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origins of symbiosis between insects and Enterobacteria, and the mechanisms 

promoting association of bacteria with arthropods. The main emphasis is put on the 

secondary symbionts of the genus Sodalis (Enterobacteriaceae) and the pathogenic 

Anaplasma phagocytophilum (Anaplasmataceae) that seems to be undergoing first 

steps to become hereditary mutualist. 
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1. Introduction and results  

 

1.1 General introduction 

 

The term Symbiosis was coined in sense as “living together of unlike organisms” for the 

first time in 1879 by the founder of modern mycology and plant pathology Heinrich 

Anton de Bary in his book “Die Erscheinung der Symbiose”. Symbiosis is really 

widespread phenomenon that played and plays a critical role in Earth’s biosphere. 

Without symbiosis the life would not be as we know it since there would be no 

eukaryotes [1]. 

Symbiosis as a long term association of different organisms constitutes whole spectrum 

of ecological interactions (i.e. mutualism, commensalism and parasitism), however, the 

term symbiosis is often used only in connection to mutualists and commensals.  

 

The phylum arthropoda comprises broad range of life forms and is the most numerous 

part of the kingdom animalia [2]. Arthropods host variety of bacteria of which many are 

of medical importance for animals and humans, and use parasitic arthropods as vectors 

MS3. In this thesis, I will mainly focus on the endosymbionts in insects MS 1,2  and 

ticks MS3 since intracellular symbiotic bacteria are rarely studied in other arthropods. 

Endosymbiotic bacteria are usually treated as two different types: so called P (primary) 

and S (secondary) symbionts. This division is mainly based on physiological and 

ecological aspects and is unrelated to the bacterial phylogeny/taxonomy.  

 

1.1.1 P symbionts 

P symbionts are intracellular bacteria (except for the symbionts of Platasipidae [3]), 

strictly vertically transmitted from mother to offspring. These symbioses are usually 

ancient and the host-bacterium association undergoes millions of years  of coevolution 

[4]. P symbionts are not distributed randomly in their host’s bodies. The insect hosts 

usually keep them restricted to specialized cells called bacteriocytes, often forming an 

organ called bacteriome. The role of P symbionts seems to be nutritional. They, for 

example, provide essential amino acids [5], vitamins [6-9] or recycle uric acid [10]. P 

symbionts appear to be essential for hosts survival and/or normal development. The loss 
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of P symbiont causes sterility, shortened lifespan or growth and developmental 

disorders [11,12].  

The long term association of P symbionts with their hosts led to severe genome 

reductions and modifications. All unnecessary genes and metabolic pathways were 

eliminated, leaving the bacteria in state of “host-controlled metabolic factories”.  This is 

probably the main reason, why all known P symbionts are uncultivable in vitro. The 

absolute record in genome reduction holds Nasuia deltocephalinicola 

(Betaproteobacteria), symbiont of the leafhopper Nephotettix cincticeps with 112 kbps 

genome encoding for 137 proteins [13] which has recently beaten another genome 

dwarf Tremblaya princeps (Betaproteobacteria) with 139 kbps genome that encodes just 

for 116 proteins [14]. These numbers are indeed comparable with characteristics of 

plastid organellar genomes [15] and stress the question about borders between organism 

and organelle. 

 

1.1.2 S symbionts 

Unlike obligate P symbionts, S symbionts are facultative and their loss is not fatal for 

their hosts; the hosts just may lose some ecological advantage [16]. Besides beneficial 

microbes this group also includes commensals and reproductive manipulators. The role 

of beneficial symbiont is usually protection against infections  [17] and heat stress [18] 

or complementing missing parts of the P symbionts metabolic pathways [19,20]. In 

some cases they also can replace the P symbiont and overtake its function in the host e. 

g. [21,22]. Transmission of the S symbionts is not exclusivelly vertical, as is case of the 

P symbionts, since they can also spread horizontally [23-28]. Mechanisms of these 

horizontal transfers remain unknown. Since S symbionts are not so tightly associated 

with their hosts metabolisms, their in vitro cultivation may be successful in some cases 

[29-33]; and MS2).  

 

 

1.2 Diversity of endosymbiotic bacteria in ticks and insects 

 

1.2.1 Endosymbiotic bacteria of insects 

It is supposed that majority of insects harbor symbiotic bacteria (see Table 1) that often 

increase their fitness and improve adaptation to the environment. Symbionts are also 
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known as important driving force of insect evolution since they represent an extra 

source of genetic information with mutation potential [16]. A good example are aphids 

and their mutualistic symbionts. Aphids are widespread sap-feeding insects that 

typically (but see [34,35]) host P symbiont called Buchnera aphidicola. Buchnera 

provides essential amino acids [5] and riboflavin [9] that are missing in sap and which 

the aphids cannot synthesize. Of the S symbionts, these aphids can  host Hamiltonella 

defensa and Regiella insecticola which protect their hosts against parasitic wasps [36]. 

Though insect-bacteria symbiosis is extensively studied, there are still groups of insects, 

where symbiotic bacteria (P and S) were only identified by microscopic observation 

[37] and were never examined by modern biological methods. Identity of these 

morphologically described symbionts is therefore still unknown. These insect groups 

are largely coleopterans (namely Bostrychidae, Cerambycidae, Chrysomelidae, 

Lyctidae, Nosodendridae, Throscidae), but also Amblycera (chewing lice), partially 

Membracidae (tree hoppers) and Ceratopogonidae (biting midges). As part of my work I 

tried to obtain and examine insect samples from these groups. However, I was 

successful just in Throscidae. By using PCR based 16S rDNA screening and 

temperature gradient gel electrophoreis that allows for separation of fragments of the 

same size but different GC content, I identified three symbiotic bacteria in Trixagus 

meybohmi (Coleoptera, Throscidae). First of them is a novel P symbiont (according to 

very low GC content) that appears to be closely related to the P symbiont of 

sharpshooters Sulcia muelleri (Bacteroidetes). In addition, I have identified novel 

species of the genus Sodalis (Gammaproteobacteria) and one species of the genus 

Wolbachia (Alphaproteobacteria). These data are unpublished.  

