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Abstrakt

Cielom tejto bakalarskej prace je strucne vysvetlift metédu spektroskopie laserom in-
dukovaného mikroplazmatu (LIBS) ako néstroj analyzy prvkového zlozenia studovanych
vzorkov. Vystupy z prvkovej analyzy (emisné spektrd) su dalej spracované pomocou
matematickych metod regresnej analyzy za tcelom najdenia vztahov medzi nameranymi
chemickymi prvkami. Tieto dve metody st pouzité na analyzu problému zalozeného
na realnych datach, a to najdenie Specifického vztahu medzi pritomnostou uranu a hy-
drozirkénu v studovanom vzorku uranonosného pieskovca.

Summary

The goal of this bachelor’s thesis is to briefly describe Laser-induced breakdown spec-
troscopy method for analysis of elemental composition of studied samples. Outcomes of
LIBS analysis (emission spectra) are further proceeded with mathematical methods of
regression analysis. The goal is to find relations between measured chemical elements.
These two methods are used for analysing real data based problem, that is to find specific
relation between presence of uranium and hydrozirconium in a studied sample uranium-
hosted sandstone.

Klicova slova
metdda laserom indukovaného mikroplazmatu, LIBS, regresna analyza, uran, hydrozirkénium,
uranonosny pieskovec, prvkova analyza.

Keywords
Laser-Induced Breakdown Spectroscopy, LIBS, regression analysis, uranium, hydrozirco-
nium, sandstone-hosted uranium, element analysis.



Rozsireny abstrakt

Téato praca sa sklada z 3 casti. V prvych dvoch kapitolach pokladame teoreticky zaklad
a pozadie nutné pre vyklad v tretej casti, analyze problému na realnych datach. V prvej
kapitole sa venujeme metéde LIBS, ktorou sme data potrebné na statisticki analyzu
ziskali. 'V druhej kapitole sa venujeme Statistickym metédam, ktoré sme pri analyze
vzorku pouzili. V tretej kapitole vysvetlujeme pozadie problému, nas postup pri analyze
a diskusiu k ziskanym vysledkom.

Metoda LIBS je spektroskopicka analyticka metoda pouzivana na zistenie zlozenia
materidlu, ktord pochddza z atémovej emisnej spektroskopie (AES). Je velmi rychla, da
sa aplikovat na vzorky akéhokolvek skupenstva, nezostavaju po nej vyrazné skody na
materidli a vzorky sa neznehodnocuju. Zjednoduseny zakladny princip je nasledovny.
Mame laser ako zdroj velkej energie. Tymto laserom mierime na konkrétny bod na
nasom vzorku. Vysleme velkti energiu do vzorku a tym sa vzorok v danom mieste
zacne zohrievat. Elektrony sa zac¢na rychlejsie pohybovat a aby vyrovnali narast en-
ergie, prejdu do vyssich energiovych stavov. Atémové vizby sa nartsaju a nastava
abldcia (vyparovanie) hmoty. Vznikd plazma. Ziarenie laseru trvé priblizne desiatky
nanosekund. Potom zacne plazma chladnit. Ako plazma chladne, elektrény sa vracaju
naspét do nizsich energiovych stavov a pritom vyzaruju elektromagnetické Ziarenie. De-
tekéné pristroje toto ziarenie zachytavaji v podobe tzv. emisného spektra. Emisné spek-
trum je tvorené v nasom pripade vinovymi dlzkami v rozmedzi 198.7959 - 1016.708 nm. Na
kazdej vlnovej dizke sa zachytdva bezrozmern4 intenzita ziarenia. Z kvantovej teérie vy-
plyva, ze kazdému chemickému prvku odpoveda tzv. charakteristické Ziarenie vznikajice
pri prestupe elektrénov z vyssich energiovych stavov do nizsich energiovych stavov. Preto
spatne z emisného spektra dokazeme urcit, ziarenie akych prvkov sme zachytili. Teda
ak sme na danej vlnovej dlzke zachytili pomocou detektoru intenzitu vicsiu ako pevne
zvolend hranica, moézeme prehlasit, ze v Studovanom vzorku sa odpovedajici chemicky
prvok nachddza. Polohy vlnovych dizok odpovedajicich jednotlivym prvkom sd organi-
zované do tzv. spektroskopickych tabuliek. Tu, ktort v praci pouzivame my, spravuje
Americky drad pre standardizaciu a testovanie (NIST).

Regresna analyza je Statistickd metoda ktora popisuje pricinno-néasledné vztahy medzi
nahodnymi veli¢inami. Teda ak existuje pri¢inno-néasledny vztah medzi dvoma velici-
nami, zmena hodnoét jednej veli¢iny vyvola zmenu hodndt druhej veli¢iny. Na zaklade
takéhoto vztahu dokdzeme pomocou regresnej analyzy vytvarat predikcie. Pre to musime
zostavit model v ktorom méme na jednej strane predikovant ndhodnti premennt ktort
vysvetlujeme, a na druhej strane vysvetlujice nahodné premenné, ktorymi vysvetlujeme
vysvetlovanii ndhodnt premenni. Takyto model sa da zostavif mnohymi sposobmi, a
preto na ndajdenie toho najvystihujticejsicho modelu pouzivame testy statistickych hy-
potéz. Rovnako tak je potrebné testovat samotny model na spliiovanie predpokladov
regresnej analyzy, ako su nezavislost rezidui, ich normalita, ¢i konstantny rozptyl.

Statisticki analyzu sme robili na datach ziskanych pomocou LIBS metédy z redlneho
vzorku. Nasim vzorkom je kusok uranonosného pieskovca ziskaného zo Stredoceského
kraja. Analyza tohto vzorku je dodlezita pre tazbu uranu ako dolezity zdroj energie pre
jadrové elektrarne. Celkova problematika sa zaobera tym, akym spdsobom sa urdn vysky-
tuje v uranonosnej rude, resp. s akymi prvkami sa viaze. Analyzou tychto vztahov
dokazeme lepsie lokalizovat miesta vhodné na tazbu urdnu. My sme sa v praci zamerali
na vztah urdnu a fazy zvanej "hydrozirkon” — ZrSiO, - nH,O — spojenie dvoch chemick-
ych prvkov — kremika a zirkénu. Zistovali sme, ¢i pritomnost uranu zavisi jednotlivo na



zirkone ¢i kremiku, alebo zavisi prave na ich spojeni vo faze hydrozirkén. Analyzu sme
robili na datovom stubore vzorku zlozeného z 22 500 emisnych spektier, ktoré vznikli mera-
niami na stvorcovej mriezke o rozmeroch 150 x 150 bodov. Postupovali sme naslednovne.

Na zaciatku sme zostavili pociatoény dplny model zlozeny z vysvetlovanej premen-
nej intenzity urdnu, a s vysvetlujicimi premennymi vSetkymi samostatnymi prvkami (7
chemickych prvkov) az do tretej mocniny, spolu s interakciami medzi kazdymi dvoma
prvkami. Vznikol model s 88 regresnymi parametrami. Testovanie modelu ukézalo, ze
vadsina parametrov je nevyznamnd, taktiez grafy rezidui nespliiali predpoklady. Z to-
hto modelu sme preto postupne vyradili nevyznamné premenné tak, aby sme dostali iba
model s vyznamnymi premennymi, ktory by mal dostatoc¢ne vystihovat realitu.

To sme urobili takym sposobom, ze v kazdom kroku tohto postupu sme z mod-
elu odstranili jednu premennt, ktora odpovedala najvyssej p-hodnote t-testu nulovosti
prislusného regresného parametru. Po kazdom odobrani premennej sme novy submodel
este otestovali na rovnost rozptylov s povodnym zdkladnym modelom pomocou F-testu.
Vdaka tomu submodel nestracal povodnu kvalitu a na druhej strane ziskaval na Statistickej
jednoduchosti. Tento postup sme opakovali az dovtedy, kym vSetky regresné parametre
boli statisticky vyznamné na hladine vyznamnosti 0.05 (p hodnota bola mensia ako 0.05)
alebo vysledok F-testu bol, Ze zamietame rovnost rozptylov (p hodnota bola mensia ako
0.05). Ked sme dosiahli jednej z tychto dvoch hranic, submodel sme povazovali za najlepsi
submodel s danym pévodnym zakladnym modelom. Taktiez sme priebezne sledovali, ¢i
sa meni rozptyl a normalita rezidui.

Rovnaky princip sme potom aplikovali pri modeloch s transformaciami vysvetlovane;
premennej alebo vysvetlujtucich premennych. Vyskusali sme transformovat predovsetkym
vysvetlovani premennd, a to odmocninou, mocninou, prirodzenym logaritmom a lomenou
funkciou. Taktiez sme skusali rozne spracvoat cely datovy stbor. Kedze sposob ziskava-
nia dat z metody LIBS nie je jednoznacne stanoveny, existuje viacero pristupov ako data
prvotne spracovat. Okrem pévodnych "surovych” dat sme vyskusali aj celkovi Standard-
izaciu a lokalnu standardizaciu dat. Takto upravené data sme rovnako tak otestovali pre
rozne modely.

