
PRÍRODOVEDECKÁ FAKULTA UNIVERZITY 
PALACKÉHO V O L O M O U C I 

SPOLEČNÁ LABORATOŘ OPTIKY 

Kvantové a klasické strojové učení pro kvantově 
informační protokoly 

DIZERTAČNÍ PRÁCE 

Jan Roik 

školitel 

doc. Mgr. Karel Lemr, Ph.D. 

O L O M O U C 6. března, 2023 





FACULTY OF SCIENCE, PALACKÝ UNIVERSITY 
O L O M O U C 

JOINT LABORATORY OF OPTICS 

Quantum and classical machine learning for 
quantum information protocols 

Ph.D. THESIS 

Jan Roik 

supervisor 

assoc. prof. Karel Lemr, Ph.D. 

O L O M O U C March 6,2023 





Bibliografická identifikace 

Název práce 

Typ práce 

Autor 

Vedoucí práce 

Studijní obor 

Pracoviště 

Jazyk 

Klíčová slova 

Rok 

Počet stran 

Dostupná na 

Kvantové a klasické strojové učení pro kvantově in­
formační protokoly 

Disertační 

Jan Roik 

doc. Mgr. Karel Lemr, Ph.D. 

Nanotechnologie 

Společná laboratoř optiky 

Angličtina 

Kvantové provázání, klasifikace kvantového pro­
vázání, kvantifikace kvantového provázání, strojové 
učení, neuronové síte, kvantové sítě, proximální op­
timalizace politiky 

2023 

118 

http://portal.upol.cz 

- v -

http://portal.upol.cz




Bibliographie details 

Title 

Type 

Author 

Supervisor 

Study program 

Department 

Language 

Key words 

Year 

Pages 

Available at 

Quantum and classical machine learning for quan­
tum information protocols 

Ph.D. thesis 

Jan Roik 

assoc. prof. Karel Lemr, Ph.D. 

Nanotechnology 

Join Laboratory of Optics 

English 

Quantum entanglement, quantum entanglement 
classification, quantum entanglement quantifica­
tion, machine learning, neural networks, quantum 
networks, proximal policy optimization 

2023 

118 

http://portal.upol.cz 

http://portal.upol.cz




Declaration of originality 

I hereby declare that this thesis is my own work and that, to the best of my 
knowledge and belief, it contains no material previously published or writ­
ten by another person nor material which, to a substantial extent, has been 
accepted for the award of any other degree or diploma of the university or 
other institute of higher learning, except where due acknowledgment has 
been made in the text. 

In Olomouc, 

Submitted on 

The author grants Palacký University i n Olomouc permission to store 
and display this thesis and its electronic version i n a university library and 
on the official website. 





Acknowledgment 

First and foremost, let me express sincere gratitude to my supervisor as­
soc. prof. Karel Lemr, Ph.D., for his guidance, and Mgr. Antonín Černoch, 
Ph.D., for his willingness to always offer his helping hand. M y thanks also 
belong to co-authors of my publications, assoc. prof. Jan Soubusta, Ph.D., 
and assoc. prof. Karol Bartkiewicz, Ph.D. 

I want to thank colleagues, Mgr. Vojech Trávniček, Ph.D., Mgr. Kateřina 
Jiráková, Ph.D. and Mgr. Josef Kadlec for fruitful discussions and all bits of 
advice they gave me. M y special thank goes to Kishore Thapliyal, Ph.D. 
friend and colleague with whom I shared the intricacies of my doctoral 
studies, for all those enlighting discussions about life's intricacies. 

I am most thankful to my family, especially my wife Dominika, for all 
her encouragement and moral support. 

The author acknowledges the financial support by internal Palacký U n i ­
versity Grants Nos. IGA-PrF-2020-007, IGA-PrF-2021-004, IGA-PrF-2023-
005, DSGC-2021-0026, and by the Czech Science Foundation under projects 
Nos. 19-19002Sand20-17765S. 

-The author 





Contents 

Bibliografická identifikace v 

Bibliographic details vii 

Declaration of originality ix 

Acknowledgment xi 

1 Introduction 1 
1.1 Quantum physics 2 
1.2 Quantum information processing 2 
1.3 Artificial intelligence 4 
1.4 Outline 6 

2 Methods and tools 11 
2.1 Artificial neural networks 11 
2.2 Proximal policy optimization 17 
2.3 Gym library 19 
2.4 Quantum states 101 21 
2.5 Entanglement witnesses 22 
2.6 Quantum teleportation 24 

3 Accuracy of entanglement detection via artificial neural networks 
and human-designed entanglement witnesses 27 
3.1 Introduction 27 
3.2 Collective measurements 30 
3.3 Artificial neural network 31 
3.4 Results 31 

- xii i -



Contents Contents 

~? \s*s £ r -
3.5 Experimental implementation 35 
3.6 Conclusions 36 

4 Entanglement quantification from collective measurements pro­
cessed by machine learning 39 
4.1 Introduction 39 
4.2 Collective measurements and data generation 40 
4.3 Artificial neural networks 42 
4.4 Results 45 
4.5 Conclusions 49 

5 Routing in quantum communications networks using reinforce­
ment machine learning 51 
5.1 Introduction 51 
5.2 Quantum network topology 54 
5.3 Routing algorithms 56 
5.4 Results 57 

5.4.1 Network affected by white noise 58 
5.4.2 Network affected by amplitude damping 59 
5.4.3 Network affected by correlated phase noise 60 
5.4.4 Evolving quantum network 61 

5.5 Conclusions 63 

6 Conclusions 67 

Author's publications 69 

Bibliography 71 

Apendix A-1 
A . l States preparation A - l 
A.2 Collectibility A-3 
A.3 Other witnesses A-3 
A.4 Polynomial fits A-6 
A.5 Djikstra algorithm A-8 
A. 6 PPO algorithm A-9 
Confirmation of contribution A-14 

- xiv -



Chapter 1 

Introduction 

" The man who asks a question is a fool for a minute, the man who does not 
ask is a fool for life." 

-Confucius 

Since the dawn of time, humankind has manifested a deep desire to ex­
plore the world and unveil every mystery i n the universe. These urges are 
deeply rooted in our nature and motivated by survival instincts [1]. Ini­
tially we compensated for our lack of knowledge by inventing various sto­
ries about gods and monsters [2]. These were the initial attempts to under­
stand the world around us. Similar endeavors have been typical for every 
civilization worldwide throughout history [3,4]. As humankind evolved, 
we replaced these initial explanations (myths and legends) created by our 
imagination with a systematic study of the structure and behavior of the 
physical and natural world through observation and experiment 1. Thus 
science was born. It is remarkable how fast our understanding of the uni­
verse has expanded since then. What started with the simple observation 
of the falling apple evolved into a search to understand the creation of the 
universe itself. 

One of the most intriguing scientific discoveries was that nature is, in 
its essence, unpredictable. The "God", indeed, plays dice with us 2 . These 
findings introduced by the "Quantum" theory were shocking and brutal 
to accept [5,6]. Since its introduction at the beginning of 20th century, it 
took nearly a century to collect enough evidence to convince the majority 

1 Definition of science from the Cambridge Advanced Learner's Dictionary & Thesaurus. 
2 T h e contradiction of Einstein's famous quote. 

- 1 -



1.1. Quantum physics Chapter 1. Introduction 

~ ? ^ R * s ^ r 

of the academic community that quantum theory is valid [7-9]. Despite 
several attempts so far, there has been no proper experiment to contradict 
its validity. 

1.1 Quantum physics 

The origin of quantum physics can be traced to the black-body radiation 
problem first described by Gustav Kirchhoff i n 1859 [10]. In order to cre­
ate a theoretical model matching observed patterns of black-body radia­
tion, Max Planck had to consider that energy is radiated and absorbed in 
discrete energy packets, "quanta" [11]. However, for him, quantification 
was just a mathematical trick that did not reflect reality. It took another 
five years to confirm that quantization indeed describes reality when A l ­
bert Einstein also used it to explain the photoelectric effect3 [12]. Quan­
tum physics as we know it was established i n 1925 when Werner Heisen-
berg composed matrix mechanics [13], and ErwinSchrodinger formulated 
wave mechanics [14]. 

Quantum physics is currently the most accurate way of describing the 
physical properties of nature on a fundamental level. Thus far, we formu­
lated the quantum description of the weak [15], strong [16], and electro­
magnetic [17] interactions. That is why quantum theory has become es­
sential for many scientific fields, such as quantum chemistry [18], quan­
tum optics [19], quantum electronics [20], solid-state physics [21], materi­
als science [22], computer science [23]. However, quantum physics is not 
just used for theoretical research. In fact, it is also essential for applied 
research [24], such as quantum communication [25], quantum cryptog­
raphy [26], quantum biology (production of an "artificial leaf" for energy 
conversion by photosynthesis) [27], quantum computers [23], quantum 
sensor technology [28], quantum metrology [29], quantum electronics (in­
cluding single electron transistors) [30] to mention a few. 

1.2 Quantum information processing 

Quantum information processing is a multidisciplinary field of research 
[31], including quantum information theory [32], quantum communica­
tions [25], quantum computation [33], and quantum algorithm design [34]. 

3 T h e Nobel Prize in Physics 1921: Albert Einstein "For his services to Theoretical 
Physics, and especially for his discovery of the law of the photoelectric effect". 
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Quantum physics introduced new tools into data processing based on the 
properties of the quantum object, such as superposition and entangle­
ment 4 [5]. These properties are the sole reason the new quantum protocols 
can solve classically unsolvable problems or make the standard protocols 
more efficient. 

Where classical information theory works with bits representing the 
single quanta of information [35], quantum information theory, on the 
other hand, works with qubits represented by superposition [32], contain­
ing potentially unlimited amount of classical information. Qubits are typ­
ically encoded using discrete-level quantum mechanical systems. How­
ever, it was shown that even continuous variable could be a viable alter­
native [36,37]. Historically the most prominent methods were encoding 
into the spatial or polarization modes of photons [38] and encoding into 
electrons that can be either i n the ground or excited state [39]. Currently, 
the most promising methods are encoding either into the superconduc­
tion qubits [40] to construct large-scale quantum computers or into time 
bins [41] for quantum cryptography. 

Working with qubits allows using the similar class of operations known 
from classical information theory, except for the restriction on perfect clon­
ing of unknown qubit state. The list of permitted operations includes con­
structing quantum logic gates, executing quantum measurements, initial­
izing to a known value, and propagating through quantum channels. Given 
operations are sufficient to design quantum circuits and even construct 
devices capable of executing them 5 . 

These so-called quantum computers showed the potential to solve com­
plex tasks such as finding prime factors of an integer by running Shor's 
algorithm i n polynomial time [43, 44]. Furthermore, many believe that 
quantum computers may offer a solution to non-deterministic polynomial-
time hardness (NP-hard) problems, such as Tail Assignment Problem re­
cently demonstrated on a smaller scale by Vikstal etal. [45]. In 2020 Zhong 
etal. published an article claiming they achieved true quantum supremacy 
on the gaussian boson sampling problem using only 76 qubits [46]. In 
November 2022, IBM published an article claiming the development of a 
433-qubit quantum computer [47,48]. 

4 T h e Nobel Prize in Physics 2022: Ala in Aspect, John F. Clauser and Anton Zeilinger "For 
experiments with entangled photons, establishing the violation of Bell inequalities and pi ­
oneering quantum information science". 

5 I n 1998 Isaac Chuang, Nei l Gershenfeld and Mark Kubinec created the first quantum 
computer [42]. 
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This rapid evolution of quantum computing wil l offer a powerful tool 
to efficiently address problems such as quantum encryption [26], simula­
tion of quantum systems [49], combinatorics problems [50], supply chain 
logistics [51], drug development [52], data analysis [53], machine learn­
ing [54], and much more [55]. 

Unfortunately, although quantum computing offers a solution to many 
fundamental problems, it also raises some concerns [56]. For example, 
it was shown that quantum computers can be very efficient at breaking 
prominent classical cryptography methods based on prime number fac­
torization [57]. As a solution, a whole new field of cryptography was born 
[58]. This so-called "quantum" cryptography is based on the impossibil­
ity of perfectly cloning unknown quantum states [59]. The security of this 
encryption method is hence insured by the laws of nature and cannot be 
cracked under ideal conditions. The alternative method to quantum cryp­
tography is co-called "post-quantum" cryptography, which focuses on de­
veloping a classical coding method unbreakable even by large-scale quan­
tum computers [60]. 

The goal for the future is to create quantum communicational networks, 
aka quantum internet [61]. Such networks would provide a secure way to 
distribute quantum information among its users [62]. It would also help 
connect quantum processes to make even more complex calculations pos­
sible [63] or offer more accurate clock synchronization for the position­
ing systems [64]. Unfortunately, some open problems still need to be ad­
dressed before the experimental realization of a full-scale quantum inter­
net [65-68]. 

1.3 Artificial intelligence 

Artificial intelligence is one of the most exciting fields evolving in today's 
world. This general term refers to a computer system capable of accom­
plishing a task that requires human intelligence, such as using available 
information to make informed decisions, communicating with people us­
ing their natural language, identifying data patterns, acting on previous 
experiences, and adapting to new situations 6. 

Artificial intelligence requires training to gain experience. We distin­
guish three base types of machine learning based on the degree of hu­
man involvement i n the learning process. The first is supervised learn-

6 Def in i t ion of artificial intelligence by: Oxford Languages and Google. 
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ing [69] which requires a labeled training data set to establish its policy. 
When trained properly it should accurately predict future outcomes based 
on past processed data. The second method, unsupervised learning [70], 
can identify hidden patterns i n unlabeled input data. As an output, it gives 
us more readable, organized data that may reveal patterns, similarities, or 
anomalies. Finally, the third method, reinforcement learning [71], is used 
in scenarios with clearly defined goals, actions, and reward structures. The 
agent receives a reward or punishment based on the action taken, and as 
a result, it should be able to find the optimal solution to a given task. 

There is a large variety of approaches toward machine learning, each 
with its downsides and benefits. Therefore, the optimal machine learning 
method is chosen based on the type of artificial intelligence we want to 
create. We can highlight linear regression [72], clustering [73], and dimen­
sionality reduction [74] as an example of the most prominent ones. 

