
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

AUTORAPPER - AUTOMATIC ALIGNMENT OF S P E E C H
WITH A RHYTHM

BAKALÁŘSKÁ PRÁCE
B A C H E L O R ' S THESIS

AUTOR PRÁCE SEBASTIÁN POLIAK
AUTHOR

VEDOUCÍ PRÁCE doc. Dr. Ing. JAN ČERNOCKÝ
S U P E R V I S O R

BRNO 2015

Abstrakt
Tato p ráce popisuje n á v r h a implementaci aplikace, k t e r á automaticky p ř e v á d í v s t u p n í řeč
na rap. Tento proces je založen na z a r o v n á n í řeči s ry tmem, k t e r é je dosaženo p o m o c í
r o z p o z n á v á n í fonémů, s lab ikování a časové modifikace řeči . Da l š í funkce, jako je h u d e b n í
podklad a voká ln í efekt jsou p ř i d á n y za úče lem př ib l ížení se ke s k u t e č n é m u rapu. V ý s l e d n á
aplikace je d o s t u p n á jako w e b o v á s lužba pro uživate le .

Abstract
This thesis describes a design and implementat ion of an application that automatical ly
converts the input speech recording into a rap. Th is process is based on alignment of
speech wi th a rhy thm which is achieved by phoneme recognition, syllabification and time-
scale modification. The external features such as beat and vocal effect are added in order
to make the resulting signal as close as possible to the real rap. The resulting application
runs as a web service available to the users.

Klíčová slova
r o z p o z n á v á n í fonémů, s lab ikování , časová modifikace řeči, W S O L A , syn t éza řeči, rap,
hudba, rytmus, beat, smyčka , chorus, w e b o v á s lužba

Keywords
phoneme recognition, syllabification, time-scale modification, W S O L A , speech processing,
rap, music, rhythm, beat, loop, chorus, web service

Citace
Sebas t i án Pol iak: Au toRappe r - Au tomat i c Al ignment of Speech wi th a R h y t h m , b a k a l á ř s k á
p ráce , Brno , F I T V U T v Brně , 2015

Prohlášení
Proh lašu j i , že jsem tuto baka l á ř skou p rác i vypracoval s a m o s t a t n ě pod v e d e n í m pana doc.
D r . Ing. Jana Ce rnockého .

Sebas t i án Pol iak
M a y 18, 2015

Poděkování
I would like to thank to my supervisor Jan C e r n o c k ý for the guidance and a lot of valuable
advices and ideas that he gave me. I would also like to thank to a l l the people that supported
me during wr i t ing of this thesis and to people that part icipated in Autorapper survey.

© S e b a s t i á n Pol iak , 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulte in­

formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných prípadu.

Contents

1 Introduction 3
1.1 R a p i n general 3
1.2 Ex i s t i ng applications 3
1.3 Possibilities of Autorapper 4

2 General scheme 5
2.1 Objective 5
2.2 Scheme of Autorapper 6

3 Phoneme recognition 7
3.1 Phoneme recognizer i n general 7
3.2 Phoneme recognizer by B U T Speech@FIT 8
3.3 Descript ion of the result 8
3.4 Possible problems w i t h phoneme recognition 9

4 Syllabification 10
4.1 Syllable structure 10
4.2 Exceptions 10
4.3 Process of syllabification 10

5 Time-scale modification 13
5.1 Choosing the right T S M algori thm 13
5.2 W S O L A 13

5.2.1 Pr inciple of W S O L A 14
5.2.2 Al ignment of speech w i t h a rhy thm 15

6 Towards a real rap 16
G . l R h y t h m 16
6.2 Beat 17
6.3 Voca l effect 17
6.4 Loop 17

7 Implementation 18
7.1 Integration and pre-processing 18
7.2 Phoneme recognition 19
7.3 Syllabification 19
7.4 W S O L A 20

7.4.1 Libraries 20

1

7.4.2 Problems w i t h W S O L A 21
7.5 Web based application 21

7.5.1 Client side 22
7.5.2 Server side 22
7.5.3 Interface and content of the website 23

8 Testing 2 4

8.1 Autorapper survey 26
8.1.1 User feedback 26

9 Conclusion
9.1 Summary 27
9.2 Future 27

9.2.1 Eas i ly achievable improvements 27
9.2.2 More difficult, but s t i l l possible improvements 27

9.2.3 Possible exploitat ion 28

A Content of D V D 3 1

B H o w to run 3 2

2

Chapter 1

Introduction

The a im of this thesis is to create an applicat ion that would automatical ly convert
a normal speech recording into a rap. The result should be as close to the normal rap as
possible, including the alignment of the speech wi th a rhy thm as well as adding an external
beat into i t .

The first chapter describes the general scheme that I followed to achieve the desirable
output. The parts of the scheme are then described separately i n the following 4 chapters.
The 7th chapter describes my implementat ion of Autorapper as a web applicat ion which is
now available to the users. The last chapter deals w i t h the testing of application and the
feedback from the users.

1.1 Rap in general

„ R a p p i n g can be traced back to its Afr ican roots. Centuries before hip hop music ex­
isted, the griots of West Af r i ca were delivering stories rhythmical ly, over drums and sparse
instrumentation."[] Today, rapping is strongly associated wi th hip hop music.

Accord ing to the definition the components of rapping include 'content', 'flow' (rhythm
and rhyme) and 'delivery' which indicates that a rap is usually accompanied and performed
in t ime wi th a beat. The most important component to dist inguish a rap from normal speech
or poetry is rhy thm. A n d that is the part that I am dealing wi th while keeping the original
content.

1.2 Exist ing applications

M y original p lan was to create Autorapper as a mobile applicat ion. However, after I
have done some research I found out that something similar already existed for i O S plat­
form. It is called Au to rap by Smule. Th is was the only similar application that I was able
to find.

Au to rap B y Smule [15] is an applicat ion that allows you to rap over the beats of
famous artist 's songs. The user has several default beats to choose from and it is possible
to buy some more for real money. A user can also choose whether he wants to rap himself
or just speak and it w i l l rap the speech for h i m automatically. There is also a feature to
have a rap battle w i t h other user.

Th is application has a lot of positive feedback from the users. However, there were
some negative comments as well on the issue that the users cannot download their rap into

3

their phones or computers i n any way. The users also cannot upload any recording into the
application and get it rapped for them. The only way is to record it live.

