VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNIHO INZENYRSTVI

FACULTY OF MECHANICAL ENGINEERING

USTAV MECHANIKY TELES, MECHATRONIKY A
BIOMECHANIKY

INSTITUTE OF SOLID MECHANICS, MECHATRONICS AND BIOMECHANICS

VYPOCTOVE MODELOVANI VLIVU PORUCH SIRENI
VZRUCHU NA KONTRAKCI LEVE SRDECNI KOMORY

COMPUTATIONAL STUDY OF THE IMPACT OF DISORDERS IN EXCITATION PROPAGATION ON LEFT
VENTRICULAR CONTRACTION

TEZE DIZERTACNI PRACE
DOCTORAL THESIS SUMMARY

AUTOR PRACE Ing. Jifi Vaverka

AUTHOR

SKOLITEL prof. Ing. Jifi BurSa, Ph.D.
SUPERVISOR

BRNO 2022



Keywords

heart, left ventricle, finite element method, conduction system, left bundle branch, mon-
odomain equation, hyperelasticity

Klicova slova

srdce, levéa komora, metoda koneénych prvku, prevodni systém, levé Tawarovo raménko,
monodoménova rovnice, hyperelasticita

The full version of the thesis is archived at:

Institute of Solid Mechanics, Mechatronics and Biomechanics
Faculty of Mechanical Engineering

Brno University of Technology

Technickd 2896/2

616 69 Brno



Contents
1 Scope of thesis
2 Motivation and objectives

3 Calculation of electrical activation maps
3.1 Computational domain, finite-element mesh . . . . . .. ... .. .. ...
3.2 Discretization and linearization of the monodomain equation . . . . . . ..
3.3 Specification of simulated conditions . . . . ... ... 0000
34 Results . . . . . .

4 Simulations of ventricular contraction
4.1 Passive mechanical properties of myocardium . . . . . . ... .. ... ..
4.2 Inclusion of prestress . . . . . . . . ..o
4.3 Modeling of fibre contraction . . . . . . . .. ... 0oL
4.4 Specification of simulated conditions . . . . .. ... ..o 00000
4.5 Results . . . . . . .

5 Conclusion
References

Curriculum vitae

Abstract

14
14
17
19
19
20

27

28

32

33






1 Scope of thesis

This thesis deals with computational modeling of electrophysiology and mechanics of the
left ventricle (LV) of the heart. These two fields of study are closely related in the context
of cardiac physiology because contraction is induced by electrical activation. It follows
that electrical disturbances in LV affect also its mechanical function, more precisely its
ability to generate blood pressure inside the ventricle and, consequently, to eject sufficient
amount of blood into aorta. This work is focused on one of the most common pathological
conditions affecting the electrical activation of LV — the left bundle branch block (LBBB).
Modern computational methods and various mathematical models, describing different
aspects of LV function, are integrated together in order to investigate the impact of
LBBB on LV function.

2 DMotivation and objectives

The heart is equipped with a network of specialized cells that are responsible for coordi-
nated propagation of electrical signal through the heart. They constitute the conduction
system of the heart. One of the components of the conduction system is the left bundle
branch which is responsible for the electrical activation of the LV. The left bundle branch
splits into a fine network of Purkinje fibres which rapidly distribute electrical impulse
through the internal (endocardial) surface of the ventricle. Because of high conduction
velocity in the left bundle branch and the Purkinje network, the resulting contraction of
a healthy ventricle is fairly synchronous.

The normal electrical activation process is disrupted when the left bundle branch ceases
to conduct the electrical impulse which can arise as a consequence of various anatomi-
cal or functional lesions in the ventricle (e.g. infarction or cardiomyopathy) [1]. Such
conduction defect is called the left bundle branch block. When the block occurs, the LV
is activated by electrical impulse originating in the right ventricle. The activation wave
then propagates from the right side of the interventricular septum to the left through the
LV muscular tissue (myocardium) which conducts with much lower velocities than the
specialized conduction system. Consequently, the electrical activation of LV is prolonged
because of the LBBB.

The disrupted activation pattern necessarily leads to asynchronous and less efficient
contraction of LV [2]. In order to evaluate the impact of LBBB on LV function, several
clinical studies have compared LV ejection fraction! in patients with LBBB against healthy
individuals; e.g. [4, 5, 6, 7, 8]. Their results are summarized in Table 1 and illustrated
in Fig. 1. It can be seen that the results are not entirely conclusive because the reported
decrease in mean ejection fraction ranges from 4 % in [5, 8] to as much as 14.2 % in
[6]. Since the LBBB is usually accompanied by other cardiovascular diseases [1], it is
possible that the large decrease observed by some authors could be partially caused by
some other diseases and, consequently, that the impact of the LBBB was overestimated
in their studies.

Besides reducing the pumping ability of the ventricle, the LBBB was also seen to
alter the motions of the ventricle [9, 10] and it is hypothesized that the asynchronous

!Ejection fraction is the volume fraction of blood ejected from the LV per one beat, expressed in
percents. It is the most widely used measure of the pumping efficiency of the ventricle and an indicator
of the severity of heart failure [3].



contraction due to the LBBB overloads some regions of the ventricular muscle which can
cause tissue remodeling [2].

