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1. Introduction and results

1.1 General introduction

The term Symbiosis was coined in sense as “living together of unlike organisms” for the
first time in 1879 by the founder of modern mycology and plant pathology Heinrich
Anton de Bary in his book “Die Erscheinung der Symbiose’. Symbiosis is redly
widespread phenomenon that played and plays a critica role in Earth’s biosphere.
Without symbiosis the life would not be as we know it since there would be no
eukaryotes [1].

Symbiosis as a long term association of different organisms constitutes whole spectrum
of ecological interactions (i.e. mutualism, commensalism and parasitism), however, the

term symbiosisis often used only in connection to mutualists and commensals.

The phylum arthropoda comprises broad range of life forms and is the most numerous
part of the kingdom animalia[2]. Arthropods host variety of bacteria of which many are
of medical importance for animals and humans, and use parasitic arthropods as vectors
MS3. In this thesis, | will mainly focus on the endosymbionts in insects MS 1,2 and
ticks MS3 since intracellular symbiotic bacteria are rarely studied in other arthropods.
Endosymbiotic bacteria are usually treated as two different types: so caled P (primary)
and S (secondary) symbionts. This division is mainly based on physiological and
ecological aspects and is unrelated to the bacterial phylogeny/taxonomy.

1.1.1 P symbionts

P symbionts are intracellular bacteria (except for the symbionts of Platasipidae [3]),
strictly vertically transmitted from mother to offspring. These symbioses are usualy
ancient and the host-bacterium association undergoes millions of years of coevolution
[4]. P symbionts are not distributed randomly in their host’s bodies. The insect hosts
usually keep them restricted to specialized cells called bacteriocytes, often forming an
organ called bacteriome. The role of P symbionts seems to be nutritional. They, for
example, provide essential amino acids [5], vitamins [6-9] or recycle uric acid [10]. P

symbionts appear to be essential for hosts survival and/or normal development. The loss



of P symbiont causes sterility, shortened lifespan or growth and developmental
disorders[11,12].

The long term association of P symbionts with their hosts led to severe genome
reductions and modifications. All unnecessary genes and metabolic pathways were
eliminated, leaving the bacteria in state of “host-controlled metabolic factories’. Thisis
probably the main reason, why al known P symbionts are uncultivable in vitro. The
absolute record in genome reduction holds Nasuia deltocephalinicola
(Betaproteobacteria), symbiont of the leafhopper Nephotettix cincticeps with 112 kbps
genome encoding for 137 proteins [13] which has recently beaten another genome
dwarf Tremblaya princeps (Betaproteobacteria) with 139 kbps genome that encodes just
for 116 proteins [14]. These numbers are indeed comparable with characteristics of
plastid organellar genomes [15] and stress the question about borders between organism

and organelle.

1.1.2 Ssymbionts

Unlike obligate P symbionts, S symbionts are facultative and their loss is not fatal for
their hosts; the hosts just may lose some ecologica advantage [16]. Besides beneficial
microbes this group aso includes commensals and reproductive manipulators. The role
of beneficial symbiont is usually protection against infections [17] and heat stress [18]
or complementing missing parts of the P symbionts metabolic pathways [19,20]. In
some cases they also can replace the P symbiont and overtake its function in the host e.
0. [21,22]. Transmission of the S symbiontsis not exclusivelly vertical, as is case of the
P symbionts, since they can also spread horizontally [23-28]. Mechanisms of these
horizontal transfers remain unknown. Since S symbionts are not so tightly associated
with their hosts metabolisms, their in vitro cultivation may be successful in some cases
[29-33]; and M S2).

1.2 Diversity of endosymbiotic bacteria in ticks and insects

1.2.1 Endosymbiotic bacteria of insects
It is supposed that majority of insects harbor symbiotic bacteria (see Table 1) that often
increase their fitness and improve adaptation to the environment. Symbionts are aso



known as important driving force of insect evolution since they represent an extra
source of genetic information with mutation potential [16]. A good example are aphids
and their mutualistic symbionts. Aphids are widespread sap-feeding insects that
typically (but see [34,35]) host P symbiont caled Buchnera aphidicola. Buchnera
provides essential amino acids [5] and riboflavin [9] that are missing in sap and which
the aphids cannot synthesize. Of the S symbionts, these aphids can host Hamiltonella
defensa and Regiella insecticola which protect their hosts against parasitic wasps [36].
Though insect-bacteria symbiosis is extensively studied, there are still groups of insects,
where symbiotic bacteria (P and S) were only identified by microscopic observation
[37] and were never examined by modern biological methods. Identity of these
morphologically described symbionts is therefore still unknown. These insect groups
are largely coleopterans (namely Bostrychidae, Cerambycidae, Chrysomelidae,
Lyctidae, Nosodendridae, Throscidae), but also Amblycera (chewing lice), partiadly
Membracidae (tree hoppers) and Ceratopogonidae (biting midges). As part of my work |
tried to obtain and examine insect samples from these groups. However, | was
successful just in Throscidae. By using PCR based 16S rDNA screening and
temperature gradient gel electrophoreis that alows for separation of fragments of the
same size but different GC content, | identified three symbiotic bacteria in Trixagus
meybohmi (Coleoptera, Throscidae). First of them is a novel P symbiont (according to
very low GC content) that appears to be closely related to the P symbiont of
sharpshooters Sulcia muelleri (Bacteroidetes). In addition, | have identified novel
species of the genus Sodalis (Gammaproteobacteria) and one species of the genus

Wolbachia (Alphaproteobacteria). These data are unpublished.

Insect order Symbiotic bacteria (unnamed symbionts are ommited)

Blattaria Blattabacterium cuenoti

Coleoptera Curculioniphilus  buchneri, Macropleicola, Nardonella,
Sodalis

Collembola Wolbachia

Diptera Arsenophonus,  Aschnera  chinzeii, = Wigglesworthia
glossinidia, Sodalis

Hemiptera Asaia, Arsenophonus, Benitsuchiphilus tojoi, Brownia




rhizoecola, Baumannia cicadellinicola, Buchnera aphidicola,
Cardinium, Carsonella ruddii, Ecksteinia, Gillettellia
cooleyia, Hamiltonella defensa, Hodgkinia cicadicola,
Ishikawaella capsulata, Kleidoceria schneideri, Liberibacter,
Moranella endobia, Nasuia deltocephalinicola, Portiera
aleyrodidarum, Profftia, Purcelliella pentastirinorum,
Regiella insecticola, Rickettsia, Rickettsiella, Rohrkolberia
cinguli, Rosenkranzia clausaccus, Serratia symbiotica,
Schneideria nysicola, Sodalis, Sulcia muelleri, Soiroplasma,
Tremblaya, Uzinura diaspidicola, Vallotia, Vidania

fulgoroideae, Wolbachia, Zinderia insecticola

Hymenoptera Bartonella — like, Blochmannia, Sodalis, Streptomyces
philanthi

Isoptera Blattabacterium, Wolbachia

L epidoptera Arsenophonus, Wolbachia

Phthiraptera Legionella, Riesia pediculicola, , Sodalis

Protura Cardinium-like, Rickettsia —like

Psocoptera Rickettsia

Siphonaptera Rickettsia,Wolbachia

Thysanoptera Stammerula tephritidis

Table 1: List of insect endosymbionts

1.2.2 Endosymbiotic bacteria of ticks

Ticks are obligate hematophagous ectoparasites of mammals, birds, and reptiles. They

can carry and transmit a wide range of pathogens, such as bacteria, protozoa, viruses,

and nematodes that can cause various diseases of humans and animals[38].

There are severa routes, by which ticks may become infected with bacteria, namely by

feeding on bacteremic reservoirs and by transstadial or transovarial transmission. Some

bacterial species are able to use al these transmission routes [39].

Among the epidemiologically most important bacteria are spirochetes from the Borrelia

burgdorferi sensu lato complex, members of the family Anaplasmataceae, Bartonella

spp., Rickettsia spp., Coxiella burnetii and Francisella tularensis.




Most of these bacteria are maintained in natural cycles that involve ticks and various
species of reservoir hosts, and are responsible for diseases which are recognized as
zoonozes. For each bacterial disease, one or several tick vectors and reservoir hosts may
exist in the natural foci [39].

As the tick-transmitted bacteria present risk to human and animal health, research of
ticks and their bacterial flora is dominantly focused on this perspective. Of the tick
associated bacteria, | have worked on the genus Angplasma. Anaplasma
phagocytophilum is a Gramnegative bacterium that causes granulocytic anaplasmosisin
humans and animals. It multipliesin a phagosome of infected neutrophils [40,41]. Ticks
of the genus Ixodes (but there are also other Anaplasma transmitting genera) serve as
vectors of the disease. In MS3 we mainly tried to explore epizoonotiological situation in
Slovakia and map reservoir speciesinvolved in A. phagocytophilum circul ation.

Little is known about possible benefits that the ticks obtain from the hosted bacterial
flora. Study on a Coxidlla-like bacterium in Amblyomma showed that antibiotic treated
aposymbiotic ticks hadlower fithess than the untreated ticks [42]. In 2006, an intra-
mitochondrial bacterium now called Midichloria mitochondrii was described from the
hard tick Ixodes ricinus [43]. It was shown that bacterium consumes mitochondria in
oocytes. However, despite bacteria destroying many mitochondria, oocytes develop
normally. Although the genome sequence did not clearly answer the question whether
Midichloria is parasite or mutualist, some genomic features indicate that it might be
more beneficial than detrimental for its host. For example it can theoretically synthesize
heme (ticks have to get it from blood meal) and B vitamins, and is able to provide
additional ATP to the host [44]. Other research group showed that Anaplasma
phagocytophylum enhances freeze tolerance of the Ixodes scapularis ticks helping them
to survive in the cold weather [45].

Is the association of Midichloria with its host parasitism or mutualism? Does
Midichloria pay for its transmission by synthesizing essential nutrients, which help ticks
to survive starvation? What are biological roles of other bacteria associated with ticks?
These and many other questions need to be answered. Fortunately, the pathogen-
oriented research focus seems to be little bit shifting at least to bacterium-bacterium
interactions and their consequences for atick host, which is noticeable in recent reviews
[46,47].



1.3 Widely distributed and emer ging lineages of symbionts

1.3.1 The genus Wolbachia

Wolbachia is a genus of Alphaproteobacteria that belongs together with pathogenic
Rickettsia, Anaplasma and Ehrlichia to the order Rickettsiales. Based on phylogenetic
reconstructions, Wolbachia splits into so called “supergroups’ A-H. Wolbachia is
widely distributed bacterium that unlike other members of Rickettsiades does not
directly infect vertebrates. Supergroups A, B, F and H are associated with arthropods
and have been reported from insects [48], mites [49,50], spiders [51] and crustaceans
[52].

The role of Wolbachia in arthropods is usually negative. They are reproductive parasites
that change sex ratio of the offspring to gain maximal fitness. Generally, little is known
about possible positive effects of otherwise detrimental bacteria on their hosts, but even
such effects cannot be ruled out. There is just alittle step from parasitism to mutualism
and “helping bad guy” might be a state of transition between these two ecologica
strategies. Wolbachia was for example shown to protect Drosophila species against
RNA viruses [53-56] and reduce vira infection rate in mosquitoes [57,58].
Furthermore, Wolbachia largely behave as mutualist in filarial worms [59] and there
are also several arthropod groups where it developed into obligate mutualistic

symbionts, e.g in bedbugs [60] and parasitic wasps [61].

1.3.2 The genus Cardinium

Cardinium belongs to the Bacteroidetes group and was discovered for the first time in
tick cell line [62]. Unlike Wolbachia, no Cardinium lineage has proved positive effect
on their arthropod hosts. They are all reproductive manipulators [63]. Cardinium
prevalence is rather low in al arthropods, numbers range from 4.4 to 7.2% [63,64] ,
however, in spiders and mites prevalence is much higher 22 — 31.6% [63,65]. Research
on Cardinium is relatively short and we can perhaps expect discovery of mutualistic

Cardinium lineage(s) too.

1.3.3 The genus Spiroplasma
Spiroplasmas (Mollicutes) are descendants of Grampositive bacteria that lost their cell

walls. They are infectious agents of plants and arthropods. In arthropods, they are



largely commensals, however some appear to be reproductive manipulators [66,67] and
several mutualistic lineages have aso been reported [68,69].

1.3.4 The genus Sodalis

The genus Sodalis belongs to the family Enterobacteriaceae, Gammaproteobacteria
Though many of its isolates are called “ Sodalis-like endosymbiont of..”, it is usualy
considered a regular monophyletic genus. Until recently (MS2), there was only one
cultivable and described species — S symbiont from the tsetse flies, Sodalis glossinidius
[30]. Ecology of Sodalis spans from commensals to obligate mutualists [70,71],
however, their role is largely uncharacterized in other hosts. Sodalis was identified in
wide spectrum of insects comprising tsetse flies [30], keds MS2 [72], psyllids [26],
mealybugs [27], chewing lice [73], ants [74], aphids [75], scale insects [76], stinkbugs
[77,78], cerambycid beetles[79], weevils [80-83].

1.3.5 the genus Arsenophonus

Arsenophonus is a speciesrich genus of Enterobacteria infecting wide range of
arthropod hosts and it was also identified as a plant pathogen. The genus is a
monophyletic assemblage of various isolates, sometimes described as different genera
[84]. Consequences of the Arsenophonus symbioses for the hosts are as variable as the
Arsenophonus diversity itself. The ecology spans from reproductive manipulators [85-
87] [88] and plant pathogens [89,90] to countless S symbionts of unknown roles e. g.
[91] and P symbionts [92-94]. Particularly interesting is a reported putative defensive
role of Arsenophonus in psyllid Glycaspis brimblecombei [95].

1.3.6 The genus Rickettsia

Rickettsia are generaly known as pathogens of vertebrates that are transmitted by
arthropod vectors and are causative agents of diseases such as spotted fever or typhus
[39]. Although the research is mainly focused on Rickettsia with medical importance
and their blood-feeding vectors, there are aso species that play various known
biological roles in their hosts. They may be obligate mutualists [96], facultative
mutualists e.g. [97] or reproductive manipulators [98-101], however, the effect of

Rickettsia on its host is unknown in most cases.



1.4 Biology ver sus phylogeny and phylogenetic problems

1.4.1 Phylogeny and biological interpretation

Inferring robust phylogeny is a crucia step toward biological and evolutionary
interpretations (for example for identification of a strict symbiont-host coevolution
found in P symbionts, or detection of host switches). An example can be provided by
the genus Sodalis with wide distribution among insects. In MS2 we describe novel
Sodalis species Candidatus Sodalis melophagi found in the sheep ked Melophagus
ovinus (Hippoboscidae). Our phylogenies demonstrate that Candidatus Sodalis
melophagi, a typica S symbiont, established its symbiosis independently of other two
hippoboscoid-derived Sodalis lineages (including the S, glossinidus lineage known from
tsetse fies). This incongruence reflects an early stage of the symbiosis and horizontal

transfer, similar to some cases of coleopteran and homopteran hosts.

1.4.2 Phylogenetic obstaclesin symbiont research

Correct phylogenetic inference of relationships among symbiotic bacteria appears to be
a nut to crack at least by current phylogenetic and phylogenomic methods. This is
especially true for P symbionts with highly degraded genomes, high base compositional
bias and fast evolving sites[16].

In general, intracellular lifestyle and vertical transmission lead to severe bottlenecks and
prevent exchange of genetic information, which speeds up the Muller’s rachet [102] by
which mutations are being accumulated and fixed [103]. Vertical transmission means
small population size, which results in increased genetic drift and weak purifying
selection. This accelerates sequence evolution of al genes in the genome. At the
beginning of symbiotic state there is a burst of phage and transposable activity, which
results in genome remodeling. Non-essential genes are pseudogenized and lost, portions
of the genomes are relocated and large deletions take place. Therefore typical S
symbiont possesses numerous pseudogenes, transposons and phages/phage derived
sequences; whereas typical P symbiont has tiny genome without transposons and phages
and has high coding density [104-106]. Bacteria have a natural tendency to higher GC
content in their DNA, while mutations are universally biased toward A/T [107,108]. In
reduced genomes of obligate P symbionts, there is a genera trend towards high A/T

contents. For example, the most A/T rich known genome has been found in Zinderia



insecticola. The genome size is 209 kbp and A/T content is 86,5% [109]. This is
probably due to loss of genes involved in DNA reparation [16] in combination with
weak purifying selection as part of Muller’s rachet [110]. As usual, every rule has its
exceptions. Not all P symbionts with reduced genomes have high A/T content. This is
true for two Alphaproteobacteria- Tremblaya princeps and Hodgkinia cicadicola, with
A/T content 41.2 and 41.6, respectively [20,111]. There must be some G/C mutation
bias in Alphaproteobacteria that persisted in these two reduced genomes [111].

