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Abstract 
This doctoral thesis deals wi th computational modeling of contraction of human left 
ventricle using finite element method. The primary goal is to determine the impact of 
the left bundle branch block on ventricular ejection fraction. Addit ionally, changes in 
ventricular motions, strains and stress distribution, resulting from the block, are also 
investigated. Electrical activation of left ventricle under healthy conditions and during 
the branch block is modeled by the monodomain equation coupled wi th an artificial 
ionic model designed to reduce the computational demands of the monodomain equation. 
Conduction velocity in myocardium is considered orthotropic. Calculated activation maps 
show that the left bundle branch block prolongs electrical activation by 50 % which 
agrees wi th clinically observed prolongation of the Q R S complex on E C G . The activation 
maps are subsequently used in the simulations of ventricular mechanics to distribute the 
beginning of contraction throughout the finite-element mesh. Passive mechanical behavior 
of myocardium is described by an orthotropic hyperelastic model. Act ive stresses, induced 
by muscle contraction, are incorporated by means of the time-dependent active strain 
tensor. Contraction starts from a prestressed reference configuration representing the end-
diastolic state of the ventricle. Pressure development during ejection phase is controlled 
by two-parametric Windkessel model. Results indicate that the left bundle branch block 
does not substantially reduce the pumping efficiency of the ventricle; ejection fraction in 
the diseased state decreased by only 2.3 % relative to the healthy conditions which agrees 
wi th some of the previously published clinical studies. Changes in displacements and 
strains, predicted by the model, correspond wi th clinical and experimental observations. 
Stress analyses revealed unexpectedly high stresses in the interventricular septum; further 
analyses with modified boundary conditions have been suggested in order to better assess 
these result. 

Keywords 
heart, left ventricle, finite element method, conduction system, left bundle branch, mon
odomain equation, hyperelasticity 
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Abstrakt 
Tato diser tační práce se zabývá výpoč tovým modelován ím kontrakce levé srdeční komory 
pomocí metody konečných prvků. P r i m á r n í m cílem práce je vyhodnotit v l iv b lokády 
levého Tawarova r aménka na ejekční frakci komory. Dále je vyše t řován dopad blokády 
na pohyby komory b ě h e m srdečního cyklu, na lokální hodnoty pře tvoření a na rozložení 
napě t í ve s těně. P r ů b ě h elektrické aktivace jak zdravé komory, tak i komory s b lokádou je 
modelován pomocí monodoménové rovnice svázané s pseudo-modelem buněčné membrány, 
k terý byl navržen za účelem snížení výpoče tn í náročnost i monodoménové rovnice. Rych
lost šíření vzruchu v myokardu je uvažována or to t ropní . Vypoč í tané časové p růběhy 
elektrické aktivace ukazují, že b lokáda levého Tawarova r aménka prodlužuje dobu de-
polarizace komory o 50 %, což je v souladu s udávanými délkami t r v á n í Q R S kom
plexu na E K G u zdravých jedinců a u pac ien tů s b lokádou. P r ů b ě h y elektrické akti
vace jsou následně využi ty v simulacích kontrakce komory pro p ředepsán í počá tku kon
trakce jednot l ivých p rvků sítě. Pas ivní mechanická odezva myokardu je v těchto simu
lacích p o p s á n a pomocí o r to t ropn ího hyperelas t ického modelu. Akt ivn í napě t í vyvolané 
svalovou kontrakcí je do modelu zahrnuto p ros t ředn ic tv ím časově závislého tenzoru ak
t ivního přetvoření . Do počá tečn í konfigurace modelu, reprezentující stav komory na konci 
diastoly, je před zahájením kontrakce zahrnuto p ředpě t í odpovídaj íc í end-diastol ickému 
t laku v komoře. Časový p růběh komorového t laku b ě h e m ejekční fáze je modelován pomocí 
dvouparamet r ického modelu Windkessel. Výsledky simulací ukazují, že b lokáda levého 
Tawarova r aménka nesnižuje významně čerpací schopnost komory. Predikovaný pokles 
ejekční frakce v důsledku b lokády činí pouze 2.3 %, což je v souladu s něk te rými publiko
vanými klinickými výsledky. Vypoč í t ané časové p růběhy posuvů a pře tvoření ve vybraných 
místech modelu t ak t éž vykazují některé charakteristiky popisované klinickými nebo ex
per imentá ln ími studiemi. V oblasti mezikomorového septa byly pozorovány výrazně vyšší 
hodnoty napě t í než v os ta tn ích částech komory; tyto výsledky však bude n u t n é ověřit 
dalšími výpočty, neboť v současném modelu není septum zat íženo silovými účinky vyvo
lanými kontrakcí pravé komory. 

Klíčová slova 
srdce, levá komora, metoda konečných prvků, převodní sys tém, levé Tawarovo raménko, 
monodoménová rovnice, hyperelasticita 
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1 Scope and plan of thesis 
Computational modeling is nowadays a powerful tool complementing traditional clinical 
observations and experimental studies in our effort to better understand physiological 
processes in human body. It enables to evaluate the severity of functional disorders as 
well as predict the outcomes of medical treatments. This thesis deals wi th computational 
modeling of electrophysiology and mechanics of the left ventricle (LV) of the heart. These 
two fields of study are closely related in the context of cardiac physiology because con
traction is induced by electrical activation. It follows that electrical disturbances in L V 
affect also its mechanical function, more precisely its ability to generate blood pressure 
inside the ventricle and, consequently, to eject sufficient amount of blood into aorta. This 
work wi l l be focused on one of the most common pathological conditions affecting the 
electrical activation of L V - the left bundle branch block ( L B B B ) . Modern computational 
methods and various mathematical models, describing different aspects of L V function, 
wi l l be integrated together in order to investigate the overall impact of isolated L B B B on 
L V function. 

The thesis is divided into six chapters. Chapter 2 starts wi th a basic description 
of the structure and function of the heart. Afterwards, more in-depth information is 
provided about the structure of ventricular wall and arrangement of muscle fibres in 
myocardium. A t the end of the chapter, a fairly detailed description of the time course 
of electrical activation of ventricular myocardium is given. In Chapter 3, the problem 
addressed by the thesis is discussed and individual goals are specified. The chapter also 
gives references to the author's previous work on related topics. The most important 
part of thesis is represented by Chapters 4 and 5 which contain complete step-by-step 
description of the process of creation of computational models of L V electrophysiology 
(Chapter 4) and mechanics (Chapter 5). A t the end of both chapters, the results are 
presented and discussed. The last chapter summarizes the results as well as limitations 
of this work and suggests some potential directions for future work. 
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2 Selected parts from anatomy and physiology of heart 
This chapter presents selected information regarding the structure and function of the 
heart. Its content was selected wi th respect to the subject of this thesis and the amount 
of information included should scarcely exceed the level necessary for understanding of 
the problem addressed by the thesis. 

2.1 Basic cardiac anatomy and function, blood circulation 
The heart consists of four chambers (Fig. 1): the left and the right atrium, and the left and 
the right ventricle. The ventricles are separated from each other by the interventricular 
septum and the atria are separated by the interatrial septum. The left and the right 
side of the heart form two separate pumps that work in series. The flow of blood is 
maintained by coordinated contractions of chambers. Bo th atria contract approximately 
simultaneously and the same applies to the ventricles. Contraction of atria precedes 
contraction of ventricles. The right ventricle pumps deoxygenated blood through the 
pulmonary valve into the pulmonary trunk, which is the first part of the pulmonary circuit 
leading to the lungs. Oxygenated blood returning from the lungs passes through the 
pulmonary veins into the left atrium. Contraction of the left atrium pushes blood through 
the mitral valve into the left ventricle, which in turn propels blood through the aortic valve 
into the aorta. Here the blood starts its route through the systemic circuit, which delivers 
oxygen and nutrients to all parts of the body (except to the parts of the lungs supplied by 
the pulmonary arteries). Deoxygenated blood returning from the systemic circuit enters 
the right atr ium through the superior vena cava and the inferior vena cava. Pressure 
gradient and the contraction of the right atr ium propel blood through the tricuspid valve 
into the right ventricle which completes one circuit of blood throughout the body (during 
which blood passes through the heart twice). 

Aortic arch 

Pulmonary arteries 

Pulmonary trunk 

Pulmonary veins 

Left atrium 

Bicuspid valve 

Left ventricle 
Interventricular septum 

Fig. 1: Internal anatomy of the heart with arrows indicating the flow of blood through 
the heart. (Adopted from [1].) 
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2.2 Cardiac cycle 
The totality of actions and events in heart that occur during one contraction and one 
relaxation of ventricles is called a cardiac cycle. Sometimes the term is also used to refer 
to the corresponding period of time [1]. Each cardiac cycle begins wi th the onset of 
ventricular contraction and consists of systole, during which the ventricles contract, and 
diastole, during which they relax. 1 Systole is further divided into the period of isovolumic 
contraction and the period of ejection, while diastole consists of the period of isovolumic 
relaxation, passive ventricular filling and active ventricular filling [1]. W i t h regard to the 
topic of this thesis, description of these phases wi l l be provided here in terms of the events 
occurring in the left side of the heart. The corresponding pressure and volume changes 
are displayed in F ig . 2. 

Systole Diastole 

I V C E I V R P F A F 

Time (ms) 

Fig. 2: Temporal evolution of left ventricular pressure (PLV)> aortic pressure (PAO)> left 
atrial pressure (PLA) a n d left ventricular volume (VLV) i n normal healthy human heart 
(based on Fig. 1 from [2]). IVC: isovolumic contraction, E : ejection, IVR: isovolumic 
relaxation, P F : passive filling, A F : active filling, SP: systolic pressure, D P : diastolic 
pressure, E D P : end-diastolic pressure, E D V : end-diastolic volume, E S V : end-systolic 
volume. 

Before systole begins, the L V is filled wi th blood, the aortic valve is closed and the 
mitral valve is open. A s the ventricle begins to contract, the ventricular pressure increases, 
causing immediately the mitral valve to close. This initiates the short phase of isovolumic 
contraction ( IVC) during which both valves are closed and so the volume of blood in 
the ventricle is kept constant. The ongoing contraction rapidly increases the ventricular 
pressure, which at some point becomes higher than the current pressure in aorta (the 
diastolic pressure - the lowest value of the aortic pressure). A s a result, the aortic valve is 
pushed open, which starts the ejection phase during which blood flows from the ventricle 
into the aorta. During this phase the aortic pressure reaches its maximum value, called the 
systolic pressure. The flow of blood out of the ventricle finally ceases and the ventricular 

l rThe terms "systole" and "diastole" are also used more generally to denote contraction and relaxation 
of any chamber, including atria. 
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pressure falls below that in aorta. A s a result, blood wi l l tend to flow back toward 
the ventricle, which causes the aortic valve to close. The closure is followed by a slight 
increase in aortic pressure producing the dicrotic notch, or incisura, on the pressure curve 
(see F ig . 2); this is a consequence of an elastic recoil of the stretched aorta [1]. The 
volume of blood left in the ventricle after the closure of the aortic valve is called the L V 
end-systolic volume. Since the mitral valve remains closed as well, the ventricular volume 
does not change during the subsequent isovolumic relaxation phase, only the pressure 
decreases rapidly. Meanwhile, the left atr ium has been filled by the inflow of blood from 
the pulmonary veins. A s the ventricle continues to relax, its pressure becomes lower than 
that in the atrium, which leads to the opening of the mitral valve and passive filling of 
L V . The adjective "passive" means that the inflow is only a result of the pressure gradient 
between the ventricle and veins, which propels blood into the ventricle. This passive 
inflow accounts for ~80 % of the total diastolic filling (under resting conditions) [2]. The 
remaining 20 % is a result of the subsequent contraction of the atr ium (the active filling). 
The amount of blood in the ventricle at the end of diastole (beginning of systole) is called 
the end-diastolic volume and the corresponding ventricular pressure is the end-diastolic 
pressure. 

Normal values of systolic pressure and diastolic pressure are approximately 16 k P a 
and 10.7 kPa , respectively [ l ] . 1 Some other important pressures and volumes can be 
read from F ig . 2 which is exemplary (although interindividual variations in volumes can 
be significant, especially between men and women [3]). If we consider a normal resting 
heart rate of about 70 beats per minute, the corresponding duration of one cardiac cycle 
is approximately 850 ms. Normal resting values of isovolumic contraction time, ejection 
time and isovolumic relaxation time are approximately 40-70 ms, 280 ms and 80-90 ms, 
respectively [4, 5]. 

2.3 Structure of heart wall, fibre arrangement 

Fig. 3: Structure of the heart wall [1]. 

1 In medicine, it is more common to express pressures is millimetres of mercury (mmHg). A n approxi
mate conversion relation is 1 mmHg ss 133.322 Pa. In this work, all pressures will be expressed in pascals 
(Pa) or decimal multiples of pascal (kPa, M P a , etc.) because these units are more common in physics. 
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The wall of the heart consists of three layers of tissue (Fig. 3): the epicardium, the 
myocardium and the endocardium. Epicardium is a smooth thin membrane that covers 
the outer surface of the heart. It is in contact with pericardial fluid, which reduces friction 
between moving heart and the pericardial sac that surrounds it [1]. Myocardium is the 
thickest part of the wall which consists mainly of cardiac muscle cells (cardiomyocytes) 
and, accordingly, is responsible for contraction. Endocardium is a th in layer that covers 
the inner surfaces of the heart and facilitates movement of blood on its interface wi th 
the walls [1]. In ventricles the endocardium is laid over irregular muscle bundles called 
trabeculae carneae, while in atria the interior surfaces are mainly flat [1]. 

Fig. 4: (A) Porcine heart with successively removed layers of the left ventricular my
ocardium. The depth of dissection increases from the base (the top part of the heart) 
to the apex (the lower tip of the heart) and reveals the left-hand helix orientation of 
the subepicardial fibres, the right-hand helix orientation of the subendocardial fibres, 
and the circumferential alignment in the central part of the wall [6]. (B) Helical angle 
as a function of myocardial depth in percent (0 %: subendocardium, 100 %: subepi-
cardium). Results are shown as medians with interquartile range. Data were obtained 
from porcine hearts using diffusion tensor magnetic resonance imaging [7]. Twelve 
different zones of left ventricle were scanned (including the septum where 100 % is 
the right ventricular subendocardium). Separate data for the individual zones can be 
found in the original paper [7]. 

The working units of myocardium are cardiomyocytes, which provide force for the 
ejection of blood. They are elongated cells connected mostly end-to-end but also by side 
branches into a complex three-dimensional mesh with locally distinguishable preferred 
direction [8]. The longitudinal chains of myocytes in this mesh are generally called "fibres" 
even though they are continuous and interconnected wi th no distinct origin nor insertion 
(unlike skeletal muscles) [8]. Fibres are predominantly tangent to the walls, although there 
are also populations of myocytes that are inclined more radially [6]. The orientation of 
fibres wi th respect to the circumferential direction is markedly changing across the wall, 
as clearly shown in F ig . 4A. The sharp angle between the longitudinal axis of a fibre and 
the local circumferential direction is called the helical angle; it is positive when fibres 
form the right-hand helix and negative when they form the left-hand helix [7]. In the 
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end-diastolic state the values of the helical angle in L V vary approximately from +60° in 
the subendocardial layer to —60° in the subepicardial layer [7]. Moreover, this variation is 
almost linear across the wall (Fig. 4B) and fairly uniform throughout the L V myocardium 
[7]-

Fibres in ventricular myocardium are further aggregated (by means of connective tis
sue) into larger structures wi th layered appearance (Fig. 5A) [9]. It is however important 
to note that these layers (which are usually called "sheets" or "sheetlets" [9, 10]) are 
not separated from each other; as F ig . 5 A clearly shows, they are interconnected by 
branches running through the interstitial spaces. Thus there are no discrete bundles of 
myocytes in ventricular myocardium and its structure can perhaps best be characterized 
as a continuous three-dimensional myocardial mesh in which we can locally determine the 
predominant fibre direction and the sheet orientation [10, 6]. This specific microstructure 
determines the electrical and mechanical properties of myocardium, which are naturally 
orthotropic [11, 12] (as wi l l be discussed later). In order to mathematically describe these 
properties, it is common to introduce a local orthonormal basis defined by the fibre vector 
f (aligned with the predominant fibre direction), the sheet vector s (in the plane of the 
sheet, perpendicular to f) and the sheet-normal vector n (perpendicular to the sheet); 
see F ig . 5B. The distribution of these vectors in some region within the wall can be de
termined by a non-invasive technique known as the diffusion tensor magnetic resonance 
imaging (e.g. [7, 13]). In vivo measurements using this technique [13] revealed that the 
sheet orientation (represented either by s or n) in L V considerably changes during systole 
(much more than the helical angle calculated from f does). A t the beginning of systole the 
sheets are almost tangent to the wall [7, 13], while at its end they are oriented much more 
radially [13]. This reorientation represents a predominant mechanism of the thickening of 
L V wall during systole (>35 %) [13]. 

Fig. 5: (A) A n electron microscopic image of a section through the left ventricular wall 
(perpendicular to the fibres) showing how individual fibres are aggregated together in a 
layered fashion [9]. (B) A scheme of the 3-dimensional layered structure of ventricular 
myocardium with the corresponding structural vectors (modified from [14]). 
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2.4 Electrical activation of heart 
Contraction of cardiomyocytes is initiated by their electrical activation. A myocyte is 
activated when its membrane potential 1 increases from its resting value (approximately 
—83 m V [16]) to the threshold potential (approximately —60 m V [16]). In tissue, this 
occurs as a result of a flow of ions between adjacent interconnected cells [1]. Act ivat ion 
of a cell then gives rise to a sequence of changes in the permeability of ionic channels in 
cell membrane. The resulting exchange of ions between intra- and extracellular spaces 
is reflected by a specific time course of membrane potential, which is called the action 
potential. A s can be seen from F ig . 6, the shapes of the action potentials in L V vary across 
the thickness of the wall. The init ial rapid increase of potential is called a depolarization 
of the membrane; it lasts only about 1 ms [17] and, as wi l l be discussed later, critically 
increases computational demands of computer simulations of action potential propagation 
[17, 18]. Once a cell is depolarized, it becomes a source of activation for its neighboring 
cells because the depolarization initiates exchange of ions leading to the increase of the 
neighboring cells' membrane potential [1]. 

mV 

-80 

400 ms 
subepicardial 

400 ms 
subendocardial 

Fig. 6: Action potentials recorded from human myocytes isolated from the subepicar
dial (A) and the subendocardial (B) layer of the left ventricular anterior wall [19]. 

The heart is equipped with a network of modified cardiomyocytes that are responsible 
for spontaneous generation and coordinated propagation of electrical signal through the 
heart. They constitute the conduction system of the heart, whose main components are 
shown in F ig . 7. Electrical impulses originate in the sinoatrial node (which is therefore also 
called the pacemaker of the heart [1]) from which they spread through the atria causing 
them to contract. Ventricles are electrically insulated from atria by the cardiac skeleton, 
which is a plate of fibrous connective tissue around the valves [1]. The only electrical 
connection between atria and ventricles is represented by the atrioventricular bundle [1] 
(also known as the bundle of His or His bundle [15]), arising from the atrioventricular node. 
This node delays the passage of signal to the ventricles in order to let the atria complete 
their contraction before ventricular contraction begins [1]. The atrioventricular bundle 
leads into the interventricular septum where it splits into the right bundle branch and the 
left bundle branch. Each branch descends the endocardial surface on the corresponding 
side of the interventricular septum and splits into a fine network of Purkinje fibres which 

1 Membrane potential (or transmembrane potential) is defined as a potential difference between intra
cellular and extracellular spaces. The sign is given by the convention that the extracellular electrode is 
used as a reference [15]. Thus, if ip\ and ipe are intra- and extracellular potentials, then the membrane 
potential V = ipi — ipe. 
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at discrete sites, called the Purkinje-ventricular muscle junctions, are in contact wi th 
ventricular myocardium [15]. These junctions are situated in the subendocardial layer of 
myocardium [15] and only through them the electrical signal can pass to the myocardium 
because, apart from the junctions, Purkinje fibres are isolated from myocardium by thin 
fibrous sheaths [20, 15]. In ventricular myocardium the activation spreads from cell to 
cell (by means of the exchange of ions mentioned earlier) unti l the whole muscular tissue 
is depolarized. 

Sinoatrial 

Fig. 7: Schematic representation of the conduction system of the heart [1]. 

Transition of the bundle branches into the Purkinje network as well as anatomy and 
location of these structures was thoroughly studied by Stephenson et al. (2017) [21] who, 
by means of contrast enhanced micro-computed tomography wi th "spatial resolutions 
approaching the single cell" [21], obtained accurate three-dimensional representation of 
the cardiac conduction system in human heart. They observed the right bundle branch 
"to project anteriorly onto the interventricular septum as a superficial narrow ribbon, 
which then descended the septum..." The bundle then "became continuous wi th the 
Purkinje network," which, as the reconstructions presented in their paper clearly show, 
was concentrated in the lower parts of the right ventricular cavity. 

The structure of the left ventricular conduction branch is somewhat more elaborate, as 
already described Tawara in 1906 [22] (see F ig . 8). Stephenson et al. (2017) [21] described 
the left bundle branch proximally as "a broad sheet-like structure draped over and down 
the left basal surface of the muscular ventricular septum." More distally, then, the bundle 
"took on a tri-fascicular appearance, permitting identification of the anterior, septal and 
posterior fascicles." The fascicles appeared as "wide ribbon-like structures running on 
the endocardial surface," which then "gave rise distally to the Purkinje fibres." They 
described the Purkinje network in L V as having a "cone-like appearance" and from their 
graphical reconstructions (see [21]) it is obvious that, except the septum, the fibres are 
concentrated in the lower parts of the L V , specifically in the subendocardial layer. It was 
observed by others that septal fascicle in some cases is not separate, but rather formed 
from smaller branches of the two other fascicles [23]. 
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Anter ior 
fascicle 

Septal ' 
fascicle 

i r ~ ~ r ^ 5 ^ Purkinje 
f ibres 

Left bundle 
branch 

Posterior 
< fascicle 

Fig. 8: Drawing from the pioneering work of Tawara (1906) [22] in which he first 
described the structure of the ventricular conduction system. The left bundle branch 
divides into the anterior, septal (or middle) and posterior fascicles. 

Since the purpose of the Purkinje fibres is to rapidly distribute excitation through the 
ventricles in order to achieve synchronous contraction, they conduct wi th much higher 
velocity than myocardial cells. Kleber et al. (2011) [24] collected 8 different values of 
conduction velocity from 8 published experimental studies; they range from 1.76 m m • 
m s " 1 to 3.50 m m • m s " 1 and the average is 2.28 m m • m s - 1 . Conduction velocity in L V 
myocardium is not only lower, but also highly influenced by the laminar arrangement of 
myocytes described above in Sec. 2.3. This is evident from the results of Caldwell et al. 
(2009) [11] who analyzed microstructure and electrical activity in the same volumes of L V 
tissue. They concluded that conduction velocity is orthotropic wi th principal directions 
of propagation coinciding with those determined by the local microstructure (in F ig . 5). 
The measured conduction velocities were (mean ± SD): 0.67 ± 0.019 m m • m s - 1 in f 
direction, 0 . 3 0 ± 0 . 0 1 0 m m - m s - 1 in s direction and 0 . 1 7 ± 0 . 0 0 4 m m - m s " 1 in n direction. 
These values agree well wi th results of many other authors (see a summary in [24]) who, 
however, generally assumed transversely isotropic conduction in myocardium. 

Depolarization of ventricles starts from the locations of Purkinje-muscle junctions. Ex 
perimental study by Durrer et al. (1970) [25], which presented contour maps of electrical 
activation times measured in isolated human hearts, identified three early-activated areas 
in L V endocardium (see F ig . 9, top row): "(1) an area high on the anterior paraseptal 
wall just below the attachment of the mitral valve, extending at least 2 cm toward the 
apex into the region of the anterior papillary muscle; (2) a central area on the left surface 
of the interventricular septum; (3) the posterior paraseptal area at about one third of the 
distance from apex to base." According to the authors, this ini t ial activation pattern was 
consistent among different hearts, but as activation continued, some individual variations 
occurred (see the bottom row of F ig . 9). The presence of three early-activated areas 
in L V is in agreement wi th the above described division of the left bundle branch into 
three fascicles (Fig. 8). Endocardial activation of the right ventricle was observed to start 
"about 5 to 10 msec after the onset of the left ventricular cavity potential, or slightly 
later" [25]. It begins near the insertion of the anterior papillary muscle and in the low 
anterior part of the right septal surface [25, 15]. This corresponds wi th the anatomical 
findings of Stephenson et al. [21] who described that Purkinje fibres supply mainly the 
apical region of the right ventricle. 

A total time necessary for a complete depolarization of both ventricles can be clinically 
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Fig. 9: Isochrone maps of electrical activation times measured in isolated human hearts 
by Durrer et al. (1970) [25]. Top row: Horizontal sections taken at (from left to right) 
basal, central, and apical regions of one heart. Locations of the first activated areas (in 
pink) were consistent between different hearts. Bottom row: Nearly identical sections 
of two different hearts showing some variation in the activation pattern. Activation 
times are expressed in milliseconds following the onset of electrical activity in left 
ventricle. M V : mitral valve, LV: left ventricle, RV: right ventricle. 

measured as a duration of the Q R S complex on the electrocardiogram [15]. This duration 
was observed to slightly decrease with increasing age and to be generally longer in men 
compared to women because men have larger hearts that take longer to depolarize [15]. 
Specifically, for a group of healthy persons aged 18-29 years Macfarlane et al. [15] report 
Q R S durations (mean ± SD) 96.4 ± 8.6 ms (n = 265) and 87.7 ± 7.8 ms (n = 317) 
respectively for men and women, and for persons over 50 years they report 92.7 ± 9.3 ms 
(n = 123) and 87.1 ± 8 . 7 ms (n = 79) respectively for men and women. These values should 
provide a good estimate of normal ventricular activation times across the population. 
They are, however, apparently inconsistent wi th the experiments of Durrer et al. [25] in 
which total excitation of isolated hearts took only about 65-80 ms (see their F ig . 4). The 
source of this discrepancy was identified by the latter authors themselves. Their control 
measurements on dogs' hearts, performed first in situ and then after the removal of each 
heart from the body, revealed that although the isolation does not change the overall 
pattern of electrical activation, it substantially increases ventricular conduction velocity. 
Thus the reported activation times (Fig. 9) wi l l be about 20 % higher in a beating heart 
[25] which means that total excitation wi l l take about the same time as the normal Q R S 
complex, as it should. 

