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ABSTRACT

The main purpose of this thesis is to design a new algorithm for processing unique
molecular identifiers (UMIs) without mapping to a reference genome. These random
oligonucleotide sequences are attracting an increasing interest due to its ability to fa-
cilitate PCR error and bias recognition. Since there has been a rapid rise in the use
of next-generation sequencing (NGS) technologies, great effort has been put into the
development of tools for data analysis. At present, tools to solve these errors are usu-
ally relative time-consuming and complex due to computationally demanding alignment.
The most important limitation of these tools lies in the fact that multi-mapping reads
are allowed when processing duplicates. These reads are usually ignored and may lead
to reduction of quantitative accuracy and cause misleading interpretation of sequencing
results. In order to solve this problem, a new approach is introduced in this thesis,
which allows estimating the absolute number of unique molecules with relatively fast
and reliable performance.
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ABSTRAKT

Hlavnym cielom tejto prace je navrh nového algoritmu k spracovaniu unikatnych moleku-
larnych indexov bez mapovania na referenény geném. O tieto nahodné oligonukleotidové
sekvencie neustale vzrasta zaujem, pretoze ulahluji rozpoznavat PCR chyby a skreslo-
vanie Udajov. KedZe pouzivanie technoldgii sekvenovania novej generacie neustale rastie,
je vynalozené velké usilie vyvijat nastroje pre analyzu produkovanych dat. V sicasnosti
sl nastroje na rieSenie tychto chyb relativne Casovo narocné a zlozité z dovodu vy-
poCtovo narocného zarovnania. NajdolezitejSie obmedzenie tychto nastrojov spociva v
skutocCnosti, ze pri spracovavani duplikdtov si povolené multi-mapované citania. Tieto
Citania st zvycajne ignorované, ¢o moze viest k znizeniu kvantitativnej presnosti a spo-
sobit zavadzajlcu interpretaciu vysledkov daného sekvenovania. V snahe vyriesit tento
problém je v tejto praci uvedeny novy pristup, ktory umoznuje odhad absolitneho poctu
jedine¢nych molekil s relativne rychlym a spolahlivym spésobom.
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ROZSIRENY ABSTRAKT

Je zname, 7e sekvenovanie DNA alebo RNA sa stava neustédle dolezitejsim a vplyv-
nejsim ako kedykolvek predtym. V poslednych rokoch prudko naréastlo vyuzivanie
technologii sekvenovania, s ¢im suvisi aj pokrok nastrojov vyzivanych v bioinfor-
matike. V priebehu nasledujicich niekolkych rokov sa vysokovykonné sekvenovanie
pravdepodobne stane neoddelitelnou sicastou genomického, epigenomického, pro-
teomického, transkriptomického a metabolomického vyskumu, pretoze umoznuje
nahlad k molekuldrnemu mechanizmu posobiaceho na regulaciu genému. Nedavne
udalosti kvantitativnej analyzy sekvenacénych dat, produkovanych technolégiami
novej generacie, naznacuju isté znepokojenie zo znac¢ného skreslenia a chyby spo-
sobenej PCR amplifikaciou vybranych regiénov pocas pripravy kniznice. Pred-
chadzajtce nastroje vyuzivané v bioinformatike sa pri rieSeni tohto problému obme-
dzili iba na sekvena¢ni identitu a lokalitu mapovania sekvencii, s cielom znizit
pocet duplikatov PCR. Tento pristup je vsak pomerne zjednodusujici a ignoruje
niektoré biologické aspekty spracovavanych dat a moze viest k nepresnym zaverom.
Na vyrieSenie tohto problému sa v procese sekvenovania zacali vyuzivat zaclenu-
juce sa ndhodné sekvencie, zname ako unikatne molekuldrne identifikatory (UMI).
Pozitie tychto unikdtnych molekularnych identifikatorov sa postupne zacalo vyuzi-
vat v mnohych aplikicidach, pretoze poskytuji mnoho vyhod. Napriek pritom-
nosti niekolkych algoritmov, neustéle existuje potreba inovacie i¢innejsich nastrojov,
pomocou ktorych by bolo mozné odhadnit absolitny pocet jedinecnych molekul.
Cielom tejto préace je preto navrhnutf algoritmus k spracovaniu UMI, kombinujuci
dostatoc¢ny vykon s relativnou jednoduchostou.

Uvodn4 ¢ast tejto prace poskytuje struény prehlad pristupov sekvenovania DNA
a ich aplikacii. Vo vSeobecnosti je sekvenovanie DNA metdda urcovania poradia
nukleovych baz v molekule DNA. Kazdy jednotlivec a organizmus ma Specificki
nukleotidovii sekvenciu a v stuvislosti s tym moze DNA sekvenovanie poskytnit po-
hlad na rozmanitost a vyvoj organizmov, ktoré nie je mozné kultivovat v laboratériu
a tym je znemoznené ich touto cestou studovat. Analyzou genémov su identifikované
gény a regulacné prvky spolu s porozumenim ich tloh vo vyvoji a evolicii. Dalsia
cast prace skiima generacie sekvenacnych technologii, ktoré umoznuju simultannu
analyzu velkého poctu sekvencii. S dostupnostou tychto technolégii je mozné Stu-
dovat a analyzovat Struktiru nukleovych kyselin pre konkrétne aplikacie, ¢i uz v
oblasti vedy, klinickej diagnostiky alebo metagenomiky. V poslednych rokoch sa
tempo pokroku zvysilo a boli vyvinuté nové technoldgie, vedice k exponencialnemu
poklesu cien za sticasného zrychlenia sekvenacného procesu. Nasledujica cast prace
popisuje klicové vyuzitie unikatnych molekularnych identifikatorov v suvislosti s
RNA sekvenovanim v snahe odlisit technicku a biologicki duplikdciu analyzovanych

molekul.



