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Abstrakt 
Tato práce se zabývá transformací bezkontextových gramatik na váhované konečně stavové 
převodníky. Je vybrána podmnožina bezkontextových gramatik, kterou lze tranformovat 
přesně. Je představen test, zda daná gramatika naleží do této podmnožiny, i algoritmus 
převodu. Dále je popsán vlastní nástroj, který tyto postupy implementuje, včetně způsobu 
zpracování vstupu a výstupu. S použitím toho nástroje byl vytvořen systém rozpoznání 
řeči pro kokpit letadla. Jsou představeny výsledky ukazující, že systém založený na takto 
získaném modelu jazyka podává výrazně lepší výkon, než je dosažen při použití obecného 
modelu. 

Abstract 
This thesis deals with the transformation of Context Free Grammars (CFG) into Weighted 
Finite State Transducers (WFST). A subset of C F G is chosen, that can be transformed 
exactly. Both the test of whether a C F G fulfills such condition and the algorithm for the 
following transformation are presented. A tool has been implemented, which performs both 
these tasks, also its input and output processing are reported. Using this tool, a speech 
recognition system for aircraft cockpit control has been built. Results are presented which 
show, that the system based on the transformed grammar outperforms the system based on 
general-purpose language model. 
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jazykový model, bezkontextová gramatika, váhované konečně stavové převodníky, rozpozná
vací síť, automatické rozpoznávání řeči 
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Chapter 1 

Introduction 

Speech recognition nowadays is based on a statistical approach, where the parameters of 
the models are trained on huge amounts of data, with humans directly affecting only the 
structure of these models. However, the situation may arise, that additional constraints on 
the input speech are known. This is usually the case when recognizing domain- or even 
application-specific speech. In this case, we can exploit them to improve the performance 
of our systems. 

This thesis deals with such a situation and presents a way to use the knowledge of the 
typical utterances spoken, when we are given a context free grammar (CFG) describing it. 

At first, the key concepts of speech recognition are introduced in chapter 2, including the 
mathematical definition of automatic speech recognition (ASR), an intuition for the process 
of A S R and the error metrics used in the evaluation of the experiments. 

Chapter 3 describes the design of a tool developed for transformation of the input knowl
edge encoded as a C F G into a Weighted Finite State Transducer (WFST) used in modern 
speech recognition systems. Details about design decisions limiting the set of accepted input 
grammars are presented, as well as nontrivial input transformations, that allow the tool to 
work with a real-world grammar specification. 

Finally, in chapter 4, the application of this tool in a project, in which the Speech@FIT 
group participates, is described. Specific issues of the provided grammars are shown and 
a basic description of the system is given. Then, taking an example from this project, 
experiments are described and their result are discussed. 
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Chapter 2 

Speech recognition with Weighted 
Finite State Transducers 

Speech recognition is a complex process, that can be, from both the engineering and the
oretical point of view, decomposed into several independent parts. The basic structure is 
captured in figure 2.1. The signal processing computes features from the input audio signal. 
The acoustic modeling then evaluates to which class (e.g. silence, particular phonemes, 
noise etc.) the sound most likely belongs. During the decoding, this information is com
bined with a model of language, which constrains the possible sequences of words, to give 
the most likely word sequence as recognition output. 

^Language mode l l i ng^ 

) I ' 

E Speech 
sam 

| j g j > ^ Signal processing ^ — ^ A c o u s t i c model l ing"^ 

I 
Acoustic models *^ 

Figure 2.1: Simple schema of a speech recognizer. This work deals mainly with the language 
modelling and decoding parts. 

This work deals mainly with language modeling, with respect to the decoding, thus 
a popular model for representing language constraints - the Weighted Finite State Trans
ducer-is presented in this chapter, as well as a statistical tool-the Hidden Markov M o d e l -
that connects it to acoustic modeling, so that the speech recognition is theoretically well 
defined. 

2.1 Hidden Markov Models as models for sequence matching 

The Hidden Markov Model (HMM) is a statistical model typically used for modeling tem
poral sequences. It models a system in which the distribution of observed variables is 
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determined by a state, which itself is an unobserved process. Following [13], the H M M can 
be defined as a 5-tuple: 

H M M = (N, M,A,B,ir) 

where: N denotes the number of states. M defines the output space ([13] defines it as dis
crete, in speech recognition the whole continuous space of required dimensionality is usually 
considered). The transition probability distribution A = {Ay} describes the probability of 
moving from a given state to another in a single step, with Aij = P(Sn+i = j\Sn = i). 
B is a probability density function (probability mass function for discrete M) of observed 
variables given the actual state of the H M M . We can write it as B = 6j(x), where x is a 
vector from the sample space. Finally, TT is a probability mass function, where 7Tj is the 
probability of state i being the initial state. From the probabilistic point of view, H M M s 
are well described as graphical models, as captured in figure 2.2. 

*1 *2 ^n- l *n * n + l 

(K>-<KK> 
i > 2 V x n - 1 >£*n V x n + 1 o o ooo 

Figure 2.2: The Hidden Markov Model shown as a graphical model. This schema has been 
taken from [7]. This is a model of an observed sequence of arbitrary length. The shaded 
nodes X j correspond to the distributions of the observed samples, while the uncolored nodes 
Zj correspond to the hidden Markov process. Each arrow symbolizes conditioning, e.g. the 
arrow from z i to x i implies, that we know the distribution p(x i | z i ) or that the distribution 
of x i is given in terms of z i . Also the Markov property is captured in the fact, that each 
Z j + i is conditioned on z, only. 

The H M M can be viewed as a generative model: Assign a token to a random initial state 
i according to TT. Then draw a sample from the corresponding probability density function 
hi. Finally choose the next state j according to A. Then loop over the steps 'draw a sample' 
and 'move the token' for the desired number of times. There is no notion of a 'final state' 
in the H M M , so the token does not need to reach it. 

In terms of H M M , the task of speech recognition can be described as finding the most 
probable sequence S' of the hidden states, representing phonetic (sub)units, e.g. phones or 
triphones, given X, the observed sequence of features. This process is generally referred to 
as decoding. This can be expressed using Bayes' theorem: 

S' = are max P(S\X) = are max 
S S 

P(X\S)P(S) 

Since the denominator is a constant with respect to S, it can be omitted: 

S' = argmax {P(X\S)P(S)} 
s 
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This factorization directly relates to the process of speech recognition. The P(S) is the 
prior probability of the sequence. This prior probability reflects the pronunciation of words 
in the language and the expected word order. From a formal point of view, this knowledge is 
captured in the transition probability distribution A. It is usually referred to as the language 
model1. Actual techniques used for language modelling are introduced in 2.2. On the other 
hand, the likelihood of the observed sequence P(X\S) relates the phones (hidden states of 
the H M M ) to the actual observed samples. This is referred to as the acoustic model. 

