player to prevent the sudden disappearance and reappearance of the progress bar 
that would otherwise occur due to incoming signals notifying the Track widget of a change 
in audio position when the media is swapped. The selected track is either added to or 
removed from the array containing all active tracks. Newly active tracks are overlayed 
together using the PyDub library, as was already described. 

We visually darken a muted track to further indicate whether a track is active. For 
this purpose, we created a custom Overlay widget filled with semi-transparent color. Each 
Track is assigned its Overlay with the same dimensions and hides until the track is muted. 
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Exporting audio 

The user can export the mix of active tracks using the Export action inside the main menu. 
We already saved the mixture in the temporary folder as mixed.mp3. So we simply copy it 
to a new location chosen through the file dialog. 
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Chapter 6 

Evaluation 

This chapter presents experiments testing various neural network structures on a partial 
dataset. Next, we introduce several trained models using complete datasets and evaluate 
them using objective and subjective methods. Then, we present results obtained through 
a questionnaire filled in by human respondents that tested our implemented application. 
Lastly, we discuss the limitations of both the trained neural networks and the application 
and propose possible plans for future development. 

6.1 Neural network 

6.1.1 Experimental setup 

During the training, we used the Adam optimizer with a learning rate of 0.0003, a decay 
rate for the momentum term of 0.9, and a decay rate for the velocity term of 0.999. In 
addition, weight decay is set to 0. Batch size varied from 8 to 32 max, depending on the 
computational node used. The number of epochs done in a single training session also 
varied based on the number of CPUs requested. We do not modify the original network 
structure apart from changing the number of channels output by the convolutional layers, 
the number of recurrent layers, and the length of the input segment. 

The models were trained on one of the three datasets: Remix dataset only, MedleyDB 
dataset only, or a combination of the two datasets. The Remix dataset consisted of 101 
songs which totaled 7h 13m 5s of audio. MedleyDB comprised 53 examples with a total 
length of 3h 18m 32s. The combined dataset had 154 training songs and a length of lOh 
31m 37s. 

A l l models shared the same validation dataset, created by randomly selecting songs 
from the original Remix dataset. It contains 14 samples, up to l h 3m 31s of audio. The 
test dataset used for the final objective evaluation was likewise created from the Remix 
dataset. Similarly, it had 14 samples and a length of l h 9m 56s. We ensured that samples 
from the validation and test dataset did not appear in the training dataset. 

6.1.2 Experiments with the neural network on a smaller dataset 

We performed several different experiments with neural networks to determine the best 
hyper parameters. In these experiments, we examined the effects of, among others, batch 
size, loss function, or model depth. We used a smaller dataset to acquire results quickly. 
This smaller dataset was a subset of the regular remixes dataset from which we randomly 
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Table 6.1: Comparison of parameters and results of experiments on a partial dataset. 

Experiment # Input segment [s] Channels Depth Loss Valid loss nSDR [dB] 

1 6 24 6 L I 0.1647 -1.157 
2 6 24 6 M S E 0.5873 -3.308 
3 4 24 6 L I 0.1684 -1.664 
4 4 4 2 L I 0.2040 -3.765 

selected approximately 20% of training examples. The partial dataset for experiments had 
20 training tracks and four validation songs. For all experiments, we only used the original 
Demucs architecture. 

Experiments 1 and 2 studied the effects of changing a loss function, specifically L I loss 
and the M S E loss, respectively. In both experiments, we reduced the number of channels 
the convolutional layers output and the number of recurrent layers, signifying the model's 
depth, to even load the model. We ran experiment 1 for 32 epochs and experiment 2 for 23 
epochs as we reached a clear conclusion based on the achieved nSDR score. 

Since we used various loss functions, we cannot look at the loss to determine which 
experiment performed better. However, a quick look at the SDR metric during validation 
shows that the neural network configuration used in experiment 1 performs better than the 
one in experiment 2. Experiment 2 achieved the best nSDR of -3.308 dB, while experiment 
1 scored an nSDR of -1.157 dB (which can be seen in Table 6.1), possibly even better if 
we continued training. As a result, we trained all future models using L I loss exclusively. 