With regard to the above facts, this thesis aims (i) to develop an electrome-
chanical finite-element (FE) model of human left ventricle capable of simulat-
ing ventricular contraction under different conditions and (ii) to employ the
model to investigate the impact of isolated LBBB on ventricular hemodynam-
ics, kinematics and wall stress.

Table 1: Ejection fractions in healthy individuals (Control) and patients with
isolated left bundle branch block (LBBB) from 5 clinical studies. Values are means
+ SD, n is the number of subjects.

Control LBBB

Grines et al. (1989) [4]  62+5 % (n = 10) 54£7 % (n=18)
Ozdemir et al. (2001) [5] 68 £6 % (n = 65) 64£6 % (n=45)
Valenti et al. (2012) [6]  63.1+5.3 % (n=10) 48.9+6.6 % (n = 39)
Akhtari et al. (2018) [7] 68+6% (n=18)  56+7 % (n = 18)
Aalen et al. (2019) [§] 60+4 % (n=11) 56 £6 % (n=11)
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Fig. 1: Mean ejection fractions & SD in healthy individuals (Control) and patients
with isolated left bundle branch block (LBBB) reported by Grines et al. [4], Ozdemir
et al. [5], Valenti et al. [6], Akhtari et al. [7] and Aalen et al. [8].

This thesis extends the previous research [11, 12| on some closely related topics which
was conducted by me, my supervisor Jifi Bursa and our colleagues from Masaryk Uni-
versity. Within this research, we investigated the importance of experimentally observed
transmural differences in electromechanical delay and myocyte shortening velocity for LV
function [11] and then we studied the impact of decreased conduction velocity on LV pres-
sure rise during isovolumic contraction [12]. The main results of the latter study were that
50% decrease in transmural conduction velocity prolongs the isovolumic contraction by
18 % and decreases slightly the maximum rate of left ventricular pressure rise. Although
these results practically fulfilled the originally formulated goals of my dissertation, we
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eventually decided to develop a new, much more elaborated model capable of simulating
the whole cardiac cycle. Also, we turned our attention to investigating the LBBB which
is nowadays more extensively discussed in literature than the reduced conductivity of
myocardium.

3 Calculation of electrical activation maps

In the simulations of ventricular contraction, it is always necessary to directly prescribe
the spatial distribution of the beginning of contraction in the computational domain €2.
Since the onset of contraction is determined by the time of electrical activation, each
simulation of mechanics must be preceded by a simulation of electrical activity from
which the distribution of electrical activation times (activation map) can be obtained.

3.1 Computational domain, finite-element mesh

An essential requirement for mathematical solution of any physical problem described in
space is a specification of the spatial computational domain 2. In this work, it was defined
on the basis of the publicly available! model of LV geometry which was created by Bai
et al. [13]. A slightly modified version of the model is shown in Fig. 2A and its spatial
discretization by quadratic tetrahedral isoparametric elements is shown in Fig. 2B. The
mesh in the figure will be denoted as 7, where A = 2 mm is the maximum diameter of
the elements in 7;,. A generic element of 7;, will be denoted as K.

A Fendo Fba.se B

-20 o 0
20 20

y X

Fig. 2: (A) The computational domain  which represents normal human LV at the
end of diastole. Its boundary, 052, is formed by endocardial (I'epqo), epicardial (Iep;)
and basal (TI'pase) surfaces. (B) A quadratic tetrahedral mesh with maximum element
diameter h = 2 mm. This mesh was used in the simulations of electrophysiology, as
well as in the subsequent simulations of mechanics.

thttp://wp.doc.ic.ac.uk/wbai/data
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3.2 Discretization and linearization of the monodomain equa-
tion

Propagation of electrical activation in myocardial tissue is mathematically described by
the monodomain equation [14] which in this work was used in the following form:

ov

5 = div (DVv) — Jion © v + Jstim - (3.1)
The above equation is defined in terms of the normalized dimensionless potential v (rang-
ing from 0 to 1), time ¢, the diffusion tensor D, the stimulus current Jg;,, and the artificial
ionic current J;,, which is defined by:

Jion(0) = {a(UQ —v) for ve(0,1) (32)

0 for veR\(0,1),

where o > 0 is a parameter controlling the rate of growth of v. The definition (3.2) is not
intended to represent any real ionic current flowing through the cellular membrane; it was
formulated in order to reduce the computational demands of the monodomain equation
which are extremely high if a real ionic model is used. The stimulus current, Jg;m,, serves
to initiate the growth of v in selected portions of the model (first activated regions). It
is usually prescribed only during the first few milliseconds of simulation; after that the
activation propagates without the need of any external source. Potential v in (3.1) is
considered to be a mapping of the form v: (0,7) x Q2 — R where (2 is the spatial domain
and (0, 7T) is the time interval. The diffusion tensor D governs the velocity of propagation
of activation in three orthogonal directions (propagation is assumed orthotropic [15]). It
can be written as [16]

D=Dif@f+Dss®s+D,n®n, (3.3)

where D¢, Dy, D, are diffusion coefficients (or diffusivities) in the three material directions
depicted in Fig. 3.

sheet-normal

fibre axis

Fig. 3: A scheme of the 3-dimensional structure of ventricular myocardium. Parallel
muscle fibres are represented by vector f. They are arranged in layers, called sheets.
Sheet vector s lies in the plane of the sheet and is perpendicular to f. Sheet-normal
vector n is perpendicular to the other two vectors. (Adopted from [17] and modified).