Decoding may be viewed, and is often implemented, as passing several tokens through 
the H M M , where every token has a probability associated with it. At every decoding step n, 
for each transition of non-zero probability leading from a state Sn where there is a token t, a 
new token s is generated in the state Sn+i. Let x n denote the n-th observed sample. Then 
the likelihood of the token s can be described as P(s) = P(t)Asnsn+1bsn+1(^-n+i)- Out of 
all the tokens obtained this way, only a certain number of those with the highest likelihood 
is kept for further processing. This is usually referred to as the width of the decoding beam. 

The estimation of the parameters of an H M M is a non-trivial task which is of no direct 
impact on this thesis, thus it will not be further discussed here- [13] presents the classi
cal Baum-Welch algorithm. Generally the training follows the Expectation-Maximization 
scheme [7]. 

2.2 Weighted Finite State Transducers 

Several components (pronunciation model, language model) of modern speech recognizers 
can be naturally described by some form of finite automaton. As a common framework for 
formally defining these, weighted finite state transducers are used. The following paragraphs 
are based on [15]. 

Being an extension of finite state automata (FSA), weighted finite state transducers 
(WFST) can be defined as an 8-tuple: 

T=(Q,H,T,I,F,E,X,p) 

where: 
Q is a finite set of states 
£ is a finite input alphabet 
T is a finite output alphabet 
ICQ is the set of initial states 
F C Q is the set of final states 
£ C Q x ( E U {e}) x (T U {e}) x Q x K is the set of transitions 
A : / —> K defines weights of initial states 
p : F —> K defines weights of final states 

where K , the set of weights, forms a suitable semiring 2. Therefore, the W F S T can be seen 
as a finite automaton, where each transition has an output symbol and a weight associated. 
Thus the basic idea of how a W F S T operates on an input string is the same as with the 
finite state automaton. 

The usage of the semiring (K, ©, ®, 0,1) is the following: Let a path ir = e\ • • • eu be a 
sequence of consecutive transitions, that is for i = 1,. . . , k — 1 the destination state of e. 

1 The term language model has two meanings in speech recognition. Here it is applied in broader terms 
containing pronunciation dictionary as well, the other meaning puts constraints on the word level only. 

2This is not a mandatory condition, but is necessary for practical applications. 
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is equal to the origin of ej+i. Its weight is defined as the ^-product of the weights of the 
single transitions: w[ir] = w[e\] ® • • • (E>w[ek\- The weight of a finite set of paths R is defined 
as w[R] = w[ir]. Depending on the properties of the semiring, this may be defined 
for infinite sets of paths as well. 

Similar to classical FSA, operations such as weighted determinization and minimization 
are defined on WFSTs. The exact algorithms will not be discussed here as they are not of 
any significant importance for this work. Yet it is noteworthy that a W F S T is not generally 
determinizable, depending on the properties of the underlying semiring K and satisfaction 
of the twins property [ ]. These operations, especially determinization, have the usual great 
impact on the practical usage of a W F S T . 

However, the fact that a W F S T translates an input string to an output one, introduces 
another important operation: composition. A W F S T C = AoB, composed of WFSTs A and 
B, translates strings over into strings over r# in a way equivalent to first A operating 
on the input string and then B operating on the output of A. Another way to view this, is 
to see a W F S T as a binary relation between strings. Then the relation composition arises 
as a natural operation. However, this view is informal, because it does not take the weights 
into account. 

c:b/0.9 

(c) 

Figure 2.3: Example of W F S T composition, where the ® operation is equivalent to sum (as 
with log probabilities). The transducer 2.3c is composition of 2.3a and 2.3b. Node caption 
of each state in the transducer 2.3c refers to the pair of states of the original transducers. 
Example taken from [15] 

The algorithm of composition is similar to constructing the intersection of FSAs. For 
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C = A o B, a state of C represents a pair of an A state and a B state. A state of C is 
initial, exactly when the corresponding states of A and B are both initial, and it is a final 
state when the corresponding states of A and B are both final. For every pair of transitions 
qi —> qi in A and r\ —> r2 in I?, such that the output symbol of gi —• g2 matches the input 
symbol of r\ —> r2, there is a transition (gi , r i ) —• (92,^2) hi C. The weight of this transition 
is computed as w[q\ —> 92] ® u>[ri —> r2]. The weights of final states are the (^-products of 
the weights of the corresponding final states in A and B. 

A n example of the W F S T composition is given in figure 2.3. 

2.3 Creating a recognition network 

Phones are not independent of each other in speech. They physically affect the preceding and 
following phones, this effect is known as coarticulation [11], and from all possible sequences 
of phones, only a small portion forms semantically valid units. In order to enhance speech 
recognition accuracy, both issues must be addressed. 

The former one is typically handled by considering context dependent phones, typically 
triphones, as the target of acoustic modelling. The H M M parameters can then be esti
mated to capture most of the co-articulation effect. To solve the latter issue, knowledge of 
the spoken language (pronunciation, grammar, etc.) is needed. Using the W F S T frame
work, this knowledge is encoded as a W F S T . Considering the unobserved part (the hidden 
states) of the H M M to be a W F S T as well, W F S T composition can be used to put all these 
components together. The result can then be thought of as a single big H M M , called recog
nition network. The three typical components are the language model, the pronunciation 
dictionary and the context dependency transducer. 

The language model captures constraints put on words sequences. These constraints 
may be given in form of a hand-crafted grammar or a statistical n-gram model. Gram
mars are typical for domain-specific speech recognition, while statistical models are used for 
general purpose speech recognition. 

The statistical n-gram models are based on the Markov assumption, that the conditional 
distribution of a word at a given position is dependent only on the n — 1 previous words. The 
n-gram models can be approximated as a W F S T in a straight forward manner, where each 
state represents a particular history, though their spatial complexity grows exponentially 
with n. Sophisticated ways of pruning the n-gram models were developed with some form 
of finite state machine as the target, so there is no extra effort needed to put them into 
work. A n example of bigram (2-gram) model is given in figure 2.4. 