The last activated region in ventricles is generally located in the posterobasal portion 
of the L V free wall or more laterally [25]. 
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3 Motivation and objectives 

The normal electrical activation process described in Sec. 2.4 can be disrupted by a wide 
variety of conduction defects. If a conduction defect is characterized by a delay or complete 
interruption of conduction of electrical stimulus in some part of the heart, it is called 
a block [15]. Thus, we distinguish the left bundle branch block, the right bundle branch 
block, the left anterior fascicular block, the left posterior fascicular block and other blocks, 
including combined ones which affect more than one conduction branches (see [15] for a 
list). If conduction through a given part is totally interrupted, the block is called complete; 
if it is only delayed, the block is incomplete [15]. The above examples of conduction blocks 
all belong to the class of the intraventricular conduction defects since they all occur at 
the ventricular level [15]. Analogously, the defects occuring in the atria are called the 
intraatrial defects. 

Intraventricular blocks can arise as a consequence of various anatomical or functional 
lesions in ventricles, including myocardial fibrosis, infarction, cardiomyopathies, coronary 
artery disease, ischaemia, or hyperkalemia [15]. Even when they are not directly caused 
by an underlying cardiovascular disease, they are most often accompanied by one or more 
of them [15, 26]. The degree of reduction of systolic function is then determined by the 
cumulative impact of all coexisting abnormalities and it might be difficult to correctly 
assess the contribution of the block alone. Thus there is a danger that the impact of 
the block wi l l be either underestimated or overestimated. This is especially the case of 
the complete L B B B , which is the most common conduction defect in patients wi th heart 
failure [27]. 

The L B B B frequently occurs in conjunction with coronary artery disease, hyper
tension, cardiomyopathy, L V hypertrophy, mitral regurgitation and other abnormalities 
[26, 27]. The Comprehensive cardiology (2010) [15] by Mcfarlane et al. describes the 
pattern of electrical activation in complete L B B B as follows: "When the conduction of 
the electrical impulse through the main left bundle branch (or through its two or three 
subdivisions) is interrupted or severely delayed by any type of disease process, the ven
tricular excitation wave is conducted through the right bundle branch. Act ivat ion wi l l 
then begin low on the right septal surface, in the region corresponding, on the left side, 
to the base of the anterior papillary muscle. From there, the wave of excitation spreads 
to the right ventricle and transeptally to the left ventricle, which is reached from right 
to left, at a much lower speed, by conduction from one muscular fiber to another." The 
disrupted activation pattern necessarily leads to asynchronous contraction which reduces 
an efficiency of L V mechanical function. Smiseth & Aalen (2019) [26] described the mech
anism of deterioration of L V contraction as follows: "In L B B B , the early activated septum 
contracts when the L V lateral wall is fully relaxed, and rather than contributing to L V 
ejection, septal contraction displaces blood towards the lateral wall that is stretched to 
abnormally high preload. When the lateral wall is activated, it contracts vigorously ac
cording to the Starling mechanism, and displaces blood back towards the septum that is 
stretched and displaced towards the right ventricle. When the septum is stretched and 
displaced, it absorbs energy from work performed by the L V lateral wall, which can be 
assessed as wasted work in the septum." This mechanical dyssynchrony is manifested by 
enlarged displacements of the L V apex in directions perpendicular to the long axis of the 
ventricle [28, 29]. This phenomenon is called "apical rocking" and it can be observed on 
echocardiographic images. It is also hypothesized [26] that the asynchronous contraction 
due to the L B B B overloads some regions of the ventricular muscle. Increased stresses in 
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the wall can cause further damage to the ventricle because they alter regional coronary 
blood flow, increase oxygen consumption and induce tissue remodeling [30]. 

In order to evaluate the separate impact of L B B B on L V function, several clinical 
studies have compared L V ejection fraction 1 in patients wi th isolated L B B B (i.e. without 
evidence of any other heart disease) against healthy individuals; e.g. [32, 33, 34, 35, 36]. 
Their results are summarized in Table 1 and illustrated in F ig . 10. It can be seen that the 
reported decrease in mean ejection fraction ranges from 4 % in [33, 36] to as much as 14.2 % 
in [34]. In the last mentioned study, the mean ejection fraction in the L B B B group even 
fell below 50 % which is generally considered a sign of L V systolic dysfunction [4]. This 
slightly contradicts the general belief that normal ejection fraction is usually preserved 
in isolated L B B B [26] and confirms that the impact of the block on L V performance is 
currently not entirely clear. 

Table 1: Ejection fractions in healthy individuals (Control) and patients with 
isolated left bundle branch block (LBBB) from 5 clinical studies. Values are means 
± SD, n is the number of subjects. 

Control L B B B 

Grines et al. (1989) [32] 62 ± 5 % (n -= 10) 54 ± 7 % (n -= 18) 
Özdemir et al. (2001) [33] 68 ± 6 % (n -= 65) 64 ± 6 % (n -= 45) 
Valenti et al. (2012) [34] 63.1 ± 5.3 % (n = 10) 48 9 ± 6.6 % (n = 39) 
Akhta r i et al. (2018) [35] 68 ± 6 % (n -= 18) 56 ± 7 % (n -= 18) 
Aalen et al. (2019) [36] 60 ± 4 % (n -= 11) 56 ± 6 % (n -= H ) 
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Fig. 10: Mean ejection fractions ± SD in healthy individuals (Control) and patients 
with isolated left bundle branch block (LBBB) reported by Grines et al. [32], Özdemir 
et al. [33], Valenti et al. [34], Akhtari et al. [35] and Aalen et al. [36]. 

1Ejection fraction is the volume fraction of blood ejected from the L V per one beat, expressed in 
percents. It is the most widely used measure of the pumping efficiency of the ventricle and an indicator 
of the severity of heart failure [31]. 
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The lack of conclusive clinical results encourages the usage of computer models in the 
study of pathological consequences of L B B B . However, although there are many models in 
literature investigating the impact of L B B B on ventricular electrophysiology (see a review 
[37]), simulations of L V mechanics and hemodynamics are scarce. In fact the study by Dou 
et al. (2009) [38] seems to be the only one that presents the values of ejection fraction for 
both healthy and L B B B conditions. But their simulated decrease from 55.0 % (healthy) 
to 21.7 % ( L B B B ) seems unrealistic compared to the values in Table 1. This discrepancy 
can probably be attributed to the (over)simplified model which the authors used. For 
instance, the mechanical behavior of myocardium was modeled as transversely isotropic 
and linearly elastic which is far from reality [39, 12]. Quarteroni et al. [40] simulated 
L B B B with much more elaborated model, but their paper was devoted mainly to the 
numerical techniques used in cardiac computational models and the simulation of L B B B 
was intended only as a demonstration of the capabilities of their model [40]. It is probably 
for this reason that they did not present any hemodynamic results of their simulations. 
Unfortunately, no other computational studies investigating the impact of L B B B on L V 
mechanics and hemodynamics have been found in literature. 

W i t h regard to the above facts, this thesis aims (i) to develop an electrome
chanical finite-element (FE) model of human left ventricle capable of simu
lating ventricular contraction under different conditions and (ii) to employ 
the model to investigate the impact of isolated L B B B on ventricular hemody
namics, kinematics and wall stress. The primary goal is the assessment of ejection 
fractions. Kinematics of the model wi l l be analyzed in order to verify its ability to re
produce the reported changes in L V motions. Stress analysis can yield valuable results 
because stresses in myocardium cannot be directly measured in vivo [30]. 

It should be added that this thesis extends the previous research [41, 42] on some 
closely related topics which was conducted by me, my supervisor J i ř í Bursa and our col
leagues from Masaryk University. W i t h i n this research, we investigated the importance of 
experimentally observed transmural 1 differences in electromechanical delay and myocyte 
shortening velocity for L V function [41] and then we studied the impact of decreased con
duction velocity on L V pressure rise during isovolumic contraction [42]. The main results 
of the latter study were that 50% decrease in transmural conduction velocity prolongs the 
isovolumic contraction by 18 % and decreases slightly the maximum rate of left ventric
ular pressure rise. Since the scope of my dissertation topic was originally l imited to the 
investigation of the impact of slowed myocardial conduction on isovolumic contraction 
phase, the above results already fulfilled the main goals of my research. However, it soon 
became clear that the simulations of isovolumic contraction are insufficient for evaluation 
of the consequences of slowed conduction. Moreover, the F E model used in the above 
studies was too simplistic and its potential applicability for other conduction defects was 
hardly possible. For these reasons, it was finally decided to start building a new, much 
more elaborate model of L V which is presented in this thesis and which overcomes many 
of the limitations of the older model. Since the new model has much broader applica
bility, we eventually turned our attention to investigating the L B B B which is nowadays 
more extensively discussed in literature than the reduced conductivity of myocardium. I 
believe that this topic has greater potential to be further explored by future students and 
to extend the research activities of our department. 

The adjective "transmural", which will occasionally be used throughout this work, means "through 
the wall of an organ; extending through or affecting the entire thickness of the wall of an organ or cavity" 
(www. thefreedictionary. com). 
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4 Calculation of electrical activation maps 
From the computational viewpoint, the quantities of interest in this thesis, as specified 
in the goals formulated in the previous chapter, can be regarded as outcomes from the 
simulations of L V mechanics. Changes in L V volume, which determine the ejection frac
tion, as well as wall stresses arise primarily as a result of the muscle contraction which 
therefore, in some way, must be incorporated in the simulations. Regardless of the cho
sen approach, it is always necessary to directly prescribe the spatial distribution of the 
beginning of contraction in the computational domain (possibly uniform in some simpli
fied models). In a heart this onset of contraction is determined mainly by the time of 
electrical activation which, as already discussed in Sec. 2.4, is not uniform throughout 
the L V myocardium. Thus, if the t iming of contraction cannot be prescribed from some 
other data, the simulation of mechanics must be preceded by a simulation of electrical 
activity from which the distribution of electrical activation times (activation maps) can 
be obtained. 

In this chapter, first the computational domain wi l l first be specified, which wi l l then be 
used throughout the rest of this thesis. Afterwards, the mathematical model of electrical 
activity in cardiac tissue wi l l be introduced and the way of obtaining the activation maps 
from its solution wi l l be explained. The rest of the chapter wi l l be dedicated mostly to 
the description of individual steps of F E solution of the model. In the course of this 
description a F E mesh wi l l be presented which wi l l later be used also for the simulations 
of L V mechanics. In the end of the chapter, two calculated activation maps are presented, 
one representing a normal healthy activation and the other representing a ventricle wi th 
L B B B . 

4.1 Computational domain 

A n essential requirement for mathematical solution of any physical problem described in 
space is a specification of the spatial computational domain Q. Combining requirements 
given by Truesdell [43] and Quarteroni [40] (and assuming that we describe problems in 
3 dimensions), we can characterize domain as a regularly open, bounded and connected 
subset of a 3-dimensional Euclidean space. In order to make applicable the divergence 
theorem (and other integral theorems), it is also commonly assumed that the boundary 
dfi of a domain is piecewise smooth. 

In this work, Q w i l l be specified on the basis of the publicly available 1 "mean shape 
model" of L V which was created by B a i et al. [44] and is shown in F ig . 11 A . The model 
represents an average normal human L V at end-diastole and was calculated from high-
resolution magnetic resonance images of over 1000 healthy subjects (see [44] for details). 
It is provided as a set of points in a 3-dimensional Cartesian space M 3 along wi th a 
set of triangular elements which connect the points and together form the closed surface 
depicted in F ig . 11 A . In order to improve quality of future F E meshes and also to facilitate 
prescription of kinematic boundary conditions at the base (which is highly irregular in 
the original model), the surface was first smoothed and then its basal portion was cut 
out by a plane perpendicular to the long axis of L V . 2 The first of these operations was 
realized in software G O M Inspect 2018, while the second in Ansys I C E M C F D 2021 R2. 

1http://wp.doc.ic.ac.uk/wbai/data 
2 T h e long axis is the line that passes through the center of the mitral valve orifice and the left 

ventricular apex [45]. In Fig. 11A it is represented by the blue z axis. 
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The resulting surface, which is shown in F ig . 11B, is the union of endocardial ( r e n d o ) ; 
epicardial ( r e p i ) and basal ( F b a S e ) surfaces. Points inside this union (not lying on the 
surfaces) constitute the reference configuration Q and the union itself forms the boundary, 
i.e. dfl = r e n d o U r e p i U r b a s e . The volume of the L V cavity (enclosed by r e n d o and the 
basal plane) in the final model is approximately 137 m l which is well within the range of 
normal values of end-diastolic volume [3]. 

Fig. 11: (A) The original model representing an average normal human L V at end-
diastole. Transparent view shows the contour of the endocardial surface as well as the 
global Cartesian coordinate system. The global z axis (blue) coincides with the long 
axis of the ventricle, x axis (red) points toward the septum, and y axis (green) points 
toward the anterior wall. Position of the origin on the long axis is arbitrary and has 
no particular meaning. (B) The resulting surface is the union of endocardial ( L e n d o ) ) 
epicardial ( L e p i ) and basal ( L b a s e ) surfaces. 

Since we are aiming toward F E solutions, we can already expect that boundaries of 
the eventual F E meshes wi l l not perfectly coincide wi th dQ, which means that numerical 
solutions wi l l actually be realized on a domain different from Q. We wi l l denote such 
discretized domain as Qh [40] where h is a parameter characterizing the spacing of the 
mesh (see below). The set flh is an approximation of Q induced by some mesh Th- A mesh 
is a collection of finite elements which, in the present case, are closed subsets of M 3 wi th 
sufficiently simple shape and specific topology. 1 A generic element in Th w i l l be denoted 
by K. For each K G Th we can define its diameter hx '•= max {\\x — y\\ \ x,y G K}, which 
is the maximum of distances of all possible pairs of points from K. We can then specify 
h := m a x { / i x | K G T}, which is the maximum diameter of all elements in the mesh. 
Given Th, the discretized domain is defined as the interior of the union of all members 
of Th [40], i.e.: 

The closure flh of £lh is the set inside the parentheses in (4.1). It satisfies: Qh = Qh^dQh-

1Complete list of conditions on meshes and a formal definition of a finite element provides, e.g., Ciarlet 
[46]. 
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4.2 The monodomain model, activation maps 
Propagation of electrical activation in myocardial tissue is mathematically described by 
the so-called monodomain model, or monodomain equation, which can be written as 1 [18] 

^ = div ( D W ) - J i o n (V, u) + J s t i m , (4.2) 

where V is the membrane potential, t is time, D is the diffusion tensor, J i o n represents the 
ionic current through membrane channels, J s t i m represents the stimulus current and u is a 
vector of cell-level variables, such as ionic concentrations and membrane gating variables. 2 

A solution of the monodomain equation is a transmembrane-potential mapping 

V: (0 ,T) x ft - > R , (4.3) 

which assigns to each point x in the spatial domain ft and each time t from some inter
val (0, T ) , wi th T > 0, the value of the membrane potential V(t, x ) . When such V is 
calculated for a time interval of one cardiac cycle, we can also interpret it as a mapping 
which assigns to each point x G ft one complete action potential. This calculated action 
potential is a function, which assigns to each t G (0, T) the value V(t,x). Following [48], 
we wi l l denote such function V( •, x ) . Thus, the action potential at x is a function 

V{ •, x) := [t H+ V(t, x ) ) : (0, T) -»• R . (4.4) 

Alternatively, (4.3) can be interpreted as a mapping which assigns to each time t G (0, T) 
a scalar field describing a distribution of membrane potential in ft. Following [48], we wi l l 
denote such field V(t, •). It is defined as 

V(t, •) := (x 4 V(t, x ) ) : ft —>• R . (4.5) 

We wi l l later need also a mapping which assigns the scalar field (4.5) to each time t. 
Following [48], we wi l l identify this mapping wi th (4.3) which means that the same symbol, 
V, wi l l be used for both. Thus, V can be interpreted also as: 

V •— (t i—y V(t, •)): (0, T ) Map(ft, R ) , (4.6) 

where Map( f t ,R) is the set of all mappings from ft to R [48]. 
When V is calculated, the action potentials are known at all points x G ft. Act ivat ion 

time at x can then be defined as the time when the calculated action potential V( • , x ) 
reaches the threshold value during the early rapid depolarization. Electrical activation in 
the whole domain ft can then be described by an electrical activation map 

e a c : f t ^ R , (4.7) 

1Equation given here assumes that activation takes place in a fixed region f2, which is only an ap
proximation of the real conditions. More general form of the equation (e.g. [47]) takes into account also 
motions of the tissue, but then it is not possible to fully uncouple the simulation of electrophysiology 
from the simulation of mechanics. 

2 J ; o n and Jgtim are not actual currents, because their unit is V • s _ 1 . Rather, they are scaled currents 
[18], obtained from the ionic current per unit membrane area, j-lon (A • m~ 2 ) , and the stimulus current 
per unit volume, «stim ( A - m ~ 3 ) , as: J i o n = jion/Cm and J s t i m = istim/(/3 Cm), where C m is the membrane 
capacitance per unit area (F • m~ 2 ) and j3 is the membrane surface-to-volume ratio ( m _ 1 ) . 
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whose value eac(x) is the calculated electrical activation time at x , for all x e Q. Function 
(4.7) can then be used to prescribe the distribution of the onset of contraction in the 
subsequent simulation of mechanics. 

Returning to the quantities appearing in the monodomain equation (4.2), the diffusion 
tensor (or diffusivity tensor) D governs the velocity of propagation of depolarization in 
individual directions. It is given by [49] 

where Df, Ds, Dn are diffusion coefficients (or diffusivities) in the three material directions 
depicted in F ig . 5. Generally, the coefficients are functions of coordinates. In a purely 
diffusive system, velocity in a particular direction should theoretically be proportional to 
the square root of the corresponding diffusion coefficient, but in the monodomain equation 
it is influenced also by the ionic term J i o n (V, u) [49]. In F E simulations, velocity depends 
also on the mesh density, time step and on the method of interpolation of Jlon over an 
element [50, 47]. Thus a common approach to determine suitable values of diffusion 
coefficients for a computational model is to tune the coefficients to give velocities that are 
close to the real values [49]. But even then there are differences between locally measured 
velocities because velocity on the front of the propagating depolarization wave depends 
also on the curvature of the front [49], which is of course variable. This dependence can 
be observed not only in simulations, but also in real cardiac tissue [49]. 

The exact form of the ionic term Jlon (V, u) is determined by a particular ionic model 
of cardiac cell, which is expected to be used in conjunction wi th the monodomain model. 
A l l cell models are systems of ordinary differential equations expressed in terms of time-
dependent cell-level variables arranged in vector u. Many different models have been 
proposed in literature and they vary considerably in the number of parameters they use. 1 

The number of parameters generally reflects the amount of quantities a particular model 
is designed to reproduce, but it also determines the accuracy of their reproduction. Specif
ically, all cell models provide description of the cardiac action potential whose key charac
teristic is the early rapid depolarization phase. The fact that this particular characteristic 
must be replicated by all models (in more or less the same way) has huge consequences 
because it makes large-scale simulations (involving whole ventricle(s)) extremely compu
tationally demanding [17]. The reason behind this fact is that the depolarization phase 
is very fast and it occurs on very small lengths. It lasts only about 1 ms [17] and if 
we consider that conduction velocity in myocardium is usually between 0.17 m • s _ 1 and 
0.67 m-s _ 1 ( c f . Sec. 2.4), it follows that the depolarization wavefront propagating through 
the tissue is only about 0.17-0.67 m m thick in the direction of propagation (conduction 
velocity x 1 ms). This means that in order to reproduce the evolution of V wi th suf
ficient accuracy, F E analyses should use element sizes of the order of 0.1 m m [17, 18]. 
Similar restrictions are imposed also on the time step size, which should be of the order 
of 0.01 m m [17, 18] (and probably even smaller if fully explicit time discretization is used 
[51]). These restrictions eventually result in enormous requirements on computer mem
ory and computational times and represent reasons why many published computational 
studies actually involve only small blocks of tissue wi th dimensions not exceeding a few 
centimeters [17]. 

The last term in (4.2), J s t i m , represents the stimulus current which serves to initiate 
the growth of V in selected portions of the model (first activated regions). It is usu-

1For example, Colli Franzone et al. [17] list in their Table 2.2 on p. 44 in total 24 frequently used 
models with numbers of parameters ranging between 3 and 50. 

D :=D f f<g>f + .Dss<g>s + .Dnn<g>n 
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ally prescribed only during the first few milliseconds of simulation. Once V exceeds the 
threshold potential in the stimulated regions (and possibly in their close neighborhoods), 
the stimulus can be removed (set to zero) because depolarization wi l l propagate without 
the need of any external source. 

4.3 Artif icial ionic model 
The fact that the sole purpose of the simulations of electrophysiology in this work is to 
obtain the electrical activation maps for the subsequent mechanical analyses implies that it 
is actually not necessary to simulate the whole action potentials. The init ial depolarization 
phase is sufficient which means that the simulated period should be only about 100 ms 
long (the duration of the Q R S complex). In spite of that, a solution of the traditional 
monodomain system, composed of the monodomain equation and a model of cardiac 
cell, eventually turned out to be beyond the capabilities of hardware available to the 
author of this thesis. The first attempts of the author involved a simple three-parameter 
cell model proposed by Bueno-Orovio et al. [16]. But although the F E computer code 
using this model was successfully implemented, it was impossible to simulate the whole 
depolarization phase in the whole of Q. The simplicity of the Bueno-Orovio model did not 
change the fact that the F E mesh wi th suitable diameter h = 0.2 m m contained more than 
120 mil l ion linear tetrahedrons. The requirements on the computational time wi th such a 
dense mesh became excessive and so the solution could not be obtained. Attempts have 
also been made to simulate the depolarization with larger elements in order to reduce the 
computational cost. This idea was motivated by the realization that the accuracy of the 
simulated waveforms is not really important in the present case because the only results 
that wi l l be further utilized are the instants when the potentials reach the threshold. But 
these attempts also failed because F E solutions of the monodomain equation generally 
overestimate the conduction velocities when the mesh size is not sufficiently fine [47]. The 
necessity to achieve velocities as low as 0.17 m- s - 1 precluded the use of any coarser mesh. 
In fact, the velocity of 0.17 m - s _ 1 could not be achieved even wi th the original mesh wi th 
the size of 0.2 mm; even in that case the lowest achievable value was only slightly below 
0.30 m • s _ 1 which means that the electrical propagation in the model would effectively 
be transversely isotropic rather than orthotropic. 

A l l the above problems finally led to the idea of replacing a true ionic model by an 
artificial one that would be specifically designed to generate a gradual rather than the steep 
increase of potential. This approach can be justified by the fact that vir tually any sort 
of simulated (pseudo-)activation wave that would travel throughout the computational 
domain wi th prescribed conduction velocities would serve the purpose of this thesis just 
as well as the complete monodomain system with an appropriate model of human cardiac 
cell. The artificial model was finally formulated as a real-valued function of the (similarly 
unrealistic) normalized dimensionless potential v (used e.g. in [18]), which is supposed to 
rise from 0 to 1 during the depolarization phase. The function is defined by: 

l o n l j ' \ 0 for W G K \ ( 0 , 1 ) , 1 j 

where a > 0 ( s _ 1 ) is a parameter controlling the rate of growth of v. A s can be seen 
from F ig . 12, by choosing a suitable value for a it is possible to obtain a response wi th 
sufficiently slow growth, which means that the extreme discretization requirements im
posed by standard ionic models wi l l no longer apply. Thus, it wi l l be possible to use 
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computationally acceptable F E meshes as well as time steps. The procedure leading to 
the curves in F ig . 12 is explained below. Since V was replaced by v and Jlon was defined 

Fig. 12: A graph of dimensionless pseudo-potentials v against time t for different 
choices of the rate parameter a in (4.9). The response was initiated by the stimulus 
Jstim = 0.005 m s - 1 which was applied during the time period 0-1 ms. The time step 
was At = 0.5 ms. Dashed gray curve shows the response for a = 0.1 m s - 1 after J s t i m 

was doubled (for illustrative purposes only). 

only in terms of v (without any other "cell-level" variables u), the monodomain equation 
(4.2) should be updated accordingly as follows: 1 

dv 
— = div ( D V u ) - J i o n o v + J s t i m . (4.10) 

This equation describes the propagation of potential in tissue; when the goal is to describe 
only the action potential of a single cell, the corresponding equation can be obtained, 
formally, by omitt ing the diffusion term from (4.10). The equation then reads: 2 

dv 
- j - = _ ^ion ° V + J s t i m , (4.11) 

where v and J s t m i are understood to be independent of the spatial variable (unlike in 
(4.10)) and J i o n is defined by (4.9). Equation (4.11) together with the ini t ia l condition 
v(0) = 0 and a suitably chosen stimulus function J s t m i represents an ini t ia l value problem 
which can be solved using, e.g., the backward Euler method [40]. To do so, we choose 
a time step A t > 0 and define a sequence of times ( t o , t i , . . . , t „ ) by the rule tk '•= k A t . 
Then, the approximate solutions Vk and Vk+i at times tk and tk+i, respectively, are related 
by: 

k+]^t " = ~ Jion{Vk+l) + Jstim,fc+1 > (4-12) 

V 
The mapping J ; o n o v in (4.10) is the composite of Jion, given by (4.9), and the unknown solution 

(0,T) x ( ] - } l . Precisely, it is defined by ( J i o „ o v)(t,x) := J ! o n (u( i ,x)) for all t G (0,T) and x e CI. 
2 E q . (4.11) is basically a version of the Hodgkin-Huxley electrical circuit model of the cellular mem

brane (see e.g. [17], Sec. 2.7) which models the membrane as an electric circuit with capacitor and resistor 
connected in parallel. The model expresses the current conservation law which states that the applied 
current is given by the sum of the capacitive and ionic currents. 
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where J stim,fc+i is the stimulus applied at tk+i- Provided that Vk is known, Vk+i can be 
readily expressed from (4.12) using the definition (4.9). This procedure was used to obtain 
the curves in F ig . 12; concrete data which were used in calculations are specified in the 
figure and its caption. 