 

 

Insect order Symbiotic bacteria (unnamed symbionts are ommited) 

Blattaria Blattabacterium cuenoti 

Coleoptera Curculioniphilus buchneri, Macropleicola, Nardonella, 

Sodalis 

Collembola Wolbachia 

Diptera Arsenophonus, Aschnera chinzeii, Wigglesworthia 

glossinidia, Sodalis 

Hemiptera Asaia, Arsenophonus, Benitsuchiphilus tojoi, Brownia 
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rhizoecola, Baumannia cicadellinicola, Buchnera aphidicola, 

Cardinium, Carsonella ruddii, Ecksteinia, Gillettellia 

cooleyia, Hamiltonella defensa, Hodgkinia cicadicola, 

Ishikawaella capsulata, Kleidoceria schneideri, Liberibacter, 

Moranella endobia, Nasuia deltocephalinicola, Portiera 

aleyrodidarum, Profftia, Purcelliella pentastirinorum, 

Regiella insecticola, Rickettsia, Rickettsiella, Rohrkolberia 

cinguli, Rosenkranzia clausaccus, Serratia symbiotica, 

Schneideria nysicola, Sodalis, Sulcia muelleri, Spiroplasma, 

Tremblaya, Uzinura diaspidicola, Vallotia, Vidania 

fulgoroideae, Wolbachia, Zinderia insecticola 

Hymenoptera Bartonella – like, Blochmannia, Sodalis, Streptomyces 

philanthi 

Isoptera Blattabacterium, Wolbachia 

Lepidoptera Arsenophonus,  Wolbachia  
Phthiraptera  Legionella, Riesia pediculicola, , Sodalis 

Protura Cardinium-like, Rickettsia –like  
Psocoptera Rickettsia 

Siphonaptera Rickettsia,Wolbachia 

Thysanoptera Stammerula tephritidis 

 

Table 1: List of insect endosymbionts 

 

1.2.2 Endosymbiotic bacteria of ticks 

Ticks are obligate hematophagous ectoparasites of mammals, birds, and reptiles. They 

can carry and transmit a wide range of pathogens, such as bacteria, protozoa, viruses, 

and nematodes that can cause various diseases of humans and animals [38].  

There are several routes, by which ticks may become infected with bacteria, namely by 

feeding on bacteremic reservoirs and by transstadial or transovarial transmission. Some 

bacterial species are able to use all these transmission routes [39].  

Among the epidemiologically most important bacteria are spirochetes from the Borrelia 

burgdorferi sensu lato complex, members of the family Anaplasmataceae, Bartonella 

spp., Rickettsia spp., Coxiella burnetii and Francisella tularensis. 
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Most of these bacteria are maintained in natural cycles that involve ticks and various 

species of reservoir hosts, and are responsible for diseases which are recognized as 

zoonozes. For each bacterial disease, one or several tick vectors and reservoir hosts may 

exist in the natural foci [39].  

As the tick-transmitted bacteria present risk to human and animal health, research of 

ticks and their bacterial flora is dominantly focused on this perspective. Of the tick 

associated bacteria, I have worked on the genus Anaplasma. Anaplasma 

phagocytophilum is a Gramnegative bacterium that causes granulocytic anaplasmosis in 

humans and animals. It multiplies in a phagosome of infected neutrophils [40,41]. Ticks 

of the genus Ixodes (but there are also other Anaplasma transmitting genera) serve as 

vectors of the disease. In MS3 we mainly tried to explore epizoonotiological situation in 

Slovakia and map reservoir species involved in A. phagocytophilum circulation.   

Little is known about possible benefits that the ticks obtain from the hosted bacterial 

flora. Study on a Coxiella-like bacterium in Amblyomma showed that antibiotic treated 

aposymbiotic ticks hadlower fitness than the untreated ticks [42]. In 2006, an intra-

mitochondrial bacterium now called Midichloria mitochondrii was described from the 

hard tick Ixodes ricinus [43]. It was shown that bacterium consumes mitochondria in 

oocytes. However, despite bacteria destroying many mitochondria, oocytes develop 

normally. Although the genome sequence did not clearly answer the question whether 

Midichloria is parasite or mutualist, some genomic features indicate that it might be 

more beneficial than detrimental for its host. For example it can theoretically synthesize 

heme (ticks have to get it from blood meal) and B vitamins, and is able to provide 

additional ATP to the host [44]. Other research group showed that Anaplasma 

phagocytophylum enhances freeze tolerance of the Ixodes scapularis ticks helping them 

to survive in the cold weather [45].   

Is the association of Midichloria with its host parasitism or mutualism? Does 

Midichloria pay for its transmission by synthesizing essential nutrients, which help ticks 

to survive starvation? What are biological roles of other bacteria associated with ticks? 

These and many other questions need to be answered. Fortunately, the pathogen-

oriented research focus seems to be little bit shifting at least to bacterium-bacterium 

interactions and their consequences for a tick host, which is noticeable in recent reviews 

[46,47]. 
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1.3 Widely distributed and emerging lineages of symbionts 

 

1.3.1 The genus Wolbachia 

Wolbachia is a genus of Alphaproteobacteria that belongs together with pathogenic 

Rickettsia, Anaplasma and Ehrlichia to the order Rickettsiales. Based on phylogenetic 

reconstructions, Wolbachia splits into so called “supergroups” A-H. Wolbachia is 

widely distributed bacterium that unlike other members of Rickettsiales does not 

directly infect vertebrates. Supergroups A, B, F and H are associated with arthropods 

and have been reported from insects [48], mites [49,50], spiders [51] and crustaceans 

[52]. 

The role of Wolbachia in arthropods is usually negative. They are reproductive parasites 

that change sex ratio of the offspring to gain maximal fitness. Generally, little is known 

about possible positive effects of otherwise detrimental bacteria on their hosts, but even 

such effects cannot be ruled out. There is just a little step from parasitism to mutualism 

and “helping bad guy” might be a state of transition between these two ecological 

strategies. Wolbachia was for example shown to protect Drosophila species against 

RNA viruses [53-56] and reduce viral infection rate in mosquitoes [57,58].  

Furthermore, Wolbachia largely behave as mutualist in filarial worms [59]  and there 

are also several arthropod groups where it developed into obligate mutualistic 

symbionts, e.g in bedbugs [60] and parasitic wasps [61].  

 

1.3.2 The genus Cardinium 

Cardinium belongs to the Bacteroidetes group and was discovered for the first time in 

tick cell line [62]. Unlike Wolbachia, no Cardinium lineage has proved positive effect 

on their arthropod hosts. They are all reproductive manipulators [63]. Cardinium 

prevalence is rather low in all arthropods, numbers range from 4.4 to 7.2% [63,64] , 

however, in spiders and mites prevalence is much higher 22 – 31.6% [63,65].  Research 

on Cardinium is relatively short and we can perhaps expect discovery of mutualistic 

Cardinium lineage(s) too.  