Regular and linear grammars can also be easily coded as WFSTs, and as will be shown 
in chapter 3, a useful subset of context free grammars (CFG) as well. Furthermore, several 
methods of approximation of arbitrary C F G have been developed (see [17]). This W F S T is 
usually referred to as G (for grammar) and its weights play an important role in decoding, 
especially with statistical models. 

There has also been a successful attempt to model probabilities of word sequences with 
recurrent neural networks [16], however, this is a very different technique and will not be 
discussed further. 

The pronunciation dictionary captures possible pronunciations of words, that is which 
phone sequences form a given word. It is often referred to as lexicon. A typical lexicon is 
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charlie rcharlie / p(charlie I bravo) 

bravorbravo / p(bravo I alpha) 
bravorbravo / p(bravo) 

s:E / p(bravo) 

charlie rcharlie / p(charlie) 

s:E / p(alpha) 

alpharalpha / p(alpha) 

Figure 2.4: Example of W F S T corresponding to bigram a model. Each state represents a 
history (one word for bigram), the 'b' state is a backoff state. It represents no history and is 
used for modeling probabilities of sequences which could not be reasonably trained, because 
they were not seen in the training data or were too rare. In this example, the word sequence 
"alpha charlie" was not seen often enough to estimate its probability, so it is modeled using 
this state. 

Figure 2.5: A simple lexicon representing the pronunciation of words 'dog', 'dollar' and 'ate'. 

represented as a tree structured W F S T , as illustrated in figure 2.5. Note however, that 
it is generally not determinizable because of homophones3. To solve this problem, disam
biguation symbols, typically of the form are introduced at the end of each word, so that 
each phone sequence is unique. Also it may happen, that word boundaries would not be 
clear in the phone sequences, so these disambiguation symbols are appended to all words. 
These symbols are removed later in the process of creating the decoding graph. This W F S T 
is usually referred to as L (for lexicon). Weights may be used to capture probabilities of 
different pronunciation variants, otherwise those equal to 1 are used. 

The context dependency transducer is introduced for implementation purposes: As 
mentioned earlier, the acoustic modeling H M M is usually trained to classify context depen
dent phonemes, whereas the lexicon translates words into context independent phones. To 
overcome the difference, the context dependency transducer is introduced. Assuming the 
triphone model, this W F S T can be constructed by creating a state for every pair of phones, 
with transitions labeled by newly recognized input phones. Figure 2.6 shows an example 

3words that are pronounced the same way, such as 'read' and 'red: 
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Figure 2.6: A single transition in a context dependency transducer. It depicts the situation, 
where the triphone ao/d_g ('ao' preceded by 'd' and followed by 'g') is recognized and a 
context-independent phone 'g' is emitted. 

transition. This W F S T is usually referred to as C and has no information encoded in the 
weights of transitions. 

When we compose all these three components together, the resulting transducer CoLoG 
maps context dependent phonemes to word sequences constrained by G. 

136:8 137:s 

Figure 2.7: A example fragment of H transducer, with weights omitted for simplicity. Tri-
phones 'ao/d_g' and 'ae/k_t' are shown. The integer input labels refer to emitting proba
bility density functions. 

The H M M topology is a transducer corresponding to the H M M state sequences for sin
gle context dependent phones. It translates output probability density functions to context 
dependent phones. For phones, a three state structure is usually adopted (for instance in 
the Kaldi toolkit [18]), as is illustrated in figure 2.7. A more complex model, involving inner 
loop, is usually used for silence, as it can contain different non-speech sounds. 

We can get the complete recognition graph as H C L G = HoCoLoG. For practical 
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reasons, we want this transducer to be deterministic and minimal, so the usual recipe for 
decoding graph construction is: 5(min(det(H o det(C o det(L o G))))) [15], where min and 
det represent weighted minimization and determinization respectively. The operation 5 
represents the final removal of disambiguation symbols, which is done by replacing them by 
epsilons. 

2.4 Decoding in such a network 

As already stated in section 2.3, the H C L G recognition network can be considered to model 
the structure of a big H M M . Therefore, the decoding is typically (e.g. in the Kaldi toolkit) 
implemented as the token passing algorithm described in section 2.1. 

For large vocabulary continuous speech recognition (LVCSR), the recognition network 
can get very large (several millions of arcs), mainly because of the language model G. Then 
various techniques of pruning are incorporated into the decoder in order to keep the process 
of decoding reasonably fast. For example, tokens can be kept for further processing, only 
if they have score close enough to the current best token. The idea is, that those, that are 
much worse than the best, would not produce successful tokens in the next step, so there 
would be no point in deriving lots of tokens from them, only to discard them right after. 

For the batch processing of speech, speed is a sufficient property to optimize. However, 
when recognizing on-line, real-time latency is of interest as well. Therefore a technique 
has been implemented in the Kaldi toolkit to retrieve the results of recognition as soon as 
possible, instead of processing the whole file at once. The concept of the immortal token 
is introduced. It is such a token, that all active tokens have been derived from it. Since 
every token has a single parent, it is quite simple to check by backtracking, whether there is 
some common ancestor of active tokens. When a new immortal token is found, recognized 
sequence is retrieved by backtracking from the current immortal token to the previous one. 

This way, the latency could be theoretically reduced to processing a single feature vector, 
corresponding typically to 10 milliseconds, but in practice, the online decoder works with 
batches in order of lower tens of feature vectors. 

2.5 Recognition performance metric 

In automatic speech recognition (ASR), word sequences are the target. Therefore a certain 
kind of string distance is used. The most common metric is Word Error Rate (WER). 
According to [11], the W E R is defined as follows: 

W E R S + D + / 

length of the correct transcription 

where S is the number of substitutions, D is the number of deletions and I is the number of 
insertions. The W E R is typically given in percents, sometimes word accuracy = 1 — W E R 
is used. Sometimes the word accuracy is defined not to consider insertions. The correct 
evaluation of this metric requires solving maximum substring matching problem, which is 
straight-forwardly solved by means of dynamic programming [11]. 

Another metric used is the sentence error rate (SER). The SER is defined simply as 

E 
SER ^sentences 
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where E is the number of sequences, which were recognized incorrectly. We shall not dis< 
what a sentence could mean in recognition of longer utterances. In this work, short phr; 
will be recognized, where we can claim a sentence to be equal to an utterance. 