Experiment 3 investigated the effect of changing the input segment length. The rest 
of the model parameters remained the same as in experiment 1. Herefore, we could only 
experiment with reducing the segment length, as increasing the segment length above 6 
seconds always resulted in a memory error. We trained this model for 28 epochs before we 
concluded that it performed worse than the model from experiment 1. 

As we trained this model for approximately the same number of epochs as in experiment 
1, we can compare the achieved nSDR scores. The best score from this experiment with 
an input length of 4 seconds was -1.664 dB, as is shown in Table 6.1. We conclude that 
shortening the input segment length adversely affects model performance. 

Experiment 4 studied a very shallow version of the Demucs architecture and whether 
it could learn anything. We took the model hyperparameters from an example Makefile 
from the official repository1. This model was trained for 36 epochs before we determined 
it could only learn a little. The best nSDR score it attained was -3.765 dB (as is shown 
in Table 6.1). 

Table 6.1 summarizes the model parameters for each experiment. Apart from the pa
rameters, we also include the best-achieved loss scores and nSDR scores. 

6.1.3 Models trained with complete datasets 

After initial experiments with model architecture and hyperparameters, we trained models 
on more extensive datasets. Finally, we will use the best-performing model in a practical 
desktop application. 

1 Available at https: //github.com/f acebookresearch/demucs/blob/main/Makef i l e 
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Firstly, we trained three models with the same architecture using different training 
datasets. The first model utilized the full remix dataset instead of the small subset used in 
the previous experiments. The next model relied only on the MedleyDB dataset. Lastly, 
the final model used a combination of those two datasets. However, all the models share 
the validation dataset. 

Compared to the previous experiments, these models were shallower. Therefore, the 
models' channels and depth were reduced to half to speed up training - reducing the channels 
to 12 from the initial 24 and depth to 3 instead of 6. Also, we wanted to see if an increased 
training dataset would even out the loss in model complexity. Furthermore, when we 
initially trained at Metacentrum using only a single G P U and C P U , more complex models 
could not finish even a single epoch. However, we could later train two deeper models 
thanks to increasing the number of CPUs used to help with mainly data loading. 

We trained all three shallow models for a total of 70 epochs to be able to compare results 
more accurately. First, we present figures showing training and validation loss evolution 
and the nSDR metric computed during validation for each model. We especially highlight 
the boundary of 0 dB as the ratio between noise and actual signal in produced result shifts 
to contain more signal than the noise. 

Figure 6.1 corresponds to the first model trained only on the remix dataset. Next, 
Figure 6.2 shows the model using only MedleyDB. Lastly, Figure 6.3 displays the model 
using a combination of datasets. 

Figure 6.1: Loss and nSDR evolution for the Remix (12 channels, 3 depth) model. 

Without any surprise, the model trained on the most extensive dataset achieved the 
best results out of the three, earning the best nSDR score on the validation dataset of 
0.566 dB. On the other hand, the MedleyDB model could not surpass the model using our 
remix dataset with the best nSDR of 0.035 dB, most probably due to this dataset being 
shorter in total duration. The model trained on the remix dataset could, at best, achieve 
an nSDR of 0.224 dB. The results are shown in Table 6.2. We selected the checkpoint 
during the last training session for the evaluation that yielded the best nSDR. 

We must point out that none of these models achieve satisfactory performance judging 
from the SDR metric and are unsuitable for our desktop application. Because of that, we 
decided to train additional models. 

Those deeper models using the combined dataset yield the best results. The first addi
tional model doubled in size compared to previously trained ones. Wi th 24 channels and a 
depth of 6, it copied the structure of experiment 1, the only difference being the size of the 
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Medley only model (12 channels, 3 depth) Medley only model (12 channels, 3 depth) 

Figure 6.2: Loss and nSDR evolution for the Medley (12 channels, 3 depth) model. 