Najlepsi vysledok, ktorého sme boli schopni dosiahnut, bol pre neupravené vstupné
data, v modeli s odmocninou vysvetlovanej premennej. Tento model sme boli schopni
po obstraneni nevyznamnych regresnych parametrov zuzit na 52 regresnych parametrov,
pri nezamietnuti hypotézy o rovnosti rozptylu s rozptylom zakladného modelu. Sub-
model obsahoval vSetkych 7 povodnych chemickych prvkov, 22 interakcii, a 48 regresnych
parametrov je v modeli Statisticky vyznamnych. Koeficient determinacie, teda schop-
nost modelu vysvetlit variabilitu vysvetlovanej premennej je na trovni 98.76%. Podla
grafu sa rezidua homoskedasticitné, teda maja rovnaky rozptyl, a taktiez ich rozdelenie
je velmi podobné normalnemu rozdeleniu. Takyto vysledok, predovsetkym graficky, sme
nedokazali dosiahnut pri ziadnom inom modeli.

Nasledne sme tento model analyzovali vzhladom k povodnému problému, a to aku
rolu v nom zohravaju zirkén a kremik, vratane ich vzajomnej posobnosti. V najvhod-
nejSom submodeli vystupuje kremik v prvej a druhej mocnine, zirkéon v prvej, druhej a
tretej mocnine, a zaroven aj ich spolo¢nd interakcia. Okrem druhej mocniny kremika st
vsetky tieto prvky statisticky vyznamné. Pri druhej mocnine kremika tito skutoénost
neberieme ako smerodajni, a to hlavne preto, lebo v modeloch komplexnych ako tento
sa moze stavaf, ze vysvetlujice premenné ako samostatné parametre sa mozu javit ako
nevyznamné, no smerodajné je, ako sa spravaju vo svojich interakciach. Pri kremiku



mozeme pozorovat 4 Statisticky vyznamné interakcie, preto usudzujeme, ze kremik je v
modeli v¥znamny. Statisticky nam teda tento submodel nevyvratil, Ze by sme mohli pri
vysvetlovani urdnu zanedbat samostane kremik, zirkén, alebo ich interakciu. Faza hy-
drozirkénu v nasom vzorku sa teda javi ako vyznamné, a preto pritomnost uranu nezavisi
od zloziek hydrozirkénu samostatne, ale s fazou ako celkom.

Takto ziskané vysledky sme sa snazili este podporif zostavenim ekvivalentného glm
modelu. Aplikovali sme rovnaky princip odstranovania premennych spolu s F-testom.
Ziskany submodel sme porovnali s nasim najlepsim linearnym submodelom. 17 z 22
interakcii sa nachadzalo ako v Im modeli, tak aj v glm modeli, ¢o povazujeme za pod-
poru nasich ivah. Nasledne sme porovnali predikcie tychto dvoch modelov. Glm model
predikuje vyssie hodnoty urdanu ako Im model pri hodnotach intenzit do hranice jedna,
zatial ¢o Im model predikuje vyssie hodnoty ako glm model nad hranicou intenzit jedna.
Vsetky ziskané vysledky st v praci hlbsie okomentované aj spolu s grafickymi ukazkami.

SLAVIK, L. Statistical analysis of laser spectroscopy measurements. Brno: Vysoké uceni
technické v Brné, Fakulta strojniho inzenyrstvi, 2018. 53 s. Vedouci doc. Mgr. Zuzana
Hibnerova, Ph.D.
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1 Introduction

Analysing composition of things around us is nowadays absolutely common element of
modern lifestyle. In stores we’re checking what products we buy consist of, so we know
what ingredients we are putting inside our body. When a doctor prescribe us a medicine,
we ask "What’s inside of the pill?” so we can search on the internet what is the active
pharmaceutical ingredient and what effect does it have, especially what side effects might
the medicine have. Lastly, when you visit a bookstore, you don’t just look at the book
cover, say " Yeah, such a nice book, I'm okay now.” and leave. You want to open the book,
read through it and know what is it about. That’s a human nature, to go inside things,
to understand what’s behind what we can see, smell or touch.

Here in AtomTrace at Brno University of Technology, where this bachelor thesis was
created, we're trying to look deep inside the materials and analyse what chemical ele-
ments our samples do consist of. We're developing measurement tool that would be able
to easily analyse chemical composition of materials of any sort in various environments
under all conditions. As a measurement method they’re using Laser-Induced Breakdown
Spectroscopy.

Laser-Induced Breakdown Spectroscopy (LIBS) is quite a new method for element
analysis. This method has many advantages such as speed, demands at sample prepara-
tions, applicability to all states of matter. The outcome of LIBS measurement is LIBS
spectrum. This spectrum contains a huge amount of data. That’s where statistics takes
its place.

Regression analysis is one of the most common statistical methods used in wide range
of professions such as economists, analytists, data scientists, social workers, or psycholo-
gists. Its capabilities to capture relationship between things and describe the cause-effect
relation is in this era of data analysis priceless. Also properties of prediction abilities have
huge potential in avoiding accidents, for example in medicine.

In this thesis we’re analysing presence of Uranium in sandstone-hosted uranium de-
posit. In addition we’re searching for particular relationship between Uranium and so
called "hydrozirconium”. Exploring its behaviour and principles of occurrence can help in
mining of Uranium, which is important in creating energy needed for our everyday lives.
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2. LASER-INDUCED BREAKDOWN SPECTROSCOPY
2 Laser-Induced Breakdown
Spectroscopy

Laser-Induced Breakdown Spectroscopy (LIBS) is new, developing field in chemical analy-
sis. Method has roots in Atomic Emission Spectroscopy (AES) and recently, it’s becoming
popular. Mostly regarding its capabilities to analyse samples in all states of matter, with
high repetition rate, no physical contact, and without almost any destruction of the sam-
ple (leaves just little craters almost not visible to human eye). Same counts for number
of publications that is rising from year to year. For its potential this technique had been
called "a future star” [1] by Dr. James Winefordner, world known spectroscopist.

This chapter explains what exactly LIBS system is, how does it work, what components
does it consist of, what can be regulated by a person and finally what is the outcome of
the measurement. This measurement is used for our data analysis. Sources used for this
chapter are [11], [16], and [17].

2.1 Basic concept

To understand the basics of how LIBS works, there’s no need to have deep knowledge
in chemistry, physics, or technology in general. It’s just necessary to accept some logical
assumptions.

Imagine a laser. Tool that is able to concentrate energy (have high density of photons)
and out of this energy produces a beam of intense radiation (light). The radiation is so
intense it can burn person’s retina in a second. Very similar to if a person would look
directly to the sun for about 30 seconds. Furthermore, this light is also strong enough to
"burn” any material. "Burn” means it delivers so much energy to the targeted point on
the sample, that particles of the material start to rapidly move and change their "state”.
Now a physical processes — ablation, plasma creation, excitation — take place. For now
just assume that the plasma is created on the surface of the sample and when it cools
down, it also emits electromagnetic radiation. This radiation is collected and measured
by detectors. Detected signal is called LIBS (or emission) spectrum which is represented
by measured intensity dependent on wavelength usually showed in a plot. On the x-
axis there is wavelength (between 198.7959 - 1016.708 nm) of the radiation and on the
y-axis it’s intensity (non-negative dimensionless quantity) of the radiation. According
to Atomic Emission Spectroscopy every element, after this process of ablation and when
plasma starts to cool down, emits energy at certain wavelength. So when we look at
emission spectrum, we find many peaks' that represent certain chemical elements. By
analyzing these peaks we conclude which chemical elements occur in the targeted place of
the sample. From the moment when laser produces a beam till the moment of detecting
emission spectrum, whole process takes about tenths of microseconds. On the other hand,
one light pulse can analyze only a very small targeted volume of the sample, which means
the measurement has to be repeated on more places and the outcomes (LIBS spectra)
have to be processed, most preferably statistically evaluated.

1Since there is only limited amount of elements in the sample, emission spectrum theoretically looks like
a constant line with some points of high intensities — peaks — that lie above this line and are significantly
higher than their close and overall background.
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2.2. ATOMIC EMISSION SPECTROSCOPY (AES)
2.2 Atomic Emission Spectroscopy (AES)

LIBS method’s roots reaches to older analytical method developed in the end of 19th
century. First to experiment with this method were Kirchhoff and Bunsen [13]. AES is
an analytical method used for determining composition of samples in all states of matter.
The main process consists of destructing chemical bonds of the sample (atomization and
excitation)?. For example, Kirchhoff and Bunsen used just a simple flame. Other tools for
destructing chemical bonds might be electrodes, arch or spark discharge, hollow cathode
lamps [19], inductively coupled plasma [17] or as in LIBS a laser. When the energy is
delivered to the interaction spot on targeted sample, temperature can rise up to around
30 000 K, chemical bonds are destroyed and atoms get to the higher energy levels® to
compensate this gain in energy as shown in Fig. 2.1.

Figure 2.1: Emission of electrons in atom. e are electrons that are moving to higher
energy states Fy — Ey [3].

After process finishes and plasma starts to cool down (electrons get back to lower
energy levels), atoms emit radiation which is detected. AES shows us, that this radiation
is unique for every element. Therefore we can assign this radiation to its origin — chemical
element. Information about which wavelength belongs to which chemical element can
be found at NIST database [2]. In specific cases when the instrumentation is properly
calibrated and environment is optimal, intensity can also provide the quantification of the
elements [5].

2.3 Laser light

Light Amplification by Stimulated Emission of Radiation (Laser) is the basic component
for executing LIBS. Laser appears as energetic source that stimulates radiation and creates
great intensity of energy on the sample surface. There are many parameters that can be
defined upon which different results appear on the sample. We’ll state the most important
ones here.