When the artificial ionic model proposed here is used in the monodomain model, a 
particular point in the domain can be considered activated when v reaches some arbitrary 
value. For the subsequent simulations, this "pseudo-threshold potential" was chosen to 
be 0.5. 

The stimulus current J s t i m that appears in the monodomain equation (4.10) plays 
exactly the same role as the stimulus current used in the single-cell simulations described 
above. The only difference is that, in the monodomain equation, J s t i m is dependent on 
the spatial variable, just like v. 

4.4 Initial-boundary value problem 
Equation (4.10) is defined in space and time, which means that its solution requires 
specification of boundary and init ial conditions. Here, we wi l l assume that the pseudo-
potential v is init ial ly zero (the resting value) and, following [47, 18], that no current flows 
across the boundary during the whole time interval (i.e. the tissue is electrically insulated). 
If we additionally is given by (4.9) and that J s t i m is sufficiently regular, we 
can formulate the following initial-boundary value problem [52]: F i n d v: (0 ,T) x Q —> K 
such that 

' dv 

— = d iv (DVw) - J i o n ov + J s t i m in (0, T ) x Q 

< ( D V v ) - n = 0 i n ( 0 , T ) x « 9 f i ( 4-!3) 

kw(0) = 0 inQ, 
where n is the outward unit normal to the boundary dQ. The second line of (4.13) 
represents the homogeneous Neumann boundary condition, while the thi rd represents the 
init ial condition. In the ini t ial condition, v is used in the sense of (4.6). 

4.5 Weak formulation 
Since it is impossible to obtain a solution of (4.13) in closed (explicit) form, an approx
imate solution wi l l be sought using the F E method. However, solutions obtained by the 
F E method are generally not differentiable on the boundaries of elements (only continuity 
is guaranteed) and it is clear that such solutions cannot be obtained from eq. (4.13)i 
because it requires the existence of spatial derivatives of v at all points in Q. In order 
to extend the class of potential solutions, we must develop the weak formulation of the 
problem (4.13) [40]. To this end, we express the governing equation (4.13)i at a particular 
time t, mult iply the result by a test function 1 u and integrate over Q [40]. We obtain: 2 

/ v(t)u= f d iv(DVu(*)) « - I (Jion°v(t))u+ f JstUt)u, (4.14) 
Jn Jn Jn Jn 

A test function, in the present meaning, is an infinitely differentiable function / : Ct —> R with compact 
support in ft. The support of / , denoted Supp/, is the closure of the set where the function takes values 
different from zero, i.e. Supp/ := {x e O | /(x) ^ 0}. A function / is said to have a compact support in 
Q, if there exists a compact set C e l l such that Supp/ c C. A compact set C c M 3 is a a set which is 
closed and bounded. The space of all test functions is usually denoted by T>(Q). See [40] for details. 

2v(t) in (4.14) is a member of Map(f2, R); see (4.6). 
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where v(t) denotes the time derivative. Using the product rule for divergence, the diver
gence theorem 1 and the boundary condition (4.13)2, the first integral on the right-hand 
side of (4.14) can be rewritten as 

/ d iv(DVu(*)) u = / d iv (uDVu(* ) ) - / V u - ( D V u ( * ) ) 
Jn Jn Jn 

= / u ( D V u ( * ) ) - n - / V « • (DVu( t ) ) (4.15) 
Jan Jn 

= - f V u • ( D V u ( t ) ) . 
i n 

Using this identity in (4.14), we get 

/ u (* )u+ I V u • (DVu( t ) ) = - f (Jionov(t))u+ f Jstim{t)u. (4.16) 
Jn Jn Jn Jn 

This equation admits more solutions than the original equation (4.13)i which required the 
existence of second-order derivatives of v(t), while the above equation contains only first 
derivatives. However, a more significant extension can be achieved if we replace all classical 
derivatives in (4.16) by those in the sense of distributions2 and then reinterpret v(t) and 
u as members of the first-order Sobolev space i f 1 (ft). 3 After doing so, all integrals in 
(4.16) wi l l stil l be meaningful but we wi l l search for solution in much larger space i f 1 (ft), 
which contains also all kinds of functions typically encountered in the F E analyses [40]. 
The resulting problem is called the weak formulation of the original problem (4.13) and 
reads [52]: F i n d v : (0 ,T) -»• i f 1 (ft) such that v(0) = 0 and for each t e (0,T) it holds 
that 

/ v(t)u+ J V u • (DVu( t ) ) = - / ( J i o „ o v(t))u+ J J s t im( t )u V u e H1 (D.). (4.17) 
Jn Jn Jn Jn 

4.6 Galerkin approximation 
The weak problem (4.17) can be approximated if we replace Hx(f2) by its suitably chosen 
finite-dimensional subspace Vh wi th dimension N^. If such approximation is made, we 
can choose a basis ( ^ i , . . . , tpNh) of Vh and expand v(t) wi th respect to the basis: 

Nh 

w(*) = X > i ( t ) l f c - ( 4-!8) 

It can be seen from this expansion, that the unknown solution is now uniquely determined 
by a finite family of real-valued functions V\,..., v^h. Thus the weak problem which 

1 Both the product rule for divergence and the divergence theorem can be found, e.g., in the book by 
Truesdell [43]. The former is on p. 329 and the latter on p. 181. 

differentiation in the sense of distributions is an abstract algebraic operation which extends the 
classical differentiation of functions. Unlike the classical differentiation, it can be applied on any square-
integrable function / : f2 —> BL To each such / we can naturally assign a distribution Tf, which is a linear 
and continuous functional on the space 2?(f2) formed by all infinitely differentiable functions with compact 
support. Generalized differentiation is then defined as an operator on the space of all distributions T>'(Cl), 
which is the topological dual space of V(Q). For the definition and details, see [40]. 

3Sobolev space ff1(fi) is the space of all square-integrable functions from to M. whose first partial 
derivatives (in the sense of distributions) are also square-integrable. Square-integrable function is a 
measurable function / for which Jq / 2 < oo. The space of all square-integrable functions on ft is denoted 
as L2(n). See [40] for details. 
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required to find a mapping v : (0, T) —> is now replaced by a problem of finding 
a finite family of functions vi,... ,vwh from (0,T) to M . Moreover, any test function 
u G Vh can be expressed wi th respect to the basis in the same way as v(t) in (4.18). 
If we substitute such expansion into (4.17), it can be readily seen that the equation is 
satisfied for all members of Vh if and only if it is satisfied by the basis functions. Thus 
it is sufficient to require that the equation (4.17) holds for the basis functions because 
then it holds for any other function in Vh- The resulting problem is called the Galerkin 
approximation of (4.17). Provided that the space Vh and its basis (f/>i, • • •, i>Nh) are given, 
the problem can be expressed as follows [52]: F i n d a family of functions v\,..., v^h from 
(0,T) to K. satisfying u,(0) = 0, such that the mapping v : (0 ,T) —> H1^) defined by 
v(t) : = 12f=ivj(t) satisfies, for all t G (0 ,T) , the following condition: 

/ V(t)lj>i+ I V ^ i • (DVU(*)) = - / (Jioaov(t))lj;i+ I J s t i m ( t ) ^ 
Jn Jn Jn Jn 

Vie{l,...,Nh}. (4.19) 

The Galerkin problem (4.19) represents a spatial discretization, or semi-discretization 
(because time variable has not yet been discretized). Formally, (4.19) is a system of Nh 
ordinary differential equations for determination of the unknown functions V\,... ,VNh-

The system is nonlinear because of the nonlinear definition of Jlon by (4.9). 

4.7 Finite element approximation 
The finite element method is a specific way of constructing the subspaces Vh in the 
Galerkin approximation (4.19) [52]. Such spaces are then called finite element spaces 
and the subscript h refers to the maximum of diameters of all elements in the mesh 
(cf. Sec. 4.1). A particular form of Vh is determined by the mesh 7~h chosen for the 
solution of a given problem. Since there are many types of meshes, different approaches 
for the construction of Vh exist (see [46]). Thus, it seems appropriate at this point to 
introduce the mesh which was finally used for the solution of the problem described in 
this chapter. That mesh is shown in F ig . 13. It is composed of quadratic tetrahedral 
elements wi th diameters < 2 mm. Tetrahedral shape was chosen because, as already 
mentioned in Sec. 4.2, conduction velocity is dependent on mesh density which implies 
that the density should not vary considerably between different regions or in different 
directions. Tetrahedral mesh is more appropriate in this respect than hexahedral, owing 
to the complicated shape of the domain Q. Besides, the same type of element is suitable 
also for the subsequent simulation of contraction and, as a matter of fact, the mesh in 
F ig . 13 was eventually used for both kinds of simulations. It was selected, after many trials, 
as an appropriate mesh which gave converged results in the simulations of mechanics but 
at the same time was not overly computationally expensive. Afterwards, it was verified 
that the same mesh is capable of reproducing the whole required range of conduction 
velocities if the rate parameter a in the artificial current (4.9) is chosen sufficiently low 
and the diffusion coefficients are properly adjusted. Thus the simplifications introduced 
to the monodomain model by adoption of the artificial current made it possible to employ 
the same mesh for both kinds of simulations. 

The mesh in F ig . 13 is based on the isoparametric formulation of elements which is 
a general and efficient approach for construction of F E meshes [46]. In this formulation, 
all elements in the mesh are generated from a single reference element by a suitable geo
metric transformation. Specifically, for the tetrahedral mesh l~h used here, every element 
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K 

Fig . 13: A quadratic tetrahedral mesh with maximum element diameter h = 2 mm. 

T h e mesh was generated in software Ansys I C E M C F D 2021 R2 and subsequently 

transferred into Mat lab R2021b in which the graphical representation shown above 

was produced. E a c h element K in the mesh originates as an image <PK{K) of the 

reference element K by means of the transformation map <px- T h e reference element 

is a unit tetrahedron in M 3 with nodes a i , . . . , aio-

K G Th can be obtained from the reference unit tetrahedron K (Fig. 13) by means of a 
transformation <px'- K —> M 3 which satisfies 4>K{K) — K . (This transformation wi l l be 
specified later in this section.) Formally, the reference element is a closed subset of M? 
given by: 

K := {(x, y, z) G M 3 | x, y, z > 0 ; x + y + z < 1} . (4.20) 

If the transformation <px is known for a particular K G 7^, the integral of any function 
/: K —> M. can be replaced by an integral on K using the familiar transformation formula 

f f = f | d e t ( V 0 x ) | ( / o 0 x ) . (4.21) 
J K Jk 

The transformed integral is easier to evaluate because the shape of K is simple in contrast 
to the elements in the mesh which are irregular and can have curved faces. 

Transformation maps also enable a particularly simple construction of the F E space 
Vh, using polynomials defined on K [46]. The construction starts wi th the space P2 of all 
quadratic polynomials defined on M 3 , i.e.: 

P2 := {p: M3 —> K. | p(x, y, z) — a\ + G^X + a^y + a^z + a^xy + a^yz + a^xz 

+ a8x2 + a9y2 + a^z2 Vx, y, z G M; wi th a i , . . . , aw G M} . (4.22) 

A n y p G P2 can be restricted to the set K; the resulting function is denoted by p\g and 
the space of all such restrictions is 

F2{K) :={p\R | p G P 2 } . (4.23) 
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The space P 2 ( i f ) is 10-dimensional, as indicated by the 10 coefficients in the expansion in 
(4.22). Thus, its bases are composed of 10 linearly independent functions. A natural basis 
is provided by the Lagrange polynomials which are defined, for all x := (x, y, z) G i f , by 
the following rules [53]: 

(4.24) 

Each Lagrange polynomial has the value of 1 at one node and 0 at the rest of nodes; more 
precisely: 

S(a,-) = ^ V * , j e { l , 2 , . . . , 1 0 } , (4.25) 

wi th Sij being the Kronecker delta. It follows that the coefficients of the expansion of any 

p G P 2 ( i f ) wi th respect to the basis (4.24) are the nodal values of p, i.e. it holds: 

= 2 (x + y + zf - 3 (x + y + z) + 1 fts(x) := 4xy 

= (2x -l)x ft(x) •= % ( 1 

< ^3 = (2y-l)y ft(x) := 4z{l 

ft = (2z- l)z ft(x) := 4xz 

= 4x (1 — x — y — z) ^ I O ( X ) := Ayz 

10 

p J > ( a * ) ^ V p G P 2 ( i f ) . 
i=l 

Lagrangian polynomials allow to define for each i f G Th a triple of functions: 

10 10 10 

(4.26) 

'K (4.27) 

i=:i i=:i i=:i 

where xf, yf, zf are the coordinates of the j - t h node, af, of i f . The transformation 

map 4>K '• K —> can then be defined by [46]: 

0 x ( x ) := ( ^ ( x ) , ^ ( x ) , c ^ ( x ) ) V x G i f . (4.28) 

It can be verified that (4.28) maps i f to i f , i.e. 0#( i f ) = i f . 
Having established a particular transformation map for each i f G 7^, we can define 

the space of approximation functions on i f by [46]: 

PK:= {f:K ^R\fo<f>KeF2(K)} (4.29) 

Finally, we can specify the F E space Vh to be the space of all continuous functions / : fi^ —> 
K. whose restrictions / | x for all i f G Th belong to PK, i.e. [46]: 

Vh:={f:nh^R\f continuous, / | * G PK,VK G . (4.30) 

Each space PK has a natural basis ( f / ' i 0 ^ 1 > • • • > ^ I O 0 ^ 1 ) - A natural basis (?/>i,..., ipNh) 
of is then formed by functions which take the value 1 at exactly one node of the mesh 
Th and whose restrictions IPJ\K are either zero, or equal to any one of the basis functions 
of PK- In such way, the support 1 of each ipj in M 3 wi l l be as small as possible, which 
means that most elements in the matrix of the final linear system wi l l be zero (i.e. the 
matrix wi l l be sparse). It is not necessary to develop the precise analytical expressions 

1See footnote on p. 35 for the definition of the support of a function. 
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for the basis functions ipj because all integrals wi l l eventually be computed on the refer
ence element K by means of the transformation formula ( 4 . 2 1 ) . For this reason, only the 
Lagrange polynomials ( 4 .24 ) are necessary for the implementation of the F E method and 
the basis functions ipj are actually never needed in the process. 

Having specified the F E space Vh and, to a sufficient degree, its basis (f/>i, • • • ,ipNh), 
we can specialize the Galerkin approximation ( 4 . 19 ) for this particular choice of space 
and basis. It is clear that the general form of expansion of solution v(t) wi th respect to 
the basis has not changed by choosing the space and basis; i.e. the expansion has still the 
form given by ( 4 . 18 ) which is: 

Nh 

i=i 

The only difference is that only now the coefficients v(t) have the special meaning of 
nodal values. Since the coefficient functions depend only on time and, on the contrary, 
the basis functions are independent of time, the following expressions can be derived from 
the general expansion: 

Nh 

Nh 

V w ( t ) = X > i ( * W i . ( 4 . 32 ) 

i=i 
Again , both these identities could have already been written in the previous section, but 
wi th their coefficients lacking the specific meaning of nodal values implied here. 

The stimulus current J s t i m ( 0 in the Galerkin approximation (4 .19 ) can be treated in 
the same way as v(t). B y introducing nodal functions J s t i m , i , • • • , Jstim,Nr, it is possible to 
approximate it as 

Nh 

Jstimit) ~ ^ ] ^s t imj (^ ) Ipj • ( 4 . 33 ) 

i=i 

Regarding the ionic current function, J i o n o v(t), there exists an approximate method 
[50] which eventually allows to express the current in exactly the same form as J B t i m ( 0 
in ( 4 . 3 3 ) . The current is evaluated at nodes and interpolated in space by means of the 
basis (f/>i, • • • ,ipNh)- Since the basis is Lagrangian, the value of current at j - t h node wi l l 
depend only on the corresponding nodal value Vj(t) and not on any other nodal values, 
nor on the basis functions. The approximation wi l l then read 

Nh 

Jion O V(t) « Yl - M ^ C * ) ) ^3 > (4-34) 
3=1 

where Vj(t) is a real number (the value of Vj at t) and Jlon is the artificial ionic function 
defined by ( 4 . 9 ) . 

Expressions ( 4 . 3 1 ) - ( 4 . 3 4 ) can now be inserted into the Galerkin equation ( 4 . 19 ) which 
leads to the following semi-discrete finite element problem [52]: F i n d a family of functions 
v\,... ,VNh from ( 0 , T ) to K. satisfying Vj(0) = 0, such that the mapping v : (0,T) —> Vh 

4 0 



defined by v(t) := YLf=i vj(t) ipj satisfies, for all t G (0 ,T) , the following condition: 

Nh Nh Nh Nh 

E MiMt) + E KijVj(t) = - E MijJion(vj(t)) + £ MijJ^jit) 
j=i j=i j=i j=i 

Vie{l,...,Nh}, (4.35) 

where 

M i i := /_ ^ % V i , j G { 1 , . . . , Nh}, (4.36) 

Kij := / W i • ( D V ^ ) V i , j e {1, • • •, (4-37) 

Note that f2 has been replaced by flh in (4.36) and (4.37). The problem (4.35) is, just like 
the general Galerkin approximation (4.19), a system of Nh nonlinear ordinary differential 
equations for determination of the unknown functions vi,..., v^h. It can be alternatively 
expressed in matrix form: 

M v ( t ) + K v(t) = — M J i o n ( v ( t ) ) + M J s t i m ( t ) , (4.38) 

where 

M := [ M y ] J J = 1 , (4.39) 

K := [ t f y l J j L i , (4-40) 

v ( t ) : = K ( t ) , . . . , ^ ( t ) ] T , (4.41) 

v ( t ) ^ [ t>i(t) ,-•• ,*^(*)] T . (4-42) 

Jion(v(0) := [Jion(^l(0), • • • , ̂ i o n K , ( t ) ) ] T , (4.43) 

Jstim(t) := [Jstim,l(», • • • , J"stim,Vfe(t)]T . (4.44) 

4.8 Time discretization 

The finite element problem (4.38) requires to find in total Nh real-valued functions 
v\,... ,VNh defined on (0,T) (one function for each node). B y discretizing the time in
terval, this task wi l l be replaced by that of finding a finite sequence of vectors from M.Nh 

(one vector of nodal values for each time step). 
Suppose that a time step A t > 0 is given such that n := T j At is an integer determining 

the number of solution steps and let to,... ,tn be a finite sequence of times defined by: 
tk '•= k At for k G { 0 , . . . ,n}. Further, let Jstim,fc be a vector of nodal stimuli at time tk, 
be. Jstim,fc : = Jstim(^fc) by (4.44), and let v f c be a numerical estimate of the exact solution 
v(tfc), for k G { 0 , . . . ,n}. Note that v 0 := 0 by the init ial condition. Finally, v ( £ f c + 1 ) can 
be approximated, for each k G { 0 , . . . , n — 1}, by a difference quotient ( v f c + 1 — vk)/At. 
Then, using the backward Euler method [40], one step of solution of (4.38) from time tk 

to tfc+i can be expressed by: 

M V f c + ^ ~ V f c + K v f c + 1 = - M J i o n ( v f c + 1 ) + M J s tim ,fc+i • (4.45) 
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The term J i o n (vfc + i ) in the above equation is understood in the sense of (4.43); in general, 
J i o n can be considered a mapping from MNh to itself defined by: 

Jion(v) := [Jion(ui), • • •, Jion(vNfi)]T Vv = [vu ... ,vNh}T G RNh. (4.46) 

From the computational viewpoint, it is important that this mapping is nonlinear, ow
ing to the nonlinear definition of J l o n by (4.9). Consequently, the discretized equation 
(4.45) must be solved iteratively using the Newton-Raphson procedure, which implies 
that linearized form of the equation must first be developed. 

4.9 Linearization and Newton-Raphson solution 
A clear explanation of linearization technique and description of the Newton-Raphson 
iterative procedure can be found, e.g., in the book by J . Bonet and R . D . Wood Nonlinear 
Continuum Mechanics for Finite Element Analysis (2008) [54]. This section is largely 
based on that book. 

Suppose that a converged solution v f c at time tk is known for some k e { 0 , . . . , n — 1} 
and it is desired to find an approximate solution v^+i ~ v(tk+i) at the subsequent time 
tk+i = tk + At by means of Newton-Raphson iterative method. Such procedure requires 
an init ial guess v ° + 1 of the exact solution v(tk+i), for which it is convenient to take 
the last converged solution i.e. v ° + 1 := Vfc. This ini t ial guess is then refined in an 
iterative process whose every iteration, generally r - th for r > 1, consists in a solution of 
linear system of equations, finally yielding an incremental vector a £ + 1 which additively 
contributes to the last estimate v ^ J in order to bring it closer to the exact solution 
v(£fc+i). More precisely, the new estimate is v £ + 1 := v^~| + a £ + 1 . Every estimate is 
checked against the convergence criterion (or criteria) and if satisfied, the estimate is 
accepted as a reasonable approximation of v(tk+i) and as such it is denoted by Vfc+i. 

In order to simplify the notation, in what follows the vectors v f c, v£~^, a £ + 1 and 
J s t im,fc+i wi l l be denoted simply as u, v, a and J s t i m , respectively. Subscripts and super
scripts indicating the time step or the iteration number wi l l be similarly omitted from 
some other symbols introduced in this section. 

A common convergence criterion used in F E analyses can be written in the form 1 : 

| |R(v) | | <eRveS. (4.47) 

The term on the left-hand side of (4.47) is the Euclidean norm of the residual vector R (v ) 
which is defined as 

R (v ) := - M J » ( v ) + M Jgt im - M - K v (4.48) 

The defining term in (4.48) is obtained by moving all terms in eq. (4.45) to the right-
hand side. Moving all terms in equation to one side wi l l produce zero on the other side; 
it follows that the residual vanishes when v is the exact solution. Thus, if the sequence 
of estimates converges toward the exact solution, the residual tends to zero. 

O n the right hand-side of (4.47) there is a product of the tolerance e > 0 and the 
reference value i ? r e f . The latter represents the applied loads and it is defined by the 
right-hand side of (4.45) as: 

Rret •= | | - M J i o n ( v ) + M J s t i m | | . (4.49) 
1 This is the default convergence criterion used by commercial F E software Ansys [55]. 
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Tolerance e wi l l be set to 0.005 [55] in the subsequent simulations which means that an 
estimate v is accepted as a converged solution if the residual is less than 0.5 % of the 
reference value. 

It remains to specify the linear system which should be solved in every iteration. Using 
the gradient 1 V V R of R at v , general form of the linearized equation can be written as: 

R ( v ) + ( V v R ) a = 0 , (4.50) 

where a is the sought increment that, if the solution is convergent, wi l l improve the current 
estimate v . Equation (4.50) represents a linear approximation of (4.45) near the point v . 
Since the only nonlinear term in the definition of R ( v ) is J i o n ( v ) , it follows that 2 

( V v R ) a = - M ( V v J i o n ) a - M ^ - K a . (4.51) 

It is now possible to insert (4.48) and (4.51) into (4.50), but we wi l l first derive an 
expression for the evaluation of V v J i o n . Recalling that J i o n is in fact a mapping from RNh 

to itself defined by (4.46), its gradient can be evaluated if we define a family of functions 
J i o i M : RNh —>• IR, for z G { 1 , . . . , Nh}, by: 

Jion,i(v) := J i o n ( ^ ) V v = [vu ..., vNh}T G RNh . (4.52) 

The following statement then follows from definitions (4.46) and (4.52): 

J ion(v) = [J ion, l (v) , . . . , J i o n , ^ ( v ) ] T V v G R N \ (4.53) 

In this form, it can be shown that J i o n satisfies3: 

( V v J i o n ) a = [ ( V v J i o n , i ) a , . . . , ( V v J i o n , v > ] T V v , a G RNh. (4.54) 

The terms on the right-hand side can be evaluated as: 

( V v J ian, i )a = £ l ^ f l j Vz G { 1 , . . . , Nh}. (4.55) 
j=i J 

But it follows from the definitions (4.52) that J i o i l i j does not depend on Vj unless % = j; 

therefore we have . — q if % ^ j and consequently (4.55) simplifies as follows: 

( V v J i o n , ) a = g J i 7 ( v ) a t = ^ M a ? Vz G { 1 , . . . , Nh}. (4.56) 

The last identity is a consequence of the definitions (4.52). If we now insert (4.56) into 
(4.54), it can be seen that V v J i o n is an Nh x Nh diagonal matrix 

V v J i o n = diag 
dJion(wi) dJion(vNh) 

dv dv 
(4.57) 

l rThe notation for gradient used here was adopted from [48]. 
2Equation (4.51) makes use of the linearity of gradient (e.g. [48], p. 221), the chain rule (e.g. [48], 

p. 220), and the fact that the gradient of a linear mapping at a point is the linear mapping itself ([48], p. 
219). 

3See Proposition 2 on p. 220 in [48]. 
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The derivative of J l o n can be expressed from (4.9) as 

d J i o n _ [ct{2v - 1) for v e (0,1) 

dv ~~ 1 0 for v G K \ ( 0 , 1 ) . 
(4.58) 

We can now substitute R ( v ) and V V R in equation (4.50) by the right-hand sides of 
(4.48) and (4.51), respectively, and express linearized equation in its final form: 

(m( V v J i o n ) + + a = -M ( j i o n ( v ) - J s t i m + ^j^J - K v . (4.59) 

4.10 Implementation 
The linear system (4.59) is to be solved in every iteration within each time step. Clearly, in 
order to perform one such solution, it is necessary to calculate all the matrices and vectors 
forming the coefficient matrix of the system and the right-hand side vector. Namely, we 
need M , K , V v J i o n , u , v , J i o n ( v ) and J s t i m before we can solve the system. 