If we assume that the pseudo-potential v is initially zero (initial condition) and, fol-
lowing [18, 14], that no current flows across the boundary during the whole time interval
(Neumann boundary condition), we can formulate the following initial-boundary value
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problem [19]: Find v: (0,7") x 2 — R such that

% = div(DVv) = Jign 0 v + Jytim  in (0,7) x Q
(DVv)-n =0 in (0,7) x 092 (3.4)
v(0) =0 in Q,

where n is the outward unit normal to the boundary 0f).

The finite-element solution of (3.4) requires to develop the weak formulation of the
problem. To that end, we must express the governing equation (3.4); at a particular time ¢,
multiply the result by a test function u and integrate over € [20]. After some manipulation
of the resulting expression (using the product rule for divergence, the divergence theorem
and the boundary condition (3.4)3), the weak formulation of the original problem (3.4)
can be expressed as follows [19]: Find v : (0,T) — H'(Q) such that v(0) = 0 and for each
t € (0,7) it holds that

/v(t)u + / Vu- (DVou(t)) = —/(Jion ou(t))u+ / Jaim(®)u Yue HYQ), (3.5)
Q Q Q Q
where H'(Q) is the first-order Sobolev space.

The weak formulation (3.5) can be approximated by replacing H'(Q) with its finite-
dimensional subspace V,. For the particular case of the isoparametric mesh 7, in Fig. 2B,
V), is the space spanned by the standard Lagrangian basis functions 1, ..., 9y, , where
Nj, is the number of nodes in 7, (see [21] for more details). The basis functions are
characterized by the property:

@bi(aj) :5ij Vz,j € {1727--->Nh}7 (36)

where a; is the j-th node of T,. Once H'(Q) is replaced by Vj, the following expansions
can be written:

olt) = D vi(t) ¥y, (3.7)

B(t) = D t5(t) ¥y (3.8)

vo(t) = > vV (3.9)
Jstim(t) = Z Jstim,j(t) ¢j ) (310)
Fion 0 0(t) = 3 Jon(v3(1)) ¥ (3.11)

Expressions (3.7)—(3.11) can now be inserted into eq. (3.5) which leads to the following
semi-discrete finite element problem [19]: Find a family of functions v,...,vy, from
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(0,T) to R satistfying v;(0) = 0, such that the mapping v : (0,7) — V) defined by
v(t) = Z;V:hl v;j(t) 1, satisfies, for all ¢ € (0,T), the following condition:

Nh Nh Nh Nh
D Mioi(t) + Y Kijoi(t) = =Y MigJion (v5(£)) + > MijJatim 5 (t)
i=1 i=1 =1 P

Vie{l,...,Ny}, (3.12)

where

M, :=/ij Vij € {1, N, (3.13)

The problem (3.12) is a system of N, nonlinear ordinary differential equations for de-
termination of the unknown functions vy,...,vy,. It can be alternatively expressed in
matrix form:

3.20
3.21

Tion(V(t)) = [Jion(v1 (1)), - -, Jion (v, ()],
Jstim(t) = [Tatim1 (1), - -, Jutimv, (8)] -

Equation (3.15) can be discretized in time using the backward Euler method [20]. One
step of solution from time ¢ to ¢x, is then described by:

Mv(t) + Kv(t) = =M Jion(v(t)) + M Jgtim(t) , (3.15)
where

M = [MZ-»]QQ’FZI, (3.16)

K = [KZ-»]QQ’?ZU (3.17)

v(t) = [oi(t), ... on, ()], (3.18)

V(t) = [0y(t), ..., 0N, ()], (3.19)

(3.20)

(3.21)

Vi41 — Vi
At
where v is the vector of unknown nodal potentials, Jy;y, is a vector of nodal stimuli at

tre1 and Jioy is a mapping from R to itself defined by:

Jion(V) = [Jion(v1), - -, Jon(vn,)] T WV =[v1,...,0nn] € RM. (3.23)

From the computational viewpoint, it is important that Jj,, is nonlinear, owing to the
nonlinear definition of Ji,, by (3.2). Consequently, the discretized equation (3.22) must
be solved iteratively using the Newton-Raphson procedure. The linearized form of (3.22),
which must be solved in each iteration, can be expressed as

M + KVk—H =-M Jion(vk+1) + M Jstim P (322)

(M(Vva) IR K) a=-M (Jm(v) B, SR u) ~Kv,  (3.24)
At At

where u = vy, is the converged solution at time tx, v is the last (non-converged) estimate
of the solution at tx,1, a is an unknown increment that should improve the last estimate
v (i.e. bring it closer to the exact solution), and VJi,, is an N, x N; diagonal matrix
with derivatives of .J;,, on its main diagonal.

The iterative solution based on eq. (3.24) was implemented in Matlab. Details about
the implementation (evaluation of integrals, assemblage of matrices, etc.) can be found
in the full version of the thesis.
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3.3 Specification of simulated conditions

Since the spread of activation is orthotropic [15], it was necessary to rotate the element
coordinate systems of all elements in mesh so that the coordinate axes are aligned with
the local microstuctural directions f, s, n. Experiments showed [22] that f and s direc-
tions are approximately tangent to the wall and that the angle between f and the local
circumferential direction changes approximately linearly between endocardium and epi-
cardium from +60° (right-hand helix) to —60° (left-hand helix). On the basis of these
findings, an algorithm was written in Matlab which assigned to each element in the mesh
its own element coordinate system with properly aligned axes. The algorithm is described
in detail in Sec. 4.11 of the full version of the thesis.