I t r ied this application myself. It seems to use a different approach to achieve the
rapping, compared to the general scheme of Autorapper described i n the first chapter. I
also noticed that it often repeats the same syllable in a word several times which is different
from Autorapper where every syllable i n a word occurs just once.

Figure 1.1: Interface of Au to rap B y Smule

1.3 Possibilities of Autorapper

The approach of Autorapper was from the beginning a bit different from Autorap
by Smule. The users of Au to rap by Smule are meant to speak to the phone on the spot
and their speech recording is rapped and possibly compared wi th other users in a battle
through the interface of the applicat ion. O n the other hand, the users of Autorapper are
mostly meant to choose a recording they want to get rapped, for example a lecture or an
audio book. They get their result as a .wav recording and are free to use it i n any way they
want.

Since Au to rap by Smule is a mobile application, the other possibilities for Autorapper
were to be a desktop application or a web applicat ion. I decided to go wi th a web applica­
t ion, which is platform-independent and makes it easier for the users to use the service (no
download and installation).

4

Chapter 2

General scheme

2.1 Objective

The main objective is to change the original rhy thm of the speech and align it w i th a
rhy thm that is i n t ime w i t h a beat. The rhy thm of every language is different. „ I sochrony
is the postulated rhythmic divis ion of t ime into equal portions by a language. "[13] There
are three ways how the languages are divided according to their t iming:

1. Syllable-timed where the durat ion of every syllable is equal. Example languages
can be Icelandic, Cantonese Chinese, Georgian, French or Welsh.

2. Mora- t imed where the durat ion of every mora is equal. M o r a is another phonological
unit different from a syllable as we know i t . A n example of such a language is Japanese.

3. Stress-timed where the syllables may last different amount of t ime but there is
a constant amount of t ime between the stressed syllables. These languages are for
example Engl ish , German, Russian and also the languages such as Czech or Slovak.

We want Autorapper to work wi th the th i rd category and use a syllable as a basic
bui lding block. Figure 2.1 shows an example of the different t imings of the syllables. The
a im is to change these t imings according to the rhythm, therefore, some syllables are needed
to be stretched and others shortened.

pau re etc u re ee tea u pan eta ne da l e go

I
0:01.0 0 :01.5 0 :02.0 0 :02.5 0 :03.0 0 :03.5

Figure 2.1: T i m i n g of syllables i n Czech recording (syllables created by Autorapper syllab­
ification described i n Chapter 4)

5

2.2 Scheme of Autorapper

Several different approaches can be used to change the rhy thm of the speech and
achieve rapping. Figure 2.1 shows the one that I used for Autorapper . The input is a
normal speech recording and the output is a speech aligned to the different rhy thm and in
t ime wi th a beat. Its parts are described i n the following sections.

Phoneme recognition Syllabification Time-scale modification Rhythm

Extensions Beat

1

Rap

Figure 2.2: Basic draft of Autorapper

P h o n e m e recogni t ion

A t first the single phonemes and their t ime marks are recognized from the given
speech recording. This process is described i n Chapter 3.

Syl labi f icat ion

Based on the phoneme recognition results, the syllables are created by adding the
single phonemes together according to the rules of the language. Syllabification is described
in detai l i n Chapter 4.

T i m e - s c a l e modi f i ca t ion

This is the most important part of the project. The length of the syllables needs to
be changed according to the given rhy thm without affecting their pi tch. Th is modifies the
speech to be aligned w i t h a different rhy thm. The rhy thm is predefined and i n t ime wi th
the beat that is added later. The algori thm that I used to modify the t ime of syllables is
described i n Chapter 5.

A d d i n g ex terna l rap features

In order to support the output rap and make it sound more natural , external sounds
are added into i t . These could be any type of a beat or bass line aligned wi th the rhy thm
of the speech to create a pleasurable output. There are also some other extensions like a
vocal effect or put t ing the rap into a loop. A l l of them are described i n Chapter 6.

(i

Chapter 3

Phoneme recognition

This part describes the phoneme recognizer and its usage to get the single phonemes
and their t iming from the speech recording i n order to create the syllables.

3.1 Phoneme recognizer in general

This section was based on [1].

A phoneme recognizer can be generally represented as a structure of three blocks
shown in Figure 3.1.

In feature extraction, speech is d ivided into the overlapping frames usually 25 ms
long and wi th 10 ms frame shift. The two most common feature extraction techniques are
M e l Frequency Cepst ra l Coefficients (M F C C) and Perceptual Linear Predic t ion (P L P) . In
M F C C a filter to amplify the higher frequencies is used on each frame. Then a H a m m i n g
window is used and a Fourier spectrum is computed for the windowed signal. M e l filter
bank is then applied to smooth the spectrum. After that, a logar i thm is used followed by
Discrete Cosine function. The resulting coefficients form a vector usually i n 13 dimensional
space.

ftfflT feature acoustic
decoder recognized

extraction matching
decoder

text

Figure 3.1: C o m m o n structure of speech recognizer (taken from [1])

Acoust ic matching matches the parts of the signal w i th other stored examples of
speech and assigns the scores to the acoustic units. It usually uses Hidden Markov Models
(H M M) where the l ikel ihood is modeled by a probabil i ty density function. This can be a
Gaussian M i x t u r e M o d e l (G M M) or an Ar t i f i c i a l Neura l Network (A N N) .

A decoder is used to find the best path through the acoustic units, opt ional ly using
other knowledge about the language.

7

3.2 Phoneme recognizer by B U T Speech@FIT

This section was based on [2].

I was able to use the phoneme recognizer that was developed at B U T Speech@FIT
group. It offers Czech, Engl i sh , Russian and Hungar ian phoneme recognition. I worked
wi th Czech phoneme recognition and the syllabification that follows is also based on Czech
language. The input to the phoneme recognizer is a mono recording (1 channel), 8 k H z
sampling frequency and signed 16 bit per sample.