Vector u = Vfc is the converged solution obtained in the previous time tk, except in the 
first step when it is zero (by the ini t ial condition). Thus it is always known. The same 
applies to v = v£~^ which is the last estimate of solution at time tk+i- Since v is known, 
J i o n ( v ) and V v J i o n can be easily calculated using (4.46) and (4.57), respectively. Nodal 
stimuli at time tk+i, arranged in J s t i m = J B t im,fc+i , must be suitably prescribed. Usually 
the stimulus is applied only within a short period of time at the beginning of simulation 
and only to those nodes located in the first activated regions. The values of stimuli are 
determined more or less by tr ial and error. It should be strong enough (and long enough) 
to initiate the spread of depolarization, but not too strong because then the potential 
could immediately exceed the assumed maximum value of 1. Vectors v and J i o n ( v ) as 
well as matrix V v J i o n must be updated in each iteration, while u and J s t i m do not change 
within one time step. Matrices M and K are independent of time and as such they need 
to be constructed only once at the beginning of the solution and afterwards they are used 
in every iteration without any change. 

Entries of matrices M := [Mij]f^=1 and K := [-fQj]f^=1 were defined by (4.36) and 
(4.37), respectively. To repeat the definitions: 

Mij := J ipiijj , Kij := f • ( D V ^ - ) . 

However, contrary to what may seem natural at first glance, M y and are in practice 
usually not calculated according to the above definitions because such implementation 
would be inefficient. In the words of Quarteroni [40], " . . . the need for a high computational 
efficiency leads to an implementation that is generally not the immediate translation 
of what has been seen during the theoretical presentation." The difference is that the 
practical approach is more oriented on individual elements, while the theory defines all 
integrals in terms of the basis functions ipi which are defined on the whole of Qh- More 
precisely, what we do in practice is that we take one element after another (in a cycle) and 
for each of them we calculate all the necessary integrals, but only over the corresponding 
set K (as if we replaced Qh m the above integrals by K). However, since the basis functions 
are intentionally constructed in such a manner that only a few of them are non-zero on a 
given K, many integrals vanish and so they do not need to be calculated at al l . Thus, we 
save the computational time by calculating only those few integrals which are non-zero. 
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Specifically, in the problem solved here, for each element K there wi l l be only 10 
basis functions ipi satisfying f/>j|x 7̂  0 (i.e. the restriction of ipi to K is nonzero). These 
functions can be identified as those members of the basis which assume the value 1 at one 
of the ten nodes of K . Moreover, it is not difficult to realize that their non-zero restrictions 
are the composites ipi o 0 ^ for % e { 1 , 2 , . . . , 10}. Thus, the integration eventually needs 
to be realized wi th only 10 different functions for each K and we know their analytical 
expressions. The resulting integrals can be arranged into two 10 x 10 local matrices (or 
element matrices) := [ M ^ r ] ^ . _ 1 and K x := defined by 

M$:= [ S o t f j f t o t f ) , (4.60) 
J K 

K « := f V{A o fe1) " D x V ( ^ - o 0 " 1 ) . (4.61) 
J K 

The D K in the last definition is the diffusion tensor expressed for a particular element K . 
It is constant within K and it can eventually be written as a 3 x 3 matrix which wi l l be 
specified in the next section. 

We can now apply the change of variable formula (4.21) and express both integrals in 
(4.60) and (4.61) on the reference element K : 

M« = / _ ( ^ ° 0 a ) ( V W a ) 

Jdet(V0x)|(A o 0a ) (Ä ° 4>K) ° <t>i 

| d e t ( V 0 x ) | ( ^ ° 0 x o < ^ ) ( ^ 0 ° OK) 

| d e t ( V 0 x ) | ^ i , 

A' 

A 

A 

(4.62) 

A 

K(j = f V(Ä o 0" 1 ) • D ^ v f e o 0" 1 ) 
J K 

= jT | d e t ( V ^ ) | ( (V (Ä o 0 ^ ) • D j f V f t - o 0 " 1 ) ) o 0 X ) (4.63) 

= jT | d e t ( V ^ ) | ( (V (Ä o 0" 1 ) o 0 X ) • BK (v ( f t - o 0" 1 ) o 0 X ^ 
' A 

The final integral in (4.63) contains gradients that have not been expressed so far. The 
whole term V(-0j o 0 ^ ) o 0 X , which occurs twice in that integral, can be rephrased if we 
successively use the chain rule 1 , the inverse function theorem 2 , and the definition of the 
transpose of a linear transformation 3 . These operations lead, respectively, to the following 
identities: 

V(Ä o (f>-K

l) o <pK = {Vfy ( V ( 0 ^ ) o 0 A 

( V f t ) ( V 0 x ) _ 1 (4-64) 

( V 0 x ) " T ( V ^ ) . 

^ . g . [48], p. 220. 
2 E . g . [48], p. 245-246. 
3 E . g . [48], p. 71. 
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Using the definition (4.28) of <f>K, the gradients in (4.64) can be expressed as 

V 0 A' 

d(j)x

K d(j)x

K 

dx dy dz 
ftrhy Rrhy f)rhy 

0(pK 0(pK 0(pK 

dx dy dz 
rtrhz rtrhz 

acpK acpK acpK 

dx dy dz 

d^j 
dx 

djh 
dy 

djh 
• dz 

(4.65) 

Vectors Vipi can be evaluated using definitions (4.24) of the Lagrange polynomials ipi. 
Matr ix V 0 a can be evaluated using definitions (4.27) of the transformation functions <pK, 
by

K and <j)z

K, from which it follows that 

V 0 A A ^ B (4.66) 

where 

x1 
x10 

AK := V? y? • yfo 

Ä 

B 

<9 î d-^i dip! 
dx dy dz 

d$2 d$2 d$2 
dx dy dz 

d^io <9 îo 
dx dy dz 

(4.67) 

Gradient V 0 a can be conveniently computed using (4.66), but the final expression in 
(4.64) contains also the transpose of the inverse of V 0 a - Inverse matrix can be calculated 
from the cofactor matrix, c o f ( V 0 x ) , which can be obtained by an algorithm described 
elsewhere (e.g. [56]). Once the cofactor matrix is known, we can calculate [56] 

(V<A A 
d e t ( V 0 A ; 

cof (V0A) • (4.68) 

If we now assume that all quantities are given in matrix form, (4.64) can be substituted 
into (4.63) leading to: 

K A 

A 

A 

A 

| d e t ( V 0 A ) | ( ( V 0 A ) - T V ^ ) T ( D x ( V 0 A ) - T V ^ - ) 

| d e t ( V 0 A ) | ( ( V ^ ) T ( V 0 A ) - 1 ) ( D x ( V 0 A ) - T V ^ - ) 

| d e t ( V 0 x ) | ( V ^ ) T ( V 0 x ) - 1 D x ( V 0 x ) " T V ^ . 

(4.69) 

Additionally, ( V 0 a ) t in (4.69) can be replaced by (4.68) which gives 

KK , 
'•' IK | de t (V0A) 

( V ^ ) T ( c o f ( V 0 x ) ) T D x c o f ( V 0 x ) V ^ (4.70) 

Equations (4.62) and (4.70) contain final analytical expressions for calculation of local 
matrices M j f and K ^ . However, the functions integrated in these expressions are too 
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complicated for analytical solution, which means that they must be integrated numerically. 
The fact that both integrals are expressed on the same set K allows one to use the 
same quadrature formula for both of them. Specifically, in this work the integration wi l l 
be performed using 4-point Gaussian quadrature rule, which is adequate for tetrahedral 
elements wi th quadratic basis functions [53]. The approximate formula yields exact result 
for polynomials of global degree < 2 and, for a given / : K —> M , it reads [53]: 

J s § t i 

where q« G K are integration points (or quadrature points, or Gauss points) and wi G M 
are weights normalized with respect to the volume of K (which is represented by the 
factor 1/6 in the above formula). The points and weights are specified in Table 2. 

Table 2: Integration points and weights for 
a 4-point Gaussian quadrature rule on the 
unit tetrahedron K [53]. 

points q« weights Wi 

((3,(3,(3) 0.25 
(a, (3, (3) 0.25 
{(3, a, (3) 0.25 
((3, (3, a) 0.25 

a = 0.585410196624968 
(3 = 0.138196601125010 

The quadrature formula (4.71) produces the following approximations of the integrals 
in (4.62) and (4.70): 

1 4 ^ 
M # ~ g I ] ^ l d e t ( V q f e 0 x ) | ^ ( q f c ) ^ ( q f c ) , (4-72) 

k=l 

1 4 

K * * 6 £ | d e t ( v q

f c

f c 0 x ) | ( V q f c ^ ) T ( c o f ( V q f c 0 x ) ) T D x c o f ( V q f c 0 x ) V q f c ^ . (4.73) 

These expressions can be directly used in a computer code to calculate local matrices M # 
and K.K for each K G Tk- A typical algorithm moves forward in a cycle over all elements 
in the mesh and every time a new pair of local matrices is calculated, their entries 
and Kfj are added to the corresponding places in the global matrices M and K . Global 
matrices are init ial ly zero x matrices which, as the loop proceeds, are incrementally 
filled. A n important part of this assembly is a correct identification of rows and columns 
of global matrices in which the local terms should be added. To give an example of such 
assignment, let be given. This is located in the i - th row and j - t h column of M^-
and it relates in some way the i - th node of K wi th its j - t h node (possibly the same node 
when % = j). Bo th nodes have also assigned a unique global number between 1 and N^. 
Suppose that the global numbers of the i - th and j - t h nodes are, respectively, r and s. 
Then the term should be added to the current value (generally non-zero) in the r - th 
row of the s-th column of the global matrix M . When this rule is successively applied to 
all terms of all local matrices, the assembled global matrices are finally obtained. 
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4.11 Structural vectors and diffusion tensors 
Expression (4.73) for approximate calculation of Kf contains a matrix of the element-
specific diffusion tensor D x - Using the general definition (4.8) of the diffusion tensor D , 
the element-specific version of it can be expressed as 

D x = DfK fx ® fx + DSK s K ® s K + DnK nK®nK, (4.74) 

where DfK, DSK, DnK are element-specific diffusion coefficients and fx , sK, nK are 
element-specific structural vectors. Coefficients as well as vectors are constant wi thin 
an element. Vectors fx , Sx, n x define the element coordinate system and they must be 
defined for each element separately in such a manner that the prescribed directions reflect 
the structure of L V myocardium described in Sec. 2.3. To be more specific, fx should lie 
in the plane tangent to the wall and its direction within the plane should be determined 
by the helical angle measured from the local circumferential direction. Sheets at end-
diastole are approximately tangent to the wall which means that Sx should also lie in the 
tangent plane, at a right angle to fx- Finally, nK should be aligned wi th the local radial 
(or transversal) direction. These conditions do not define a unique set of vectors; in this 
work the vectors were defined in such a manner that the triple (fx, Sx, n x ) always forms 
a right-hand orthonormal basis, just like the corresponding vectors in F ig . 5B. Once the 
vectors f x , S x , n x G M 3 are calculated for a given K, the diffusion matrix corresponding 
to the tensor (4.74) can be calculated as 

D x = DfK f x ( f x ) T + DSK s x ( s x ) T + DnK n K ( n K ) T , (4.75) 

provided that the diffusivities are known. 
The rest of this section describes the procedure by which the structural vectors were 

calculated in this work for the tetrahedral mesh 7~h shown earlier in Sec. 4.7. The whole 
procedure is illustrated in F ig . 14. Determination of the diffusion coefficients wi l l be 
described in the subsequent sections. 

In the first part of the process, the helical angles were calculated for all tetrahedrons in 
Th- In order to achieve this goal, fine triangular meshes wi th element diameters < 1 mm 
were generated on surfaces r e n do and r e p i (red and green meshes in F ig . 14, respectively). 
Based on these meshes, two sets of points were defined, one for each surface. The first 
set, S e n do, contained all nodes of the endocardial mesh and additionally the centroids 
of all triangles in the mesh (in order to increase the number of points in the set). The 
second set, S e p i , was constructed by the same procedure, but from the epicardial mesh. 
Subsequently, for each element K e % the distance of K from r e n do was defined as the 
distance between the centroid q x of K and the point in S e n do closest to q x (yellow point 
on red mesh in F ig . 14). The resulting value was denoted as S^do. The distance of K 
from r e p i was defined in the same way, only the closest point was looked for in Sepi and 
the resulting value was denoted as 8^. Formally, the definitions were: 

X G S e n d o } , (4.76) 

x G S e p i } • (4.77) 

Based on these values it was possible to define an approximate local wall thickness in the 
place of K •} 

TK : = C d o + , (4-78) 

1 Maximum and minimum calculated thicknesses were 9.20 mm and 3.73 mm. 

êndo : = m i n { | | x - q x 

<*£i : = m i n { | | x - q x 
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CK 

Fig . 14: A n illustration of the procedure (described in the text) for obtaining the 

helical angle O K , the geometric directions c x , I K , * K and the structural vectors fx, 

SK, njf for a generic element K with centroid qx-

and then a normalized distance of q x from r e n d o : 

£ K : = ^ 2 . (4.79) 
TK 

Finally, wi th the assumption that the helical angle changes linearly across the wall from 
#endo : = 60° to 9epi :— —60° (cf. Sec. 2.3) regardless of the local thickness of the wall, the 
helical angle 9K at the centroid q x was calculated by linear interpolation as 

0K := (1 - 0 0 #endo + O^epi • (4.80) 

Second ingredient necessary for the calculation of vectors fx , s x , n x is represented 
by a triple of vectors defining local radial, r x , circumferential, c x , and longitudinal, l x , 
directions. In order to calculate r x , the above described procedure of obtaining two 
closest points from two different sets was repeated, but this time it involved only subsets 
of S'endo and Sepi consisting of all centroids of triangles (i.e. the nodes were omitted). 
In this manner, two closest triangles were found for each K, one on the endocardial 
and the other on the epicardial surface (see the bottom right corner of F ig . 14). These 
triangles have each a unique outer unit normal vector which can be readily calculated, 
for both triangles, as a vector product of two vectors aligned with two different edges of 
the triangle, divided by its magnitude. Of course, the edges must be suitably chosen so 
as to produce an outward vector. Once the endocardial normal n ^ d o and the epicardial 
normal n^pi for a given K are known, the unit radial vector can be defined by 

r . ( 1 - f r ) (-nfndo) + frigi , 4 8 n 
T K -= UTi 1 \ I „K \ i T „K II ' l4-<=>-U ; i - £ x ) ( - n f n d o ) + £ x n K 

epi I 
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provided the denominator is non-zero. 1 Knowing r ^ , the circumferential direction can be 
defined as 

e . x r i f . 
c « : = TT^ ^TT > 4 8 2 

\\ez x rK\\ 
where ez := [0,0,1] T is the unit vector along the global z axis which, as already mentioned 
in Sec. 4.1, coincides wi th the geometric long axis of our model of L V (our domain Q). 
The third geometric vector, 1^, can be defined as the cross product of rK and cK, i.e.: 

\ K := r K x c K . (4.83) 

Knowing the helical angle 9K and the geometric vectors CK, l x , ?K for each K e 7h, 
the structural vectors can be defined as follows: 

fx := cos(9K) cK + sm(6K) \ K , (4.84) 

sK := - sm(9K) cK + cos(9K) l x , (4.85) 

nK := rK . (4.86) 

4.12 Fast-conducting layers, early-activated areas and diffusion 
coefficients 

Ventricular conduction system is usually modeled either as a tree of one-dimensional ele
ments coupled to the myocardium (e.g. [57]), or as a thin rapidly conducting endocardial 
layer (e.g. [58]). In this work, the latter (simpler) approach was adopted. 

General anatomy of ventricular conduction system was presented in Sec. 2.4. That 
section provided also basic description of positions of individual compartments of the 
system wi th respect to the ventricular muscle. The description was based mainly on the 
paper by Stephenson et al. [21] where more detailed information can be found as well as 
3-dimensional graphical reconstructions of the conduction system. O n the basis of these 
facts, and taking also into account the locations of the first-activated endocardial areas, 
as reported by Durrer et al. [25] (see Sec. 2.4), the fast-conducting layers representing 
left- and right-sided Purkinje network were defined as shown in F ig . 15. The layers in 
the figure can be regarded as subsets of Th, therefore the left-sided layer is denoted as 
7^L and analogously that on the right side of the septum is denoted as 7 ^ . In order to 
obtain 7^L, a subset of nodes on r e n do was first selected and afterwards was defined 
as the set of elements having at least one node in that subset. The second set, 7 ^ , was 
defined in the same way but from a subset of nodes located on low septal part of r e p i . B y 
assigning a high value of diffusion coefficient to the elements in 7^L and 7 ^ , it is possible 
to achieve high conduction velocity in these layers, matching the reported velocities in 
Purkinje fibres given in Sec. 2.4. 

Propagation of potential in the model must be initiated by application of electrical 
stimulus to appropriately selected nodes. Four sets of nodes were selected for this purpose 
in such a manner that their locations correspond with the early-activated areas described 
by Durrer et al. [25] (see Sec. 2.4). These sets are represented by red surfaces in F ig . 15. 
Only surface nodes (lying on the boundary dflh) were included in the sets. The sets wi l l 
hereinafter be referred to by the symbols defined in F ig . 15, i.e. «S^nt (anterior nodes), 

1 Since n ^ d o and n ^ ; are both unit vectors, the denominator is zero if and only if n ^ d o = n ^ ; and 
at the same time £ K = 0.5. The shape of our boundary díl guarantees that the first of these conditions 
cannot be met. 
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h

ep (septal nodes), S^°s (posterior nodes) and (nodes on the right side of the septum). 
In simulations the stimulus wi l l always be prescribed per sets (i.e. the same value to all 
nodes in a set) and its value wi l l be kept constant during the stimulation period. 

Fig . 15: Fast-conducting layers (orange) and early-activated areas (red) in the model 

of left ventricle. Fast-conducting layers represent Purkinje fibres originating from the 

left bundle branch (layer l~h

L) and the right bundle branch (layer Th

R). Layer Th

L covers 

lower parts of the left ventricular endocardium and the whole left septal surface. Layer 

Th

R covers low right septal surface. Early-activated areas are contained in the layers. 

Surface nodes inside the areas form sets »S^ n t , <S^ep, <S^os and Sj^ on which electrical 

stimulus can be applied in simulations. 

In order to determine suitable values of diffusion coefficients, several t r ial simulations 
were performed on meshes wi th simple geometry and small number of elements. For i l 
lustration, one such simulation is shown in F ig . 16. A l l t r ial simulations used the same 
element size h = 2 mm, time step A t = 0.5 ms and rate parameter a — 0.1 m s _ 1 

(parameter in the ionic model (4.9)). The same values were used also in the subsequent 
simulations of activation of left ventricle. The value of stimulus and the duration of its ap
plication varied because different geometries, stimulated regions and diffusivities generally 
required different stimulation conditions. A s already mentioned in Sec. (4.3), a particular 
node was considered activated when its dimensionless potential v (the degree of freedom) 
reached 0.5. F ina l chosen values of diffusion coefficients, producing approximately the 
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experimental velocities reported in Sec. 2.4, are given in Table 3. 1 Nevertheless it should 
be remembered that true local conduction velocities in F E models depend on many fac
tors, including local or directional variations of element size and even the curvature of the 
propagating wavefront (cf. Sec. 4.2). 

Fig . 16: Simulated propagation of dimensionless potential v along a rectangular block 

with dimensions 100 x 8 x 8 m m . Initial stimulus was applied to all nodes with 

coordinate x = 0 m m . Simulated conduction velocity corresponds to the velocity in 

myocardium in the direction of muscle fibres. T i m e t is measured from the beginning 

of application of stimulus. 

Table 3: Selected (tuned) diffusivities (1st column) and the 

corresponding approximate conduction velocities (2nd column) 

for fibre (/), sheet (s) and sheet-normal (n) directions in my

ocardium and for the fast-conducting layers (fc). 

Df = 2.5 m m 2 • m s - 1 Vf ~ 0.67 m m • ms" - l 

Ds = 0.53 m m 2 • m s " 1 vs ~ 0.30 m m ms" - l 

Dn = 0.18 m m 2 • m s - 1 vn ~ 0.17 m m • ms" - l 

:= 28 m m 2 • m s - 1 Vfc ~ 2.3 m m • ms" l 

4.13 Specification of simulated conditions 
It was mentioned in Sec. 2.4 that electrical impulse enters the myocardium by means of 
the Purkinje-muscle junctions, located under the endocardium. Interestingly, excitation 
can proceed through the junctions also in the opposite direction, from the muscle cells 
to the Purkinje fibres [59, 60]. Theoretically, then, if no other conduction abnormality 
is present besides the L B B B , nothing prevents the impulse, originating in the right ven
tricle, from traveling across the septum and entering the L V purkinje network, reducing 
thus partially the delay caused by the block. Some authors [61] describe the general 
mechanism of spread of excitation in L B B B in precisely this way, which is supported by 
some experimental [62] as well as computational studies [63] whose results suggest that 
rapid endocardial conduction is preserved in L B B B . O n the other hand, Grant & Dodge 
[64] analyzed electrocardiographic data from a group of patients wi th isolated L B B B 
and concluded that " . . . in left bundle branch block excitation never regains passage in 

xNote that the subscripts in Df,Ds,Dn in Table 3 are light-faced as opposed to the bold-faced 
Df,Ds,Dn in the general definition (4.8) of the tensor field D . The goal is to distinguish the for
mer three diffusivities, which are fixed scalars specified in the table, from the latter which are generally 
scalar fields defined on fi. 
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the Purkinje network but spreads from the right ventricle by fiber-to-fiber conduction 
throughout the left ventricle. This mechanism of spread is of course much slower than 
when Purkinje fibre pathways are used." Again , there are also computational studies 
supporting this opposite conclusion [58, 65], their authors claiming that they were unable 
to reproduce some patient-specific electrophysiological characteristics unt i l the rapid en
docardial conduction was disabled in their models. The most likely conclusion resulting 
from these contradictory findings is that in some patients the rapid conduction is pre
served, while in others it is missing; or at least reduced. Perhaps that is the reason why 
there are considerable differences in reported degrees of prolongation of Q R S complex due 
to the L B B B 1 . 

In this computational study, two simulations of L V activation must be performed. 
First wi l l be a control simulation representing normal, healthy conduction, while the 
second wi l l represent a ventricle wi th the L B B B . In the context of the discussion in the 
previous paragraph, it is now necessary to decide whether or not the second simulation 
should include rapid conduction in layer Th

L of the model (see F ig . 15). Since this study 
aims mainly to determine the possible extent of reduction of ejection fraction due to the 
isolated L B B B , it should be sufficient to investigate only the worst possible case; thus 
the rapid conduction in L V endocardium wi l l be removed in the simulation of the L B B B , 
which means that layer Th

L w i l l be regarded as a regular muscular tissue wi th diffusion 
coefficients Df, Ds and Dn specified in Table 3. Having made this decision, it is now 
possible to specify rules for assignment of diffusion coefficients for both simulations. In 
general, to each element K e Th a triple of diffusion coefficients (DfK, DSK, DnK) must 
be prescribed in each simulation, as indicated by the general expression of the element 
diffusion matrix in (4.75). In control simulation, both Th

L and Th

R wi l l serve as fast-
conducting layers and the rest of elements wi l l represent a standard myocardial tissue wi th 
orthotropic conductivity. Thus the rule for prescription of coefficients in this simulation 
can be formulated as follows: 

In L B B B simulation, rapid conduction wi l l be assumed only in Th and consequently the 
diffusivities can be assigned according to: 

Note that in fast-conducting layers, DnK equals to Dn rather than Dfc. This is so be
cause nK points in a direction transverse to the fast-conducting layers in which rapid 
propagation cannot be expected. 

It now remains to specify the loading conditions which are represented by stimuli 
applied to the nodes contained in sets «S^ n t, «S^e p, S^os and S^, depicted in F ig . 15. Values 
of stimuli as well as durations of their application were determined more or less by tr ial 
and error. The goal was to achieve synchronous activation of «S^ n t, >S^ep and S^°s in the 

1 Standard electrocardiographic criteria for the diagnosis of complete L B B B include QRS duration 
exceeding 120 ms [15], but several clinical studies [34, 35, 36] reported mean values in the range 140-150 ms 
and for example Grant & Dodge [64] observed QRS complex prolonged by more than 80 ms in 20 % of 
their patients, which means that QRS duration in these patients was higher than 160-170 ms (see normal 
values in Sec. 2.4). 

(4.87) 

KeTh

R 

K<£Th

R 
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control simulation and to delay the activation of Sj^ by about 10 ms relative to the former 
three sets (cf. Sec. 2.4). The final values are summarized in Table. 4. Note that all 
stimuli as well as durations of their application are substantially greater than those used 
in the single-cell simulations presented earlier in F ig . 12. The reason for this is that the 
single-cell trials were, in fact, 0-dimensional simulations in which the stimulus supplied 
only a single point. O n the contrary, in 3-dimensional simulations the current spreads 
from the point of application which means that a greater stimulus is needed for a longer 
period of time. In the particular case of this study, the stimulation period is especially 
prolonged because the simulated increase of potential is very slow owing to the low value 
of the rate parameter a. 