Light power and pulse energy are highly adherent terms. They express how strong the
pulse is, how much energy it provides:

2Process of releasing atoms from chemical bonds and delivering energy to them to get to the higher
energy states.
3Electrons get to the higher shells (further from the nucleus) as the result of receiving energy.

16



2. LASER-INDUCED BREAKDOWN SPECTROSCOPY

P = /// Louise(1, A, )dpdAdr, (2.1)
E = //// Loise (1, A, o, t)dpdAdrdt, (2.2)

where P is light power [J], E pulse energy [J], I is intensity of the pulse, r is space vector,
A is wavelength, ¢ is polarization angle and ¢ is time. There is also a relation between
power, intensity and energy:

o / P(t)dt, (2.3)

where light power is integrated by the duration of laser pulse.

The way laser delivers energy is by pulsing and focusing energy. Therefore the pulse
duration and also pulse shape are essential for the proper description. Most common
pulse profiles are shown in Fig. 2.2.

TEM

Figure 2.2: Crosswise profile of laser pulse in Gaussian shape (TEMyg) and flat-top. Iy is
maximum pulse intensity.

2.4 Plasma

When a laser light impacts the sample, regarding laser light’s energy, surface of the
sample is heated to around 30 000 K and some of the material (nanograms) is ablated?
from the sample and ablation crater is created, which diameter is being beneath 100 um.
Atomization and ionization happens (as explained in 2.2). Thanks to delivered energy
atoms are excited and free electrons start to crash into each other. This process spreads
and laser generated plasma is created. Plasma is a ionized gas with increased electron
density and heat. It typically behaves uniformly and appear almost neutral. After the
laser pulse stops (takes around 10 ns), plasma starts to cool down (takes around 30 us)
and leave crater and redundant material behind. Whole process cover up complex particle
interactions and many parameters are to be included. Plasma cycle is shown in Fig.2.3.

4Ablation is a process of mass removal (vaporization) from the material by absorbing laser energy.
Direct consequence is plasma creation.
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2.5. EMISSION SPECTRUM
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Figure 2.3: Cycle of plasma creation and deconstruction [10].

Here are the most important parameters observed for plasma.

Ablation efficiency is defined as the amount of mass removed per unit energy delivered
to the sample. There are more ways of formulating the ablation efficiency, we’ll state here
only the definition by Vogel and Venugopalan [20], who did the experiments on biological
tissue. Other ways of understanding ablation efficiency are as volume of matter ablated
to the laser pulse energy or as the ratio of the crater depth to the laser fluence®:

PO
Dy
where p is density of the tissue, ¢ is etch depth, ®q is called radiant exposure and is
equivalent for laser fluence.

Mass removal rate is an expression refering to laser ablation of foils and laser micro-
analysis:

Nabl = (2.4)

el (2.5)

TL

where pq is target density, d; is foil thickness and 77, is pulse width.

2.5 Emission spectrum

When we deliver energy with a laser to the sample, plasma starts to evolve. First it heats
up, atoms are emitted, and as plasma is cooling down, ablated particles emit characteristic

5Fluence is referred to be a time-integrated intensity or time-integrated irradiance.
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2. LASER-INDUCED BREAKDOWN SPECTROSCOPY

electromagnetic radiation. Signal detected is time dependent, therefore in course of time
atomic lines detected appears differently. After 300 ns first atomic lines are formed.
Best time to observe detected radiation is highly depending on many other factors and
parameters, such as instrumentation setting used and experimental conditions. In most
cases it is between 1.5 - 12 us. How the signal evolves in time is shown in Fig.2.4.

intensity [ -]

2000

wavelength [nm]

Figure 2.4: Spectrum development over time with step of 100 ns and exposition time 500
ns. Red line refers to best time for executing LIBS measurement [17].

When we choose suitable atomic emission line, we get the data for analysis. These
data consist of wavelength® and its intensities. If there is a certain element in our sample,
that should reflect to high intensity at characteristic wavelength an element emits energy.
Fig. 2.5 shows us how these high intensities — elemental lines — appear in the spectrum.

How to determine which lines belong to which elements had been described in 2.2.
Since the measurement is not ideal (in which case the peak would appear as a single point
with high intensity on the certain wavelength), we have to deal with interpreting and
handling the spectrum outcome, i.e. excluding the noise, taking averages of intensities in
time period. For detecting elements needed for our analysis, in our measurement we took
0.1 surrounding at A, of elements we wanted to describe, i.e. < A, — 0.1, A\, + 0.1 > and
summed measured intensities ”in” this neighbourhood. Extracted element’s intensities
are inputs for the following statistical analysis.

5In our measurements we gathered the data for wavelengths between 198.7959 - 1016.708 nm.
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2.6. LABORATORY EQUIPMENT AND EXPERIMENTAL PARAMETERS
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Figure 2.5: LIBS spectrum of ceramic sample with significant elemental lines [17].

2.6 Laboratory equipment and experimental parame-

ters

The LIBS laboratory equipment at Brno University of Technology used for obtaining the
experimental data processed in this thesis is listed below.

Primary laser — High energy Nd:YAG laser LQ 529A (Solar LS, BY), operates
on its second harmonic (532 nm, 12 ns pulse duration), was introduced into the
LIBS chamber by a series of mirrors and then focused by a 25 mm focal length glass
triplet (Sill Optics, DE) collinearly with the sample surface normal.

Secondary laser — Brilliant B (Quantel, FR) operates at the fundamental wave-
length (1064 nm, 8 ns pulse duration), was introduced into the chamber perpendic-
ularly with respect to the first laser pulse axis using mirrors and then focused into
the emerging plasma with 40 mm focal length lens.

Reflective optics — CC52 (Andor, UK) collects radiation of luminous laser-induced
plasma and also via optical fibre (€40 m, Thorlabs, USA).

Camera — ICCD camera iStar 734i (Andor, UK; 1024 x 1024 pixels, effective pixel
size 19.5 x19.5 um), spectrally resolving radiation.

Spectrometer — Mechelle 5000 (Andor, UK; 200 - 975 nm, F/7, 6000 /A).

Pulse generator - DG535 (Stanford Research System, US), control the gate delay
and gate width together with special electronics developed in the laboratory of Brno
University of Technology.

Experimental parameters used were:

— Ablation laser energy: 30 mJ

— Secondary laser energy: 80 mJ
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2. LASER-INDUCED BREAKDOWN SPECTROSCOPY

— Spot size: 50 pm
— Interpulse delay: 0.5 ps
— Gate delay: 1.5 us
— Gate width: 20 ps
— Spatial resolution: 100 ps
Visualisation of the apparatus is shown in Fig. 2.6 below.

Interaction chamber
BUT and Tescan LIBS chamber

1 t (18

Secondary pulsed laser
NEYAG Quartel Briliant B

| Spectrometer and ICCD

Andor Mechelle 5000
Andor iStar 734

Primary pulsed laser
Nd:YAG Solar LO-529

=

Figure 2.6: Main components of LIBS setup at Brno University of Technology [3].
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3 Regression analysis

Most known and very useful tool in statistical analysis is regression analysis. Regression
was introduced by Francis Galton [9], who did a research of the relationship between a
height of the parents and their children. Based on observations from the real world, the
purpose of the regression analysis is to help us identify relationships between things, but
mostly to determine an existence of cause and effect between those things. The world is
connected and almost all the things come together with something else. If you stay in the
sun for too long, you will get burnt. If you shout too much, your voice will hurt next day.
Very trivial. But what about, if you listen to music often at certain high volume, what
probability you have of becoming deaf? If a patient comes to a hospital with breathing
difficulties, high blood pressure, dizziness, is he going to have a heart attack? What is
the probability? Do these symptoms even initiate a heart attack? Regression analysis
can help us understand how things are connected, and if the relationship seems to be
explaining the reality, it is even able to predict future behaviour. It is important to
realise that regression analysis serves the purpose of exploring the world, natural laws
and connections between things, how they influence each other. In this chapter, I will
describe some basic principles, assumptions, and explanations of regression analysis based

on [1], [15], [7] and [15].

3.1 Regression model

Creating a regression model means establishing an assumed relationship between random
variables called predictor variables and response variables. Predictor variables are vari-
ables, that can be set to a certain value (in experiments) or they are observations of the
real world and we can not control them. If there is a change in predictor variable, this
change project also into the change of response variable. This is called causality. For the
purpose of different terms being used in publications, we understand equality in terms as
follows.

Predictor variables = input variables = inputs
= X-variables
= regressors
= explanatory variables

= independent variables

Response variables = output variables = outputs
= Y-variables

= dependent variables
Therefore the regression model is usually expressed in a form
Response variable = Model function + Random error,

where the model function is a linear combination of X-variables and function depends on
unknown parameters.
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3. REGRESSION ANALYSIS

Let Y3,...,Y,, be n observed response values and design matriz X = (z,;) of type n x k,
where k < n, k is number of predictors (columns), n is number of observations, and X
has full column rank (this assumption holds for whole chapter). We assume that there is
a relationship between vector Y = (Y,...,Y,) and X defined by equation

Y =XB+e (3.1)

where 3 = (B4, ..., 0k) is vector of unknown parameters and e = (ey, ..., e,) is random
vector called random error and meets conditions E(e) = 0, vare = 021 and o > 0 is also
unknown parameter. This model is called linear regression model.