Remix + Medley model (12 channels, 3 depth) Remix + Medley model (12 channels, 3 depth) 

Figure 6.3: Loss and nSDR evolution for the Remix + Medley (12 channels, 3 depth) model. 

training dataset. The second model had even more channels, a total of 28. Unfortunately, 
we could not further increase complexity, as this caused training models to run out of G P U 
memory after each epoch. 

Figures 6.4 and 6.5 present the evolution of loss and nSDR during the training these two 
models, respectively. We did not limit ourselves to a specific number of epochs; instead, we 
trained models for as long as possible - both models were trained for 81 epochs. 

From the very beginning, both models surpassed the previously trained models and 
quickly rose above the negative nSDR, something the shallower models could do only after 
tens of epochs. Figure 6.6 compares the validation loss across all models trained on the 
full dataset and Figure 6.7 the nSDR metric. Without any doubt, both 24-channel and 
28-channel models performed significantly better. Examining these two more closely, we 
could argue that the 24-channel model slightly exceeds the 28-channel. It may be because 
this model requires even more data to learn correctly. 

Table 6.2 describes the model parameters and the best-achieved validation loss and 
SDR. 
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Remix + Medley model (24 channels, 6 depth) Remix + Medley model (24 channels, 6 depth) 

Figure 6.4: Loss and nSDR evolution for the Remix + Medley (24 channels, 6 depth) model. 

Remix + Medley model (28 channels, 6 depth) Remix + Medley model (28 channels, 6 depth) 

Figure 6.5: Loss and nSDR evolution for the Remix + Medley (28 channels, 6 depth) model. 

6.1.4 Objective evaluation of models on a test dataset 

We evaluated the five main models on a prepared test dataset. This test dataset was 
created by randomly selecting songs from initially downloaded remixes, making sure that 
these songs or their interprets do not appear in the train and validation datasets. We present 
four distinct metrics for better comparison - the nSDR, SIR, ISR, and SAR. These metrics 
are described in Chapter 3. First, table 6.3 shows the nSDR metric on the benchmark 
dataset for all models, table 6.4 shows the SIR, table 6.5 the ISR metric, and Table 6.6 
shows the S A R results. 

Unsurprisingly, the shallower models performed poorly, with the model trained only on 
MedleyDB being the worst overall. The two more complex models, the Remix + Medley 
(24/6) and (28/6), performed very similarly. While the 28-channel version outperformed 
the 24-channel one on nSDR and SIR metrics, it performed slightly worse on the ISR. In 
the SAR, there is no better model. 

A l l models achieved better nSDR on the test dataset than on validation. We are unsure 
as to what is the cause for this. It is possible that overall the randomly selected songs for 
the test dataset were more similar to the training dataset. 
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Table 6.2: Comparison of parameters and results of training on a full dataset. 

Dataset Input segment [s] Channels Depth Loss Valid loss nSDR [dB] 

Remix 6 12 3 L I 0.1986 0.224 
Medley 6 12 3 L I 0.2074 0.035 
Remix + Medley 6 12 3 L I 0.1994 0.566 
Remix + Medley 6 24 6 L I 0.1586 2.488 
Remix + Medley 6 28 6 L I 0.1578 2.593 

Table 6.3: nSDR results on test dataset. 

Model 
Test nSDR [dB] 

Model A l l Bass Drums Guitars Vocals Other 

Remix (12/3) 2.204 3.728 3.897 0.778 2.567 0.052 
Medley (12/3) 1.811 3.112 3.498 0.927 1.504 0.013 
Remix + Medley (12/3) 2.138 3.603 3.958 0.886 2.181 0.060 
Remix + Medley (24/6) 4.035 6.610 7.230 1.732 4.554 0.051 
Remix + Medley (28/6) 4.137 6.669 7.481 1.791 4.662 0.082 

Table 6.4: SIR results on test dataset. 