As mentioned above, one of the goals of artificial intelligence is to mimic 
human behavior. The field addressing this specific task is called deep learn­
ing [75]. This type of machine learning uses artificial neural networks to 
create a structure resembling the topology of the neurons inside a human 
brain [76]. The recent development of this branch of artificial intelligence 
introduced a technique known as generative machine learning [77]. Here 
two neural networks compete agent each other to achieve their goal. This 
advanced artificial intelligence can handle even complex tasks, such as 
creating art (see Fig. 1.1) or producing genuine photos of people that never 
existed. 

Artificial intelligence has become an invaluable tool for many fields 
with immense application potential i n the last decade. Thus far, machines 
have learned how to generate art [78], translate to hundreds of languages 
[79], drive cars [80], recommend content based on our preferences [81], 
and so much more. Artificial intelligence can best even the greatest play­
ers i n the world i n complex games such as chess [82], Go [82], or starcraft 
[83]. We even teach machines how to diagnose patients to increase the 
efficiency of health care [84, 85]. Despite all this recent progress, we are 
still far from general artificial intelligence, which some consider unachiev­
able [86]. 
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1.4 Outline 
The presented thesis was written with the intention to summarize and con­
solidate the authors' published research focused on the potential of ma­
chine learning i n quantum information processing. The research was car­
ried out at the Joint Laboratory of Optics, Palacký university and Institute 
of Physics of Academy of Sciences of the Czech Republic 7 . This research 
facility offered decades of collective experiences i n quantum information 
processing and machine learning [87-89]. The author also collaborated 
with theoreticians from the University of Adam Mickiewicz i n Poznan 8 . 

Foundings presented i n Chapters 3-5 are adopted from authors' jour­
nal publications containing the original results. Declarations of author's 
contribution are attached in the Appendix. 

The rest of this chapter wil l briefly introduce the investigated prob­
lems and summarize the authors' other scientific projects. The first part 
of the second chapter introduces terminology connected to artificial in ­
telligence, such as machine learning, neural networks, and reinforcement 
learning utilizing proximal policy optimization. The second part estab-

7 17. listopadu 50A, 772 07 Olomouc, Czech Republic 
8 Uniwersytetu Poznaňskiego 2, 61-614 Poznaň, Poland 
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lishes terms connected to quantum information processing, such as en­
tanglement classification, entanglement quantification, and entanglement 
witnesses. 

Accuracy of entanglement detection via artificial neural networks 
and human-designed entanglement witnesses 

Based on Author's publication: J. Roik, K. Bartkiewicz, A. Černoch, and K. 
Lemr Physical Review Applied, vol. 15, no. 5, p. 054006, 2021 [A-l]. 

Quantum entanglement is one of the most intriguing phenomena ever 
discovered by humankind. It has become a cornerstone for many appli­
cations, such as quantum cryptography [58], superdense coding [90], tele-
portation [91], and quantum computation [33]. Therefore it is essential to 
know how to distinguish entangled states. However, even nowadays, we 
still lack efficient and general methods to do so. 

Currently, the most popular methods are full-state tomography and 
entanglement witnesses. Unfortunately, neither of them is optimal. Full-
state tomography offers a complete quantum state description but is ex­
perimentally demanding and scales undesirably with the complexity of 
the investigating state. On the other hand, prominent entanglement wit­
nesses such as collectibility [92], Clauser, Horné, Shimony, Holt (CHSH) 
nonlocality [93], fully entangled fraction [94], and entropy witnesses [95] 
do not guarantee correct classification of the investigated state. The idea 
of using a neural network to classify entangled states was initially demon­
strated by Gao etal. i n 2018 [96]. However, they considered only entan­
gled linear witnesses, which allowed them to classify only a limited class 
of states. 

Under those presumptions, we set our research goal to use the artificial 
neural network as the nonlinear entanglement witness, aiming to max­
imize the classification success rate for all general two-qubit stats while 
reducing required resources. The neural network performance was com­
pared against the prominent analytical witnesses for random general 2-
qubit quantum states. 
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Entanglement quantification from collective measurements pro­
cessed by machine learning 

Based on Author's publication: J. Roik, K. Bartkiewicz, A. Černoch, and K. 
Lemr, Physics Letters A, vol. 446, p. 128270, 2022 [A-2]. 

The promising performance of the artificial neural network to detect 
entangled states demonstrated i n prior research [A-1] has motivated us to 
extend our effort to a more general task. This follow-up research aimed not 
only to classify general two-qubit states but quantify them, i.e., determine 
their degree of entanglement. Conventionally, one must perform full state 
tomography to reconstruct the investigated state's density matrix and sub­
sequently calculate entanglement measures [97], which both scales unfa­
vorably with the complexity of investigated state. 

The research goal was to employ the artificial neural network to reduce 
the number of projections required for accurate entanglement quantifica­
tion based on the results of collective measurement using a minimal set of 
tomographic projections [98]. We investigated correlations between the 
precision of the quantification as a function of the measurement configu­
ration. The investigation was carried out on the general two-qubit states, 
and the negativity was used as an entanglement quantifier [99]. In the end, 
the performance of the artificial neural network was benchmarked against 
the capabilities of the polynomial regressions method. 

Routing in quantum communications networks using reinforce­
ment machine learning 

Based on Author's publication: J. Roik, K. Bartkiewicz, A. Černoch, and K. 
Lemr, submitted (2023) [A-3]. 

With the recent evolution of quantum technologies, concepts such as 
the large-scale quantum networks "quantum internet" are steadily becom­
ing a reality. Although we have already overcome many obstacles, few re­
main unaddressed [65]. One of the most crucial is identifying an effec­
tive protocol for route-finding i n a teleportation-based quantum network 
[67]. The quantum nature of these networks introduces properties unique 
to the quantum world, such as non-additive noise (amplitude dumping 
[ 100], correlated phase noise [101]). Non- additive noise is the main reason 
we cannot simply use classical graph path and tree-finding algorithms be­
cause they cannot handle non-additivity, which often leads to suboptimal 
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solutions. 
In order to maintain stable and safe communication, one needs to use 

as error free roads as possible (i.e., find the optimal solution). Therefore, 
we focused our research efforts on identifying the protocol capable of route-
finding i n a quantum network, emphasizing the maximization of the en­
tangled fraction between the shared state. 

In our research, we promote reinforcement learning represented by the 
proximal policy optimization (PPO) algorithm [102] as an efficient solu­
tion to the outlined problem. This algorithm was benchmarked against 
the Monte-Carlo search. We demonstrate the performance of both algo­
rithms on various scenarios set i n the quantum network. 9 

The author's other projects unrelated to this thesis included the devel­
opment of the calibration method for commercially available colorimeters 
[A-4, A-5] and the experimental comparison of alternative approaches to­
ward weak measurement [A-6]. Currently, the author supervises bachelor 
theses dealing with the capability of artificial intelligence to design quan­
tum circuits. He is also a member of the group investigating synergic quan­
tum generative machine learning [A-7]. The author was also the principal 
investigator of the DSGC grant (Doctoral Student Grant Competition) on 
the topic "Efficient preparation of non-classical discrete photon states for 
quantum information applications." 

9 Topology was inspired by one of the possible topologies of 6G networks [103]. 
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Chapter 2 

Methods and tools 

This chapter wil l introduce the methods and tools used i n upcoming chap­
ters. Section 2.1 wil l briefly describe the artificial neural network (ANN). 
The goal is to shed some light on its training process and highlight which 
parameters are essential for the ANN's proper functionality. Section 2.2 
will introduce proximal policy optimization (PPO), focusing on its work­
ing principles and establishing field-specific terminology, and Section 2.3 
summarizes how to define tasks i n a "gym" library. The second half of this 
chapter, Section 2.4, Section 2.5, and Section 2.6, wi l l establish quantum 
states, entanglement witnesses, and quantum teleportation. 

2.1 Artificial neural networks 
Artificial neural networks are computer algorithms inspired by the brain 
structure of living organisms. Neurons fulfill the role of fundamental build­
ing blocks of every artificial neural network. By clustering neurons into lay­
ers, they determine the topology of the A N N [104]. In principle, two layers 
(input and output) are already sufficient for A N N to function. However, in ­
corporating additional "hidden" layers into the A N N structure is common 
practice to enhance A N N performance [105]. Each neuron is represented 
by the activation number, a £ <0,1). For better visualization of the A N N 
functionality, it is convenient to assign a grayscale value to a ranging from 
black for a = 0 to white for a = 1 (see Fig. 2.1). 

ANN's initial layer contains n neurons, where n represents the corre­
sponding input data size. Each segment of the input data provides an acti­
vation value a{n for the neurons i n the first layer. The activation numbers 
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of the neurons i n the subsequent layers are given as a weighted sum 

n(L) _ (L-i) , „ ( £ - 1 ) , , , . f? 11 a „ - a 0 wo.n + ^j u>itn +... + am wmtn, ( A J-J 

«4? = L « £ ~ 1 } ">«,„, (2.2) 
m 

of all activation numbers a „ _ 1 ) from the previous layer multiplied by the 
weights wmtn which represent the strength of activation i n the visualiza­
tion of A N N they are represented as connection lines between neurons. 
The count of the neurons i n the last layer sets the number of possible out­
comes. Their corresponding activation values represent how confident the 
A N N is about a given output [106]. To introduce nonlinearity [107] and 
ensure that the activation values remain i n the desired region, typically 
between 0 and 1, the activation function [108] a, such as sigmoid [109], 
ReLU [110], Softmax [111], or Swish [112], is applied to the result of the 
weighted sum 

i a>L l)w. 
m,n (2.3) 

One can also add bias bm,n to every node as an additional parameter 

\ m 
(2.4) 

to influence the decision process of the A N N by setting how high the weigh­
ted sum needs to be before the neuron gets meaningfully activated. A l l ad­
justable parameters are incorporated into vector 

W= [w0fi,...,wm,n,b0,...,bn]. (2.5) 

Let us consider an illustrative case where we task a neural network to 
classify handwritten digits on the 10 x io pixel display. Given that each pixel 
contributes to the input data size, the A N N wil l have 100 neurons i n the in i ­
tial layer, each representing one pixel of the display grid. Activation values 
correspond to normalized grayscale intensity values displayed on the pix­
els (see Fig. 2.1). Under the presumption that given A N N can distinguish 
only digits 1-4, the last layer in the network wi l l contain four neurons. A d ­
ditionally, one hidden layer with five neurons should be sufficient to solve 
outlined task efficiently, considering the complexity of the presented task. 
From the visual representation of the A N N (see Fig. 2.1), one can see that 
every distinctive input has activation values that form unique patterns in 
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X 

H = 0.0 • = 0.7 

• = 1.0 0 = 0.9 

Figure 2.1: Visual representation of the artificial neural network task to 
classify handwritten digits on the pixel screen, where each pixel serves as 
an activation value in the initial layer of the A N N . a) The correct classifica­
tion of the digit two. b) The incorrect classification of the digit four. 
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the A N N layers. During the training stage, the A N N tries to identify these 
patterns to make informed guesses of the input state [113]. 

With the topology established, the A N N is ready to learn. In the first 
step, we need to divide the data set into at least two mandatory groups 
training data set and testing data set. During the training, A N N wil l repeat­
edly process all elements of the training data set and continuously adjust 
all its weights and biases W to maximize the prediction success rate. Ini­
tially, all parameters of W are set randomly. The hope is that given a suffi­
cient quantity of training data, A N N wil l adjust its W accordingly to be then 
able to classify input data correctly beyond the training data set. The actual 
"learning" of the A N N can be described as merely searching for the local 
and global minima of specific functions (cost function) [114]. This func­
tion takes ANN's W as an input and returns a single number as an output 
corresponding to learning efficiency during training. The cost function 

C = - L - Q (2-6) 

is the average cost of all training data, where Cf{W) is the cost of the single 
training examples, and Q is the number of examples preceded before the 
policy update. Cf{W) is obtained by comparing the activation numbers 
a ( r ) of the network's last layer with the activation numbers of the desired 
outcome d as 

Cf(W) = (a| r ) - di)2 + (<4r) - d2f +... + {a{p - dj)2. (2.7) 

Suppose the Cf{W) is close to 0. That means A N N classified the current 
example correctly. On the other hand, if the Cf{W) is large, the network 
guessed poorly. 

However, a mere cost function is insufficient for the A N N to make ap­
propriate changes to W to maximize the decision success rate. There is a 
need for a specific guide on how to adjust them. The solution is to make a 
gradient descent [114] of the cost function -VC(VK). Gradient descent pro­
vides the A N N method for adjusting W to follow the steepest descent of the 
C(W). This method should ideally lead to reaching the local minima of the 
C{W), but the result can vary according to the randomly chosen initial pa­
rameter of W (i.e., it is not guaranteed that obtained min imum is global). 
Each element of the gradient descent function gives us an idea of how cru­
cial role the corresponding element of W plays i n ANNs' decision making 
(i.e., how noticeable wil l be the impact of its change on the cost function). 

- 14-
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Cost of the single t ra ining example 

Figure 2.2: Illustration of the learning process of artificial neural network. 
Here one can see how the training data set is divided into batches of the 
size Q and fed to A N N . After processing each batch, the A N N waits are up­
dated according to the gradient descent of the cost function. In the ideal 
case, the gradient descent should guide A N N from the current state (visu­
alized by the red dot) to the global minima of the cost function. 
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Figure 2.3: Illustration of the stochastic gradient descent. The red line rep­
resents rapid descent i n semi optimal gradient descent direction. The blue 
line represents well-calculated steps i n the optimal downhill direction. 

( L - l ) 

Figure 2.4: Depiction of the chain rule of the last two layers of the A N N . 
It illustrates how the change i n the dCf (blue dot) cause deviation of da^] 

(purple dot), dz^ (green dot) and, finally, dwm,n (red dot). 

- 16-



Chapter 2. Methods and tools 2.2. Proximal policy optimization 

As mentioned before, the A N N should, in principle, update W after 
processing all samples from the training data set (i.e., after every epoch). 
In reality, at the beginning of every epoch, the training data set is randomly 
shuffled and divided into smaller groups "batches", and the policy is up­
dated after processing each batch to make the process feasible to calculate. 
It is more efficient to do fast and less considered steps downhill, "stochas­
tic gradient descent" [115], than spend an extended time i n one place and 
then make optimal step (see Fig. 2.3). 