Usually, the first column of design matrix X is made of ones. Then we write X, =
(X0, Xk) = (1, Xi), where X, is matrix n x k, Xo is a column vector of length n made
of ones, and p = k + 1. Thus equation (3.1) can be written as

Y =060+ X8 +e (3:2)

or

Y = X,8+e. (3.3)

3.1.1 Least Square Estimation

The basic method used for estimating the best line fitted to observed values is least square
method. Assume that Y follows linear regression model from 3.1. Equation (3.1) can be
written as:

Yi= 0o+ Bixa + -+ Bpxir + € 1=1,2,..,n, (3.4)

where z;; is ith value of jth variable (column) of X (j = 1,2, ...,k) and it is known value,
Y1,Ys,...,Y,, are n observed responses of Y, and 3, (r = 0,1, ..., p) are unknown regression
parameters to be estimated by least square method. Therefore regression model (3.1) can
be expressed by n equations as:

Y, T Tl Tiz vt Tip Bo €1
Y, Tog T21 T2 - T2p I €2
Yn Tno Tn1 Tn2 " Tpp ﬂp €n
where 219 = x99 = -+ = T, = 1 is the first column of design matrix and represent inter-

cept of the regression model. If fj is the only parameter that Y variable depends on, we
claim that response variable is a random sample, thus it does not depend on any variables.
For estimation of parameters by least squares, we demand (Y — X3)’ (Y — X3) to be
minimal as a function of 3. If design matrix X has full rank, this solution is unique.
Otherwise, estimations of B are not uniquely defined. Property of best estimation is, that
it has the smallest variance from all possible unbiased estimations of linear type.

Theorem 3.1 Best least square estimation of 3 is b= (X'X)1X'Y .

Proof. See [1] page 81. O
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3.1. REGRESSION MODEL

The system of equations X’Xb = X'Y is called normal equations. Solved for b we
obtain the vector of predictions ¥ = Xb = X (X’X) ' X’Y which is considered to be
the best approximation of vector Y, that is possible to create out of a linear combination
of columns X. A straight line fitted to a data is in Fig. 3.1.

B——r—T—7——7—71 7717 77 T T
12}-.* -

11

Y SN Y WS A G [N RS I T N B
50 60 70 80
X

Figure 3.1: Scatter plot of observation y; to x; with fitted line and parameter estimates
Bo and f3;.

The terminology about fitting a line, parameters, a fitted model can be confusing.
To fully understand what’s the difference between the approximation of Y, what are
estimated parameters, and what are unknown parameters, we can see Table 3.1.

Situation 0 0
Straight line model
Y=0+X+e [ b

Bo  bo

Predicted response

~

Y =by+ b0 X

Table 3.1: Explanation of known and unknown parameters, estimations and estimators.
The term 6 refers to an unknown parameter, symbol "hat” like 6 is for estimation of
unknown parameters.

3.1.2 Projection matrix

Theorem 3.2 Suppose that X is n x p of rank p, so that H = X (X'X)™1X’. Then
the following holds:

(i) H and I,, — H are symmetric and idempotent.
(ii) rank (I, — H) =tr(I,, — H) =n — p.
(i) HX = X.
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3. REGRESSION ANALYSIS

Matrix H is called projection matriz' or hat matriz because we obtain predictions of Y’
as Y = HY . Let us also define matrix M = I,, — H. Furthermore, residuals could be

expressed as: A
e=Y-Y=Y—-HY = MY, (3.6)

and graphically interpreted as in Fig. 3.2.

j: = IEI;ll + IJ:?]J"_

r=(y,— )

Figure 3.2: Plot of fitted model with interpretation of residuals.

3.1.3 Unbiased estimate of o2

Definition 3.3

RSS=(Y —Y)(Y =Y) =) (V;- V) (3.7)
i=1
is a residual sum of squares.

Residual sum of squares can be used to estimate the unknown o2.

Theorem 3.4 If E(Y) = X3, where X is an n X p matriz of rank r (r < p), and
var(Y') = oI, then random variable

, RSS (Y -V)(Y-Y) }(¥-Y)

_ 3.8
— n—r n—r (38)

is an unbiased estimation of o>.
Proof. See [18] on page 45. O

Root square of unbiased estimation of variance (s) is called residual standard error and
is used as summary characteristic for linear models.

3.2 Polynomial regression

The trend in data can have many shapes. Some scatter plots could show us trend that
follows a polynomial function. If we set z;; = z] and k = p —1 (< n — 1) in general
multiple linear regression model, we obtain polynomial regression of kth-degree:

Vi=fo+ bizi+ ozl + -+ Baf + & (i=1,2,...,n). (3.9)

Tn algebra, idempotent matrix is called projection matrix. It is because idempotent matrix H projects
the observations of Y into a space generated by the columns of X.
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3.3. HYPOTHESIS TESTING

A very important term when speaking about polynomial regression is orthogonal polyno-
maals. Model 3.9 would be transformed to formula

Yi = v¢0(xi) + v (zi) + -+ - + (@) + €, (3.10)
where ¢, (z;) is an rth-degree polynomial in z;(r = 0,1,...,k), and orthogonality is
described as follows:

Z o (i) ps(z;) =0 (allr,s,r # s). (3.11)
i=1

How orthogonal polynomials work and what are their properties is subject to more com-
plex regression analysis studies. Proper explanation can be found in [15].

3.3 Hypothesis testing

Since we can create many combinations of various variables, the need for testing a quality
of the model and tests for comparing to other models arise. Several methods can be used
for testing and evaluating the models, some of them stated below.

Let us assume a distribution of a random vector X = (Xj,---,X,,)" that depends on
parameter @ = (01, - ,0;) and parameter 6 belongs to a set {2, which we call parametric
space. We don’t know if @ belongs to some nonempty subset w of space 2, therefore we
call the statement 8 € w a null hypothesis, noted Hy : @ € w. Opposite option is named
alternative hypothesis and noted H; : @ ¢ w. By the hypothesis test procedure, we decide
about the Hy based on the observations of random vector X. Let W € B,, be a suitable
set in R,, which we call critical region. In case of X € W the null hypothesis 8 € w is
rejected. In case of X ¢ W the null hypothesis isn’t rejected. If the null hypothesis 8 € w
is rejected, in spite of being true, the conclusion is being of type I error (also known as
"false positive”, noted «). If the null hypothesis is not rejected, in spite of being false,
the conclusion is of type II error (also known as "true negative”, noted 1 — ). Table 3.2
sums up decisions regarding the statistical errors.

Null hypothesis Hy is Null hypothesis H is

TRUE FALSE
Reject null hypothesis type I error («) correct decision
Fail to reject null hypothesis correct decision type II error (1 — f3)

Table 3.2: Table of statistical errors that occur in hypothesis testing.

A common strategy for testing is to minimize the type II error with beforehand given
parameter «. Usually, we choose @ = 0.05, but values 0.1 or 0.01 are also frequently used.

Till now there was no need for assumptions about the normality. For the rest of
the chapter we will need that. Thus let us assume, that e ~ N(0,02I) and therefore
Y ~ N(X@3,0%I).

3.3.1 Variance stabilising transformation

If there are troubles ensuring the normality of residuals, we can use a transformation, so
that the distribution of the transformed random variable would be very close to distribu-
tion fulfilling the assumptions of linear model.
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3. REGRESSION ANALYSIS

Let us have a random variable X, whose distribution depends on some parameter 6.
Assume E(X) = 6. Usually, a variance of random variable X also depends on parameter
0, therefore varX = 02(). Let us find a function g, which is not constant and variable
Y = ¢(X) has variance, that would not depend on parameter 6. This issue usually doesn’t
have a solution, so let us find a suitable approximation. If ¢ is function smooth enough,
from a Taylor’s polynomial we have

9(X) = 9(0) + (X = 0)g'(0). (3.12)

Therefore
Eg(X) = g(0), var g(X) = [g'(0)]*0*(6). (3.13)

If ¢(0)o(0) = ¢, where c is some constant, the expression [¢'(0)]?c?() does not depend
on . From this condition we get the result

g(0) = 0/%. (3.14)

The constant ¢ is wisely chosen, so that the function ¢ from (3.14) has suitable shape.
Therefore var g(X) = ¢*. The function g is called variance stabilising transformation.

3.3.2 F-test

F-test is used to evaluate a significance of our regression. We want to test a hypothesis
Hy : AB = ¢, where A is ¢ x p of rank ¢ and 3 is vector of length ¢q. Natural testing
statistics is Ab = ¢ where b (=03) is our estimation of 3. Let us also define

by = b+ (X' X) TA[A(X'X) 1A (c — Ab), (3.15)

where by are the maximum likelihood estimates found using Method of Lagrange
Multipliers (see [18], pages 60 and 99).
Then (3.7) becomes

RSSy=(Y =Y, ) (Y =Yu) =Y =Y, |I? =Y — Xb,|]%, (3.16)

where RSSy is the minimum value of €€ subject to A8 = c¢. Using eq. (3.15) with
c = 0 we have

Yi=XBy
— {X(X'X)7IX — X(X'X)TA[AX'X) A T AKX X)X Y
— (H — H)Y
—H,Y,
where H p is symetric and H is symmetric and idempotent (see [1&] page 101).