V poslednych rokoch sa totiz RNA sekvenovanie, vyuzivajice predovSetkym sekve-
nacné platformy novej generacie, stalo vysoko pouzivanou metédou analyzy celého
transkriptomu. Nielen metédy sekvenovania RNA, ale mnoho dalsich vykonnych
sekvenacnych platforiem vyzaduje, aby sa v priebehu pripravy kniznice pred samot-
nym sekvenovanim vykonala amplifikacia analyzovanych molekil formou PCR. Avsak,
vsetky molekuly st amplifikované s odliSnou pravdepodobnostou, ¢o vo vysledku
moze viest k tomu, Ze niektoré molekuly st v pripravenej kniznici prezentované v
nadmernej miere v porovnani s ostatnymi molekulami. Na rozliSenie medzi identic-
kymi koépiami pochadzajicimi z odlisnych molektl a duplikdtmi PCR pochédza-
jucimi z tej istej molekuly sa pouzivaju spominané kratke ndhodné oligonukleoti-
dové sekvencie, teda UMI. Nastroje spracovavajice UMI k dosiahnutiu deduplikacie
sekvencii, vo vSeobecnosti zac¢inaju proces spracovania ¢asovo naro¢nym mapovanim
sekvencii k referencnému genému. Navyse st v priebehu zarovnéavania typicky po-
volené viacnasobné mapovania, ktoré su definované ako sekvencie, mapujice sa rozne
miesta genému v dosledku viacerych kopii génu. To stazuje rozliSenie medzi sku-
toCne viacnasobnym mapovanim a c¢itaniami, ktoré pochadzaji z viacerych frag-
mentov toho istého génu. Mnoho nastrojov tieto sekvencie typicky ignoruje, ¢o
znamenad, ze najmenej 20 - 30 % dat je zanedbanych. Dizajn prezentovanej metody
My UMI tool je zalozeny na komplexnej studii vyhod kazdého vybraného dostup-
ného nastroja. Dosiahnuté poznatky o nastrojoch poskytuji aj informacie o ich
nevyhodach a dévodoch, preco pretrvava zaujem neustale inovovat a vyvijat nové
nastroje. Navrhovand metdda je implementovana v programovacom prostredi R
pozostava z nasledujtcich krokov: predbezné spracovanie dat zo vstupného suboru
vo formate FASTQ, zhlukovanie sekvencii s rovnakou UMI do klastrov, nasledné
zoskupovanie sekvencii z klastrov s rovnakymi UMI podla ich podobnosti, urce-
nie poc¢tu pociatocnych nezhod zo zarovnania tychto sekvencii, oprava chyb UMI a
kone¢na identifikacia duplikatov k vygenerovaniu konecného siboru FASTQ s dedu-
plikovanymi ¢itaniami a TSV stibor obsahujticimi vsetky citania, z ktorych kazdé
ma priradeni skupinu, ktord mu bola v priebehu spracovania pridelend. Jednym z
hlavnych problémov v ramci chyb vyskytujicich sa v UMI, ktoré su vysledkom nuk-
leotidovych substiticii pocas PCR, pripadne nukleotidovych inzercii alebo delécii
pocas sekvenovania, je to, ze vznikaju falosné UMI, ¢o mdze mat negativny vplyv
na odhad poctu jedinecnych molekil. Aby sa znizila pravdepodobnost nespravneho
priradenia klastrov jednotlivych sekvencii a zlepsila sa kvantifikdcia pomocou UMI,
chyby vyskytujice sa v UMI nie st ignorované. V snahe vyhodnotif vykon a efek-
tivitu metédy My  UMI  tool, bol vyssie popisany algoritmus testovany na Siestich
simulovanych genémickych, ako aj dvoch experimentélnych détach. Uelom simulé-

cie je vygenerovat syntetické genomické data, ktorych pévodny UMI je znamy.



Navrhovant simulaciu je mozné povazovat za dvojfazovy proces, pozostavajuci z
generovania biologickej duplikacie a generovania technickej duplikacie. Najprv sa
cielové sekvencie z pozadovaného vstupného referencného siboru FASTA fragmen-
tuji na pozadovant dizku s vyuzitim posuvného okna s velkostou 75 nukleotidov a s
velkostou kroku 1 nukleotid. S cielom simulovania biologickej duplikacia sa ziskané
sekvencie nahodne replikuju. V dalsom kroku je ku kazdej jednotlivej sekvencii
pripojena nahodna sekvencia UMI. Technicka duplikacia je uskutoénend vyuzitim
simulatora produkujiceho ¢itania novej generacie sekvenovania, napodobnovanim
skutoc¢ného procesu sekvenovania zahinajic chyby, ktoré v tomto procese vznikaju.
Metdéda je porovnavand s nastrojom UMI-tools, ktory patri medzi najbeznejsie
pouzivané néstroje v oblasti spracovania UMI, v ramci ktorej poskytuje predik-
ciu s vysokou presnostou. K porovnavaniu vykonu néstroja My UMI tool bol
implementovany automaticky porovnavaci postup. Tento postup zahina zvolenie
vstupnych FASTQ suborov, ktoré maja byt spracované. Tieto sibory si nasledné
spracované dvoma roznymi sposobmi k ziskaniu dvoch roéznych vysledkov poskyt-
nutych dvoma réznymi nastrojmi, a to navrhovanym My UMI  tool a porovnavacim
UMI-tools. V pripade UMI-tools st data prvotne zarovnané a nasledne spracov-
ané tymto nastrojom k poskytnutiu vyslednych deduplikovanych dat. V pripade
My UMI tool st data najprv deduplikované a az nasledne zarovnané prislusnym
zarovnavacim nastrojom.