Backpropagation is the method describing how the parameters of the 
A N N are updated [116]. It gives information on the dependence of the cost 
function on infinitesimal changes i n weights, activations, and biases 

where = Wm^a^'^ + b^. Following the chain rule depicted i n Fig. 2.4, 
one can monitor the effect of the changes to parameters of the cost func­
tion throughout the network. Generalizing the chain rule allows us to back­
track the impact of the change from the last layer to the initial layer. 

2.2 Proximal policy optimization 

Before we dive into proximal policy optimization, let us briefly introduce 
reinforcement learning i n general. We usually talk about reinforcement 
learning when the core of the machine learning algorithm is based on the 
interaction between the agent "player", and the environment "game" [71]. 
This interaction mediates the learning process. The environment is usu­
ally described as a collection of states. Given the initial state, the agent will 
take action, and the environment wil l respond by changing the state and 
rewarding the agent. The agent does not have direct information about the 
environment. His knowledge and experience are obtained through moni­
toring changes i n reward based on the action taken. Reinforcement learn­
ing is, therefore, ideal for solving problems, which are often very complex 
with unknown optimal solutions [117]. 

dz™ da™ dCf 
dwm}n dzf da>n' 

(2.8) 

(2.10) 

(2.9) 
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Proximal policy optimization [ 102] is a type of deep reinforcement learn­
ing algorithm developed as a successor to Deep mind [118]. Unlike Deep 
mind, PPO uses online learning, which means that PPO does not use a re­
play buffer to store past experiences. Once the batch of experiences has 
been used to do gradient updates of the policy, these experiences are dis­
carded. PPO also simplified the implementation of the trust region, which 
significantly improved the efficiency of the reinforcement learning method. 
The primary motivation behind the trust region is to limit rapid changes 
in the policy, thus allowing the agent to train more efficiently. Unlike the 
original trust region policy optimization TRPO [119], which introduces a 
rather complex clip function, PPO simplified the implementation of this 
function, making it much more practical. 

Let us define the PPO policy as 

Lp
t
P0(9) = Et [/CLIP { 9 ) _ C I L V F M + C 2 S [ 7 1 Q ] (S f )j ( ( 2 J 1 ) 

where Lyup represents the clipped version of the normal gradient objec­
tive, Lv

t
F is squared-error loss responsible for updates of the baseline net­

work, S stand for entropy bonus term, which ensures that the agent does 
enough exploration during training, and st represents the current state. 
Hyperparameters c\ and C2 set the contribution of LjF and S to the final 
policy. The clipped version of the normal gradient objective 

L^UF (6) = Et [min (rt (6) At; clip (rt (0), 1 - e, 1 + e)) At], (2.12) 

represents the core of the whole algorithm. The expectation operator Et is 
taken over the min imum of the two terms rt and clip (rt, 1 - e, 1 + e) where 
e ranges from {0,1}. rt defines the objective for normal policy gradients, 
which pushes policy toward actions that yield a higher positive advantage 
over the baseline. Estimation of the advantage function At can be posi­
tive or negative, which dictates the effect of the "min" operator [102]. The 
probability ratio rt determines the relation between newly updated pol­
icy outputs and the previous old version of the network. If the rt > 1, the 
action becomes more likely than it was i n the old policy version. On the 
other hand, if rt < 1, the action becomes less likely than it was before the 
last gradient step. Policy ne is represented by a neural network fed by ob­
served states of the environment as input and gives suggestions of action 
as output. Estimation of the advantage function 

At = Dt-Bt, (2.13) 
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has two contributors, discounted sum 

oo 

Dt=Zrkrt+k, (2.14) 

and baseline estimation Bt. A discounted sum of rewards Dt is a weighted 
sum of all rewards rt+k the agent receives during each time step k of the 
current episode. Parameter j ranges from 0 to 1 and sets how much the 
agent values immediate reward rt over future rewards. Baseline estima­
tion Bt gives an estimate of the At, trying to predict the final return of the 
episode from the current state. Since Bt is also implemented as a neural 
network, the result is a noisy value function estimation. 

2.3 Gym library 

Now, with the working principle of the PPO established, we only need to es­
tablish a method capable of defining the task i n the way PPO can process. 
One of the most prominent API application programming interface for this 
task is the openAI "gym" library [120]. This library allows us to define tasks 
in the form of games. Before diving into detail, let us establish our illus­
trative game, "Find the cheese". In this game, the player "mouse" needs to 
find a safe path to cheese while avoiding threats such as cats, poisons, and 
traps (see Fig. 2.5). Let us follow the description of the gym environment 
with this illustrative game i n mind. 

There are three essential parts required for every gym environment. 
The first is the initialization process which defines the environment of the 
game. It also establishes the observation space used to evaluate a player's 
progress. In the case of our "Find the cheese," the initialization would de­
fine the layout of the labyrinth, including information about the location 
of all threats (poisons, cats, and traps), the initial position of the player 
(mouse), and the location of the final objective (cheese). In this case, the 
observation space could be the mouse's current position i n the labyrinth 
and the steps taken during one game. 

The second requirement is to define the reset function. Reset is utilized 
every time the player finishes the game. This function is straightforward to 
describe because it simply resets an environment and observation space 
to the default position. 

The final mandatory part of the gym environment is defining the step. 
Each step describes the consequences of the player's actions i n the game's 
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Figure 2.5: Graphical representation of the "Find the cheese" game. This 
illustrative case is a visualization of the game designed i n the gym envi­
ronment. Here a mouse has limited health points and stamina to reach 
the cheese using only four actions (up, down, right, left). 

current state. The step also defines a reward structure, which provides 
feedback for the player during learning. There are two types of rewards, 
each with its unique role. First is the preliminary reward Rp, which is awar­
ded after each step and serves as a direct evaluation of the taken action. 
The second is the final reward R given only after the end of the game. R 
describes the overall performance of the player during a game. In the case 
of "find the cheese", the step would describe the movement of the mouse 
throughout the labyrinth based on the action (go: left, right, up, and down) 
taken. The preliminary reward structure can award the mouse for choos­
ing a direction leading to a safe room and punish it for choosing directions 
leading to danger. 

We can establish the mouse's health points (100 Hp) and stamina (20 St) 
as parameters, which serve as additional conditions for ending the game. 
Each step wil l exhaust the mouse (-1 St), restricting the number of steps 
it can take to reach the cheese. Simultaneously every visited dangerous 
room wil l reduce mouse health points accordingly to room lethality by -30 
Hp, -60 Hp, and -90 H p for cat, trap, and poison, respectively. The game 
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now has three conditions to track. The mouse wil l get the final reward if 
any of them is fulfilled. The first condition is H p < 0 mouse sadly died, so it 
gets R = -100. Second condition St = 0 mouse survived but remains hungry 
R = 0. The third and final condition is fulfilled if the mouse reaches the 
cheese. In that case, the mouse is alive and well-fed R = 100. Alternatively, 
we can also consider the remaining H p and St of the mouse after reaching 
the cheese. In that case, R = 100+(Hp+St). With all the essential parts of the 
game defined, one can choose from a plethora of reinforcement learning 
algorithms, such as PPO, to play the game and find the optimal solution. 

2.4 Quantum states 101 
Quantum states are mathematical objects that describe a given particle's 
physical properties. Let us consider two (pure) quantum states \if/i) and 
\if/2) expressed i n Dirac notation [121]. Assuming that some object can ex­
ist i n either of these states, one can create a weighted linear combination 
of them and thus define a new valid (pure) quantum state 

\y/) = a\y/1) + p\y/2). (2.15) 

Here a, (5 are complex probability amplitudes that must satisfy the normal­
ization condition 

|a|2 + |pf = l . (2.16) 

Such a linear combination of quantum states is referred to as superposi­
tion [122]. So far, have considered considered only pure quantum states. 
In reality, however, most states are probabilistic mixtures of multiple quan­
tum states. One needs to establish a density matrix representation to de­
scribe these so-called mixed states. The density matrix p [123] defines a 
general quantum state as 

P = ZPi\yi)(yi\, (2.17) 
i 

where 
£ > = 7>(p) = l . (2.18) 

Here pt corresponds to the contribution of the respective state |î ,-> towards 
general state p. Considering a case where only one pt > 0, we obtain a de­
scription of the pure states. 
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Now let us consider an arbitrary pure quantum state 

\VAB) = Y,rij\Vi)A®\Vj)B, (2.19) 

where symbol <s> depicts a tensor product, \ fi)A, tyj) B represents pure quan­
tum states, and y, ;- stands for collective complex probability amplitudes. 
State \IJ/AB) is separable if there exist complex probability amplitudes a; 
and Pj so that jij = oaPj, yielding \y)A = Zi ai\y/i)A and \y/)B = LjPJWJ)B-

State \I//AB) is considered inseparable if jtj # atPj. In that case state \X//AB) 

is refereed to as entangled state [124]. 

2.5 Entanglement witnesses 

We have already mentioned i n the introduction that entanglement is one 
of the most intriguing properties of quantum states with immense appli­
cation potential. However, to efficiently use this valuable resource [ 125], it 
is crucial to identify which states are entangled. Full state tomography and 
density matrix estimation represent the most robust solution to the out­
lined task [126]. Unfortunately, its complexity grows exponentially with 
the dimension of the investigated states [127,128]. Therefore, it rapidly be­
comes experimentally unfeasible. This observation motivated the search 
for a suitable replacement for full-state tomography by some alternative 
method, "entanglement witness," that would reduce the amount of infor­
mation needed for reliable state classification. In principle, we can visual­
ize the ideal entanglement witness as an oracle that would give us binary 
answers on whether the presented state is entangled. In reality, entangle­
ment witnesses usually try to fulfill some conditions given by function or 
inequality to test the properties of the investigated state [97]. The most fa­
mous examples of entanglement witnesses is the Bell inequalities [6]. Bell 
inequalities 

were established i n 1964 by John Stewart Bell. Here, Q, denotes correla­
tions predicted by the local hidden variable theory, and a, b, and c rep­
resent three arbitrary measurement settings. Quantum physics predicted 
the violation of Bell inequality i n case the investigated state is entangled. 
The Bell inequality was, unfortunately, problematic to prove experimen­
tally. Therefore, Bell inequality was modified i n 1969 by Clauser, Home, 

Ch(a,c) - Ch(b, a) - Ch(b,c) < 1, (2.20) 
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Shimony, and Holt to make experiments feasible. This so-called C H S H in­
equality [93] 

S=\E(a,b)-E(a,b') + E(a',b) + E(a',b')\<2, (2.21) 

became the first experimentally viable entanglement witness. Here a, a', b, 
and b' represent measurement settings, and E defines the measured ex­
pectation value for simultaneous measurements i n the above-listed set­
tings. 

Another example of a well established entanglement witnesses is the 
so-called PPT criterion. This entanglement witness was derived i n 1996 by 
the Asher Peres and Horodecki family [129,130]. PPT criterion evaluates 
the smallest eigenvalue At of the partially transposed density matrix pPT. 
If 

min(Aj) < 0, (2.22) 

PPT ensures the state is entangled. However, i n some cases, a state can 
still be entangled even if the smallest eigenvalue is positive (e.i. i n terms of 
Eq. (2.22) PPT criterion serves as a mere sufficient condition of the entan­
glement). If we restrict the class of the investigated states to 2 x 2 and 2 x 3 
dimensional systems, PPT acts as a necessary and sufficient condition of 
the entanglement (e.i. if the minimum eigenvalue is negative, the state is 
entangled, otherwise is separable). 

In general, entanglement witnesses can be either linear or nonlinear. 
Linearity is achieved when the witness is expressed as a linear function of 
the density matrix, or the mathematical expression of the witness does not 
include any nonlinear terms of expectation values. Such a witnesses & can 
be expressed as 

& = Ti[pW], (2.23) 

where p is the density matrix, and W represents the witness operator. How­
ever, it is generally more efficient to use nonlinear entanglement witnesses 
because these witnesses can detect a larger group of entangled states due 
to their nonlinear contributions. The first approach toward deriving a non­
linear witness 

&{p) = Tr [pW]+X{p), (2.24) 

is based on adding nonlinear functions x(p) of expectation values to exist­
ing linear witnesses. It was proven that every bipartite linear entanglement 
witness could be improved by such a nonlinear contribution [131]. Alter­
natively, the witness's nonlinearity can be achieved when the witness 

= jrJTr[p f c i Wj]}, (2.25) 
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is a nonlinear function of the density matrix where k{ is an integer. These 
witnesses rely on joint measurements on multiple copies of an investi­
gated state, therefore "collective" entanglement witnesses [92,132]. The 
collective witnesses wil l be further discussed i n Chapter 3 and Chapter 4. 

2.6 Quantum teleportation 

Quantum teleportation is a protocol capable of transferring an unknown 
quantum state from sender to receiver without actually sending the physi­
cal object i n which it is encoded through the quantum channel [133]. Imag­
ine a scenario when Alice and Bob meet and decide to share the entan­
gled state |€>+> = (10)̂ 10)8 + 11)̂ 11)8) where |0> and |1> represent an or­
thogonal set of states refereed to as computational basis and subscripts A 
and B mark Alice's and Bob's particle respectively. After some time, Alice 
is contacted by Charlie, who shares with her an urgent quantum message 
\if/) = a 10)c+j611)c for Bob, where subscript C is used to distinguish Charlie's 
message. Unfortunately, Alice no longer shares a quantum channel with 
Bob. Therefore, she cannot directly forward the message. Alice, however, 
still possesses particle A from the initial shared entangled state |<£>+>. Alice 
can therefore perform a Bell measurement [134] between particle A and 
Charlie's message represented by C. This causes state \x¥+) to collapse and 
destroys message \y/) shared with Alice (e.i. the message isnot cloned). The 
result of Alice's measurement wil l be one of the following four Bell states. 