An F-statistic for testing null hypothesis Hy is described in following theorem.
Theorem 3.5
(i)
RSSy — RSS = ||Y — Y|
= (Ab — ¢)'[A(X'X)"tA']7 (Ab — ¢).
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3.3. HYPOTHESIS TESTING
(ii)
E(RSSy — RSS) = o%¢+ (AB — ¢)'[A(X'X)*A'71(AB — ¢)
= 0%q+ (RSSy — RSS).
(iii) When H is true,

[ _ (BSSu—RSS)/g _ (Ab—c)'[A(X'X) "' 4’|~} (Ab—c)
~ RSS/(n—-p) qs? ;

then F has F-distribution F(q,n — p) with q and n-p degrees of freedom.
(iv) When ¢ = 0, F' can be expressed

F — nop Y/ (H-Hg)Y
— g Y MY

where H i is symmetric and idempotent, and HyH = HHy = Hy.
Proof. See [18] page 100. O

F describes the ratio between s% and s* (where s%;, = (RSSy — RSS)/q), so when we
compare it to 100(1 — )% quantile of the F/(¢,n — p) distribution we can determine if
hypothesis Hj is to be rejected or failed to be rejected.

When running F-test for one unknown parameter, F statistic is equal to second power
of t statistic. This property is used for testing unknown parameters to be zero in linear
models.

3.3.3 p-value

p-value is widely used for quick and easy interpretation of the outcomes of hypothesis
testing. Most statistical softwares calculate it automatically with every hypothesis test.
p-value represents the probability of obtaining same or greater observed value of our test
statistic if the null hypothesis were true. For example, if we are doing an F-test from
3.3.2, first we calculate our F statistic that depends on our fitted model we are doing.
Then the p-value would be understood as

Probability of (random variable with F(3,16) distribution > calculated F statistic) =
p-value

For example, let us assume we obtained F-statistic = 2.23 with 3 and 16 degrees of
freedom. Then

P(F > 2.23) = 0.1241,

i.,e. p-value equals 0.1241. To decide on null hypothesis Hy we compare p-value to
significance level «. If the p-value is less than «, we reject the null hypothesis because our
F statistic is too "extreme”. In our example, we can’t reject the null hypothesis, because
our F statistic is not "extreme” enough and p-value is greater than significance level.
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3. REGRESSION ANALYSIS

p-value = 0.1241

0 2.23

Figure 3.3: Graphical interpretation of example. Purple area is probability of F' statistic
appearing in this area when Hj is true.

3.4 Model evaluation

Finding the best regression model to describe data can be a very tough and time con-
suming task. Relationships in natural world are very complex and many random factors
come into consideration when trying to model the real case. To compare fitted models,
evaluate the quality of models and therefore choose the one most suitable we use many
tools out of which some are explained below.

3.4.1 AIC

Akaike information criterion is a type of criterion based on an idea of a discrepancy
between the true distribution of Y which depends on @ and the distribution specified by
the model, which gives the estimation 8 of 6. Criterion is defined by following equation:

AIC = —21og f(Y;0(Y)) + 2r, (3.17)

where f(Y;0) is the simultaneous density function of the random vector Y, r is the
dimension of the vector parameter 8. Further details can be found in [18].

For the purpose of our data analysis, the most important to understand is, that AIC
doesn’t work like hypothesis testing. It doesn’t provide overall information about how
good the fit is but tells us only how well is the model performing in comparison with other
models. Smaller AIC value indicates better fit, so our objective is to minimize AIC value.

3.4.2 Coeflicient of determination
Definition 3.6

is coefficient of determination.
R? represents the quantity of how much are predictors able to explain variability of re-
sponse variable. The greater the R?, the better the fit to observed data. If Y; = Yi, we
have perfect fit and therefore R? = 1, otherwise R? < 1. So basically our objective is to
maximize R? when finding proper regression model or comparing models to each other.
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3.4.3 Stepwise selection

Stepwise methods are methods of excluding explanatory variables in some manner with
the aim of selecting the best subset from the initial basic model or its variations. Let us
have a regression model (3.3)

Y = X,8+e,

where X is n x (k+ 1), and we want to identify the ”significant” variables having nonzero
regression coefficients. We divide k variables corresponding to the columnds of matrix
Xy, from (3.1) up into two sets: the first set consists of d variables that we regard as
important, while the second set, which contains the remaining £ —d+ 1 variables, consists
of variables whose coefficient we suspect to be zero. We test if the regression parameters
of the second set are equal to zero using F-statistic

F_RSSd—RSSk+1TL—]{T—1
B RSSii1 k—d+1’

where RSSy, RSSy.1 are residual sums of squares of models consisting of indexed ex-
planatory variables.

Backward elimination — is started with full model using all k variables and compute
(3.19) with d = k for each of the k variables. We eliminate the variable having the smallest
F-statistic from the model. We continue this procedure until all variables are eliminated
or until p-value of the test is smaller than chosen significance level.

(3.19)
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4. SAMPLE DATA ANALYSIS
4 Sample data analysis

4.1 Introduction

With development of technology and implementing it to people’s everyday lives, hu-
mankind’s dependence on energy grows. Thus, search for sustainable and environmentally
friendly production of huge amount of energy takes important role in science research. One
of the efficient sources of energy is nuclear process, especially uranium fission. uranium
can be formed in sandstone-hosted uranium deposits, what accumulates approximately
18% of world’s known reserves of Uranium. Study of sandstone-hosted uranium, its ore
mineralization, mineral phases, gel nature of components can help us understand ura-
nium interactions with other elements and enhance our capabilities of detecting uranium
in nature [11]. For the analysis we are using R programming language on data obtained
by LIBS in laboratory of BUT.

4.2 Problem introduction

4.2.1 Sample

The analysed sample was taken from Brevnisté deposit in the area of northern part of
the Bohemian Cretaceous Basin in Czech Republic. It was cut, dried, and cemented in
Araldite epoxy. Then flattened surface was achieved by grinding the excess of epoxy and
cropping edges. All of this is requirement of X-ray Fluorescence (XRF) analysis. In Fig.
4.1 we can see the XRF analysis of the sample.

[ppm]

5000

4500

4000

{= /3500

Figure 4.1: Maps of spatial distribution of selected elements in the sample of uranium
ore provided using XRF analysis. A) photography of scanned sample (sized 70x44mm);
B) distribution of uranium content within the sample surface. Red square highlights the
region for further LIBS analysis (15 x 15 mm) [11].
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4.2. PROBLEM INTRODUCTION

4.2.2 Geological interpretation

Silicon (Si) and zirconium (Zr) are minerally bonded to phase called as "hydrozirconium”
(ZrSiO4 - nH50). The ore sample — sandstone-hosted uranium — contains a lot of mineral
phases, as seen in Fig 4.2. The point of interest is to describe the relation between uranium
and hydrozirconium. We are trying to answer how does uranium interact individually with
either zirconium and silicon, if there is a statistical inference between those two elements
and if it is important for explanation of presence of uranium.

| | Quartz

[ Hydrozircon

W Kaolinite

W itejmuscovite

B [Undassified]

[0 Iron oxides

B Tourmaline

W rutie

W aizsios

[ Iimenite

B Other minerals

W Goyazite

B Ortholcase

W Zircon-detritic
Calcite

W vn-oxides

W Giotite

W enotime

B arsenofiorencite {Ce)

Phases TIMA TESCAN]
View field:17.0 mm  Date(m/d/y): 09/23/16 5 mm (b) Legend

U_sandstone Modal analysis #1

(a) Pixel map

Figure 4.2: Chemical anlalysis of sample using QEMSCAN, a method developed for
revealing ore mineralization based on combination of energy-dispersive X-ray spectroscopy
and backscattered electron measurements in scanning electron microscope.

A pixel map, where every pixel is coloured by the most probable mineral is available for
reference with the LIBS measurement.
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4. SAMPLE DATA ANALYSIS
4.3 LIBS data representation

Same sample was analyzed by LIBS apparatus at BUT. We did 150 x150 measurements,
out of which were obtained 22 500 emission spectra, 3 907 800 intensities in 4.5 GBs
of data. Each spectrum is measured in interval 198.7959 nm - 1016.77 nm wavelength,
divided to non-constant spaces. From every spectrum we separated corresponding in-
tensities for every important chemical element located in the sample. All elements and
notation representing each element for programming are listed in Tab. 4.1.

Element Symbol Notation

Uranium U u
Silicon Si S
Zirconium VA Vs
Niobium Nb nb
Aluminium Al al, a2
Ferrum Fe f1, £2
Hafnium Hf h1, h2
Titanium Ti t1, t2

Table 4.1: Notation of elements used in programming.

Data for every element were evaluated as sum of intensities in an interval of length
0.2 centered at certain wavelength corresponding to emission lines of elements based
on NIST database [2]. Therefore analysed intensities of elements are sums of 6 to 13
values (intensities) in the original spectrum within given interval. As mentioned in 2.5,
theoretically it should be just one point for every element. In reality the line is broadened
by several mechanisms. Mathematical models are tested on transformations of data, i.e.
standardisation! and local standardisation®.

Best model fits and meeting assumptions of linear model are reached when using
detected "raw” data with no transformation. Because absolute intensity of a selected
spectral line is not as important as proportions between intensities of lines, we divided all
intensities by 10° for clearer notation. Relevance of the data remained the same. Some
elements are present at two wavelengths in the spectrum. That is because in reality, all
elements are represented by multiple spectral lines. Individual lines of respective element
behave differently with large changes of chemical composition. Selecting multiple lines
helps to develop more complex model that can improve stability with regards to spectral
interference. For our sample we chose wavelengths based on empirical experience. Thus
to keep reliability of the initial model we had to observe some elements present at two
wavelengths.