Na zéaklade tejto prace je mozné vyvodit zaver, ze My UMI tool je nezaned-
batelnym nastrojom na deduplikéaciu sekvenacnych dat novej generacie vyuzivajicich
UMI, z ktorych su duplikatne ¢itania zo vzorky odstranené s cielom pripravif tieto
data k naslednej analyze. Na rozdiel od existujicich nastrojov je My UMI tool
navrhnuty tak, aby sa predislo mapovaniu sekvencii pred samotnou deduplikaciou,
¢im sa stava jedineénym v ponuke momentalne dostupnych néastrojov. Vysledky
naznacuju, ze vynechanie ¢asovo narocného mapovania sekvencii pred deduplika-
ciou nema vplyv na konecné stanovenie absolitneho poctu jedineénych molekul a
konecné vysledky su rovnaké alebo lepsie ako vysledky, ktoré su v sticasnosti ak-
ceptované nastrojom, ktory bol k porovnavaniu vyuzity. Napriek tomu, Ze casova
vykonnost nie je idedlna, sa predpoklada, ze nastroj bude uzito¢ny v aplikaciach, ako
je napriklad analyza transpozibilnych elementov alebo elementov Alu, ktoré tvoria
viac ako 10 % ludského genému. Z tohto hladiska je ziskanie stiboru spravne dupliko-
vanych ¢itani pred zarovnanim rozhodujice, ¢o vyznamne riesi problém spracovania

viacnasobne mapovanych citani.
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Introduction

It is well known that DNA or RNA sequencing has become more and more im-
portant and influential than ever before. For the past few years, there has been a
rapid rise in the use of sequencing technologies and the progress in bioinformatics
tools. Within the next few years, high-throughput sequencing is likely to become an
inseparable component of genomic, epigenomic, proteomic, transcriptomic as well
as metabolomic research as it gives access to a precise picture of the molecular
mechanism acting upon genome regulation.

In the light of recent events in quantitative analysis of next-generation sequencing
data, there is considerable concern about bias and error introduced by PCR amplifi-
cation of the targets of interest during library preparation. Previous bioinformatics
pipelines have only been limited to sequence identity and sequence alignment to
reduce the number of PCR duplicates, which is quite over-simplistic, and ignores
some biological aspects of the data and may lead to biased conclusions. To solve
this issue, random sequences, known as unique molecular identifiers (UMIs), are
incorporated into sequencing workflows. Quite recently, the use of these unique
molecular identifiers have been utilized in many applications and provides many
benefits, however, there is still a need for more efficient counting algorithm with
which one can estimate the absolute number of unique molecules in large input data
sets. Therefore, the aim of this work is to design an algorithm which combines a
sufficient performance with low complexity.

This thesis is divided into seven sections. The first section gives a brief overview
of DNA sequencing approaches and its applications. The second section exam-
ines generations of sequencing technologies, which allows simultaneous analysis of
a large number of sequences. This is followed by the third section, which explains
use of UMIs in the field of RNA-sequencing. In the fourth section, a case study
of unique molecular identifiers and the most used tools for dealing with UMIs in
next-generation sequencing data sets is presented. Afterwards, a new methodology
for handling mentioned UMIs is outlined in the fifth section. Data simulation and
obtained final results, together with the evaluation of the performance of the pro-
posed method are discussed in the sixth section and are followed with the conclusions

drawn in the final section of the thesis.
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1 DNA sequencing and its applications

It is well known that DNA sequencing is a method to determine the order of the
four nucleotide bases (adenine, guanine, cytosine and thymine) in an oligonucleotide
molecule. As each individual and organism has a specific nucleotide sequence, DNA
sequencing can provide insights into diversity and evolution of organisms that cannot
be grown in cultures in the laboratory and therefore are not easy to study [1]. The
completion of a human genome reference sequence allowed for the development of
many genome sequencing instruments [2]. By analyzing genomes, identification of
genes and regulatory elements together with the understanding of their roles in
development and evolution is obtained. It is also hoped that growing knowledge
of the human genome will provide the health tendencies or disease risks of each

individual.

1.1 Whole-genome sequencing

Whole-genome sequencing is a comprehensive method that enables to examine the
entire genomic DNA sequence of a cell at a single time including coding, non-coding
regions, and mtDNA. On the other hand, whole-exome sequencing offers regional
genomic sequencing, but only targeted view of the protein-coding regions is acquired
[3]. It is expected that through identification of regions of the genome and genetic
variants, which are potentially responsible for human evolution, genetic diversity as
well as for various diseases, may improve medical diagnostics [4]. Unlike targeted
sequencing, whole-genome sequencing provides base-by-base view of the genome and
therefore not only large variants but also small variants may be detected. Addition-
aly, there is promising news in the field of pharmacogenomics where information
about the response or adverese effects of each individual to specific medications is
predicted [3].

1.2 De Novo sequencing

De Novo sequencing approaches are used to sequence a new genome or transcrip-
tome without any prior knowledge of the sequence where no reference sequence for
alignment is given [5]. De novo methods are essential for mapping genomes when
the genomes are not known but they are also extremely useful even when finishing
genomes of known organisms [6]. Another desirable feature of de novo sequec-
ing method is that the partial sequence can be used to search for posttranslation
modifications or for the complex rearrangements, such as deletions, inversions, or

translocations [7].
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1.3 Metagenomic sequencing

Over the past few decades, metagenomics has become a standard tool to deter-
mine and study microbial communities of as yet non-cultivable microbes [8, 9, 10].
Metagenomic approaches enable comprehensive sequencing of all genes in all or-
ganisms present in a given complex sample obtained directly from an environment
with no need to isolate and culture individual microbes [9]. In the classification and
identification of bacteria, archaea or fungi present within a given sample, sequences
of 16S ribosomal RNA gene are usually used. The 16S rRNA gene comprises nine
variable regions interpresed between conserved regions, where conserved regions re-
flect phylogenetic relationship among species and highly variable regions determine

differences between species [11].