10^ = ^(100)+ 111)), (2.26) 

1^) = - ^ (101) ±|10». (2.27) 

After the measurement is done, Alice wil l contact Bob via the classical 
channel and inform him which Bell state she obtained. This information 
will hint Bob what correction he needs to make to his particle B (|VF+) — bit 
flip, |<I>") — phase flip, — phase and bit flips and |<I>+) — no correction). 
If Bob performs the proper corrections, his particle B wil l transform into 
Charles's message \yr) (see Fig. 2.6). 

If we return to the previously discussed scenario, imagine that Charlie 
wants to establish a shared entangled state with Bob but does not have a 
direct quantum connection with him. However, this time, he possesses a 
shared entangled pair with Alice. We also assume that Alice and Bob, once 
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V 

Figure 2.6: Scheme of quantum teleportation. I) Alice and Bob share an en­
tangled pair. II) Charlie sends a quantum message to Alice. Ill) Alice per­
forms Bell measurement. IV) Alice shares the classical result of the mea­
surement with Bob. V) Bob applies correction to his particle B, transform­
ing it into Charlie's message. 

again, share an entangled state. Alice can again perform Bell measurement 
on her two particles, one belonging to the pair shared with Bob and the 
second to the pair shared with Charlie. Then Alice wil l finish this protocol 
by contacting Bob via a classical channel and telling h im the result of the 
Bell measurement. Similarly, as described above, Bob wi l l apply correction 
to his particle. Charlie and Bob wil l end up sharing an entangled state. 
We refer to this type of quantum teleportation as entanglement swapping 
[135]. 





Chapter 3 

Accuracy of entanglement 
detection via artificial neural 
networks and human-designed 
entanglement witnesses 

Text adopted from JanRoik, KarolBartkiewicz, Antonín Černoch, and Karel 
Lemr, Physical Review Applied, vol. 15, no. 5, p. 054006, 2021 [A-l]. 

3.1 Introduction 
Quantum entanglement is an intriguing phenomenon described almost a 
century ago by Schrodinger, Einstein, Podolsky, and Rosen [5,136]. Since 
then many theoretical and practical papers alike, as well as vivid discus­
sions, were dedicated to this topic [137-139]. The ability to effectively de­
tect entangled state became essential mainly because of their application 
potential i n quantum computing [140], quantum cryptography [58], and 
quantum teleportation experiments [141]. The most robust way of detect­
ing it is via a full state tomography and density matrix estimation [126]. 
This method allows us to obtain all information about the state and thus 
correctly detect entanglement. Unfortunately this method is experimen­
tally demanding because the number of required projections grows ex­
ponentially with the dimension of Hilbert space. There is also a variety 
of other methods that do not rely on full-state tomography [93,132,142-
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160]. These methods include a wide range of linear entanglement wit­
nesses [142-147] of the C H S H - ClauserHorne Shimony Holt type [93]. Whi ­
le for pure states, these methods give similar results, their outcomes might 
vary significantly when mixed states are considered. While requiring only 
a relatively few measurement configurations, these witnesses can not reli­
ably function without some a prior information about the detected state. 
To circumvent this limitation, while not resorting to state tomography, non­
linear entanglement witnesses have been proposed. 

In 2011, Rudnicki et al. introduced a nonlinear entanglement witness 
called Collectibility [132,155]. For a visual demonstration of this concept 
[see Fig. 3.1 a)]. For 2-qubit states, this witness requires two simultane­
ously prepared copies of the investigated state. Then a Bell state proj ection 
is imposed on a pair of corresponding qubits from each copy and the re­
maining qubits are subjected to local measurements. For a general 2-qubit 
state, this requires a combination of 5 local projections and, thus, fewer 
measurement configuration than full quantum state tomography which 
includes at least 24 projections. One can further decrease the time needed 
for a QST if measurements can be performed i n parallel on multiple copies 
of the investigated state. When dealing with unknown quantum states, 
collectibility can detect a much broader range of states compared to linear 
witnesses. Namely, it detects all pure entangled states. Unfortunately, it 
detects entanglement of only a fraction of mixed states. This shortcoming 
is characterized by a rather big Type-II error (false negative), as we show 
later. On the other hand, all states which are classified as entangled by 
this method are classified correctly (Type-I error is null , there are no false-
positive classifications). We demonstrate that significant improvement can 
be reached when collective entanglement witnesses are devised using an 
artificial neural network. As demonstrated by Gao et al. [96] and other 
groups [161,162], neural networks can be used to identify quantum states. 
However, only linear entanglement witnesses were considered which sig­
nificantly limited the class of detected entangled states. Note that neural 
network-based linear witnesses share the same shortcomings with their 
analytical counterparts, which is the need for a prior information about 
the investigated state. 

We train a neural network to classify quantum states by providing it 
with results of collective measurements and demonstrate its significantly 
better performance over collectibility and other similar non-linear witne­
sses for a general 2-qubit state as well as for real experimental data for 
a fixed number of measurement configurations. Moreover, we show the 
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Figure 3.1: a) Scheme of a collective measurement: two instances of the 
investigated states p are subject to simultaneous measurement. While one 
qubit of each instance undergoes local projections, the other two qubits 
are nonlocally projected onto a Bell state. These coincidence detections 
can be fed to an artificial neural network that can serve as an entanglement 
witness or even entanglement quantifier (measure) for investigated state 
p. b) Schematic depiction of the confusion matrix used for performance 
evaluation of the A N N . TE - truly entangled, FE - falsely entangled, TS -
truly separable, FS - falsely separable, Sep. - separable, Ent. - entangled. 
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increasing capability of the neural network when provided with a larger 
amount of measurement configuration outcomes by comparing it against 
three other analytical methods that require 12 projections, namely FEF 
- fully entangled fraction [94,163,164], C H S H [93], and entropic witness 
[95,165]. These projections are listed i n Appendix A.1 Tab. A.2. We use con­
fusion matrix as a method of performance evaluation for the A N N and pre­
viously known non -linear witnesses [see Fig. 3.1 b)]. Diagonal elements 
show the number of correctly labeled input states TE - truly entangled and 
TS - truly separable furthermore off-diagonal elements provide informa­
tion about falsely labeled input states FE - falsely entangled and FS - falsely 
separable. 

3.2 Collective measurements 

Although our idea can be generalized, we focus our investigation on the 
entanglement of two-qubit states p. In order to perform collective mea­
surements on these states, one needs to start with the preparation of two 
instances of p resulting i n an overall density matrix of the entire system 
f>4 = p®SWAP p SWAP1^ where the SWAP operator interchanges the order of 
subsystems (see [Eq. A.4] i n Appendix A.1). One qubit from each instance 
is projected locally, while the remaining qubits undertake a nonlocal Bell-
state projection. For the visualization of this procedure, see Fig. 3.1a). For 
a given pair of local projections, the result of collective measurement is 
the probability of a successful singlet Bell-state projection imposed on the 
nonlocally projected qubits 

= Tr[(p4)(n*®nBeii®ny)] 
x y Tr[ (p 4 ) (n ,®f 4 >®n y ) ] • 

In this equation flx and fty are local projections onto single-qubit states 
|jc> and |y>, n B e i i denotes projection onto the singlet Bell state and 1 ( 4 ) rep­
resents four-dimensional identity matrix [155]. One collective measure­
ment configuration corresponds to the choice of one flx and one fty. Ob­
tained set of B probabilities 1 Px

l)
y ; i = l,...,B is subsequently fed to a neu­

ral network for training together with labels obtained by the PPT- Peres-
Horodecki criterion [129,130]. 

1 In the original paper referred to as N here relabeled to avoid confusion with Negativity. 
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3.3 Artificial neural network 

TensorFlow 2.0 [166] was used to program a neural network capable of 
classifying quantum states. We experimented with the complexity of the 
network and our final layout of the network with 5 hidden layers contain­
ing 36, 180,75,180, and 75 nodes respectively seems to be the optimal choice 
to find a balance between obtained precision and computation time. The 
proposed network is capable of assigning any quantum state with a value 
w £ [0; 1] which can be interpreted as a confidence factor from 0 (certainly 
entangled) to 1 (certainly separable). We defined decision threshold e to 
convert the w values to a binary label: w < e => entangled, w > e => separa­
ble. By changing e value we make the network biased towards the desired 
decision which allowed us to tune the trade-off between Type-I and Type-
II errors. The network was trained on 4 x 106 samples and tested on the 
other 4 x i o 5 samples with distribution containing 67.74% entangled states 
and 32.26% separable states. For more details about the purity distribu­
tion of the samples see Fig. A.1 i n Appendix A. 1. The main goal was to test 
the network against collectibility, therefore, we start to train it using the 
same B = 5 projection settings (see Appendix A.2 for a brief overview on 
collectibility). In the next step, we also tested capability of the network for 
B = 3,6,12,15 projection settings (see Appendix A.3 for more details). 

3.4 Results 

In the first step, we decided to test the neural network with decision thresh­
old e = 0.5 for a several amounts of projection settings B = 3,5,6,12,15. As it 
turns out the neural network was capable of labeling entangled and sep­
arable states even using 3 projection settings with an overall success rate 
of around 83.33%. For an increasing number of projection settings success 
rate increased even further and reached 96.55% for 15 projections settings. 
We plot the probability of incorrect decision as a function of the smallest 
eigenvalue of the partially transposed density matrix p (see Fig. 3.2). 

As expected, the neural network struggles with the states close to the 
PPT decision boundary (minimal eigenvalue close to zero). Unfortunately, 
the neural network is, to some extend, prone to Type-I errors (separable 
state classified as entangled). As it turns out the network is more likely to 
make a mistake when classifying separable states than entangled states. 
Our solution is to change the decision threshold e to decrease the Type-I 
error. This means that we demand more certainty from the network when 
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Figure 3.2: The result obtained by the neural network with decision thresh­
old e = 0.5 for B = 3,5,6,12,15 and distribution containing 67.74% entangled 
states and 32.26% separable states. In this graph probability of false pre­
diction is plotted against the minimal eigenvalue of a partially transposed 
matrix. 

classifying the entangled state. By optimizing thresholds we manage to 
find the value which satisfies a condition of Type-I error < 1% which we find 
acceptable. It is possible to arbitrarily decrease the Type-I error by sacri­
ficing the detection capability characterized by Type-II error. For more de­
tailed dependence of Type-I and Type-II error on threshold for B = 3,5,6, 
12,15 see Fig. 3.3, Tab. A.1, and Fig. A.3. In the next step we compared the 
network performance against collectibility. The neural network fed by out­
comes of the same 5 projection settings also required by the collectibility 
was able to correctly classify 78.14% of all states while committing Type-I 
error of 0.96% (e = 0.9). This performance vastly surpassed the capability 
of the Collectibility which identifies only 36.59% of the states correctly (see 
Tab. 3.1). To further highlight the potential of A N N we compared its perfor­
mance with analytical methods (FEF, C H S H , and EW) (see Tab. 3.1). The 
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A N N 
B 3 5 6 12 15 

Type-I error (%) 0.93 0.96 1.18 0.24 0.22 
Type-II error (%) 33.47 20.91 15.88 7.74 5.24 
Success rate (%) 65.50 78.14 82.94 92.01 94.54 

Collectibility FEF EW C H S H 
B 5 12 12 12 

Type-I error (%) 0 0 0 0 
Type-II error (%) 63.41 14.00 42.00 54.00 
Success rate (%) 36.59 86.00 58.00 46.00 

Table 3.1: Comparison of the results obtained by A N N for B = 3,5,6,12,15 
with prominent analytical methods (collectibility, FEF - fully entangled 
fraction, EW - entropic witness, C H S H nonlocality). Both Type-I and Type-
II errors are taken for decision threshold e = 0.9 to ensure Type-I error < 1%. 

success rate of the A N N surpass capabilities of FEF by 6.01%, EW by 34.01%, 
and C H S H by 46.01% while committing Type-I error 0.24%. This means that 
if we can accept some Type-I error, it is possible to achieve a major im­
provement i n entangled states detection using the neural network. Note 
that the purpose of this research was not to use A N N simply to fit existing 
entanglement witnesses, but rather to devise completely new ones that we 
later compare with these already known analytical formulas. 

We have investigated the possibility to derive approximate analytical 
formulas from the parameters of trained ANNs. This is a rather complex 
task and we were only able to find a reasonable formula for B = 3,5 mea­
surement configurations. Using logistic regression, a witness i n the form 
of 

WB = [l + e-ZB}-\ (3.2) 

where zB = wB- PB and p = (l,PHH,Pvv,PHV,PDD,PAA) for iv3 = (-2.3348, 
19.3139,21.5486, -11.4228, 0, 0) and it>5 = (0.0009, 7.7967, 9.6227, -25.8294, 
21.9 635,22.0167) can be obtained. The states for which WB < 0.05 are clas­
sified as entangled (separable otherwise). This decision boundary implies 
Type-I error of circa 0.9% and Type-II errors of 57.5% and 44.8% corre­
sponding to B = 3,5 respectively. Type-I errors can be made arbitrary small 
by lowering the threshold value of WB for classifying a given state as entan­
gled. 
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Figure 3.3: Performance dependence of the A N N on decision threshold e = 
0.5, 0.95 with distribution containing 67.74% entangled states and 32.26% 
separable states depicted as confusion matrices for: a) B = 5 ; b) B = 15. 
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3.5 Experimental implementation 
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Figure 3.4: Results obtained by neural network and collectibility respec­
tively from a real experimental data set B = 5. Black full dots show the 
probability of a Werner state being labeled as entangled by the A N N . The 
light-gray area covers the values of p which neither the neural network nor 
collectibility can classify correctly. The dark-gray area represents the range 
of p values for which the A N N classifies the Werner states correctly and col­
lectibility fails. The dashed lines represent the decision thresholds e = 0.9 
and 0.5 respectively. 

To verify the network capability we decided to further test it on a set 
of real experimental data. For this purpose, we used the data set from the 
first-ever Collectibility measurement from 2016 [167]. In that particular 
experiment, a class of Werner states of the form of pw = p\y/~){yr~\ + (1 -
p)H/4, was investigated. |i/0 represents singlet Bell state, and 1/4 stands 
for the maximally mixed state. We set the detection threshold to e = 0.9 like 
in the previous comparisons of the neural network with collectibility, to 
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be consistent and make test conditions as fair as possible. Results show 
that collectibility can classify states with p > 0.89 as entangled witch cor­
responds with its theoretical prediction. The neural network, on the other 
hand, detects entangled states when p > 0.44 (see Fig. 3.4). Note that it is 
known that Werner states are entangled for p > |. 