The specialized ventricular conduction system was represented by thin fast-conducting
layers 7,1 and T,;% which are shown in Fig. 4. The position and extent of these layers were
defined on the basis of the three-dimensional reconstructions of the conduction system
published by Stephenson et al. [23]. Within the layers, four sets of nodes were selected
(Spme SyP 5P and S in Fig. 4) in such a manner that their locations correspond with
the early-activated areas in LV described by Durrer et al. [24]. The spread of activation
in the simulations was initiated by electrical stimulus applied to the nodes in these sets.

In order to determine suitable values of diffusion coefficients, several trial simulations
were performed on meshes with simple geometry and small number of elements. All
trial simulations used the same element size h = 2 mm, time step At = 0.5 ms and
rate parameter o = 0.1 ms™! (eq. (3.2)). The same values were used in the subsequent
simulations of LV activation. A particular node was considered activated when its dimen-
sionless potential v reached 0.5. Final chosen values of the diffusion coefficients, producing
approximately the velocities measured in experiments [15, 25|, are given in Table 2.

Table 2: Selected (tuned) diffusivities (1st column) and the
corresponding approximate conduction velocities (2nd column)
for fibre (f), sheet (s) and sheet-normal (n) directions in my-
ocardium and for the fast-conducting layers (fc).

1 1
1

1

Df = 2.5 mm? - ms~ vy ~ 0.67 mm - ms™
D, :=0.53 mm? - ms™! vy ~ 0.30 mm - ms~
D, :=0.18 mm? - ms™* v, ~ 0.17 mm - ms~
Dy, =28 mm? - ms™ Vfe & 2.3 mm - ms™?

Two simulations of the electrical activation of LV were performed, the first repre-
sented the ventricle with intact left bundle branch (control simulation), while the second
represented the ventricle with disabled branch (LBBB simulation).

In the control simulation, both T,* and T,% served as fast-conducting layers. The ele-
ments contained in these layers had prescribed diffusion coefficients Dy, Dy. and D,, re-
spectively in f, s and n directions (n points in a direction transverse to the fast-conducting
layers in which rapid propagation cannot be expected). In all other elements, Dy, D, and
D,, were prescribed in f, s and n directions, respectively. The stimulus currents were
applied according to Table 3. Values of stimuli as well as durations of their application
were determined more or less by trial and error. The goal was to achieve synchronous
activation of S, S} and S} in the control simulation and to delay the activation of
SR by about 10 ms [24] relative to the former three sets.

In the LBBB simulation, the rapid conduction with coefficients Dy., Dy, and D,
was prescribed only in 7,%; all other elements (including those in 7,%) conducted with
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coefficients Dy, Dy and D,,. Stimulus was applied only to SX.

ant
S h

40 .

20 .

-40

-60 P
40

Fig. 4: Fast-conducting layers (orange) and early-activated areas (red) in the model of
left ventricle. Fast-conducting layers represent Purkinje fibres originating from the left
bundle branch (layer 7,X) and the right bundle branch (layer 7,7). Layer T,* covers
lower parts of the left ventricular endocardium and the whole left septal surface. Layer
7;LR covers low right septal surface. Early-activated areas are contained in the layers.
Surface nodes inside the areas form sets S, P, SP°® and S}} on which electrical
stimulus can be applied in simulations.

Table 3: Values of stimuli, Jgim, and time periods of their application, tgim, in the control
simulation and in the simulation of LBBB. Stimuli were prescribed separately to nodes in
sets Sant, SPSP and SR (see Fig. 4).

S S P K
J, stim tstim J, stim tstim J, stim tstim J, stim tstim
(ms™")  (ms) (ms7')  (ms) (ms7!)  (ms) (ms7!)  (ms)
Control 1.0  (0,50) 2.0  (0,50) 1.85  (0,50) 1.6  (10,60)
LBBB 0 - 0 - 0 - 1.6 (0, 50)

12



3.4 Results

Both simulations specified in the previous section were realized in software Matlab R2021b
in which the iterative algorithm based on the finite element method was implemented.
All systems of linear equations were solved using Matlab built-in direct solver.

The total calculated activation time in the control simulation was 102.5 ms which
is within the range of normal values [1]. Total activation time in the LBBB simulation
was 153.5 ms which means that complete depolarization required 51 ms more than in
the control case (50% increase). This prolongation corresponds with values reported in
literature [8, 26]. Activation maps reconstructed from the calculated nodal activation
times are displayed in Fig. 5.

50,

t (ms)

g0 X
40 49

150

100

t (ms)

-40 -

601
-50

T "47‘207 a 7 — ,/" ) . g -20
y 50 0 220 40 50 y

8 X
-40 -40 0
Fig. 5: Activation times measured from the onset of activation in the model; i.e.
t = 0 ms marks the instant of the first occurrence of v > 0.5. Top row: control
simulation, bottom row: LBBB simulation.

Calculated nodal activation times from both simulations were interpolated into ele-
ments’ centroids and the resulting values were saved in order to be used to distribute the
onset of contraction in the subsequent simulations of ventricular mechanics.
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4 Simulations of ventricular contraction

The same FE mesh which was used to simulate the electrical activation (Fig. 2B) was
used also in the simulations of ventricular contraction. However, contrary to the simula-
tions of electrophysiology, which were completely programmed in Matlab, simulations of
mechanics were realized in commercial FE software Ansys Mechanical APDL 2021 R2.