Table 4: Values of stimuli, J s t i m > and time periods of their application, tstim> in the control 
simulation and in the simulation of L B B B . Stimuli were prescribed separately to nodes in sets 
S £ n t , S f \ Sp

h

os and Sf (see Fig. 15). 
Cant risep QPOS 

Tstim 
( m s - 1 

^stim 
) (ms) 

Tstim 
( m s - 1 

^stim 
) (ms) 

Tstim 
( m s - 1 

^stim 
) (ms) 

Jsüm 
( m s - 1 ) 

^stim 
(ms) 

Control 1.0 (0,50) 2.0 (0,50) 1.85 (0,50) 1.6 (10,60) 

L B B B 0 - 0 - 0 - 1.6 (0,50) 

4.14 Results 
Both simulations specified in the previous section were realized in software Mat lab R2021b 
in which the F E algorithm presented in this chapter was implemented. A l l systems of 
linear equations were solved using Mat lab buil t- in direct solver. Calculated propagation 
of potential from both simulations is shown in F ig . 17. In the control simulation, nodes 
in S^ n t , Ss

h

ep and S^os were activated 8-8.5 ms after the start of stimulation; nodes in 
were activated 10 ms later. Act ivat ion of the whole ventricle was complete at t = 110.5 ms 
which means that the total activation time was 110.5 ms — 8 ms = 102.5 ms. This time is 
little longer than an average normal Q R S complex but it is stil l wi thin the range of normal 
values (cf. Sec. 2.4). The prolongation might be attributed to the fact that activation in 
the model was initiated in only four small regions, while in real heart Purkinje fibres surely 
have much more connections with working myocardium. It is also possible that Purkinje 
network in reality spans larger portion of L V endocardium than assumed in the model; 
the size of the conducting layer Th

L was selected on the basis of the work of Stephenson et 
al. [21] who themselves recognized that their reconstruction of Purkinje network was not 
complete, despite high resolution of their imaging device. It should also be remembered 
that a basal portion of the original model of L V was cut out before generation of mesh 
(see Sec. 4.1). If the original model was used, the prolongation of depolarization would be 
even more pronounced. In that case it would probably be appropriate to assume larger 
conducting layer Th

L or to increase the coefficient Dfc in order to achieve higher conduction 
velocity in fast-conducting layers (recall from Sec. 2.4 that conduction velocities as high 
as 3.50 m m • m s - 1 were measured in Purkinje fibres). 

Regarding the second simulation representing the L B B B , nodes in were activated 
after 8.5-9 ms and activation of whole ventricle was complete at t = 162 ms. Total 
activation time in this case was thus 162 ms — 8.5 ms = 153.5 ms which means that 
complete depolarization required 51 ms more than in the control case (50% increase). 
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This prolongation corresponds wi th prolongations of Q R S complex reported in literature 
(see footnote on p. 53). 

Fig . 17: Propagation of dimensionless potential v in the control simulation (top row) 

and in the simulation of L B B B (bottom row). T i m e t is measured from the beginning 

of application of stimulus in both simulations. 

Since the init ial latency of 8 ms in control simulation and 8.5 ms in L B B B simulation 
both have no physiological meaning, these values were finally subtracted from the calcu
lated nodal activation times. Thus, final activation times prepared for further use range 
from 0 ms to 102.5 ms in healthy conditions and from 0 ms to 153.5 ms in the L B B B 
case. Act ivat ion maps reconstructed from these times are depicted in F ig . 18. 

Act ivat ion maps should generally be regarded as mathematical functions of the form 
(4.7). If we denote by t^ a c the time of electrical activation of j-th node under either control 
or L B B B conditions, then an electrical activation map eac: fih —>• M can be defined, using 
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Fig. 18: Activation times measured from the onset of activation in the model; i.e. 
t = 0 ms marks the instant of the first occurrence of v > 0.5. Top row: control 
simulation, bottom row: L B B B simulation. 

the Lagrangian basis ( ^ i , . . . , ipNh), as: 

eac := ^ t f c ^ - . (4.89) 
i=i 

Maps of this k ind could be used to prescribe the distributions of the beginning of con
traction in the simulations of ventricular mechanics. However, much simpler maps can 
be used in this work because in the subsequent simulations the onsets of contraction wi l l 
always be prescribed per element. Thus it is sufficient to assume activation maps of the 
form 

e a c : 7 ; ^ M (4.90) 

which assign one activation time to each element in Th. A natural choice is then to define 
eac(i\") to be the activation time at the centroid qx of an element K e Th, which can 
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be easily calculated by interpolating nodal activation times to the centroid of K. In this 
manner, two activation maps were calculated in this work from the results depicted in 
F ig . 18. First of these was calculated from the results of the control simulation and it wi l l 
hereinafter be denoted as eac c (subscript "c" for control); the second map was calculated 
from the results of the simulation wi th the branch block and it wi l l therefore be denoted as 
eacD. These maps are the final outcome of the simulations of electrophysiology presented 
in this chapter. 
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5 Simulations of ventricular contraction 
In this chapter, the F E model introduced in Chapter 4 wi l l be used to simulate a con
traction of normal, healthy ventricle and of ventricle with the left bundle branch block. 
Electrical activation maps, defined in the end of Chapter 4, wi l l be used to distribute 
the onset of mechanical activation (beginning of contraction) througout the model. A s 
opposed to the simulations of electrophysiology, which were completely programmed in 
Matlab, simulations of mechanics wi l l be realized in commercial F E software Ansys 1 . For 
this reason, the explanation of the theory in this chapter wi l l be less detailed then in 
the previous chapter. In particular, the individual steps of the F E approximation of the 
equilibrium equation div(cr) = 0, which governs motion of a deforming continuous body 
[43], wi l l not be discussed at all . The chapter wi l l focus mainly on the constitutive de
scription of passive myocardium, incorporation of ini t ial prestress and modeling of muscle 
contraction because these are elements that actually have to be programmed in Ansys 
in order to perform the intended simulations. After that, the methods of modeling of 
pressure and volume changes during the cardiac cycle wi l l be explained and finally the 
results wi l l be presented. 

5.1 Description of kinematics 
The purpose of this section is to introduce some important kinematic quantities that wi l l 
be needed in the subsequent sections and to establish notation and terminology related 
to the motion of a continuous body. 

It is clear that the shape of the ventricle changes during the cardiac cycle, mainly 
because of its contraction. From the computational point of view, this means that the 
domain Q (or f ^ ) , introduced in the previous chapter, wi l l no longer be a fixed domain 
occupied by the vetricle at all times t. Instead, it wi l l serve as a reference configuration 
[66] which we wi l l assume that the L V occupies at time t = 0 ms and wi th respect to 
which we wi l l describe the motion of the ventricle. Such description of motion is called the 
referential description [43]. A region which the ventricle occupies at some time t > 0 ms 
is called an actual (or current or present) configuration [66] and it wi l l be denoted by Qt.2 

Both configurations are sketched in F ig . 19. The mapping 

which maps points of the ventricle from their reference places X G f2 into actual places 
x := X t ( X ) G fit is called the transplacement from the reference configuration to the 
actual configuration at time t [43]. It is assumed to be at least a C 1-diffeomorphism 
[43].3 Consequently, it is possible to take its gradient V x t for which an appropriate name 
would be the transplacement gradient [43, 67] but which is almost invariably called the 
deformation gradient [66, 54], even though it is not necessarily related to any deformation 4 

1 Ansys Mechanical A P D L 2021 R2 exactly. 
2 A reference configuration does not necessarily have to be a region occupied by a given body in the 

course of its motion [43]. If it coincides with the region occupied by the body at time t = 0 ms, as it 
does in the present study, it is also called an initial configuration. The word configuration is sometimes 
replaced by the word shape [43]. 

3 A C^-diffeomorphism is a continuously differentiable bijection whose inverse is also continuously 
differentiable [43]. In situations when C 1 is not sufficient, it must be replaced by C™ with n > 1 [67]. 

4 A body in a rigid motion does not change its shape; thus it does not "deform" in the ordinary 
meaning of the word. 

Xt • ->• fit 
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[66]. The deformation gradient is denoted by F , i.e. 

F := VXt • (5.2) 

If there is no special reason to do so, the dependence of F on time is usually not made 
explicit in the notation. Also, the symbol F is commonly used in literature to denote 
both the tensor field (5.2) as well as its value (V%t) (X) = Vx (x t ) at some X e fi. In 
this work, the symbol wi l l be used in both meanings. The deformation gradient F at X 
is a linear transformation which can be regarded as the best linear approximation of Xt 
in a neighborhood of X [43]. 

t - O m s t > 0 ms 

Fig. 19: A n illustration of the deformation of the ventricle from the initial (reference) 
configuration f2 into the current configuration f^. The transplacement xt maps places 
occupied by points of the ventricle at time t = 0 ms into places occupied by the same 
points at time t > 0 ms. The deformation gradient F at X transforms vectors in the 
reference configuration into vectors in the current configuration. 

Since Xt is a diffeomorphism, the determinant of F is non-zero at all X e Q. Al though 
the general mathematical theory does not exclude the possibility that det(F) < 0, in 
practical applications it is common to assume that all transplacements are such that 
det(F) > 0 [43]. We can then define a positive Jacobian 

J := det(F) > 0 (5.3) 

whose physical meaning is the volume ratio of an infinitesimal volume near x = x*(X) 
(i.e. in the actual configuration) to an infinitesimal volume near X (i.e. in the reference 
configuration) [66]. 

The deformation gradient F is invertible and the inverse function theorem 1 asserts 
that 

V X t ( X ) ( x < - 1 ) = (Vxfe) )" 1 = F " 1 V X G O . (5.4) 

Invertibility also implies, by means of the polar decomposition theorem 2 , that there exists 
a unique multiplicative decomposition 

F = R U (5.5) 

in which R is the rotation tensor and U is the right stretch tensor [43]. The rotation 
tensor is a proper orthogonal tensor which means that R " 1 = R T and det(R) = 1. The 

^ . g . [48], p. 245-246. 
2 E . g . [48], p. 322. 
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right stretch tensor is a symmetric, positive definite tensor which means that U = U 
and v • U v > 0 for every non-zero vector v. The fact that det(R) = 1 implies that 

det(U) = det(F) = J. (5.6) 

The deformation gradient F is a linear transformation which maps vectors in the 
reference configuration into deformed vectors in the current configuration. Thus a vector v 
in the reference configuration wi l l appear as F v in the current configuration (see F ig . 19). 
Since both R and U are linear transformations as well, the polar decomposition (5.5) 
suggests that the action of F on v can be effected by applying first a pure stretch, expressed 
by U , and then a pure rotation, expressed by R [43]; more precisely: 

F v = (RU)v = R ( U v ) . (5.7) 

A n illustrative example of this two-step transformation process in a 2-dimensional space 
is shown in F ig . 20. 

U e 2 

Fig. 20: A n example showing how F , U and R act on vectors in a 2-dimensional 
space (inspired by Figure 1 on p. 324 in [48]). Consider all vectors emanating from 
the centroid of the square on the left which are contained inside the square. Such 
vectors are, for example, e i , e 2 and v (some other vectors are shown in gray). 
Suppose that F is a deformation gradient which transforms the vectors inside the 
square into the rotated rectangle shown on the right. In particular, e i , e 2 and v 
are mapped into F e i , F e 2 and F v , respectively. Suppose that F = R U is the po
lar decomposition of F and that e i and e 2 are principal vectors (eigenvectors) of U 
forming an orthonormal basis. Then the transformation of vectors can be realized 
by first stretching the square in the principal directions by means of U (producing 
U e i , U e 2 and U v ) , and then rotating the intermediate rectangle by means of R (pro
ducing R ( U e i ) = F e i , R ( U e 2 ) = F e 2 , and R ( U v ) = F v ) . 

Constitutive equations are often expressed in terms of the right Cauchy-Green tensor 

C := F T F = ( R U ) T R U = U T R T R U = U U = U 2 (5.8) 

or the left Cauchy-Green tensor 

B := F F T = R U ( R U ) T = R U U T R T = R C R T . (5.9) 

Both these tensors are symmetric and positive definite. It follows from the definitions 
(5.8) and (5.9) that 

det(C) = det(B) = (det(F)) 2 = J2 . (5.10) 

Later, we wi l l also need the isochoric version of B which is defined as 

B = J " 2 / 3 B . (5.11) 
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5.2 Passive mechanical properties of myocardium 
Sec. 2.3 presented essential information about the microstructure of L V myocardium. It 
was stated there that locally one can distinguish the predominant fibre direction, f, the 
sheet direction, s, and the sheet-normal direction, n. In Sec. 2.4, an evidence was given 
that electrical conduction velocity of myocardium is orthotropic, wi th principal directions 
coinciding wi th the structural directions f, s, n. It is by no means surprising that the 
same conclusion applies also for the mechanical properties of myocardium which wi l l now 
be discussed in more detail. 

A B 

Fig. 21: (A) Schematic representation of ventricles showing typical locations from 
which squared biaxial specimens and cubic triaxial shear specimens were excised in 
the experimental study by Sommer et al. [12]. M F D : mean-fibre direction, C F D : 
cross-fibre direction, L V F W : left ventricular free wall, R V F R : right ventricular free 
wall. (B) Six possible simple shear modes for cubic myocardial specimens. The modes 
are denoted by specifying two vectors; the first is the normal vector to the face that 
is shifted by the simple shear and the second denotes the direction in which the face 
is shifted. Thus, e.g., the fs mode means simple shear in which the face with normal 
vector f is shifted in the direction s. Figure was adopted from [12] and modified. 

Passive mechanical properties of myocardium (stress-strain relations) are most often 
determined by quasi-static biaxial extension tests [68, 12] or simple shear tests [39, 12]. 
Biaxia l tests are typically performed wi th thin squared specimens excised parallel to the 
ventricular wall , as shown in F ig . 21A. Two parallel edges of the specimens are always 
aligned wi th the mean-fibre direction, while the other two correspond to a cross-fibre 
direction. Interpretation of the cross-fibre direction of the specimens is somewhat ques
tionable because it probably coincides neither with s, nor wi th n direction. However, 
for the computational purposes, the relation between the cross-fibre direction and the 
structural (principal) directions must be specified in some way, because otherwise or
thotropic constitutive equations could not be fitted to the biaxial data. Since the sheets 
an end-diastole are approximately tangent to the wall (cf. Sec. 2.3), it is probably best to 
assume that the cross-fibre direction coincides wi th the s direction. This assumption wi l l 
be adopted in this work. However, whatever be the assumption, it is obvious that biax
ial tests alone are not sufficient for a complete characterization of the passive properties 
of myocardium because they do not capture the response in the direction perpendicular 
to the plane of the specimen (i.e. transverse to the wall) [14]. In order to capture the 
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response in three independent directions, biaxial tests must be complemented by tr iaxial 
simple shear tests [12]. These are performed on small cubic specimens with edges aligned 
wi th the local f, s, n directions. F ig . 21B shows six possible shear modes in which the 
cubic specimens can be deformed. 

0 0.02 0.04 0.06 0.08 0.1 0 0.1 0.2 0.3 0.4 0.5 

Eng inee r i ng stra in S h e a r strain 

Fig . 22: Average responses of human ventricular myocardium to biaxial (left) and 

simple shear (right) loading, extracted from [12]. Biaxial specimens were loaded in 

mean-fibre direction, f , and the cross-fibre direction. T h e latter is here assumed to 

coincide with the sheet direction, s . Five biaxial protocols were used with strain ratios 

between f and s directions specified in the legend. E a c h biaxial curve is an average of 

the results from 26 specimens and each simple shear curve is an average of the results 

from 18 specimens. 

Currently, the only study which provides results from both biaxial and simple shear 
tests of human ventricular myocardium is that by Sommer et al. (2015) [12]. The shear 
protocol of the study included all six possible simple shear modes and the biaxial testing 
protocol included five different strain ratios between the mean-fibre direction and the 
cross-fibre direction, namely: 0.5 : 1, 0.75 : 1, 1:1 (equibiaxial loading), 1 : 0.75, 1 : 0.5. 
Since the responses to both types of tests exhibited hysteresis, the authors calculated 
for each test the average between the loading and the unloading curves, claiming that 
this represents an elastic response of the tissue. These "elastic" responses were further 
averaged for al l tested specimens and the resulting average responses were presented in 
Figs. 9 and 13 in the original paper [12]. For the purpose of this thesis, the data were 
extracted from those figures in order to determine material parameters of the constitutive 
model that wi l l be presented in Sec. 5.4. The extracted data are re-plotted in F ig . 22. Note 
that in that figure, the mean-fibre direction is denoted by f and the cross-fibre direction 
is denoted by s in accordance wi th the assumption made above. From the simple shear 
results, it can be seen that myocardium exhibits highest resistance to shear when it is 
deformed in fs and fn modes, intermediate resistance when deformed in sf and sn modes, 
and lowest resistance when deformed in nf and ns modes. In other words the stiffness 
in simple shear is highest when the face wi th normal vector f is displaced (because such 
deformation causes extension of muscle fibres), intermediate when the face wi th normal 
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s is displaced, and lowest when the face with normal n is displaced. 1 Thus the passive 
mechanical behavior of human myocardium is clearly orthotropic and, as demonstrated 
by the curves in F ig . 22, highly nonlinear. 2 

5.3 A brief introduction to hyperelastic models for myocardium 
Passive mechanical behavior of myocardium is usually mathematically described within 
the framework of hyperelasticity [14, 69, 70] which means that scalar-valued strain-energy 
function, or stored-energy function, \I/ is formulated and all necessary stress tensors are 
subsequently obtained by taking the gradient of \& wi th respect to a particular deformation 
tensor in terms of which the function is formulated [66] (see Sec. 5.5). Al though there are 
strain-energy functions for myocardium defined in terms of components of deformation 
tensors [70], it is more common nowadays to use models expressed in terms of scalar invari
ants which are independent of coordinates [14, 69]. Since the myocardium is anisotropic, 
the models use not only isotropic invariants of a particular deformation tensor but also 
mixed invariants [71] formulated in terms of the structural tensors f <g) f, s ® s o r n ® n 
[14].3 A widely used model for myocardium proposed by Holzapfel and Ogden [14] em
ploys, in addition, a coupling invariant defined by means of the structural tensor f ® s 
which couples two preferred material directions. In general, by choosing a suitable set of 
physically relevant invariants, it is possible to formulate models which incorporate some 
characteristic histological properties of the tissue [72]. Such models are then referred to 
as structurally based or structurally motivated [14]. 

Similarly to other types of soft tissues, like e.g. arteries [73], the myocardium is 
commonly treated, in the framework of hyperelasticity, as a fibre-reinforced composite 
consisting of isotropic matrix and one or more families of fibres [14]. In such approach, each 
considered constituent of the tissue is usually represented by a separate term, dependent 
on a suitable invariant, and the strain-energy function of the entire composite is then 
obtained as the sum of the individual terms. In the above mentioned model by Holzapfel 
and Ogden [14], the isotropic non-collagenous and non-muscular matrix (which includes 
fluids and elastin) is represented by an exponential term 

* i s o : = ^ ( e x p ( 6 ( / i - 3 ) ) - l ) (5.12) 

which is dependent on the isotropic invariant 

h •= t r ( C ) . (5.13) 

Exponential stiffening in the fiber direction, which the authors attribute not only to the 
extension of muscle fibres but also to the resistance of collagen network, is represented by 
a term 

* f : = ^ ( e x p ( 6 f ( / 4 f - l ) 2 ) - l ) (5.14) 

1 More pronounced differences between the individual simple shear modes than that shown in Fig. 22 
were reported by Dokos et al. (2003) [39], but they tested samples from pig ventricles rather than human. 
In particular, they observed significant distinctions not only between fs and fn modes but also between 
sf and sn modes, which almost coincide in Fig. 22. These results of Dokos et al. motivated Holzapfel 
and Ogden to include in their famous hyperelastic model of human myocardium from 2009 [14] a term 
with a coupling invariant Igis := tr(C(f <E> s)) (C being the right Cauchy-Green tensor) which allows to 
distinguish mode fs from fn and mode sf from sn. 

2Besides this the myocardium also exhibits viscoelastic behavior (hysteresis formation) and irreversible 
stress softening (Mullins effect) [12], but these effects will not be taken into account in this work. 

3These tensors were already introduced in the definition (4.8) of the diffusion tensor D . 
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in which 
/ 4 f : = t r ( C ( f ® f ) ) . (5.15) 

The geometrical meaning of this invariant becomes obvious if we use (5.8) and rewrite 
the above definition as 

/ 4 f = t r (C ( f ® f)) = t r ( F T F ( f ® f)) = tr(F(f ® f )F T ) = tr((Ff) ® (Ff)) 

= (Ff) • (Ff) = | |Ff 
(5.16) 

F f is the deformed unit vector f (see F ig . 19). Its magnitude ||Ff|| corresponds to the 
stretch of a material fiber init ial ly aligned wi th f. It follows from (5.16) that 1^ is the 
square of stretch in the fibre direction. The same form of function as in (5.14) is used 
also to model the exponential response in the sheet direction which is assumed to result 
from the stretching of collagen fibres laterally binding the the muscle fibres [14]: 

^ s : = ^ ( e x p ( 6 s ( J 4 s - l ) 2 ) - l ) . (5.17) 

The definition of invariant is analogous to (5.15): 

hs : = t r ( C ( s ® s ) ) . (5.18) 

Lastly, the model contains a coupling term associated wi th directions f and s: 

v l / f s : = ^ ( e x p ( 6 f s ( J 8 f s ) 2 ) - l ) . (5.19) 

A s mentioned in the footnote on p. 64, the coupling invariant i g f s is defined by 

/ 8 f e := tr(C(f ® s)). (5.20) 

It captures the change of the right angle between f and s, as can be seen from the following 
result: 

/ 8 f e = t r (C ( f ® s)) = t r ( F T F ( f ® s)) = tr(F(f ® s)F T ) = tr((Ff) ® (Fs)) 

= (Ff) • (Fs). ( 5 - 2 1 ) 

If the deformed vectors F f and Fs remain orthogonal, as is the case for the shear modes 
fn, sn, nf and ns, then i g f s vanishes and the term \l/f s wi l l generate no stress. O n the 
contrary, if the angle between f and s is changed after deformation, which occurs in shear 
modes fs and sf, then additional stresses are generated by \ l/f s . Consequently, the shear 
stress in fs and sf modes wi l l be higher than that in the corresponding modes fn and sn, 
respectively. 

The full form of the strain-energy function proposed by Holzapfel and Ogden [14] 
reads: 1 

# H O := #iso + # f + # s + * 6 

= | ( e x p ( 6 ( / i - 3)) - 1) + E ^ M H h i - I ) 2 ) - 1) + ^ ( e x p ( 6 f s ( J 8 f s ) 2 ) - 1). 
=f,s 

(5.22) 

1It should be noted that Holzapfel and Ogden in their paper [14] introduced their model with a mistake 

in the first term (their equation (5.38)). There, the term was written as — exp(6(7i — 3)). The correct 

form they gave a few pages later in equation (6.3). 
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It is important to note that the terms \l/f and \I/S are included in the model only if 
^4f > 1 and Izis > 1, respectively, because fibres are assumed to generate no stress under 
compression [14]. Of course, a, b, at, bf, as, bs, afs, bfs in (5.22) are material parameters 
which must be determined by fitting the model to experimental data. 

In some more recent papers [74, 75, 76], the Holzapfel-Ogden model was used in an 
alternative nearly incompressible form in which the standard invariants, used in (5.22), 
are replaced by modified isochoric invariants and additional volumetric term is included 
in the strain-energy function in order to enforce approximately incompressible behavior. 
However, some authors [77, 78] pointed out that isochoric versions of anisotropic invari
ants produce unexpected and unphysical results and they suggested that full anisotropic 
invariants should be used in nearly incompressible hyperelastic models in order to obtain 
correct results. Thus, it is now common to formulate strain-energy functions for soft 
tissues wi th isotropic part described by the isochoric invariant 

7 1 : = J ~ l l x (5.23) 

and anisotropic part described in terms of standard (full) invariants (e.g. [77, 79]). 

5.4 A n alternative hyperelastic model for human myocardium 
In this work an alternative hyperelastic model wi l l be used which is largely based on 
the nearly incompressible form of the Holzapfel-Ogden model, discussed in the previous 
section, but which treats differently the contribution of sheets inside the myocardium. 
The Holzapfel-Ogden model describes myocardium as an isotropic matrix reinforced by 
muscle fibres and collagen fibres (mutually coupled by the invariant isfs)- i n this work, 
the myocardium wi l l also be treated as a reinforced composite but the constituents which 
wi l l be taken into consideration are: an isotropic matrix, planar sheets (with isotropic 
in-plane response) and a family of parallel muscle fibres reinforcing the sheets. The con
stitutive description of the matrix and the muscle fibres wi l l be the same as in the (nearly 
incompressible) Holzapfel-Ogden model; i.e. the strain-energy function wi l l include terms 

^ i s 0 : = ^ ( e x p ( 6 ( / i - 3 ) ) - l ) (5.24) 

and 
* f : = ^ ( e x p ( 6 f ( / 4 - l ) 2 ) - l ) (5.25) 

which depend on invariants I\ and J 4 given by (5.23) and (5.15), respectively. Note that 
(5.24) , contrary to (5.12), is defined in terms of the isochoric invariant I\ and that in 
(5.25) we have omitted the subscript "f" from the invariant 1^. 

The planar sheets wi l l be represented by an exponential term proposed, among several 
other polyconvex functions, by Balzani et al. [72] as a potentially suitable function for 
description of soft biological tissues. However, no practical application of the function 
in the field of biomechanics (or any other) is known to the author of this thesis. The 
function reads: 

* f s := ^ ( e x p ( 6 f s ( K 1 - l ) 2 ) - 1). (5.26) 

Invariant K\ is defined as [72, 71]: 

Kx := t r (cof(C)(n ® n ) ) . (5.27) 
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In general, the cofactor of an invertible linear transformation L is defined by [71]: 

cof(L) := de t (L)L" T (5.28) 

(see also (4.68)). Since the right Cauchy-Green tensor C is symmetric, its inverse is also 
symmetric and we have: 

cof(C) = d e t ( C ) C " T = d e t ( C ) C " 1 ; (5.29) 

Although it is perhaps not evident at first glance, invariant K\ has a simple geometrical 
interpretation which can be revealed by rewriting the definition (5.27). To that end, we 
first insert (5.8) into (5.29) and express 

cof(C) = d e t ( C ) C " 1 = d e t ( F T F ) ( F T F ) " 1 = (det(F)) 2 F _ 1 F ~ T = (cof(F)) T cof(F). 
(5.30) 

The result of (5.30) can be used in (5.27) and after some manipulation of the resulting 
expression, we obtain: 

Kx = tr(cof(C)(n ® n)) = tr((cof(F)) Tcof(F)(n ® n)) 

= tr(cof(F)(n ® n)(cof(F))T) = tr((cof(F)n) ® (cof(F)n)) (5.31) 

= (cof(F)n) • (cof(F)n) = ||cof(F)n|| 2 . 