 

1.3.3 The genus Spiroplasma 

Spiroplasmas (Mollicutes) are descendants of Grampositive bacteria that lost their cell 

walls. They are infectious agents of plants and arthropods. In arthropods, they are 
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largely commensals, however some appear to be reproductive manipulators [66,67] and 

several mutualistic lineages have also been reported [68,69].  

 

1.3.4 The genus Sodalis 

The genus Sodalis belongs to the family Enterobacteriaceae, Gammaproteobacteria. 

Though many of its isolates are called “Sodalis-like endosymbiont of..”, it is usually 

considered a regular monophyletic genus. Until recently (MS2), there was only one 

cultivable and described species – S symbiont from the tsetse flies, Sodalis glossinidius 

[30]. Ecology of Sodalis spans from commensals to obligate mutualists [70,71], 

however, their role is largely uncharacterized in other hosts. Sodalis was identified in 

wide spectrum of insects comprising tsetse flies [30], keds MS2  [72], psyllids [26], 

mealybugs [27],  chewing lice [73], ants [74], aphids [75], scale insects [76], stinkbugs 

[77,78], cerambycid beetles [79], weevils [80-83]. 

 

1.3.5 the genus Arsenophonus 

Arsenophonus is a species-rich genus of Enterobacteria infecting wide range of 

arthropod hosts and it was also identified as a plant pathogen. The genus is a 

monophyletic assemblage of various isolates,  sometimes described as different genera 

[84]. Consequences of the Arsenophonus symbioses for the hosts are as variable as the 

Arsenophonus diversity itself. The ecology spans from reproductive manipulators [85-

87] [88] and plant pathogens [89,90] to countless S symbionts of unknown roles e. g. 

[91] and P symbionts [92-94]. Particularly interesting is a reported putative defensive 

role of Arsenophonus in psyllid Glycaspis brimblecombei [95]. 

 

1.3.6 The genus Rickettsia 

Rickettsia are generally known as pathogens of vertebrates that are transmitted by 

arthropod vectors and are causative agents of diseases such as spotted fever or typhus 

[39]. Although the research is mainly focused on Rickettsia with medical importance 

and their blood-feeding vectors, there are also species that play various known 

biological roles in their hosts. They may be obligate mutualists [96], facultative 

mutualists e.g. [97] or reproductive manipulators [98-101], however, the effect of 

Rickettsia on its host is unknown in most cases. 
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1.4 Biology versus phylogeny and phylogenetic problems 

 

1.4.1 Phylogeny and biological interpretation 

Inferring robust phylogeny is a crucial step toward biological and evolutionary 

interpretations (for example for identification of a strict symbiont-host coevolution 

found in P symbionts,  or detection of host switches). An example can be provided by 

the genus Sodalis with wide distribution among insects. In MS2 we describe novel 

Sodalis species Candidatus Sodalis melophagi found in the sheep ked Melophagus 

ovinus (Hippoboscidae). Our phylogenies demonstrate that Candidatus Sodalis 

melophagi, a typical S symbiont, established its symbiosis independently of other two 

hippoboscoid-derived Sodalis lineages (including the S. glossinidus lineage known from 

tsetse fies). This incongruence reflects an early stage of the symbiosis and horizontal 

transfer, similar to some cases of coleopteran and homopteran hosts.  

 

1.4.2 Phylogenetic obstacles in symbiont research 

Correct phylogenetic inference of relationships among symbiotic bacteria appears to be 

a nut to crack at least by current phylogenetic and phylogenomic methods. This is 

especially true for P symbionts with highly degraded genomes, high base compositional 

bias and fast evolving sites [16].  

In general, intracellular lifestyle and vertical transmission lead to severe bottlenecks and 

prevent exchange of genetic information, which speeds up the Muller’s rachet [102] by 

which mutations are being accumulated and fixed [103]. Vertical transmission means 

small population size, which results in increased genetic drift and weak purifying 

selection. This accelerates sequence evolution of all genes in the genome. At the 

beginning of symbiotic state there is a burst of phage and transposable activity, which 

results in genome remodeling. Non-essential genes are pseudogenized and lost, portions 

of the genomes are relocated and large deletions take place. Therefore typical S 

symbiont possesses numerous pseudogenes, transposons and phages/phage derived 

sequences; whereas typical P symbiont has tiny genome without transposons and phages 

and has high coding density [104-106]. Bacteria have a natural tendency to higher GC 

content in their DNA, while mutations are universally biased toward A/T [107,108]. In 

reduced genomes of obligate P symbionts, there is a general trend towards high A/T 

contents. For example, the most A/T rich known genome has been found in Zinderia 
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insecticola. The genome size is 209 kbp and A/T content is 86,5% [109]. This is 

probably due to loss of genes involved in DNA reparation [16] in combination with 

weak purifying selection as part of Muller’s rachet [110]. As usual, every rule has its 

exceptions. Not all P symbionts with reduced genomes have high A/T content. This is 

true for two Alphaproteobacteria- Tremblaya princeps and Hodgkinia cicadicola, with 

A/T content 41.2 and 41.6, respectively [20,111]. There must be some G/C mutation 

bias in Alphaproteobacteria that persisted in these two reduced genomes [111]. 

The most symbiont-rich group of bacteria is undoubtedly Enterobacteriaceae 

(Gammaproteobacteria) that also comprises pathogens of humans (such as Salmonella 

or Yersinia) and is therefore intensively studied. The 16S rDNA is a gene of choice 

(frequently the first and the only choice) with good taxon sampling in 

Enterobacteriaceae, however, it was shown as useless for inferring reliable phylogeny 

[16]. Unfortunately, many symbionts are represented only by 16S rDNA in Genbank. It 

is therefore important to shed light on relationships among Enterobacteria and produce 

more robust phylogenies. The number of symbiotic events in Enterobacteriaceae and 

monophyly/polyphyly of P symbionts became center of debates. As mentioned above, 

in P symbionts the rapid gene evolution and compositional bias causing homoplasies 

make inferring phylogenies very difficult. About 20 studies [112-131] tried to solve P 

symbionts monophyly/polyphyly by different approaches prior to our MS1. Of these 

studies, only few broke monophyly of P symbionts. Generally, the usage of non-

homogenous models appeared particularly effective [113,118]. The “standard” models 

of sequence evolution assume composition homogeneity among taxa [132], which is 

definitely invalid assumption in case of P symbionts. Other researchers, who broke the 