11 



Chapter 3 

Turning context free grammars into 
WFST specified language models 

As shown in section 2.4, the finite state representation of a language model allows for efficient 
decoding. On the other hand, it is often more convenient to describe grammars in a more 
flexible manner. We can consider the case when a grammar of a command and control 
system requires the user to specify a time interval by giving two dates. Expressing this 
grammar in a strictly finite state manner requires having the subautomaton specifying the 
date twice, which introduces undesirable redundancy. In this simple case, the redundancy 
could be avoided by introducing some simple substitution mechanism. 

Yet for general cases, possibly including cycles or indirect recursion, human inspection 
is inefficient and error-prone. Therefore, a tool has been developed to do this task automat
ically. This chapter describes the design of this tool, of arbitrary name Grammator. Instead 
of developing a new grammar specification format, the Speech Recognition Grammar Spec
ification [12] was used as the input format. The A T & T F S M format [3] was chosen as the 
output, for it is the standard textual format1 of WFSTs used in Kaldi . 

3.1 Speech Recognition Grammar Specification 

The W3C recommendation [12] defines the Speech Recognition Grammar (SRG) as a syntax 
for grammar representation. Two specific forms are accepted: Augmented B N F syntax 
(ABNF) and X M L . For the current version of Grammator, only X M L was taken as supported 
format, however, these formats are semantically mappable. Further discussion of the SRG 
will be with respect to its X M L format. SRGs are defined with the expressive power of 
context free grammars (CFG), so most of the effort here went into reducing it to the power 
of (weighted) finite state transducers (WFSTs). 

Within the SRGS, a grammar (always the root element) is given as a set of rules. There 
is no theoretical limit on the number of rules, and they can be defined with either global 
or document-only scope. A rule is an analogy of a nonterminal symbol in the formal C F G 
and the specifies its root rule (likewise to the starting nonterminal of a formal grammar). 
Content of the <rule> element is its expansion, which is in general a string of items. Items 
can be explicitly specified using the <item> element or implicitly as sequence of words. 

1for most of the WFST operations, Kaldi uses the OpenFST toolkit [4], which in turn uses the A T & T 
format. 
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When defined explicitly, repetition can be specified, of either given, or possibly infinite 
number of times. Furthermore a <one-of > element can be used to list several alternatives. 

Finally the <ruleref> element is used to reference to another rule, meaning the ex
pansion of the referenced rule shall be inserted into the spot where it occurs. Except for 
user-defined rules, special ones are already predefined. These special rules match either any 
utterance, nothing, or a zero-length utterance. This will be further discussed in section 3.4. 

There are two different flavours of weights in the SRGS. At first, alternatives in the 
<one-of > element can be assigned weights, which have no exact interpretation specified, only 
1 is specified as the neutral weight, with greater weight making the alternative more likely. 
Also any repetition can have a "repeat" probability specified. These are to be interpreted 
as the probability, that the item will be repeated yet another time, independently of the 
number of repetitions so far, except for the total number of repetitions has to stay in the 
given bounds. 

There are tokens defined in SRGS, which are supposed to carry some semantic inter
pretation, however there is neither a natural expression of these in W F S T , nor use for such 
feature in our current system, so tokens are ignored when forming an equivalent grammar. 

As will be shown in chapter 4, not the full power of a C F G is necessary for all applications. 
So a design decision was made, that only those grammars will be supported, that do not 
exceed the power of regular languages. Another possibility was to approximate a C F G by 
either its subset or superset as discussed in [17], but there was no use case for it in this 
project, so it has been left as an option for further work. 

3.2 Transformation into Context Free Grammar 

Even though the SRGS has the expressive power of a C F G , it introduces several convenience 
features, that make the process of loading it as a C F G not straight forward. Therefore, this 
process will be described briefly. At this level, each rule can be turned into a nonterminal 
independently of others, which is not the case with the following transformation into W F S T . 

At first, we consider rules with no repetitions, i.e. such rules, that can only expand into 
a finite number of strings (over the total alphabet). We could either list all these strings 
and then simply turn them into right-hand sides of rules in the resulting grammar, which 
would keep the number of nonterminals the same, but at the cost of increasing number of 
expansions. The number of right-hand sides per nonterminal would then follow 0(NK), 
where N is (an average) number of options per <one-of> element in the rule and K is 
number of these elements in the rule expansion. The other option is to introduce a synthetic 
nonterminal for each <one-of> element, encapsulating all the options in it. This way, the 
number of nonterminals is increased by O(K), but the total number of rules in the grammar 
does not exceed O(NK). The structure of the original SRGS is also better reflected in the 
grammar this way, so this method was implemented in the Grammator. The difference is 
illustrated on a simple example in table 3.1 (page 14). 

In case a limited number of repetitions is specified, we define a rule for each number of 
repetitions. If the number of repetitions is unbounded, first, a chain of repetitions corre
sponding to the lower bound is put at the begining of the rule. Then, a new nonterminal is 
introduced which handles the possibly infinite recursion. A n example is shown in the table 
3.2 (page 14). 

Considering the special rules, each is handled separately. The "garbage" rule, matching 
any utterance, is not supported, because no use has been found for it and, more importantly, 
it would inevitably introduce nondeterminism in decoding, since there would be no way to 
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Table 3.1: Demonstration of two possible transformations of a SRGS rule with alternatives 
into equivalent formal C F G rules. In the Grammator, the one in the third column is applied 
for its better space complexity and structure, that follows the original SRGS more closely. 

<rule id="A"> 
<one-of> 
<item>a</item> 
<item>b</item> 

</one-of> 
<one-of> 
<ruleref uri="#K"/> 
<ruleref uri="#L"/> 

</one-of> 
<one-of> 
<item>x</item> 
<item>y</item> 

</one-of> 
</rule> 

Table 3.2: Transformation of an item with unbounded repetition into a C F G . 

<rule id="A"> A —> xxA ' 
<item repeat="2-"> A ' —>x 
x A ' -> e 
</item> 
</rule> 

tell before processing whole utterance, whether the recognized word is a grammar sequence 
or should still be captured as garbage. For the on-line decoding (see the use case in chapter 
4), this would be even worse, because we want to display recognized words as soon as 
possible. The "void" rule, which does not match anything, is expressed as a nonterminal 
with a single expansion rule A —> A, that is an infinite recursion, which clearly matches 
nothing. Finally, the "null" rule, which stands for an empty utterance, is simply skipped 
when constructing the grammar. 

Both the weights of alternatives and repeat probabilities are reflected in the grammar. 
To achieve this, each production rule of the grammar has a weight associated. In order 
to keep the transducer stochastic and avoid mixing weights and probabilities, weights are 
normalized to sum up to one for each nonterminal. 