3.6 Conclusions 

We trained a neural network to classify general qubit states based on non­
linear collective witnesses. Our main goal was to compare the capability 
of this network against a prominent analytical representation of nonlin­
ear witnesses: the collectibility. The network can classify the general two-
qubit states significantly more efficiently than collectibility with Type-I er­
ror < 1%. The A N N also surpasses FEF, C H S H , and entropic witness when 
taught on 12 projections (the same amount needed by the mentioned an­
alytical witnesses). Increasing the number of projection settings improves 
the ANN's decision even more. We further support this claim by using the 
network on a real experimental data set. The network confirmed its poten­
tial by correctly labeling a broad range of states where collectibility fails. 
Moreover, it achieved a Type-I error = 0 on Werner states. Our research 
promotes the idea of using artificial intelligence towards a better under­
standing of the intriguing physical phenomena such as the entanglement. 
We have demonstrated that the neural network can quickly train to be­
come a valid efficient collective entanglement witness. We have directly 
compared its performance with analytical formulas. Using nonlinear mea­
surements (on two copies of the state), our network operates completely 
free of any a priory information that can bias comparison of its perfor­
mance with analytical counterparts. Moreover, we have shown that the 
training performed on numerically generated states works very well on 
real experimental data corresponding to states completely unknown to the 
A N N . 

Because of technical limitations on the possible complexity of our A N N 
and on the number of samples processed i n A N N training, reaching the 
limit of zero Type-I error was not possible. However, we were able to tune 
this error to a fraction of a percent by choosing a proper value of e. By ex­
trapolating our results for the whole available range of e, we conclude that 
the limit of vanishing Type-I error is reached by the A N N for e = 0.9822 and 
e = 0.9994 for 5 and 12 measurements, respectively. The Type-II errors for 
these values of e are 31.26% (5 measurements, about 32% better then col-
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lectibility) and 11.40% (12 measurements, 2.6% better than FEF). Thus, we 
have demonstrated that the best known analytical methods for certifying 
entanglement with a few measurements can be further improved. Notably, 
the 2.6% smaller Type-I error of A N N with respect to FEF, means that A N N 
fails relatively on about 20% less states than FEF using the same input. 
This demonstrates that there is still a place for improvement i n the the­
ory of experimentally-friendly entanglement detection. The extrapolation 
of functional the dependence of Type-I and II errors on e was performed 
by fitting a quadratic and an exponential curve, respectively. We believe 
that the high quality of both fits and the proximity of the lowest Type-I er­
ror data point to 0 justify our conclusions. We hope that our results will 
stimulate further research i n experimentally-friendly methods of classify­
ing quantum states. 

Further to that, the theoretical assumption of zero Type-I error of an­
alytical witnesses does not hold operationally because of unavoidable ex­
perimental imperfections and finite precision of all measurements. As a 
result, separable states close to the decision boundary may be misclas-
sified even using theoretically infallible witnesses. In this study, we have 
allowed the A N N a Type-I error of about 1% which we believe is still an 
admissible error that can be tolerated i n practical implementations bur­
dened by the above-mentioned experimental imperfections. Note that in 
case of 12 measurement configurations, the A N N misclassifies only 1 in 
about 400 separable states while simultaneously missclassifying about two 
times less entangled states then its best performing analytical counterpart, 
the FEF. 
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Chapter 4 

Entanglement quantification 
from collective measurements 
processed by machine learning 

Text adopted from JanRoik, KarolBartkiewicz, Antonín Černoch, and Karel 
Lemr, Physics Letters A, vol. 446, p. 128270,2022 [A-2]. 

4.1 Introduction 

Quantum entanglement shows immense potential as a resource i n vari­
ous research fields, such as quantum computing [140,168,169], quantum 
cryptography [58] and quantum teleportation experiments [141]. Even tho­
ugh entanglement has been studied for about a century now [5,136], find­
ing a method for its experimentally feasible quantification for general quan­
tum states is still an open and complex problem [170-173]. 

The most robust procedure so far seems to be the full quantum state to­
mography [98,174], subsequent reconstruction of the densitymatrix [175], 
and calculation of entanglement measures. These measures include neg­
ativity [99], concurrence, [163, 176] or relative entropy of entanglement 
[95,177]. For a review, see Ref. [97]. The problem of full state tomography 
lies i n the unfavorable scaling of the number of measurement configura­
tions as a function of the Hilbert space dimension. Even for a two-qubit 
system, one needs to apply at least 15 measurement settings while also 
inevitably obtaining some information on the investigated system that is 
irrelevant to entanglement quantification. In order to lower the number 
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of measurement configurations, entanglement witnesses have been pro­
posed [93,132,142-160]. However, these instruments are designed to mere­
ly detect entanglement and can be used as measures only i n limited cases 
such as quasi-pure states. The concept of nonlinear entanglement wit­
nesses has been introduced [ 131] as a countermeasure to alleviate the prob­
lem of state dependency of entanglement detection. A noteworthy class 
of nonlinear witnesses is the class of so-called collective witnesses based 
on simultaneous measurement on multiple instances of the investigated 
state [132, 155]. Entanglement measures can be estimated from collec­
tive measures as well. Analysis reveals that 4 copies of a two-qubit system 
need to be investigated simultaneously which can prove experimentally 
too demanding [178]. We limit ourselves to having simultaneously only 
two copies of the investigated state to overcome this challenge. In this con­
figuration, the relation between the outcomes of a collective measurement 
and an entanglement measure, say the negativity, is far from trivial. 

Machine learning has penetrated many areas of science, helping with 
finding complex models based on large data sets [179]. Artificial neural 
networks (ANNs) are particularly well suited for recovering of nonlinear 
dependencies as they are effective universal function approximators [ 180]. 
Not surprisingly thus, A N N s and artificial intelligence, i n general, has been 
used to investigate properties of quantum states, such as entanglement 
detection [96,161,162], quantification of various properties of quantum 
states [181-185], or compressed sensing [186,187]. In this chapter, we use 
the predictive power of A N N s to estimate quantum state negativity based 
on the outcomes of collective measurement. 

4.2 Collective measurements and data generation 

We focus our investigation on quantifying the entanglement of two-qubit 
states p. The generation of the investigated states and collective measure­
ments were handled similarly, as described i n the previous chapter. This 
investigation aims at efficient entanglement quantification in two-qubit 
states using as few projections as possible. To achieve this goal, we take 
inspiration from the concept introduced by Řeháček etal. called minimal 
qubit tomography [98]. The authors established that the minimal set of 
tomographic projections per one qubit consists of four projections corre­
sponding to states forming a tetrahedral inscribed into a Bloch sphere (see 
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140 

«3) 

\V) 

Figure 4.1: Min imal set of tomographic projections visualized on 
the Poincare sphere by \ap vertices, where \a\) = -^=(1,1,1), \a2) = 
-^(1,-1,-1), \a3) = -^(-1,1,-1), \aA) = -^(-1,-1,1). Black arrows represent 
\H)- horizontal, | V>- vertical, \D)- diagonal, \A)- antidiagonal, \R)- circular 
right-hand, |L>- circular left-hand basis states. 

Fig. 4.1). One possible set of these projections 

is conveniently expressed i n terms of Pauli matrices ao,x,y,z [188]. 
Full two-qubit state tomography still requires at least 15 measurements 

for this optimal basis, assuming one knows constant state generation rate. 
A density matrix p can be estimated from the tomography, and the entan­
glement quantifier negativity is calculated as 

where min(A ;) is the smallest eigenvalues of partially transposed density 
matrix pPT [99]. 

- a0 + — [ax + ay + az) , 

(4.1) 

NA = 2\mm(Äi)\, (4.2) 
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For the collective measurement approach to be beneficial, it needs to 
require at most 7 measurement configurations which is less than one-half 
of the projections needed for a full state tomography (if we are using two 
instances simultaneously). Because of the symmetry of p 4 , the collective 
measurement is independent of the swap of local projections, i.e. Pxy = 
Pyx. Using this fact and considering the minimal basis set fti,..,4, the maxi­
mal independent number of collective measurement configurations is B = 
10 (see Tab. 4.1). To estimate negativity from a number of configurations 
B < 10, only a subset of the probabilities Pxy is selected as indicated in 
Tab. 4.1. Finding an approximated analytical formulae for quantum states 
negativity based on a specific number of collective measurement configu­
rations B is a tedious and considerably difficult task. To solve this problem, 
we turn to the predictive power of artificial neural networks. To this end, 
uniformly random two-qubit states p are generated (for generation proce­
dure, see Appendix A.1), and the respective probabilities Pxy (3.1), as well 
the analytical value of negativity NA (4.2), are calculated using the method 
described above. 

4.3 Artificial neural networks 

We have programmed the artificial neural networks capable of quantify­
ing the degree of entanglement i n terms of negativity for general two-qubit 
states utilizing the technique of supervised learning. The input dataset is 
a collection of feature vectors of length B filled with a subset of collective 
measurement outcomes Pxy according to Tab. 4.1. Each vector thus repre­
sents B collective measurements carried out on two simultaneous copies 
of one randomly generated two-qubit quantum state. The output layer 
(dataset) consists simply of the single value of negativity corresponding 
to each input vector. The analytical value of negativity NA is calculated for 
all randomly generated quantum states from their density matrices (4.2). 

The A N N was trained on 4 • 106 feature vectors. A validation dataset of 
1 • 106 independent feature vectors was used to implement regularization, 
and the training was interrupted whenever a stop condition was reached 
(mean square error on the validation set gets below 1 • 10"4 and for 10 con­
secutive epochs does not decrease further). In addition to that, a third in ­
dependent test set of 1 • 106 feature vectors was used to obtain an unbiased 
evaluation of the final model. Our A N N struck a balance between com­
plexity and efficiency, allowing us to obtain the best results using two hid­
den layers with 200 and 150 nodes, respectively as depicted i n Fig. 4.2. De-
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creasing the size of the layers by a factor of two already starts affecting the 
model precision, and increasing it by a factor of two does not bring any 
benefits. Additional layers provide no improvement. The Rectified Linear 
Unit (ReLU) activation function 

ReLU(x) = x+ = max(0, x), (4.3) 

where x is the input to a neuron, is used between all layers with the excep­
tion of the last hidden and the output layer. The output negativity (layer) is 
calculated using the SoftPlus activation function, a smooth approximation 
of the ReLU function, 

SoftPlus(x) = ln(l + ex). (4.4) 

Using SoftPlus between the last hidden and output layers outperforms ReLU 
at this position. We used adaptive moment estimation as an optimizer 
[189] and mean squared error (MSE) as a loss function 

1 " 
MSE= -Y (NA-N„f, (4.5) 

where n represents the number of all training states, NA corresponds to 
analytical values of negativity obtained from the density matrix, and Np 

stands for the predicted value of negativity. Experimenting with dropouts 
did not enhance the learning process. 

In summary, the A N N s are used as universal function approximators 
[180]. Their outputs can be expressed for a three-layer network as 

f(x,Wa\wi2\w{3)) = (f)3(Wi3)(l)2(Wi2)(l)1(Wm(x)))), (4.6) 

where for n = 1,2,3 <pn are element-wise nonlinear activation functions act­
ing on the result of matrix multiplication of weight matrices Win) (the A N N 
parameters). The activation functions, the number of layers, and the weight 
matrix dimensions are presented i n Fig. 4.2. For a single input sample, x 
is a vector of B values representing the measurement outcomes given by 
Eq. (3.1). 

We tested the capability of the A N N for various numbers of projections 
configurations B from 5 to 10, i.e., various lengths of feature vector B. For 
details on exact measurement configurations used i n the case of given fea­
ture dimensions B, see Tab 4.1. 

As mentioned above, the maximal independent number of collective 
measurement configurations is B = 10. Therefore, we chose this case as our 
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Figure 4.2: Topology of the final A N N model used for negativity Np pre­
diction from a vector of collective measurements of length B. Two hidden 
layers are used, containing 200 and 150 nodes, respectively. ReLU and Soft-
Max are activation functions. 

B Specific projections 
~5 fti ® fti, n 2 ® 62.63 ® n 3 . n 4 ® 64. fti — 
6 B = 5, A 6 2 <s> 64 
7 B = 6, A 61 <8> 64 
8 B = 7, A 61 ® 6 2 

9 B = 8, A 6 2 <8> 63 
10 B = 9, A 63 ® 64 

Table 4.1: List of specific proj ection settings Pxy for a given number of mea­
surements B. Note that B is consecutively the length of input feature vec­
tors i n the ANNs. 
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starting and reference point. From there, we gradually reduced the num­
ber of provided projections down to B = 5. The most impactful results are 
obtained for B = 7 because, at that point, the number of projections drops 
below one-half of the projections needed for a full state tomography mak­
ing this setting our primary success indicator. We used the coefficient of 
determination R2 

R2 = 1_SSre1> ( 4 ? ) 

SStnt 

and standard deviation 

r = -^J1Jt((NA-Np)-iu)2, (4.8) 

to quantify the capabilities of the ANNs. Where the total sum of squares 
SStot and residual sum of squares SSres are defined as 

SStot = '£(NA-N)2, 
i 

SSres = Z(NA-Npf, 
i 
1 " 

N=-J^NA, 

(4.9) 

N represents the mean value of analytically calculated negativity, and the 
mean average is obtained as 

H=-fi{NA-Np). (4.10) 

4.4 Results. 

First, we provided the A N N with all available information about the inves­
tigated state (i.e., B = 10 projections) to set the benchmark. In this spe­
cific case, the A N N was able to reach R2 = 0.996 and r = 0.01 (see Fig. 4.3). 
For B = 10, network model gives our best approximation of the negativity 
function N{p) using only two copies of the investigated state and collec­
tive measurements. In the next step, we reduced the number of projec­
tions to B = 9. As expected, the performance of the network decreased to 
R2 = 0.993 and r = 0.02. Further decrease i n the number of projections to 
B = 8 did not reveal anything noteworthy but merely confirmed the trend 
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Figure 4.3: Comparison between analytically calculated negativity NA and negativity predicted Np by (a) artificial 
neural network and (b) quadratic regression for B = 10 and 7 configurations, respectively. In addition, the graphs 
include insets depicting histograms of the difference between NA and Np. Every tiny black dot corresponds to 
one of 1 • 106 tested random states. The coefficient of determination R2 and standard deviation T are also included 
in the legend. In an ideal case, all dots should lie on a diagonal line NA = Np. Green stripes depict standard 
deviation ±T from such an ideal case. 
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B 

Figure 4.4: The coefficient of determination R2 (represented by black back 
columns) and standard deviation r (represented by green front columns) 
are plotted for all measurement configurations B to visualize trends i n the 
results. 

established above. The performance of the A N N taught on B = 7 projec­
tions represents the most notable result R2 = 0.976 and r = 0.03 (see Fig. 4.3 
for B = 7,10 and Fig. 4.5 for other values of B) because, at this point, we re­
duced the number of proj ections under the full tomography requirements. 
Obtained results are similar to the limits of the analytical calculations per­
formed on the estimated density matrix from actual experimental tomog­
raphy data. Those calculations cannot be completely accurate due to un­
avoidable measurement uncertainties, which usually contribute to final 
analytical errors by a similar margin, i.e., T = 0.03 [190]. When the number 
of projections dropped to B = 6 we noticed some decline i n the prediction 
capabilities {R2 = 0.961 and T = 0.04). Even for B = 6 measurement config­
urations, the observed prediction error is still quite comparable to experi­
mental full state tomography. We tried to limit the number of projections 
as much as possible, but we drew the line at B = 5. In this case, the A N N 
performance pecked at R2 = 0.841 and T = 0.08. At this point, the prediction 
error is already significant, and therefore we did not proceed with further 
decreasing of B. For an overview of the results, see Fig. 4.4. 