P symbiont monophyly, used genomic data and performed break-point and inversion 

distance phylogeny [117]. And finally,  they successfully coped with phylogenetic 

artifacts   using “telescoping multiprotein phylogenetic analysis” [133]. Unfortunately, 

especialy in the case of older studies there is insufficient taxon sampling due to low 

genome data availability in Genbank. In 2011 we publihed MS1 where we used most 

common methods of removing phylogenetic artifacts. We analyzed data on both 

nucleotides and amino acids levels and looked for similar paterns in resulting 

phylogenetic trees. Since we obtained very similar results with different methodologies, 

it makes our conclusions quite robust. While for example widly used Slow-Fast method 

[134] failed, we retreived good results using nonhomogeneous model and models 

accounting for site-specific features of protein evolution (CAT and CAT+GTR) [135], 
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various matrix recodings and our novel AT/GC method. Since Slow-Fast [134] method 

removes fastest evolving sites, it does not remove large portion of homoplasies that 

occur from compositional bias. In our novel method, we focused on removing all sites 

that could be possibly biased. Therefore all sites that contained A or T along with C or 

G were removed,  leaving all information only in A/T and G/C sites. After performing 

numerous phylogenetic analyses, we assumed, that symbiotic event occured at least 4 

times in Enterobacteriaceae.  

 

1.5 Genomic traits and mechanisms important for symbiosis 

 

This part of introduction and results is focused on genetic features and mechanisms that 

I have studied and which play, in my opinion, important roles in symbiotic 

relationships. The connection among these phenomena is transfer of genes or gene 

clusters. Transfer of genetic material is ubiquitous in bacteria and represents important 

driving force in their evolution. By acquiring foreign information, bacterium can learn 

how to perform novel processes or synthesize novel compounds with biological activity. 

This may result in new opportunities and open new niches. Genetic information can be 

transmitted by several ways: transformation, transduction and conjugation [136].  

 

1.5.1 Phages-bacterial viruses introducing new genetic features 

While lytic phages use aggressive strategy of multiplication and destroy the host cell in 

short time period after infection, lysogenic phages can repress lytic cycle and 

incorporate into bacterial chromosome. In certain conditions they may decide to 

multiply and subsequently lyse the host cell. These so called temperate phages 

additionally prevent hosting bacteria of being colonized by other phages (which is 

beneficial for both partners) [137]. Along with their detrimental effects on bacteria (e. g. 

lysis), bacteriophages constitute an important way of genetic transfer and therefore 

bacterial evolution. They may accidentally pack parts of bacterial genome during capsid 

assemblage and inject it into different cell. Foreign bacterial DNA may be incorporated 

into the chromosome by mechanisms of homologous recombination. This process is 

called the transduction [138]. In addition, temperate phages can bring novel information 

also in a different way. When sitting in the host cell with repressed lytic cycle they 

allow for expression of gene cassette they may encode. This cassette contains genes that 
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are beneficial for the host and improves its fitness. The best documented viruses that 

behave this way are APSE phages infecting the Gammaproteobacterium Hamiltonella 

defensa. 

History of research on APSE phages is relatively short. The first described, isolated and 

sequenced phage was bacteriophage APSE-1 (the abbreviation means the first 

bacteriophage of Acyrthosyphon pisum secondary endosymbiont) in 1999   [139]. The 

host bacterium was identified as an agent that protects aphids from being infected by 

parasitic wasps [140]. However, it was later demonstrated, that it is not H. defensa itself 

but the APSE phage that is responsible for protective phenotype [141]. In 2008, seven 

APSE phages were partially sequenced. The key difference was in content of so called 

toxin cassette, where e.g. YD-repeat toxin, Shiga-like toxin or cytolethal distending 

toxin were identified [142,143]. Content of a toxin cassette influenced degree of aphid 

protection. For example APSE-3 phage encoding YD-repeat toxin guaranteed more than 

85% survival rate, while APSE-2 phage encoding cytolethal distending protein was 

effective in 40% [144] . Although protective phenotype of H. defensa was connected 

with the phages, the exact mechanism of toxin delivery to the parasitic wasp remains 

unknown. As every rule has its exceptions and nothing is 100% certain in biological 

systems, Adam Martinez and colleagues recently discovered two Hamiltonella+APSE-2 

infected aphid lines that do not possess better protection than the same lines treated with 

antibiotics – i.e.  with Hamiltonella eradicated. Furthemore and most interestingly, they 

described existence of parasitoid-resistant aphid lines that are S symbiont free [145]. 

Authors are investigating now how these aphid lines can fight the parasitoids without 

protection of APSE.  

In terms of phage research, I have sequenced, assembled and annotated complete 

genomes of two APSE-3 phages from two different aphid lineages. In one of these 

lineages the phage was repeatedly lost in offspring from time to time, but it was steadily 

inherited in the second aphid lineage. Unfortunately, these phage sequences brought 

more questions than answers, since they were identical except for three changes in the 

toxin gene. Since PCR did not detect the “lost phage” both integrated in chromosome 

and circular in cytosol (i.e. the phage was completely erased from H. defensa) it 

remained rather enigmatic, how and why is a virtually identical phage occasionally 

eradicated in one aphid lineage and maintained in the other. 
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1.5.2 Secretion systems, focus on T3SS 

Secretion systems are protein machineries that are designed to deliver proteins into 

surroundings of a bacterial cell. The key player in pathogenesis and symbiosis appears 

to be the so called Type III secretion system (T3SS) [146]. T3SS typically occur in 

pathogens such as Salmonella, Yersinia or Chlamydia that cause disease in humans and 

animals and is used to transfer bacterial proteins called the effectors into the host cells. 

These effectors are either encoded directly in the same genomic island as T3SS (these 

islands are frequently horizontally transferred) or they can be found anywhere in the 

genome, which complicates detection and research of these interesting molecules. 