3.3 Deciding on the power of the grammar 

Since only a subset of CFGs can be equivalently expressed as a W F S T , the given grammar 
must first be tested to determine, if it can be transformed. To decide whether a given 
grammar can be expressed in terms of W F S T , we first consider the close-to-exact answer. 
Recall that a C F G is defined as a 4-tuple: 

(N,T,P,S) 

A --»• aKx A -» A - l 
A --»• aKy A - l —> a 
A --f bKx A - l -> b 
A -+ bKy A-2 -> K 
A --> aLx A-2 -> L 
A --> aLy A-3 —> X 

A --f bLx A-3 y 
A -+ bLy 

A-2 A-3 
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where: 
iV is a finite set of nonterminal symbols 
T is a finite set of terminal symbols, T n iV = 0 
P C N x (NUT)* is the set of rules of the form A -> u 
S E. N is the initial nonterminal 

We also define the relation of one derivation step uAv => uxv, for strings u,v,x over the 
total alphabet N LIT and any nonterminal A such, that A —> x G P . Then its transitive-
reflexive closure x =>* y represents that the string y can be derived from x in an arbitrary 
number of steps. 

Definition 1. A context free grammar G is self-embedding when there is a nonterminal A 
such, that A =>* uAv for some non-empty strings u,v. 

It has been proven (see [6]), that if a C F G is not self-embedding, an equivalent finite 
automaton can be found. It has also been shown, that some of the self-embedding CFGs do 
not exceed the expressive power of finite automata (see [5]). However, these are not taken 
into account so far, as they would greatly broaden the scope of this work without an actual 
need for it. 

A n even stronger restriction is put on the C F G to be processed by the tool. Grammator 
allows no nonterminal symbol A, such that A =>* uAv, for a non-empty string v. This 
effectively means banning left recursion, which is a natural condition in formal language 
processing, because a (common and efficient) top-down parser cannot process it [14]. A 
similar decision has been made in Microsoft's tool Whisper [11] and an example in chapter 
4 demonstrates, that this does not decrease the practical value of Grammator. 

To test whether a given C F G is neither self-embedding nor left-recursive, I have intro
duced a relation Q C N x N: 

Q = {(A,B) | A^uBveP, u,ve (NUT)*, v + e} 

This relation captures which nonterminals B may appear at any-but-last position in a 
sentence. Armed with this knowledge, we ask whether this B can ever turn into an A, 
which would violate the requirements. To express this possibility, I have introduced another 
relation D+ C N x N: 

D+ = {(A, B) | A ^+ uBv, u,ve(NU T)*} 

Constructing this set directly is generally impossible, because it is defined using the possibly 
infinite relation =>+. So we first define relation D = {(A, B) \ A —> uBv G P} and then 
take D+ as its transitive closure. 

Then the composition D+ o Q represents, for a given (A, B) G D+ o Q, that a such string 
can be derived from A in an arbitrary number of steps, that B occurs in it, but not at the 
last position. Therefore, the requirement of a grammar being neither self-embedding nor 
left recursive is equivalent to this relation being anti-reflexive. 

Definition 2. A context free grammar G is Grammator-compliant when the relation D+oQ 
is anti-reflexive. 

3.4 Construction of Weighted Finite State Transducers from 
Weighted Context Free Grammars 

After a grammar is checked to meet the requirements, a W F S T is constructed from it. At 
first, an intuition to this process will be given on a simple example. Consider a grammar 
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S with N = {E,0,F}, T = {a, 6 ,+ , -} , starting nonterminal E and rules: E -> OFO, 
O ^ a, O ^ b, F ^ — and F —> +. Although it is a C F G from the formal point of view, 
it does not exploit the expressive power of a C F G - a n equivalent finite state automaton 
is shown in figure 3.1. However, the construction of such automaton is considerably less 
straight forward than in the case of constructing it from a right- or left-linear grammar. 

Figure 3.1: A simple FST corresponding to {a ,b}{+, -Ha,b} 

With a right-linear grammar 2, fragments of the W F S T can be constructed for each 
nonterminal independently and then interconnected according to the nonterminal at the 
end of the right-hand side of each rule. This is not the case with (Grammator-compliant) 
CFGs. Considering the nonterminal O from grammar S, we can see, that it is instantiated 
in two distinct parts of the corresponding F S T - t h e first in transition 0 —> 1, the second 
in transition 2 ^ 3 . To properly construct each of these fragments, more information is 
needed than only the sequence of symbols in the right-hand side of the rule. 

Putting aside issues of recursion for a while, we can construct a fragment of W F S T 
corresponding to a given nonterminal easily, but it has to be plugged into the parent W F S T . 
To achieve this, each of these fragments has a well defined entry- and exit-point. This 
way, the W F S T can be constructed "on-the-fly" recursively, beginning with the starting 
nonterminal and constructing the W F S T fragments as needed. Then, the "parent" fragment 
construction is responsible for correctly connecting to these endpoints. 

Recursion in the grammar has to be handled with care. Firstly, consider that we keep 
a global stack of nonterminals, which are currently being synthesised and already have a 
defined entry point. We add their symbol to the stack when beginning their construction 
and remove it when the construction of the particular W F S T fragment is done. Upon finding 
a nonterminal A at the end of the right-hand side r of the currently processed rule, we could 
consult this stack. If A was there, we would handle the recursion by simply connecting 
the end of r to the entry point of A (otherwise we just construct a new W F S T fragment 
corresponding to A). 

However, this method allows invalid result for cases, when r is not the rightmost part 
of the derivation of A. E.g. consider a grammar, where there are rules of type A —> uBv, 
A —> x and B —> A. Then the method explained above would connect the beginning 
of B to the already constructed entry point of the A. Even though this is clearly not 
correct, because it allows accepting a (sub)string ux, it is not an actual problem, because 
a Grammator-compliant grammar can not exhibit such behaviour-this is an example of 
self-embedding. 

2 Left linear will not be discussed further as they introduce left recursion, however their behaviour is 
similar. 
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Figure 3.2: A n example of W F S T 3.2b constructed from a grammar 3.2a. This example does 
not precisely follow algorithm 1, some e-transtitions are omitted for clarity. The rule S —> 
aAa is implemented by the upper part of the W F S T , the big rectangle represents a W F S T -
fragment corresponding to A. For the construction of the W F S T fragment corresponding to 
S, A-0 and A-2 are the entry- and exit-points respectively. Within it, the recursive part of 
the rule A —> bA is implemented by the transitions A-l —• ^4-0, because ^4-0 is now available 
as the entry-point for the currently being synthesized nonterminal A. The fragment of 
W F S T corresponding to the nonterminal B demonstrates the situation, where the special 
rule "void" was given in the specification and thus no utterances shall be recognized with it. 