Test SIR [dB] | 
Model A l l Bass Drums Guitars Vocals Other 

Remix (12/3) -14.563 -8.459 -10.851 -15.747 -12.815 -24.943 
Medley (12/3) -31.010 -7.737 -12.767 -17.693 -16.383 -31.010 
Remix + Medley (12/3) -14.903 -7.777 -14.089 -16.427 -12.703 -23.552 
Remix + Medley (24/6) -11.199 -4.340 -9.083 -12.599 -10.880 -19.094 
Remix + Medley (28/6) -10.670 -4.512 -9.018 -12.382 -9.895 -17.545 

Table 6.5: ISR results on test dataset. 

Test ISR [dB] | 
Model A l l Bass Drums Guitars Vocals Other 

Remix (12/3) 3.852 7.424 6.895 1.198 3.687 0.055 
Medley (12/3) 2.902 4.541 6.391 1.901 1.666 0.012 
Remix + Medley (12/3) 3.565 5.943 7.648 1.533 2.633 0.070 
Remix + Medley (24/6) 7.042 11.429 12.325 4.682 6.518 -0.647 
Remix + Medley (28/6) 7.036 11.186 11.754 4.643 7.079 0.518 
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Figure 6.6: Comparison of validation loss across all trained models. 

Table 6.6: S A R results on testing dataset. 

Test S A R [dB] | 
Model A l l Bass Drums Guitars Vocals Other 

Remix (12/3) 0.268 0.598 0.179 0.210 0.315 0.039 
Medley (12/3) 0.210 0.610 0.154 0.149 0.050 -0.002 
Remix + Medley (12/3) 0.212 0.572 0.089 0.212 0.122 0.062 
Remix + Medley (24/6) 0.372 1.070 0.395 0.245 0.147 0.003 
Remix + Medley (28/6) 0.379 0.977 0.376 0.310 0.226 0.006 

6.1.5 Subjective evaluation of models using human respondents 

At first, we attempt to evaluate the trained models by listening to separated tracks. We 
randomly selected 3 songs from the test dataset for this purpose. The three smaller models 
fare worse as there is much noise in the records, especially in the guitars, vocals, and the 
other track. The bass track sounds the best, followed by the drum track. However, even 
there is still a bleed from the rest. 

Examining the separated tracks, the difference between the two deeper models takes 
much work to notice. Again, both perform best at separating bass and drums. While the 
vocals and guitars are separated better than with the smaller models, noise and unwanted 
artifacts remain. Vocals tend to bleed into the guitar track and vice versa, although slightly 
less. 

We created a questionnaire to determine which model performs the best according to 
independent evaluators: 
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Figure 6.7: Comparison of validation nSDR across all trained models. 

Rating 
Model Bass Drums Guitars Vocals A l l 
Remix (12/3) 4 4 3 3 3 
Medley (12/3) 5 5 5 5 5 
Remix + Medley (12/3) 3 3 4 4 4 
Remix + Medley (24/6) 2 2 2 2 2 
Remix + Medley (28/6) 1 1 1 1 1 

Table 6.7: Results of users evaluating the models. 

1. We select and separate 20-second long excerpts from three tracks and ask respondents 
to listen to all of them. The respondents do not know which model separated the 
track. 

2. For each instrument category, namely the bass, drums, guitars, and vocals, we ask 
them to order tracks from what they believe is the worst separated to the best. 

3. We average out their responses to get the final results. 

We present the results in Table 6.7. In total, 11 people filled out the questionnaire. The 
models are ordered in each category, from 5 being the worst to 1 representing the best. 

The previous objective testing showed that the most complex 28-channel model achieved 
the best result in several metrics. First, the respondents considered this model the best 
across all categories. Next, they felt that the 24-channel model was the second best. 

The worst of all models was the Medley (12/3) model, which we anticipated based on 
previous tests. The 12-channel model trained on only the Remix dataset overall received 
better scores than the similarly complex model trained on a larger dataset. It only received 
worse scores on bass and drums separation. 