Secretion of effectors typically allows for cell cycle modulation, cytoskeleton control, 

cell death induction or hiding out from the immune system [147]. Though living in 

different conditions, plant pathogens use T3SS for very similar purposes [148]. As lots 

of active molecules have not been discovered so far, it appears that functions of 

bacterial effectors in host organism is probably more complex. While P symbionts 

typically does not encode for T3SS, it is found in S symbionts (and not only in 

arthropods). For example it has been detected in symbioses: Sodalis glossinidius/tsetse 

fly, Hamiltonella defensa/aphids. In case of Sodalis glossinidius/tsetse fly association, it 

has been experimentally demonstrated that T3SS is required for successful transmission 

of a symbiont on insect progeny [149]. This is in perfect agreement with experiment on 

non-insect symbiosis model – mutualistic Aeromonas/leech, where T3SS mutants were 

not able to colonize the host [150]. This suggests an essential role of T3SS in S 

symbionts life. In MS2 we compared T3SS of two Sodalis species S. glossinidius and S. 

melophagi. While S. glossinidius encodes for three copies: SSR-1, SSR-2 and SSR-3, S. 

melophagi possesses only SSR-3 copy and SSR-2 is highly degraded. Since SSR-3 is 

conserved in both species it can be speculated that S. glossinidius could use other two 

specialized copies with their associated secreted proteins for other distinct purposes. 

Recently, two additional genomes of Sodalis species became publicly available, 

therefore I added their secretion systems to the comparison (see Figure 1). SOPE is a P 

symbiont of rice weevil Sitophilus oryzae [70]. Sodalis HS strain was isolated from a 

wounded man who impaled his hand on a branch of his apple tree. This species 

represents important discovery, since it demonstrates the way insects may acquire their 

symbionts, e.i. from plant pathogens [151]. This is noticeable in MS1 where symbiotic 

bacteria cluster with pathogens (see Discussion and Conclusions part for more details). 
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Plants also serve as places where plant feeding insects get infected by already 

established S symbionts [152].  

The Figure 1 reflects connection of T3SS degradation with intimacy of the 

symbiont/host assotiation. All but Sodalis HS strain and S. glossinidius lost SSR-1 copy 

of secretion system. These two species retained all three copies. SSR-2 and SSR-3 of 

SOPE started their degradation and is questionable whether they are still functional or 

not. This fact is in alignment with state of SOPE that represents very young P symbiont. 

 

 

Figure 1: Comparison of T3SS copies using MAUVE [153] software. Biostraticola tofi 

is the closest known relative to the genus Sodalis. 
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1.5.3 Plasmids 

Plasmids are dsDNA molecules that replicate independently on chromosomal DNA. 

They are generally circular, however, for example in case of Borrelia, linear forms 

occur. Their size varies from 846 bp to 1.8 Mbp and they may encode from 1 up to 7281 

genes [154,155]. Plasmids usually carry genes that are not essential for survival of 

bacterium (e.g. housekeeping genes), however, these plasmid encoded genes provide 

some extra benefits increasing bacterial fitness (e.g. antibiotic resistance [156], 

bacteriocides [157], ability of conjugation [158], virulence[159], degradation of toxic 

substances [160], heavy metal resistance [161]).  

In order to compare plasmids of Sodalis melophagi with Sodalis glossinidius, I 

sequenced and annotated extrachromosomal DNA of S. melophagi. Extrachromosomal 

DNA of S. glossinidius comprises three plasmids and one circular phage. The plasmids 

encodes for iron uptake via siderophors, putative toxins, hemolysins and proteases 

[162]. Although belonging to the same genus and living in very similar conditions, S. 

glossinidius and S. melophagi does dramatically differ in their plasmid contents. S. 

melophagi also possessess four circular extrochromosomal molecules (see Table 2), of 

which one is the phage (see phage comparison Figure 2), however, their sizes and 

content are dissimilar. Plasmids of S. melophagi encode lots of phage and transposon 

derived proteins and enzymes located on plasmids are often present also on the 

chromosome. It is therefore difficult to assign them any clear functions except of one 

that contains the whole operon for Type 1 fimbriae synthesis.   

 
 pSM1 pSM2 pSM3 phiSM 
GC content 46.7% 43.2% 48.4% 50.6% 
Size 33.4 28.5 36.2 38.2 
Protein coding genes 25 25 38 41 

 
Table 2: Molecular characteristics of extrachromosomal DNA in Sodalis melophagi 
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Figure 2: Genomic comparison of the Sodalis phages produced using MAUVE [153] 

software. The bacteriophages phiSG1 and SO-1 occur in the Sodalis glossinidius, while 

phiSM in the Sodalis melophagi. 

 

Type 1 fimbriae are bacterial hair-like organelles present on cell surface that are 

assembled by chaperone-uscher secretion pathway. They occur in Gramnegative 

bacteria [163]. Among all bacteria, Type 1 fimbriae are most intensively studied in case 

of uropathogenic Escherichia coli causing disease in humans. The tips of Type 1 

fimbriae made of FimH lectin are specific to mannosilated glycoproteins and allow for 

bacterial attachment to tissue cells [164,165]. This promotes bacterial colonization of 

urinary tract, cell invasion and constitutes the first step in biofilm formation [166]. 

Interestingly, Type 1 fimbriae also appears to be important player in forming of E. coli 

intracellular communities that are biofilm-like structures protecting bacteria against 

antibiotics and host immunity system. These protected communities allows for massive 

E. coli multiplication within the urinary bladder [167]. Given Sodalis melohagi is S 

symbiont, it can be speculated that S. melophagi uses Type 1 fimbriae for very similar 

purposes to E. coli. That is: 1- attachment to cell surfaces and body colonization and 2 - 

hiding from the immunity system. The fimbriae operon from S. melophagi is related to 

the operon from another Entorobacterium – Erwinia, which is (in most cases) a plant 
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pathogen that uses Type 1 fimbriae at least for attachment to plant surface [168]. 

Whether it is a case of horizontal gene transfer, or Sodalis is closely related to Erwinia 

cannot be unequivocally decided. According to our phylogenetic analyses MS1, the first 

case looks more probable.  

Being aware of the fact that not all encoded genes are expressed and they therefore 

constitute cryptic pseudogenes, I verified physical presence of fimbriae experimentally 

by using yeast agglutination assay with positive result. As Type 1 fimbriae are present 

in S. melophagi on bacteriological plates we can assume that bacterium uses them in the 

host to.  
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2 Discussion and Conclusions 

 
As I attempted to cover broad spectrum of arthropod/symbiont associated issues, 

outcomes of my work split into two main groups. First, the main one, deals with origins 

of symbiosis and genomic traits that are likely required for symbiosis establishment, 

while the second covers circulation of arthropod-borne pathogens between host and a 

vector. 