4.1 Passive mechanical properties of myocardium

Passive mechanical properties of myocardium (stress-strain relations) are most often de-
termined by quasi-static biaxial extension tests [27, 28] or by simple shear tests [29, 28].
Biaxial tests are typically performed with thin squared specimens excised parallel to the
ventricular wall, as shown in Fig. 6A. Two parallel edges of the specimens are always
aligned with the mean-fibre direction f, while the other two correspond to a cross-fibre
direction s. However, biaxial tests alone are not sufficient for a complete characterization
of the passive properties of myocardium. In order to capture the response in three inde-
pendent directions, biaxial tests must be complemented by triaxial simple shear tests [28].
These are performed on small cubic specimens with edges aligned with the local f, s, n
directions. Fig. 6B shows six possible shear modes in which the cubic specimens can be
deformed.

Biaxial Triaxial
specimens

specimens !
P fn mode sn mode ns mode

Apex

Fig. 6: (A) Schematic representation of ventricles showing locations from which Som-
mer et al. [28] excised squared biaxial specimens and cubic triaxial shear specimens.
MFD: mean-fibre direction, CFD: cross-fibre direction, LVEFW: left ventricular free
wall, RVFR: right ventricular free wall. (B) Six possible simple shear modes for cubic
myocardial specimens (e.g., the fs mode means simple shear in which the face with
normal vector f is shifted in the direction s). Figure adopted from [28] and modified.

Currently, the only study which provide results from both biaxial and simple shear
tests of human ventricular myocardium is that by Sommer et al. (2015) [28]. The shear
protocol of the study included all six possible simple shear modes and the biaxial testing
protocol included five different strain ratios between the mean-fibre direction and the
cross-fibre direction, namely: 0.5: 1, 0.75: 1, 1: 1 (equibiaxial loading), 1:0.75, 1:0.5.
These experimental data were used in this thesis to estimate the material parameters a,
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b, ag, bg, ags, bgs of the strain-energy function

l:[Jault = l:[Jiso + l:[Jf + l:[st + l:[Jvol

= i (exp(b(l = 3)) = 1) + ;—bff(exp(bf(h ~1)%) - 1)+ 2“; (exp(bes(K1 —1)%) — 1)

+ g(J— )2,
(4.1)

Bulk modulus & in the last term of the above definition was set equal to 1 MPa in order to
achieve approximately incompressible behavior. Invariants J, I;, I, and K; in (4.1) are
defined in terms of the deformation gradient F, the right Cauchy-Green tensor C := F'F,
its cofactor cof(C) = det(C)C™!, and the structural tensors f @ f and n ® n as follows
(17, 30]:

J = det(F),

I = J3tr(C),

I, =tr(C(faf)),

K = tr(cof(C)(n ® n)) .

N TN N TN
O = W N
— N N N

It can be shown that /I is the local stretch of a material fibre aligned with f and /K,
is the local areal stretch of the material surface transverse to n [31]. Thus the term Wg
in (4.1) represents the contribution of muscle fibres, while the term Wg represents the
planar sheets.

The strain-energy function (4.1) is based on the well-known Holzapfel-Ogden model
[17] but it employs the term Wg instead of a term with coupling invariant Iy = tr(C(f®s))
used in the original model. As can be seen from Fig. 7, this new alternative model is very
well capable of reproducing combined biaxial and simple shear responses, although it has
also some drawbacks which are discussed in the full version of this thesis. The responses
of the model plotted in Fig. 7 were obtained by solving a nonlinear least squares problem
by the Gauss-Newton algorithm. The solution was performed in Matlab and the material
parameters obtained from the solution are given in Table. 4 (penalty parameter x was
prescribed in advance and kept fixed during the fitting process).

Table 4: Values of material parameters for the strain-energy func-
tion (4.1) which were used to fit the corresponding stress response
to the experimental data extracted from Sommer et al. [28].

a b as be (gs bes K
(kPa) (=)  (kPa) (-) (kPa) (=)  (kPa)
1.1672 6.4795 1.0270 38.8499 0.2807 11.6417 103

Hyperelastic model (4.1) was implemented into Ansys by means of the general material
subroutine UserMat [32]. The two most important quantities that are needed for the
implementation are the Cauchy stress tensor, o, and the Jaumann tangent stiffness tensor,
¢’, which are both derived in the full version of the thesis.
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Fig. 7: Fit of the model (4.1) (solid curves) to the experimental data extracted from
Sommer et al. [28] (red circles and plus signs). The top 5 graphs show the biaxial
responses while the bottom six graphs compare responses to the simple shear tests.
The material parameters used are given in Table 4. See Fig. 6 for the explanation of
shear modes.
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4.2 Inclusion of prestress

The strain-energy funtion W, defined by (4.1), must be associated with a reference con-
figuration that is stress-free. However, the reference configuration €2, used in this work,
represents LV in its end-diastolic state when the blood pressure of about 2.00 kPa acts
on the endocardial surface and, consequently, the ventricular muscle is already stressed.
Thus, it is necessary to include prestress into €.