The most symbiont-rich group of bacteria is undoubtedly Enterobacteriaceae
(Gammaproteobacteria) that also comprises pathogens of humans (such as Salmonella
or Yersinia) and is therefore intensively studied. The 16S rDNA is a gene of choice
(frequently the first and the only choice) with good taxon sampling in
Enterobacteriaceae, however, it was shown as useless for inferring reliable phylogeny
[16]. Unfortunately, many symbionts are represented only by 16S rDNA in Genbank. It
is therefore important to shed light on relationships among Enterobacteria and produce
more robust phylogenies. The number of symbiotic events in Enterobacteriaceae and
monophyly/polyphyly of P symbionts became center of debates. As mentioned above,
in P symbionts the rapid gene evolution and compositional bias causing homoplasies
make inferring phylogenies very difficult. About 20 studies [112-131] tried to solve P
symbionts monophyly/polyphyly by different approaches prior to our MS1. Of these
studies, only few broke monophyly of P symbionts. Generdly, the usage of non-
homogenous models appeared particularly effective [113,118]. The “standard” models
of sequence evolution assume composition homogeneity among taxa [132], which is
definitely invalid assumption in case of P symbionts. Other researchers, who broke the
P symbiont monophyly, used genomic data and performed break-point and inversion
distance phylogeny [117]. And finally, they successfully coped with phylogenetic
artifacts using “telescoping multiprotein phylogenetic analysis’ [133]. Unfortunately,
especialy in the case of older studies there is insufficient taxon sampling due to low
genome data availability in Genbank. In 2011 we publihed MS1 where we used most
common methods of removing phylogenetic artifacts. We analyzed data on both
nucleotides and amino acids levels and looked for similar paterns in resulting
phylogenetic trees. Since we obtained very similar results with different methodologies,
it makes our conclusions quite robust. While for example widly used Slow-Fast method
[134] failed, we retreived good results using nonhomogeneous model and models

accounting for site-specific features of protein evolution (CAT and CAT+GTR) [135],
9



various matrix recodings and our novel AT/GC method. Since Slow-Fast [134] method
removes fastest evolving sites, it does not remove large portion of homoplasies that
occur from compositional bias. In our novel method, we focused on removing al sites
that could be possibly biased. Therefore all sites that contained A or T along with C or
G were removed, leaving al information only in A/T and G/C sites. After performing
numerous phylogenetic analyses, we assumed, that symbiotic event occured at least 4

times in Enterobacteriaceae.

1.5 Genomic traits and mechanisms important for symbiosis

This part of introduction and results is focused on genetic features and mechanisms that
| have studied and which play, in my opinion, important roles in symbiotic
relationships. The connection among these phenomena is transfer of genes or gene
clusters. Transfer of genetic material is ubiquitous in bacteria and represents important
driving force in their evolution. By acquiring foreign information, bacterium can learn
how to perform novel processes or synthesize novel compounds with biological activity.
This may result in new opportunities and open new niches. Genetic information can be

transmitted by several ways:. transformation, transduction and conjugation [136].

1.5.1 Phages-bacterial virusesintroducing new genetic features

While lytic phages use aggressive strategy of multiplication and destroy the host cell in
short time period after infection, lysogenic phages can repress Iytic cycle and
incorporate into bacterial chromosome. In certain conditions they may decide to
multiply and subsequently lyse the host cell. These so called temperate phages
additionally prevent hosting bacteria of being colonized by other phages (which is
beneficial for both partners) [137]. Along with their detrimental effects on bacteria (e. g.
lysis), bacteriophages constitute an important way of genetic transfer and therefore
bacterial evolution. They may accidentally pack parts of bacterial genome during capsid
assemblage and inject it into different cell. Foreign bacterial DNA may be incorporated
into the chromosome by mechanisms of homologous recombination. This process is
called the transduction [138]. In addition, temperate phages can bring novel information
also in a different way. When sitting in the host cell with repressed lytic cycle they

allow for expression of gene cassette they may encode. This cassette contains genes that

10



are beneficial for the host and improves its fitness. The best documented viruses that
behave this way are APSE phages infecting the Gammaproteobacterium Hamiltonella
defensa.

History of research on APSE phagesisrelatively short. The first described, isolated and
sequenced phage was bacteriophage APSE-1 (the abbreviation means the first
bacteriophage of Acyrthosyphon pisum secondary endosymbiont) in 1999 [139]. The
host bacterium was identified as an agent that protects aphids from being infected by
parasitic wasps [140]. However, it was later demonstrated, that it is not H. defensa itself
but the APSE phage that is responsible for protective phenotype [141]. In 2008, seven
APSE phages were partially sequenced. The key difference was in content of so called
toxin cassette, where e.g. YD-repeat toxin, Shiga-like toxin or cytoletha distending
toxin were identified [142,143]. Content of a toxin cassette influenced degree of aphid
protection. For example APSE-3 phage encoding Y D-repeat toxin guaranteed more than
85% surviva rate, while APSE-2 phage encoding cytolethal distending protein was
effective in 40% [144] . Although protective phenotype of H. defensa was connected
with the phages, the exact mechanism of toxin delivery to the parasitic wasp remains
unknown. As every rule has its exceptions and nothing is 100% certain in biological
systems, Adam Martinez and colleagues recently discovered two Hamiltonella+tAPSE-2
infected aphid lines that do not possess better protection than the same lines treated with
antibiotics —i.e. with Hamiltonella eradicated. Furthemore and most interestingly, they
described existence of parasitoid-resistant aphid lines that are S symbiont free [145].
Authors are investigating now how these aphid lines can fight the parasitoids without
protection of APSE.

In terms of phage research, | have sequenced, assembled and annotated complete
genomes of two APSE-3 phages from two different aphid lineages. In one of these
lineages the phage was repeatedly lost in offspring from time to time, but it was steadily
inherited in the second aphid lineage. Unfortunately, these phage sequences brought
more questions than answers, since they were identical except for three changes in the
toxin gene. Since PCR did not detect the “lost phage” both integrated in chromosome
and circular in cytosol (i.e. the phage was completely erased from H. defensa) it
remained rather enigmatic, how and why is a virtualy identical phage occasionally

eradicated in one aphid lineage and maintained in the other.
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1.5.2 Secretion systems, focus on T3SS

Secretion systems are protein machineries that are designed to deliver proteins into
surroundings of a bacterial cell. The key player in pathogenesis and symbiosis appears
to be the so called Type Il secretion system (T3SS) [146]. T3SS typically occur in
pathogens such as Salmonella, Yersinia or Chlamydia that cause disease in humans and
animals and is used to transfer bacterial proteins called the effectors into the host cells.
These effectors are either encoded directly in the same genomic island as T3SS (these
islands are frequently horizontaly transferred) or they can be found anywhere in the
genome, which complicates detection and research of these interesting molecules.
Secretion of effectors typically allows for cell cycle modulation, cytoskeleton control,
cell death induction or hiding out from the immune system [147]. Though living in
different conditions, plant pathogens use T3SS for very similar purposes [148]. As lots
of active molecules have not been discovered so far, it appears that functions of
bacterial effectors in host organism is probably more complex. While P symbionts
typically does not encode for T3SS, it is found in S symbionts (and not only in
arthropods). For example it has been detected in symbioses. Sodalis glossinidius/tsetse
fly, Hamiltonella defensa/aphids. In case of Sodalis glossinidius/tsetse fly association, it
has been experimentally demonstrated that T3SS is required for successful transmission
of a symbiont on insect progeny [149]. Thisisin perfect agreement with experiment on
non-insect symbiosis model — mutualistic Aeromonas/leech, where T3SS mutants were
not able to colonize the host [150]. This suggests an essential role of T3SS in S
symbionts life. In MS2 we compared T3SS of two Sodalis species S glossinidiusand S
melophagi. While S, glossinidius encodes for three copies. SSR-1, SSR-2 and SSR-3, S
melophagi possesses only SSR-3 copy and SSR-2 is highly degraded. Since SSR-3 is
conserved in both species it can be speculated that S. glossinidius could use other two
specialized copies with their associated secreted proteins for other distinct purposes.
Recently, two additional genomes of Sodalis species became publicly available,
therefore | added their secretion systems to the comparison (see Figure 1). SOPE isaP
symbiont of rice weevil Stophilus oryzae [70]. Sodalis HS strain was isolated from a
wounded man who impaled his hand on a branch of his apple tree. This species
represents important discovery, since it demonstrates the way insects may acquire their
symbionts, e.i. from plant pathogens [151]. This is noticeable in MS1 where symbiotic

bacteria cluster with pathogens (see Discussion and Conclusions part for more details).
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Plants adso serve as places where plant feeding insects get infected by already
established S symbionts [152].

The Figure 1 reflects connection of T3SS degradation with intimacy of the
symbiont/host assotiation. All but Sodalis HS strain and S. glossinidius lost SSR-1 copy
of secretion system. These two species retained all three copies. SSR-2 and SSR-3 of
SOPE started their degradation and is questionable whether they are still functional or
not. Thisfact isin aignment with state of SOPE that represents very young P symbiont.
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1.5.3 Plasmids

Plasmids are dsDNA molecules that replicate independently on chromosoma DNA.
They are generdly circular, however, for example in case of Borrelia, linear forms
occur. Their size varies from 846 bp to 1.8 Mbp and they may encode from 1 up to 7281
genes [154,155]. Plasmids usually carry genes that are not essential for survival of
bacterium (e.g. housekeeping genes), however, these plasmid encoded genes provide
some extra benefits increasing bacterial fitness (e.g. antibiotic resistance [156],
bacteriocides [157], ability of conjugation [158], virulence[159], degradation of toxic
substances [160], heavy metal resistance [161]).

In order to compare plasmids of Sodalis melophagi with Sodalis glossinidius, |
sequenced and annotated extrachromosomal DNA of S. melophagi. Extrachromosomal
DNA of S glossinidius comprises three plasmids and one circular phage. The plasmids
encodes for iron uptake via siderophors, putative toxins, hemolysins and proteases
[162]. Although belonging to the same genus and living in very similar conditions, S
glossinidius and S melophagi does dramatically differ in their plasmid contents. S
melophagi also possessess four circular extrochromosomal molecules (see Table 2), of
which one is the phage (see phage comparison Figure 2), however, their sizes and
content are dissimilar. Plasmids of S. melophagi encode lots of phage and transposon
derived proteins and enzymes located on plasmids are often present also on the
chromosome. It is therefore difficult to assign them any clear functions except of one
that contains the whole operon for Type 1 fimbriae synthesis.

pSM 1 pSM2 pSM3 phiSM
GC content 46.7% 43.2% 48.4% 50.6%
Size 334 28.5 36.2 38.2
Protein coding genes | 25 25 38 41

Table 2: Molecular characteristics of extrachromosomal DNA in Sodalis mel ophagi
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Figure 2: Genomic comparison of the Sodalis phages produced using MAUVE [153]
software. The bacteriophages phiSG1 and SO-1 occur in the Sodalis glossinidius, while
phiSM in the Sodalis melophagi.

Type 1 fimbriae are bacterial hair-like organelles present on cell surface that are
assembled by chaperone-uscher secretion pathway. They occur in Gramnegative
bacteria [163]. Among all bacteria, Type 1 fimbriae are most intensively studied in case
of uropathogenic Escherichia coli causing disease in humans. The tips of Type 1
fimbriae made of FimH lectin are specific to mannosilated glycoproteins and allow for
bacterial attachment to tissue cells [164,165]. This promotes bacterial colonization of
urinary tract, cell invasion and constitutes the first step in biofilm formation [166].
Interestingly, Type 1 fimbriae also appears to be important player in forming of E. coli
intracellular communities that are biofilm-like structures protecting bacteria against
antibiotics and host immunity system. These protected communities allows for massive
E. coli multiplication within the urinary bladder [167]. Given Sodalis melohagi is S
symbiont, it can be speculated that S. melophagi uses Type 1 fimbriae for very similar
purposes to E. coli. That is: 1- attachment to cell surfaces and body colonization and 2 -
hiding from the immunity system. The fimbriae operon from S melophagi is related to
the operon from another Entorobacterium — Erwinia, which is (in most cases) a plant
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pathogen that uses Type 1 fimbriae at least for attachment to plant surface [168].
Whether it is a case of horizontal gene transfer, or Sodalis is closely related to Erwinia
cannot be unequivocally decided. According to our phylogenetic analyses MS1, the first
case |ooks more probable.

Being aware of the fact that not all encoded genes are expressed and they therefore
constitute cryptic pseudogenes, | verified physical presence of fimbriae experimentally
by using yeast agglutination assay with positive result. As Type 1 fimbriae are present
in S. melophagi on bacteriological plates we can assume that bacterium uses them in the
host to.
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2 Discussion and Conclusions

As | attempted to cover broad spectrum of arthropod/symbiont associated issues,
outcomes of my work split into two main groups. First, the main one, deals with origins
of symbiosis and genomic traits that are likely required for symbiosis establishment,
while the second covers circulation of arthropod-borne pathogens between host and a
Vector.

2.1 Topic 1 - Rising of symbiosesin Enterobacteria

In the MS1, we performed complex phylogenetic analyses based on modern
methodology. Furthermore, we developed novel and powerful way of
handlingsequences with extreme compositional bias. Long-branch attraction [169] due
to fast evolution of some taxa in a dataset is certainly troublesome artifact, but the fast
evolving sites are not necessarily the worst enemies of molecular phylogeneticians.
Slowly evolving positions can be tricky too, because of their possible non-homogenous
base composition. In our article, we demonstrated the power of this artifact by failure of
Slow-Fast analysis [134] that removes fastest evolving sites. Similar results, i.e. failure
of creation correct phylogenetic tree after removing fastest evolving sites, were also
obtained by Beatricé Roure and Hervé Phillipe [170] in case of animal phylogeny based
on mitochondrial genomes. They obtained the correct topology by remova of the so
called heteropecillous sites — positions that change their substitution pattern over time.
Why fast evolving sites constitute much smaller problem than non-homogenous site
composition? That question was answered for example by Hervé Phillipe [171]. While
phylogenetic models can (more or less) deal with different rates of evolution over sites
via gamma distribution, they fail to recognize violation of model assumptions (like site
non-homogeneity). Therefore it is crucia to know if a phylogenetic model you want to
useisreally suitable for the analyzed data.

Outputs computed from both amino acid and nucleotide datasets strongly suggest at
least four independent origins of symbiosis within Enterobacteriaceae. This finding is

supported by convergence of results from different ways of data analyses. Beside the
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fact that rising of symbiosis was not a single event in Enterobacteriaceae, our topologies
aso show the putative origins of symbiotic lineages. They seem to recruit from
pathogenic or gut associated bacteria. There is more detailed description of four
symbiotic clusters in Enterobacteriaceae.

Buchnera clade consists of two different generac  Buchnera, which is an intracellular
obligate mutualist with long paralel history with aphids [172], and Ishikawaella
capsulata, gut endosymbiont of plataspid stinkbugs [173]. The placement of
Ishikawaella together with Buchnera might still be an artificial, since other closely
related bacteria are missing in the known sample [78,174-176] in the tree. The cluster is
associated with the genus Erwinia which consist dominantly of plant pathogens. This
position isin alignment with current state of knowledge, since Erwinia has been already
suggested to be a predecessor of Buchnera [177].

Arsenophonus clade comprises S symbiont Arsenophonus, and Riesia [178], P symbiont
of lice that is actually Arsenophonus misidentified as independent genus [84]. This
association of P and S symbiont is not artificial and supports known fact that S
symbionts can evolve into P symbionts over time. Arsenophonus clade is placed in a
neighborhood of genera Proteus, Photorhabdus and Xenorhabdus. All these organisms
are connected to insects in various ways. Photorhabdus and Xenorhabdus are insect
pathogens living in association with entomopathogenic nematodes and playing crucia
roles in their life cycles [179]. Members of the genus Proteus are saprophytes found in
natural environments as well in animal and human intestines and feces. They often
behave as opportunistic pathogens causing mainly infections of open wounds and
urinary tract [180]. One of them, Proteus myxofaciens, recently reclassified as a
separate genus Cosenzaea [181], was originally isolated and described from both living
and death larvae of the gypsy moth Porthetia dispar [182]. Since ecology of this
bacterium in the moth was never clarified, it can only be speculated whether it behave
as mutualist, commensal or parasite.

Other symbiotic event is presented by the Hamiltonella/Regi€ella clade. These taxa are
clustered with the genus Yersinia which is definitely closely associated with insects.
The linkage of Yersinia with insects has negative consequences for the hosts. The most
famous example is a causative agent of the plague Yersinia pestis that circulates
between rats and fleas. The bacterium is well equipped for fleainvasion and survival of
defence response. It moreover manipulates the host via blocking the midgut and

subsequent host starvation to increase the rate of flea biting [183,184]. There are also
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other entomopathogenic species in this genus, like Yersinia entomophaga recently
isolated from diseased larvae of the grass grub Costelytra zealandica [185,186].

Sodalis clade is an assemblage of S symbiont Sodalis and P symbionts of the genera
Baumannia, Blochmannia and Wigglesworthia. Position of Sodalis on the base of P
symbionts may indicate transformation of the S to the P symbiotic strategy [187]. Exact
position of the clade is uncertain, however, it seems to be related to animal and plant
pathogens of the genera Pectobacterium, Dickeya and Edwardsiella. Some species of
the Pectobacterium, which is as a plant pathogen, uses plant feeding insects for
spreading. They use other plant-associated invertebrates, like snails, too. There were
genes identified in Pectobacterium, enabling bacteria to survive attacks of vectors
immunity [188]. Dickeya dadanti, which behaves as a saprophyte or a plant pathogen,
was shown to produce toxins causing septicemia in pea aphids, it is able to survive in
the insect host and it is likely that these bacteria are specialized to use aphids for
spreading from plant to plant [189,190].

It is probable that there were much more symbiotic events within Enterobacteriaceae,
because our analyses comprised only limited number of taxa for which the data is
availability. Since there is also lack of known free living relatives of pathogens and
symbionts, it is difficult to reconstruct precise stories about origins of particular
symbiotic lineages. The costs of genome sequencing became reasonable, which is
definitely good for obtaining taxonomic data. We sequenced a genome of a free living
bacterium Biostraticola tofi (unpublished data), originaly isolated from the biofilmin a
hard water rivulet [191]. Biostraticola is the closest free living relative of the genus
Sodalis, which was shown in species description article [191] and also in MS2.
Interestingly, it possess one copy of T3SS, which differs from Sodalis T3SS (see Figure
1) and is of the different origin. According to gene content, T3SS of the Biostraticola is
complete and in addition, it contains known effector proteins, which suggests some kind
of interaction with water-borne eukaryotes, probably pathogenesis.