 

2.1 Topic 1 - Rising of symbioses in Enterobacteria 

 

In the MS1, we performed complex phylogenetic analyses based on modern 

methodology. Furthermore, we developed novel and powerful way of 

handlingsequences with extreme compositional bias. Long-branch attraction [169] due 

to fast evolution of some taxa in a dataset is certainly troublesome artifact, but the fast 

evolving sites are not necessarily the worst enemies of molecular phylogeneticians. 

Slowly evolving positions can be tricky too, because of their possible non-homogenous 

base composition. In our article, we demonstrated the power of this artifact by failure of 

Slow-Fast analysis [134] that removes fastest evolving sites.  Similar results, i.e. failure 

of creation correct phylogenetic tree after removing fastest evolving sites, were also 

obtained by Beatricé Roure and Hervé Phillipe [170] in case of animal phylogeny based 

on mitochondrial genomes.  They obtained the correct topology by removal of the so 

called heteropecillous sites – positions that change their substitution pattern over time. 

Why fast evolving sites constitute much smaller problem than non-homogenous site 

composition?   That question was answered for example by Hervé Phillipe [171]. While 

phylogenetic models can (more or less) deal with different rates of evolution over sites 

via gamma distribution, they fail to recognize violation of model assumptions (like site 

non-homogeneity). Therefore it is crucial to know if a phylogenetic model you want to 

use is really suitable for the analyzed data.  

Outputs computed from both amino acid and nucleotide datasets strongly suggest at 

least four independent origins of symbiosis within Enterobacteriaceae. This finding is 

supported by convergence of results from different ways of data analyses. Beside the 
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fact that rising of symbiosis was not a single event in Enterobacteriaceae, our topologies 

also show the putative origins of symbiotic lineages. They seem to recruit from 

pathogenic or gut associated bacteria. There is more detailed description of four 

symbiotic clusters in Enterobacteriaceae. 

Buchnera clade consists of two different genera:  Buchnera, which is an intracellular 

obligate mutualist with long parallel history with aphids [172], and Ishikawaella 

capsulata, gut endosymbiont of plataspid stinkbugs [173]. The placement of 

Ishikawaella together with Buchnera might still be an artificial, since other  closely 

related bacteria are missing in the known sample [78,174-176] in the tree. The cluster is 

associated with the genus Erwinia which consist dominantly of plant pathogens. This 

position is in alignment with current state of knowledge, since Erwinia has been already 

suggested to be a predecessor of Buchnera [177]. 

Arsenophonus clade comprises S symbiont Arsenophonus, and Riesia [178], P symbiont 

of lice that is actually Arsenophonus misidentified as independent genus  [84]. This 

association of P and S symbiont is not artificial and supports known fact that S 

symbionts can evolve into P symbionts over time. Arsenophonus clade is placed in a 

neighborhood of genera Proteus, Photorhabdus and Xenorhabdus. All these organisms 

are connected to insects in various ways. Photorhabdus and Xenorhabdus are insect 

pathogens living in association with entomopathogenic nematodes and playing crucial 

roles in their life cycles [179]. Members of the genus Proteus are saprophytes found in 

natural environments as well in animal and human intestines and feces. They often 

behave as opportunistic pathogens causing mainly infections of open wounds and 

urinary tract [180]. One of them, Proteus myxofaciens, recently reclassified as a 

separate genus Cosenzaea [181], was originally isolated and described from both living 

and death larvae of the gypsy moth Porthetia dispar [182]. Since ecology of this 

bacterium in the moth was never clarified, it can only be speculated whether it behave 

as mutualist, commensal or parasite.  

Other symbiotic event is presented by the Hamiltonella/Regiella clade. These taxa are 

clustered with the genus Yersinia which is definitely closely associated with insects. 

The linkage of Yersinia with insects has negative consequences for the hosts. The most 

famous example is a causative agent of the plague Yersinia pestis that circulates 

between rats and fleas. The bacterium is well equipped for flea invasion and survival of 

defence response. It moreover manipulates the host via blocking the midgut and 

subsequent host starvation to increase the rate of flea biting [183,184]. There are also 
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other entomopathogenic species in this genus, like Yersinia entomophaga recently 

isolated from diseased larvae of the grass grub Costelytra zealandica [185,186].  

Sodalis clade is an assemblage of S symbiont Sodalis and P symbionts of the genera 

Baumannia, Blochmannia and Wigglesworthia. Position of Sodalis on the base of P 

symbionts may indicate transformation of the S to the P symbiotic strategy [187]. Exact 

position of the clade is uncertain, however, it seems to be related to animal and plant 

pathogens of the genera Pectobacterium, Dickeya and Edwardsiella. Some species of 

the Pectobacterium, which is as a plant pathogen, uses plant feeding insects for 

spreading. They use other plant-associated invertebrates, like snails, too. There were 

genes identified in Pectobacterium, enabling bacteria to survive attacks of vectors 

immunity [188]. Dickeya dadanti, which behaves as a saprophyte or a plant pathogen, 

was shown to produce toxins causing septicemia in pea aphids, it is able to survive in 

the insect host and it is likely that these bacteria are specialized to use aphids for 

spreading from plant to plant [189,190].  

It is probable that there were much more symbiotic events within Enterobacteriaceae, 

because our analyses comprised only limited number of taxa for which the data is 

availability.  Since there is also lack of known free living relatives of pathogens and 

symbionts, it is difficult to reconstruct precise stories about origins of particular 

symbiotic lineages. The costs of genome sequencing became reasonable, which is 

definitely good for obtaining taxonomic data. We sequenced a genome of a free living 

bacterium Biostraticola tofi (unpublished data), originally isolated from the biofilm in a 

hard water rivulet [191]. Biostraticola is the closest free living relative of the genus 

Sodalis, which was shown in species description article [191] and also in MS2. 

Interestingly, it possess one copy of T3SS, which differs from Sodalis T3SS (see Figure 

1) and is of the different origin. According to gene content, T3SS of the Biostraticola is 

complete and in addition, it contains known effector proteins, which suggests some kind 

of interaction with water-borne eukaryotes, probably pathogenesis.   

 

Are there any prerequisites for a bacterium to become a symbiont? Indeed, yes. 