The phoneme recognizer uses a T R A P based system. It is a H M M - Neura l Network
hybr id . Speech signal is d ivided into 25 ms long frames wi th 10 ms shift. The M e l filter-bank
is emulated by triangular weighting of F F T - d e r i v e d short-term spectrum i n order to obtain
short-term cr i t ica l band logari thmic spectral densities. T R A P feature vector describes a
segment of temporal evolution of cr i t ica l band densities w i th a single cr i t ica l band. The
actual frame is a central point and there is an equal number of frames i n past and future.
Th is vector forms an input to the classifier and the outputs are the posterior probabilities
of sub-word classes. These outputs are combined into one using a merger, which is another
classifier. B o t h merger and band classifiers are neural nets. Output contains the phoneme
probabilities for the central frame that are put into a V i t e r b i decoder, producing phoneme
strings. The Czech variant contains 1500 neurons i n a l l nets.

3.3 Description of the result

The first two elements are the start and the end of the occurrence of a phoneme. The
t iming is i n Hidden Markov M o d e l Toolki t (H T K) format, where the basic unit is 100 ms.
In my case, to get an actual t ime i n a recording, the t iming needs to be divided by 10 7 and
mult ipl ied by the frame rate of the recording.

The th i rd element is the actual phoneme. Czech variant of phoneme recognizer con­
tains 45 different labels. Occurrence of 'pau' means that there is a pause (silence) i n a
recording on the given place. Th is is useful later in syllabification process. The other signs
could be also present i n the value of a phoneme, for example ': ' means that the phoneme
is stretched or two phonemes are joined by '_' usually forming a diphthong.

The last element is the log l ikel ihood of the phoneme. A n example of a result from
the phoneme recognizer is shown i n Figure 3.1 where the input was an audio book starting
wi th the sentence ,Jiestaurace Toulos stoji nedaleko .. ".

8

000990 12200000 pal] -96 .561119
12209009 12709009 r 9. 959511
12799099 13109009 e -6. 733376
13199000 139O0OOO 5 9. 918213
13999099 14409009 t -8. 627495
14499099 15599099 0_ _L - 13.296158
15599099 15809OO9 r -8. 128555
15S99099 16309009 e -8. 079865
16399099 17500000 s -19 .075531
17599099 18100000 e -8, 787292
18199099 19800000 t -24 .142334
19899099 29409009 0 -20 .194275
29499099 21600O0O a _u -22.891663
21609009 22309009 r -8, 332947
22399000 23600000 0 -17 .897552
23600000 26609009 5 -31 .152344
26699099 27799099 pau - 19.647705
27799000 292O0OOO 5 -14 .663544
29200000 29709009 t -7. 301300
29799099 39309009 0 -10 .484741
30300000 39909009 j -8, 6O0O37
30900000 32900000 1: -19.796051
32999099 33709009 n -8. 833588
33799099 34109009 e -6, 746979
34199099 34900000 d -9. 339142
34999099 35209009 a -8. 923492
35299099 35900000 1 -8, 198425
35900000 36309009 e -7. 549683
36399099 37209009 g -16 .595929
37200000 37709009 0 -7. 934631

Figure 3.2: Result from Phoneme Recognizer

3.4 Possible problems with phoneme recognition

A n obvious problem that can occur is w i t h the accuracy of phoneme recognition.
Accord ing to the site [8], the error rate of the phoneme recognizer for Czech language is
24.24%. This can cause the problems later in syllabification and therefore the resulting rap
can sound less natural . However, many times when the phoneme recognizer misclassified
the phoneme it is s t i l l classified as a consonant or a vowel corresponding to the correct
phoneme. This can be seen at Figure 3.1 where for example 'a ' and 'k ' are misclassified as
'e' and 'g ' i n a word 'restaurace'. Th is is essential for the syllabification which is based on
the fact whether the given phoneme is a vowel or a consonant and so the correct phoneme
is not that important .

The result of the phoneme recognizer is also dependent on the quali ty of the recording.
W h e n the recording is too noisy or there are some other background sounds, the result w i l l
not be very precise. The opt imal recording should contain only the speaker. I used to test
it w i th the audio books and it gave me pretty good results.

9

Chapter 4

Syllabification

After the phonemes are recognized, they are added together i n order to create the
syllables. Syllables are the phonological „bu i ld ing blocks" of words. They can influence the
rhy thm of a language, its prosody, its poetic meter and its stress patterns. Therefore the
syllables are the essential part to work wi th in Autorapper .

4.1 Syllable structure

„A syllable is typical ly made up of a syllable nucleus (most often a vowel) w i th
optional in i t i a l and final margins (typically, consonants)." [] The length of a syllable is
usually two or three phonemes. The most usual form of syllable contains two phonemes
where the first one is a consonant and the second one is a vowel. The other form of a syllable
that contains three phonemes starts w i th a consonant and is followed by two vowels. These
vowels usually form a diphthong. The possible diphthongs are ' i a ' , ' ie', ' i u ' and 'uo'. The
last form of a syllable also contains three phonemes where the first one and the last one
are the consonants and the nucleus is a vowel. These type of syllables usually occurs at the
end of the words.

4.2 Exceptions

There are some consonants that can sometimes behave like a vowel and create a
syllable where they are the nucleus. Those are V and '1' and their stretched variants. They
act as a vowel nucleus of a syllable for example i n the words like 'krk ' or 's lza ' . However
they can also act as a normal consonant for example i n a word ' ryba ' and therefore the
program has to distinguish between these cases.

4.3 Process of syllabification

The process of syllabification has to take i n consideration a l l the possible structures
of a syllable. In the result of phoneme recognizer, the pauses between the words are rep­
resented as 'pau' . Th is is useful for detecting words that finish w i t h a consonant. For
example, i f we take a word 'losos' and t ry to divide it into the syllables, the first one w i l l
be obviously ' lo ' but the second one cannot be 'so' which would otherwise be okay wi th
the rules. Instead, a look ahead is used to determine whether the following consonant is
followed by a pause. If yes, then the syllable is 'sos'. If the consonant is followed by other

10

characters then the syllable remains 'so' and the syllabification continues (for example, in
a word 'lososovy').

Figure 4.1 shows a flowchart that is representing a process of creating a syllable cov­
ering the structures mentioned in this chapter. Append ing means to use a start or end time
of a phoneme as a t ime of syllable. The implementat ion of syllabification is then based on
this flowchart and described i n Chapter 7. Its result mapped to the recording can be seen
in Figure 4.2.