Raster maps of four elements measured with LIBS with wavelengths are shown in Fig.
4.3. Maps of eight others are attached in attachment section.

1 Before extracting emission lines of the elements, every value in the spectrum is subtracted by average
of all spectral intensities and divided by standard deviation of whole spectrum.

2When taken sum of 0.2 length interval, sum is divided by standard deviation of those 6 to 13 points
summed.
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Figure 4.3: Raster map of elements measured at wavelengths: (a) uranium - 409.02 nm,
(b) Silicon - 251.431 nm, (c) Zirconium - 349.621 nm, (d) Niob - 405.89 nm.

As we can see, elements that belongs to common mineral phase highly correlate in
the raster maps. The comparison of LIBS and QEMSCAN outputs also shows a good

correspondence, however LIBS map denotes relative abundance and QEMSCAN reveals
individual mineralization phases.
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4. SAMPLE DATA ANALYSIS
4.4 Modeling

Initial problem is to explain intensity of uranium by other predictive elements. Therefore
basic model all our modeling came from is polynomial regression model of 3rd degree
with paired interferences. Geological studies postulated a high influence of zirconium and
silicon on the presence of uranium. Thus further in the study we are especially focusing
on this particular relation. For all tests we use 5% significance level (o = 0.05). In R
code the basic model is represented as formula like this:

u o~ s+ 1(s%)+I(sP)+ (4.1)

24+ I(2H) + I(2%)+

al + I(al?®) + I(al®)+
a2 + I(a2?) + I(a2%)+
FLHI(f1) + I(f1%)+
24+ I(f2%) + I(f2%)+
hl+ I(h1%) + I(h1%)+
h2 + I(h2%) + I(h2%)+
nb + I(nb*) + I(nb*)+

t1+ 1(t1%) + I(11°)+

2+ 1(t2%) + I(t2°)+

s:z+s:al+s:a2+s: fl+s:f24+s:hl+s:h24+5s:nb+
ctl + s 12+

cal+z:a2+z: fl4+z:f242:hl+2:h2+2z:nb+

ctl 4z 824

al:a2+al: fl4+al: f24al:hl+al:h2+al:nb+

al :t1 4+ al : 2+

a2: fl+a2: f24a2:hl+a2:h2+a2:nb+a2:tl+a2:t2+
flef24f1:h1+ f1:h24 fl:nb+ f1:t1+4 f1:12+
f2:h1 4 f2:h24 f2:nb+ f2:t1+ f2: 2+
hl:h2+hl:nb+ hl:t1+ hl:12+
h2:nb+ h2 :t1+ h2: t2+

nb:tl 4+ nb: 12+

t1:t2,

NN »

where I(xP) converts variable to power p (necessary condition for creating polynomial
models in R) and z; : z; means interaction between variables x; and z;. We used linear
model function in R called 1m(). Basic model contains 88 terms, out of them 54 are not
significant according to their p-values. F test of the model is significant and coefficient
of determination (R?) is 98.55%. Residuals are heteroscedastic and don’t appear to be
normally distributed. We consider basic model to be inappropriate to explain intensity
of uranium.
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4.5. SUITABLE MODEL

Afterwards, we tried transformations of response and explanatory variables (In(u), u?,

Vu, % and other combinations of formulas. Models on standardised and locally standard-
ised data were also tested.

4.5 Suitable model

The most suitable model was obtained utilizing raw data (no standardisation) and trans-
formed response /u. Residuals are homoscedastic and appear normal even in basic
model. We created submodel by backward stepwise regression, i.e. by excluding the most
insignificant term (highest p-value) and comparing the obtained submodel with using F
test - calculated by anova () R function. We proceeded this till result of anova test rejected
that the full model can be reduced to the last model. Resulted model has formula:

sqrt(u)  ~ s+ I(s*) + 2+ 1(2%) + 1(2°)+ (4.2)
nb 4 I(nb*) + I(nb®)+

al + I(al?) + I(al®) 4+ a2 + I(a2*)+

FLHT(f12) + I(f1°) + f2+ I(f2%) + I(f2°)+

hl+ I(h1?) + h2 + I(h2?%) + I(h2%)+

t1+ I(t17%) + I(1°%) 4+ 12 + 1(82%) + I(t2°%)+

s:z+s:fl4+s:f24+s:hl+s:nb+

zra2+z:fl+z:f24+z:hl+2:12+

al:a24al:h2+a2: fl+a2: f24a2:hl+a2:h2+ a2 : nb+

fl:h2+ fl:nb+ f1:t14+hl:h2+hl:tl

The parameter estimates together with their standard error, value of the T statistic
and its p-value are given in table 4.2:

Estimate  Std. Error  t value Pr(>|t|)
(Intercept)  1.256e-01  1.153e-03  1.090e+02  0.000e+-00

s -1.140e-02  6.670e-03  -1.709e+00  8.743e-02
I(s2) 6.251e-02  1.003e-02  6.234e+00  4.642e-10
z 1.113e-01  1.902e-03  5.850e+01  0.000e+00
I(22)  -7.574e-03 4.861e-04 -1.558¢+01 1.943e-54
I(z3) 3.570e-04  2.371e-05 1.505e+01  5.728e-51
al 1.039e-01  4.067e-02  2.553¢+00  1.067e-02

[(al?) -1.417e+00  3.837e-01  -3.693e+00 2.222e-04
[(al?) 2.738¢+00  3.458e-01  7.920e+00  2.492e-15

a2 6.224c-02  1.032-02  6.031e+00  1.653¢-09
I(a2®)  -1.030e-02  2.782¢-03 -3.703¢+00 2.138¢-04

f1 -1.628¢-01  1.062e-02 -1.533e+01  8.407e-53
I(f12) 529802 8449e-03 6.270e+00  3.676e-10
I(f13)  -1.263e-02  1.182e-03 -1.068¢+01 1.400e-26

£2 3.362e-02  3.937¢-03  8.540e+00  1.428¢-17
I(f22)  -1.511e-02  1.041e-03 -1.452e+01 1.557e-47

I(f23) 1.046e-03  7.853e-05  1.332e+01  2.506e-40
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hl

S:Z
s:f1
s:f2
s:hl
s:nb
z:a2
z:f1
z:12
z:hl
7:t2
al:a2
al:h2
a2:f1
a2:f2
a2:hl
a2:h2
a2:nb
f1:h2
fl1:nb
f1:¢1
h1:h2
hl:t1

5.454e-03
-8.931e-02
6.477e-01
-3.919e+-00
6.228e+-00
2.404e-01
-5.242e-02
7.930e-03
4.402e-02
-3.068e-01
7.999e-02
2.607e-01
-1.045e4-00
3.849e+00
-5.162e-02
2.067e-01
-6.875e-02
3.208e-01
-4.328e-02
-1.114e-02
-1.030e-02
1.156e-02
-1.634e-02
-6.959e-02
-2.746e-01
1.805e+-00
8.387e-02
-3.016e-02
1.808e-01
-2.195e-01
5.468e-02
1.832¢-01
-3.483e-02
5.721e-02
-4.078e-01
1.799e-01

4. SAMPLE DATA ANALYSIS

2.145e-02  2.543e-01

1.782e-02  -5.013e+00
5.660e-02  1.144e+01
6.790e-01  -5.772e+00
9.996e-01  6.230e+00
7.502e-03  3.204e+01
5.912e-03 -8.867e+00
1.101e-03  7.204e+00
1.344e-02  3.275e+00
2.586e-02 -1.186e+01
9.888e-03  8.090e+00
5.270e-02  4.946e+00
5.867e-01 -1.781e+00
1.352e+00 2.847e+00
3.270e-03 -1.579e+01
2.067e-02  1.000e+01
7.268¢-03  -9.460e+00
4.476e-02  7.167e+00
1.227e-02  -3.527e+00
2.649e-03  -4.206e+00
3.282e-03  -3.139e+00
1.027¢-03  1.125e+01
5.102e-03  -3.202e+00
9.432¢-03  -7.379e+00
8.869¢-02 -3.096e+00
2.904e-01  6.217e+00
1.407e-02  5.959e+00
4.552e-03 -6.626e+00
3.046e-02  5.936e+00
8.987e-02 -2.443e-+00
6.681e-03  8.184e+00
6.008e-02  3.050e+00
5.851e-03  -5.953e+00
8.665e-03  6.603e+00
2.123e-01 -1.921e+00
2.799e-02  6.426e+00

7.993e-01
5.389e-07
3.091e-30
7.929¢-09
4.744e-10
2.376e-220
8.076e-19
6.046e-13
1.057¢-03
2.318e-32
6.268e-16
7.620e-07
7.488e-02
4.417e-03
7.746e-56
1.631e-23
3.381e-21
7.911e-13
4.213e-04
2.614e-05
1.699¢-03
2.861e-29
1.367¢-03
1.656e-13
1.961e-03
5.147e-10
2.576e-09
3.530e-11
2.969¢-09
1.458e-02
2.902e-16
2.293e-03
2.664e-09
4.125e-11
5.480e-02
1.336e-10

Residual standard error
Multiple R-squared

F-statistic
p-value

0.02883 on 22447 degrees of freedom

0.9876

3.441e+04 on 52 and 22447 DF

< 2.2e-16

Table 4.3: Test of whole submodel — F test and coefficient of determination.