1.4 Single-cell sequencing

In order to investigate structural and functional diversity and interactions in complex
microbial ecosystems, as well as disease in multicellular organisms, the field of single-
cell sequencing started to show its important potential as cells are the basic unit of
an organism [12]. The thing is that every cell in our body contains nearly the same
sets of genes, but transcriptome, on the other hand, reflects the cellular activity
of only a subset of genes from the genome that are functionally active. In the
case of bulk sequencing, many cells are sequenced together and consequently gene
expression patterns at the population level are obtained [12, 13]. Therefore, the
whole single-cell performance is evaluated from only single isolated cells to acquire
expression at single-cell resolution.This strategy seems to hold great promise for
sequencing of cells without prior knowledge of genes and proteins of interest as well
as grouping of cells based on their transcriptional signature, which has been widely
applied in the field of cancer biology, oncology, immunology or prenatal diagnosis
14, 15).
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2 Generations of sequencing technologies

With the availability of sequencing technologies, study and analysis of nucleic acid
composition for specific applications is accomplished and will be helpful in the area
of basic science as well as translational research areas such as clinical diagnostics,
metagenomics and forensic science. In recent years, the pace of progress has in-
creased and novel techniques have been developed which leads to exponential re-
duction in cost per base. Furthermore, there are also many other important factors
to consider such as read length, base per second and raw accuracy [16]. Tab. 2.1
outlines basic features and performances of the selected sequencing platforms. Ac-
cordingly, in this chapter, the three generations of sequencing technologies and the

specifics on how a few different methods work, will be discussed.

Tab. 2.1: Basic features and performances of the selected sequencing platforms

| Run Time ‘ Output | Reads/Run | Read Length

454 (Roche)

GS FLX+ 23 hrs 700 Mb 1M up to 1 Kbp
GS Jr. 10 hrs 35 Mb 0.1M 700 bp
Ilumina

iSeq 100 System 9-17.5 hrs 1.2 Gb 4M 2 x 150 bp
MiniSeq System 4-24 hrs 7.5 Gb 25M 2 x 150 bp
MiSeq Series 4-55 hrs 15 Gb 25M 2 x 300 bp
NextSeq Series 12-30 hrs 120 Gb 400M 2 x 150 bp
HiSeq 4000 System <1-3.5days 1500 Gb 5M 2 x 150 bp
HiSeq X Series <3 days 1800 Gb 6B 2 x 150 bp
NovaSeq 6000System | ~13-44 hrs 6000 Gb 20B 2 x 250

Ion Torrent

PGM 314 2-4 hrs 200Mb 0.6M 400 bp

PGM 316 3-5 hrs 2Gb 3M 400 bp

GM 318 4-7 hrs 4Gb 5.5M 400 bp

PI 2-4 hrs 20Gb 82M 200 bp

PII 2-4 hrs 64Gb 330M 100 bp

SOLiD

5500x1 6 days 95 Gb 800M 2 x 60 bp
5500x1 Wildfire 10 days 240 Gb 2.4B 2 x 50 bp

5500 6 days 48 Gb 400M 2 x 60 bp

5500 Wildfire 10 days 120 Gb 1.2B 2 x 50 bp
PacBio

RS II (P6-C4) 240 min 2 Gb 50k 10 -15 kbp
Sequel 240 min 20 Gb 500k 10 -15 kbp
Oxford Nanopore

MinION 1 min-48 hrs 15-30 Gb 7-12M entire fragment
GridION 1 min-48 hrs 15-30 Gb entire fragment
PromethION 1 min-72 hrs  100-180 Gb entire fragment
Flonge 1 min-16 hrs 1-2 Gb entire fragment
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2.1 The First Generation of Sequencing

The first techniques to be widely adopted and also considered as the real birth of
first-generation DNA sequencing are Sanger’s chain-termination method and Allan
Maxam and Walter Gilbert’s chemical cleavage or chain-degradation method, both
developed in 1970s [17]. Both methods, also shown in Fig. 2.1, are described
down below. The discovery of these techniques attracted interest of researchers
and lead to development of faster and efficient sequencing technologies. Thus, a
number of improvements upon existing methods were made which contributed to

the development of increasingly automated DNA sequencing machines.

Sanger sequencing

Sanger sequencing, also known as chain-termination or dideoxy technique or se-
quencing by synthesis method was developed by Sanger et al. from Cambridge
university awarded a Nobel Prize in chemistry in 1980 [18]. Until now Sanger se-
quencing has been considered as one of the most influential innovations that helped
in a wide variety of biological researches. First of all, this well-established method
requires a single-stranded DNA template. In order to use one strand of the double
stranded DNA as template to be sequenced, the DNA needs to be denatured by
heat so that the two strands separate. Denatured DNA template is then divided
into four separate sequencing reactions, each of which contains primer, DNA poly-
merase, four deoxyribonucleoside triphosphates (AINTPs) and one of four chemically
modified nucleotides called dideoxynucleoside triphosphates (ddNTPs) [18]. These
radio- or fluorescently-labeled ddNTPs cannot form a bond with the 5’ phosphate of
the next ANTP due to a lack of 3" hydroxyl group. Therefore, once incorporated into
the DNA strand they prevent further extension and the elongation is complete. Ac-
cordingly, as ddN'TPs get randomly incorporated, strands of each possible length are
produced and may be subsequently separated by the use of capillary electrophoresis
[17]. While accuracy, robustness and ease of use are the main advantages of this
method, it still sequences a single fragment at a time which makes this method not

only time consuming but expensive as well [19].