^ Start

v

read phoneme

I

append start time

read phoneme

read phoneme

append end time

Figure 4.1: Flowchart of syllabification in Autorapper

11

12

Chapter 5

Time-scale modification

Time-scale modification (T S M) is a technique used to modify the durat ion of the
audio signal while min imiz ing the distort ion of other important characteristics, such as
pi tch and timbre. T S M has been widely used in a field of speech and audio processing.
Over last three decades various overlap-and-add algorithms have been created. A m o n g
them, synchronized overlap-and-add (S O L A) based T S M , pi tch synchronous overlap-and-
add (P S O L A) based T S M , and waveform similar i ty overlap-and-add (W S O L A) are the ones
that show relatively good performance regarding output quality.

5.1 Choosing the right T S M algorithm

This section was based on [3].

This section compares the three T S M algorithms mentioned above and determines
which one would fit the best for the purpose of Autorapper .

S O L A - b a s e d and P S O L A - b a s e d T S M [] have disadvantages compared to W S O L A -
based T S M . In S O L A - b a s e d T S M the overlap-and-add is performed according to the output
s imilar i ty and therefore the overlap posit ion differs i n each frame. This leads to the fact
that the exact output length is not guaranteed, which could cause some problems i n rhy thm
alignment of the speech. In P S O L A - b a s e d T S M , the output quali ty varies according to the
performance of the pi tch estimation algori thm. Therefore a high quali ty pi tch estimation
algori thm is required which would not be a problem because I had one available from the
school. However, the usage of it also incurs more computat ional complexity. The advantage
of P S O L A - b a s e d T S M is that it can be used to change the pi tch of the signal as well but
this feature is not really needed for Autorapper although it could be used for some possible
extensions. Tha t left us w i th W S O L A - b a s e d T S M algori thm which is discussed in more
detail i n the following sections.

5.2 W S O L A

Waveform Similar i ty and Overa l A d d (W S O L A) is an algori thm for H i g h Qual i ty
Time-Scale Modif ica t ion of Speech. It provides similar output quali ty as the other two
algorithms mentioned above, while having a relatively smaller computat ional complexity.
Another benefit is that the output length of W S O L A - b a s e d T S M is guaranteed (in the end
there were some problems w i t h that which are discussed i n section 7.2.2).

13

5.2.1 Principle of W S O L A

The W S O L A algori thm is used to best align each signal block of the rate changed
signal to the ideal signal block (no rate change) at each frame in order to minimize the dis­
tor t ion due to phase differences at the frame boundaries. The method also uses windowing
in order to reduce the remaining effects of discontinuities at the boundaries between frames.
The frame generation and overlap parameters, along wi th the durat ion of the alignment
offset are a l l a lgori thm variables that are expl ic i t ly specified. The synthesis equation of
W S O L A is:

v{n — kL)x(n + kLa — kL + 5^)

V { n) = ~ £ r , (n - * L) (5 - 1 }

k

where y(n) is the corresponding time-scaled output signal, x(n) is the input signal and v(n)
is a window signal. L represents the overlap-and-add length and a is a time-scale factor.
Basically, if a is lower than 1.0 the length of the signal is expanded. If a is higher than 1.0
the signal is truncated.

frame

xreal

xideal

maxind

xadd

yout

t r
• •
• •

6
t r

i i
i i

640 1 SOD 81 880 161 960 241 1040 321 1120 401 1200
81 720 161 800 24 1 880 321 960 401 1040 481 1120

640 161 800 321 960 357 996 394 1033 554 1193 596 1235

1 161 117 74 154 116 79

1 (640 161 t 800 197
-

836 234 873 394 s ,1033 436 , 107S 479 ,1118

win] •Cn] win] win] w(n] "In! win]

OLA OLA OLA OLA OLA OLA OLA

640 161 800 321 960 481 1120 641 1280 801 1440 961 1600

Figure 5.1: Frame-by-frame W S O L A processing (taken from [6])

Figure 5.1 shows an example of W S O L A processing on each frame i n several steps.
The parameters i n this case are a=0.5 and L=640, the sampling frequency of input signal is
16000 and H a m m i n g window is used. The four arrays xreal, xideal, xadd and yout of length
L are ini t ia l ized in step 0. However, i n the first step the length of xreal array is extended by
8 from both sides which is in this case equal to 80. Another parameter that W S O L A uses
is a frame shift R which is mul t ip l ied by a and represents the number of samples that we
move along the signal i n each i teration (shown as 5k i n formula 5.1). In case of Figure 5.1
the value of R=160. The xideal array contains the samples of signal from the place where
the non-time-scale modified signal would ideally be. The xreal and xideal arrays are then
cross-correlated (maximum index of correlation is represented by maxind) and the result
is put into the xadd array. The signal i n xadd array is then windowed and put into the

14

output array yout at the given indices. This process iterates over the each frame of the
input signal. We can see that after the first 6 steps the yout array is ending at frame 1600
while the xreal is only at 1200 and therefore the signal is being time-extended.

5.2.2 Alignment of speech with a rhythm

To align the speech wi th a rhythm, every syllable is put into W S O L A separately.
Coefficient a determines how do we want to time-scale the given syllable. The a is com­
puted from the original durat ion of the syllable divided by the t ime into which we want to
time-scale the given syllable. Th is t ime is determined by the beat and a predefined rhy thm
that we want. Figure 5.2 shows a graphic representation of the signal before and after
W S O L A processing wi th coeficient a=0.5.

0 2 4 6 8 10 12 14 16 18
x 10*

O 2 4 6 8 1 0 1 2 1 4 1 6 1 8
X 1 0 4

Figure 5.2: Signal before and after W S O L A processing w i t h a=0.5

15

Chapter 6

Towards a real rap

If we want to achieve a rap which is s imilar to the real rap as we know it, it is
necessary to add some external features. Th is really helps to support the rhy thm of the
speech and also hide some possible imperfections of the speech synthesis. This chapter
describes several external features that I added to improve Autorapper as well as definition
of the rhy thm.

6.1 Rhythm

Firs t we have to define a rhy thm that the speech w i l l be aligned wi th using the
principle from section 5.2.2. The rhythms that I used are shown in Figure 6.1. The first
one is a basic quarter notes rhy thm and the second one is an eighth notes rhy thm. Using
these rhythms makes a l l the syllables last the same time. However, because the Czech
language is stress-timed (explained i n Chapter 2) some syllables are stretched and some are
truncated i n order to align them wi th this rhy thm. This makes the speech sound different
from what it was like before and when it is put together w i th the beat it really resembles
a rap.