Thus, K\ is the square of the magnitude of vector cof(F)n. The meaning of this vector 
explains the Nanson's formula (e.g. [72]) which basically says that cof(F) maps planar 
(i.e. 2-dimensional) elements in the reference configuration into deformed planar elements 
in the current configuration. The principle is similar to F which maps line elements, 
represented by vectors, into deformed line elements (see again F ig . 19). In order to give 
a precise meaning to cof(F)n, we must regard the unit vector n as representing a unit 
planar surface to which n is a normal. Such surface lies in the plane defined by vectors f 
and s; thus it can be seen as representing a myocardial sheet. The Nanson's formula says 
that cof(F) is a linear transformation which maps n into another vector, cof(F)n, which 
represents the original surface after its deformation. The deformed surface is still planar 
(just like the line element represented by F v in F ig . 19 is sti l l straight), its normal coincide 
wi th the direction of cof(F)n and its area equals to ||cof(F)n||. Thus K\ controls the 
deformation of a preferred planar element init ial ly perpendicular to n. We can emphasize 
the analogy between I4 and K\ by saying that y/Tl is the local stretch of a material fibre 
aligned with f and y/K[ is the local areal stretch of the material surface transverse to n 
[80]. 

The last term of the strain energy function wi l l be a volumetric term 

* v o i : = f ( J - l ) 2 (5.32) 

in which K is the bulk modulus which serves as a penalty parameter for imposing approx
imately incompressible behavior. 

The full form of the proposed alternative strain-energy function reads: 

* alt - * i s o + #f + #fe + * vol 

| ( e x p ( 6 ( / i - 3)) - 1) + | - ( e x p ( M / 4 - I ) 2 ) - 1) + ^(exp(br.(K, - if) - 1) 

+ ¥J-V> 
(5.33) 
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Similarly to the Holzapfel-Odgen model, the anisotropic terms \l/f and \l/fs wi l l be included 
in the model only if J 4 > 1 and K\ > 1, respectively. It must nevertheless be admitted 
that deactivation of \l/f s is debatable because it does not have so clear physical justification 
as the deactivation of \l/f has (fibres do not support compression). However, in the paper 
by Balzani et al. [72], \l/f s is defined only for K\ > 1 and it is replaced by zero if K1 < 1. 

5.5 The Cauchy stress tensor 
In order to determine material parameters in the proposed strain-energy function (5.33) 
and to implement the model into F E software Ansys, it is necessary to derive the expres
sion for the Cauchy stress tensor. Hyperelastic materials in general satisfy the following 
relation between the strain-energy function \1/ and the second Piola-Kirchhoff stress ten
sor1 S [66]: 

S = 2 V C # . (5.34) 

The Cauchy stress tensor cr can then be obtained as follows [66]: 

a = J~1FSFT . (5.35) 

The Cauchy stress tensor is a linear transformation which maps unit vectors n (which are 
normals to surfaces inside the current shape Qt) into tractions t (which are forces acting 
on those surfaces), i.e.: 2 

t = <rn. (5.36) 

For the particular case of the strain-energy function ^ a \ t , given by (5.33), equation 
(5.34) can be expanded as follows 3: 

S = 2 ( V c ^ i s o + V c f f + V c ^ f s + V c ^ v o i ) 

= 2 ( ^ ; s o v c / i + KVch + * f S v c ^ i + < O 1 V C J ) . ( 0 0 ' 

Here, ^ [ s o , ^ ' f , ^ ' { s and ^ ' v o l are the derivatives of the individual terms of the strain-erergy 
function \ l / a i t wi th respect to the corresponding invariants; they are given by: 

* i B = | e x p ( 6 ( / 1 - 3 ) ) , (5.38) 

*'f = af(h ~ 1) exp(6 f ( J 4 - l ) 2 ) , (5.39) 

= a^K, - 1) e x p ( 6 f s ( K 1 - l ) 2 ) , (5.40) 

< o l = « ( J - l ) . (5.41) 

The tensor generators [71] V c h , V c / 4 , V c ^ i and VcJ, that appear in (5.37), are 
independent of the specific forms of \ l / i s o , \l/f, \l/f s and ^ V o i - To proceed, it is now necessary 
to express them in terms of the right Cauchy-Green tensor, the structural tensors and the 
invariants. Such expressions can be derived using various combinations of the chain rule, 
the product rule and some other rules, theorems and identities which can all be found 
in the book by Nol l [48], mostly in Chapter 6. A s some of these identities wi l l be used 

1To see how the second Piola-Kirchhoff stress tensor, as well as the first one, arises in the general 
theory, consult Appendix A on p. 124 of [66]. 

2 For a comprehensive explanation of the concept of stress, refer to Chapter III of the book [43] by 
Truesdell. Note that the unit normal n in (5.36) should not be confused with the sheet-normal direction. 

3 T h e first right-hand side of (5.37) originates from eq. (63.12) on p. 221 in [48] and the second from 
the chain rule. 
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repeatedly in many equations given below, from now on their usage wi l l , in most cases, 
not be explicitly mentioned in the text because doing so would affect its readability. 

We wi l l start wi th finding the expression for Vc<7- Using the fact that [48] 

V c ( d e t ( C ) ) = d e t ( C ) C " T = d e t ( C ) C " 1 (5.42) 

and recalling from (5.10) that J = ^ /de t (C) , we can proceed as follows: 

V C J = V c V

/ d e t ( C ) = ^ ( d e t ( C ) ) - 1 / 2 V c ( d e t ( C ) ) = ^ d e t ^ C T 1 = l-JC"1. (5.43) 

The result of (5.43) is needed for the calculation of V c - ^ i - Beside that, we wi l l need the 
definitions (5.13) and (5.23) of I\ and J i , respectively. W i t h the help of these equations, 
we can write: 

V c / i = V c ( J " 2 / 3 t r ( C ) ) = J " 2 / 3 V c ( t r ( C ) ) + t r ( C ) V c ( J - 2 / 3 ) 

= j - 2 / 3 ! _ 2 J _ 5 / 3 t r ( C ) V c J = J " 2 7 3 1 - \liC-1, 
(5.44) 

where I is the identity tensor. Tensor Vc-^4 can be obtained easily because I± depends 
linearly on C by the definition (5.15). Consequently: 

V c / 4 = V c ( t r ( C ( f <8>f))) = f ® f . (5.45) 

Derivation of V c - K i is more intricate. We start by introducing two special tensor products, 
® and ®, which Bel l in i and Federico [81] call tensor-down and tensor-up, respectively. 
They are defined by 

(A <g) B ) M := A M B T , (5.46) 

(A ® B ) M := A M T B T , (5.47) 

where A , B and M are second order tensors. It can be seen from the above definitions 
that both products are linear mappings which transform second-order tensors into other 
second-order tensors. Combining (5.46) and (5.47), we can further define 1 [81] 

A ® B := - ( A ® B + B ® A ) . (5.48) 
2 

W i t h this definition, the gradient of the inverse of C can be expressed as [82] 

V C ( C " 1 ) := - C ^ I C " 1 . (5.49) 

The gradient of cof(C) can be obtained using (5.49), (5.42) and (5.29) as follows: 

V c ( c o f ( C ) ) = V c ( d e t ( C ) C - 1 ) 

= ( C " 1 ® V c ( d e t ( C ) ) + d e t ( C ) V c ( C - 1 ) ) (5.50) 

= det(C) ( C " 1 ® C " 1 - C " 1 ® C " 1 ) . 

1 Holzapfel [82] uses the symbol "©" instead of 
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Using the result of (5.50), it can be seen that the gradient of K\ satisfies: 

( V c ^ i ) M = V c ( t r ( c o f ( C ) ( n ® n ) ) ) M 

= t r [ ( V c ( c o f ( C ) ) M ) ( n ® n ) ] 

= det(C) tr[ ( ( C T 1 ® C T ^ M ^ n ® n) ] 

- det(C) tr[ ( ( C T 1 ® C _ 1 ) M ) ( n ® n) ] 

= det(C) t ^ C T ^ n ® n)) t ^ C ^ M ) (5-51) 

- l- d e t ( C ) [ t r ( C - 1 M C - 1 ( n ® n)) + t r ( C - 1 M T C - 1 ( n ® n)) ] 

= KMC^M) - det(C) t r ( C _ 1 ( n ® n) C _ 1 M ) 

= t r f ^ i C " 1 - det(C) C T ^ n ® n) C T ^ M ] . 

Thus we finally obtain: 

V c i f i = K i C " 1 - det(C) C _ 1 ( n ® n ) C _ 1 . (5.52) 

It would now be possible to express the second Piola-Kirchhoff tensor S in terms of the 
basic tensors and invariants by inserting the derived expressions for gradients into (5.37), 
but it is not necessary because we need only the Cauchy stress tensor cr which wi l l now 
be derived. First , we substitute S in (5.35) by the right-hand side of (5.37); we obtain: 

<r = 2 J " 1 (%Q F ( V c / i ) F T + % F ( V C / 4 ) F T + % S F ( V c ^ i ) F T + % O L F ( V C J ) F T ) . 

(5.53) 

It can be seen that we now need to provide the tensor generators F ( V c < / ) F T , F ( V C - T L ) F T , 
F ( V C / 4 ) F T and F ( V c ^ i ) F T . Using the gradients (5.43), (5.44), (5.45) and (5.52) along 
wi th the relation (5.10) and the definitions (5.8), (5.11) and (5.28), these tensors can be 
obtained as follows: 

F ( V C J ) F T = F ( - J C " 1 ) F T = - J F C _ 1 F T = - J F F _ 1 F _ T F T = - J I . (5.54) 
V 2 J 2 2 2 

F ( V c / i ) F T = F (V 2 / 3 I - ^ i C - 1 ^ F T = J " 2 / 3 F I F T - ^ F C _ 1 F T 

j - 2 / 3 p p T _ l j F F _ l F _ T F T = B _ I J J 
3 3 ' 

(5.55) 

F ( V C / 4 ) F T = F ( f ® f ) F T = (Ff) ® ( F f ) , (5.56) 

F ( V c ^ i ) F T = F ( K i C T 1 - det(C) C _ 1 ( n ® n ) C _ 1 ) F T 

= K i F F _ 1 F ~ T F T - (det(F)) 2 F F _ 1 F ~ T ( n ® n ) F _ 1 F - T F T 

= K{i. - (det(F)) 2 ( F _ T n ) ® ( F _ T n ) 

= Kxl - (cof(F)n) ® (cof(F)n) . 

(5.57) 

The final expression for the Cauchy stress tensor cr is obtained by inserting the results of 
(5.54)-(5.57) into (5.53). The latter then reads: 

cr = 2 J " 1 (tf ( s o ( b - l-h i ) + % (Ff) ® (Ff) + %s (Ki I - (cof(F)n) ® (cof(F)n))) 

+ < O L I . (5.58) 
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5.6 Estimation of material parameters 
Once the general equation (5.58) for the Cauchy stress tensor is known, it can be used 
to find a suitable set of material parameters that would ensure an optimal correspon
dence between the calculated response of the model and the experimental data plotted 
in F ig . 22. In order to do so, equation (5.58) must first be expressed in the component 
form wi th respect to an orthonormal basis (f, s, n). After that, the particular forms of 
the deformation gradient F for biaxial and simple shear deformations must be formulated 
and inserted into the stress relation. In this way, one can obtain two scalar functions 
describing the normal stresses in f and s directions during biaxial loading and another six 
functions for the shear stresses corresponding to the six simple shear modes depicted in 
F ig . 21B. Afterwards, a nonlinear least squares problem can be formulated and solved. In 
this work, the solution was performed in Mat lab using the Gauss-Newton algorithm. The 
penalty parameter was set to K — 1 M P a and it was considered fixed while the rest of the 
parameters were iteratively adjusted. The final values obtained from the fitting process 
are given in Table. 5 and the corresponding stress-strain curves obtained from the model 
for all considered tests are plotted in F ig . 23 against the experimental data from Sommer 
et al. [12]. 

Table 5: Values of material parameters for the strain-energy func

tion (5.33) which were used to fit the corresponding stress response 

(5.58) to the experimental data extracted from Sommer et al. [12]. 

a b bf a f e K 

(kPa) (") (kPa) (") (kPa) (") (kPa) 

1.1672 6.4795 1.0270 38.8499 0.2807 11.6417 10 3 

It can be seen from Fig . 23 that the experimental results can be reproduced very well 
by the proposed model. However, it must be pointed out that there is one significant 
drawback of the model which, to some extent, l imits its suitability for the description of 
myocardium. The problem is that the model exhibits stiffer behavior in the fn mode than 
in the fs mode, while the experiments of Sommer et al. [12] (Fig. 22) show the opposite. 
This is evident from the small text boxes attached to the shear responses in F ig . 23. 
Each of these boxes displays the shear stress calculated for the shear strain of 0.4474. It 
can be seen that the fn mode is indeed stiffer than the fs mode, although the difference 
is quite small. Similarly, the sn mode is slightly stiffer than the sf mode, whereas in 
experiments (Fig. 22) they are almost identical. The explanation of this behavior of the 
model is simple. If the term \l/f s was not included in the strain-energy function (5.33), 
the response of the resulting model would be the same for the associated modes fs, fn as 
well as for the modes sf, sn and likewise for the modes nf, ns. The term \l/fs (dependent 
on K\) distinguishes the fs mode from the fn mode and the sf mode from the sn mode 
which means that its role is similar to that of the coupling term \l/f s (dependent on Jgfs) in 
the Holzapfel-Ogden model. However, contrary to that model, in the model used here the 
function \l/fs makes the fn mode slightly stiffer than the fs mode, and the sn mode stiffer 
than the sf mode. This is so because (if we assume a fully incompressible behavior) the 
fs and sf modes do not produce any change in the sheet area which means that K\ = 1 
and thus \l/f s vanishes. O n the contrary, the shear modes fn and sn clearly do change the 
sheet area. In these modes Ki = 1 + (shear strain) 2 which means that there is non-zero 
contribution of \l/f s to the shear stress. 
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Fig . 23: F i t of the model (5.33) (solid curves) to the experimental data extracted 

from Sommer et al. [12] (red circles and plus signs). T h e same experimental data were 

plotted earlier in F i g . 22. T h e top 5 graphs show the biaxial responses while the bottom 

six graphs compare responses to the simple shear tests. T h e material parameters used 

are given in Table 5. See F i g . 21 for the explanation of shear modes and the caption 

to F i g . 22 for the description of biaxial testing protocol. 
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A s the differences between the associated pairs of modes are rather small (in the ex
periments as well as in the response of the model), the described shortcoming of the 
model should not have a significant impact on the results, but if we were to simulate, 
e.g., the mechanics of pig heart, then the model could probably not be used because it 
has been shown that pig myocardium exhibits more pronounced differences between indi
vidual shear modes [39] with the following stiffness order: fs > fn > sf > sn > nf pa ns.1 

Also, looking at the shear responses in F ig . 22, one might come to the conclusion that 
distinguishing between the associated pairs of modes is perhaps not worth the effort be
cause, for some constitutive models, the difference between the fitted response and the 
experimental data could easily be greater than that between the most distinct associated 
modes fs and fn in F ig . 22. If we decided to ignore these distinctions, it could be sufficient 
to use, e.g., the nearly incompressible Holzapfel-Ogden model without the coupling term, 
although in such case the agreement between the model and the experimental data would 
probably not be as good as in F ig . 23. However, this option was not investigated in this 
study. 

Another shortcoming of the model is that the deformed fibre direction, Ff , w i l l in 
most cases not be perpendicular to the deformed sheet-normal direction, cof(F)n, which 
physically does not make much sense (deformed fibres do not lie in the plane of the sheet 
which they should form). Thus the proposed model should probably be viewed only as an 
interesting alternative to the existing models, which can accurately reproduce combined 
biaxial and simple shear tests but whose applicability to human myocardium should be 
further examined. 

5.7 Elasticity tensors 

The two most important quantities that are needed for the implementation of a hypere-
lastic model into F E software Ansys by means of the general material subroutine UserMat 
[83] (written in Fortran) are the Cauchy stress tensor, cr, and the Jaumann tangent stiff
ness tensor, cJ. The first of these was already derived in Sec. 5.5 (eq. (5.58)). The second 
one wi l l be derived in this section. The whole procedure can be divided into three steps. 
First , the material elasticity tensor C must be derived. Afterwards, its spatial counter
part c, called the spatial elasticity tensor, can be obtained by the push-forward operation 
(see [81]) applied on C . Finally, the Jaumann tensor cJ can be calculated from c. 

The material elasticity tensor is defined in terms of the second Piola-Kirchhoff stress 
S and the right Cauchy-Green tensor C as [54]: 

Here, S is considered to be a tensor-valued function of C . In the present case, such 
function can be obtained from the specific form of S given in (5.37). It reads: 

where the gradients V i i , V Z 4 , VK\ and V J are also functions of C . For instance, V i i is 

1It should be noted here that in Fig. 6 of [39], which shows responses of pig myocardium to simple 
shear, the symbols for the modes fs and fn were mistakenly switched, as pointed out by Holzapfel and 
Ogden [14]. Thus the figure erroneously claims that fn > fs, but it is clear from the text of the paper 
that the stiffest mode was in fact fs. 

C := 2 V C S . (5.59) 

s = 2 (*; s o v A + % v h + K v j t i + * ; o l v j ) , (5.60) 
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defined by ( V i i ) ( C ) := Vch- Equation (5.60) can be inserted into (5.59) producing: 

C = 2 V C S 

= 4v c (*Lo v/i + %vh + K v^i + Koi V J ) 

= 4 ( V c / i <8 V c ^ L o + V c / 4 <8 V c ^ f + V c ^ i <8 V c ^ k + V c J ® V c * v o ] 

+ *:so vg}/i + K vg}/4 + ̂ s v g ^ i + <o1 vg>j) 
= 4 ( t f ^ V c / i ® V c / i + * f ' V c / 4 ® V c / 4 + t f e V c i ^ i ® V c ^ i + * v o i V c J ® V c J 

+ *:so vg}/i + K vg>i4 + *k vg } i f i + <o1 vg>j). 
(5.61) 

The symbol " in the above expressions denotes the second gradient 1; for instance, the 
7 (2) 
C second gradient of I\ can be obtained as Vg^i = V c ( V / i ) . The double prime symbol 

" " " denotes the second derivatives of the individual terms of \J/ a i t wi th respect to the 
corresponding invariants; these derivatives can be obtained directly from (5.38)-(5.41) in 
the form: 

no — 
^ s o = y e x p ( 6 ( / i - 3 ) ) , (5.62) 

= af exp(6 f (J 4 - l ) 2 ) ( 2 6 f ( J 4 - l ) 2 + 1), (5.63) 

tt£ = ObexpfaiK! - l ) 2 ) ( 2 6 f s ( K ! - l ) 2 + 1), (5.64) 

*L = K- ( 5 - 6 5 ) 

The tensor products and the second gradients in (5.61) can all be calculated from the 
first gradients Vc</ , V c A , V c ^ and V c - K i which are given by (5.43), (5.44), (5.45) and 
(5.52), respectively. First , we wi l l calculate the tensor products: 

V c J ® V c J = Q JC-^j ® Q J C _ 1 ) = ̂ d e t ( c ) c _ 1 ® c _ 1 , (5-66) 
V c / i ® V c / i = f j" 2 / 3 1 - \ l i C ~ 1 ) ® ( j ~ 2 / z I - he" 1 ) 

V <̂  / V / (5.67) 

= J " 4 / 3 1 (g) I - \ J " 2 / 3 A (I <g) C " 1 + C " 1 <g) I) + h 2 C " 1 ® C " 1 , 
3 9 

V c / 4 ® V c / 4 = (f <8> f) <8> (f (8) f ) , (5.68) 

V c ^ i ® V c ^ i = [ i ^ i C " 1 - det(C) C T ^ n ® n j C T 1 ] 

® [ K i C T 1 - det(C) C - ^ n ® n j C T 1 ] 

= Kl C " 1 ® C " 1 - Kx det(C) [ C T 1 ® ( C T ^ n ® n j C T 1 ) (5.69) 

+ ( C " 1 ( n 8 ) n ) C - 1 ) 8 ) C - 1 ] 

+ ( d e t ( C ) ) 2 ( C - 1 ( n ® n j C T 1 ) ® ( C - ^ n ® n j C T 1 ) . 

Expressions for the second gradients V c J , V c i i and V c J 4 can be obtained relatively 

1 This notation for the second gradient was adopted from [48]. 
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easily: 

- l 

(5.70) 

(5.71) 

(5.72) 

Derivation of V c K\ requires more effort. We wi l l start by expressing this gradient in 
terms of several simpler ones, using equation (5.52): 

V ^ ü T i = V c C ^ i C T 1 - det(C) C - ^ n ® n j C " 1 ) 

= V c ^ i C " 1 ) - V c ( d e t ( C ) C T ^ n ® n j C " 1 ) 

= V c ^ i C " 1 ) - {C~l{n ® n)C~l) ® V c ( d e t ( C ) ) 

- d e t ( C ) V c ( C - 1 ( n ® n ) C - 1 ) . 

V c C ^ i C " 1 ) = C " 1 ® V c ^ i + ^ i V c ( C - 1 ) 

= K i C T 1 ® C " 1 - det(C) C T 1 ® ( C _ 1 ( n ® n ) C _ 1 ) - K^C'11 C " 1 

= KiiC-1 ® C " 1 - C " 1 ® C T 1 ) - det(C) C " 1 ® ( C _ 1 ( n ® n ) C _ 1 ) 
(5.74) 

and the second one, V c ( d e t ( C ) ) , is given by (5.42). The third gradient can be expressed 
as follows: 

V c ( C - 1 ( n ® n)C-r) M = ( V ^ C T 1 ) M ) ( n ® n j C " 1 + C " 1 ( V c ( ( n ® n j C T ^ M ) 

= ( V c C C " 1 ) M ) ( n ® n j C " 1 + C T ^ n ® ̂ ( V c C C " 1 ) M ) 

= - ( ( C - 1 l C - 1 ) M ) ( n ® n ) C - 1 - C - 1 ( n ® n ) ( ( C - 1 f C - ^ M ) 

= - ( C ^ M C T ^ n ® n ) C _ 1 - ( C - 1 M T C - 1 ) ( n ® n ) C _ 1 

- C _ 1 ( n ® n X C ^ M C T 1 ) - C _ 1 ( n ® n ) ( C - 1 M T C - 1 ) 

= - C - 1 M ( C - 1 ( n ® n ) C _ 1 ) - C - 1 M T ( C - 1 ( n ® n ) C _ 1 ) 

- ( C _ 1 ( i i ® n j C ^ j M C " 1 - ( C _ 1 ( i i ® n ) C - 1 ) M T C - 1 

= - [ C _ 1 1 ( C _ 1 ( n ® n ) C - 1 ) ] M - [ ( C _ 1 ( n ® n ) C _ 1 ) 1 C " 1 ] M 

= - [ C _ 1 1 ( C _ 1 ( n ® n ) C _ 1 ) + ( C _ 1 ( n ® n ) C _ 1 ) 1 C " 1 ] M 

Since (5.75) must hold for all second order tensors M , it follows that 

V c ( C - 1 ( n ® n ) C _ 1 ) = - C T 1 ® ( C _ 1 ( n ® n ) C _ 1 ) - ( C _ 1 ( n <g> n ) C _ 1 ) ® C " 1 . (5.76) 

The first gradient in the final expression in (5.73) is given by 

(5.75) 
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If we now insert (5.74), (5.42) and (5.76) into (5.73), we obtain the final expression for 
the second gradient of the invariant K\. 

V g ^ i = V c C ^ i C T 1 - det(C) C T ^ n ® njCT 1 ) 

= V c ^ i C " 1 ) - V c ( d e t ( C ) C - ^ n ® nJC" 1 ) 

= V c ^ i C " 1 ) - ( C - ^ n ® n)C-r) ® V c ( d e t ( C ) ) 

- d e t ( C ) V c ( C - 1 ( n ® n ) C - 1 ) (5.77) 

= K^C'1 ® C T 1 - C T 1 1 C T 1 ) 

- det(C) [CT 1 ® ( C _ 1 ( n ® n ) C _ 1 ) + ( C _ 1 ( n ® n ) C _ 1 ) ® CT 1 ] 

+ det(C) [CT 1 ® ( C - ^ n ® njC" 1 ) + ( C T ^ n ® njC" 1 ) 1 C " 1 ] . 