Maxam-Gilbert sequencing

Maxam-Gilbert technique developed by Allan Maxam and Walter Gilbert, on the
other hand, relies on the use of chemical reagents and thus is known as the chemical
degradation method [20]. This chemical treatment modificates purified DNA and

causes cleavage at a specific bases.
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The DNA is radioactively labelled at one end and after the breakage of molecule
at one or two predictable bases (G, A+G, C, C+T), series of marked fragments
is generated [18]. These fragments are then size-separated using electrophoresis
and can be subsequently visualized on exposed X-ray film [20]. By far the most
important advantage is capability of directly sequencing purified double-stranded

DNA and despite the usage of toxic and radioactive chemicals, the method has been

widely applied for DNA footprinting [18].
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Fig. 2.1: Sanger sequencing (left) and Maxam-Gilbert sequencing (right) [17]
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2.2 Next-Generation Sequencing

Next-Generation Sequencing (NGS) is a powerful tool that has enabled parallel
sequencing of thousands to millions of DNA molecules simultaneously and is consid-
ered as one of the most influential technological advances in the biological sciences
of the last few decades. Compared to other generations, this generation is attracting
considerable interest due to its sensitivity, speed, and reduced cost per sample [21].
Recently, NGS has been used by an increasing number of researchers for de novo
genome sequencing, DNA resequencing, transcriptome sequencing and epigenomics
[4, 6,9, 12]. To clearly understand the evolution of sequencing technology from the
first generation sequencing, the second and the third generation of sequencing will
be discussed separately in more detail. An overview diagram shown in Fig. 2.2

presents a hierarchical structure of the corresponding methods .

Next Generation
Sequencing
(NGS)

Sequencing by
—————— Pyroseqguencing hybridisation and
ligation

Sequencing by
—] reversible
terminator

Sequencing by
———  Detection of
Hydrogen lon

Fig. 2.2: Overview of the Next Generation Sequencing
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2.2.1 The Second Generation of Sequencing

Second-generation sequencing have been made available on an increasing range of
platforms designed to suit different applications and capacity requirements as well.
With these technologies, to achieve massive parallel sequencing, it is necessary
to clonally amplify DNA templates on a solid surface or on beads while isolated
within miniature emulsion droplets or arrays [22]. Moreover, the advance of second-
generation technology has been enabled by innovations in monitoring nucleotide
incorporation, such as luminescence detection or detection by changes in electrical
charge during sequencing procedure [23]. Some of the major and commonly utilized

sequencing platforms will be briefly described in this section.

Roche/454 sequencing

Pyrosequencing is method that utilizes two-enzyme process required for the sequencing-
by-synthesis approach, the same principle as Sanger’s dideoxy method relies on.
However, this technique detects the activity of DNA instead of the detection of
radio- or fluorescently-labelled nucleotides [24].

Pyrophosphate is detected by enzyme cascade reaction, as shown in Fig. 2.3,
that results in the emission of light [25]. The emission of light confirms that a
pyrophosphate has been released. When this pyrophosphate combines with another
substrate known as Adenosine Phosphosulphate (APS) in the presence of an enzyme
ATP sulfurylase, ATP is generated. In the next reaction this ATP is utilized by the
enzyme luciferase for the conversion of lucifer into oxyluciferin and production of
light. Thus, the pyrophosphate released during DNA synthesis can be detected by
the emission of light. [24]

To begin with sequencing, DNA samples are randomly fragmented and then at-
tached to beads via adapter sequences [18]. This DNA fragment serves as DNA
template strand and it is incubated with the primer binds to its complementary
sequence on the DNA template strand. In the next step, DNA polymerase is added
along with the enzymes and substrates required for the detection of the pyrophospate
[23]. After that, one of the four types of nucleotides is added and only one type of
nucleotide is added at a time. If the added nucleotide is incorporated in the new
strand, pyrophosphate will be released and emission of light take place. This light
is detected by a detector and later used to interpret unknown sequence. After the
degradation of unused and extra nucleotides by added enyzme apyrase, the reaction
starts again with the addition of next nucleotide. This process is repeated adding
each nucleotide one after another until the sythesis si complete. The amount of light

generated is proportional to the number of nucleotides that are incorporated [26].
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The light emission is then represented graphically to interpret the sequence [25].
The peaks in the graph also give an idea about the number of same nucleotides

present in the sequence.
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Fig. 2.3: Pyrosequencing method [25]

lon Torrent sequencing

Unlike other sequencing technologies, even with its similarities to pyrosequencing
technology, Ion Torrent Systems sequence DNA using a semiconductor chip, which
has millions of wells [18]. These wells capture chemical information from DNA
sequencing and translate it into digital information or base calls. The sequencing
process starts when a sample of DNA is cut into millions of fragments. Each fragment
then attaches to its own bead and is copied until it covers the bead. This automated
process covers millions of beads with millions of different fragments [25]. These beads
then flow across the chip, each depositing into a well. Then the chip is flooded
with one of the four DNA nucleotides. Whenever a nucleotide is incorporated into
a single strand of DNA, a hydrogen ion is released. The hydrogen ion changes
the pH of the solution in the well. A sensor attached to the bottom of the well
measures that change in pH and converts it to voltage [22]. This voltage change is
recorded indicating that the nucleotide was incorporated and the base was called.
In essence, each well works as the world’s smallest pH meter. The process happened
simultaneously in millions of wells and is repeated every 15 seconds with a different

nucleotide washing over the chip [24].
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lllumina/Solexa sequencing