Are there any prerequisites for a bacterium to become a symbiont? Indeed, yes.
Symbionts seem to come from bacterial groups that are in frequent contact with the
future host. For example, in cicadas, which spend many years in soil feeding on roots,
their P symbiont called Hodgkinia cicadicola originated from Rhizobiaes, which are
bacteria associated with plant roots [192]. Another example is the Sodalis cluster. As
discussed above, Sodalis clade is related with plant pathogens Pectobacterium and
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Dickeya that learned how to use insects for spreading from plant to plant. Recently, the
free living Sodalis, named Sodalis HS strain, was isolated from a wounded man who
impaled his hand on an apple tree branch. Though its ecology is not known, Sodalis HS
strain can be hypothetized to live as saprophyte or a plant pathogen [151]. Thisis in
perfect aignment with Pectobacterium and Dickeya ecologies and suggests that Sodalis
symbionts are probably domesticated plant pathogens as is the case of Buchnera in
aphids [177].

Besides the first requirement of the symbiosis establishment | have described above,
I.ethr frequent physical contact, there are also some others. Not every free living
bacterium that is in contact with insects will automatically become symbiotic. The
second requirement can be called a genetic predisposition. Bacteria have to encode for
genes and organelles that enables them to survive in insect body before they attempt to
get and live inside it. These traits are largely connected with pathogenesis and can be
transmitted horizontally. Insect body has evolved to cope with bacteria and is hostile to
infection agents. After ingestion, majority of bacteria are killed by insect defence
mechanisms or (and) expelled from digestive tract by peristalsis. While it might look
difficult to survive there, the survival can be for example assured by single gene.
Erwinia is protected by Erwinia virulence factor evf that still works if transferred to
other Gramnegative bacterium [193]. The last steps to symbiosis are obtaining the
ability to spread in the host body while evading the defence system and learning
transovarial transmission.

Of the many mechanisms evolved to cope with insect defenses [194] | identified two to
be present in Sodalis melophagi. The first one is T3SS and the second one is plasmid
encoded fimbriae.

Though T3SS can be used as a weapon of free living bacteria against predators [195], it
IS typically associated with both plant and animal pathogenesis [147]. It looks like the
T3SS dso plays an important role in early stages of symbiosis (S symbionts and
entomopathogens). The function of T3SS in insect-bacterium interaction does not seem
to be connected with intestine environment (there are no supporting data), it is linked
with bacterium spread inside the host body. Photorhabdus luminescens, which is an
aggressive entomopathogen, uses T3SS to inhibit phagocytosis by insect haemocytes
[196]. On the other hand Sodalis glossinidius, which is an S symbiont inhabiting tsetse
flies, uses T3SS to spread into progeny. Though they were able to survive in afly, T3SS
mutants were unable to transmit from mother to offspring [149]. This difference of
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T3SS usage between a pathogen and a commensal (or mutualist) is likely determined by
different transmission strategies. Photorhabdus primary needs to survive confrontation
with host defence, it kills an insect and is transmitted by a nematode, while Sodalis
glossinidius does not kill the host and rather enter the host larvain uterus. As symbiotic
association becomes closer and the S symbiont turns into the P symbiont, the
transmission starts to be host-directed and T3SS machinery is therefore useless. In my
opinion, such progressive T3SS degradation can be observed in the genus Sodalis,
where free living Sodalis HS strain possesses three probably functional T3SS copies,
while SOPE as a P symbiont does not need them anymore. Sodalis glossinidius and
Sodalis melophagi constitute transition between these two states.

The primary function of the Type 1 fimbriae is to attach and hold bacterium on desired
surface, biotic or abiotic. In relation to arthropods and their symbionts, fimbriae play an
important role for example in life of entomopathogenic Xenorhabdus, because they
enable the bacterium to colonize the nematode guts [197]. What is the reason for
Sodalis melophagi to encode functional fimbriae? S. melophagi is already established S
symbiont, it is aready present in host tissues and it is transmitted from mother to
offspring. There is therefore no free living life stage outside the host body. So, why S
melophagi may need to attach to the host tissue? In my opinion, the main purpose of
fimbriae in S, melophagi might be direct transmission of the infection from ked to ked,
which is a horizontal transfer. Sheep keds often bite one another and suck heamolymph.
S melphagi is present in the heamolymph and could be therefore easily transmitted
orally from infected to uninfected individual. It uses fimbriae as an anchor to stop in
host’ s intestines, similarly to Xenorhabdus, colonize them and spread into the rest of the
body. | am not aware of the same behaviour in tsetse. This may provide an explanation

why S. glossinidius does not need and therefore does not encode for Type 1 fimbriae.

2.1 Topic 2 —-Ticksand Anaplasmain Slovakia

As discussed above, at the beginning of the symbiogenetic process which ends by P
symbiont establishment (or its possible transformation into organelle), bacteria often
behave as pathogens and use arthropods as vectors for spreading. Anaplasma
phagocytophilum can be considered as one of these “biginers’ that will (or will not)

later switch to pure mutualism. But in my opinion, this process might already started. It
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looks like Anaplasma phagocytophilum is not able to spread via transovarial transfer in
ixodid ticks and rely mainly on ruminats and rodents as reservoir hosts [198-205].
However, the transovarial transfer was documented in Dermacentor albopictus [206].
Another step to mutualistic S symbiont is promoting beneficial effects to the host. These
effects were indeed reported for Ixodes scapularis ticks, where A. phagocytophilum
helps the ticks to survive in cold weather [45]. However, A. phagocytophilum still
requires cycling among ticks and their hosts and is responsible for disease in animals
and humans. The severity of clinical manifestation varies and is probably linked with
variation of genome content among particular strains. Geography-dependent differences
are also interesting. In the USA, granulocytic anaplasmosis caused by A.
phagocytophilum is a common tick-borne disease, however, it is rare in Europe [207]. It
seems that American strains and European strains have different characteristics in terms
of ecology, host specifity and pathogenicity [208].

In MS3 we mainly focused on identification of species involved in circulation of A.
phagocytophilum in Slovakia and searching for clustering patterns according to host
species or geography. A. phagocytophilum was detected in wide spectrum of tested
species and our results suggest strong position of ungulates, especialy roe deer, as
reservoir hosts. Interestingly, there is a conflict of our groEL tree topology with Silaghi
et a. [209], where they imply existence of the “roe deer cluster”. This division into two
clusters, where one of them comprises A. phagocytophilum isolated from roe deer and
the other A. phagocytophilum isolated from other species, also appear in other European
studies [210-213]. It cannot be unambiguously decided, if polyphyly of A.
phagocytophilum from roe deer was an artifact (for any reason) or the confirmation of a
general true that nothing lasts forever. It would require more than one isolate and better
quality of input data to clarify this observation. Regarding our results on rodents, it must
be highlighted that rodents in Europe are not likely carriers of A. phagocytophilum
strains infecting humans, which is not true in the USA.
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Husnik F., Chrudimsky T., HypSa V., 2011. Multiple origins of endosymbiosis within
the Enterobcateriaceae (y-Proteobacteria): convergence of complex phylogenetic
approaches. BMC Biology Dec 28;9:87. doi: 10.1186/1741-7007-9-87.

Abstract

The bacterial family Enterobacteriaceae gave rise to a variety of symbiotic forms, from
the loosely associated commensals, often designated as secondary (S) symbionts, to
obligate mutualists, called primary (P) symbionts. Determination of the evolutionary
processes behind this phenomenon has long been hampered by the unreliability of
phylogenetic reconstructions within this group of bacteria. The main reasons have been
the absence of sufficient data, the highly derived nature of the symbiont genomes and
lack of appropriate phylogenetic methods. Due to the extremely aberrant nature of their
DNA, the symbiotic lineages within Enterobacteriaceae form long branches and tend to
cluster as a monophyletic group. This state of phylogenetic uncertainty is now
improving with an increasing number of complete bacterial genomes and devel opment
of new methods. In this study, we address the monophyly versus polyphyly of
enterobacterial  symbionts by exploring a multigene matrix within a complex

phylogenetic framework.

We assembled the richest taxon sampling of Enterobacteriaceae to date (50 taxa, 69
orthologous genes with no missing data) and analyzed both nucleic and amino acid data
sets using severa probabilistic methods. We particularly focused on the long-branch
attraction-reducing methods, such as a nucleotide and amino acid data recoding and
exclusion (including our new approach and slow-fast analysis), taxa exclusion and
usage of complex evolutionary models, such as nonhomogeneous model and models
accounting for site-specific features of protein evolution (CAT and CAT+GTR). Our
data strongly suggest independent origins of four symbiotic clusters; the first is formed

36



by Hamiltonella and Regiella (S-symbionts) placed as a sister clade to Yersinia, the
second comprises Arsenophonus and Riesia (S- and P-symbionts) as a sister clade to
Proteus, the third Sodalis, Baumannia, Blochmannia and Wigglesworthia (S- and P-
symbionts) as a sister or paraphyletic clade to the Pectobacterium and Dickeya clade
and, finally, Buchnera species and Ishikawaella (P-symbionts) clustering with the

Erwinia and Pantoea clade.

The results of this study confirm the efficiency of severa artifact-reducing methods and
strongly point towards the polyphyly of P-symbionts within Enterobacteriaceae.
Interestingly, the model species of symbiotic bacteria research, Buchnera and
Wigglesworthia, originated from closely related, but different, ancestors. The possible
origins of intracellular symbiotic bacteria from gut-associated or pathogenic bacteria are
suggested, as well as the role of facultative secondary symbionts as a source of bacteria

that can gradually become obligate maternally transferred symbionts.
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Background: The hacterial family Entercbacteriaceas gave rise 10 a variety of symbiotic forms, from the loosely
associated commensals, often designated as secandary (5] symbionts, to obligate mutualists, called primary (P)
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Background

One of the most fundamental evolutionary guestions
concerning insect-bacteria symbiosis is the origin and
phylogenetic relationships of various symbiotic lineages.
This knowledge is necessary for understanding the
dynamics and mechanisms of symbiosis establishment
and maintenance within the host. For instance, close
relationships between symbionts and pathogenic bacteria
suggests a transition [rom pathogenicity to symbiosis;
polyphyly of the symbionts within a single host group is
evidence of their multiple independent origins and close
relationships among symbionts of different biology indi-
cate high ecological flexibility within a given symbiotic
group [1-6]. These implications are particularly impor-
tant within Enterobacteriaceae, the group containing a
broad spectrum of symbiotic lineages and forms
described from various groups of insects. Their biology
varies from loosely associated facultative symbionts
(often called Secondary (S) symbionts) to obligatory
mutualists of a highly derived nature, called Primary (P)
symbionts [7-9]. However, the concept of the P- and S-
symbionts and the associated terminology are a major
oversimplification and they become inadequate for the
description of the ever increasing complexity of the
symbiotic system within Enterobacteriaceae. This com-
plexity is manifested by such phenomena as the pre-
sence of multiple symbionts in a single host [10],
occurrence of intermediate symbiotic forms and the
replacement of symbionts within a host [11-14] or close
phylogenetic relationships between typical - and P-
symbionts revealing their high ecological versatility [15].
A good example of such a complex system is provided
by the occurrence of multiple obligate symbionts within
Auchenorrhyncha [10], universally harboring Sulcia
nuielleri (Bacteroidetes) [16] with either Hodgkinia cica-
dicola (w-Protecbacteria) in cicadas, Zinderia insecticola
(B-Proteobacteria) in spittlebugs or Baumannia cicadel-
linicola {y-Proteobacteria) in sharpshooters. All of these
latter symbionts are obligate and have been cospeciating
with their hosts for millions of years [17-21]. A close
phylogenetic relationship between typical S- and P-sym-
bionts has been so far demonstrated in two well defined
and often studied groups, the enterobacterial genera
Arsenophonus and Sedalis [5,22,23]. The general cap-
ability of S-symbionts to supplement the metabolic
functions of P-symbionts or even replace them was
demonstrated experimentally by replacement of Buch-
nera with Serratia in aphids [24].

It is obvious that all these fascinating processes can
only be studied on a reliable phylogenetic background
[9,25-28]. Unfortunately, under current conditions, the
phylogeny within Enterobacteriaceae and the placement
of various symbiotic lineages are very unstable.
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Particularly, the P-symbionts present an extremely diffi-
cult challenge to phylogenetic computation due to their
strongly modified genomes [9]. There are several root
problems that are responsible for this dissatisfactory
state. Traditionally, 165 rDNA was frequently used as
an exclusive molecular marker for the description of a
new symbiont. Many lineages are thus represented only
by this gene, which has been shown within Enterobac-
teriaceae to be inadequate for inferring a reliable phylo-
geny [29]. In addition, it is notoriously known that the
phylogenetic information of symbiotic bacteria is often
seriously distorted due to the conditions associated with
the symbiotic lifestyle. The effect of strong bottlenecks
accompanied by reduced purifying selection and the
overall degeneration of symbiotic genomes have been
thoroughly discussed in many studies [30-33]. As a
result of these degenerative processes, symbiotic lineages
may experience parallel changes of their DNAs and
these convergences produce the main source of phyloge-
netic artifacts. Among the most important features are
biased nucleotide composition favoring adenine-thymine
bases and rapid sequence evolution. While the composi-
tional bias leads to the introduction of hamaplasies at
both nucleotide and amino acid levels, the accelerated
evolution is a well known source of the long-branch
attraction phenomenon [34,35]. Due to these circum-
stances, symbionts almost always appear as long
branches in phylogenetic trees and tend to cluster
together [36].

Various methodological approaches have been tested
to overcome these difficulties (Additional file 1). They
are based mainly on the concatenation of a large num-
ber of genes through the whole genome [37-39], the
supertree and the consensus approach [37], exclusion of
amino acids (FYMINK: phenylalanine, tyrosine, methio-
nine, isoleucine, asparagine and lysine) most affected by
nucleotide bias [37], modifications of sequence evolution
maodels [11,12,36,40] and use of the genome structure as
a source of phylogenetic data [41]. Phylogenomic studies
based on large concatenated sets frequently imply
monophyly of the typical P-symbionts (Additional file
1). However, due to the limited number of available
genomes, these studies are usually based on inadequate
taxon sampling. For example, secondary symbionts and
plant pathogens that were shown to break the P-sym-
biont monophyly in the analysis using a nonhomoge-
neous model [40] could not be included into these
phylogenomic studies. It is important to note that P-
symbionts are probably only distantly related to the
EscherichialSalmonella| Yersinia clade. Therefore, the
monophyly of P-symbionts derived from such a phyloge-
nomic dataset is logically inevitable, but does not carry
any evolutionary information.
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The non-monophyletic nature of P-symbionts has
been recently suggested in several studies. Perhaps the
most inspiring is a study based on a nonhomogeneous
model that separates P-symbionts into two independent
lineages [40]. As an alternative, a paraphyletic arrange-
ment of these symbionts in respect to several free-living
taxa has been revealed from gene-order analysis based
on break-point and inversion distances [41]. Most
recently, Williams et al. [42] performed a 'telescoping'
multiprotein phylogenomic analysis of 104 y-Proteobac-
terial genomes. The phylogeny of Enterobacteriaceae
endosymbionts was difficult to resolve, although it
appeared that there were independent origins of at least
the Sodalis and Buchnera lineages.

Thus, there is now a spectrum of hypotheses on the
phylogeny of insect symbionts, ranging from complete
polyphyly with multiple independent origins to complete
monophyly with one common origin. In this study, we
take advantage of current progress in computational
methods to investigate phylogenetic relationships among
the symbiotic lineages. One of the promising recent
methodological advances is the introduction of a site-het-
erogeneous non-parametric mixture CAT model that
allows for site-specific features of protein evolution [43].
This model was shown to solve the long-branch attrac-
tion (LBA) artifacts and outperform the previous models
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[44-47]. Similarly, the slow-fast method based on removal
of the fastest evolving sites was shown to reduce phyloge-
netic artifacts [48-54], as well as purine/pyrimidine (RY)
data recoding [55-58] or amino acid data recoding
[59,60]. We used these methods as the core of a complex
approach and tried to investigate series of methods, mod-
els and parameters to detect common trends in changes
of the topologies. To do this, we applied two parallel
approaches, one based an the application of recently
developed algorithms and the other on the removal or
recoding of the positions most affected by rapid sequence
evolution and/or compositional (AT) bias. In addition,
we paid particular attention to the sampling and used as
much of a complete set of both symbiotic and free-living
lineages as possible. This approach is particularly impor-
tant to avoid interpretation uncertainties due to the
absence of phylogenetically important lineages.

Results

The complete methodological design of this study and
the resulting topologies are depicted in Figure 1. All
matrices, alignments and phylogenetic trees are available
in the TreeBASE database http://purl.org/phylo/tree-
base/phylows/study/TB2:511451, as supplementary
material, or on the webpage http://users.prf.jeu.cz/
husnifdo.

55 ganoa - BI (CAT+GTR}

resufts; method names ar
decreasng number
4-11) ATYGE datasets 4-11 analyzed by Bl Bl |

nhPhyML: ML under nonhomogeneous model;
\

ATRGE (Bldai1; MLA1; MP2n)  ATIGC (BIF0-3; MLAD-2; MPI-2)

P ATIGC (MP/e-113 ML (RY 1+248, RY 142} U et gt

mtrbe

2-3 origins 3 onigine 4 origine 4 arigins
Bl ML (112)
P-aymblontsr+ Zeisls s e ot
Soniabs gossinkdius e icnin ;mn_ e Bairaca
ML e Rl
el i

amino-acid
matrbc BI, ML, BF (ML SFo-Amsnochonus+Rissal 14 gonns - B (GAT+GTR)  DayhofMé - BI (CATICAT+GTR)

Deyhoffd - BI (CATHETR)

Figure 1 Study design. General design of the study summarizng all analyses and mrsults, Individual Topologies show the gradient of acouired
£n above and below the amows. Notice an increasing number of independent origins of symbiants and

yenetic anfacts alomg the continuum toward
Hayes £, DayhoffeDayhoffd/HP: ;
MP: maximum parsimony; BY: punne/pyrimidine rcoded matmx S slow

DayhalF/HP - Bl (GAT)

d' methods.