Symbionts seem to come from bacterial groups that are in frequent contact with the 

future host.  For example, in cicadas, which spend many years in soil feeding on roots, 

their P symbiont called Hodgkinia cicadicola originated from Rhizobiales, which are 

bacteria associated with plant roots [192]. Another example is the Sodalis cluster. As 

discussed above, Sodalis clade is related with plant pathogens Pectobacterium and 
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Dickeya that learned how to use insects for spreading from plant to plant. Recently, the 

free living Sodalis, named Sodalis HS strain, was isolated from a wounded man who 

impaled his hand on an apple tree branch. Though its ecology is not known, Sodalis HS 

strain can be hypothetized to live as saprophyte or a plant pathogen [151]. This is in 

perfect alignment with Pectobacterium and Dickeya ecologies and suggests that Sodalis 

symbionts are probably domesticated plant pathogens as is the case of Buchnera in 

aphids [177].  

Besides the first requirement of the symbiosis establishment I have described above, 

i.e.thr frequent physical contact, there are also some others. Not every free living 

bacterium that is in contact with insects will automatically become symbiotic. The 

second requirement can be called a genetic predisposition. Bacteria have to encode for 

genes and organelles that enables them to survive in insect body before they attempt to 

get and live inside it.  These traits are largely connected with pathogenesis and can be 

transmitted horizontally. Insect body has evolved to cope with bacteria and is hostile to 

infection agents. After ingestion, majority of bacteria are killed by insect defence 

mechanisms or (and) expelled from digestive tract by peristalsis. While it might look 

difficult to survive there, the survival can be for example assured by single gene. 

Erwinia is protected by Erwinia virulence factor evf that still works if transferred to 

other Gramnegative bacterium [193]. The last steps to symbiosis are obtaining the 

ability to spread in the host body while evading the defence system and learning 

transovarial transmission.  

Of the many mechanisms evolved to cope with insect defenses [194] I identified two to 

be present in Sodalis melophagi. The first one is T3SS and the second one is plasmid 

encoded fimbriae.  

Though T3SS can be used as a weapon of free living bacteria against predators [195], it 

is typically associated with both plant and animal pathogenesis [147]. It looks like the 

T3SS also plays an important role in early stages of symbiosis (S symbionts and 

entomopathogens). The function of T3SS in insect-bacterium interaction does not seem 

to be connected with intestine environment (there are no supporting data), it is linked 

with bacterium spread inside the host body.  Photorhabdus luminescens, which is an 

aggressive entomopathogen, uses T3SS to inhibit phagocytosis by insect haemocytes 

[196]. On the other hand Sodalis glossinidius, which is an S symbiont inhabiting tsetse 

flies, uses T3SS to spread into progeny. Though they were able to survive in a fly, T3SS 

mutants were unable to transmit from mother to offspring [149]. This difference of 
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T3SS usage between a pathogen and a commensal (or mutualist) is likely determined by 

different transmission strategies. Photorhabdus primary needs to survive confrontation 

with host defence, it kills an insect and is transmitted by a nematode, while Sodalis 

glossinidius does not kill the host and rather enter the host larva in uterus. As symbiotic 

association becomes closer and the S symbiont turns into the P symbiont, the 

transmission starts to be host-directed and T3SS machinery is therefore useless. In my 

opinion, such progressive T3SS degradation can be observed in the genus Sodalis, 

where free living Sodalis HS strain possesses three probably functional T3SS copies, 

while SOPE as a P symbiont does not need them anymore. Sodalis glossinidius and 

Sodalis melophagi constitute transition between these two states.  

The primary function of the Type 1 fimbriae is to attach and hold bacterium on desired 

surface, biotic or abiotic. In relation to arthropods and their symbionts, fimbriae play an 

important role for example in life of entomopathogenic Xenorhabdus, because they 

enable the bacterium to colonize the nematode guts [197]. What is the reason for 

Sodalis melophagi to encode functional fimbriae? S. melophagi is already established S 

symbiont, it is already present in host tissues and it is transmitted from mother to 

offspring. There is therefore no free living life stage outside the host body. So, why S. 

melophagi may need to attach to the host tissue?  In my opinion, the main purpose of 

fimbriae in S. melophagi might be direct transmission of the infection from ked to ked, 

which is a horizontal transfer. Sheep keds often bite one another and suck heamolymph. 

S. melphagi is present in the heamolymph and could be therefore easily transmitted 

orally from infected to uninfected individual. It uses fimbriae as an anchor to stop in 

host’s intestines, similarly to Xenorhabdus, colonize them and spread into the rest of the 

body. I am not aware of the same behaviour in tsetse. This may provide an explanation 

why S. glossinidius does not need and therefore does not encode for Type 1 fimbriae.  

 

2.1 Topic 2 – Ticks and Anaplasma in Slovakia 

 

As discussed above, at the beginning of the symbiogenetic process which ends by P 

symbiont establishment (or its possible transformation into organelle), bacteria often 

behave as pathogens and use arthropods as vectors for spreading. Anaplasma 

phagocytophilum can be considered as one of these “biginers” that will (or will not) 

later switch to pure mutualism. But in my opinion, this process might already started. It 
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looks like Anaplasma phagocytophilum is not able to spread via transovarial transfer in 

ixodid ticks and rely mainly on ruminats and rodents as reservoir hosts [198-205]. 

However, the transovarial transfer was documented in Dermacentor albopictus [206]. 

Another step to mutualistic S symbiont is promoting beneficial effects to the host. These 

effects were indeed reported for Ixodes scapularis ticks, where A. phagocytophilum 

helps the ticks to survive in cold weather [45]. However, A. phagocytophilum still 

requires cycling among ticks and their hosts and is responsible for disease in animals 

and humans. The severity of clinical manifestation varies and is probably linked with 

variation of genome content among particular strains. Geography-dependent differences 

are also interesting. In the USA, granulocytic anaplasmosis caused by A. 

phagocytophilum is a common tick-borne disease, however, it is rare in Europe [207]. It 

seems that American strains and European strains have different characteristics in terms 

of ecology, host specifity and pathogenicity [208].  

In MS3 we mainly focused on identification of species involved in circulation of A. 

phagocytophilum in Slovakia and searching for clustering patterns according to host 

species or geography. A. phagocytophilum was detected in wide spectrum of tested 

species and our results suggest strong position of ungulates, especially roe deer, as 

reservoir hosts. Interestingly, there is a conflict of our groEL tree topology with Silaghi 

et al. [209], where they imply existence of the “roe deer cluster”. This division into two 

clusters, where one of them comprises A. phagocytophilum  isolated from roe deer and 

the other A. phagocytophilum isolated from other species, also appear in other European 

studies [210-213]. It cannot be unambiguously decided, if polyphyly of A. 

phagocytophilum from roe deer was an artifact (for any reason) or the confirmation of a 

general true that nothing lasts forever. It would require more than one isolate and better 

quality of input data to clarify this observation. Regarding our results on rodents, it must 

be highlighted that rodents in Europe are not likely carriers of A. phagocytophilum 

strains infecting humans, which is not true in the USA.  
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4.1 Chapter 1 

 

Husník F., Chrudimský T., Hypša V., 2011. Multiple origins of endosymbiosis within 

the Enterobcateriaceae (γ-Proteobacteria): convergence of complex phylogenetic 

approaches. BMC Biology Dec 28;9:87. doi: 10.1186/1741-7007-9-87. 