With Illumina sequencing platform, the first step after DNA purification is random
fragmentation and ligation of adapters to both ends of each sequence followed by
reduced cycle amplification [25]. Through this cycle, additional motifs are indtro-
duced, such as sequencing binding sites, indices and regions that are complementary
to the flow cell oligonucleotides. DNA fragment strands with adapters are subse-
quently loaded into a flow cell channels, where two types of mentioned complemen-
tary surface-bound oligos are placed. Once attached, every single strand is then
amplified by PCR bridge amplification, as Fig. 2.4 shows, in which strand folds over
and the adapter region hybridizes to the second type of oligo on the flow cell [23]. A
DNA polymerase synthesizes the complementary strand resulting in double stranded
bridge. The double stranded DNA is denatured and reverse strands are cleaved and
washed off leaving only the forward strands [22]. Several milion dense clusters of
sequences made from the same original sequence are generated in each channel of
the flow cell. Each cluster act as an individual sequencing reaction where reversible
terminators in which the four modified nucleotides, sequencing primers and DNA
polymerases are added as a mix to the flowcell [18]. This process, also known as
sequencing by synthesis, begins with the extenstion of the attached primer to the
DNA being sequenced. The fluorescently tagged nucleotides compete for addition
to the growing chain and also have an inactive 3’-hydroxyl group, so that only one
base is incorporated at a time. Once a base has been added the clusters are excited

by a light source and a characteristic fluorescent signal is emitted.
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Fig. 2.4: Illumina sequencing method [25]
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Afterwards, this fluorescence is detected by a CCD camera and using computer
programs these signals are converted into a nucleotide sequence [26]. The process
continues with the elimination of the terminator with the fluorescent label and
the starting of a new cycle with a new incorporation. In order to determine each
nucleotide in the sequences, the terminator with the fluorescent label is removed and
whole process is repeated with the next fluorescently labelled base until millions of

clusters have been sequenced [24].

ABI/SOLiD sequencing

The process starts by attaching adapters to the DNA fragments. The fragmentation
can be achieved in one of three ways - nebulization, sonication and digestion, causing
the DNA to shear at random intervals [27]. Clonally amplified DNA fragments to
be sequenced are then linked to magnetic beads [25], as shown in Fig. 2.5. These
beads and fragments are then put in an emulsion, so that small units of beads
and fragments are formed [18]. The beads are then chemically bound to a glass
plate. Each plate contains millions of beads, each with a specific DNA fragment
at a specific position. The next step is to sequence all the beads in parallel. This
method uses DNA ligase to generate DNA sequence by measuring the serial ligation
of an oligonucleotide to the DNA. The sequencing starts by attaching a primer to
the adaptor. Next, a probe that interrogates two bases and has a fluorescent dye
linked to it, is hybridized, ligated to the template using mentioned DNA ligase, and
detected by fluorescence imaging [25].
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Fig. 2.5: SOLiD sequencing method [25]
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There are 16 different two base combinations and each base is interrogated twice
by two different dye-labeled probes. Finally from the color that the beads emit, it
is obvious what group the first two bases of the DNA strand on each bead belong
[25]. Corresponding color is stored for each bead and after reading the first color,
the fluorescent dye label can be cleaved thereby preparing the system for another
round of ligation [27]. In order to get color codes for the other positions, the whole
sequencing process is repeated to sequence the complete target DNA. However, each
time the next round of sequencing is performed with a primer that is one base shorter
to sequence skipped positions. At the end, to obtain required DNA sequence, the

recovered data from the color space are translated to letters [24].

2.2.2 The Third Generation of Sequencing

Third-generation sequencing technologies offers many theoretical benefits such as
reduced cost and preparation time, increased speed and eliminated PCR-biases and
errors [23]. The main difference with second-generation sequencing is the shift to
single-molecule PCR-free protocols and cycle-free chemistry so that no clonal am-
plification is required, which make this technology has the potential of becoming
one of the most promising platforms [22]. However, the technologies are still at very
different stages of development, some of which have already launched and some of
which are still in stealth mode so it may take a long time to become fully functional

and widely available.

Pacific biosciences SMRT sequencing

Pacific Biosciences Single-Molecule, Real-Time (SMRT') sequencing technology, most
widely used third-generation method, enables the observation of DNA synthesis as
it occurs in real time. Sequence information is captured during replication process
of the template to be sequenced. The single-stranded closed circular DNA, also
called a SMRTbell, is created by ligating hairpin adaptors to both ends of a target
double-stranded DNA [23]. The method uses fluorescent labelling, but in contrast
to other sequencing approaches, phospho-linked nucleotides carry their fluorescent
label on the terminal phosphate rather than the base [16]. Fluorescent label, as part
of the incorporation process, is then cleaved away resulting in completely natural
strand of DNA. A single polymerase is immobilized at the bottom of the chamber
called Zero Mode Waveguide (ZMW), shown in Fig. 2.6, where the target DNA
fragment is placed [28]. The ZMW is a cylindrical metallic chamber approximately
70 nanometers wide and it enables observation of individual molecules against the

required background of labelled nucleotides.
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Whenever one of four fluorescent-labelled nucleotides is incorporated, distinct emis-
sion spectrum is generated and subsequently captured by a sensitive detector. Nu-
cleotides diffuse in and out of the ZMW and after incorporation, the label is clipped
off and diffuses away. In order to determine the DNA sequence, the whole process
repeats creating sequential bursts of light corresponding to the different nucleotides
[29]. The main advantage of this method is that it offers much longer read lengths
and faster runs than SGS methods. Additionally, it allows simultaneous multiplex-
ing of thousands of ZMWs in parallel, all concurrently replicating DNA in real time.
However, lower throughput, higher error rate and higher cost per base appear as
main disadvantages of this method [18, 30].