142 third codon positians excluded; AT/GUIBLY
ino acid recaded matrces; ML: maximum likelihood
sted datasets

41



Husnlk et al. BMC Biclogy 2011, 987
http/ www.blomed central.comy 1 741-7007/9/87

Standard maximum likelihood and Bayesian inference
The single gene maximum likelihood (ML) analyses of
both nucleic and amino acid data provided an array of
mutually exclusive topologies. The majority consensus
based on amino acid data (Additional file 2a} groups
almost all symbionts into polytomy with only two pairs
of sister symbiotic species being resolved (Buchiera and
Blochmannia). Phylogenetic trees inferred by ML and
Bayesian inference (BI) from the nucleic acid concate-
nated data using the General Time Reversible model
with an estimated proportion of invariable sites (I) and
heterogeneity of evolutionary rates modeled by the four
substitution rate categories of the gamma (I') distribu-
tion with the gamma shape parameter (alpha) estimated
from the data (GTR+I+I) were apparently affected by
phylogenetic artifacts, as demonstrated by placement of
Rigsia and Wigglesworthia within the Buclnera cluster
with high posterior probabilities in the BI tree (Figure 2)
and the attraction of two outgroup species (Haemophi-
lus and Pasteurella) in the ML tree with high bootstrap
support (Additional file 2b). Similar topologies were also
retrieved from the amino acid concatenate by ML and
Bl using the LG+1+T, WAG+I+T and GTR+I+I" models
(Figure 3). Nevertheless, in contrast to the nucleotide-
derived results, the monophyly of the Buchnera clade
was not disrupted and Hamilionella and Regiella were
unambiguously separated from the other symbionts and
clustered with Yersinia,

PhyloBayes, non-homogenous PhyML and modified
matrices

The phylogenetic trees acquired under the CAT+GTR
PhyloBayes model from 14 and 55 concatenated genes
(Figure 4 and Additional file 2p) split symbiotic bacteria
into four and three independent lineages, respectively,
First, Arsenophonus nasoniae is a sister species to Pro-
teus mirabilis; second, Hamiltonella and Regiella form a
sister clade to Yersinia pestis; third, the Sodalis, Bau-
mannia, Blochmannia, Wigglesworthia, Riesia and Buch-
nera clade form a sister clade to Dickeyal
Pectobacterium. The position of Ishikawaella differs
between the two datasets. In the 14-gene dataset, Isfika-
waella forms a sister clade to Pantoea (Figure 4) and in
the 55-gene dataset, it is attracted to the P-symbiont
cluster (Additional file 2p).

A topology with four independent symbiotic clades
resulted from the trees derived from dayhoffe and dayh-
off4 recoded amino acid data sets analyzed by CAT and
CAT+GTR models (Figure 5, Additional file 2r, g and
partially with the hp (hydrophobic-polar) recoded data-
set (Additional file 2c) - which was on the other hand
affected by the substantial loss of phylogenetic informa-
tion. The first clade is Buchnera+Ishikawaella as a sister
clade to the Erwinia/Pantoea clade, the second clade is
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Riesia+Arsenophonus as a sister clade to Proteus, the
third clade is Hamiltonella+Regielia as a sister clade to
Yersinia, and the last clade is composed of Sodalis, Bau-
mannia, Blochmannia and Wigglesworthia.

The analyses testing each symbiont independently,
using a CAT+GTR model on the dayhoifé recoded
datasets, resulted in topologies supporting multiple ori-
gins of endosymbiosis (Additional file 2s). Arsenopho-
nus clusters with Proteus; Hamiltonella clusters with
Yersinia; Regiella clusters with Yersinia; and Sedalis,
Blochmannia, Baumannia, Riesia and Wigglesworthia
grouped into polytomy with the basal enterobacterial
clades. Most importantly, the Buchnera clade clusters
as a sister clade to the Erwinia clade and Ishikawaella
is placed in polytomy with the Panfoea and Erwinia
clade.

The non-homagenous (nh) PhyML nucleotide analyses
with two different starting trees resulted in two different
topologies (Figure 6 and Additional file 2d, e, [}. When
compared by the approximately unbiased {AU) test, the
topology with four independent origins of symbiotic
bacteria prevailed (P = 1) over the topology with mone-
phyly of P-symbionts, which therefore corresponds to a
local minimum due to a tree search failure (complete
matrix: P = 2 % 10°%; matrix without the third positions:
P =9 % 10°%7). The only incongruence in topologies
based on the complete matrix (Additional file 2d) and
the matrix without the third positions (Figure 6) was the
placement of the Sodalis+Baumannia+Blochmannia
+Wigglesworthia clade as a sister clade to the Edward-
siella or Dickeya/Pectobacterium clades.

Matrices obtained by removing positions according to
the AT/GC contents produced trees covering the whole
continuum illustrated in Figure 1. The most severe
restrictions, that is, removal of all positions that contain
both AT and GC categories or relaxing for up to three
taxa (see BI trees in Additional file 2g, h, i, j), yielded
topologies compatible with the results of the CAT
maodel applied on the recoded amino acid data and of
the nhPhyML analysis. Further relaxing the restriction
rule led to a variety of trees along the Figure 1 conti-
nuum, with a less clear relation between the used para-
meter and the resulting topology (Additional file 3).

Compared to the ML analysis of all nucleotide posi-
tions, the analysis of first plus second positions reduced
the obvious artifact of outgroup attraction (Additional
file 2k). Nevertheless, it also sorted symbionts according
to their branch length. Analysis of the RY recoded
nucleotide matrix produced a tree compatible with the
results of the CAT+GTE model (Additional file 21).
Analysis of the RY recoded nucleotide matrix without
the third positions resulted in a topology with a Sodalis
+Bauntannia+Blochmannia cluster (as a sister to the
Pectobacteriuni/ Dickeya clade) separated from the rest
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Discussion
Performance of the methods: convergence towards non-
monophyly
The results obtained in this study strongly indicate that
the frequently retrieved monophyly of P-symbionts is an
artifact caused by their highly modified genomes. None
of the most widely used methods, that is, ML and Bl
with different models used on nucleic (GTR+1+1) and
amino acid (GTR/LG/WAG+1+1D) data, were capable of
resolving deep phylogenetic relationships and correct
placement of the symbiotic taxa. This conclusion is evi-
denced by obvious artifacts, such as the inclusion of Rie-
sia into the P-symbiotic lineage or the even more
conspicuous distorted placing of Wigglesworthia within
the Buchnera cluster. The arrangement of such trees
suggests that these methods sort the symbionts accord-
ing to their branch lengths and/or AT contents and
attach the whole symbiotic cluster to the longest branch
available. While the difficulty with placement of the
most aberrant taxa, such as Riesia, Wigglesworthia and
Buchnera (Cinara cedri) was also observed when using
the mixture model accounting for site specific character-
istics of protein evolution (Figure 4; Additional files 2p
and 5), these artifacts disappeared after amino acid data
recoding followed by CAT and CAT+GTR model analy-
sis and the application of a nonhomogeneous model.
Additional support for the non-monophyly view stems
from the second, parallel approach based on the
restricted matrices. While our newly developed method
shares the basic principles with the slow-fast and recod-
ing methods, such as the removal of the positions that
are likely to distort the phylogenetic relationships due to
their aberrant evolution, it differs in the criteria of their
removal and thus produces different input data. It is
therefore significant that this method led independently
to the same picture, the non-monophyly of the P-sym-
bients with clustering identical to the above analyses:
Ishikawaella+Buchnera and Sodalis+Baumannia+Bloch-
mannia+Wigglesworthia. The removal of the heterope-
cillous sites was recently shown to have similar
effectiveness as our new method [61], which further
supports the results. Moreover, this topology was
obtained even under the maximum parsimony (MP) cri-
terion (Additional file 3), which is known to be extre-
mely sensitive to LBA [34]. On the other hand, although
slow-fast analysis is generally considered a powertul tool
for resolving relationships among taxa with different
rates of evolution, we show in our data that the mere
exclusion of the fast evolving sites is not sufficient when
using empirical models and should be followed by analy-
sis using some of the complex models, such as the
CAT-like models. In addition, since this method usually
requires an a priort definition of monophyletic groups,
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it should be used and interpreted with caution. Similar
to the slow-fast method, RY recoding and exclusion of
third codon positions were not sufficient for resolving
deep symbiont phylogeny. However, all these methods
can remove at least some of the artifacts and provide
insight for further analyses.

Summarizing the topologies obtained in this study
(Figure 1), a convergence can be detected towards a par-
ticular non-monophyletic arrangement of P-symbionts,
as revealed under the most ‘derived’ methods. This
result strongly supports the view of multiple origins of
insect endosymbionts, as first revealed by the nonhomo-
geneous model of sequence evolution [40], and is par-
tially congruent with the analyses of gene order [41] and
phylogenomics of Gammaproteobacteria [42]. It is also
important to note that, apart from multiple symbiont
clustering, the arrangement of the non-symbiotic taxa
corresponds to most of the phylogenomic analyses using
EscherichialSalmonellal Yersinia taxon sampling [37-39].

Biological significance of P-symbionts non-monophyly
Considering that most of the ‘artifact-resistant’ analyses
point towards the non-monophyly of enterobacterial P-
symbionts, the questions of how many symbiotic
lineages are represented by the known symbiotic diver-
sity and what are their closest free-living relatives now
becomes of particular importance. It is not clear
whether the split of the original P-symbietic cluster into
two lineages is definite or these two groups will be
further divided after yet more sensitive methods and
more complete data are available. At the moment there
are still several clusters composed exclusively of derived
symbiotic forms. In principle, three different processes
may be responsible for the occurrence of such clusters:
first, horizontal transmission of established symbiotic
forms among host species; second, inadequate sampling
with missing free-living relatives; or third, phylogenetic
artifacts. All of these factors are likely to play a role in
the current topological patterns. Being the main issues
of this study, the role of methodological artifacts has
been discussed above. Horizontal transmission, as the
basis of non-artificial symbiotic clusters, is likely to take
part at least in some cases. Perhaps the most convincing
example is the Wolbachia cluster [62]: while within
Enterobacteriaceae it may apply to Arsenopfanus, Soda-
lis and possibly some other S-symbionts.

Recognition of the third cause, the incomplete sam-
pling, and identification of the closest free-living rela-
tives, now becomes a crucial step in future research. It
is often assumed that symbionts originate from bacteria
common to the environment typical for a given insect
group. For example, cicadas spend most of their life
cycle underground and feed primarily on plant roots.
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Consequently, their a-Proteobacterial symbiont Hodgki-
nia cicadicola originated within Rhizobiales [19]. A
similar ecological background can be noticed in yet dif-
ferent hosts, the ixodid and argasid ticks. Several reports
have shown that some of the tick-transmitted pathogens
are related to their symbiotic fauna [63-65]. Many of the
insect taxa associated with symbiotic Enterobacteriaceae
are phytophagous, and plant pathogens thus fit well into
this hypothesis as hypothetical ancestors of various
insect symbionts lineages. The presence of a type Il
secretion system, which is used in pathogenic bacteria
for host cell invasion, in secondary symbionts [66-69]
and its remnant in the primary symbiont of Sitophilus
spp. weevils [70] could further support the theory of
pathogenic ancestors of insect symbionts. It can only be
speculated that these bacteria first became S-symbiont
type and were horizontally transferred to various other
insect species. Within some of the infected species,
facultative symbionts eventually became obligatory pri-
mary symbionts, An identical situation can be observed
in symbiotic clades with numerous species, such as Wol-
bachia [71,72], Sodalis [23,73,74] or Arsenophonus [5].

In our study, we gave particular attention to the sam-
pling of free-living Enterobacteriaceae to provide as
complete a background for the symbiotic lineages as
possible under the current state of knowledge (that is,
the availability of the genomic data). The most consis-
tent picture derived from the presented analyses places
the four main symbiotic clusters into the following posi-
tions. First, for the Buchnera cluster, its previously sug-
gested relationship to Erwinia was confirmed. Erwinia,
as a genus of maostly plant pathngcnic bacteria, has been
previously suggested to represent an ancestral organism,
which upon ingestion by aphids at least 180 million
years ago [75] turned into an intracellular symbiotic
bacterium [76]. However, it is not known whether it was
primarily pathogenic to aphids, similar to Erwinia aphi-
dicola [77], or a gut associated symbiotic bacterium as
in pentatomid stinkbugs [78], thrips [79,80] or Tephriti-
dae flies [81-83]. Ishikawaella capsulata, an extracellular
gut symbiont of plataspid stinkbugs [84], was the only
symbiotic bacterium that clustered in our ‘derived’ ana-
lyse&i with the Buchnera clade. However, several single-
gene studies indicate that this group contains some
additional symbiotic lineages for which sequenced gen-
ome data is not currently available. These are, in parti-
cular, the extracellular symbionts of acanthosomatid
stinkbugs [85], parastrachid stinkbugs [86], scutellerid
stinkbugs [87,88] and some of the symbionts in pentato-
mid stinkbugs [78].

The second clade, represented in our analysis by Soda-
lis+Baumannia+Blochmannia+Wigglesworthia, is likely
to encompass many other P- and S-symhionts [89-92].
The possible single origin of these symbionts has to be
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further tested, however the interspersion of both forms,
together with basal position of Sodalis, seem to support
a transition from a secondary to primary symbiotic life-
style [15]. In our analysis, the whole clade was placed
between pathogenic bacteria of plants and animals, the
Edwardsiella and Pectobacterium]Dickeya clades, or as a
sister to the latter group. Recently, another symbiotic
bacterium (called BEV, Euscelidius variegatus host) was
shown to be a sister species to Pectobacteriunt [93)].

Two additional independent origins of insect sym-
bionts are represented by the Arsenophonusi Riesia clade
and Hamiltonella+Regiella. Both of these clades clus-
tered in our analyses in the positions indicated by pre-
vious studies, that is, as related to Proteus and Yersinia,
respectively [5,67,93-97].

While the position of individual symbiotic lineages is
remarkably consistent across our ‘artifact-resistant’ ana-
lyses and are well compatible with some of the previous
studies, the topology can only provide a rough picture
of the relationships within Enterobacteriaceae. To get a
more precise and phylogenetically meaningful back-
ground for an evolutionary interpretation, the sample of
free-living bacteria as a possible source of symbiotic
lineages has to be much improved. An illuminating
example is provided by the bacterium Biostraticola tofi,
described from water biofilms. When analyzed using
168 rDNA, this bacterium seemed to be closely related
to Svdalis [98]. Its position as a sister group to the
Sodalis/ Baumannial Blochmannial Wigglesworthia clade
was also retrieved in our single-gene analysis (grofL,
data not shown). If confirmed by mare precise multi-
gene approach, Biostraticola would represent the closest
bacterium to the large symbiotic cluster.

Conclusions

The topologies obtained by several independent
approaches strongly support the non-monophyletic view
of enterabacterial P-symbionts. Particularly, they show
that at least three independent origins led to highly spe-
cialized symbiotic forms, the first giving rise to Sedalis,
Baumannia, Blochmannia and Wigglesworthia (S- and
P-symbionts), the second to Buchnera and Ishikawella
and the last to Riesia and Arsenophonus (S- and P-sym-
bionts). This separation of symbiotic clusters poses an
interesting question as to whether the presented dis-
bandment of the P-symbiotic cluster is definite or if it
will continue after yet more complete data are available
and more realistic evolutionary models [99-101] are
applied. One obvious drawback of the current state is
that many additional symbiotic lineages already known
within Enterobacteriaceae cannot be at the moment
included into serious phylogenetic analyses due to the
lack of sufficient molecular data and will have to be
revisited once complete genomic data are available.
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These bacteria include symbionts of mealybugs [49,102],
psyllids [90,103], lice [2,91], weevils [11,12,92], reed bee-
tles [104,105], true bugs [78,84-88,106,107] and sym-
bionts of leeches [108,109]. Similarly, the importance of
free-living bacteria and variety of S-symbionts as possi-
ble ancestors of P-symbionts should not be underesti-
mated when assembling datasets for phylogenetic
analyses. The shift from polymerase chain reaction-
based gene-centered sequencing towards high-throngh-
put next-generation sequencing may soon provide suffi-
cient data for more complete analyses of the
Enterobacteriaceae phylogeny.

Methods

Matrices and multiple sequence alignments

The genes used in this study were extracted from 50
complete genome sequences of y-Proteobacteria avail-
able in GenBank (Additional file 4), including 14 endo-
symbiotic Enterobacteriaceae. We did not include
Carsonella ruddii [110] since this psyllid symbiotic bac-
terium does not appear to be a member of the Entero-
bacteriaceae clade [90,111] and is only attracted there
by the AT rich taxa. After removal of the AT rich
lineages from the analysis, Carsanella ruddii clusters
with the genus Pseudomonas [42]. Also, we did not
include Serratia symbiotica [95] because its genome
only became available after completion of our datasets.
However, the phylogenetic position of this symbiotic
bacterium within Serratia genus is robust and was con-
firmed in several studies [6,14,112].

To minimize the introduction of a false phylogenetic
signal, we comparcd the genomes of all symbiotic bac-
teria and selected only single-copy genes present in all
of the included symbiotic and free-living taxa. Such
strict gene exclusion was also necessary regarding the
usage of computationally demanding methods; it was
one of our goals to produce a taxonomically representa-
tive data set of efficient size with no missing data. Alto-
gether, 69 orthologous genes, mostly involved in
translation, ribosomal structure and biogenesis (Addi-
tional file 4) were selected according to the Clusters of
Orthologous Groups of proteins (COGs) [113,114]. Sin-
gle-gene nucleotide data sets were downloaded via their
COG numbers from a freely available database
(MicrobesOnline [115]).