An efficient iterative algorithm for inclusion of prestress into FE models was proposed
by Maas et al. [33]. The algorithm is based in the more general theory of virtual configu-
rations proposed by Johnson and Hoger [34, 35]. The algorithm replaces the “standard”

A~

deformation gradient F in constitutive equations by the total deformation gradient F
defined by:

A~

F = FF,, (4.6)

where F, is the prestrain gradient which must be iteratively calculated for each integration
point of every element in the mesh. In the beginning of solution, F}, is set equal to the
identity tensor I (i.e. no prestrain is applied). Afterwards, in every iteration, loads (the
pressure of 2.00 kPa in the present case) and the current estimate of prestrain gradient field
F, are applied to the mesh and a standard FE solution is executed. This solution produces
new deformation gradients F' (one for each integration point) which are multiplied by F,
and the resulting tensors F,F are used in the subsequent iteration as new estimates of
prestrain gradients. The procedure is terminated when the calculated nodal displacements
(upon application of both external loads and the actual prestrain field) are close enough
to zero. In this work, the maximum tolerated displacement was chosen to be 0.5 mm.

Fbase
u, =0

1_‘endo

Fcpi

Fig. 8: Displacement boundary conditions on the basal surface I'y,s¢ Were prescribed
in a cylindrical coordinate system (p, ¢, z). For all nodes in I'},g, the displacement
u; in z direction was set to zero. Additionally, zero displacement w,, in the direction
tangent to the ¢ coordinate was prescribed to all corner nodes (i.e. not to the nodes
in the interior of the edges of elements) situated on the borderline between I'y,q and
Iepi (orange contour in the figure).

The algorithm described above had to be slightly modified because of problems with
convergency. Also, since the hyperelastic model defined by (4.1) is orthotropic, it was
necessary not only to substitute F by F in the definition, but also to replace f and n in
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the definitions of I, and K by their counterparts in the virtual stress-free configuration.
These issues are discussed in the full version of the thesis.

The final displacements before and after inclusion of prestrain/prestress are shown in
Fig. 9. Displacement boundary conditions applied during the solution (and in every other
solution presented in this chapter) are shown in Fig. 8. Fig. 10 shows the distribution of
the first principal stress in the prestressed configuration.
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Fig. 9: (A) Total displacements resulting from the application of the end-diastolic
pressure of 2 kPa on the endocardial surface of the model with no initial prestress. (B)
Total displacements for the same presssure load when iteratively calculated prestrain
gradients were applied.
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Fig. 10: (A) Calculated distribution of the first principal stress in the prestressed ref-

erence conﬁguratlon (the same one that is shown in Fig. 9B). The upper bound of the
contour legend was decreased to 0.050 MPa in order to filter unrealistic stress concen-
trations near some nodes at the base with imposed displacement boundary conditions
an also to obtain better picture of the stress distribution in other parts of the model
(see the full version of the thesis for the original contour plot). Areas with stresses
higher than 0.050 MPa are displayed in gray color (this is the case of only one small
region in the leftmost figure of panel B).

18



4.3 Modeling of fibre contraction

The contraction of muscle fibres can be modeled using the active strain approach [36, 37|
in which the active strain tensor F, is introduced. It is most often defined in the form
136, 37]:

F,=A"'fef+VA(s®s+n®n), (4.7)

where A is the stretch in the fibre direction which must be prescribed. Tensor F,, when
defined by (4.7), can be seen as a deformation gradient which maps a contracted fibre
(which is shortened and widened) back to its resting state (i.e. to its initial length and
cross section). The deformation described by (4.7) is transversely isotropic and isochoric
(det(F,) = 1). In this work, the time-course of A was defined on the basis of the ex-

perimental time-course of unloaded shortening of human myocardial specimen, shown in
Fig. 11

0.9 Amin

0.88

0 200 400 600 800
Time (ms)

Fig. 11: An evolution of axial stretch A during an unloaded contraction of a slim
myocardial specimen cut from human left ventricle. The graph is based on Fig. 1B
of [38]. Since the extent of shortening of the specimen is quite small, the curve had
to be scaled in vertical direction before used in the FE model, so as to achieve lower
minimum stretch A, (i.e. increase the extent of shortening/increase the contractile
force). More details are given in the full version of the thesis.

The active strain tensor F, can be incorporated into the prestressed constitutive equa-
tion, dependent on F, by defining another total deformation gradient in the form:

*

F = FF,F,. (4.8)

If F in the strain-energy function (4.1) is replaced by F (and the structural vectors f
and n are transformed as described in the full version of the thesis), then the resulting
constitutive model will include the influence of initial prestrain, and it will also be capable
of generating the active tension in the fibre direction (by prescribing F, with A < 1).

4.4 Specification of simulated conditions

Experiments have shown that there is a delay between the electrical activation of the
cardiac muscle cell and its mechanical response (onset of contraction) [39]. Moreover, it
was shown that the length of this electromechanical delay changes considerably across
the thickness of the wall [39]. Thus, in order to distribute the onset of contraction in the
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control and LBBB simulations, it was necessary to calculate the value of the delay for each
element in the mesh according to the position of its centroid relative to the endocardial and
epicardial surfaces. This calculation was performed in Matlab using the electromechanical
delays measured by Cordeiro et al. [39] in cells isolated from subendocardial, middle and
subepicardial layers of myocardium. These experimental values were linearly interpolated
across the wall of the FE model. The onset of contraction was then calculated for each
element in the mesh as the sum of its electrical activation time (taken either from the
control or the LBBB simulation) and its electromechanical delay.