SMRTbell template
Two hairpin adapters
allow continuous
circular sequencing

ZMW wells
Sites where
sequencing
takes place

Labelled nucleotides
All four dNTPs are
labelled and available
for incorporation

Modified polymerase
As a nucleotide is
incorporated by the
polymerase, a camera
records the emitted light

Fig. 2.6: Pacific biosciences sequencing [31]

Oxford Nanopore Technology sequencing

Nanopore sequencing technology offers direct, real-time analysis of DNA or RNA
molecules. This technology shows greater promise compared with other sequencing
techniques, because of its portability, long reads and ease of set up by those with
fewer lab skills [30]. In order to sequence both strands of long double-stranded
DNA (dsDNA), the library usually contains two adapters, the leading adapter and
the hairpin adapter, both ligated to one end of the dsDNA [32].
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The DNA strands to be sequenced are then mixed with copies of a processive enzyme,
which is loaded at the 5-end of the leading adapter. As the DNA enzyme-complex
approaches the nanopore, the enzyme unzips the dsDNA and the single-stranded
DNA is pulled through the aperture of the nanopore. After the template strand is
sequenced, hairpin adapter is reached and followed by the complementary strand,
for which sequencing process repeats. The nanopore inserted into an electrically
resistant membrane plays a key role in this method [33]. A voltage can be applied
across the membrane to drive DNA through the pore. These single molecules that
enter the nanopore cause a characteristic disruption in the electrical current [30].
The current is measured by a sensor several thousand times per second and the
corresponding information is then used to determine the order of the bases on that
DNA strand. The so-called “squiggle plot”, shown in Fig. 2.7, shows the raw current

measurements over time, which can be subsequently translated into DNA bases [32].
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Fig. 2.7: Oxford Nanopore sequencing [31]
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Heliscope single molecule sequencing

This sequencing technology utilizes sequencing-by-synthesis methodology, involving
a DNA samples that are cut into short strands to which ends polyA tails are then
attached [26]. These DNA strands are hybridized to the Helicos flow cell surface
coated with oligo-T universal capture sites [34]. After each individual template hy-
bridizes to the flow cell, generating its own sequencing reaction, a laser illuminates
the surface of the flow cell showing the location of each fluorescently labelled tem-
plate. After the incorporation event, a CCD camera images the the entire surface
to produce a map of the templates on the flow cell surface. Once the templates
have been imaged, the label is cleaved and washed away allowing to start the whole
sequencing process by adding DNA polymerase and another fluorescently labelled
nucleotides to be incorporated [34]. After the fluorescent label incorporation event,
images are captured again and excess DNA polymerase and nucleotides are washed
away. The process continues through each of four nucleotides, where images from
each incorporation are analyzed, and repeats until the desired read length is achieved
[16]. The main advantage is the lack of amplification steps and capability of gen-
erating accurate reads on captured fragments. On the other hand, each run need
14 terabytes of computer storage, however those 14 terabytes can hold an enormous

amount of sequenced data [35].

GnuBIO sequencing

This droplet-based DNA sequencing platform combines microfluidic and emulsion
technology, which effectively reduce the number of library preparation steps [24].
Thus, the whole process, including target selection, DNA amplification, DNA se-
quencing and analysis, is integrated into a single high throughput system [30]. More-
over, each mini-droplet works as a unique sequencing reaction including PCR am-
plicons and one of approximately 5000 labelled hexameric sequencing primers along
with DNA polymerase [24]. Hybridization of a particular hexamer to a given ampli-
con is then observed and corresponding fluorescence is detected to determine which
hexamers do or do not hybridize and, hence, this so called displacement reaction,
serve to mark the presence or absence of the signal from the sequenced molecule
that it would be possible to map the final sequence and its structural irregulari-
ties [30]. Using this scalable sequencing reaction, genomic results can be produced

within hours.
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3 RNA-sequencing

Over the past few years, RNA sequencing (RNA-seq) [36] become very powerful
sequencing technique for transcriptome-wide analysis that utilizes next-generation
sequencing platforms. It allows to reveal the presence and quantity of RNA in a
biological sample at a given moment. Usually, mutated cells are analysed in order
to discover what genetic mechanism is causing its different behaviour when com-
paring to normal cells. At this point, it is crucial to look at differences in gene
expression. By analyzing the continuously changing cellular transcriptome, a better
understanding of how gene expression can determine cell fate is accomplished. The
recent development of novel and effective NGS methods has provided an ideal envi-
ronment to develop new methods for both mapping and quantifying transcriptomes.
High throughput sequencing tells us which genes are active, and how much they are
transcribed. Typically, RNA-seq is used to measure gene expression in normal cells
and mutated cells. These cells are then compared in order to figure out what is
different in the mutated cells. In general, there are three main steps for RNA-seq:

preparing a sequencing library, sequencing itself, and final data analysis.

3.1 Library preparation

As shown in Fig. 3.1, to prepare library for [llumina short-read RNA-seq (black line)
[37], isolated RNA sequences are firstly sheared into small fragments. Secondly, RNA
sequences are converted into the fragments of double stranded DNA. The reason is
that DNA sequences are more stable and can be easily amplified and modified. In
the next step, sequencing adaptors are added to generated DNA sequences to make it
possible for the sequencing machine to recognize the fragments. Another advantage
of these adapters is that different samples can be sequenced at the same time, since

different samples can use different adaptors.