However, a slight change to the algorithm has been introduced anyway. For implemen
tation purity, the stack structure of nonterminals being currently synthesized is not global. 
When a nonterminal is derived as the rightmost symbol, the procedure of constructing the 
corresponding W F S T fragment is given the full stack of nonterminals currently synthesised 
as before. In the other case, the nonterminal-handling procedure could not use those non
terminals anyway, so an empty set is passed. 

More formally, this process can be described by a function (algorithm 1, page 18) that 
constructs a W F S T fragment from a single nonterminal. A non-formal commented example 
is given in the figure 3.2. 

In order to start the construction of the whole grammar, an empty stack of nonterminals 
usable for recursion and an empty state are passed as arguments to the function constructing 
the starting nonterminal of the grammar. This pre-constructed state then becomes the initial 
state of the W F S T . The only final state is the exit point of the starting nonterminal. 

3.5 Implementation and output format 

The Grammator tool implements the above described principles in a straight forward way. 
The computation is organized in a simple object-oriented schema, with a separate class 
responsible for each of the models involved. 

At first, there is the class XMLTree, which keeps the X M L tree representation of the 
SRGS. To read it from an X M L file, it uses the standard ElementTree module. This class 
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Algorithm 1 Synthesize a W F S T fragment corresponding to the given nonterminal 
Require: 

• A is a nonterminal of a Grammator-compliant input grammar G 
• nonterm_ stack is a set of currently being synthesized W F S T fragments 
• predecessor is the entry point of the resulting fragment 
• the function connect(src, dst, lab, w) creates an arc from state src to state dst with 

label lab and weight w 
Ensure: 

• an equivalent W F S T fragment is constructed for the nonterminal A 
• its entry point is the given predeccesor state 
• the reference to the exit point of the fragment is returned 

function M A K E F R A G M E N T W F S T ( ^ 4 , nonterm_ stack, predecessor) 
exit_point <— newStateQ 
for all s G rhs(^4) do 

last <— newState() 
connect (predecessor, last, e, weight (s)) / / here weights get in 
for all elem £ s do 

if nonterminal elem) then 
if elem G nonterm_ stack then / / recursion 

/ / connect to the entry point of elem on stack 
connect (last, entryState(fmd(eZem, nonterm_ stack)), e, 1) 
last <— nullState() 

else / / not a recursion, construct new fragment 
if lastElement(e!em, s) then 

pn <— nonterm_ stack U {̂ 4} 
else 

pn <- 0 
end if 
last <— makeFragmentWFST(elem, pn, last) 

end if 
else / / terminal symbol 

ns <— newState() 
connect(last, ns, elem, 1) 
last <— ns 

end if 
end for 
if last / nullStateQ then 

connect(last, exit_point, e, 1) 
end if 

end for 
return exit_point 

end function 

18 



is responsible for transforming the tree into an equivalent C F G , which is represented by the 
class Grammar. This class is mainly responsible for providing various tests, such as whether 
it is complete (no symbols referenced in the rules are missing), whether it is right-linear and 
finally whether it is Grammator-compliant. The final representation in Grammator is the 
W F S T , which is captured by the class GeneralFST. It knows how to construct itself from a 
Grammar object and in turn to output itself to the A T & T syntax. 

The A T & T syntax of finite state machines is quite simple. Each state is identified by a 
non-negative integer. Terminal symbols are identified by non-negative integers as well, but 
the number 0 is reserved for the empty symbol (e). For every arc in the WFSTs, there is a 
line of the form: 

S D I O C 

where S refers to the source state, D to the destination state, I is the number (integer) of 
the input symbol of the arc and O is the number (integer) of the output symbol. C is a 
floating point number representing the arc cost. The source state of the first arc in the F S M 
description is, by convention [3], the initial state of the W F S T . Finally, each final state is 
specified by a line 

S C 

where S is the number of the final state and C is the cost of accepting the string in this 
state. The mapping of symbols (typically words for language modeling) to numbers is kept 
in a separate file, referred to as symbol table. 

Since the task of the Grammator is inherently off-line (related to the decoding) and 
therefore has loose requirements on speed, it was implemented in the Python scripting 
language. 
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Chapter 4 

Use Case: The A-PiMod project 

The techniques described in chapter 3 were applied in the A - P i M o d project. The A-P iMod 
project (Applying Pilot Model for Safer Aircraft) [2] is a European Committee-funded 
project aimed at increasing the safety of flight by observing the crew state and properly 
responding to it, by means of task distribution between the crew and advanced automation 
systems. 

One of the target modalities of Human-Machine interaction in this project is speech. For 
the first part of the project, the partial goal is to have a recognizer of grammar constrained 
phrases for voice control of the cockpit. Other partner in the project, Honeywell CZ, is 
responsible for the grammar itself, I have developed a methodology for using such grammar 
as the language model in speech recognition. 

The application of the developed techniques in the A-P iMod project requires a lot of 
effort in integration, but only the speech recognition part itself is described in this thesis 
for brevity. 

For completeness, the structure of the used acoustic models is briefly described in section 
4.3. The applied techniques are not described in this thesis, so the reader is encouraged to 
study them in relevant the literature. The Gaussian Mixture Model is a generative statistical 
model well described in [7]. The Linear Discriminant Analysis can be interpreted in several 
ways, but it is usually understood as a linear projection of the data into a subspace of given 
dimension, where the classes are best separated. It is also described in [7]. The Cepstral 
Mean and Variance Normalization is a simple method for increasing the robustness of the 
features, first presented in [19]. 

4.1 Input grammar 

Due to the nature of the project, there are several separate grammars involved. The gram
mar to be used for recognition is to be given by the interaction context (IC). Even though 
the on-line change of the IC is not implemented so far, support is prepared for them. The 
challenge is, that the voice control in each IC is given by two parts: Global rules, which 
hold valid for any IC, but refer to different objects according to the IC (an example is given 
in table 4.1) and local rules, which refer directly to objects in the particular IC (an example 
is given in table 4.2). 