We are aware that three short song segments are not enough for a thorough evaluation. 
However, we had to consider the time necessary to listen to all separated excepts by five 
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Rating 
# of votes 

1 2 3 4 5 Average 

Design 0 0 1 6 6 4.38 
Navigation clarity 0 0 0 3 10 4.77 
Responsivity 0 0 6 6 1 3.62 
Likelihood of using the application again 0 1 2 6 4 4.00 

Table 6.8: Responses of users testing the application. 

different models across multiple songs. If the respondent can order the models with repeat 
listening, the listening portion of the questionnaire would take 20 minutes. Unfortunately, 
we could not find many respondents that would commit to a questionnaire even longer than 
that. 

6.2 Applicat ion testing 

We subjected the created application to testing by human volunteers. Afterward, they 
would answer the questionnaire about their experience. The full transcript of the ques
tionnaire is in Appendix C. Due to the application's straightforward nature, there was 
no specific use case for the user to perform. Instead, they were encouraged to use the 
application as much as possible and try the separation process on at least one provided 
song. 

In the questionnaire, the respondents had to rate the application on a scale from 1 being 
the worst to 5 being the best in several categories: 

• overall design 

• responsivity 

• navigation clarity 

• possibility of further usage 

We also inquired about their preferred choice of operating system to determine if we 
should port the application in the future. Apart from their likes and dislikes about the 
application, we also asked for suggestions about potential new functionality. 

In total, 13 users tested the application. Table 6.8 shows the results from the part of the 
questionnaire where the respondents graded various aspects of the application. Overall, the 
application design received a positive rating. In addition, the testers deemed the application 
to be easy to navigate, which was to be expected. On the other hand, the responsivity 
received the worst ratings, with an average of 3.56, making it the most crucial aspect of 
the application to improve in the future. 

Most of the users indicated they would likely use the application again in the future. 
Wi th most users indicating that they use the Windows operating system, attempting to 
port to other systems would be beneficial. 

Users praised the simplicity of the application, its ease of use, and the feature to split 
songs into separate instruments. However, during testing, they disliked the occasional 
minor bugs and long waiting time for the separation process to finish. In addition, some 
complained about the lack of ability to load multiple songs into different tabs. 
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The questionnaire helped suggesting new features to add in the future. One of them is 
the ability to loop parts of the song. Another addition would be the option to change the 
volume of individual tracks. The rest of the suggestions would be easier to implement, such 
as renaming the tracks or a better progress indicator. 

Lastly, the respondents indicated that they would use the program again in guitar-
related tasks. For example, learning guitar directly from the application or just separating 
the guitar sound. 

6.3 Limitations and plans 

Based on the objective evaluation of trained neural networks, there is still room for improve
ment. The models achieved results well below those of existing state-of-the-art methods. 
However, these models do not separate guitar sounds, unlike our models. Therefore it is 
expected they would perform at least slightly worse. Nonetheless, they serve well enough to 
demonstrate integrating a neural network into a practical application. Our models would 
benefit from additional training time. Fortunately, it is simple to swap models in the 
application if needed. 

The next step in future development would be to use different architecture for the neural 
network, namely the Hybrid Demucs. Unfortunately, we could not do this in this thesis 
due to time constraints. Nevertheless, using this architecture should help improving guitar 
sound separation performance. 

User testing of the application concluded that there are possible ways to improve, rang
ing from new functionality to improvement in responsivity. During the planning stages, 
we intended to include a looping mechanism allowing users to replay a small portion of 
the song. However, due to the complexity of the task and time constraints, we decided to 
abandon this feature to focus on improving base functionality. 

Another feature users would welcome, the volume control over individual tracks, is 
impossible to add to the current application because PyQt does not support playing multiple 
audio files at once. If we were to change the volume on, for instance, the bass track, we 
would have to overlay all tracks together, which takes a couple of seconds. This additional 
delay would detract from the user experience. 