1 2 3

11 % # l ^ J \ ^ ^ ^ ^ =
1 2 3 4

Figure 6.1: Basic quarter notes and eighth notes rhythms

Al though this rhy thm pattern works good, there is always a place for improvement.
The other possible rhythms could be taken from the famous rappers and used here. There
was also an idea that the rhy thm could be randomly generated i n each measure (4 beats in
this case). So the result of Autorapper would be different each t ime you use it on the same
recording. This is a feature that I would like to add i n the future.

16

6.2 Beat

This is the most important feature that is needed to add. The speech is aligned w i t h
a rhy thm that has to be i n t ime wi th the beat. I used 3 different beats that the user can
choose from. A l l of them were available free at http://www.unbelievablebeats.com/
free-beats-free-downloads [7]. They differ i n their speed (B P M - beats per minute)
and also in their characteristics. The first one is called Bang in Beats and has 93 B P M . It
is characterized by it 's backing vocals. The second one is called 9th Wonder ki t w i th 181
B P M and bongos. The last one is Bat t le kit w i th 209 B P M and a heavy bass.

I could use any number of beats for the users but for now 3 is enough. The durat ion
of each strike i n a beat i n seconds is calculated as 6 0 / B P M . This determines how much
does one note in a predefined rhy thm last. It is possible to put 2 or more notes into 1 strike
depending on the beat and what sounds better.

6.3 Vocal effect

Another feature that is added to the result is a vocal effect. Th is helps to smooth
out the speech and also add some robustness. Several vocal effects exist for example Echo,
Chorus, Delay or Reverb. Sox [] offers most of them, where it is also possible to enter
several parameters describing the intensity of the effect. I decided to use Chorus, which
gave nice results i n case of Autorapper .

6.4 Loop

Accord ing to the user feedback, which is later discussed i n a separate section, I
noticed that people sometimes upload a recording wi th just few sentences. W h e n it is put
into Autorapper , it is usually even speeded up to fit the beat and so the whole rap of the
recording takes only few seconds.

Therefore, I decided to put the rapped speech into a loop and repeat the section over
and over again while the beat is going. The number of loops is counted according to the
desired durat ion of the rap and the durat ion of the beat so it w i l l not exceed it.

17

http://www.unbelievablebeats.com/

Chapter 7

Implementation

This chapter describes the implementat ion details of each of part of Autorapper and
the way that these parts work together. The basic scheme of how the parts are joined
together and what are their inputs and outputs can be seen i n Figure 7.1. The user input
is a speech recording and the choice of the beat. The scheme is described i n the following
section.

User

' &
=*, I

I
fs=

id 1

1

.wav fs=*, beat=*

.wav fs=8000
signed 16bit

.wav fs=44100, beat=*

phoneme
recognizer

1

> phonemes.rec — ^ autorapper.py

- t

wsola.py

rap.wav

beat
loop

chorus

Figure 7.1: Implementation scheme wi th inputs and outputs of each part

7.1 Integration and pre-processing

This section describes how al l the parts of Autorapper are joined together and work
as a one part. The module that takes care about this is a bash script rap.sh. It makes
sure that a l l the parts are executed i n a right order and their inputs are i n correct format
according to the scheme i n Figure 7.1.

18

The conversions of audio signal into different sampling frequency and encoding are
done using Sox []. Sox is also used to add Chorus effect as well as m i x the rap wi th the cho­
sen beat. A l l the beats are saved in a directory and numbered. The module autorapper .py
takes the input recording and the beat number as the parameters. It needs this number to
know what is the speed (B P M) of the beat to align the speech w i t h a rhy thm i n correct
time.

The syllabification is done i n syl() function of autorapper .py module and requires
.rec file from phoneme recognizer to be present. W h e n the syllables are ready the coeffi­
cients for W S O L A are counted for every syllable according to section 5.2.2 wi th respect to
the beat t iming . The W S O L A from wsola.py is called on every syllable and the results are
joined together and wri t ten into the file. After that, the external features are added into
it .

The bash script also takes care about the web service issues such as ftp access to the
web server and invoking the php script on the web server to send the l inks of the rapped
speeches to the users. These are explained i n section 7.5 about the web based application.

7.2 Phoneme recognition

The phoneme recognizer by B U T Speech@FIT was available i n binary form for both
Windows and L i n u x systems. Therefore, I d id not have to compile it myself. It only
needs the recognition system folder to be present. In my case, PHN_CZ_SPDAT_LCRC_N1500
folder for Czech variant. The language variant together w i th other parameters are selected
in execution as ./phnrec -v -c PHN_CZ_SPDAT_LCRC_N1500 -w l i n l 6 - i input.wav -o
output.rec -p -3.0.

7.3 Syllabification

To create the syllables I used P y t h o n language that contains the dictionaries which
I used for mapping the t ime of a phoneme to its value from the phoneme recognizer. The
syllabification is implemented in syl() function in autorapper.py module. The principle of
syllabification basically follows the flowchart shown at Figure 4.1 i n Chapter 4.

The vowels are contained i n an array [' a',' e',' i ' , ' o',' u',' y '] through which
the program iterates and compares wi th the actual phoneme. The phonemes V and '1' are
added to the test separately. W h e n a phoneme contains ': ' meaning that it 's stretched it is
considered to be a vowel as well . This principle seems to work because most of the stretched
phonemes are vowels and the stretched consonants 'r:' and '1:' are probably always used as
a syllable nucleus in this case.

The diphthongs in the result from the phoneme recognizer can be represented in two
ways. It can be just one character for example 'o_u' or it can be two separate vowels 'o'
and ' u ' in a row. In the first case the diphthong is treated as a single vowel. In the second
case a look ahead for a second vowel is used.

The result of the syllabifications are the syllables w i th the t iming composed of the
starting t ime of the first character and the ending t ime of the last character of the syllable.
The spaces between the words are for now considered as a syllable however, i n the final
result Autorapper ignores the spaces at a l l . The result of the syllabification can be seen
in Figure 7.2. The input was an audio book where the given text was „Restaurace Toulos
stoji nedaleko washingtonského Kapitolu ".