It would now be possible to insert the above expressions for the second gradients and 
the fourth-order tensor products into (5.61) and thus obtain the full form of the material 
elasticity tensor C . But such explicit form of C is not needed for the implementation of 
the material model and therefore we wi l l move on to the next step and express the spatial 
elasticity tensor c which is defined by [81]: 

c r = J _ 1 F C F T . (5.78) 

The above definition uses fourth-order tensors 

F : = F ® F and F T : = F T ® F T (5.79) 

which are linear mappings transforming second-order tensors into second-order tensors. 1 

Using the general form of C given in (5.61), the right-hand side of (5.78) can be expanded 
as follows: 

c = J - ' F C F T 

= 4 J " 1 [ < G F ( V c / i ® V c / i ) F T + F ( V c / 4 ® V c / 4 ) F T 

+ F ( V c ^ i ® V c ^ i ) F T + < o l F ( V c J ® V c J) F T 

+ * ( s o F ( V g } / i ) F T + V'f F ( V g } / 4 ) F T + V'& F ( V g } ^ i ) F T + < o l F ( V g ) J ) F T ] . 
(5.80) 

In order to obtain c in a form suitable for implementation, we must derive equations for 
all the tensors inside the square brackets in (5.80). The following equations provide some 
intermediate results: 

[F ( J " 4 / 3 1 (g) I) F T ] M = J " 4 / 3 F ((I (g) I ) ( F T M F ) ) = J " 4 / 3 t r ( I F T M F ) F I 

= J " 4 / 3 t r ( F F T M ) F F T = J " 4 / 3 t r (BM) B (5.81) 

= t r (BM) B = ( B ® B ) M , 

[F ( J " 2 / 3 (I ® C T 1 + C T 1 ® I)) F T ] M = J " 2 / 3 F [(I ® C - 1 ) ( F T M F ) 

+ (CT 1 ® I ) ( F T M F ) ] 

= J - 2 / 3 t r ( C - 1 F T M F ) F I + J - 2 / 3 t r ( I F T M F ) F C - 1 (5.82) 

= J " 2 / 3 t r ( F F _ 1 F _ T F T M ) F F T + J " 2 / 3 t r ( F F T M ) F F _ 1 F _ T F T 

= tr(IM) B + t r (BM) I = ( B ® I + I ® B ) M , 

1 Tensor F could also be used to relate the Cauchy stress tensor er to the second Piola-Kirchhoff stress 
tensor S. In Sec. 5.5 the relation <x = J _ 1 F S F T was given. The alternative form would be a = J _ 1 F S . 
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[F (C" 1 ® C" 1 ) F T ] M = F ((C" 1 ® C - 1 ) ( F T M F ) ) = t r ( C _ 1 F T M F ) F C " 1 

= t r ( F F _ 1 F ~ T F T M ) F F _ 1 F _ T F T = tr(IM) I (5.83) 

- ( I ® I ) M , 

[F ( C " 1 ® C" 1 ) F T ] M = F ( ( C T 1 ® C T ^ ^ M F ) ) 

= - F ( C - 1 F T M F C " 1 + C _ 1 F T M T F C _ 1 ) 

= ^ ( F F _ 1 F _ T F T M F F _ 1 F _ T F T + F F _ 1 F _ T F T M T F F _ 1 F _ T F T ) '' 

= - ( I M I + I M T I ) = ( I ® I ) M , 

[F ((f ® f) ® (f ® f)) F T ] M = F [((f ® f) ® (f ® f ) ) (F T MF)] 

= tr((f (8) f ) F T M F ) F(f ® f) = tr(F(f ® f ) F T M ) (F(f ® f )F T ) 

= tr[((Ff) ® (Ff))M] (Ff) ® (Ff) = [((Ff) ® (Ff)) ® ((Ff) ® (Ff))]M, 
(5.85) 

det(C) {F [C" 1 ® ( C - ^ n ® njC" 1 ) + ( C T ^ n ® njC" 1 ) ® C" 1] F T } M 

= det(C) t r ( C _ 1 ( n ® n ) C _ 1 F T M F ) F C ^ F 7 " 

+ det(C) t r ( C - 1 F T M F ) F C _ 1 ( n ® n ) C _ 1 F T  

= det(C) t r ( F F _ 1 F _ T ( n ® n ) F _ 1 F _ T F T M ) F F _ 1 F ~ T F T 

+ det(C) t r ( F F ~ 1 F " T F T M ) F F _ 1 F _ T ( n ® n ) F - 1 F _ T F T  

= (det(F)) 2tr[((F-Tn) 0 ( F - T n ) ) M ] I 

+ (det(F)) 2tr(IM) (F~ T n) ® (F" T n) 

= [I <g> ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n)) ® I ] M , 

(det(C))2 {F [ (C'1 (n ® nJCT 1 ) ® ( C T ^ n ® nJC" 1 ) ] F T } M 

= (det(C))2 t r ( C _ 1 ( n ® n ) C _ 1 F T M F ) F C T ^ n ® n ) C _ 1 F T 

= (det(C))2 t r ( F F - 1 F - T ( n ® n ) F ^ 1 F _ T F T M ) F F _ 1 F _ T ( n ® n ) F _ : l F - T F T 

= (det(F)) 4tr[((F-Tn) ® ( F _ T n ) ) M ] ( F _ T n ) ® (F~ T n) 

= [((cof(F)n) ® (cof(F)n)) ® ((cof(F)n) ® (cof(F)n)) ] M , 
(5.87) 

det(C) {F [C" 11 ( C - ^ n ® rťjCT 1) + ( C T ^ n ® njC" 1 ) f C" 1] F T } M 

= det(C) F C - 1 F T M F C - 1 ( n ® n ) C _ 1 F T 

+ det(C) F C _ 1 ( n ® n ) C - 1 F T M T F C _ 1 F T  

+ det(C) F C - 1 (n ® n ) C _ 1 F T M F C _ 1 F T  

+ det(C) F C - 1 F T M T F C - 1 ( n <g> n ) C _ 1 F T  

= (det(F))2 I M ( ( F T n ® (F T n)) + (det(F))2 ( (F T n ® ( F T n ) ) M T I 

+ (det(F))2 ( ( F T n ® ( F T n ) ) M I + (det(F))2 I M T ( ( F T n ® (F Tn)) 

= IM((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n))MTI 

+ ((cof(F)n) ® (cof(F)n))MI + IMT((cof(F)n) ® (cof(F)n)) 

= [ I ® ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n)) ® I ] M . 

(5i 
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Combining the results of equations (5.66)^(5.69), (5.81)-(5.83) and (5.85)-(5.87), we can 
arrive at the following expressions for the push-forwards of the fourth-order tensor prod
ucts in (5.80): 

F ( V C J ® V C J ) F T 1 

F ( V c i i ® V c i i ) F 1 

4 
1 _ _ 

= B ® B - - i i ( B ® I + I 
3 

B) 
9 

I?I (g) I 

F ( V c / 4 ® V c / 4 ) F T = ((Ff) ® (Ff)) ® ((Ff) ® (Ff)) 

F ( V c i ^ i ® V c i ^ i ) F T = K?I ® I 
- Ki[I ® ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n)) ® I] 

+ ((cof(F)n) ® (cof(F)n)) ® ((cof(F)n) ® (cof(F)n)). 

(5.89) 

(5.90) 

(5.91) 

(5.92) 

Analogously, combining the results of equations (5.70)-(5.72), (5.77), (5.82)-(5.84), (5.86) 
and (5.88), we can obtain the following expressions for the push-forwards of the second 
gradients in (5.80): 

F(V%)J)FT = 

F ( V ^ / 4 ) F T = 0 , 

F(V(c)K1)FT = iv-!(I ® I - I ® I) 

— [I (g> ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) 

+ [ I I ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) 

4 

- i ( B 

I - 2 1 ® I ) , 

I + I ® B ) + ^/ 1(I 
9 

I + 31 ® I) 

(cof(F)n)) 

(cof(F)n)) 

(5.93) 

(5.94) 

(5.95) 

(5.96) 

Finally, we can insert equations (5.89)-(5.96) into (5.80) and obtain the final form of the 
spatial elasticity tensor c: 

4 J " 1 B ® B - -h{B ® I + I ® B) + -I{I ® I 

+ tt£ ((Ff) ® (Ff)) ® ((Ff) ® (Ff)) 

+ tf£ Ik?I ® I - # i [ I ® ((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n)) ® T 

+ ((cof(F)n) ® (cof(F)n)) ® ((cof(F)n) ® (cof(F)n)) 

fs 

' ISC 

- [I 

+ [ I ® ( ( c o f ( F ) n ) . 

^ ( B ® I + I ® B ) + ^ / ! ( I ® I + 3 I ® r 

((cof(F)n) ® (cof(F)n)) + ((cof(F)n) ® (cof(F)n)) 

(cof(F)n)) + ((cof(F)n) ® (cof(F)n)) ® i ; 

+ * ; o l ( I ® I - 2 I ® I ) + ^ o l J I ® I . (5.97) 

A s mentioned in the beginning of this section, the material user subroutine UserMat, 
provided by the F E software Ansys A P D L [83], requires the Jaumann tangent stiffness 
tensor cJ which is defined in terms of the spatial tensor c. The components of this tensor 
wi th respect to the Cartesian basis can be calculated as [84]: 

Cijkl + -^{hk&jl + O'ikljl + hl&jk + CTilljk) • (5.98) 
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where c^w Cijki, hk and CTJI are the components of c J , c, I and cr, respectively. 

5.8 Vi r tua l configurations, constitutive equations for prestressed 
bodies 

The strain-energy funtion \I/ait proposed in Sec. 5.4 must be associated wi th a reference 
configuration that is stress-free because the corresponding Cauchy stress tensor cr, given 
by (5.58), is zero when no motion out of the reference configuration occurs. This can 
be easily checked by evaluating cr for F = I. However, the reference configuration Q, 
used in this work, represents L V in its end-diastolic state and it can be clearly seen from 
the pressure tracing in F ig . 2 that at this moment of cardiac cycle there is already blood 
pressure of about 2.00 k P a inside the ventricle which means that the ventricular muscle is 
already stressed. The simple conclusion that can be draw from this fact is that \I/ait is not 
compatible wi th Q; in fact, the same conclusion would apply to any other commonly used 
strain-energy function (in particular \I/HO) because zero-stress reference configuration is a 
standard requirement on strain-energy functions [72]. 

Suppose we choose X e ft wi th preferred directions f, s, n. If Q was stress-free, then, 
for a given transplacement Xt, it would be possible to calculate first the deformation gra
dient F = Vx (x t ) and subsequently the stress tensor cr at x = x<(X). However, since 
X is in general prestressed, such calculation of stress would be incorrect even though the 
strain-energy function \J/ ai t, which determines cr, has been shown to be able to reproduce 
experimental data very well (see Sec. 5.6). In order to obtain correct prediction of ventric
ular mechanics, it is necessary to formulate constitutive equation that explicitly includes 
the influence of ini t ial prestress. A n efficient method that can be used to obtain such 
constitutive equations was proposed by Johnson and Hoger [85, 86]. It is based on the 
concept of a vir tual configuration of a point. 

Let X be again a point in the reference configuration Q. Johnson and Hoger [85, 86] 
proved that for each such point there exists a small (possibly infinitesimal) neighborhood 
J\f which can be mapped into a different local configuration, say J\f, which is stress-free 
and which is called a virtual configuration of X . The idea is illustrated in F ig . 24. The 
mapping x P which takes N onto J\f can be called a virtual transplacement and its inverse, 
Xp 1 , is the aforementioned map which takes the neighborhood M to the stress-free state. 
The image of X in the vir tual configuration is the point X := % p " 1 ( X ) . The gradient of 

XP at X is called the prestrain gradient [87] and it wi l l be denoted by F p . The method 
proposed by Johnson and Hoger is based on the idea that if we want to describe the 
stress response at the image x = x<(X) of a prestressed point X by means of a strain-
energy function \1/ that satisfies the condition of a stress-free reference configuration, 
we can do so by associating \1/ with the local vir tual configuration M rather than the 
reference configuration. In the case of our model \J/ait, this means we can still calculate 
cr and c according to equations (5.58) and (5.97), respectively, but we must replace all 
quantities in those equations which are related to the reference configuration by their 
counterparts related to the vir tual configuration. In particular, F must be replaced by 
the total deformation gradient 

F := F F P (5.99) 

and the structural vectors f and n must be substituted by the unit vectors 

F _ 1 f F T n 
* — and n := p , (5.100) iF- i f l l | | F T n 

I p II H p 
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Sit 
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a + 0 

Fig . 24: A n illustration showing the prestressed reference configuration J7, the current 

configuration and a stress-free virtual configuration J\f of a small neighborhood A/ -

of a point X £ f2. According to Johnson and Hoger [85, 86], such virtual configuration 

exists for all points in f2. See the text for the explanation of all quantities. 

respectively. The expression (5.99) for the total deformation gradient allows the same ge
ometrical interpretation as the polar decomposition of F , which was illustrated in F ig . 20. 
This means that if v is a vector defined in the vir tual configuration, the transformed 
vector F v can be obtained by first sending v to the reference configuration by means of 
F p and then mapping the result, F p v , to the current configuration by means of F , i.e: 

Vectors f and n are defined by (5.100) because such definitions ensure that the deformed 
vectors F p f and cof(F p)n, related to the reference configuration, wi l l be aligned with the 
prescribed directions f and n, respectively, as can be seen from the following results: 

Thus the fibre and sheet-normal directions prescribed in the reference configuration wi l l 
be preserved in the prestressed version of the model. The resulting vectors in (5.102) 
and (5.103) are not unit anymore but this is no longer required because a and c are now 
formulated in terms of f and i i (which are unit). 

5.9 Calculation of prestrain gradients 
In F E analyses, deformation gradients are calculated at all integration points of every 
element in mesh. Consequently, in order to obtain a prestressed reference configuration, 
it is necessary to provide the same number of prestrain gradients, one per each integration 
point. Both gradients are represented by 3 x 3 matrices whose entries are the components 
of the gradients with respect to the global Cartesian basis. 

If no prestrain is applied (i.e. F p = I everywhere), the application of end-diastolic 
pressure on the endocardial surface causes an unwanted inflation of the ventricular wall 

F v = (FF p )v = F ( F p v ) . (5.101) 

F p f =| |Fp _ 1 f | l 1 F p F ~ 1 f = | |F p

_ 1 f | | 1f, 

cof(F p)fi = d e t ( F p ) | | F p

r n | r 1 F - T F p

r n = d e t ( F p ) | | F p

r n | r 1 n . 

(5.102) 

(5.103) 
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and an increase in the cavity volume. For the model used in this work, such deformation 
for the applied end-diastolic pressure of 2 k P a (see F ig . 2) is displayed in F ig . 26A. 
Kinematic boundary conditions used in this simulation and in every other following in 
this chapter are shown in F ig . 25. It should be reiterated here that the F E model used 
in this chapter is based on the quadratic tetrahedral mesh shown in F ig . 13 of Sec. 4.7, 
wi th element coordinate systems defined by vectors f, s, n prescribed according to the 
algorithm described in Sec. 4.11. The material behavior is modeled by the strain-energy 
function \ l / a i t proposed in Sec. 5.4 with material parameters given in Table 5 of Sec. 5.6. 

Fig. 25: Displacement boundary conditions on the basal surface Tbase were prescribed 
in a cylindrical coordinate system (p, (p, z). The origin o of the system is situated at the 
intersection of the ventricular long axis with the basal plane and the z axis coincides 
with the long axis. For all nodes in T^ase; the displacement uz in z direction was set to 
zero. Additionally, zero displacement uv in the direction tangent to the ip coordinate 
was prescribed to all corner nodes (i.e. not to the nodes in the interior of the edges 
of elements) situated on the borderline between Tbase and r e p i (orange contour in the 
figure). Thus the nodes on the borderline were allowed to move only in the radial 
direction p. 

Although the displacement values shown in F ig . 26 may seem quite low, they caused an 
increase in the ventricular volume from approximately 137 m l to 200 ml , which is of course 
not permissible. In order to keep the shape and the volume of the ventricle approximately 
unchanged despite the acting endocardial pressure, it is necessary to find a suitable set of 
prestrain gradients that wi l l reduce the nodal displacements to an acceptably low values. 
A general iterative algorithm for obtaining such prestrain field was proposed by Maas et 
al. [87]. This algorithm was employed here in the following way. First , it was necessary 
to provide starting values F p

0 ^ of the prestrain gradient for all integration points. Since 
there is no reasonable non-trivial rule for such assignment, it was prescribed that F^ = I 
in the whole model. Afterwards, pressure was applied on the endocardial surface and F E 
analysis was executed. The resulting expansion of the ventricle was described not only by 
calculated nodal displacements, but also by deformation gradients F^0^ calculated at each 
integration point. In Ansys A P D L , these calculated gradients are made available inside the 
subroutine UserMat and the next step of the algorithm uses these gradients to formulate 
updated prestrain gradients F^ := F^Fp 0 - 1 = F ^ I = F^0). This is the end of the 
init ial (zeroth) iteration. In the next iteration, the whole process is repeated. The value 
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A (mm) B (mm) 

Fig. 26: (A) Total displacements resulting from the application of the end-diastolic 
pressure of 2 kPa on the endocardial surface of the model with no initial prestress. (B) 
Total displacements for the same presssure load when iteratively calculated prestrain 
gradients were applied. It can be seen that the maximum displacement in case B is 
below the chosen tolerance of 0.5 mm. The displacements are displayed in true scale 
and the viewing distance and viewing direction are the same for both cases. 

of the applied pressure is unchanged but the gradients are now generally different 
from I. These gradients act against the pressure load which means that, after the forces 
are balanced and a converged solution is obtained, the resulting displacements should be 
lower than in the previous iteration. In this way, the displacements can be iteratively 
decreased to an acceptable level. Generally, in the k-ih iteration, Fp^ is applied to each 
integration point and F^^ is calculated in the subsequent F E solution. A t the end of the 
iteration, maximum displacement is evaluated and compared with the chosen threshold, 
which in this work was 0.5 mm. If the maximum calculated displacement is higher than 
the threshold, the prestrain gradients are updated according to the rule F p

f c + 1 ' ) := F ^ F p ^ 
and another iteration is started. 

It should be realized that assignment of a prestrain gradient different from I to a 
given integration point is in fact equivalent to sending that point to a stress-free vir tual 
configuration, as was illustrated in F ig . 24. Thus, the above described algorithm is based 
on the theory presented in the previous section. Also, it should be noted that the algorithm 
which was finally used in this work differed in one respect from that proposed by Maas 
et al. [87]. In the original algorithm, the loads are supposed to be applied at once and 
the prestrain gradients are calculated in a single iterative procedure. In the present case, 
such approach led to excessive distortion of elements and solution failure. For this reason, 
the pressure was applied incrementally and the iterative process described above had to 
be repeated after each increase. 

In the final solution, the end-diastolic pressure was reached after 10 load steps. The 
pressure p applied in a given step was calculated as p = (step/10) 3 • (2.0 kPa) which means 
that it was increased very slowly at the beginning of analysis (because the constitutive 
model has very low init ial stiffness and, consequently, a small increase of load causes large 
displacements) and as the solution proceeded, the increments gradually grew. The final 
displacement field at the end of the 10-th load step is shown in F ig . 26B. Additionally, 
F ig . 27A shows the distribution of the first principal stress in the prestressed configu
ration. In can be seen that there are some unrealistic stress concentrations at the base 
of the ventricle resulting from the imposed displacement boundary conditions. In order 
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to enable clearer visual comparison of stresses in the rest of the model (which are rele
vant), these concentrations were filtered in F ig . 27B by decreasing an upper bound of the 
contour legend to 0.050 M P a . This adjustment of the legend wi l l be used also in some 
subsequent stress plots. It can be seen from Fig . 27B that highest calculated stresses are 
on the endocardial surface near the regions of the attachment of the right ventricular wall. 
However, since the forces exerted on the L V by the right ventricular myocardium were not 
taken into consideration (and nor was the blood pressure acting on the right side of the 
septum), it is debatable whether such locally increased stresses truly exist in real heart. 
More F E analyses with different boundary conditions should be carried out in the future 
in order to make definitive conclusions about the distribution of stress in these parts of 
the ventricle. 

A (MPa) 

Fig . 27: (A) Calculated distribution of the first principal stress in the prestressed 

reference configuration (the same one that was shown in F i g . 26B). (B) T h e same 

stress field but with the upper bound of the contour legend decreased to 0.050 M P a . 

T h e intention is to filter the unrealistic stress concentrations near some nodes at the 

base with imposed displacement boundary conditions an to obtain better picture of 

the stress distribution in other parts of the model. Regions with stresses higher than 

0.050 M P a are displayed in gray color (this is the case of only one small region in the 

leftmost figure of panel B) . 
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5.10 Active strain approach for contractile tissues 
In the continuum computational framework, a resting (i.e. non-contracting) myocyte can 
be represented by a small cylindrical neighborhood of a point in a reference configuration. 
(Alternatively, such neighborhood can also be viewed as a short section of a muscle fibre.) 
For our reference configuration Q, such point X and its neighborhood M (magnified 
for illustrative purposes) are sketched in F ig . 28. Ventricular microstructure at X is 
characterized, as usual, by vectors f, s, n. We can assume for simplicity that X is the 
centroid of the cylinder and that f coincides wi th its axis. Addit ionally, we wi l l assume 
for a while that Q is unloaded and stress-free. 

Fig. 28: A graphical representation of the active strain approach for modeling of mus
cle contraction. A cylindrical neighborhood J\f of a point X represents a myocyte (or a 
section of a muscle fibre) whose contraction generates stresses in the reference config
uration f2. The stress-free virtual configuration J\f represents unloaded contracted cell 
which is stretched by Xa back into £1. Active stresses can be included in constitutive 
equations by replacing the "standard" gradient F by F which is the composite of the 
active strain F a and F. See the text for a full explanation. 

Imagine now the "cell" M isolated from Q so that it can freely deform without being 
restricted by its surroundings. If such cell contracts, its shape changes but the deformed 

o 

(contracted) configuration, say J\f, wi l l be stress-free. However, if we forced such con
tracted cell back into its original shape A/", which could be regarded as an action of some 
local transplacement x& wi th the gradient F a , then non-zero active stresses would be gen
erated inside M. The inverse local transplacement x~1 (with the gradient F" 1 ) , can be 
interpreted as a mapping that renders the neighborhood J\f stress-free. The value of x a

 1 

at X is X . 1 

The above considerations suggest an efficient approach for modeling of active stresses 
generated by contractile muscle fibres. In the literature, it is usually called the active strain 
approach [88, 89] because it introduces the active strain tensor F a whose composition wi th 

1Ofcourse, if M is integrated back into f2 by means of \&, the resulting contact forces (tractions) acting 
on the boundary c W deform J\f (and its surroundings) into some other shape. But this is just a particular 
case of a "standard" deformation out of the reference configuration described by the transplacement \t 
and its gradient F (both shown in Fig. 28). 
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F defines the total deformation gradient 

F := F F a . (5.104) 

o 

The total gradient F can then be used in constitutive equations in place of the "standard" 
gradient F and the resulting response wi l l thus include passive (elastic) as well as active 
stresses. It is obvious that this approach is based on the idea similar to that used in 
Sec. 5.8 to include the ini t ial prestress. However, in contrast to the prestress gradient 
F p , which had to be iteratively found, the active strain F a must be explicitly defined by 
its own constitutive equation [88]. A suitable form of such equation can be constructed 
using some basic facts about the deformation of a contracting cell. Boyett et al. [90] 
showed that when a cardiac myocyte freely contracts (i.e. without being subject to any 
axial loads or other constraints), it shortens and widens without significantly changing 
its volume. They also suggested that during contraction the width of the cell increases 
by the same proportion in different transverse directions. Under these conditions, it is 
natural to define the inverse gradient F " 1 by equation [88, 89] 

F " 1 := A f ® f + -^= (s (g> s + n (g> n ) . (5.105) 
v A 

The gradient of the form (5.105) describes transversely isotropic, isochoric deformation 
and it depends only on the stretch A in the fibre direction. The inverse of F " 1 is F a which 
can be expressed from (5.105) as 

F a = A _ 1 f ® f + \ / A ( s ® s + n ® n ) . (5.106) 

Although A in (5.105) and (5.106) can generally be dependent on some other quantities, 
like action potential or some ionic currents [89], here it wi l l be defined simply as a time-
dependent function describing the evolution of stretch during an unloaded contraction. 
Such function can be constructed, e.g., from the results of Holubarsch et al. [91] who 
tested slim myocardial specimens wi th lengths of approximately 3.5-5.5 m m cut from 
human left ventricles. A time course of stretch of a typical specimen during its unloaded 
contraction is shown in F ig . 29. The curve in the figure can be used to obtain the value 
of A for a particular time t measured from the beginning of contraction. 

Since the strain-energy function \J/ a i t (Sec. 5.4) is defined in terms of f and n , its 
o 

modification for active materials entails not only the replacement of F by F , but also 
o 

transformation of f and n into their unit counterparts f and n , respectively, defined in 
o 

the stress-free configuration J\f. This can be done by reutilizing equations (5.100) in which 
we only replace quantities introduced in Sec. 5.8 by the corresponding ones used in this 
section. If we also use the specific forms of F a and F " 1 given in (5.106) and (5.105), 
respectively, we obtain interesting results: 

- F - J f Af Af 
f - = P ^ f I = M = A l f l = f ' ( 5 - 1 0 7 ) 

a 
F j n \ / A n \ / A n 

n := uJt „ = —7=— = —F= = n (5.108) 
| | F j n | | | | V A n | | V ^ | | n | | 

(these results were already revealed above in F ig . 28). Thus the vectors f and n need not 
be modified in the expressions (5.58) and (5.97) for cr and c, respectively, and it is only 

o 

necessary to replace F by F . 
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Fig . 29: A n evolution of axial stretch A during an unloaded contraction of a slim 

myocardial specimen cut from human left ventricle. T h e graph is based on F i g . IB 

of [91]. Since the extent of shortening of the specimen is quite small, the curve had 

to be scaled in vertical direction before used in the F E model so as to achieve lower 

minimum stretch A m j n (i.e. increase the extent of shortening/increase the contractile 

force). More details will be given in Sec. 5.13. 

5.11 Active materials with initial prestress 
It is now time to combine the theory from sections (5.8)-(5.10); i.e. to consider bodies 
which are made up of active materials (capable of contracting) and, at the same time, are 
prestressed in their reference configuration. Obviously, this is exactly the case of the left 
ventricle when the chosen reference configuration represents the end-diastolic state. The 
value of the Cauchy stress tensor cr at a point of the ventricle at some time t is determined 
by the total deformation gradient F which is defined as the composition of the prestrain 
gradient F p , the active strain F a and the standard gradient F , i.e.: 

F := F F a F p . (5.109) 

The order of gradients in the above definition implies that F p is applied first, followed by 
F a , and finally the deformation from Q to Qt is effected by F . The sequence of mappings 
which take the stress-free local configuration J\f into the current configuration fit is shown 
in F ig . 30. In the case of the F E model used in this chapter, F p is known for a given 
integration point and it is fixed in time. B y contrast, F a changes with time and its current 
value must be calculated according to eq. (5.106). More details about the calculation of 
F a for a given integration point wi l l be given in the next section. Referential unit vectors f 
and n must be mapped into the stress-free configuration M. The transformation formulas 
are analogous to those in (5.100), (5.107) and (5.108); specifically: 

(FaFp)"^ _ F - ' F - ' f _ F~ 1(Af) _ A F - ' f 
f, (5.110) 

F B F p ) - i f | | | | F - i F - i f | | | |F-i(Af)|| A | |F - i f | 

i i . (5.111) 
( F a F p ) T n _ F j F j n _ F T ( V ^ n ) _ ^ F j n 

( F a F p ) T n | | | | F j F j n | | | |Fj(v^n)| | V ^ l F j n 

Thus, as also indicated in F ig . 30, the transformed vectors are the vectors f and i i defined 
in (5.100). W i t h this result, we can conclude that in order to include the prestress as well 
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as the active stress into the constitutive model from Sec. 5.4, the Cauchy stress tensor 
(5.58) and the spatial elasticity tensor (5.97) must be expressed in terms of F , f and n 
instead of F , f and n, respectively. 