All protein coding sequences were translated into
amino acids in SeaView version 4 [116], aligned by the
MAFFT version 6 L-INS-i algorithm [117] and toggled
back to the nucleotide sequences. Ambiguously aligned
positions (codons) were excluded by Gblocks v0.91b
[118,119] with the following parameters: minimum
number of sequences for a conserved position: 26; mini-
mum number of sequences for a flanking position: 43;
maximum number of contiguous nonconserved
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positions: 8; minimum length of a block: 10; allowed
gap positions: with half. The resulting trimmed align-
ments were checked and manually corrected in BioEdit
v7.0.5 [120]. Alignments were concatenated in SeaView.
The 69 gene concatenate resulted in an alignment of 63,
462 nucleic acid positions with 42, 481 parsimony-infor-
mative and 48, 527 variable sites and 21, 154 amino acid
positions with 12, 735 parsimony-informative and 15,
986 variable sites.

Phylogenetic analyses

We used two different approaches to deal with the dis-
tortions caused by the highly modified nature of sym-
biotic genomes, which are the main source of the
phylogenetic artifacts in phylogenetic analyses.

First, we applied complex models of molecular evolu-
tion. Using PhyloBayes 3.2f [121], we applied non-para-
metric site heterogeneous CAT and CAT+GTR models
[43]. For all PhyloBayes analyses, we ran two chains
with an automatic stopping option set to end the chain
when all discrepancies were lower than 0.3 and all effec-
tive sizes were larger than 100. Under the CAT and
CAT+GTR models, the four independent PhyloBayes
runs were stuck in a local maximum (maxdiff = 1) even
after 25, 000 and 10, 000 cycles, respectively, and we
were not able to reach Markov Chain Mente Carlo
(MCMC) convergence. Therefore, we present these trees
only as supplementary material (although they mostly
point toward multiple origins of symbiosis; Additional
file 5) and we ran the CAT+GTR analyses with the
reduced dataset based on 14 genes with the number of
parsimony-informative amino acid positions higher than
300 (AceE, ArgS, AspS, EngA, GidA, GlyS, InfB, PheT,
Pgi, Pap, RpoB, RpoC, TrmE and Yid(C). To check for
compatibility of these arbitrary selected 14 genes with
the rest of the data, we also analvzed, in a separate ana-
lysis, the remaining 55-gene dataset under the CAT
+GTR model. Using nhPhyML [122], we applied a non-
homogeneous nonstationary model of sequence evolu-
tion [123,124], which can deal with artifacts caused by
compositional heterogeneity [40,125,126]. We used two
different starting trees (Additional file 2n) and ran the
analyses with and without the third codon positions.
The resulting trees were evaluated by an AU test in
CONSEL [127].

The second approach relies on the selective restriction
of the data matrix. We used four previously established
methods of data weighting and/or exclusion (see Back-
ground): RY data recoding, amino acid data recoding,
exclusion of third codon positions and slow-fast analysis,
and developed one additional method: since transition
from G/C to A/T at many positions is a common
homoplasy of symbiotic genomes, we removed from the
matrix all positions containing both the G/C and A/T
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states. All substitutions considered in the subsequent
analyses thus included exclusively transversions within
the A/T or G/C categories. To analyze an effect of this
restriction on the reduction of the data, we prepared 11
matrices with a partially relaxed rule (removing all posi-
tions with AT+GC, allowing for one taxon exception,
two taxa exception, and so on, up until a 10 taxa excep-
tion). Since this method has never been tested, we ana-
lyzed the restricted matrices by the BI, ML (parameters
as for standard analyses) and MP using PAUP* 4.0b10
with the tree bisection and reconnection algorithm
[128]. Four other types of data weighting and/or exclu-
sion were used to increase the phylogenetic signal to
noise ratio and determine the robustness of our results.
First, the third codon positions were removed in Sea-
View. Second, RY recoding was performed on all and
first plus second positions. Third, saturated positions
were excluded from the concatenated data sets by Slow-
Faster [129]. To assign substitutional rates to individual
positions, unambiguously monophyletic groups were
chosen on a polytomic tree (Additional file 20}, posi-
tions with the highest rates were gradually excluded and
21 restricted matrices were produced. These weighted
data sets were analyzed by ML. Fourth, amino acid data
recoding was performed in PhyloBayes with hp (A, C, F,
GLLMV,W ((DEHKNDPQRS T,Y), dayh-
offd (A, G, P, 5 T) (D, E,N, Q) (H, K R) (F Y, W, L L,
M, V) {C = ?) and dayhoft6 (A, G, P, 5, T) (D, E, N, Q)
(H, K, R) (F, ¥, W) (I, L, M, V} (C) recoding schemes.
In addition, we have prepared 10 dayhoffé recoded
matrices to test individual symbiotic lineages without
the presence of other symbionts. Amino acid recoded
matrices were analyzed using the CAT and CAT+GTR
models, which are more immune to phylogenetic arti-
facts than one-matrix models.

To allow for comparison of the results with previously
published studies, as well as to separate the effect of
newly used models and methods from changes due to
the extended sampling, we also used standard proce-
dures of phylogenetic inference, ML and Bl The follow-
ing programs, algorithms and parameters were used in
the ML and Bl analyses. ML was applied to single-gene
and concatenated alignments of both nucleotides and
amino acids using PhyML v3.0 [130] with the subtree
pruning and regrafting tree search algorithm. Bl was
performed in MrBayes 3.1.2 [131] with one to five mil-
lion generations and tree sampling every 100 genera-
tions. Exploration of MCMC convergence and burn-in
determination was performed in AWTY and Tracer v1.5
[132,133]. Evolutionary substitution models for proteins
were selected by ProtTest 2.4 [134] and for DNA by
jMadelTest 0.1.1 [135] according to the Akaike Informa-
tion Criterion. For DNA sequences, the GTR+I+T" model
was used [136-138]. Transition and transversion models
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[139] were used with [+I under ML for the first two
AT/GC datasets. LG+14T [140], WAG+I+T [141] and
GTR+I+I" models were used for amino acid data. A
cross-validation method implemented in PhyloBayes
[121,142] was used to estimate the fit of CAT-like mod-
els. For both datasets, the 14 selected genes as well as
the complete 69 genes set, the cross-validation was per-
formed according to the PhyloBayes manual in 10 repli-
cates each with 1, 100 cycles. The CAT-Poisson model
had significantly better fit to the data than the GTR
model (Al 157.37 + 56,9379 for the 14-gene matrix and
Al 3923.9 £ 1963.5 for the 69-gene matrix); of the CAT-
like models, the CAT+GTR model was found to be sig-
nificantly better than the CAT-Poisson model (A/
536.71 + 32.8341 for the 14-gene matrix and Al 1633.4
+ 123482 for the A9-gene matrix) in all 10 replicates.

Additional material

Additional file 1: Summary of 20 studies on symbionts phylogeny.
Additlonal file 2: Additional phylogenetic trees.

Additional file 3: All phylogenetic trees derived from AT-GC and 5F
datasets. A rar file of all phylogenetic trees obtained underBl, ML and
MP from 17 Al datasets, and under ML from five slow-fasted
datasets, Trees are In phwlip and nexus fonmars and can ba viey .red |'or
example, in TreeView https/ftaxonomy zoologyglas '
of Mesuite M e sUiTepro AoE ey e qu TR/

Additional file 4: List of the taxa and orthologous genes used in
the study.

Additional file 5: Additional phylogenetic trees inferred from CAT
and CAT+GTR uncanverged chains.
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4.2 Chapter 2

Chrudimsky T., Husnik F., Novékova E., HypSa V., 2012. Candidatus Sodalis
melophagi sp. nov.: Phylogenetically Independent Comparative Mode to the Tsetse Fly
Symbiont  Sodalis  glossinidius. PLoS One. 2012;7(7):e40354.  doi:
10.1371/journal .pone.0040354. Epub 2012 Jul 17.

Abstract

Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best
known member of this group, a secondary symbiont of tsetse flies Sodalis glossinidius,
has become one of the most important models in investigating establishment and
evolution of insect-bacteria symbiosis. It represents a bacterium in the
early/intermediate state of the transition towards symbiosis, which allows for exploring
such interesting topics as. usage of secretory systems for entering the host cell, tempo of
the genome modification, and metabolic interaction with a coexisting primary symbiont.
In this study, we describe a new Sodalis species which could provide a useful
comparative model to the tsetse symbiont. It lives in association with Melophagus
ovinus, an insect related to tsetse flies, and resembles S. glossinidius in severa
important traits. Similar to S glossinidius, it cohabits the host with another symbiotic
bacterium, the bacteriome-harbored primary symbiont of the genus Arsenophonus. As a
typical secondary symbiont, Candidatus Sodalis melophagi infects various host tissues,
including bacteriome. We provide basic morphological and molecular characteristics of
the symbiont and show that these traits also correspond to the early/intermediate state of
the evolution towards symbiosis. Particularly, we demonstrate the ability of the
bacterium to live in insect cell culture as well asin cell-free medium. We also provide
basic characteristics of type three secretion system and using three reference sequences
(16 S rDNA, groEL and spaPQR region) we show that the bacterium branched within
the genus Sodalis, but originated independently of the two previously described
symbionts of hippoboscoids. We propose the name Candidatus Sodalis melophagi for

this new bacterium.
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Bacteria of the genus Sodalis live in symbiosis with various groups of insects. The best known member of this group, a
secondary symbiont of tsetse flies Sodalis glossinidius, has become one of the most important models in investigating
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type three secretion system and using three reference sequences (16 S rDNA, groEL and spaPQR region) we show that the
bacterium branched within the genus Sodalis, but originated independently of the two previously described symbionts of
hippoboscoids. We propose the name Candidatus Sodalis melophagi for this new bacterium.
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Introduction

The genus Sadalis belongs to the symbiotic bacterial lineages that
adopted several different types of symbiosis with ther hosts,
ranging from facultative commensals to obligate mutualises [1,2].
Sodafis and closely related bacteria were deseribed from a broad
spectrum of msect hosts ineluding tsetse flies [3], weevils [4-7],
chewing lice [8], hippoboscid louse fies [9], ants [10], scale insects
[11], aphids [12], stinkbugs [13,14], and cerambycid beedes [15].
Also, some “secondary” symbionts of psyllids and mealybugs
cluster with the Sedelis clade [16,17]. Within symbiotic Emero-
bacteriaceae, diversity ol the Sedafiy clade is comparable only with
the genus Arsengphons [18].

The first described, best known and most frequently investigated
member of the genus is 8. glassinading, S-symbiont of tsetse fics [3].
Its significance for the host 15 stll not clear, but a possible influence
on the host longevity and resistance o trypanosomes  has
previously been suggested [19]. Several molecular analyses and
genetic experiments made S, ghssinidies an impertant model for
investigating evolution and iology of symbiotic bactena [20-22].
It has been employed in research of various hiological traits, such
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as the structure and role of seeretion systems [217], the function of
the iron acquisition sysiem [23] or the usage of the quorim sensing
systern [24]. Moreover, 8. ghssnidius proved o be among the few
symbionts that could he maintained in i zim culture in insect cells

as well as in the cell-free media [3,25]. This feature has been

atributed to the initial or intermediate state of the 8. ghssindins
shift towards symbiosis. One of the most frequently discussed
topics in this respect is the state and function of the ype three
secretion gystem (TTSS) an this bacterium. Three different copies
ol the TTSS (SSR-1, SSR-2 and SSR-3) has been detected in &
slossimiding [26.27] and a possible role of the SSR-2 in invading host
cells has been proposed [21].

Within the host, 8 glhsmudie constitutes part of a complex
bacterial community which also contains P-symbiont  T1igafe-
swonrtfua - glossinigia [28] and - alphaproteobacteniom
[29,30]. Recent investigations show that the whole community

Walbarhia

may be even richer and comain an array ol other bacteria [31].
Such complex host-symbiont systems provide a unicque opportu-
oty for comparing  genomes  in different states/modes  of
symbiosis and studying processes of their metabolic complemen-
tation [32,33]. For the Sedalis-Wigglesworthia-Glossina association,
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complete genomes of hoth bacteria have been sequenced and
annotated [26,34], Even though each of the sequenced genomes
came from different host species, an interaction between Sadafis
and Wigglessorthia via thiamine synthesis could be detected by
their comparison [27] and this view was further corroborated by
an experimental approach [35] and sequencing of Wigglemvaihia
lineage from Glossna morsilans [36].

An establishment of a4 more (:tll‘np]l:ﬂ'. pi:‘mri'. of Sedalis genome
evolution will require complete genome sequences for a more
diverse array of Sodadfts 1solates, and of smilar r::mp](‘x systemns
imvolving this bacterium. Although tsetse flies are the most
i.mpurla.ul blood feeding i’}l‘i‘l.(:h)‘(:tl‘dllﬁ\ there are several related
groups of dipterans that display many similar features such as the
feeding strategy, vivipary and transmission of trypanosomes,

A member of the genus Sadalis, phylogenetically independent on
the tsetse symbiont, has already been deseribed from hippohoscoid
species Cralerma medbae [9]. Here, we characterize a new member of
the Sadalis lineage, inhabiting gut and other tisues of another
hippoboscond, Melophagus ovinus. The presence of several symbiotic
bacteria in this species has long been known. According to
morphological nvestigations ol several researchers summarized by
Paul Buchner [37], Melsphagus ovinns contains symbiotic bacteria
within enlarged epithelial cells of a specialized section of the
midgut (bacteriome]. This P-symbiont was recently characterized
by molecular techniques as a member of Arsenophonus clade and is
likely to play a role resembling that of Wigglesceorthia in tsetse flies
[Novakova et al, in prep). In addition, some of the authors
recognized two other bacteria in the sheep keds. The first is
Bartonella melophagi (originally described as Ricketisia melophag and
Wolbachia  melophags), which s localized extracellularly  along
microvilli of the midgut. The second type of bacterium deseribed
in Paul Buchner’s work resembles Candicatus Sodalis melophagi as
presented in this study: “fu the low zomer of the mudput epitheliwn. ..., there
are additional deficate bacteria, sometimes, fiming rather lang filaments, which
alsp must wot be confused with the symbionis.” The whole system thus
remarkably resembles the Wigglesoorthio-Sadadis association in tsetse
flies and can provide important data for a comparative study. In
this smdy, we present a basic molecular and morphological
characterization of the new Swdnlis linage and overview the
composition of its TTSS, We suggest the new name Candidatus
Sodalis melophagi for this bacterium and extend the available
Sodalis spectrum with three additional samples which allow for
more precise phyvlogenetic characterization,

Sequence Data

Sequences obtained by PCR for the investigated samples and
their accession numbers are summarized in Table S1. The
16 8 rDNA sequence from Candidatus Sodalis melophagi sp. nov.
displayed 98.48% similarity 1o 16 S rDNA of & glowinidins.
Mumina assemblies produced preliminary drafl sequences lrom
which only selected gene regions were used here for the formal
deseription and  basic  phylogenetic  characterization.  These
regions, including all TTSS  genes (Table S1) and  goflL
chaperonin, were of a high quality and did not contain any SNPs.
In order o avoid assembly arifacts affecting the sequence
accuracy of highly similar paralogous regions, a partial sequence
for 16 S rRNA gene was obtained through Sanger sequencing as
desceribed above and was used for inferring phylogeny, Sanger
sequenced grfl, partial sequence was identical to the sequence
acquired from Illumina data and we therefore used the full length
grofil for phylogenetic reconstruction.
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Candidatus Sodalis melophagi

Type Three Secretion System (TTSS)

Candidatus Sodalis melophagi possesses only SSR-2 and 55R-3
copies of the TTSS in its genome, while SSR-1 is completely
missing. Fxtensive BLASTX searches did not produce  any
sigmilicant hits for 8. glossmuding SSR-1 either in Hlumina contigs
or raw reads, The gene order and content of SSR-2 and SSR-3 of
Candidatus Sodalis melophagi is very similar, but not identical 1o
that in 8. glossintdius (Figure 1) The S5R-2 sequence comprises 11
protein coding genes: srgdbA, prghTH, spaSOPO, fnoF and bild; and
3 pseudogenes: prgf, sied, el and mod€. In comparison with S
glossimidis, it lacks 4 genes: B, el and spelMN. The SSR-3
comprises 29 prowin coding genes: swlB, saBCDEGHITRIAN
OPORSTUV, seedBCDE, sscB, a protein similar to locus SG1296 of
S ghsinidius, and a single pseudogene: ssed. Sequences of
Candidatus Sodalis melophagi TTSS genes were deposited in
GenBank as a part of two annotated contigs for each of the islands
(Table S1).

Phylogenetic Analyses

The lengths of individual matrices and numbers of variable
positions are summarized in Table 82, All phylogenetic trees
clearly indicate that the novel bacterium belongs w0 the genus
Sodalis (Figures 2, 3, 4, Figure 51, Figure S2). In the trees
derived from 16 S rRNA gene sequence data and amino acid
sequence of gL Candidatus Sodalis melophagi clusters within a
large polytomy and its precise position within the genus s thus
uncertain (Figures 2-3A, Figure S1, Figure S2). However, even
this unresolved topology excludes its relationship to any of the
two other hippoboscoid-derived  Sadafis members. This conclu-
sion is further supported by the nucleotide matrix for gL
(Figure 3B) with a reduced sampling and  the  spaPOR
concatenate  (Figure 4], Although the exact topology slightly
varies with the methods and parameters of the analysis, the
three hippoboscoid lineages always form a polyphyletic/para-
phyletic assemblage.

In vitro Culture

Bacterial colonies were clearly visible after 8 days of cultivation.
Colonies were while, raised, and circular with entire edges. Their
size was irregular ranging from 0.5 to 1 mm. The variable size of
the colomies was almost certainly not due to new mutations, since
subculturing on fresh plates viclded the same vanahility for each
indivicual colony, The irregular colony morphology was described
also i case of a type strain M 1" of the Sodalis glossidus 3] and 15
probably population dependent as is the case in other microaero-
philic bacteria [38].