Table 4.2: Summary of submodel with regression coefficients (estimates) and p-values
using R function summary ().
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4.5. SUITABLE MODEL

Plot of residuals and Quantile-Quantile plot are shown below.

Residuals vs Fitted Values Q-Q plot

Residuals
Standardized residuals

Fitted values Theoretical Quantiles

(a) Residual plot (b) Q-Q plot

Figure 4.4: Graphical assessment of the regression assumptions. In (a) a red line is a
spline constructed over residuals and dotted line in (b) plot represents best data fit to
normal distribution.

Fig. 4.4 shows us that visually residuals are homoscedastic, e.g. variance is constant,
and are also very similar to quantiles of normal distribution, therefore appear as nor-
mally distributed. Among all the other models tested these assumptions were met in this
submodel the most.

F test for initial basic model and proceeded submodel shows us, that we can’t reject
that the basic model can be reduced to the submodel.

Res.Df RSS Df Sum of Sq F  Pr(>F)
1 22406 18.55
2 22442 18.58 -36 -0.03 1.02 0.4352

Table 4.4: Analysis of variance table for basic model (1) vs. submodel (2).

P-value is greater than 0.05, therefore hypothesis can’t be rejected.
The prediction capabilities of our fitted model can be assessed in Fig. 4.5.

Prediction plot

Predicted values of U

T
00 05 10 15

Original values of U

Figure 4.5: Prediction of U based on suitable submodel
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4. SAMPLE DATA ANALYSIS
4.6 Influence of silicon and zirconium

In the summary from Tab. 4.2 we can observe presence of silicon to 1st and 2nd power,
zirconium to 1st, 2nd and 3rd power, and inference between zirconium and silicon. All
of these terms are significant except 1st power of silicon, which is acceptable in complex
models like this, because silicon plays role in inferences with other elements that are
statistically significant, therefore we can not exclude it from the model. When we consider
all the other terms to be constant and let only Zr and Si change, we obtain estimated
model:

Usz = —0.01145 + 0.062552 4 0.1113Z — 0.0076.22 + 0.00042% — 0.051625  (4.3)

Using the mesh () function from MATLAB, we can represent the uranium predictions
with respect to changes of zirconium and silicon:

Surface of inference between Silicon and Zirconium max x max with means

O mean(s)
O mean(z)

1.2 ~

Uranium

0.4

Zirconium 0 0 ' Silicon

Figure 4.6: Surface of inference between Si and Zr with the result in U under the as-
sumption that other inferences are zero. The limits of the axes are set to minimum and
maximum values of Si and Zr with blue and red dot as means of covariates.

We can observe how zirconium appears to have much bigger influence on uranium than
silicon. Also if we observe trend when Si and Zr are simultaneously rising, it affects also
rise of U. Therefore graphically we can confirm inference between Zr and Si in our sample.
Important thing to mention here is, that proportion of axes in Fig. 4.6 is very big. Length
of axes is based on minimum and maximum value observed in the data. Consequently,
for our sample U seems to be influenced by Zr more than by Si. But as is mentioned in
4.3, the important information is yielded by proportions between intensities not by the
absolute value of the intensity. Thus if we prolong the length of axes equally, we get much
different result and inference trend shown in Fig. 4.7
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4.7. COMPARISON WITH GENERALIZED LINEAR MODEL

Surface of inference between Silicon and Zirconium

12

10 H

Uranium

15

5
o o U Silicon
Zirconium

Figure 4.7: Surface of inference between Si and Zr with equal range on x and y axis.

The applicability of model in high Si intensities or under different assumptions about
interferences should be a subject to further studies.

4.7 Comparison with generalized linear model

For the purpose of checking our deduction about suitable submodel we tried one more
approach — generalized linear model [0]. We established R model glm(u ., family =
Gamma(link = ,sqrt“)) that is equal to our basic linear model. Then using the step-
wise regression we excluded insignificant terms and found the sufficient glm submodel.
Sufficient glm submodel seems to be worse than Im submodel, regarding heteroscedastic
residuals and not the sufficient normality fit of residuals®. Tests and prediction capabili-
ties are stated in attachments. When we compare which terms appear in glm submodel
and Im submodel, we can detect 17 out of 22 inferences to appear in glm model as well
as in lm model, what supports suitability of Im model. In Fig. 4.8 we can see prediction
difference between Im and glm model.

For lower values glm tends to predict higher values than lm model, at intensities of
value 1 trend changes and Im model predicts higher values than glm model. Another
interesting point to realize is, that glm model is also unable to predict lower values, since
Im starts at level close to zero, glm starts at values of 0.2.

3 Anscombe transformation transforms residuals to be homoscedastic and normal.
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4. SAMPLE DATA ANALYSIS

Comparison of Im and gim model

16

14

glm prediction
06 08 1.0
L

04
L

T T T T T
00 05 10 15 20

Im prediction

Figure 4.8: Comparison of linear model and generalized linear model. Red line is where
are Im and glm equal.

4.8 Discussion

From the analysis we can say, that using "raw”, not transformed data during pre-processing
phase is the best ground for modeling. Transformations of the collected data deteriorate
results, theoretical assumptions, and abilities of models to explain real relations.

On the other hand, during modeling transformation of response variable U is highly
demanding. Best transformation of response we found is square root of a random variable.
Compared to other transformations of variables, model with square root of U and non-
transformed explanatory variables resulted in homoscedastic, almost normally distributed
residuals with constant variance, which is not met with other transformations.

Suitable linear submodel has 11 explanatory variables (7 chemical elements) up to 3rd
power, 52 regression terms, 22 inferences, and 45 terms are statistically significant in the
model. Coefficient of determination for this model is 98.76%.

Elements silicon and zirconium are both significant in the model. Their inference is
also statistically significant, thus we can not terminate either element from the model on
explaining presence of uranium. Therefore phase hydrozirconium seems to be significant
and both elements of this phase play important role in the sample.
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5 Conclusion

The goal of this thesis was to search for the most suitable statistical model for ex-
plaining presence of uranium by presence of other chemical elements in sandstone-hosted
uranium deposit in Bfevnisté. Also to explore and describe a relation between uranium,
and zirconium and silicon as constituents of hydrozirconium.

In chapter 2 we introduced the analytical technique called LIBS. We explained what is
the basic principle of this spectroscopic method, what happens when we use laser light as
a source of energy for AES, how the radiation is detected, how the data is obtained, and
how do apparatus look in the laboratory at BUT. Understanding how physical processes
work is essential for further statistical analysis, especially because of complex statistical
modeling.

In chapter 3 we set the basic knowledge about regression analysis used for analysing
our sample. We showed basic regression formula which was also used for our sample. We
explained basic evaluation tools crucial for deciding, whether model is appropriate, and
comparing tools to finding the most suitable model.

In chapter 4 we used the basis established in chapters 2 and 3, and built the model on
these fundamentals. In the beginning, we explained the basic problem and its importance
for research. We described sample itself, its origin, how it was processed and analysed with
different tools except LIBS. Then we explained how the most suitable linear regression
model was found, and we stated its properties and plots. We applied discovered model
to our initial problem and explored its behaviour. After all that, we tried to support our
conclusions with establishing glm model, which we used to compare the results.
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Used symbols

B vector of unknown regression parameters
Ae wavelength at which element emits radiation
o? variance of Normal distribution

0 unknown parameter

XY random variable

X, Y vector /matrix

I, identity matrix of size n, n X n

X’ transpose of vector/matrix X

X1 inverse matrix

Y predictions

tr(X) trace of matrix X

E(X) expected value of random variable

varX variance of random variable

N(u,o?) Normal distribution

F(p,q) F distribution
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Attachments

(8) (h)

Figure 5.1: Raster map of rest of the elements used in modeling with their wavelengths:
(a) Aluminium 1 - 308.24 nm, (b) Aluminium 2 - 309.31 nm, (c) Ferrum 1 - 302.06 nm,
(d) Ferrum 2 - 404.58 nm, (e) Hafnium 1 - 368.24 nm, (f) Hafnium 2 - 417.46 nm, (g)
Titanium 1 - 323.50 nm, (h) Titanium 2 - 498.17 nm
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Prediction plot of gim model
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Figure 5.2: Prediction plot of glm model.