In Fig. 4.3, we have also compared the A N N models to quadratic re­
gression models for B = 7,10. The A N N s use significantly more model pa-
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Figure 4.5: Comparison between analytically calculated negativity NA and negativity predicted Np by artificial 
neural network for B = 5,6,8 and 9 configurations respectively. In addition, the graphs include insets depicting 
histograms of the difference between NA and Np. Every tiny black dot corresponds to one of 1 • 106 tested random 
states. The coefficient of determination R2 and standard deviation T are also included i n the legend. In an ideal 
case, all dots should lie on a diagonal line NA = Np. Green stripes depict standard deviation ±T from such an 
ideal case. 
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rameters than our regression models, but they perform much better. The 
coefficient of determination for the A N N models is typically larger by 0.03 if 
compared with the quadratic models. The typical root mean square differ­
ence between the predicted values Np of the A N N s and quadratic regres­
sion models is circa 0.17, and it does not depend strongly on the number 
of measurement configurations B. However, there is an actual benefit of 
using the quadratic regression models because by doing so, we are able to 
directly obtain reasonably compact approximate analytical formulae for 
negativity as functions of assorted collective measurements. Note that re­
gression models up to the fifth order were also tested and did not outper­
form the ANNs. More details on these models as well as their performance 
compared to the A N N s is presented in Appendix A.4. 

4.5 Conclusions 

The above-presented results demonstrate a significant potential of ANNs 
together with collective measurements for entanglement quantification. 
Even for B = 6 and 7 measurement configurations, the collective measure­
ment performs similarly to experimental full quantum state tomography 
committing the predictive error of about 3% (in terms of standard devia­
tion) . Considering that the particular geometry of collective measurement 
also overlaps with the entanglement swapping setup [191], implementing 
entanglement quantification using this configuration can prove interest­
ing for future quantum communication networks [192]. The method pre­
sented i n this chapter can be used for effective entanglement quantifica­
tion i n entanglement swapping-based communication networks. More­
over, our previous research on the binary classification of entangled/ sepa­
rable states indicates that the A N N trained on numerically generated quan­
tum states also performs especially well on noisy experimental data [A-l] 
(at least on limited classes of quantum states). While nonlinear models 
are expected to function poorly on noisy data, they could perform rea­
sonably well on data burdened with typical experimental error [178]. A l ­
though this work investigates the quantification of entanglement that is 
more demanding than comparison to simpler binary classification, we feel 
encouraged to conclude that the trained A N N s may also perform adequate­
ly on experimental data. However, the development of corresponding ex­
perimental setup implementing the set of projectors (4.1) and gathering a 
sufficient amount of real quantum state data goes well beyond the scope 
of this investigation. The A N N s were implemented using the TensorFlow 

-49 -



4.5. Conclusions Chapter 4. A N N quantification 

2.0 [166] andKeras [193] libraries. 



Chapter 5 

Routing in quantum 
communications networks 
using reinforcement machine 
learning 

Text adopted from JanRoik, KarolBartkiewicz, Antonín Černoch, and Karel 
Lemr, submitted (2023) [A-3]. 

5.1 Introduction 

Efficient communication has played a crucial role in the evolution of all 
civilizations since antiquity [194, 195]. As the evolution continued, our 
society began to globalize, and so have our communications needs, ulti­
mately leading to the introduction of the Internet [196]. Nowadays, even 
these classical communications networks seem outdated, facing the de­
velopment i n the field of quantum communications [25]. The first pro­
posed quantum communications protocols were designed for a one-to-
one quantum key distribution (QKD) [197-199]. Subsequent strategies to 
encompass more parties have been proposed [199,200]. One promising 
approach is the so-called teleportation-based quantum networks facili­
tated by standard or controlled teleportation [133,201]. The idea is to con­
catenate many teleportation-based cells into a large global network, i.e., 
the quantum Internet [61]. Many studies have discussed this concept's po-
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b) F0 F1 Fn 

Alice node node node Bob 

Figure 5.1: Schemes represent entanglement swapping from the initial to 
the final point i n the quantum communications network, a) Each node 
possesses pair of particles belonging to two different entanglement states 
symbolized by the two black balls inside the nodes, black line between 
nodes depicts a quantum channel, green node symbolizes the initial point 
"Alice", red balls depict intermediate nodes used for entanglement swap­
ping, and blue ball represents the final point "Bob". Bell icon mark where 
Bell measurement takes place and swap icon highlight where entangle­
ment swapping is carried out. b) Characterization of the road between the 
initial and final point where F0,...,Fn are singlet fractions shared by two 
neighboring nodes. 

tential [66,202,203], the network's possible topologies [204], platforms to 
realize it on [205], and fundamental problems to overcome [65]. 

Quantum networks, however, aim beyond mere QKD, which we must 
consider when designing quantum networks. The major problem that ne­
eds to be addressed is finding an efficient method for optimal dynamic 
routing i n these large-scale quantum networks. It seems that teleportation 
(entanglement swapping) is, for now, the best method for establishing con­
nections between distant parties i n quantum networks [206]. Also, note 
that entanglement swapping is the core ingredient for quantum repeaters 
[207] and relays [208], allowing combating unfavorable scaling of losses. 
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The unique features of quantum information prevent reliably employing 
classical tools such as shortest path and tree search algorithms [209]. This 
investigation provides solutions to the routing problem i n teleportation-
based networks using reinforcement machine learning. The connection 
between two distant parties (Alice and Bob) i n these networks is estab­
lished by repeated use of entanglement swapping by several intermediate 
nodes resulting i n an entangled state (p shared by the abovementioned par­
ties, Alice and Bob (see Fig. 5.1) [191]. Once they share an entangled state, 
Alice and Bob are free to use it for secret key sharing [58], quantum state 
teleportation [91] or dense coding [210]. There are many possibilities to 
quantify the quality of the repeated entanglement swapping and the qual­
ity of the shared entangled state between Alice and Bob [97,138]. We chose 
the singlet fraction F as the figure of merit because for bipartite entangled 
states, F can be directly used to evaluate the usefulness of (p for quantum 
teleportation [211]. Singlet fraction 

F(0) = maxMMii/), (5.1) 
ty) 

is defined as the maximal overlap of the investigated state (p with any max­
imally entangled state \y/). Maximal achievable teleportation fidelity / of 
a qubit state is then calculated as 

One can naively think that the singlet fraction of the final state shared by 
Alice to Bob FAB is obtained as a product of singlet fractions of the en­
tangled states introduced i n the repeated n entanglement swappings (see 
Fig. 5.1) 

FAB = f\Fi, (5.3) 
1=0 

alternatively, one can establish an effective distance d between Alice and 
Bob using a logarithm of the singlet fraction 

d = -\ogFAB = -^\ogFi. (5.4) 

However, this is not generally true. For example, i n cases of amplitude 
damping [ 100] or correlated phase noise [101], errors can cancel each other 
out. If Eq. (3) and Eg. (4) were to hold, one should be able to assign a sin­
gle quantifier to each quantum channel between nodes and use any graph 
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path or tree-finding algorithm such as the Dijkstra algorithm and find the 
route minimizing the distance d [212]. As we show later i n this chapter, 
this yields suboptimal solutions. Note that even prominent dynamic algo­
rithms such as Bellman-Ford [213] and A* [214] cannot handle these types 
of errors. 

One possible solution capable of handling quantum effects is a brute 
force i n the form of the Monte Carlo algorithm. The only downside is Monte 
Carlo's exponential scaling with the number of nodes. Such a scaling be­
comes a game stopper, especially in the case of an evolving network where 
it needs to be repeatedly executed. Hence, a smarter strategy needs to be 
adopted. In this chapter, we propose using the proximal policy optimiza­
tion (PPO), an artificial intelligence-based algorithm developed to solve 
complex evolving problems [102]. This algorithm is commonly used in 
the gaming industry, where we found inspiration for how to approach the 
routing problem. We designed our network as a map i n a game for the 
agent to play, intending to find the optimal path through the quantum net­
work. We compare the performance of the PPO against the Monte Carlo 
and the Dijkstra algorithm demonstrating PPO's virtues. 

5.2 Quantum network topology 

We found the inspiration for our network topology i n the low-density parity-
check code structure, one of the possible topologies considered for design­
ing the 6G networks. For the details on the topology, see Fig. 5.2 [103]. This 
network simulates a real-world scenario where several local users form 
groups connected among themselves by central nodes. We chose this par­
ticular topology mainly due to its robustness against local connection prob­
lems, contributing to steady performance. In case of random malfunction 
in any specific node, this topology offers several possible reroutes to en­
sure stability. Each connection i n the network structure represents a quan­
tum channel using which two neighboring nodes share an entangled two 
qubit state. For simplicity, we limit the network topology to a maximum 
of 4 connections per node. Moreover, each node can perform entangle­
ment swapping, i.e., Bell measurement. A l l shared entangled states are 
fully characterized by their density matrices. This representation allows us 
to fully describe how noisy or damaged each connection is. We can easily 
simulate different sources of disturbance, such as white noise i n the chan­
nel or amplitude damping. These essential characteristics enable us to 
simulate various scenarios i n the communications network that we later 
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Figure 5.2: This figure shows a visualization of the quantum communica­
tions network. The entangled photon pair marked "Alice" represents the 
initial position for our agents, and blue circle named "Bob" marks the end­
ing point of the route. Full black lines set possible routes for entanglement 
swapping, red thick lines highlight the optimal solution under ideal condi­
tions, and black cubes represent primary connection nodes between local 
clusters. 

present i n the Results section. 
The ultimate goal is to distribute entangled state between Alice and 

Bob. As mentioned i n the previous section, the quality of this state is given 
in terms of singlet fraction FAB, which we maximize. We cast this task as 
a "game" for the tested algorithms to play. The final reward is received in 
proportion to FAB- Every connection can be used i n each game only once 
because the used entangled pair is consumed i n entanglement swapping. 
We choose the initial and final users' positions so that the agent can suc­
cessfully connect them i n a given number of actions. We made the routing 
in the network realistic by ensuring that even the unperturbed connec­
tions have a singlet fraction of the distributed state F = 0.99 by adding a 
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corresponding amount of white noise, forcing the PPO algorithm towards 
the shortest path solutions. To represent white noise, we model the shared 
entangled states i n the form of Werner states 

Pw = ptyr~)(Vr~\ + Q--p)ll4- (5-5) 

\y/~) = (|01) -110»/\/2 represents singlet Bell state, 1/4 stands for the maxi­
mally mixed state, and p is the mixing parameter. Amplitude damping, on 
the other hand, is represented by generalizing the Bell states \if/~) to 

|̂ ~(0)> = cos(0)|Ol>-sin(0)|lO>, (5.6) 

where 0 £ [0; f ] is the damping parameter. Lastly, an arbitrary phase shift 
can be described as 

IVj(<W> = (|01>-e'*|10»/^, (5.7) 

where <p £ [0; n] is the phase shift parameter and if uncompensated and ran­
dom, renders the state shared between Alice and Bob effectively mixed. 

5.3 Routing algorithms 

We tested different algorithms capable to solve routing i n quantum net­
works and compared their performance. Namely, we tested the PPO, D i -
jkstra algorithm, and Monte Carlo method on the quantum communica­
tions network. PPO is a policy gradient method for reinforcement learning 
which uses multiple epochs of stochastic gradient ascent to perform each 
policy update. It is well known for the simplicity of implementation to var­
ious problems and overall performance compared to similar family algo­
rithms. We use stable baseline 3 framework [215] and its implementation 
of the PPO in our work. 

The PPO agents starts at Alice's node. It can choose from at most four 
actions corresponding to the maximum number of connections any node 
can have. If the agent chooses an invalid action (i.e., a non-existing con­
nection), the game ends with a negative reward. If a valid link is selected, 
the agent moves to the node connected by the chosen connection (action). 
At this point, entanglement swapping is implemented, leading to a shared 
entangled state between Alice and the connected node. Selecting action 
and implementing entanglement swapping constitutes one action. A max­
imum of 15 actions limits the agent; if depleted, the game ends. The pre­
liminary reward is calculated at the end of each action using the formula 
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Rp-FAt-FAt_v (5.8) 

where FAi stands for the singlet fraction of the newly established entangled 
state while FAi_x is the singlet fraction resulting from entanglement swap­
ping i n the preceding action (F^ = 1 in case of the first action). We tuned 
the n-steps hyperparameter of the PPO according to the complexity of the 
designed quantum network topology. Note that the n-steps hyperparam­
eter determines the number of actions the agent takes before updating the 
parameters of its policy. We kept all other hyperparameters i n default val­
ues because we did not notice significant changes when tuning them. It 
is the reward function structure that has the most noticeable influence on 
the agent's performance. We save the PPO's policy after every 100-5000 
games based on the scenarios' complexity. If the agent reaches the final 
destination (Bob), it receives a final reward 

In case of the Monte Carlo algorithm, we applied the same game rules 
as for the PPO. So, we can obtain a straightforward comparison. The only 
difference is that Monte Carlo chooses its actions randomly in each game 
with no intelligent policy. 