The type strain CZ" was established by isolation of a single
bacterial colony and was used for C6/36 cells mfection. In the
C6/36 cell culture, bacteria were predominantly attached o cell
surlace or free in the medium, but they were also abserved inside
the cells, Genomic DNA punified from bacterial colonies of
Candidates Sodalis melophagi CZT was used as a template for
[llumina mate pair sequencing,

Microscopy

Under electron microscopy, Sodalis cells within the host tssue
comesponded  well 1o their light microscope  characteristics
(Figure 5A) They appeared as rods reaching from approx. 1 o
4 pm, depending on the angle of the section, and were located
mainly at the periphery of the bacteriome, sometmes in close
association with the P-symbionts (Figures 5B,C).
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Description of Candidatus Sodalis Melophagi sp. nov

Cindidatns Sodalis melophagi (melo.phagd; melophogi of the
genus Melophagus).

Candidatus Sodalis melophagi is a Gram-negative bacterium
isolated from the sheep ked Melophagus svinus. The bacteria were
detected in heamolymph and bacteriome. The cells are rod-
shaped non-motile and non-spore forming under  Iaboratory
conditions, The average length is 1.9 pm, however, bacteria
ranging from 0.6 to 5 pm i length were observecd. The bacteria
grow intracelullarly and extracellulardy in presence of Aedes
albopictus cell line C6/36 under acvobie conditions, They can also
be cultivated axenically both in liquid and solid media containing
enzymatically digested proteins as a source of nitrogen, with the
addition of blood under the microaerophilic atmosphere (3% O,
halanced with carbon dioxide) at 27°C.

Discussion

Remarkably, the main biological traits of Candudatus Sodalis
melophagi and itz relation 1o the host resemble those of Sadaks
glossimidus i setse [ies. In both cases the hosts are exclusively
blood feeding organisms reproducing by vivipary and their Sodafic
plays a role ol an “accessory™ symbiont accompanying phyloge-
netically distant P-symbiont [ Wigghsoorthia in setse [lies and
Arsenophonns o Melophogus). This status of  Candidats Sodalis
melophagi is strongly indicated by phylogenetic characteristics as
well as location and morphalogy revealed by electran microscopy.
Similar 1o 8. ghysimidivs, the rod-shaped cells of Candidates Sodalis
melophagl are not restricted to the bacteriocytes but they infect
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various  non-specialized  cells and can be  cultivated  from
haemolyph. Tt is therefore mteresting to note that according to
phylogenetic analyses its symbiosis with the host originated
independently of the S glosdniding as well as of the third
hipoboscoid lineage, the svmbiont of Cratering melbae. Although
exact position of Candidatus Sodalis melophagt within the Sodafis
clade varies with method and taxon sampling, it never clusters
with any of the two other hippoboscoid-derived lineages. Within
the Sodafis clade, such host-symbiont incongruence is not unigue to
the hippoboscord-denved lineages. It s also expressed by the
distribution of several other samples, particularly those from
coleopteran and homopteran hosts (Figure 2, Figure S1) and
clearly  demonstrates the capability of Swlalis 10 spread by
horizontal transfers. In contrast, the close relationships of the
two new 16 8 rDNA sequences obtained from Omithonya with the
Sodalis previously described from Craderina melbae suggests that these
two hippoboscoid genera may share the same symbiotic lincage
inherited from their common ancestor, However, the sampling of
Sodalys Ineages available from other insect groups s lughly
incomplete. In addition, the position of some sequences, such as
Sudelis Trom Siaphilus mgicollis is allected by long-hranch attraction
due to the high AT content: instability of this lincage has been
found in previous analyses [9]. Thus, although we extended the
sampling with additional three sequences, any interpretations of
the modes and mechanism of Sadals transmission can under the
current circumstances be only working hypotheses rather than
serious conclusions based on the data.

While the draft genomic data of Candidatus Sodalis melophagi is
currently under investigation, we  prelimnarily  analyzed  the
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doi:10.1371/joumal.pone.0040354.9002

compaosition and structure of the TTSS. Significance of this system
in symbinsis evolution has previcusly been suggested [39] and
investipated in several symbiotc lineages [21,40-43]. These genes
are also among the few sequences that are currently available and
can e compared between different Sodalis taxa, Tn 8. ghiniding,
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experimental work indicated thar TTSS of SPIT wpe from
Salmonella (later designated as SSR-2) is essential for entering the
hest eell. Presence and apparent functionality of this system was
subsequently confirmed in another Sodalis, the primary endosym-
biont of Suophilus zeamais (SZPE) [42]. However, further studies
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dai:10.1371/journal pone.0040354.003

revealed another two copies of 'TTSS in 8 plassniding genome,
SSR-1 closely related to the Ysa system of Versinig, and SSR-3
related 10 Safmenedls SPI2 [26,27 40], The secretion systems in
Candidatus Sodalis melophagi show clear similarity to 8. glosstndius
genes but the whole machinery is much less complex; SSR-1 s
completely missing and SSR-2 is highly eroded, However, the
form corresponding to the SSR-3 s complete and  possibly
funcuonal. Tts structure and gene content is highly similar to that
mn 8. glassinidius, except for a pseudogenized state of ssed, encodimg
a putative chaperone of secreted protein SseC [44].

E). PLoS ONE | wwwaplosone.org

61

The differences between TTSS in 8. glossiniding and Candidates
Sodalis melophagi pose an interesting question about the origin,
role and significance of TTSS and its different copies in the genus
Sodals, As the two comparved lineages, Candidaties Sodalis
melophag and 8. ghssimidis are not closely related and the whole
Sodafis wree 15 currently undersampled, it is impossible o
hypothesize whether 8SR-1 was lost in the {ormer one or acquired
by the latter one alier diversification of thewr ancestor, The
sigmificance of TTSS in the two lineages is even more difficult to
assess. In Condidotns Sodalis melophagi, the SSR-3 alone or
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possibly in synergy with the retained functional genes of SSR-2,
seems to be sullicient for maintenance of the intracellular lifestyle.
This view, however, is based solely on the observed presence/
absence of the genes and their comparison to the experimental
results from 8. ghssindines [21]. It should be taken into account that
other related systems, such as flagellar export apparams, can
participate in the host cell invasion. Despite the knockout
experiments, the situation s similarly unclear in S glossimidins
where the presence of SSR-3 has not been known at the time of
the experimental work and its significance could not be
investigated. From the genomic point of view, S, glssinidius has
so far been the only member of the genus for which a detailed
characterization of the genome and some metabolic capabilities is

available. The quality of Candidates Sodalis melophagi paired-end
data retrieved from the hacteriome sequencing and additional
mate pair data recently obtained rom the pure culture suggest

@ PLoS ONE | www.plosane.org
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that a draft genome of this symbiont could be established and used
for further comparisons. Such analysis, comparing reduction,
structure, and possible adaptive changes of independent but
closely related bacteria from two hosts with similar but unique
biclogy will provide important insight into the symbiogenetic
processes. In respect to the future work_ 1t may help to discriminare
between the random and symbiosis-associated modifications and
indicate candidate genes for a more detatled investigation.,

Materials and Methods

Ethic Statement

All field studies did not involve protecied or endangered
organisms. They were not performed on privately-owned or
protected locations and were performed according to the law of
the Czech Republic.
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Figure 5. Morphology and ultrastructure of Candidatus Sodalis melophagi. A: In vitro cell culture in Nomarski contrast. B, C: Cells of
Candidatus Sodalis melophagi in bacteriome. Black arrows - cells of Candidatus Sodalis melophagi, white arrows - cells of the primary endosymbiont

of the genus Arsenophonus.
doi:10.1371/journal pone.0040354.9005

Insect Samples, DNA Extraction, Sequencing and Data
Assembly

Adults of Melophagus ovinus were obtained commercially from a
licensed family sheep farm at Krasetin, Czech Republic. A midgut
region with the bacteriome was dissected it the phosphate
hulfered saline (PBS) and total genomic DNA was extracted from
each single adult by QlAamp DNA Micro Kie (Qiagen). DNA
concentration was determined using NanoDrop2000 (Thermo
Scientific] and its quality was assessed in 2% agarose gel using
standard electrophoresis, POR was carried out as deserbed
previously [18] with bacterial primers for 16 8 rDNA and gL
[Table 83). The same procedure was followed for three additonal
samples. Two ol them were Sodalis bacteria from other insect hosts,
Opitthomya avicadarta (Diptera, Hippoboscidae) and Riawpos pudicar-
i (Coleoptera, Cureulionidae), and the thind was Biostraticola tofi
strain BF36”, a free-living bacterium supposedly closely related 1o
Sodalis [43]. Laboratory culture of B, lgfi was obtained from ihe
DSMZ  microorganism  collection (Germany), K pouficames was
collected near Ceské Budéjovice (Czech Republic); according 1o
the law of the Czech Republic, no permits are required for
collection of this arganism. Samples of O, amlaria were provided
h}' Dtpa.rlm:;nt of Z(K;l()gy {Uni\-‘rrsiry of South thtmia}_: the
collections were done during the ornithological research per-
formed in accordance with the law of the Czech Republic,

We wsed 3 pg ol genomic DNA isolated from M. ovinas
bacteriome as a template for an Illumina paired-end library with
an insert size of 300 bp. Library construction and sequencing on
one lane i a 100 bp run was carried out at Keck Microarray
Resource, West Haven CT, USA. Reads obtained underwent
adaptor and quality trimming, and were [urther processed using
two different approaches, First, the reads with significant BLASTN
[46] hit to Sadalis glossnidins genome sequence (NC_007712) were
filtered and the retrieved subset was agembled using CLC
Genomic Workbench [CLC bio A/S) with parameters set to the
following values; similavity 0.9, length fracion 0.9, costs for
deletion/insertion/mismatch 3. Second, de-novo assembly of all
the processed reads into contigs was done on CLC Genomic
Waorkbench (CLC bio A/S) under the same parameter setting.
Contgs from this assembly were binned based on their average
coverage and BlastX [45] hits against available bacterial genomes.
Since some of the sequences were used in this study for
phylogenetic reconstruction, we checked the accuracy of the
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Hlumina-derived sequences by an independent Sanger sequencing
of the gmFL gene.

Type Three Secretion System (TTSS) Annotation

Conligs spanning corresponding genes to TTSS islands from
Sodalis glosstnidis were retrieved based on the Blast X [46] vesults
from both assemblies. Tn order to obtain a single contig for each of
the TTSS islands, gaps were closed using largtrlnfr] Sarlgtr
sequencing (Table 833 Mapped sequences were checked for
presence  of single nucleotide polymorphisms (SNFs|. ORF
prediction was done using CLC Genomic Workbench (CLC bin
A/S) with the minimum lcng?h set to 3 AA. Gene annotation
based on similarity confirmed by BLAST searches was performed
manually in the same software, All genes that contained frame shift
mutation or stop mutations were tentatively classified as pseudo-
genes. The fuld previously classified as pseudogene [26,27] was
anmotated as functional based on recent experimental work [47].

Phylogenetic Analyses

We used three different regions for the phylogenetic recon-
struction, 16 S rDNA, gL and the TTSS region consisting of
the spal-ipaCl-spaR genes (Tables 84, 85, S6). The greEL amino
acid dataset was aligned using ClustalW algorithm in BioEdit with
default parameters [48] and all ambiguously aligned sites were
removed from the further analyses. To gain more precise
phylogenetic resolution within the Swdadis branch, we narrowed
the taxon sampling and prepared an additional matrix using
nucleotide sequences for the goFL gene, The matrix was aligned
as deseribed above and edited manually. The 16 5 rDNA and the
spaPOR dataser were aligned in the Malft program [49], using the
I-INSAi strategy with default parameters and manually edited in
BioFdit [48]. For 16 8§ rDNA, the ambignously aligned positions
were eliminated in Ghlocks [50].

Twa approaches were wsed 1o infer phylogenetic  trees,
maximum likelihood (ML) and Bayesian inference (BI). For ML
we used PhyML 3.0 [51,52] with the SPR. search algorithm. BI
was performed in MrBaves 3.1.2 [33,54] with five million
generations and tree sampling every 100 generations. AWTY
[553] was used to check the MOMOC convergence and determine
burn-in. Evolutionary substitution models for proteins and DNA
were selected by ProtTest 2.4 [56] and for DNA by jModel Test
0.1.1 [57], respectively. For DNA sequences, the General Time
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Reversible (GTR) model was used with an estimated proportion of
invariable sites (T) and heterogeneity of evolutionary rates modeled
by the eight substitution rate categories of the gamma (T
distribution and the gamma shape parameter (alpha) estimated
[rom the data. LG+HHT was determined as the best fitting model
for the amino acid geFlL dataset, and it was used for the ML
analyses. Since this model s not implemented i MrBayes, we
replaced it with WAGHHT for the BI analysis. JTTHHT model
was used for the spaPOR concatenate in both Bl and ML analyses.

Cultivation of Candidatus Sodalis Melophagi sp. nov

The insects were surface sterilized using 96%  ethanol and
heamolymph was - collected into a 1.3 ml eppendord wbe
contamimg 50 pl of Mitsuhashi-Maramorosch (MM medium
[58] with 20% heat nactivated foetal bovine serum (FBS). The
tube was incubated overnight at 27°C without shaking, a slightly
modified protocol of Matthew et al, [23] was followed. Liquid
culture was plated onto 10% sheep blood MMI plates solidified by
1% agar, The medium was supplemented with 100 pg/ml
Polymyxin B and 10 mg/ml Amphotericin B to prevent contam-
imation by Gram-negative non-symbiotic bacteria [59] and [ungi.
The plates were incubated at 27°C in a microaerobic atmosphere
generated by the Campygen pack system (Oxoid) producing 5% of
oxygen balanced with carbon dioxide. Bacteria were further
inoculated into flasks containing C6/36 mosquito cells [60] (LGC
Standards, Czech Republic) in MM medium with 20% heat
inactivated FBS.

Microscopy

A three day old liquid culture of C6/36 cells infected with
Candidatus Sodalis melophagi was used [or microscopic exarmina-
tion. Cells were harvested and fixed in 4% formaldehyde in PBS
and observed under the BX53 microscope (Olympus) using
Nomuarski contrast, For electron microscopy, the midgut region
containing  bacteriome was  dissected  directly into a 2.5%
g[ul.'ira]d[:hlrds: n 0.1 M phnsphmr. buffer and pn‘ﬁxrrd at 4°C
overnight, The tissue was then postfixed at 4°C for 60 min with
2% osmium tetroxide in phosphate buffer. After dehydration
through ethanol series, the samples were embedded in Spurr res
Ultrathin sections were stained with uranyl acetate and lead citrate
and examined in transmission electron microscope JEOL JEM-
1010,
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4.3 Chapter 3

Vichova B., Mgjlathova V., Novakova M., Stanko M., Hvi&ova I., Pangracova L.,
Chrudimsky T., Curlik J., Petko B., 2013. Anaplasma infections in ticks and reservoir

hosts from Slovakia, Central Europe. Infection, Genetics and Evolution.
Abstract

Anaplasma phagocytophilum is a worldwide distributed bacterium with a significant
medical and veterinary importance. It grows within the phagosome of infected
neutrophils and is responsible for human granulocytic anaplasmosis (HGA), tick-borne
fever (TBF) of smal ruminants and cattle, canine and equine granulocytic
anaplasmosis, but infects also a great variety of wildlife species. Wild ungulates and
rodents are considered reservoirs of infection in natural foci. The objective of this study
was to determine the spectrum of animal species involved in the circulation of A.
phagocytophilum in Slovakia and to analyze the variability of obtained nucleotide
sequences, in order to determine whether genotypes from Slovakia cluster according to
host-species or geographical location. Severa animal species and vector ticks were
screened for the presence of members of the family Anaplasmataceae using PCR based
methods. Additional data on the molecular evidence of Anaplasma ovis and Candidatus
Neoehrlichia mikurensis are presented. These pathogens were detected in tested sheep
flocks and rodents with the mean infection rates of 8.16% and 10.75%, respectively. A.
phagocytophilum was genotyped by 16S rRNA and groEL gene sequencing. Bacterial
DNA was confirmed in questing ixodid ticks, in domesticated canine, wild rodents and
several species of wild ungulates. In European isolates, 16S rRNA gene does not seem
to be an appropriate locus for the analyses of heterogeneity as it is too conservative.
Similarly, 16S rRNA isolates from our study did not reveal any polymorphisms. All
isolates were identical in overlapped region and showed identity with sequences from
ticks, horses or ruminants previously isolated elsewhere in the world. On the other hand,
the groESL heat shock operon is widely used for determination of diversity and the
analyses have aready revealed considerable degree of heterogeneity. Tested ungulates
were infected with A. phagocytophilum to a considerable extent. High proportions of
red and roe deer tested positive and the rates of infection reached over 60.0%. GroEL

sequences from canine, wild ungulates and ticks from Slovakia clustered within a clade
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together with isolates from horses, humans, wild ungulates and ticks from Slovakia or
elsewhere in the world. Sequences from rodents clustered apart from those obtained
from wild ungulates, ticks and humans. These results suggest that European rodents do
not harbour A. phagocytophilum strains with strong zoonotic potential such as those
from United States.
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Anaplosma phagocytophilum is a worldwide distributed bacterium with a significant medical and veteri-
nary importance. [t grows within the phagosome of infected neutrophils and is responsible for human
granulocytic anaplasmosis (HGA), tick-borme fever (TBF) of small ruminants and cattle, canine and equine
granulocytic anaplasmosis, but infects also a great variety of wildlife species, Wild ungulates and rodents
are considered reservoirs of infection in natural foci, The objective of this study was to determine the
spectrum of animal species involved in the circulation of A phagocvtophilum in Slovakia and to analyze
the variability of obtained nucleotide sequences, in order to determine whether genotypes from Slovakia
cluster according to host-species or geographical location.