The root element of the grammar is named <input> and refers to one or more of the 
global rules, as well as several local rules, thus it is a part of the local definition of the 
grammar. Even though the Speech Recognition Grammar Specification (SRGS) allows 
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cross-file reference, for global rules, that refer different objects according to the IC, some 
kind of back-reference would be needed, where the rule would be aware of which grammar 
(IC) invoked it, so that the right objects could be picked in the global rules. 

Table 4.1: Example of the global show rule in the A - P i M o d project. There are also global 
get, global set and global hide rules of similar structure. The rules showable object, showable 
object with parameter required and parameter are given by the interaction context. 

<rule id="global_show"> 
SHOW 
<one-of> 
<item><ruleref uri="showable_object"/x/item> 
<item><ruleref uri="showable_object_with_parameter_required"/> 
<ruleref uri="parameter"/x/item> 

</one-of> 
</rule> 

Such behaviour is not defined by SRGS, so in order to avoid redundancy, the follow
ing approach has been taken: Global rules are stored in a separate XML-fragment, which 
contains the header and global rules definition, while the fragment corresponding to the IC 
does not include the X M L header, but is properly ended with the </grammar> tag. Before 
processing them by Grammator, these two parts are concatenated into a valid X M L file 
describing possible phrases in the given IC. 

Another possibility would be broaden the SRGS in such a way, that some part of rule 
reference would become parametric. However, this would prevent grammars in such format 
from being processed by some other tool expecting the SRGS format. 

Table 4.2: Example of local rules in the A-P iMod grammar. It is taken from the Interaction 
Context "Cross Dialog". The rule number defines possible altitudes by enumeration. 

<rule id="set_altitude"> 
SET ALTITUDE <ruleref uri="#altitude_settings"/> 

</rule> 
<rule id="altitude_settings"> 
<one-of> 
<item>ON</item> 
<item>OFF</item> 
<item>AT OR BELOW<ruleref uri="#number"/x/item> 
<item>AT<ruleref uri="#number"/x/item> 
<item>AT OR ABOVE<ruleref uri="#number"/x/item> 

</one-of> 
</rule> 

Once the weighted finite state transducer equivalent to the given grammar has been 
constructed, it can be used as a language model like any other. This way, the obtained 
language model can be relatively easily combined with custom acoustic models to create the 
desired system, and then, using the same acoustic model, compared to statistical language 
models. 
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4.2 Overview of relevant parts of the Kaldi toolkit 

Kaldi [18] is a speech recognition toolkit aimed at researchers. Its core consists of object-
oriented code in C++, which implements most of the state-of-the-art techniques used in 
speech recognition. As the basic access to this technology, simple command-line applications 
are developed, that conduct single operations, such as "perform this linear transform on these 
features" or "given these acoustic scores and this recognition network, decode". These tools 
have been developed with pipelines in mind, so using a shell script to build a system is 
a natural choice. However, it is possible to avoid using these applications and compile a 
bigger one. This is the case with the A-P iMod project, where, unlike in research, real-time 
processing is important, so the whole recognizer is compiled into one application. 

The Kaldi project not only provides recognizer technology, but comes also with utilities 
and recipes for building systems on widely available corpora. The Kaldi recipe for con
structing recognition networks is among these. It is a bit different from the classical one 
described in section 2.3: The final recognition network is (following the notation of chapter 
2) constructed as: 

H C L G = a(min(5(H' o min(det(C o min(det(L o G))))))) 

where the transducer H' is similar to the H M M topology introduced in section 2.3, but 
without the self-loops. The final a operation adds the self-loops. Without the self-loops, 
the composition of the CLG transducer with the H M M topology puts lesser requirements 
on the computing system, especially the memory. 

There is also an implementation of an on-line recognizer in Kaldi . Its structure is 
captured in figure 4.1. The online audio source can be implemented in different ways to 
support various inputs, such as from pre-recorded wavfiles, an input audio device or a T C P 
socket. It outputs raw audio samples. These are then processed by a pipeline of feature 
processing blocks. In the current systems, the first block segments the audio into frames 
and computes either Mel-Frequency Cepstral Coefficients (MFCC) [9] of Perceptual Linear 
Prediction (PLP) [10] coefficients. Furthermore, implementation is provided for on-line 
cepstral mean normalization, computation of delta and delta-delta features and application 
of linear transformation. 

Audio input 
(wavfile, socket) 1 

Online 
audio 
source 

Online 
feature 
input 

Online 
feature 
input 

( Recognition ^ 
network J 

Online 
decodable 

Online 
decoder 

Recognized words 

Figure 4.1: Block schematic of the on-line recognizer in Kaldi . The blocks named "online 
feature input" perform various feature transformations, such as adding the delta coefficients 
or applying linear transformations. 

On top of this feature-processing pipeline is "online decodable". Decodable is an impor
tant abstraction in Kaldi . A n object of this type provides acoustic scores to the decoder. 
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More precisely, it produces the log-likelihood for a given frame under a given distribution. 
This way, it encapsulates the interaction of the acoustic model with the features, allowing 
the decoder to work completely unaware of the type of the acoustic model. When the de
coding is online, the decodable can not provide log-likelihoods for any frame of the speech 
recording, but only for the current frame and for a short history before i t - i n the default 
setup for last 27 frames. 

4.3 Acoustic models used for recognition 

The voice part of the human-machine interface in the A-P iMod project is designed to accept 
English speech. However, the pilots are generally not native English speakers, so English of 
various accents needs to be properly recognized. Therefore, it was reasonable to search for an 
acoustic model trained on non-native English. One such model was trained at Speech@FIT 
by Kateřina Zmolíková on data obtained during the A M I / A M I D A project. The data corpus 
is distributed with the project [1]. 

With respect to the speech recognizer scheme (2.1), the audio input is processed in 
the following way: At first, the speech is segmented into frames and P L P coefficients are 
computed for each of these. The cepstral mean and variance normalization (CMVN) is then 
applied on these feature vectors. Further on, nine feature vectors are spliced together and a 
linear transformation - the Linear Discriminant Analysis-is applied. The features obtained 
this way form the sample space of the Gaussian Mixture Model (GMM) , which is applied 
as the acoustic model. For computational reasons, their covariance matrix is limited to a 
diagonal one. The block schematic of this computation is given in figure 4.2. 

Speech w 
Segmentation PLP computation CMVN LDA 

Features w 
input *~ 

Segmentation W PLP computation CMVN W LDA 
for the GMM ™ 

Figure 4.2: Block schematic of feature extraction used in the AMIDA-system. 