19

O00O0O 12200000 pau
12200000 13100000 re
13100000 15500000 sto_u
15500000 16300000 re
16300000 1S10O00O se
18100000 21600000 toau
21600000 26600000 los
26600000 277OOO0O pau
27700000 30300000 sto
303OO0OO 3290OO0O ji- :
32900000 34100000 ne
34100000 35200000 da
35200000 36300000 \e
36300000 377OOO00 go
377OO0OO 3860OO0O vu
38600000 39800000 5i
39800000 420OOOOO nto
42000000 44900000 nske:
44900000 466OOO00 h o
466OO0O0 4780OO0O ka
47800000 49300000
49300000 518OOO0O tol
51800000 66300000 pau

Figure 7.2: Result of syllabification from Autorapper

7.4 W S O L A

This section describes my implementat ion of W S O L A - b a s e d T S M algori thm and it 's
usage to rap the speech. W S O L A is implemented i n wsola.py module as a function taking
3 parameters - the input signal, alpha which is a coeficient by which the length of the
signal should be modified and the framerate of the input signal. The algori thm follows the
principle described i n section 5.2.1.

7.4.1 L i b r a r i e s

To implement W S O L A algori thm I used P y t h o n language. It might not be the most
effective language to do this k ind of computat ion however, it offers several libraries sup­
port ing audio and signal processing which are opt imized and make the work more stable
and easier. The libraries that I used are wave, numpy [11] and a write module from
scipy.io.wavfile [10].

Wave l ibrary was useful for opening the input audio recording and getting its param­
eters such as number of frames, sample width , number of channels and a frame rate. It was
also used for reading the given number of frames from the recording usually one syllable to
separate it from the rest so it can be modified and added into the output.

N u m p y l ibrary was useful for dealing wi th the signal arrays. The frames read by wave
module can be reshaped to a numpy array. N u m p y also offers some audio related methods
such as H a m m i n g window or correlation which were both useful i n implementing W S O L A .

20

Scipy.io.wavfile write module was used only to write the final signal into the file d i ­
rectly from the numpy array so it does not need to be reshaped to the original wave format.

7.4.2 Problems with W S O L A

W S O L A always returns an array that is equal to the input array scaled by the factor
as expected. However, i n the beginning I had a problem that this array was not fully filled
w i th the signal and had some zeros at the end as shown i n Figure 7.2.

Figure 7.3: P rob lem wi th zeroes at the end of signal after W S O L A processing

This caused an unwanted effect i n the result because the spaces between the syllables
could be heard and so the syllables were not continuous. The problem could be reduced
by increasing the sampling frequency. I originally worked wi th 8000 hz sampling frequency
which was the input to the phoneme recognizer as well . Th is frequency was too low for
W S O L A to work properly and the quali ty of the signal was bad as well compared to the
input signal from the users which is usually in higher sampling frequency. Therefore a l l
the inputs for wsola.py are converted to 44100 hz sampling frequency which is usually the
original frequency anyways. This reduced the number of zeros at the end, however, some
zeros s t i l l remained.

Another factor that had an effect on this issue were the constant parameters of
W S O L A . Original ly, the parameters were set to L = 4 0 , R = 1 0 and 5=5. I t r ied to change
the parameters i n different ways and watch the effect that it has on the result. The ones
that worked best were L=20 , R = 5 and 5=5. This mostly fixed the issue although some
zeros s t i l l occur. The effect that it has on the result is min imal .

7.5 Web based application

Autorapper is currently running at www.autorapper.cz. F r o m the user's point of
view the user just uploads a recording and receives a l ink w i t h the result by email . How­
ever, it was impossible to make Autorapper running directly on the hosting web server. I
did not have the rights to instal l the needed libraries there and the phoneme recognizer d id
not work as well . I was able to run a l l the parts of Autorapper on the school's server M e r l i n .
A l though M e r l i n offers a web service as well, the upload_max_f i l e s i z e was not enough for
the average .wav recording that is needed to be uploaded and therefore, I could not run
it this way either. So I had to come up wi th a compromise that a l l the user interactions
as wel l as uploading a file are done on the hosting server while a l l the computations of
Autorapper are done on M e r l i n . The usage of M e r l i n server is just temporary, i n a long

21

http://www.autorapper.cz

run, the service would need to be moved to a separate server. This principle is shown in
Figure 7.4. Its parts are then described i n client side and server side sections.

upload ftp
uploads uploads

web
server

linux
server

web
server (merlin)

email with link ftp
(merlin)

User raps
uploads

notsent

raps

D
D
D

notsent

Figure 7.4: Scheme of the web service of Autorapper

7.5.1 Client side

This section describes the parts that the web server is responsible for, considering it
to be the client side. It is a part that the user interacts wi th .

Firs t ly , it checks the format of recording which must be . wav and whether the user
entered a val id email , which is necessary to get the result. After that, i f the upload
was successful the uploaded file is saved into uploads folder w i th the name composed
of number of beat chosen by user followed by '_' and an email address. For example,
'2_xpolia01@stud.fit.vutbr.cz'. This is an easy way to pass the information to the server
side just by downloading the file. The file is now ready to be processed. The processing
is done by the server side and after that, the rapped file is found i n notsent folder. The
server side executes sendraplinks .php script on the client side, which moves a l l the raps
that are currently in notsent folder into raps folder and sends the links to the users. The
files remain stored i n this folder.

7.5.2 Server side

The server side is responsible for a l l the computations and rapping the speech. In
this case it is the M e r l i n server.

The server side downloads the user's file through ftp from the uploads directory
of the hosting server. Th is is a l l implemented i n rap.sh script mentioned before. The
script may check repeatedly whether there are some new uploads on the client side or it
can somehow get noticed from the client side that the new files have been uploaded and it
should be executed. The number of beat is obtained from the filename and so the script raps
the speech accordingly. After that, the script uploads the file into the client side notsent
folder through ftp and executes sendraplinks .php on the client side to send the links to
the users.

22

mailto:'2_xpolia01@stud.fit.vutbr.cz'

7.5.3 Interface a n d content of the website

I t r ied to come up w i t h as simple user interface as possible. The website contains
only 3 pages - Home, Example and A b o u t . Home is the main page that is shown when
a user enters the website. It is also the page to upload the recording, select the beat and
enter the email for the result. A user can also like the facebook page of Autorapper . A
screenshot of Home page can be seen in Figure 7.5. Example section contains an example
of the speech that was rapped by Autorapper together w i th its original recording. This
section is meant to give the users a basic idea about what Autorapper does. A b o u t section
contains the credits for Autorapper project and the contact information.