Fig . 30: A drawing showing all configurations, mappings and gradients involved in the 

constitutive description of a prestressed active material. M is a stress-free configura

tion. Prestress is applied by the prestrain gradient F p and active stresses at time t are 

generated by the active strain tensor F a . Current configuration Clt represents equili

brated configuration at time t found by nonlinear F E solution. Deformation from the 

reference configuration CI to fit is characterized by the deformation gradient F. A l l 

displayed vectors are of unit length. Vectors f, s, n are not necessarily orthogonal. 

5.12 Calculation of mechanical activation maps 
In Chapter 4, two simulations of electrical activation of L V were performed, one was the 
control simulation representing healthy conditions and the other represented a ventricle 
wi th the L B B B . The final outcome of these simulations were two electrical activation 
maps eac c and eacb respectively for control and L B B B conditions (see Sec. 4.14). Bo th 
these maps assign to each element K in the mesh Th the calculated time of electrical 
activation at the centroid of the element. The maps should serve to distribute the onset 
of contraction throughout the mesh; however, the time of electrical activation is not the 
only determinant of the mechanical activation of myocytes. Experiments of Cordeiro et al. 
[92], conducted on isolated canine myocytes, showed that there is a latent period between 
the electrical activation and the onset of contraction and, most importantly, that the du
ration of this electromechanical delay considerably varies across the L V wall. Specifically, 
mean values measured in cells isolated from subendocardial, middle and subepicardial 
layers of myocardium were, respectively, 47 ms, 29 ms and 28 ms. The fact that the la
tency is shortest in epicardial cells, which generally depolarize later than the endocardial 
cells on the other side of the wall, suggests that this heterogeneity serves to synchronize 
contraction across the wall [92]. 

Since the reported differences between the electromechanical delays in endocardium 
and epicardium are significant, it was decided to take them into account in the F E model. 
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Fig . 31: Linear interpolation of the values (red circles) of electromechanical delay 

( E M D ) reported by Cordeiro et al. [92] for myocytes from subendocardial ( E N D O ) , 

middle (MID) and subepicardial (EPI) layer of myocardium. T h e data are plotted 

against a normalized transmural coordinate £ (explained in the text). 

To that end, the relative position of each point of the L V wall wi th respect to the endo
cardial and epicardial surfaces was assumed to be described by a normalized transmural 
coordinate £ which takes the value 0 at the endocardium and the value 1 at the epicardium 
(regardless of the actual local wall thickness). Such coordinate was already assumed in 
Sec. 4.11 where the normalized distance £K from the endocardial surface was defined for 
each element K by eq. (4.79). After the introduction of £, the mean values of electrome
chanical delay given above can be linearly interpolated over the interval (0,1), which is 
shown in F ig . 31. Since we know from Sec. 4.11 the value £K of the coordinate £ for each 
element K, we can define a function 

emd: %, —>• (5.112) 

which assigns to each K e 7~h the value of the electromechanical delay according to the 
graph in F ig . 31. The function is defined by: 

emd(K) := 
(29 - 4 7 ) 2 ^ + 47 if (0,0.5) 

( 2 8 - 2 9 ) ( 2 ^ - 1 ) + 29 if & G (0.5,1) 
(5.113) 

Mechanical activation maps, specifying the times of the onset of contraction for all K e 7^, 
can then be defined as two functions mac c and macb of the form (5.112) whose values are 
given by: 

mac c ( i f ) := eac c (i i ' ) + e m d ( K ) , 

maCb(A') := eac b(A^) + 10 + emd(K). 

(5.114) 

(5.115) 

The summand 10 in the definition 5.115 reflects the finding of Durrer et al. [25] that elec
trical activation of the right ventricle starts approximately 10 ms later then the activation 
of the left ventricle (cf. Sec. 2.4). In the L B B B the right ventricular conduction system 
is a source of activation not only for the right ventricle but also for the left ventricle. The 
delay of 10 ms should be included in the definition of macb because then both simulations 
wi l l use the same origin of time (i.e. t — 0 ms wi l l denote the same instant within the 
cardiac cycle in both cases). This wi l l later enable, e.g., to plot pressure curves calculated 
for control and L B B B conditions in one graph wi th the horizontal time axis having an 
unambiguous meaning. 
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5.13 Modeling of ventricular pressure and volume 
One of the main goals of this thesis is to calculate the evolution of ventricular pressure and 
volume under healthy conditions and in the presence of the L B B B . This section provides 
details about the two simulations from which these results were obtained. 

A t the beginning of both simulations, the corresponding prestrain gradient field was 
applied on the mesh against the end-diastolic pressure of 2 k P a acting on the endocar
dial surface. A s mentioned before, the prestrain gradients F p were constant during the 
simulations for all intergation points. After the application of prestress, no pressure or 
volume changes occurred unti l first elements became mechanically activated. This hap
pened approximately at t — 35 ms in the control simulation and t — 38 ms in the L B B B 
simulation; these times correspond to the lowest values assigned by functions mac c and 
macb, respectively. It should be emphasized that these functions represented the only 
difference between both simulations; all other parameters controlling the evolution of 
pressure and volume were common to both of them. 

After a particular element K was mechanically activated, the value of the active strain 
tensor F a for its four integration points (the same value for all) was calculated at each 
load step from eq. (5.106). A s mentioned before, parameter A in this equation can be 
determined from the stretch curve in F ig . 29. Specifically, let tk be a time at the end of the 
k-th load step and let K e T be such that m a c c ( K ) < tk (or, analogously, macb(i^) < tk)-
Then the value of A for this element and load step can be read from the vertical axis in 
F ig . 2 as the value corresponding to the horizontal coordinate Time = tk — m.&cc(K). 
However, it must be noted that it was not exactly the curve in F ig . 29 that was finally 
used to calculate A in the simulations presented in this section. A s already indicated in 
the caption to the figure, testing simulations revealed that the contraction displayed in 
the figure is too weak to generate blood pressures as high as 16 k P a (systolic pressure, see 
Sec. 2.2). For this reason, the curve had to be scaled in the vertical direction to achieve 
lower minimum value A m i n . The final value of this parameter used in the simulations 
was as low as A m i n = 0.74, which corresponds to a 26% shortening. Al though this value 
considerably differs from the experimental minimum shown in F ig . 29 (less than 11% 
shortening), it must be mentioned that in the paper [91], from which the data in F ig . 29 
were extracted, the authors themselves admitted that contraction of their specimens was 
abnormally weak. In particular, the peak force developed during isometric contraction 
was considerably smaller compared to other studies. Anyway, full explanation of this 
discrepancy between the model and experiments surely requires further study. 

When contraction in each simulation began, time step was decreased in order to cap
ture the subsequent pressure and volume changes wi th sufficient accuracy. More precisely, 
time increments in the subsequent load steps varied between 0.1 ms and 10 ms. They 
were not constant because individual phases of cardiac cycle exhibit different character 
of pressure and volume changes which should be reflected in the chosen time increments. 
Time step was also decreased near the end of each phase in order to terminate each phase 
at the right time. Specifically, the shortest time step of 0.1 ms was prescribed just before 
the end of the isovolumic contraction because at this point of cardiac cycle the pressure 
growth is very rapid which means that even a moderate time increment results in a huge 
pressure increase. If the diastolic pressure was overly exceeded in the last step of the 
isovolumic contraction, parameters and equations prepared for the simulation of the sub
sequent ejection phase would be activated too late which would affect the shape of the 
calculated pressure waveform. The longest time step of 10 ms was used in the central 
part of the filling phase which did not require any special treatment. 
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Suppose now that tk is a time within the isovolumic contraction period which specifies 
the end of the fc-th load step. Act ive strain field F a 7^ I at tk can be calculated relatively 
easily using the algorithm described above. However, if such active strain was applied 
against the ini t ial end-diastolic pressure of 2 kPa , it is clear that the ventricle would shrink 
and its volume would decrease. Of course, substantial volume change is not permissible 
during the isovolumic contraction phase which means that unless F a is almost equal to I, 
the endocardial pressure pk must be increased so that the resulting ventricular volume Vk 

at tk is approximately equal to the end-diastolic volume. A suitable value of pk must be 
found iteratively. In this work, the first guess was calculated as 

pi := Pk-i + Pk (tk - tk-i), ( 5 . 1 1 6 ) 

where 
. 1 . Pk-i - Pk-2 1 1 7 > 

Pk-=~+ T • (5 -117) 

After a F E solution with applied pressure p\ was executed, volume Vk of the deformed L V 
cavity was calculated together wi th the rate of change of volume Vk := (V^1 — Vk_i)/(tk — 
tk-i). The volume rate should ideally be zero during isovolumic contraction, but since 
some error must be tolerated, the calculated volume rate was compared against the cri
terion IV ,̂1 — Kargetl < 1 0 ~ 3 ml • i n s - 1 , where the target value Vtarget := 0 m l • ms" 1 . If 
the criterion was not satisfied, the second estimate for the pressure rate was calculated 
a s Pk : = Pk + A* (̂ fc1 — ^target)) where \i < 0 is a suitably chosen penalty parameter. The 
next applied pressure was then pi := Pk-i + pi (tk — tk-\). The resulting volume was 
denoted Vk

2 and the volume rate Vk := (Vk — Vk_i)/(tk — tk-i) was checked against the 
convergence criterion \Vk — KargetJ < 1 0 ~ 3 m l • m s - 1 . In general, in the r - th iteration, for 
r > 1, the algorithm first calculated the pressure rate 

Pi := Pi-1 + » (Vr1 ~ W ) ( 5 - 1 1 8 ) 

and then the next estimate of pressure 

pl^Pk-i+PKtk-tk-!). ( 5 . 1 1 9 ) 

Volume Vk

r was obtained from the F E solution and the volume rate 

tk — tk-l 

was checked against the criterion 

\Vk

r - t a rge t I < 1 0 " 3 ml • m s " 1 . ( 5 . 1 2 1 ) 

Although there is no subscript or superscript attached to \i in ( 5 . 1 1 8 ) , its value was 
updated multiple times during simulations in order to improve convergence rate. The 
assigned values ranged from —1.6 k P a • m l - 1 to —0.4 k P a • m l - 1 . 

When the pressure p exceeded the diastolic pressure of 1 0 . 7 kPa , the isovolumic con
traction phase was terminated and the solution process entered the ejection phase. During 
this phase, equations (5 .116)—(5.120) and criterion ( 5 . 1 2 1 ) continued to be used without 
any change. However, since the ventricular volume decreases during ejection, it was nec
essary to redefine Vtarget- A new definition was provided by the two-element Windkessel 
model [93] which relates aortic pressure, pressure rate and inflow of blood into aorta in 
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terms of arterial compliance Cw and total peripheral resistance Rw. If the inflow into 
aorta is replaced by the rate of change of ventricular volume, it is possible to define: 

VLSet ••=-Cwfk - ^ • (5.122) 

Parameters Cw and Rw were tuned to give a realistic pressure-volume response. F ina l 
values used in both simulations were Cw := 4.2 m l • k P a " 1 and Rw := 34 k P a • ms • m l . 
Generally, in r - th iteration (r > 1) of the k-th. load step, the pressure rate pr

k was first 
calculated using either (5.117) or (5.118). Afterwards, pr

k was obtained either from (5.116) 
or from (5.119). Then the F E solution was executed which provided the volume Vk of the 
deformed chamber. Finally, volume rate Vk and its target value V{arget were calculated 
using (5.120) and (5.122), respectively, and both values were compared by means of 
the convergence criterion (5.121). When the criterion was satisfied, pr

k and Vk were 
denoted as pk and V%, respectively, and these values were saved as results of the k-th load 
step. Ejection phase was terminated when the final volume rate Vk (calculated from the 
converged solution V&) was greater than 0 which indicated reversed blood flow. 

Isovolumic relaxation phase was modeled in exactly the same way as the isovolumic 
contraction phase with Karget := 0 ml • m s - 1 . When pk decreased below 1.8 k P a (left 
atrial pressure at the end of isovolumic relaxation, see F ig . 2), isovolumic relaxation was 
finished and solution continued wi th the phase of ventricular filling. Since the results 
from this last phase are not crucial for this work, it was modeled in a very simple manner 
by assuming a linear increase of pressure back to its end-diastolic value of 2 kPa . This 
was motivated by the works of Eriksson et al. [75, 94] in which the same approach was 
used. The rate of pressure increase during the ventricular filling was adjusted to produce 
approximately 850 ms long cardiac cycle, which can be considered a normal resting value. 

The resulting pressure and volume waveforms obtained from the simulations are com
pared in F ig . 32. It can be seen that L B B B decreases the rate of L V pressure rise during 
early isovolumic contraction. The pressure starts visibly rising approximately after 45 ms 
in the control simulation and about 10 ms later in the simulation of L B B B . However, at 
the end of isovolumic contraction the simulation of L B B B is delayed by more than 40 ms 
wi th respect to the control simulation, which is reflected by a prolonged I V C duration 
of 92 ms in L B B B compared to 50 ms duration under control conditions. These values 
correspond with clinically observed values (mean ± SD) 38 ± 9 ms and 96 ± 3 5 ms reported 
by Özdemir et al. [33] respectively for a group of 65 healthy subjects and a group of 45 pa
tients wi th isolated L B B B . O n the other hand, the pressure rise during I V C produced by 
the model is approximately exponential which is not in agreement wi th clinical measure
ments which show that the growth is much more straight. Consequently, the maximum 
rate of pressure rise at the end of I V C is 715 P a • m s - 1 in the control simulation, while 
normal values for an untrained person are only about 180-250 P a • m s - 1 [95]. Wha t is 
interesting is that similar unrealistic exponential growth can be seen also in the results of 
other authors [40, 47] who also combined the active strain approach wi th an exponential 
strain-energy function. Since these authors used different, and more sophisticated, algo
r i thm for calculation of active fibre stretch A, it seems that this inconsistency is indeed a 
consequence of the above mentioned combination. This sets another potential direction 
for future investigations. 
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Fig . 32: Calculated pressures and volumes representing a healthy ventricle (Control) 

and a ventricle with the left bundle branch block ( L B B B ) . Dur ing the first 10 ms of 

simulations, the prestress of 2 k P a was applied in small increments as described above 

in Sec. 5.9; this was reflected by small oscillations of volume around the end-diastolic 

value. These initial (unrealistic) parts of the curves were replaced by horizontal lines 

in the above graphs. 

In the ejection phase, the model predicted a decrease of systolic pressure by ~4.4 % due 
to the L B B B (see F ig . 32). For comparison, a clinical study of Aalen et al. [36] reported 
a decrease by ~1.5 %. The duration of ejection period was approximately 190 ms in both 
simulations which is shorter than normal values 260-300 ms [4, 5]. The length of ejection 
could be adjusted to some extent by tuning the parameters Cw and Rw of the Windkessel 
model, but it was not possible to obtain values close to the normal ones. Again , the 
same deficiency can be seen in the results of the above mentioned studies [40, 47] whose 
authors also used the two-parametric Windkessel model and obtained ejection times of 
approximately 160 ms [40] and 190 ms [47]. Thus it seems that this shortcoming is an 
inherent feature of the Windkessel model. 

The most important result wi th regard to the topic of this thesis is the graph on the 
right of F ig . 32 which shows temporal evolution of the L V volume in both simulations. 
From the values of end-diastolic and end-systolic volumes shown in the figure, we can 
calculate that ejection fraction in control simulation was 63.2 % and it decreased by 
2.3 % to 60.9 % in the simulation of L B B B . Thus, ejection fraction remained in the range 
of normal values (> 50 % [4]) after induction of the L B B B which confirms conclusions and 
claims of many authors (e.g. [26, 33, 36]) but contradicts, e.g., the findings of Valenti et 
al. [34] who observed a decrease in mean ejection fraction by 14.2 % to 48.9 %. Al though 
the calculated decrease by 2.3 % is lower than the drops reported by all studies mentioned 
in F ig . 10 and Table 1 of Chapter 3, it is very close to the results of Özdemir et al. [33] 
and Aalen et al. [36] who observed 4% decrease in mean ejection fraction. The first of 
these studies also reported similar values of I V C durations, as already mentioned above. 

The results from Fig . 32 were used to construct the pressure-volume diagrams shown 
in F ig . 33. In order to compare the diagrams with a real one, the figure contains also a 
diagram obtained from the curves in F ig . 2. 
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F ig . 33: Calculated pressure-volume diagrams representing a healthy ventricle (Con

trol) and a ventricle with the left bundle branch block ( L B B B ) . T h e diagrams are 

compared with a real one constructed from the left ventricular pressure and volume 

waveforms shown in F i g . 2, which were extracted from F i g . 1 of the paper by Mitchell 

and Wang (2014) [2]. 

5.14 Analysis of motions, strains and stresses 

In Chapter 3, it was mentioned that asynchronous activation due to the L B B B necessarily 
leads to mechanical dyssynchrony which is demonstrated by the so-called "apical rocking" 
which refers to increased displacements of the L V apex perpendicular to the L V long axis 
[28, 29]. These changes are captured also by the F E model as demonstrated in F ig . 34 
which shows, for both simulations, a trajectory of the lowest apical node of the model 
projected on the global xy plane (perpendicular to the long axis). It can be seen that in 
the simulation of the L B B B the motion of apex is altered and displacements are increased, 
especially in the y direction. In order to obtain a better idea of the motions of the model 
during the whole cardiac cycle, refer to the electronic appendix of the thesis which contains 
animations of the motion for both simulated conditions. 

The impact of L B B B on the t iming of contraction in different parts of the ventricle 
is demonstrated in F ig . 35. The figure shows calculated time courses of circumferential 
and longitudinal strains taken from the central part of the right septal surface and from 
the opposite area on the epicardial surface of the lateral wall of the ventricle. It can be 
seen that the time shift between strains in the septum and those in the lateral wall is 
considerably larger in L B B B which means that the two regions are clearly out of phase 
wi th each other. Also, there is more pronounced stretching of the lateral wall during early 
systole in the L B B B case, which is a consequence of the delayed activation of the wall. 
These findings agree wi th magnetic resonance-based strain measurements in dogs wi th 
induced L B B B [96]. 
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Fig . 34: Displacements ux and uy (corresponding to the global x and y directions) 

of the lowest apical node in the F E model during the whole cardiac cycle. Results 

are shown for a healthy ventricle (Control) and for a ventricle with the left bundle 

branch block ( L B B B ) . Markers denote selected times within the cardiac cycle (values 

correspond to the timeline in F i g . 32). 
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Fig . 35: Temporal evolution of circumferential and longitudinal strains in the central 

part of the right septal surface and in the site across the diameter of the ventricle on 

the epicardial surface of the lateral wall. Results are shown for a healthy ventricle 

(Control) and for a ventricle with the left bundle branch block ( L B B B ) . Vertical lines 

mark the beginning and the end of ejection phase for each simulation. Timeline is the 

same as in F i g . 32. 
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The last quantity that should be analyzed in this work, according to the goals specified 
in Chapter 3, is wall stress. Stresses at the end of diastole were already discussed in 
Sec. 5.9. In the present section, another three characteristic stages of the cardiac cycle 
wi l l be analyzed wi th respect to wall stress, namely: the beginning of ejection, the moment 
when the L V pressure reaches its peak, and the end of ejection. The distributions of the 
first principal stress at these three stages for both simulated conditions are displayed in 
Figs. 36, 37 and 38, respectively. Just like in Sec. 5.9, unrealistic stress concentrations 
near the base were excluded from the plots by restricting the intervals of the contour 
legends. 

A t the beginning of ejection (Fig. 36), the stress distribution is almost uniform in the 
anterior, lateral and posterior regions of the ventricle, especially on the epicardial surface. 
But this uniformity is totally disrupted in the septum where much higher stresses are 
concentrated in a narrow band running obliquely across the right septal surface from 
the base toward the apex. These concentrations are more pronounced in the L B B B 
simulation which is probably because ejection is delayed in this case which means that 
the early-activated septum has more time to increase the active stresses. However, as 
pointed out in Sec. 5.9, accuracy of stresses calculated in the septum and adjacent regions 
is somewhat questionable because this study neglected the forces exerted on the septum 
by the contracting right ventricle. 

The moment of peak L V pressure (Fig. 37) is characterized by "banded" stress dis
tr ibution which is obviously largely dependent on the prescribed fibre directions. Stress 
values in the anterior, lateral and posterior regions of the ventricle are less uniform then 
in the previous case. O n the right septal surface there is again the band wi th concentrated 
high stresses, but this time the stress values are comparable for both simulations. 

The dependence on the fibre directions can be recognized also in the stress field at the 
end of ejection (Fig. 38). Substantially increased septal stresses at this moment can be 
seen only in the control simulation; in the model wi th the L B B B , the septum is already 
relaxing and so the stresses are reduced. 

It should be noted that the calculated stresses shown in the figures are generally far 
higher than those for which the hyperelastic model was calibrated. Therefore, it is doubt
ful whether the predicted responses, calculated for strains that are very far from available 
experimental data, are reliable. Unfortunately, this is an inherent disadvantage of the 
active strain approach in which a single (total) stress tensor is derived from a particular 
strain-energy function which, however, is never designed to reproduce the active stresses. 
This disadvantage can be eliminated by using an alternative active stress approach [88, 89] 
for modeling of contractile tissues. This approach introduces the active stress tensor (in
stead of the active strain tensor F a ) and defines the total stress as the sum of the passive 
tensor and the active tensor. The passive part is determined from a strain-energy function 
while the active part is defined by its own constitutive equation. The active stress ap
proach was, in fact, the first choice for this thesis, but the implemented algorithm suffered 
from severe convergence difficulties during the ejection phase that could not be overcome. 
For this reason, the active strain formulation was eventually used which turned out to be 
numerically more stable. 
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Fig. 36: Calculated distribution of the first principal stress at the beginning of ejection 
(A: control simulation, B: L B B B simulation). Upper bound of the contour legend was 
decreased to 0.25 M P a in order to remove unrealistic stress concentrations near the 
basal nodes with prescribed displacement boundary conditions. Lower bound of the 
legend was increased to 0 M P a so that both panels, A and B, use the same contour 
lines (for better comparison). Stresses outside the specified interval are shown in gray 
color. The actual calculated maximum and minimum stress values are written at the 
bottom of the legend along with the precise time of the beginning of ejection. 
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Fig . 37: Calculated distribution of the first principal stress at the moment when the L V 

pressure reaches its peak (A: control simulation, B : L B B B simulation). Upper bound 

of the contour legend was decreased to 0.4 M P a in order to remove unrealistic stress 

concentrations near the basal nodes with prescribed displacement boundary conditions. 

Lower bound of the legend was increased to 0 M P a so that both panels, A and B , use 

the same contour lines (for better comparison). Stresses outside the specified interval 

are shown in gray color. T h e actual calculated maximum and minimum stress values 

are written at the bottom of the legend along with the precise time when the peak 

pressure was reached. 
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Fig. 38: Calculated distribution of the first principal stress at the end of ejection (A: 
control simulation, B : L B B B simulation). Upper bound of the contour legend was 
decreased to 0.25 M P a in order to remove unrealistic stress concentrations near the 
basal nodes with prescribed displacement boundary conditions. Lower bound of the 
legend was increased to 0 M P a so that both panels, A and B, use the same contour 
lines (for better comparison). Stresses outside the specified interval are shown in gray 
color. The actual calculated maximum and minimum stress values are written at the 
bottom of the legend along with the precise time of the end of ejection. 
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6 Conclusion 
Simulations of the left ventricular contraction presented in this thesis indicate that the 
L B B B alone does not substantially reduce the pumping efficiency of the ventricle. When 
a normal electrical activation sequence was replaced by that representing the L B B B . 
the ejection fraction decreased by only 2.3 %, despite the fact that the total electrical 
activation time was prolonged by 50 %. 

Mechanical consequences of the block were assessed by analyzing displacements of 
ventricular apex along wi th wall strains in the septum and in the lateral wall of the 
ventricle. These analyses confirmed that the model captures some basic characteristics of 
the L B B B - i n d u c e d mechanical dyssynchrony, reported in literature. Specifically, apical 
displacements were increased in the presence of the block and strain analysis demonstrated 
delayed contraction of the lateral wall relative to the septum. 

Stresses were analyzed at four characteristic instants within the cardiac cycle: the end 
of diastole, the beginning of ejection, the moment when the blood pressure reaches its 
peak (i.e. the systolic pressure), and the end of ejection. A t all these stages, significantly 
higher stresses were observed in or around the septum than in the rest of the model. It is, 
however, questionable whether such high stresses truly exist in a beating heart in which 
the stress distribution is surely influenced by forces arising from the right ventricular 
contraction, which were neglected in the present study (as they were in many other 
studies that modeled only the left ventricle, isolated from its surroundings [40, 47, 75, 94]). 
However, the results presented in this work suggest that it could be beneficial to take these 
interactions between the left and the right ventricle into consideration in the future; at 
least the right ventricular blood pressure should be applied on the right septal surface 
and the results compared wi th those presented here. 

In regions outside the septum, the stress pattern was markedly influenced by the pre
scribed fibre directions which emphasizes how important it is to describe the mechanical 
behavior of myocardium by anisotropic constitutive equations and to respect the arrange
ment of fibres in ventricular walls. Interestingly, stress magnitudes were not considerably 
different in control and L B B B simulations, except for the septum. 

Besides the ignored influence of the right ventricle, several other shortcomings of the 
model were pointed out throughout this work. The strain-energy function proposed in 
Sec. 5.4, although seemingly suitable for modeling biaxial and simple shear responses, does 
not correctly order the simple shear modes according to their stiffness. This inconsistency 
of the constitutive model is barely perceptible in the present case, but the suitability of 
the model for the description of myocardial behavior is of course challenged by this fact. 

Inaccuracies were also recognized on the simulated L V pressure curves. The calcu
lated pressure rise during I V C is not entirely realistic, even though the total duration of 
I V C corresponds well wi th clinical measurements for both control and L B B B conditions. 
Also, the ejection phase is too short in both simulations which is most likely an inherent 
drawback of the two-element Windkessel model which was used to calculate the pressure 
boundary condition during the ejection phase. 

These shortcomings identify some potential directions for future improvement. 
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