Dijkstra's algorithm, on the other hand, needs more information and 
the data structure of the task. Unlike the previous agents, it needs to know 
the exact topology of the communications network ahead as well as infor­
mation about each connection. Therefore, the Dijkstra algorithm does not 
operate under the same conditions as the previously mentioned agents. At 
the expense of requiring all the information, it is very efficient at finding 
distance d from Alice to Bob. A brief description on the working principle 
of the PPO and Djikstra algorithms is presented i n the Appendix A.5. 

5.4 Results 

Firstly, we investigate routing i n a quantum network burdened solely by 
white noise. This scenario is close to the classical network because white 
noise is additive and can not be compensated. In a quantum network, 
however, other types of errors can occur. As examples of such errors, we 
consider amplitude damping and correlated phase noise which we inves­
tigate i n the second and third subsections. Finally, a dynamically evolving 
network noise is considered i n the last subsection. 

R=IQQFAB. (5.9) 
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i^aw-^r 

Intermediary 
nodes 6 8 10 12 14 16 

(count) 

Number of iterations 
PPO 780 1280 6880 7680 11840 41K 

Monte Carlo 644 4310 95K 250K 4 M 200M 
Dijkstra 1012 

Table 5.1: Results of the three agents applied to the networks of different 
complexity. This complexity is parametrized by the minimal number of 
intermediary nodes (first row of the table) that need to be visited i n order 
to find a valid routing solution. The number of iterations is the average 
number of iterations required to find a solution for a particular topology. 
Here M = 106 and K = 103. 

5.4.1 Network affected by white noise 

We start with a completely operational network (see the first topology in 
Fig. A.6 i n the Appendix A.6). A singlet fraction F = 0.99 characterizes all 
connections. Optimal routing through this networkbetween Alice and Bob 
involves 6 intermediary nodes. Then we started introduce damaged con­
nections (i.e., connections with F = 0.6), thus increasing the number of the 
intermediary nodes (8,10,12,14,16) required for finding the optimal solu­
tion. The optimal routing paths, under those circumstances are shown in 
Fig. A.6 as well. The performances of the three agents (PPO, Monte-Carlo, 
Dijkstra) are summarized i n Tab. 5.1. 

The Monte Carlo method offers comparable performance to PPO only 
in the case of the simplest scenario (fully operational network with 6 inter­
mediary nodes to find a solution). The more complex the scenario is, the 
more prominent the PPO's performance gain becomes. More specifically, 
in the case of a network where at least 16 intermediary nodes are required 
to find a solution, PPO outperforms the Monte Carlo method by a factor 
of about 5000. For visualization see Fig. 5.3. Given the additivity of white 
noise, the Dijkstra algorithm significantly outperforms the PPO and Monte 
Carlo i n these almost classical scenarios. However, the situation changes 
with the introduction of purely quantum noise. 
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6 8 10 12 14 16 
Number of intermediary nodes 

Figure 5.3: The graph compares the performance of the PPO algorithm, 
represented by the red (right) columns, and the Monte Carlo algorithm, 
depicted by black (left) columns, on different scenarios requiring a given 
number of passes through intermediary nodes i n the quantum networks. 

5.4.2 Network affected by amplitude damping 

Amplitude damping, as introduced i n Eq. 5.6, skews the amplitude bal­
ance towards one of the two components (|01) or |10». As a result, the 
singlet fraction decreases. Two connections with mutual opposite com­
ponent damping can rebalance the amplitudes increasing the singlet frac­
tion (at the expense of overall losses). This feature is intractable by greedy 
or dynamic algorithms such as Dijkstra, Bellman-Ford, or A* . In order to 
use those algorithms, one needs to save all preliminary solutions and com­
pare them, which would cause exponential scaling of the algorithm com­
plexity. Ultimately, the agent needs to figure out that i n order to complete 
the task, it needs to find such a route where individual amplitude damp­
ing cancel each other out as much as possible. We forced the agent to use 
this strategy by designing scenarios where the agent must choose at least 
one amplitude-damped connection to reach the final destination. More­
over, the resulting singlet fraction is maximized when a second (opposite) 
amplitude-damped connection is chosen by the agent. Similar to the pre­
vious subsection, we present the agent with scenarios ranging from 6-16 
intermediary nodes (see Fig. A.7). 

The agents' performance is summarized in Tab. 5.2 and plotted i n Fig. 
5.4. One can notice that due to these complex initial conditions, the Monte 
Carlo algorithm performs slightly better than PPO when the optimal path 
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i^aw-^r 

Intermediary 
nodes 6 8 10 12 14 16 

(count) 

Number of iterations 
PPO 1740 13K 14K 15K 54K 60K 

Monte Carlo IK 14K 94K 2 M 5 M 200M 

Table 5.2: Results of the two agents applied to the networks of different 
complexity, including effects such as amplitude damping. This complexity 
is parametrized by the minimal number of intermediary nodes (first row 
of the table) that need to be visited i n order to find a valid routing solution. 
The number of iterations is the average number of iterations required to 
find a solution for a particular topology. Here M = 106 and K = 103. 

consists of 6 intermediary nodes. Both methods show similar performance 
for the 8 intermediary nodes solution; as of 10 intermediary nodes solution 
onward, the PPO significantly outperforms the Monte-Carlo. In the most 
complex scenario, i.e. 16 intermediary nodes, the PPO outperforms the 
Monte Carlo method by a factor of about 3300. 

5.4.3 Network affected by correlated phase noise 

This subsection demonstrates how agents handle another type of reversible 
damage caused by the correlated phase noise. These scenarios are moti­
vated by one of the practical approaches towards quantum information 
distribution proposed by X u et al. [ 101 ]. Testing Dijkstra algorithms is again 
pointless for the reasons we mentioned i n the previous subsection. To 
demonstrate the versatility of the PPO agent, a brand new set of scenar­
ios involving 6-16 intermediary nodes were generated. For more details, 
see Fig. A.8. In the current scenario, the agent starts from the initial node 
Alice and i n the first action, it can only choose from paths damaged by the 
correlated phase noise. The agent aims to search the network for a suitable 
path to reverse the initial correlated phase shift. If successful, it must then 
find the final node, Bob. 

Results of this test are shown i n Tab. 5.3 and plotted i n Fig. 5.5. One can 
notice that i n the case of the 6 intermediary nodes scenario, the Monte 
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6 8 10 12 14 16 
Number of intermediary nodes 

Figure 5.4: The graph compares the performance of the PPO algorithm, 
represented by the red (right) columns, and the Monte Carlo algorithm, 
depicted by black (left) columns, on different scenarios i n the quantum 
networks where we also introduced connections affected by amplitude 
damping. 

Carlo slightly outperforms the PPO algorithm. However, the PPO agent 
performs significantly better for all more complex scenarios from 8 inter­
mediary nodes onward. 

5.4.4 Evolving quantum network 

Ultimately, we test the agents on dynamically evolving scenarios i n our 
quantum network. The agents' goal i n this final test is to maximize the 
overall functionality of the network throughout the evolutions. These sce­
narios reflect the realistic behavior of real-wo rid quantum networks where 
various errors appear at random places and times. The entire routing task 
lasts for 106 iterations, during which the quantum network undergoes ten 
scenarios (i.e., ten events when various connections become damaged or 
unperturbed). The evolution continues regardless of the agent's success. 
In this final test, we use all three types of errors discussed i n previous chap­
ters, namely white noise, amplitude dumping, and correlated phase noise. 
To make the interpretation of the results clear, we set some ground rules. 
Suppose the agent finds a solution (i.e., a path between Alice and Bob with 
F > 0.8) to the current scenario. In that case, it wil l use this solution for as 
long as its singlet fraction remains F > 0.8 (i.e., until the scenario evolves). 
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i^aw-^r 

Intermediary 
nodes 6 8 10 12 14 16 

(count) 

Number of iterations 
PPO 1320 2700 10K 20K 27K 39K 

Monte Carlo 780 4672 45K 500K 4 M 22M 

Table 5.3: Results of the two agents applied to the networks of different 
complexity including effects such as correlated phase noise. This com­
plexity is parametrized by the minimal number of intermediary nodes 
(first row of the table) that need to be visited in order to find a valid rout­
ing solution. The number of iterations is the average number of iterations 
required to find a solution for a particular topology. Here M = 106 and K 
= 103. 

PPO agent at that point also saves its current policy. After the situation 
evolves, both agents search for a new solution. PPO starts searching from 
the last saved policy and Monte Carlo randomly from scratch. Each evo­
lution introduces errors so that the previous solution is no longer valid 
[F < 0.8). Hence agents need to find a new route. This condition does not 
mimic the natural network behavior, but it is the most extreme case where 
the PPO agent faces the most disadvantageous conditions. A l l evolutions 
of the quantum network are depicted in Fig A.9. Resulting success rates 
are shown i n Fig. 5.6. From the obtained results, it is clear that if we let 
agents deal with an undamaged or slightly damaged network (scenarios 
1,2,10), both agents can keep the network functional for more than 95% of 
the time. If the scenario becomes a bit more complex (scenario 6), the PPO 
agent slightly outperforms the Monte Carlo agent. For even more complex 
scenarios, Monte Carlo could not find a solution i n a given amount of iter­
ations. Due to these poor results, Monte Carlo kept the network functional 
for 37.5% of the overall time. On the other hand, the PPO found a solution 
in 10/10 scenarios and kept the network functional for 93.4% of the overall 
time. 
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Number of intermediary nodes 

Figure 5.5: The graph compares the performance of the PPO algorithm, 
represented by the red (right) columns, and the Monte Carlo algorithm, 
depicted by black (left) columns, on different scenarios, staged i n the 
quantum networks where we also introduced connections causing corre­
lated phase noise. 

5.5 Conclusions 

This investigation compares three different algorithms (PPO, Djikstra, and 
Monte Carlo) for route-finding i n quantum communications networks. We 
benchmark these algorithms on various scenarios i n a realistic network 
topology using singlet fraction as the figure of merit. In these scenarios, 
we introduce additive white noise as well as purely quantum errors such 
as amplitude damping and correlated phase noise. 

We explicitly show that the non-additivity of quantum errors prevents 
traditional graph path or tree-finding algorithms (Djikstra) from finding 
the optimal solution. While the Monte Carlo search allows finding such 
optimal solutions, its exponential scaling makes its deployment prohibitive 
in large complex networks. We demonstrate that reinforcement machine 
learning i n the form of the PPO algorithm circumvents the limitations of 
both aforementioned approaches. It can cope with purely quantum errors 
and, simultaneously, does not suffer from unfavorable scaling. 

Our numerical model reveals that the PPO advantage over mere Monte-
Carlo search becomes significant when the number of intermediary nodes 
in the path increases (e.g., for 16 intermediary nodes, PPO outperforms 
Monte-Carlo by a factor of several thousand). Moreover, i n a dynamically 
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Scenarios 1 2 3 4 5 6 7 8 9 10 

P P O 

37.5% 

Monte 
Carlo 99.4% 96% 0% 0 i 0% 0% 99.3% 

Optimal 
solution 9 11 7 11 11 

Figure 5.6: Illustration of the Agents' performance on the evolving quantum communication network. Thin 
stripes show the overall functionality of the quantum network throughout its evolution, and the thick stripes 
show the functionality during each scenario of its evolution. 
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evolving quantum network, the PPO could maintain an operational route 
for about 93% of the time, while Monte Carlo for less than 38%. We believe 
that our research further promotes reinforcement learning as an invalu­
able method for improving quantum communications. 
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Chapter 6 

Conclusions 

" The saddest aspect of life right now is that science gathers knowledge faster 
than society gathers wisdom." 

-Isaac Asimov 

Humankind stands on the verge of a new era, "The golden age" of ar­
tificial intelligence. Tasks that were just a few years ago mentioned only 
in the context of sci-fi literature are nowadays becoming reality. Despite 
all recent breakthroughs, there still lies a long road ahead to unveil the full 
potential of artificial intelligence. Based on the achieved results, artificial 
intelligence has already earned its place as a valuable tool i n research. The 
author firmly believes that artificial intelligence has the potential to shed 
some light on the fundamental problems of science. Further deployment 
of artificial intelligence into fields such as quantum data processing may 
significantly speed up the development of essential technologies, such as 
large-scale quantum networks. 

This thesis presented two fundamental problems of quantum physics 
and one of quantum data processing. The first problem focused on opti­
mizing the detection of quantum states. The promising results i n detect­
ing entangled states motivated follow-up research focused on quantify­
ing the amount of entanglement. The third research task was dedicated 
to the problem of finding the optimal route i n quantum networks. In all 
three cases, the presented tasks have quantum nature, and to find the so­
lution, we deployed artificial intelligence. That is why Chapter 2 briefly 
introduces the method and terminology of artificial intelligence and ma­
chine learning, and the second half of Chapter 2 establishes basic terms of 
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quantum data processing. 
Chapter 3 highlights the potential of artificial neural networks to binary 

classify random two-qubit states as entangled or separable. Achieved re­
sults demonstrate that given the same amount of resources (i.e., the num­
ber of unique collective measurements), A N N surpassed all tested analyt­
ical entanglement witnesses. Furthermore, we showed that A N N trained 
on artificially generated data could be applied to actual experimental data 
with similar success. 

In Chapter 4, we discussed the generalization of the idea from Chap­
ter 3. Here we present the potential of the A N N not just to classify general 
two-qubit states but also the capability to quantify their amount of entan­
glement. The A N N aimed to match the negativity values obtained from the 
full-state tomography. We showed that, given fewer resources, A N N could 
still maintain comparable prediction capabilities as full-state tomography. 
Furthermore, we demonstrated that A N N performs favorably i n compari­
son with polynomial regression. 