Figure 7.5: Interface of Autorapper as a web application

23

Chapter 8

Testing

This chapter describes the ways that I tested Autorapper during the development, as
well as the feedback from the users obtained by the survey. I used several different kinds
of speech recordings i n order to get the idea of what works and what is possible. The table
shows the kinds of recording that I put into Autorapper and quali ty of the results.

Czech audio book satisfactory result
Czech recording by non-native speaker satisfactory result

Slovak recording few mistakes, still acceptable
Recording with background noise not acceptable

Singing not acceptable
English recording not acceptable

The m a i n speech recording which I used to test Autorapper was an audio book
in Czech language. Autorapper is mainly developed for Czech language, so the audio book
was a perfect example of speech without any background noise. The results w i th the audio
book were very nice. One of them is also available on the website as an example of what
Autorapper does. However, the other kinds of speech recordings d id not guarantee such a
good results. Each part of Autorapper is total ly dependent on the previous parts. If one part
fails, the error just accumulates dur ing the following parts and the result is unbearable. The
one part that Autorapper is most dependent on is the phoneme recognizer. If this returns
a failed result, the syllabification cannot create the correct syllables i n any way.

I t r ied to use Autorapper on some Slovak recordings as well . The syllabification
and phonemes of Slovak language are very similar to Czech and therefore I expected a
satisfactory result. The result was not total ly bad, but it was not as good as one from the
Czech recording either. The phoneme recognizer uses its Czech variant for every recording.
It was trained on the Czech samples and therefore I cannot expect the correct results for
the other languages. A possibil i ty to make Autorapper work for other languages as well
would be to detect the language for each recording and switch the variant of phoneme
recognizer accordingly. The phoneme recognizer offers three other languages that could
be used, however, the syllabification for these languages would need to be remade as well.

I also t r ied to put a recording of singing into Autorapper to transform it into a
rap. The result was not good because singing is very different from speech. The syllables
usually last very long and even if the phoneme recognition would be correct, the quali ty of
shortening such a long syllable by W S O L A processing is poor.

24

Autorapper survey
In case yo j haven't tried Autorapper yet it is available at www.autQrapper.cz

How good was the resulting signal quality of Autorapper on your recording?

1 2 3 4 5 6 7 B 9 10

poorquality O O O O O O O O O O very good quality

How good was the coherence of resulting rap with the rhythm ?

1 2 3 4 5 & 7 B 9 10

totally off O O O O O O O O O O Perfect groove

Was the web I nterf ac e cIear enough for y ou ?

1 2 3 4 5 & 7 B 9 10

I d id rft understand it O O O O O O O O O O very simple to follow

H ave you ever s een or us ed anythl ng s I m 11 ar ?

O Ves, this is nothing new.

O l"ve heard of something similar hut I've never tried it.

O Mo, this was my first time.

How do you overally rate your Autorapper experience ?

1 2 3 4 5 & 7 B 9 10

boring O O O O O O O O O O ™ !

Your comments and suggestions.
Please write at least a few lines.

Submit

Figure 8.1: Questionnaire of Autorapper survey

25

http://www.autQrapper.cz

8.1 Autorapper survey

To get the feedback from the users which is especially important in this k ind of
projects, I made a survey composed of the questions shown in Figure 8.1. The users could
rate several aspects of Autorapper on scale from 1 to 10, as well as add their own comments
or suggestions which are especially important . I put a l ink to the survey on the website
of Autorapper , as well as on its facebook page. A few of my friends and other people
participated. Most of them were students in young age.
The results are shown and discussed in section below.

8.1.1 U s e r feedback

A n average score for the first question about the signal quali ty was 7.25. The ques­
t ion about the rhy thm coherence got 8.25 and the question about the web interface scored
8.75. None of the people that took this survey has every seen or used anything similar.
The overall rat ing of Autorapper experience was 8.75. Some people also left the comments
which are shown below:

„The output quality was not a disaster as I thought. It was good but could be better.
Anyways, I completely like the idea. "

J didn't have any wav recording to upload so I just listened to the example. I liked it!"

,J think it has a huge potential!"

,Jt is a good idea. A support for English language as well would be great. "

,J tried several different recordings. Some results were better than the others. Anyways
good job!"

Generally the results of the survey were quite good. However the survey would
need much more people to participate i n order to make a conclusion. A t this time, A u ­
torapper does not have that k ind of community. O n l y 11 people took the survey and some
of them d id not leave any comment. M a n y of the mentioned things could be improved. The
possible improvements are discussed i n section 9.2 about Future. It is also interesting that
none of the people who took the survey has ever tr ied or seen anything similar . The only
one similar applicat ion that I found is Au to rap by Smule and it does not seem to be very
known.

26

Chapter 9

Conclusion

9.1 Summary

In this thesis I became acquainted wi th the phoneme recognizer and the Time-Scale
modification algorithms. I implemented the syllabification and W S O L A algori thm. Using
them I aligned the speech wi th the rhy thm and added external features such as beat and
vocal effect into i t . The result is an application which automatical ly raps the speech running
as a web service. Not a l l the results are perfect. They depend on the k ind of the recording
that is given to the application. The possibilities of usage of the application are open to the
users. The best results could be obtained on the audio books, lectures or public speeches.

9.2 Future

Autorapper has a lot of possibilities and ways how to be improved. The improvements
can be done in each of part of Autorapper .

9.2.1 E a s i l y achievable i m p r o v e m e n t s

The easiest th ing to improve would be to add more beats for the users to choose
from. This could be done by adding more parameters of beats to Autorapper to calculate
the speed of one tick i n rhy thm and align the speech accordingly.

Another th ing that could be easily achievable is to align the speech wi th different
rhy thm patterns. Those could be taken from the songs of the famous rappers.

The quali ty of the Time-Scale modification could be improved by time-scaling only the
voiced part of the syllable instead of the whole syllable. The coefficient of the modification
would be calculated by subtracting the t ime of the unvoiced parts from the desirable time
of the resulting syllable.

9.2.2 M o r e difficult, b u t st i l l possible improvements

The website could be improved as well . I noticed that many people that want to t ry
Autorapper do not have any .wav recording nearby. It would be nice to put a javascript
recorder direct ly on the website and take it as a source of the speech recording. Th is would
make it easier for the users to t ry the application.

A support for other languages would be welcomed as well , especially for Engl i sh . The
phoneme recognizer offers Engl i sh variant but the syllabification would need to be remade.