Both control and LBBB simulations of LV contraction were governed by the same
algorithm, programmed in Ansys APDL, which automatically changed the conditions of
simulation according to the phase of the cardiac cycle. In the beginning of solution, the
calculated prestrain gradients and the end-diastolic pressure of 2 kPa were applied on the
model. When the elements started to contract, the isovolumic contraction phase began.
During this phase the volume of the ventricle had to be kept approximately constant;
thus in each time step it was necessary to iteratively calculate the value of the endocar-
dial pressure for which this condition was satisfied. When the rising LV pressure exceeded
10.6 kPa (the diastolic pressure), the ejection phase started during which the endocardial
pressure was controlled by the two-element Windkessel model [40]. Parameters of the
model (the arterial compliance Cy, and the total peripheral resistance Ry) were tuned to
give a realistic pressure and volume waveforms. During the ejection phase the volume of
the ventricle gradually decreased. When it started increasing (reversed blood flow), the
ejection phase was immediately terminated and the solution continued with the isovolu-
mic relaxation phase which was modeled in the same way as the isovolumic contraction
phase. Isovolumic relaxation was terminated when the pressure decreased below 1.8 kPa
(left atrial pressure at the end of isovolumic relaxation [41]). The subsequent phase of
ventricular filling was modeled in a very simple manner by prescribing a linear increase
of pressure back to its end-diastolic value of 2 kPa.

The control and the LBBB simulation differed only in the prescribed electrical (and
thus also mechanical) activation times; all other parameters controlling the evolution of
pressure and volume were identical in both simulations.

4.5 Results

Calculated pressure and volume waveforms for the control and the LBBB conditions are
compared in Fig. 12. It can be seen that after the prescription of the activation pattern
representing the LBBB, the systolic pressure (peak pressure on the pressure curves) de-
creased by 4.4 % and the ejection fraction decreased by 2.3 % (from 63.2 % to 60.9 %).
This decrease in ejection fraction is similar to that reported by Ozdemir et al. [5] and
Aalen et al. [8] who observed 4% decrease in patients with LBBB. The curves from Fig. 12
were used to construct the pressure-volume diagrams shown in Fig. 13.

Changes in LV motions, caused by the LBBB, are manifested by enlarged displace-
ments of the ventricular apex in directions perpendicular to the long axis of the ventricle
9, 10]. Fig. 14 shows that these changes are captured also by the FE model. Moreover,
the calculated strain waveforms displayed in Fig. 15 demonstrate that contraction of the
lateral wall of the ventricle is markedly delayed compared to the septal contraction, which
is in agreement with magnetic resonance-based strain measurements in dogs with induced

LBBB [42].
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Fig. 12: Calculated pressures and volumes representing a healthy ventricle (Control)
and a ventricle with the left bundle branch block (LBBB).
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Fig. 13: Calculated pressure-volume diagrams representing a healthy ventricle (Con-
trol) and a ventricle with the left bundle branch block (LBBB). The diagrams are
compared with a real one constructed from the pressure and volume waveforms taken
from the paper by Mitchell and Wang (2014) [41].
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Fig. 14: Displacements u, and u, (corresponding to the global x and y directions, see
Figs. 4 and 5) of the lowest apical node in the FE model during the whole cardiac
cycle. Results are shown for a healthy ventricle (Control) and for a ventricle with the
left bundle branch block (LBBB). Markers denote selected times within the cardiac
cycle (values correspond to the timeline in Fig. 12).
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Fig. 15: Temporal evolution of circumferential and longitudinal strains in the central
part of the right septal surface and in the site across the diameter of the ventricle on
the epicardial surface of the lateral wall. Results are shown for a healthy ventricle
(Control) and for a ventricle with the left bundle branch block (LBBB). Vertical lines
mark the beginning and the end of ejection phase for each simulation. Timeline is the
same as in Fig. 12.
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The last quantity that should be analyzed in this work, according to the goals specified
in Chapter 2, is wall stress. Stresses at the end of diastole were already discussed in
Sec. 4.2. Figs. 16, 17 and 18 below show the distribution of the first principal stress at
another three characteristic stages of the cardiac cycle, namely: the beginning of ejection,
the moment when the LV pressure reaches its peak, and the end of ejection. Just like in
Fig. 10 of Sec. 4.2, unrealistic stress concentrations near the base were excluded from the
plots by restricting the intervals of the contour legends.

At the beginning of ejection (Fig. 16), the stress distribution is almost uniform in the
anterior, lateral and posterior regions of the ventricle, especially on the epicardial surface.
But this uniformity is totally disrupted in the septum where much higher stresses are
concentrated in a narrow band running obliquely across the right septal surface from
the base toward the apex. These concentrations are more pronounced in the LBBB
simulation which is probably because ejection is delayed in this case which means that
the early-activated septum have more time to increase the active stresses. However, it
must be admitted that the accuracy of stresses calculated in the septum and adjacent
regions is somewhat questionable because this study neglected the forces exerted on the
septum by the contracting right ventricle (e.g. the right ventricular pressure acting on
the right septal surface was not taken into consideration).

The moment of peak LV pressure (Fig. 17) is characterized by “banded” stress dis-
tribution which is obviously largely dependent on the prescribed fibre directions. Stress
values in the anterior, lateral and posterior regions of the ventricle are less uniform then
in the previous case. On the right septal surface there is again the band with concentrated
high stresses, but this time the stress values are comparable for both simulations.