 

Abstract 

The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from 

the loosely associated commensals, often designated as secondary (S) symbionts, to 

obligate mutualists, called primary (P) symbionts. Determination of the evolutionary 

processes behind this phenomenon has long been hampered by the unreliability of 

phylogenetic reconstructions within this group of bacteria. The main reasons have been 

the absence of sufficient data, the highly derived nature of the symbiont genomes and 

lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their 

DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to 

cluster as a monophyletic group. This state of phylogenetic uncertainty is now 

improving with an increasing number of complete bacterial genomes and development 

of new methods. In this study, we address the monophyly versus polyphyly of 

enterobacterial symbionts by exploring a multigene matrix within a complex 

phylogenetic framework.  

We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69 

orthologous genes with no missing data) and analyzed both nucleic and amino acid data 

sets using several probabilistic methods. We particularly focused on the long-branch 

attraction-reducing methods, such as a nucleotide and amino acid data recoding and 

exclusion (including our new approach and slow-fast analysis), taxa exclusion and 

usage of complex evolutionary models, such as nonhomogeneous model and models 

accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our 

data strongly suggest independent origins of four symbiotic clusters; the first is formed 
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by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the 

second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to 

Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-

symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade 

and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the 

Erwinia and Pantoea clade.  

The results of this study confirm the efficiency of several artifact-reducing methods and 

strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae. 

Interestingly, the model species of symbiotic bacteria research, Buchnera and 

Wigglesworthia, originated from closely related, but different, ancestors. The possible 

origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are 

suggested, as well as the role of facultative secondary symbionts as a source of bacteria 

that can gradually become obligate maternally transferred symbionts.  
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4.2 Chapter 2 

 

Chrudimský T., Husník F., Nováková E., Hypša V., 2012. Candidatus Sodalis 

melophagi sp. nov.: Phylogenetically Independent Comparative Model to the Tsetse Fly 

Symbiont Sodalis glossinidius. PLoS One. 2012;7(7):e40354. doi: 

10.1371/journal.pone.0040354. Epub 2012 Jul 17. 

 

Abstract 

 

Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best 

known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius, 

has become one of the most important models in investigating establishment and 

evolution of insect-bacteria symbiosis. It represents a bacterium in the 

early/intermediate state of the transition towards symbiosis, which allows for exploring 

such interesting topics as: usage of secretory systems for entering the host cell, tempo of 

the genome modification, and metabolic interaction with a coexisting primary symbiont. 

In this study, we describe a new Sodalis species which could provide a useful 

comparative model to the tsetse symbiont. It lives in association with Melophagus 

ovinus, an insect related to tsetse flies, and resembles S. glossinidius in several 

important traits. Similar to S. glossinidius, it cohabits the host with another symbiotic 

bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a 

typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues, 

including bacteriome. We provide basic morphological and molecular characteristics of 

the symbiont and show that these traits also correspond to the early/intermediate state of 

the evolution towards symbiosis. Particularly, we demonstrate the ability of the 

bacterium to live in insect cell culture as well as in cell-free medium. We also provide 

basic characteristics of type three secretion system and using three reference sequences 

(16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within 

the genus Sodalis, but originated independently of the two previously described 

symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for 

this new bacterium. 
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4.3 Chapter 3 

 

Víchová B., Majláthová V., Nováková M., Stanko M., Hviščová I., Pangrácová L., 

Chrudimský T., Čurlík J., Peťko B., 2013. Anaplasma infections in ticks and reservoir 

hosts from Slovakia, Central Europe. Infection, Genetics and Evolution. 

 

Abstract 

 

Anaplasma phagocytophilum is a worldwide distributed bacterium with a significant 

medical and veterinary importance. It grows within the phagosome of infected 

neutrophils and is responsible for human granulocytic anaplasmosis (HGA), tick-borne 

fever (TBF) of small ruminants and cattle, canine and equine granulocytic 

anaplasmosis, but infects also a great variety of wildlife species. Wild ungulates and 

rodents are considered reservoirs of infection in natural foci. The objective of this study 

was to determine the spectrum of animal species involved in the circulation of A. 

phagocytophilum in Slovakia and to analyze the variability of obtained nucleotide 

sequences, in order to determine whether genotypes from Slovakia cluster according to 

host-species or geographical location. Several animal species and vector ticks were 

screened for the presence of members of the family Anaplasmataceae using PCR based 

methods. Additional data on the molecular evidence of Anaplasma ovis and Candidatus 

Neoehrlichia mikurensis are presented. These pathogens were detected in tested sheep 

flocks and rodents with the mean infection rates of 8.16% and 10.75%, respectively. A. 

phagocytophilum was genotyped by 16S rRNA and groEL gene sequencing. Bacterial 

DNA was confirmed in questing ixodid ticks, in domesticated canine, wild rodents and 

several species of wild ungulates. In European isolates, 16S rRNA gene does not seem 

to be an appropriate locus for the analyses of heterogeneity as it is too conservative. 

Similarly, 16S rRNA isolates from our study did not reveal any polymorphisms. All 

isolates were identical in overlapped region and showed identity with sequences from 

ticks, horses or ruminants previously isolated elsewhere in the world. On the other hand, 

the groESL heat shock operon is widely used for determination of diversity and the 

analyses have already revealed considerable degree of heterogeneity. Tested ungulates 

were infected with A. phagocytophilum to a considerable extent. High proportions of 

red and roe deer tested positive and the rates of infection reached over 60.0%. GroEL 

sequences from canine, wild ungulates and ticks from Slovakia clustered within a clade 
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together with isolates from horses, humans, wild ungulates and ticks from Slovakia or 

elsewhere in the world. Sequences from rodents clustered apart from those obtained 

from wild ungulates, ticks and humans. These results suggest that European rodents do 

not harbour A. phagocytophilum strains with strong zoonotic potential such as those 

from United States. 
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