27

Another idea was to make a rhy thm generator so the rhy thm patterns would be gen­
erated dynamically. Th is would be possible and had an interesting effect on the recordings.

9.2.3 Poss ible exp lo i ta t ion

It would be possible to monetize Autorapper as well . Not i n a sense of paying for
the service but to put the adverts on the website. However, this would need a lot of traffic
on the website i n order to be efficient. So at first Autorapper would need to be publicized
to let the people know that is exists. I set up the facebook page but I have not done any
advertising yet so for now only my friends like it and know about i t . The future of this
project depends on my professional future and I s t i l l have to decide whether I want to run
Autorapper at full-scale or leave it as a nice pet-project.

28

Bibliography

[1] P . Schwarz, Phoneme Recognition based on Long Temporal Context, PhD Thesis, Brno
Universi ty of Technology, 2009

[2] P . Schwarz, P . Matě jka , J . Ce rnocký , Towards Lower Error Rates in Phoneme Recogni­
tion [online], in Proc. TSD2004, Brno, Czech Republ ic , 2004 [cit. 2015-05-16]. Avai lable
at: http://www.fit.vutbr.cz/~schwarzp/publi/2004/tsd2004phn.pdf

[3] F G C N 2010, He ld as part of the Future Generation Information Technology
Conference. Communication and Networking Lnternational Conference, FGCN
2010, FGLT 2010, Jeju Lsland, Korea, December [online]. Ber l in : Springer-Verlag
New York Inc, 2010, s. 155-161 [cit. 2015-05-03]. I S B N 9783642176036. Avai lable
at: https://books.google.cz/books?id=VCa7BQAAQBAJ&pg=PA155&lpg=PA155&
dq=Communication+and+Networking+Complexity+Reduction+of+WS0LA-Based+
Time-Scale+Modification+Using+Signal+Period+Estimation&source=bl&
ots=LmjLDlTDSG&sig=H0jWgifBX-ifE6WP5Zv9V7J9gCk&hl=en&sa=X&ei=lw__VIa_
KdftaP2UgLAD&ved=0CCoQ6AEwAg#v=onepage&q&f=false

[4] D U T O I T , Thierry. Lntroduction to text-to-speech synthesis. Boston: Kluwer Academic
Publishers, 1997, s. 251-269. I S B N 0-7923-4498-7.

[5] Mluvíme s počítačem česky. V y d . 1. Praha : Academia , 2006, s. 582-599. I S B N 80-200-
1309-1.

[6] Waveform Similarity and Overlap Add (WSOLA) for Speech and Audio:
MATLAB Excercise [online]. 07 Feb 2014, 18 A p r 2014 [cit. 2015-05-03].
Available at: http: //www. mathworks. com/mat labcentral/f ileexchange/
45451-waveform-similarity-and-overlap-add--wsola--for-speech-and-audio

[7] UnbelievableBeats.com. F R I E D M A N , Shaun. Unbelievable Beats (ASCAP) [on­
line]. 2014 [cit. 2015-05-03]. Avai lable at: http://www.unbelievablebeats.com/
free-beats-free-downloads

[8] Phoneme recognizer based on long temporal context [online]. Brno University of Tech­
nology, 2004-2006 [cit. 2015-05-03]. Available at: http://speech.fit.vutbr.cz / c s /
software/phoneme-recognizer-based-long-temporal-context

[9] S o X . N O R S K O G , Lance. SoX - Sound eXchange [online]. 1991, 2015 [cit. 2015-05-04].
Available at: http://sox.sourceforge.net/Main/HomePage

[10] Jones E , Ol iphant E , Peterson P, SciPy: Open Source Scientific Tools for Python
[online]. 2001- [cit. 2015-05-04], Avai lable at: http://www.scipy.org/

29

http://www.fit.vutbr.cz/~schwarzp/publi/2004/tsd2004phn.pdf
https://books.google.cz/books?id=VCa7BQAAQBAJ&pg=PA155&lpg=PA155&
http://UnbelievableBeats.com
http://www.unbelievablebeats.com/
http://speech.fit.vutbr.cz/cs/
http://sox.sourceforge.net/Main/HomePage
http://www.scipy.org/

[11] Stefan van der Wal t , S. Chr i s Colbert and Gae l Varoquaux. The NumPy Array: A
Structure for Efficient Numerical Computation, Computing in Science Engineering
[online]. 2011 [cit. 2015-05-04], Avai lable at: h t t p : / / w w w . n u m p y . o r g /

[12] Rapp ing . 2001-. Wikipedia: the free encyclopedia [online]. San Francisco (C A) : W i k i -
media Foundat ion [cit. 2015-05-09]. Avai lable at: h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
Rapping

[13] Isochrony. 2001-. Wikipedia: the free encyclopedia [online]. San Francisco (C A) : W i k i -
media Foundat ion [cit. 2015-05-09]. Avai lable at: h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
I s o c h r o n y

[14] Syllable. 2001-. Wikipedia: the free encyclopedia [online]. San Francisco (C A) : W i k i -
media Foundat ion [cit. 2015-05-09]. Avai lable at: h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
S y l l a b l e

[15] Autorap by Smule [online]. Smule Inc 2012-2014 [cit. 2015-05-10]. Avai lable at: h t t p :
/ /www.smule .com/apps#autorap

30

http://www.numpy.org/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/
http://www.smule.com/apps%23autorap

Appendix A

Content of D V D

Attached D V D contains the following directories:

• pdf - technical report i n pdf format

• latex - source codes of technical report

• web - php source codes and other content of the website

• autorapper - main source codes of Autorapper

— beats - beats used by Autorapper

— PHN_CZ_SPDAT_LCRC_N1500 - Czech recognition system for the phoneme recog­
nizer

• examples - example results from Autorapper

• video - video

31

Appendix B

How to run

The best and easiest way to run the application is through the website, available at
www .autorapper.cz.

To run the applicat ion without using the website, a l l the needed files are contained in
autorapper folder. The main script rap. sh executes a l l the parts of Autorapper . However,
the script contains the ftp connection to the hosting server, from where the input file is
downloaded. To rap the file which is not downloaded from the website, put the file i n .wav
format into the directory and it w i l l behave like the file was downloaded from the website.
The filename must be i n beat_email.wav format, where beat is the number of beat (1-3)
and email is your email address to receive the result.

32

http://www.autorapper.cz