Several animal species and vector ticks were screened for the presence of members of the family Ana-
plasmataceae using PCR based methods. Additional data on the molecular evidence of Anaplasma ovis and
Candidatus Neoehrlichia mikurensis are presented, These pathogens were detected in tested sheep flocks
and rodents with the mean infection rates of 8.16% and 10.75%, respectively. A. phagocytophilum was gen-
otyped by 165 rRNA and groEL gene sequencing. Bacterial DNA was confirmed in questing ixodid ticks, in
domesticated canine, wild rodents and several species of wild ungulates,

In European isolates, 165 rRNA gene does not seem to be an appropriate locus for the analyses of het-
erogeneity as it is too conservative. Similarly, 165 rRNA isolates from our study did not reveal any paly-
morphisms. All isolates were identical in overlapped region and showed identity with sequences from
ticks, horses or ruminants previously isolated elsewhere in the world. On the other hand, the groESL heat
shock operon is widely used for determination of diversity and the analyses have already revealed con-
siderable degree of heterogeneity.

Tested ungulates were infected with A. phagocytophilum to a considerable extent, High proportions of
red and roe deer tested positive and the rates of infection reached over G0.0%. GroEL sequences from
canine, wild ungulates and ticks from Slovakia clustered within a clade together with isolates from
horses, humans, wild ungulates and ticks from Slovakia or elsewhere in the world. Sequences from
rodents clustered apart from those obtained from wild ungulates, ticks and humans. These results sug-
gest that European rodents do not harbour A. phagocyrophilum strains with strong zoonatic potential such
as those from United States,

Keywords:
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Rodents

Wild ungulates
Slovakia

© 2013 Published by Elsevier B.V.

1. Introduction

Anaplasma phagocytophilum is a Gram-negative intracellular
bacterium causing febrile disease of humans (human granulocytic
anaplasmosis - HGA) and animals (pasture fever, equine and ca-
nine granulocytic anaplasmaosis) (Dumler et al., 2001). The princi-
ple vectors of this rickettsial pathogen are ticks from the [xodes
ricinus complex. Transovarial transmission in ixodid ticks has not

# Corresponding author. Tel.- +421 908 698 482,
E-mail oddress: vichova@saske.sk (B. Vichovd).

1567-1348/% - see front matter © 2013 Published by Elsevier BV.
http:/ dx.doi.org/ 10.1016/j.meegid 201 3.06.003

yet been confirmed; therefore the vertebrate hosts are crucial for
the maintenance and circulation of pathogen in enzootic foci. Bac-
teria multiply in a broad range of hosts, especially in small rodents
and wild ruminants which are discussed main reservoirs (Alberdi
et al,, 2000; Liz et al., 2002; Petrovec et al, 2003; Hulinska et al.,
2004; Polin et al, 2004; Smetanovd et al., 2006; de la Fuente
et al,, 2008; Bown et al., 2008; Stefanidesova et al. 2008). Based
on analyses of several genetic markers (16S rRNA, groESL, ankA,
msp), the existence of intraspecific heterogeneity has been re-
corded within A. phagocytophilum. Complex of closely related
strains shows differences in vector and host preference,

dixdoi.org/10.1016/j.meegid 2013.06.003
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geographical distribution, pathogenicity and severity of clinical
manifestations (Massung et al,, 2006; Stuen et al., 2002; Stuen,
2007; Carpi et al., 2009). Significant differences were detected in
the epidemiology of granulocytic anaplasmosis (GA) in Europe
and North America. Whereas in the USA GA belongs among the
maost commaon tick-borne diseases, it remains relatively rare in Eur-
ope (Strle, 2004),

In the United States, the circulation of two distinct variants of A.
phagocytophilum was confirmed on the basis of revealed differ-
ences in 165 rRNA (Massung et al., 2002). Similarly, de la Fuente
et al. (2005c) characterized two European monophyletic groups
based on analysis of mspd gene. One group consisted of strains
from humans, dogs and horses and second one comprised strains
from wild ruminants. They did not find A phagocytophilum in
tested rodents. In Europe, the situation seems to be rather different
compared to the United States and the ecology and circulation of
distinct ecotypes are poorly understood. Analyses of 165 rRNA
did not confirm the unambiguous association of two genotypes
with rodents and ruminants, as it has been reported in the USA.
In European ungulates both variants have been recorded. Mostly
those not associated with human infections, but also strains closely
related to human granulocytic anaplasmosis (HGA) derived from
red deer in Slovenia (Petrovec et al., 2002). Studies from England
outlined the possibility of co-existence of two distinct subpopula-
tions of A phagocytophilum circulating in separate enzootic cycles,
one involving deer and . ricinus ticks and the other involving field
voles (Microtus agrestis) and nidicolous Ixodes trianguliceps ticks
(Bown et al., 2008).

The objective of this study was to identify epizootiological situ-
ation of granulocytic anaplasmosis in Slovakia, to determine the
spectrum of animal species involved in the circulation of pathogen
and to analyze and characterize the wariability of obtained A.
phagocytophilum DNA sequences, in order to determine whether
genotypes from Slovakia cluster according to host-species or geo-
graphical location. We also report supplementary data on the pres-
ence of Anaplasma ovis, an etiologic agent of pasture fever of small
ruminants and the recently described tick-borne bacterium Can-
didatus Neoehrlichia mikurensis, with the potential to cause severe
diseases in immunocompromised patients. Ca. Neoehrlichia mikur-
ensis was discovered in wild rodents and Ixodes ovatus ticks in
Japan (Kawahara et al., 2004). Since then, it has been identified in
ixodid ticks and several rodent species, which may act as reservoir
hosts (Schouls et al., 1999: Spitalska et al., 2008; Alekseev et al.,
2001; Andersson and Raberg, 2011; Jahfari et al,, 2012; Pangracova
et al,, 2012; Shpynov, 2012; Vayssier-Taussat et al., 2012), and
in blood samples of febrile patients from Sweden, Germany,
Switzerland and Czech Republic with a lethal course in one case
(Fehr et al., 2010; von Loewenich et al., 2010; Welinder-Olsson
et al, 2010).

2. Material and methods
2.1, Collected samples

2.1.1. 1. ricinus ticks

Ticks were collected at the sampling sites continually during
2006-2009. A total of 1075 questing I. ricinus ticks were collected
by white cloth flag dragging in locations of eastern Slovakia, in a
hornbeam deciduous suburban forest park in Kodice city
(48°43N, 21°15E) (n=213), near the Hornad river in Kogice city,
in the area devastated last year by floods (48°40N, 21°18E)
(n=46), in the forest habitat of the locality Kavecany in the district
of Kosice city (48°46N, 21°13E) (n = 108), in the district of Mich-
alovee c1ry [48“45N 21°55E) (n=73), in the Slovak Karst National
Park (48°36N, 20°52E) in south-eastern Slovakia (n = 242) and 393

ticks were collected at the recreational grounds of Teply vrch and
nearby the water basin Kurinec in the district of Rimavska Sobota
city (48°28N, 20°05E; 48°20N, 20°01E). Collected ticks were pre-
served in 70% ethancl until DNA isolation.

2.1.2. Dog blood samples

All tested blood and tissue samples of domesticated and wild
animals included in study were collected continually from 2006
to 2011,

In total, 137 blood samples of dogs suspected of having non-
specific febrile disease with a tick bite history were collected by
vet praLtitioners in the districts of Senica (48°40N, 17°21E), Brati-
slava (48°08N, 17°0GE), Treniin (48°53N, 18°02E), Liptovsky Mi-
kulas (49° 04N, 9°3?E} Lutenec (48°19N, 19°39E}, Rimavska
Sobota (48°23N, 20°01E), and Ko3ice city (48°43N, 21°15E). Addi-
tionally, 144 blood samples of police and military dogs, previously
screened at the Institute of Parasitology for the presence of Dirofil-
laria sp. (Miterpakova et al., 2010}, were included in study. Samples
were collected in plastic tubes containing anticoagulant (EDTA)
and stored at 4 °C until DNA isolation.

2.1.3. Wild carnivores, ungulates and rodents

Samples of tissue were collected from 248 red foxes (Vulpes vul-
pes). Major part of them originated from animals shot by hunters in
eastern Slovakia subjected to the post mortem examination of the
presence of Trichinella spp. and Echinococcus spp. (Dubinsky et al.,
2006; Hurnikovd and Dubinsky, 2009), Samples of blood or tissue
(liver, spleen or muscle) were collected from 84 hunter-killed wild
boars (Sus scrofa), 103 red deer (Cervus elaphus), 13 roe deer ( Capre-
olus capreolus), and 3 fallow deer (Dama dama) from several sites
within Slovakia. Moreover, tissue samples of 57 alpine chamois
(Rupicapra r. rupicapra) from the Slovak Paradise National Park
(48°54N, 20°20E) were included in study. Altogether 286 samples
of blood or tissue (spleen or ear) from rodents were analyzed. Ro-
dents were trapped to live traps in the districts and surroundings
of the cities Ruzomberok (49°04N, 19°18E) (n = 44), Rozhanovce
(48°45N, 21°20E) (n = 93), Sebastovce (48739N, 21°16E) (n =58)
and at fuur samphng sites situated within the district of Lufenec
city (48°19N, 19°39E) (n=91). Trapped individuals belonged to
five rodent species: Apodemus agrarius 77.27%, Apodemus flavicollis
5.24%, Apodemus uralensis (previously Apodemus microps) 1.74%
Myodes glareolus (8.06%) and Microtus arvalis (7.69%). Blood sam-
ples were stored in plastic tubes containing anticoagulant (EDTA)
at 4 °C. Similarly, all obtained tissue samples were preserved in
70% ethanol or frozen at -20°C in plastic tubes until DNA extrac-
tion. Additionally, all samples from rodents were tested for the
presence of Ca. Neoehrlichia mikurensis.

2.1.4. Ruminants

A total of 178 blood specimens from cattle, sampled at three
farms situated within the districts of the cities PreSov (49°00N,
21°14E) and KoSice (48°43N, 21°15E} were screened for the
presence of A, phagocytophilum. Moreover, 16 blood samples were
obtained from a slaughter-house in eastern Slovakia. Except of A.
phagocytophilum, all blood samples were tested for the presence
of Anaplasma marginale, an agent responsible for bovine
anaplasmosis.

Altogether 147 blaod samples from four sheep flocks in central
Slovakia, Ofova (48°36N, 19°17E), Mito pod Dumbierom (48°51N,
19"3?E) Liptovsky Mikuld3 (49°04N, 19°36E) and Veternd Poruba
(49°06N, 19°40E) were delivered to our lab in plastic tubes with
anticoagulant (EDTA). Additionaly, these samples were analysed
for the presence of A ovis, an agent responsible for pasture fever
of small ruminants. Samples were stored at 4°C until DNA
isolation.

dx.doi.org(10.1016/].meegid 2013.06.003
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2.2, DNA extraction

Ticks were identified to species and sex according to morpho-
logical key (Siuda, 1993), and then dried on air under the white-
light for approximately 15 min to evaporate the residual ethanol.
Genomic DNA was then isolated by using of alkaline hydrolysis
method (Guy and Stanek, 1991}, Samples were stored at -20°C
until further processing. Total DNA from tissue and blood samples
was extracted using NucleoSpin®™ Tissue and/or Blood Kit (Mache-
rey-Magel, Germany). Before DNA extraction all tissue samples
were digested with proteinase K at 56 °C, overnight. All DNA sam-
ples were eluated in 50 pl of elution buffer and stored at —20 °C for
further analyses. In order to minimize DNA contamination, DNA
extractions, PCR-mix preparations and PCR reactions were con-
ducted in separate rooms.

23, KR

In order to verify whether the genomic DNA from each . ricinus
tick had been isolated successfully, a fragment of the mitochon-
drial cytochrome b gene with a length of 620 bp was amplified
(Black and Roehrdanz, 1998). In case of genomic DNA from blood
and tissue samples, PCR amplification of 145-bp long orthologous
fragment of the vertebrate mitochondrial 125 rRNA gene was per-
formed as published previously by Humair et al. (2007). Negative
samples were excluded from the file,

Partial PCR amplifications of 165 rRNA and groESL genes were
used for detection of A phagocytophilum and subsequent sequenc-
ing. For initial screening of all ticks, tissue and blood samples,
nested PCR amplification of 16S rRNA gene was realized. Primers
ge3a, gel0r were used for detection of all members of the family
Anaplasmataceae, in the first round of amplification. One pl of
PCR product from the first round was used as the template for sec-
ond, A. phagocytophilum-specific round with the set of primers ge9f
and ge? (Massung et al., 1998). Randomly selected 165 rRNA prod-
ucts were additionally tested with a nested PCR targeting more
variable groESL gene. In the first round, pair of primers HS1 and
HS6 was used. These primers amplify the end of groES gene, inter-
genic spacer and approximately 23 of the groEL gene. In the sec-
ond round HSVF and HSVR primers that span a 395-bp region of
the grofl gene were used (Lotric-Furlan et al., 1998; Sumner
et al., 2003).

Primers and cycling conditions for mspd PCR detection of A
marginale and A. ovis were used as published previously by de la
Fuente et al. (2005a,b). Detection of 165 rRNA gene of Ca. Neoehrli-
chia mikurensis was performed according to Kawahara et al.
(2004). All PCR amplifications were performed in a total of 25 pl
of reaction mixture of 2x DyNAzyme Il Master Mix (Finnzymes,
Espoo, Finland) containing 7.6 pl of deionized sterile water,
12.5 pl of each primer and 2.5 pl of DNA template. As the negative
control, nuclease free water was added instead of tested DNA. Sim-
ilarly, positive controls (previously sequenced DNA of A phagocyto-
philum) were used in each assay. PCR reactions were performed in
personal thermal cycler (MyCycler, Bio-Rad) and PCR products
were analyzed electrophoreticaly in 1.5% agarose gel stained with
GelRed stain (Roche Diagnostics) and further visualized under
the UV light.

24 Purification and sequencing

Randomly selected 165 rRNA and groEL amplicons of A. phagocy-
tophilum, msp4 amplicons of A. ovis and 165 rRMA amplicons of Ca.
Neoehrlichia mikurensis were purified by using of a QlAquick PCR
purification kit (Qiagen). Sequence analyses were performed by
using of internal primers for both genes of A. phagocytophilum,
and primers used for PCR detection of msp4 of A. ovis and 165 rRNA

of Ca. Neoehrlichia mikurensis at the Laboratory of Biomedical
Microbiology and Immunology, (University of Veterinary Medicine
and Pharmacy, Ko3ice, Slovakia). The complementary strands of se-
quenced products were manually assembled, Sequences were
compared with the GenBank entries by Blast N 2.2.13. Identities
of obtained nucleotide sequences were computed using EMBOOS
pairwise alignment [needle method) after manual removing of
gaps.

The groEL nucleotide dataset was translated into amino acids
and aligned using ClustalW algorithm in BioEdit 7.0.5.3 with de-
fault parameters (Hall, 1999). All ambiguously aligned sites were
removed from further analyses. Edited dataset was used in nucle-
otides to infer phylogeny and contained 491 parsimony-informa-
tive sites. We used two approaches to reconstruct phylogenetic
trees, Bayesian Inference (Bl} and Maximum Parsimony (MP). Bl
tree was computed using MrBayes 3.1.2 (Huelsenbeck and Ron-
quist, 2005) with five million generations under GTR+1+I" model
with gamma distribution in four categories. AWTY ([Mylander
et al,, 2008) was used to check the MCMC convergence and deter-
mine burn-in. MP was performed in PAUP* 4.0b10 (Wilgenbusch
and Swofford, 2003 using TBR algorithm with random sequence
addition. Bootstrap analysis with 100 replicates was done to statis-
tically support tree topology.

2.5. Nucleotide sequences obtained in this study

165 rRNA and groEL sequences of A. phagocytophilum: 16S rRNA:
red deer: GQ450278, CQ122212; roe deer: GQ450277, F]984534;
fallow deer: GQ450276, GQ122211; red fox: GQ162213,
GQ162214; I ricinus ticks: CU724963, GU724965, GUT24967;
dog: GU724971; bank vole; GU724970; groElL: European bison:
JN935924 (from previous study/data not shown); dog: JN935925;
red deer: JN935926, [N935927; roe deer: JN935929; I ricinus:
JN935928; goat: JN935930 (from previous study/data not shown);
bank vole: ]N935931; 165 rRNA of Ca. Neoehrlichia milkurensis:
stripped field mouse: GU724969.

3. Results
3.1. A phagocytophilum in 1. ricinus ticks

Altogether 1075 questing [. ricinus ticks were screened. The
overall prevalence of infection ranged from 1.4% to 5.5%. Preva-
lence of 2.8% was found in a hornbeam deciduous suburban forest
park of Kodice city; 4.36% in ticks from the basin nearby the Hornad
river in area devastated by flood; 5.5% in forest in the locality Ka-
vecany (district of Koice city). At the sampling site in the district
of Michalovee city only one nymph tested positive and the preva-
lence of infection was 1.4% The prevalence of 3.3% was recorded in
Zadiel/Slovak Karst and the overall prevalence of A phagocytophi-
lum in ticks from the locations in the district of Rimavska Sobota
city reached 1.5%.

Randomly chosen 165 and groEL positive amplicons were se-
quenced. All partial 165 rRNA sequences of A. phagocytophilum
from I ricinus ticks [(GU724963, GU724965 GU724966 and
GU724967) were identical in overlapped region and 100% homolo-
gous with the 165 obtained from Slovak red deer (GQ450278) or
fallow deer {GQ450276).