In the fifth chapter, we moved from the fundamental problems of qu­
antum physics to obstacles restricting progress i n applied research. Here 
we tested three conceptually different approaches toward route finding in 
quantum networks. According to our results, the classical route-finding al­
gorithms struggle to find an optimal solution due to the presence of quan­
tum errors. On the other hand, the proximal policy optimization demon­
strated the ability to solve even complex scenarios involving different types 
of errors while maintaining favorable scaling. During the ultimate test on 
the evolving quantum network, PPO dominated the Monte Carlo algorithm 
and decisively proved its potential. 

As a closing thought, the author wants to declare that the presented re­
sults have already caught the attention of the broader scientific commu­
nity. Based on the results presented i n Chapter 4, we established an inter­
national collaboration focused on the follow-up research with a promise 
to unveil some fundamental dependencies of entanglement detection. We 
also plan to build an experimental setup capable of doing collective mea­
surements i n the minimal set of tomographic projections to test the A N N 
quantification of entangled states on a real-experimental dataset. 
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Apendix 

Text adopted from appendix sections of author's publications [A-l],[A-2] 
and [A-3]. Due to similarities i n the preparation process of investigated 
states i n Chapter 2 and Chapter 3, their original appendix sections about 
the preparation process were merged into one. 

A. 1 Preparation of general two - qubit states 
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Figure A.1: Purity distribution of the training and test states. 
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Figure A.2: Distribution of negativity N as the function of the probability 
of occurrence i n generated states p. The resulting histogram is i n line with 
the general expectation that at least 30% of random two-qubit states are 
separable [99] and that the probability of observing a maximally entangled 
pure state is negligible [216]. 

Random two-qubit states were generated from 4x4 diagonal matrix pt 

according to Ref. [216] 

pn 0 0 0 ^ 
0 P22 0 0 
0 0 p 3 3 0 
0 0 0 pu] 

(A.1) 

where pn = n; p 2 2 = r 2 ( l - pn); p33 = r 3 ( l - pn - P22); Pu = r 4 ( l - p n - P22 -
P33) ; r„ for n = 1,2,3,4 are uniformly distributed random numbers from 
range [0,1]. In the next step, the proper random unitary transformation 
was used i n order to create a density matrix of a general random 2-qubit 
state [217] 
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(A.2) 
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Apendix A.2. Collectibility 

U, 7 = 1,. ...6 (A3) 

where 
( e^'costyj eix'sm.(f>j 
[-e~lXJ shupj e~lV' cos <pj)' 

with Q<(p<jfi<a>y>x<2Ti. The homogenous distribution of states was 
ensured by 0;- = arcsiriy/<;,<!;;- £ [0,1]. Parameters (j>j,y/j,Xj<aj a n d £j are 
picked from their respective intervals with uniform probability. The final 
density matrix was obtained as p = Upt U^. We present a histogram for the 
negativity of these randomly generated states i n Fig. A.2. To mathemati­
cally describe the collective measurement, a 4-qubit density matrix of the 
entire system p 4 was defined as p 4 = p <s> SWAP p SWAP where 

ll 0 0 0' 
0 0 1 0 
0 1 0 0 
0 0 0 1, 

SWAP-- (A.4) 

A.2 Collectibility 

In order to calculate collectibility we used the formula by Rudnicky et al. 
[132] represented i n computational bases, i.e., H — |0>; V — |1>; D — |+> = 
(|0) + \l))/V2; A - |-) = (|0) -\l))/V2; R - (|0) - i\l))/V2 and, L - = (|0) + 
i|l»/V2 

W(p) =^ ll + Pod - roo) + (1 - Po) 2d - rn) 
2 (A. 5) 
+ 2 p 0 ( l - p o ) ( l - r 0 i ) - l ] , 

where 
^ = 8p 0(l-po)v /rooriT + 2p'. (A6) 

In the equations above single-photon projection probability po = poo + P n 
and p' = max{p++,p—}. Pxy represents probabilities of single Bell state 
projection of non-locally measured qubit conditioned on local projection 
onto |x) and |y) states. [132] 

A.3 Other two-copy witnesses 

A class of two-copy entanglement witnesses can be calculated using ele­
ments of the symmetric matrix [164] 
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Figure A.3: Dependence of Type I and Type II errors on e threshold for vary­
ing numbers of projections. Here purple triangles represent B = 3, blue 
diamonds represent B = 5, green hexagons represent B = 6, red stars repre­
sent B = 12, and black circles represent B = 15. 
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B 3 5 6 12 15 
e T-I T-II T-I T-II T-I T-II T-I T-II T-I T-II 

0.5 9.23 7.42 7.09 4.98 5.47 5.03 2.17 2.43 1.50 1.94 
0.55 8.03 8.84 6.17 5.91 4.77 5.83 1.34 3.55 1.27 2.19 
0.6 6.94 10.49 5.32 6.97 4.14 6.73 1.15 3.89 1.06 2.48 

0.65 5.87 12.38 4.48 8.24 3.47 7.94 0.97 4.31 0.86 2.82 
0.7 4.81 14.65 3.72 9.73 2.94 9.12 0.81 4.76 0.67 3.22 

0.75 3.73 17.64 3.18 10.97 2.53 10.17 0.66 5.29 0.50 3.71 
0.8 2.75 21.37 1.93 15.05 2.12 11.51 0.51 5.91 0.41 4.07 

0.85 1.72 26.79 1.47 17.38 1.67 13.28 0.37 6.68 0.32 4.53 
0.9 0.93 33.47 0.96 20.91 1.18 15.88 0.24 7.75 0.22 5.24 

0.95 0.41 41.21 0.42 27.42 0.63 20.41 0.11 9.61 0.11 6.77 

Table A.1: Evolution of Type-I and Type-II error for different thresholds e. 
T-I and T-II represent Type-I and Type-II errors respectively and are listed 
in percentages. 

where the expectation values are calculated on two copies of p, i.e., paiM ® 
Pa2,b2- To estimate the number of projections let use the resolution of two-
qubit identity operator valid for an arbitrary i,j = 1,2,3, which reads 

1 8 2 = £ \riSj)(riSj\, (A.8) 
r,s=0,l 

where |0;) and 11,-> are eigenstates of CT;- operator associated with ±1 eigen­
values, respectively. A product of two Pauli operators reads 

a^®of2) = |0,0JX0,0J| + |1,1J><1,1J| 

-(|0,1JX0,1J| + |1,0J><1,0J|). (A9) 

By adding the corresponding sides of Eq. (A.8) to Eq. (A.9) and subtracting 
i®2 we obtain 

ofJ = 2{\0i0j){0i0j\ + \lilj){lilj\)-V*2. (A.10) 

This means that measuring all 6 different elements of R (i.e., i < j for i,j = 
1,2,3) requires 12 projections i n total. These projections read 

\D)\D),\A)\A),\D)\L),\A)\R), 
\D)\H),\A)\V),\L)\L),\R)\R), (All) 

\L)\H),\R)\V),\H)\H),\V)\V). 
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B  
3 \H)\H),W)\V),\H)W) 
5 \H)\H),\V)\V),\H)\V),\D)\D),\A)\A) 
6 \H)\H),\V)\V),\H)W),\D)\D),\R)\R),\L)\L) 

\D)\D),\A)\A),\D)\L),\A)\R),\D)\H),\A)\V), 
\L)\L),\R)\R),\L)\H),\R)\V),\H)\H),\V)\V), 

\D)\D),\A)\Ä), \D)\L),\A)\R),\D)\H),\A)\V),\Ľ)\Ľ), 
\R)\R),\Ľ)\H),\R)\V),\H)\H),\V)\V),\D)\R),\D)\V),\Ľ)\V) 

Table A.2: List of specific projections settings used for the learning of the 
artificial neural network. 

By using these 12 projections we determine matrix Q used to calculate en­
tanglement witnesses. Fully entangled fraction / can be used to construct 
an entanglement witness [164] 

F = 2 / - l = i [ T r ( v
/ Q ) - l ] . (A12) 

This and the following witnesses are positive, if entanglement is detected 
and negative, otherwise. The maximum value is 1. 

Furthermore, by using an optimal C H S H inequality we can construct 
an entanglement witness [164] as 

M = Tr(Q)-min[eig(Q)]. (A. 13) 

It is also possible to use Q to express an entropic entanglement witness 
[164] 

£ = ± [ T r ( Q ) - l ] . (A. 14) 

A.4 Polynomial fits of the negativity function 

Polynomial models provide estimates of negativity, and their precision i m ­
proves with the order of the polynomial. The quadratic regression model 
for the negativity can be formally written as Np = 0B • x, where the vector 
x = {1,XI,X2,—,XB,X\,XIX2,...,XIXB,X\,X2XZ,...,X2XB,—,XZ

B) contains vector el­
ements Xi,X2-,xB. This model performs worse than the A N N s but allows 
extracting an approximate analytical formula for negativity as a function 
of the input vector of collective measurements. 
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O 0.8 L i i i i  

5 6 7 8 9 10 
Measurement configurations B 

Figure A.4: Comparison of polynomial regression models and the ANNs 
in terms of the coefficient of determination R2 as function of input feature 
vector lengths. 

A N N REG2 REG3 
B R2 T R2 T R2 T 
5 0.841 0.08 0.809 0.09 0.828 0.08 
6 0.961 0.04 0.926 0.06 0.948 0.05 
7 0.976 0.03 0.938 0.05 0.959 0.04 
8 0.986 0.02 0.947 0.05 0.970 0.04 
9 0.993 0.02 0.959 0.04 0.979 0.03 
10 0.996 0.01 0.965 0.04 0.983 0.03 

Table A.3: Comparison of the results obtained by A N N and quadratic/ cu­
bic regressions REG2/ REG3 for B = 5 to 10. Where R2 represents the coef­
ficient of determination and T stands for standard deviation. 

Higher- order polynomial regression models are straightforward expan­
sions of the quadratic model having considerably more parameters for fit­
ting and therefore are less useful as an analytical approximation of the neg­
ativity function. On the other hand, the linear model is too simple to pro­
vide helpful approximation for negativity. As indicated i n Tab. A.3, neither 
the quadratic nor cubic model outperforms the ANNs. Moreover, we plot 
the dependence of the coefficient of determination R2 as a function of the 
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Find the shortest path to A 

Task Solution 

Figure A.5: Depiction of an illustrative communications network where 
the red circle A marks the initial position and the numbers beside the con­
nections correlate to the distance. 

input vector length B i n Fig. A.4 to prove the A N N s superiority over these 
models up to the fifth order. The optimized polynomial model parameters 
are presented i n the Digital Supplement [218]. 

A.5 Djikstra algorithm 

The Dijkstra algorithm is designed to find the shortest distance from one 
node to every other node i n the network. The working principle of this al­
gorithm is as follows. In the first step, we choose the initial node, i.e., Alice. 
Then the algorithm starts filling a table storing all the information about 
the distances from the initial node to every other node. Distance is set to 
infinity if there is a nonexisting direct connection from the initial node. 
In the next step, it moves from the initial node to the closest node. The 
distance table is updated by replacing nonoptimal (longer) distances with 
optimal (shorter) distances from the initial node to every node, assuming 
the new path passes through the current node. This procedure continues 
until the algorithm visits all nodes and obtains the optimal path from Alice 
to all nodes. For an illustration, see Fig. A.5 and Tab. A.4. 
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Actions: 1 2 3 4 5 
Unvisited nodes: B,C,D,E B,D,E B,D D 

Current node: A C E D B 

Distance 
A - A : 0 0 0 0 0 
A - B : 9 7 7 7 7 
A - C : 1 1 1 1 1 
A - D : oo 7 4 4 4 
A - E : 10 2 2 2 2 

Table A.4: Description of the evaluation of the Dijkstra algorithm on the 
illustrative communication network showcased i n Fig. A.5 

A.6 PPO algorithm 

This section provides a graphical representation of the performance of the 
PPO agent deployed on the various scenarios i n quantum networks. Fig. 
A.6 visualizes scenarios where we considered connections affected by white 
noise only. Fig. A.7 displays scenarios where connections are affected by 
white noise and amplitude dumping. Fig. A.8 shows scenar- ios where 
connections are affected by white noise and correlated phase noise. Last 
but not least, i n Fig. A.9, one can see a visual representation of ten unique 
subsequent scenarios used to assess the agent performance on evolving 
quantum networks. 
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Figure A.6: The figure shows various quantum network scenarios where we 
consider connections affected by white noise only. We prepared scenarios 
ranging from simplest solvable using 6 intermediary nodes to complex re­
quiring up to 16 intermediary nodes. The thick red line marks one of the 
optimal solutions to the presented scenario, and the double blue dashed 
lines represent irreversibly damaged connections. 
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Apendix A 6 . PPO algorithm 

Figure A.7: The figure shows various quantum network scenarios where we 
consider connections affected by white noise and amplitude dumping. We 
prepared scenarios ranging from simplest solvable using 6 intermediary 
nodes to complex requiring up to 16 intermediary nodes. The thick red 
line marks one of the optimal solutions to the presented scenario, double 
blue dashed lines represent irreversibly damaged connections, and black 
chain marks connections cause amplitude damping. 
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A.6. PPO algorithm Apendix 

Alice ( Alice ( 

Figure A.8: The figure shows various quantum network scenarios where we 
consider connections affected by white noise and correlated phase noise. 
We prepared scenarios ranging from simplest solvable using 6 intermedi­
ary nodes to complex requiring up to 16 intermediary nodes. The thick red 
line marks one of the optimal solutions to the presented scenario, double 
blue dashed lines represent irreversibly damaged connections, and wrap­
around lines mark connections causing correlated phase noise. 
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Apendix A 6 . PPO algorithm 

Figure A.9: The figure shows evolving quantum communications net­
work and the response of the PPO agent to those changes. The thick red 
line marks the PPO's solution i n the final iterations before the change in 
the current scenario. Double-blue dashed lines represent damaged con­
nections, wrap-around lines mark connections causing correlated phase 
noise and black chain marks connections causing amplitude damping. 
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