Prediction plot of difference between Im and gim models
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Figure 5.3: Plot of difference between predictions of Im and glm model vs. real uranium
intensities.
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Summary of glm submodel:

Estimate Std. Error  t value Pr(>]t|)

(Intercept)  1.1e-01 7.1e-04 1.5e+02  0.0e400

S 2.9e-02 3.4e-03 8.5e+00  1.4e-17
I(s) 46002 84003  5.5e+00  3.3¢-08
zZ 1.1e-01 1.7e-03 6.4e+01  0.0e+00
I(2%) -8.1e-03 6.4e-04 -1.3e4+01  1.2e-36
I(2?) 5.2e-04 3.7e-05  1.4e+01  2.9e-45
al 9.7e-03 3.2e-02 3.0e-01  7.7e-01
I(al®) 250400  3.6e01  6.9e+00 6.3e-12
a2 8.4e-02 8.9e-03 9.4e+00 7.2e-21
f1 -1.1e-01 1.0e-02 -1.1e4+01 6.1e-27

1(£12) 1.6e-01  2.9¢-02  5.4e+00  5.2¢-08
I(f13)  -1.9¢-02  2.0e-03  -9.5¢+00 2.0e-21

£2 1.8¢-02  3.9¢-03  4.7e+00  2.5e-06
1(f22)  -4.0e-03  2.5e-03  -1.6e+00 1.1e-01
1(£23) 1.7e-03  1.2e-04  1.4e+01 4.7e-46

hl 8.56-02  2.1e02  4.1e+00  3.4e-05
I(h12)  -21e-01  3.7¢-02  -5.6e+00 2.2¢-08
h2 8.7¢-01  5.1e02  1.7e+01 1.2¢-65

I(h22)  -3.5e+00  8.6e-01  -4.1e+00 4.7¢-05
1(h2%)  9.0e+00  1.5¢4+00  5.9e+00  3.6e-09

nb 2.60-01  6.9¢-03  3.8¢+01 9.7e-299
I(nb?)  -3.3¢-02  9.6e-03  -3.4e4+00 6.3¢-04
1(nb®) 8.9¢-03  1.8e¢-03  5.0e+00 5.7¢-07

t1 1.2e-03 1.4e-02 9.0e-02  9.3e-01
I(t1%) -1.5e-01 1.9e-02  -7.8e+00  8.6e-15
t2 4.8e-01 5.0e-02 9.6e+00  8.7e-22

I(£22)  -4.8¢4+00  8.0e-01  -5.9e+00 3.1e-09
I(t23)  1.3e+01  2.1e+00  6.1e+00  1.3¢-09

S:Z -5.3e-02 3.8e-03 -1.4e+01 1.8e-44
s:f1 1.3e-01 2.6e-02 5.1e400  3.2e-07
s:f2 -5.6e-02 9.8e-03 -5.7e4+00 9.1e-09
s:hl 4.3e-01 6.0e-02 7.1e+00  9.2e-13
s:h2 -5.1e-01 1.3e-01 -4.1e4+00 5.1e-05
z:f1 -3.0e-02 6.4e-03 -4.7e+00 3.1e-06
z:12 2.0e-02 2.2e-03 9.0e+00 1.9e-19
z:hl -2.6e-02 8.8e-03 -3.0e4+00  2.6e-03
z:h2 -8.3e-02 3.2e-02 -2.6e+00 1.1e-02
z:t2 -1.2e-01 3.2e-02 -3.6e+00 3.4e-04

al:a2 -7.1e-01 5.9e-02 -1.2e+01 6.1e-33
al:h2 2.0e+00 3.6e-01 5.6e4+00  2.0e-08
a2:11 4.4e-02 1.9e-02 2.4e+00  1.9e-02
a2:12 -1.4e-02 7.6e-03 -1.8e+00 6.7e-02
a2:hl 1.6e-01 5.6e-02 2.9e4+00 4.1e-03
a2:h2 -3.2e-01 1.5e-01 -2.1e+00  3.9e-02
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a2:nb 4.2e-02 1.1e-02 3.8e+00 1.5e-04

f1:£2 -6.6e-02 1.5e-02  -4.3e4+00 1.7e-05

f1:h2 5.3e-01 1.9e-01 2.8e4+00  5.0e-03

f1:t2 3.6e-01 1.3e-01 2.9e+00  4.3e-03

f2:h2 -1.7e-01 6.3e-02  -2.7¢+00 6.6e-03

f2:nb -3.3e-02 3.9e-03 -8.4e+00  3.2e-17

h1:t1 3.6e-01 4.3e-02 8.2e4+00 2.le-16

h1:t2 -5.9¢-01 2.8¢-01  -2.1e+00  3.2e-02
Null deviance 0.03699 on 21840.70 on 22494 degrees of freedom
Residual deviance 469.67 on 22443 degrees of freedom
AIC -92770

Dispersion parameter 0.0205318
Table 5.2: Summary of glm submodel.

Q-Q plot Q-Q plot of transformed residuals

Std. deviance resid.
Sample Quantiles

Theoretical Quantiles Theoretical Quantiles

(a) (b)

Residuals vs Fitted Values of

Residuals

Transformed residuals

10000 s000 20000

Predicted values Index

() (d)
Figure 5.4: Quantile-quantile plot of residuals of glm model: (a) no transformation, (b)

Anscombe transformation. Plot of residuals of glm model: (c¢) no transformation, (d)
Anscombe transformation.
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Suitable linear model without square root transformation of uranium has formula:

un~ s+ I8+ 2+ 122+ 1(2%) +al + 1(al?) + I(al®) + a2 + I(a2®) + f1 + f2+
I(f23)+hl1+h24I(h2*)+nb+t1+1(t1%)+1(t1%)+t24s: z+s: fl4+s: f2+s: hl+s:
nb+z:a2+z: fl4+z:f24+z:nb+z:tl+al:h24+al:tl1+al:t24+a2: fl1+a2:
f24a2: hl+a2:nb+a2 : 124+ f1: h2+ f1:nb+f1:t1+f1: 824+ f2: h1+f2: t2+h1 : t1

Residual standard error 0.03699 on 22453 degrees of freedom

Multiple R-squared 0.9855
F-statistic 3.313e+404 on 46 and 22453 DF
p-value < 2.2e-16

Table 5.3: Summary of linear submodel without transformation.

Q-Q plot Residuals vs Fitted Values

Standardized residuals
Residuals

Fitted values

Theoretical Quantiles

(a) (b)

Figure 5.5: Q-Q plot and residual plot for linear submodel with no transformation.
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Linear model of square root transformation of response and explanatory variables:

sqrt(u) ~ sqrt(s) + sqri(z) + sqrt(al) + sqrt(a2) + sqrt(f1) + sqrt(f2) + sqrt(hl) +
sqrt(h2) + sqrt(nb) + sqrt(tl) + sqrt(t2)

Residual standard error 0.03425 on 22483 degrees of freedom

Multiple R-squared 0.9825
F-statistic 1.146e+05 on 11 and 22483 DF
p-value < 2.2e-16

Table 5.4: Summary of linear model with square root transformation of response and
explanatory variables.

Q-Q plot Residuals vs Fitted Values

2

Standardized residuals
0
Residuals

2

4
L

T S T
2 0 2 4 02 04 06 08 10 12

Theoretical Quantiles Fitted values

(a) (b)

Figure 5.6: Q-Q plot and residual plot for linear model with square root transformation.
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Linear model with standardised input data:

sqrt(u) ~ s+ I(s?) + I(s®) + z + I(2?) + al + [(al?) + I(al®) + a2 + 1(a2?) + f1 +
I(f13) 4+ f2+1(f2%)+1(f2%)+h1+I(h1%)+ I(h1%) + h2+4 I(h2%) 4+ nb+ I(nb*) + I(nb®) +
L+ T(E12)+T(t13) +12+s:2+s: fl+s: f24+s:h2+s:nb+s:tl+s:t2+2:h2+2:
nb+al : fl4+al: f2+al: h24al :nb+al :t2+a2: f1+a2: f24a2: hl+a2: h2+a2:
nb+a2 : 24+ f1:nb+ f1:t1+f1: 12+ f2 : t1+ f2 : t24+hl : nb+hl : t14+nb:tl4+nb: t2

Residual standard error 0.000769 on 19937 degrees of freedom

Multiple R-squared 0.8226
F-statistic 1650 on 56 and 19937 DF
p-value < 2.2e-16

Table 5.5: Summary of linear model with standardised input data.

Q-Q plot Residuals vs Fitted Values

Standardized residuals

Theoretical Quantiles Fitted values

(a) (b)
Figure 5.7: Q-Q plot and residual plot for linear model with standardised data.
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Linear submodel with local standardisation of input data:

ur~s+I(s?)+1(s3)+2+1(2%)+1(2%)+al +1(al?)+I(al®)+ a2+ 1(a2?) + I(a2®) +
SLHI(fI2)+I(f13) 4+ 2+ 1(f22)+I(f2%)+h1+1(h1?)+I(h1%)+h2+1(h2%)+1(h2%)+
nb+I(nb?)+ I(nb?) +t1+T(#12) + T(t13) +#2+T(#22) +1(#2%)+s:2+s:al+s5:a2+s:
fl+s:f24s:hl+s:h24+s:nb+s:tl+s:t24z:al+z:a2+z: fl+z:f242:
hl+z:h24+z:nb+z:t1+2z:12+al:a2+4al: fl+al: f2+al:hl+al:h2+al:
nb+al :t1+al : 12+a2: fl14+a2: f24+a2: hl14+a2:h2+a2:nb+a2:t1+a2: 12+ f1:
f24f1:hl+f1:h24f1:nb+f1:t1+f1: 824+ f2: h14+f2: h2+ f2:nb+ f2 : t14 f2:
t24+h1:h2+hl :nb+hl:t1+hl:t2+h2:nb+h2:t1+h2:t2+nb:t14+nb:t2+t1: 12

Residual standard error 8.131e-05 on 22411 degrees of freedom

Multiple R-squared 0.1134
F-statistic 32.58 on 88 and 22411 DF
p-value < 2.2e-16

Table 5.6: Summary of linear submodel with local standardisation of input data.

Q-Q plot Residuals vs Fitted Values

Standardized residuals

Theoretical Quantiles Fitted values

(a) (b)
Figure 5.8: Q-Q plot and residual plot for linear submodel with local standardisation.
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