Few samples were sequenced for groEL gene, Alignment of these
sequences confirmed 100% identity in overlapped region. One rep-
resentative was added to GenBank database (JN935928). GroEL se-
quence from Slovak L ricinus clustered together with red deer and
roe deer sequences from our study (Fig. 1),
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Fig. 1. Phylogenetic relationship of A. phagocyrophilum groElL gene partial sequences downloaded from GenBank and those obtained in this study. Sequenced samples are
asterisked, Phylogenetic tree represents the reconstruction of relationship produced by Bayesian inference. Numbers above branches indicate statistical support from
Bayesian inference ( posterior probability) and maximum parsimony (bootstrap values | respectively,

3.2, A phagocytophilum in dogs

Only one dog blood sample tested positive for A, phagocytophi-
lum. In blood smear stained with Hemacolor® Stain Set (Merck,
Germany) morulae were not detected in peripheral blood granulo-
cytes, Amplified portion of groEL gene from this sample was se-
quenced (GU724971) and included in phylogenetic analysis. This
sequence clustered together with the sequence from Swiss horse,
red deer and human patient from Slovenia (Petrovec et al., 2002).
In four tested canine blood samples Babesia canis canis

(EU165369) was confirmed (data not shown). In the group of 144
examined blood samples of police and military dogs we did not de-
tect the presence of bacterial or protozoan DNA.

3.3. A. phagocytophilum in wild carnivores, ungulates and rodents

None of 248 examined red foxes from Slovakia tested positive
for A phagocytophilum. The prevalence of infection in wild boars
was 16.7%. The overall prevalence of infection in red deer reached
17.5%, Eight tissue samples of roe deer and two chamois samples
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tested positive, what represents the overall prevalences of 61.5%
and 3.5%, respectively.

Two of 3 tissue samples from fallow deer tested positive. Few
165 rRNA amplicons were randomly chosen and sequenced. Nucle-
otide sequences from red deer (GQ122212), roe deer (F]984534)
and fallow deer (GQ122211) were identical in 526 bp long over-
lapped region with each other and with 165 rRNA of A, phagocyto-
philum obtained previously from deer ked removed from red deer
in Slovakia (GQ175174), Slovak roe deer (GQ450277) or red fox
from Poland (GQ162214). Similarly, GroEL sequences from roe
and red deer clustered together with I. ricinus sequence obtained
in this study (Fig. 1).

The presence of A. phagocytephilum was confirmed in two DNA
extracts from rodents. One yellow-necked mouse (A, flavicollis) and
one bank vole (M. glareolus) trapped at the sampling site within the
district of Ruzomberok city tested positive, The overall prevalence
of infection at this locality was 4,54%, and the average prevalence
reached 0.69%. Both sequences from rodents were identical in
overlapped regions of tested 165 rRNA and groEL genes. A. phagocy-
tophilum sequences from our study showed 100% similarity within
groEl gene with sequence obtained from the Swiss bank vole
(AF192796) and clustered together with sequences from northern
red-backed vole (Myodes rutilus) (HQ630616) and common shrew
(Sorex araneus) (HQG30617) from Russia. In studied portion of
165 rRNA, our sequence showed 100% similarity with sequence
from A. agrarius from eastern Slovakia {EF121955).

For the illustration of the relationship between A. phagocytophi-
lum sequences obtained from Slovak hosts and ticks we con-
structed the phylogenetic tree by using of Bayesian inference
(Fig. 1). All partial nucleotide sequences of 165 rRNA gene from
our study were identical and showed 99-100% similarity with se-
quences from vector ticks or various hosts previously obtained
elsewhere in the world. Nucleotide sequence similarities between
obtained groEL gene portions ranged from 92.8% to 99.7%. Despite

Table 1

the shortness of obtained nucleotide sequences (JN935924-31), we
found altogether 31 polymorphic sites within analyzed gene por-
tion. Multiple alignments showed that 22 out of all 31 nucleatide
substitutions occurred exclusively in sequence derived from bank
vole and most (64.0%) of revealed substitutions had a character
of transitions. Positions of mutations were calculated with respect
to the complete groEL gene of A phagocytophilum “HZ strain” with
a length of 1653 bp (NC007797) (Table 1). Obtained sequences
with a length of 388 bp were translated to the corresponding ami-
no acid sequences with a start codon GTT and compared with ref-
erential sequence of complete grofl gene. Two changes, caused by
the A + G substitution at the second base of the codon (AAT-AGT)
occurred. Asparagin (N) was substituted by serine (S) (Table 2).
Both changes were neutral and likely do not dramatically alter sec-
ondary structure and the function of coded protein.

Additionally, at three out of five sampling sites, the presence of
Ca. Neoehrlichia mikurensis was detected in Appodemus spp. and
M. glareolus species. At the locality Rozhanovcee, the prevalence of
Ca. Neoehrlichia mikurensis infection reached 13.97%. Five
[8.62%) out of 58 tested DNA extracts from the locality Sebastovee
were infected, and 25 of 91 examined samples from the district of
LuCenec city tested positive, what represents the prevalence of
27.47%. The mean prevalence of Ca. Neoehrlichia mikurensis in ro-
dents was 10.75%. Obtained sequences were identical with 165
rRNA obtained previously from I ricinus ticks from Slovakia
[GU724964), The Blast analysis demonstrated the 99.3% similarity
with nucleotide sequence obtained from the long-tailed brown-
toothed shrew (Soriculus leucops) from China (GU227699).

3.4. Anaplasma in ruminants

All cattle samples tested negative for the presence of A. phago-
cytophilum and A, marginale. Similarly, A. phagocytophilum did not
occur in examined sheep flocks. On the other hand, presence of

Polymorphic sites within the studied portion of groEL operon in obtained sequences {order of sequences in first row: referential sequence NCO07797; European bison JN935924;
dog [N935925; red deer IN935926; rad deer [N935927; | rcinus |N935928; roe deer JN935929; goat [N935930; bank vole |N935831),

Paosition in referential sequence/position in abtained Referential Bison Dog Red Red L. ricinus Roe Goat Bank
sequence 5-3 sequence deer deer deer vole
83120 G G G G G G G G

24029 C [4 € i T T T £ 5
346/35 C C C C C C 5% T T
24938 A G G G G G G A A
850/39 A A A A A C A A A
35544 A A A A A A A A G
864/53 T T T T T T T T A
88574 A A A A A A A A G
909/98 C C C C C C C C T
933122 C [= C T T T T T T
949138 C C c C E C C C T
951140 T T T T T T T T G
969158 G A A A A A A A T
975164 C C C c C C C C T
HIN76 A A A A A A A A G
9G] 185 T C C C C C C C T
999,188 A A A A A A A A 5
1102{191 T 5 T T T T T i T
1020/20% T T T T T T T T C
1043(232 A A A A A A A A G
10559/248 G G G G G G G G A
1067/256 A A A A A A A & G
11017290 A A A A A A A A G
1110/29% A A A A A A A A G
1113302 G G A A G G A G T
1128317 C C T C C £ T C T
1137326 A A A A A A A A G
1170359 G G G G G G G G T
1176365 A A A A A G A A n
1179/368 C C c C C C C ,id T
1197386 T T T T T. T T T C
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Table 2
Mutations observed in groEl region and their consequences in coded protein
(calculated from GTT start codon).

Position in DNA Codon Mutation type
18 GCG - GCA Transition

27 TIC - TIT Transition

33 GAC - GAT Transition

36 ACA — ACG Transition

3 AGA — CGA Transversion

42 AAA = AAG Transition

51 CTT —+ CTA Transversion

72 GTA - GTG Transition

96 GAC — GAT Transition

120 GAC - GAT Transition
136/138 CIT = TTG Transition/transversion
156 GTG = GTA = GTT Transition/transversion
159 CGA - CGC Transversion
162 ATC - ATT Transition

174 GCA — GCG Transition

183 ATT = ATC Transition

186 ATA — ATC Transversion
189 GGC - GCT Transition

207 TCT - TCC Transition

230 AAT — AGT Transition N — §
246 CAG — CAA Transition

254 AAT — AGT Transition N = §
288 AGA - AGG Transition

297 TTA - TTG Transition

300 GCG — GCA — GCT Transition|transversion
315 GGC - GGT Transition

324 GTA = GTG Transition

357 GTG - GTT Transversion
363 GAA -+ GAG Transition

366 CCC - CGT Transition

384 GAT — GAC Transition

A. ovis was confirmed in tested sheep samples. Rates of A ovis
infection reached considerable degrees. The overall prevalence of
infection ranged from 6.2% to 50.0%.

4. Discussion

Several species of wild and domesticated animals as well as
competent vector ticks were screened for the presence of members
of the family Anaplasmataceae by using of PCR based molecular
methods. In the present study we confirmed A phagocytophilum
in questing ixodid ticks from all sampling sites, in domesticated ca-
nine, in wild ungulates including wild boars, roe and red deer, fal-
low deer, alpine chamois and wild rodents.

In Europe, the rate of A. phagocytophilum infection in questing I.
ricinus varies across locations from zero or very low up to 30% and
it is usually higher in adults than nymphs (Blanco and Oteo, 2002;
Strle, 2004; Rosef et al., 2009). In Russia, bacteria were detected in I,
ricinus ticks collected in the Baltic region (Alekseev et al,, 2001 ) and
Ixodes persulcatus ticks collected in Vologda Province (Eremeeva
et al,, 2006), in Western Siberia (Rar et al., 2005), and in the studied
areas from the Urals to the Far East of Russia (Shpynov et al., 2006;
Shpynov, 2012}, In Slovakia, the prevalence of infection in L. ricinus
ticks is low (under 5.0%). The infection rate in tested questing ticks
ranged from 1.4% to 5.5%, what is in accordance with previously
published data (Spitalskd and Kocianovd, 2003; Derdikovd et al,,
2003; Smetanova et al., 2006).

Lately, it has been shown that A. phagocytophilum is maintained
in enzootic foci even in the absence of I. ricinus ticks, with I. triang-
uliceps ticks as the main vectors (Ogden et al., 1998; Bown et al.,
2003, 2008). Ogden with co-workers (1998) did not find A. phago-
cytophilum in rodents trapped in areas where L ricinus ticks were
abundant, but [. trianguliceps ticks were not present. In Slovakia,
A. phagocytophilum was not revealed in rodent samples from areas

where 1. trianguliceps did not occur and all feeding I ricinus ticks re-
moved from infected rodents were free of infection (Pangracova
et al., 2012). Studies from Europe support the hypothesis that A
phagocytophilum ecotypes, associated with rodents are more likely
maintained in foci by I. trianguliceps not by [. ricinus ticks.

Only one dog blood sample from our study tested positive for A.
phagocytophilum, The tick infestation was the common feature of
all tested dogs. The vast majority of blood specimens originated
from clinically healthy individuals or the most common signs in-
cluded increased temperature, apathy, lameness, anorexia, vomit-
ing and local inflammations at the tick-bite site. Anaplasma -
positive dog had no clinical symptoms leading to the suspicion
for anaplasmosis or other tick-borne disease. None of police and
military dogs tested positive. However, these results were not sur-
prising as all dogs were under intensive veterinary control.

The presence of A. phagocytophilum in red foxes from Slovakia
has so far not been considered, Similarly, we did not find A. phago-
cytophilum in tested animals. Only serological studies from Swit-
zerland have suggested that red foxes might be infected with
Anaplasma (Pusterla et al., 1999). First molecular evidence of bac-
teria in red foxes was recently recorded in Poland (Karbowiak et al.,
2009). These results demonstrate the potential ability of foxes to
serve as a reservoir of infection for dogs and other wild canine,
but further studies are needed.

Tested cattle and sheep were free of A. phagocytophilum and A.
marginale infection. In Europe, bovine anaplasmosis caused by A.
phagocytophilum is relatively widespread and clinical manifesta-
tions, caused by the presence of bacteria have been recorded
(Woldehiwet and Scott, 1993). However, cattle from our study
were kept in tie-in stalls or housed within fenced grazing areas.
The likelihood of coming into contact with wild ungulates infested
with potentially infected . ricinus ticks was significantly mini-
mized. Unlike deer, small mammals are not affected by fencing
and are able to ensure the circulation of Anaplasma even within
fenced areas (Bown et al, 2008). Anyway, we did not record A
phagocytophilum in cattle, but this could also be caused by the dif-
ferences in virulence of A. phagocytophilum strains. To our knowl-
edge, in Slovakia the clinical case of infection in cattle has not
been published so far.

However, in sampled sheep flocks we confirmed the presence of
A, ovis, an agent responsible for tick-borne fever of small rumi-
nants. Infection was confirmed in all tested flocks from middle
and narthern Slovakia with the prevalence of infection from 6.2%
to 50.0%. High level of A. ovis infection has previously been con-
firmed on farms located in southeastern and northern Slovakia.
The authors revealed also the presence of mixed infections of A
phagocytophilum and A. ovis, what suggests that Slovakia is a coun-
try with endemic occurrence of pasture fever, gradually spreading
further north (Derdakova et al, 2011).

Tested wild ungulates were infected with A. phagocytophilum ta
a considerable extent. High proportions of red deer and roe deer
tested positive and the rates of infection reached 17.5% and
61.5%, respectively. Additionally, two out of three examined sam-
ples from fallow deer tested positive what suggest this species as
another potential wildlife reservoir.

Totally, 57 samples of alpine chamois were examined. The prev-
alence of infection was 3.5%. This is the first evidence of A. phago-
cytophifum in alpine chamois from Slovakia. In opposite to strictly
protect Rupicapra rupicapra subsp. tatrica, which occurs exclusively
in the Tatra National Park, an alpine chamois from the National
Park Slovak Paradise are considered as an over - reproduced and
are legally hunted as a fair game, Chamois live at moderately high
altitudes and are adapted to living in open rocky terrains and al-
pine meadows. They can be found at elevations of at least
3,600m and during the winter go to lower forests of around
800 m (Aulagnier et al., 2008). The chamois can carry infected ticks

dx.doi.org(10.1016/].meegid 2013.06.003

Please cite this article in press as:_ﬁéhwé. B. et al. Anaplasma infections in ticks and reservoir host from Slovakia, Infect. Genet, Eval, (2013), http:/|

73



B. Vichovd et al/Infection, Genetics and Evolution xx (2013) sxue-o00 7

while overcoming various altitudes and affect the spreading of
ticks and tick-borne pathogens further in higher altitudes.

Our study confirms the presence of A phagocytophilum in 16.7%
of tested wild boars. Previous studies suggested that wild boars
may carry human pathogenic ecotype of A phagocytophilum (Pet-
rovec et al., 2002; Strasek Smrdel et al, 2009; Michalik et al.,
2012), As far as boars are most abundant and widespread game
in Europe, the identification and further study of zoonotic poten-
tial of A, phagocytophilum strains could support the surveillance
for this pathogen in people from the same regions, Nevertheless,
all our 165 rRNA sequences from boars were identical to se-
quences obtained from the other tested ungulates, Unfortunately,
from wild boars, we were not able to obtain clearly legible groEL
sequences. High rates of infection in examined wild animals
suggest that ungulates in Slovakia are involved in the enzootic cir-
culation of pathogen and serve as competent reservoirs for A
phagocytophilum as it has already been suggested by Stefanide-
sova et al, (2008)

Altogether 286 samples of rodents were screened for the pres-
ence of A. phagocytophilum. Only two rodents carried A. phagocyro-
philum and the average prevalence of infection was 0.69%.
Previously, the presence of A phagocytophilum was confirmed in
A. agrarius and A, uralensis from eastern Slovakia (Stefanéikova
et al., 2008). Sequences obrained in this study from bank vole
and yellow - necked mouse were identical in overlapped regions
of 165 rRNA and groEL genes. These sequences were different than
those derived from humans what suggest, that European rodents
do not harbour A. phagocytophilum strains with strong zoonotic po-
tential such as those from the United States.

In tested genomic DNA from blood and tissue samples of stud-
ied rodents (Appodemus spp., M. glareolus) the presence of Ca. Neo-
ehrlichia mikurensis was confirmed. Prevalence of infection
reached over 10.0%, what lies within the range found in rodents
from other European countries (Andersson and Raberg, 2011; Jah-
fari et al,, 2012; Vayssier-Taussat et al., 2012 ). Of interest in pres-
ent study was also the diversity of A. phagocytophilum from wide
spectrum of animal species. Obtained 165 rRNA and groEL se-
quences were analyzed in order to track intraspecific heterogeneity
of A. phagocytophilum and to assess the possibility of co-circulation
of different ecotypes in Slovakia. In Europe, 165 rRNA gene does
not seem to be an appropriate locus for the analyses of heterogene-
ity as it is too conservative, Similarly, 165 rRNA sequences from our
study did not reveal any SNPs. On the other hand, the groESL heat
shock operon is widely used for determination of the diversity and
the analyses of different groESL. sequences already revealed consid-
erable degree of heterogeneity (Rymaszewska, 2008).

5. Conclusions

The results of the study reported herein suggest that A. phago-
cytophilum infections in various regions of Slovakia are maintained
in wild ungulates especially, with L ricinus ticks serving as biolog-
ical vectors. Knowledge of the presence of pathogens, the rates of
infection and identity of circulating genotypes in vector ticks and
hosts in different regions are crucial for the assessment of the risk
ratio for human health and may help to establish the surveillance
and control programs for vector-transmitted pathogens.

We have detected the presence of A. phagocytophilum in a wide
spectrum of tested animals and confirmed the undoubted impor-
tance of wild ungulates for its circulation in natural foci of Slovakia,
There appears to be greater strain diversity among A. phagocytophi-
[um from vectors and hosts in Europe in opposite to US strains. We
have obtained different nucleotide sequences from ticks and ungu-
lates in comparison to those from rodents. The results suggest that
European rodents most likely do not harbour A. phagocytophilum

strains with strong zoonotic potential such as isolates from the
United States.
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