The dependence on the fibre directions can be recognized also in the stress field at the
end of ejection (Fig. 18). Substantially increased septal stresses at this moment can be
seen only in the control simulation; in the model with the LBBB, the septum is already
relaxing and so the stresses are reduced.

It should be noted that the calculated stresses shown in the figures are generally far
higher than those for which the hyperelastic model was calibrated. Therefore, it is doubt-
ful whether the predicted responses, calculated for strains that are very far from available
experimental data, are reliable. Unfortunately, this is an inherent disadvantage of the
active strain approach in which a single (total) stress tensor is derived from a particular
strain-energy function which, however, is never designed to reproduce the active stresses.
This disadvantage can be eliminated by using an alternative active stress approach [36, 37|
for modeling of contractile tissues. This approach was, in fact, the first choice for this
thesis, but the implemented algorithm suffered from severe convergence difficulties dur-
ing the ejection phase that could not be overcome. For this reason, the active strain
formulation was eventually used which turned out to be numerically more stable.
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Fig. 16: Calculated distribution of the first principal stress at the beginning of ejection
(A: control simulation, B: LBBB simulation). Upper bound of the contour legend was
decreased to 0.25 MPa in order to remove unrealistic stress concentrations near the
basal nodes with prescribed displacement boundary conditions. Lower bound of the
legend was increased to 0 MPa so that both panels, A and B, use the same contour
lines (for better comparison). Stresses outside the specified interval are shown in gray
color. The actual calculated maximum and minimum stress values are written at the
bottom of the legend along with the precise time of the beginning of ejection.
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Fig. 17: Calculated distribution of the first principal stress at the moment when the LV
pressure reaches its peak (A: control simulation, B: LBBB simulation). Upper bound
of the contour legend was decreased to 0.4 MPa in order to remove unrealistic stress
concentrations near the basal nodes with prescribed displacement boundary conditions.
Lower bound of the legend was increased to 0 MPa so that both panels, A and B, use
the same contour lines (for better comparison). Stresses outside the specified interval
are shown in gray color. The actual calculated maximum and minimum stress values
are written at the bottom of the legend along with the precise time when the peak
pressure was reached.
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Fig. 18: Calculated distribution of the first principal stress at the end of ejection (A:
control simulation, B: LBBB simulation). Upper bound of the contour legend was
decreased to 0.25 MPa in order to remove unrealistic stress concentrations near the
basal nodes with prescribed displacement boundary conditions. Lower bound of the
legend was increased to 0 MPa so that both panels, A and B, use the same contour
lines (for better comparison). Stresses outside the specified interval are shown in gray
color. The actual calculated maximum and minimum stress values are written at the
bottom of the legend along with the precise time of the end of ejection.
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5 Conclusion

Simulations of the left ventricular contraction presented in this thesis indicate that the
LBBB alone does not substantially reduce the pumping efficiency of the ventricle. When
a normal electrical activation sequence was replaced by that representing the LBBB,
the ejection fraction decreased by only 2.3 %, despite the fact that the total electrical
activation time was prolonged by 50 %.

Mechanical consequences of the block were assessed by analyzing displacements of
ventricular apex along with wall strains in the septum and in the lateral wall of the
ventricle. These analyses confirmed that the model captures some basic characteristics of
the LBBB-induced mechanical dyssynchrony, reported in literature. Specifically, apical
displacements were increased in the presence of the block and strain analysis demonstrated
delayed contraction of the lateral wall relative to the septum.

Stresses were analyzed at four characteristic instants within the cardiac cycle: the end
of diastole, the beginning of ejection, the moment when the blood pressure reaches its
peak (i.e. the systolic pressure), and the end of ejection. At all these stages, significantly
higher stresses were observed in or around the septum than in the rest of the model. It is,
however, questionable whether such high stresses truly exist in a beating heart in which
the stress distribution is surely influenced by forces arising from the right ventricular
contraction, which were neglected in the present study (as they were in many other
studies that modeled only the left ventricle, isolated from its surroundings [20, 18, 43, 44]).
However, the results presented in this work suggest that it could be beneficial to take these
interactions between the left and the right ventricle into consideration in the future; at
least the right ventricular blood pressure should be applied on the right septal surface
and the results compared with those presented here.

In regions outside the septum, the stress pattern was markedly influenced by the pre-
scribed fibre directions which emphasizes how important it is to describe the mechanical
behavior of myocardium by anisotropic constitutive equations, and to respect the arrange-
ment of fibres in ventricular walls. Interestingly, stress magnitudes were not considerably
different in control and LBBB simulations, except for the septum.

Besides the ignored influence of the right ventricle, several other shortcomings of the
model are discussed in the full version of the thesis. The strain-energy function proposed in
Sec. 4.1, although seemingly suitable for modeling biaxial and simple shear responses, does
not correctly order the simple shear modes according to their stiffness. This inconsistency
of the constitutive model is barely perceptible in the present case, but the suitability of the
model for the description of myocardial behavior is challenged by this fact. Inaccuracies
were also recognized on the simulated LV pressure curves. The calculated pressure rise
during isovolumic contraction is not entirely realistic, even though the total duration of
the isovolumic contraction phase corresponds well with clinical me