In the future, we intend to continue working on the application. In addition, we are 
considering reworking it thoroughly using a different GUI framework that would provide 
better audio control. 
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Chapter 7 

Conclusion 

In conclusion, this thesis presented the development of an application for guitar sound 
separation which utilizes a neural network. 

Work involved the creation of a custom dataset from remixes of popular songs and 
adjusting the existing MedleyDB dataset. 

Next, we adapted the Demucs model to include additional output - the guitar sound. 
We trained and evaluated five distinct models in MetaCentrum. These models varied in 
training dataset used and architecture - namely, the number of feature maps produced by 
each convolutional layer and the number of recurrent layers in the model. 

A l l models were evaluated on the test portion of the prepared dataset, and we present 
several metrics for objective evaluation. None of the trained models achieve results compa
rable to state-of-the-art methods but are usable in a practical application. This is mainly 
because these methods do not separate guitar sounds. Furthermore, the models were sub
jectively assessed by human listeners to rate their performance relative to each other. 

We implemented an application for separating songs into five components - the bass, 
drums, guitars, vocals, and rest. In addition, the application serves as a music player and an 
educational tool for learning musical instruments. The application was evaluated through 
a questionnaire. The findings also suggest that the application has the potential to be a 
valuable tool for musicians and sound engineers. 

Future research could explore the new architectures of neural networks, namely swapping 
the current Demucs architecture for the Hybrid Demucs. In addition, the application would 
benefit from additional functionality suggested by respondents, such as the looping function 
or more robust audio controls. 
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Appendix A 

Contents of the included storage 
media 

The included medium contains: 

• documentation - directory with thesis text source code and pdf 

• demucs - directory with code and datasets used for training the neural networks 

• musicSeparationGUI - directory with code and instructions on how to launch the 
practical application 

• examples - directory with examples of separated songs 

• music separation training.xlsx - an Excel file containing more information on 
the training process and results 
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Appendix B 

Installing the application 

The application was primarily developed and tested on Ubuntu 22.04. 

Prerequisites 

• python >=3.8 

• Pip 
• virtualenv 

• ffmpeg 

If any of them are not present in your system, install them using the following commands: 

sudo apt install python3 

sudo apt install python3-pip 

sudo apt install python3-venv 

sudo apt install ffmpeg 

Installation 

Navigate to the directory with the application code and run the i n s t a l l . sh or execute the 
following commands in given order: 

python3 -m venv musicSeparatorEnv 

source musicSeparatorEnv/bin/activate 

python3 -m pip install -r requirements_app.txt 

Launch 

To launch the application, run the run. sh or: 

source musicSeparatorEnv/bin/activate 

python3 main.py 

On certain versions of Ubuntu, there are known issues with playing media using PyQt, 
which can be fixed by applying the following: 

sudo apt-get install Iibqt5multimedia5-plugins 
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Appendix C 

Application testing questionnaire 

Your task is to open the prepared example song in the application and separate the guitar 
track. Then, mute all the other channels except for the guitar. To be sure, try listening 
to it. Finally, export the guitar sound. After you are finished, please answer the following 
questions: 

On a scale from 1 to 5 (1 being the worst and 5 being the best) rate: 

1. Application design 
1:D 2:D 3:D 4:D 5:D 

2. Navigating the application without explaining the controls 
1:D 2:D 3:D 4:D 5:D 

3. Application responsivity 
1:D 2:D 3:D 4:D 5:D 

4. How likely you are to use the application again outside of this testing 
1:D 2:D 3:D 4:D 5:D 

Answer the next set of questions by writing one or more sentences: 

1. What operating system do you usually use? 

2. What did you like the best about the application? 

3. What did you dislike the most about the application? 

4. Is there any other functionality you would welcome or feel needs to be added? 

5. Have you experienced any bugs during testing? 
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If you previously answered that you would use the application again, what would 
use it for? 
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