Since the AMIDA-system was available at Speech@FIT, I could simply change the gram
mar model (WFST G) to the one corresponding to the desired Interaction Context and 
recompile the network H C L G . Therefore, the network is fully compatible with the corre
sponding acoustic model and can be directly used for recognition. 

4.4 Baseline language model 

Since only the language model was changed, I could compare my system to other ones with 
the same acoustic model. However, a reasonable language model had to be chosen. As this 
thesis presents a grammar-based language model in contrast to n-gram language models, 
the n-gram language model was a natural choice. Because the A M I D A project was aimed 
at automatic speech recognition of meetings, it should be suitable for short utterances. It 
also covers a very wide vocabulary, so it can be expected to understand control words as 
well. 

To improve this baseline model, I have taken a model created by Kateřina Zmolíková 
at Speech@FIT. It is the basic A M I D A language model interpolated with a bigram model 
trained on approx. 1300 utterances of average length of ten words, capturing cockpit-ATC 1 

1 Air Traffic Control (ATC) is the common name for the service provided by the ground personnel of an 
airport to prevent collision in the air. The A T C Tower (ATCT) is the communication point for this service. 
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communication. Later in this chapter, this model is referred to as the airspeak model. 
The resulting recognition network is very large: the size of the file containing the binary 

representation of the H C L G is approx. 1 G B . Because OpenFST does not support memory-
mapped files, this imposes quite high memory requirements. Also, loading the model can 
take several seconds. However, should this model prove successful, it would be sufficient 
for any Interaction Context, so no need would arise to switch the recognition network when 
changing the IC. 

4.5 Experiments and results 

For the experiments the Main Screen was used, which is the currently largest Interaction 
Context defined. Thirty-three random phrases were generated from it, using the OpenFST 
tool f strandgen. Then three speakers read them aloud. One of them was a male Czech, 
one a male German and the last one a female Russian. This way we can expect the test set 
not to be affected by a particular accent. 

These utterances were recorded in a silent environment. Since pilots are used to push-to-
talk devices, I have trimmed the utterances manually, so that approximately half a second of 
silence precedes and follows the speech. This has been claimed to be a reasonable robustness 
requirement by the Honeywell partners. The advantage of this approach is, that no Voice 
Activity Detection needs to be run on the data. 

As the basic metric, word error rate has been evaluated, as is captured in table 4.3. The 

Table 4.3: Word error rate using different systems. Each column represents recordings from 
one speaker, the speaker is labeled as <nationality>_<gender>. The first row (airspeak) 
is the baseline system using the n-gram model. 

System C Z _ M D E _ M R U _ F 

airspeak 83% 68% 65% 
grammar 14% 9.0% 5.0% 

sentence error rate has been evaluated as well, results are in the table 4.4. The SER can be 
considered the more important metric for the use-case, because the recognized sentence is 
to be used as the unit for further processing. 

To understand how it is possible, that for the grammar based system the W E R is 
consistently higher than the SER, we must take into account, that a single miss on the 
sentence level typically means, that most of the words were recognized incorrectly. And 
since simpler and shorter sentences were recognized better, this results in a higher ratio of 
words mis-recognized. 

Table 4.4: Sentence error rate using different systems. Each column represents record
ings from one speaker, the speaker is labeled as <nationality>_<gender>. The first row 
(airspeak) is the baseline system using n-gram model. 

System C Z _ M D E _ M R U _ F 

airspeak 73% 79% 82% 
grammar 12% 6.1% 3.0% 

24 



We can see, that the recognizer using the IC grammar outperforms the one based on 
trigram language model by far. This is no surprise, as the grammar represents the actual 
distribution, from which the sentences were drawn, while the trigram model is only a very 
general approximation. To check, whether the system based on the airspeak language model 
does work at all, we can have a look at some of its erroneous outputs. Three examples are 
given in table 4.5. We can consider the recognized output to be quite similar to the true 
transcription in terms of acoustics, so the system seems to operate properly to some extent. 

Another reason, why this language model performs so poorly, is quite likely the structure 
of the phrases. The training corpus for A M I D A contains spontaneous speech, which was 
often grammatically incorrect and was often interrupted during the meetings, yet it was very 
much following the usual structure of English sentences. On the other hand, the phrases in 
A-P iMod ICs do not depend on any context, which could be exploited by the recognizer, 
and follow a simple imperative schema "<do> <something>". 

Table 4.5: Example of the kind of errors made by the airspeak-AMIDA system on utterances 
from the Czech male speaker. It can be seen, that the recognized phrases are somewhat 
acoustically close to the true ones. 

True transcription airspeak-amida system output 

SHOW C O N T E X T M E N U SHOW Q U O T E D M E M O 
F U L L S C R E E N W H O S C R E A M O H 
HIDE CROSS W H Y T O CRUISE 
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Chapter 5 

Conclusion 

In this Bachelor Project, I have developed a tool called Grammator used for the trans
formation of a substantial subset of Context Free Grammars into Weighted Finite State 
Transducers, for purposes of language modeling in speech recognition. This thesis describes 
the design of this tool, as well as the theoretical background of the use of Weighted Finite 
State Transducers in speech recognition. 

To test the language model obtained this way, an example task from the A-P iMod 
project was used. Using the Grammator, I have built a language model for a particular 
cockpit situation. Then, I combined this model together with an acoustic model from a 
system trained on non-native English. Finally, this system was compared with a system 
using a general purpose English trigram language model. The results were greatly in favor 
of the language model derived from the grammar. However, these experiments are rather a 
preliminary proof of concept than a full result. 

The outcome of this project will be further used in the A-P iMod project. The Gram
mator tool is used as one of the core elements in the creation of a system for a given cockpit 
situation. Should the need arise, the tool can be enhanced by methods for constructing 
WFSTs that approximate even such CFGs, which can not be transformed directly, because 
their expressive power exceed the finite state automata. 

Further effort will be invested in the recognition of grammar fragments, so that other 
modalities can provide some input into the decoder. The ultimate goal in this direction is 
to allow arbitrary interleaving of modalities in the input to the system, e.g. the pilot could 
say "set" command, then pick some object via a touchscreen and then say a requested value 
of some parameter. 

The long term vision includes an online decoder operating directly on the grammar, 
which would allow arbitrary C F G to be used as the language model. Also a solid detection 
of out-of-grammar utterances would be a useful extension to the recognition system. 
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