O Direct

RNA Long read
Short read
Fragment cDNA Adaptor PCR Size Sequencing
RNA synthesis ligation amplification selection

Fig. 3.1: Library preparation methods for different RNA-sequencing methods [36]
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In the subsequent stage, PCR amplification of the library is carried out and only
the fragments with sequencing adapters are amplified. At the end of the library
preparation, the library concentration and the library fragment lengths are verified.

However, there is also alternative long-read (green line) or long-read direct (blue
line) method that provides some advantages, such as reduction of ambiguity in the
mapping of read sequences, identification of longer transcripts or reduction in de-
tection of false-positive splice-junction [36, 38]. In case of Iso-Seq protocol [39],
high-quality RNA is converted to full-length cDNA, which is then PCR amplified
and used as the input for PacBio single-molecule, real time (SMRT) library prepa-
ration. In order to reduce bias in the sequencing of short transcripts, size selection
of transcripts from 1 to 4 kb is usually performed. This short transcripts, which
typically tend to diffuse more easily to the active surface of the sequencing chip, are
then more equally sampled with considerably longer transcripts. Full-length tran-
scripts are also generated by Oxford Nanopore technology (ONT) ¢cDNA sequencing
[38]. To prepare sequencing library, full-length cDNAs are optionally amplified be-
fore adaptor ligation. When no amplification is involved in the library preparation,
PCR bias is avoided. On the other hand, PCR amplification is still very useful as
it enables users to start with a much smaller amount of starting material. This
is a trade-off that needs to be considered in the library preparation for each case
of RNA-seq analysis. There is also mentioned long-read direct method (blue line),
another nanopore sequencing demonstrated by ONT [40], without need to convert
RNA to cDNA before sequencing. Library preparation does not require any cDNA
synthesis nor PCR amplification and RNA, therefore, can be sequenced directly
after adapters ligation. The whole library preparation process for this method is

described in the previous chapter.

3.2 Sequencing process

After the library is prepared, it is then sequenced. The produced raw read sequences
are usually in a FASTQ file format because, at first, low quality reads need to be
filtered out. In general, reads with low quality base calls or obvious artifacts of the
chemistry, when only the adapters bind to each other, are considered as low quality
reads. The remaining high quality reads are then aligned to a genome. At first, a
genome sequence is split into small fragments and afterwards, index of all the frag-
ments and their locations within the genome is created. When analysed sequenced
read is obtained, it is then also necessary to split the read into fragments. The split-
ting step is required in order to match the read fragments to the genome fragments.
The aligning step is carried out by one of the available tools that perform a spliced

alignment allowing for gaps in the reads when compared to the reference genome.
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The reason is that cDNA derived from RNA may contain exon-exon junction which
cannot be contiguously mapped to the genome. As shown in Fig. 3.2, it is essential
to perform Quality Control (QC) [41] and look at the percentage of reads mapped
to the reference genome, as it can indicate some issues with the data. Once the read
fragment match the genome fragment, it is then easy to determine its location in
the genome. By this, with known chromosome and position for a read, number of
reads can be counted per each individual gene. However, different number of reads
can be assigned to each sample, and therefore, data are usually normalized before

downstream analysis.
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Fig. 3.2: Quality control of mapped reads [41]

As mentioned previously, RNA-seq data usually undergo PCR amplification step
resulting in high duplication rates. In order to improve the quantification of gene
expression and the estimation of allele frequency, random Unique Molecular Identi-
fiers (UMIs) are added to cDNA molecules before amplification [42]. In the case of
RNA-seq, duplicate reads are considered as an indication of a true biological signal
and UMIs have been proposed as the best way to distinguish technical from biologi-
cal duplication. As shown in Fig. 3.3, after the alignment, UMI deduplication takes

place before previously described quantification.
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Fig. 3.3: Elimination of PCR duplicates in RNA-seq

30



4 Unique Molecular ldentifiers

Not only RNA-seq methods, but many other high-throughput sequencing platforms
require PCR amplification to be performed before sequencing [22]. Nevertheless, dif-
ferent molecules are amplified with unequal probabilities so this step can easily lead
to certain sequences becoming excessively presented in the final library. Therefore,
random oligonucleotide barcodes, otherwise referred to as UMIs, have been used to
distinguish between identical copies arising from distinct molecules and PCR dupli-
cates arising from the same molecule [43]. Duplicate sequencing reads produced by
PCR amplification may lead to mentioned biases which reduce quantitative accu-
racy and cause misleading interpretation of sequencing results [44]. However, the
problem of PCR duplicates is more acute as sequencing depth increases and reads or
read pairs with the same alignment coordinates are removed even if they originated
from two different molecules, or when greater numbers of PCR cycles are required
to ensure sufficient DNA for sequencing so to increase the library concentration [45].
Moreover, a distinct identity for each input molecule established by attached UMI
makes it possible to identify sampling bias and estimate the efficiency with which
input molecules are sampled [46]. Many tools have been used to perform deduplica-
tion of sequenced reads by their UMIs, and therefore, in the following sections, an

overview of some of the most used tools will be presented.

4.1 UMI-tools

UMI-tools [43] contains tools for dealing with UMIs and single-cell RNA-Seq cell
barcodes. For accurate quantification with UMIs, the number of unique UMI bar-
codes at a given genomic locus and the number of unique fragments that have been
sequenced, are taken into consideration. The problem is that during PCR or during
sequencing, UMI errors, such as nucleotide substitutions, deletions or insertions,
have been detected. In fact, these errors within the UMI sequence create additional
artificial UMI and therefore the number of unique molecules at a particular genomic
coordinate can be overestimated, thus quantification accuracy is negatively affected.
As shown in Fig. 4.1, different methods were employed to resolve UMI errors by
examining all UMIs at a single locus. One well-known method to identify unique
molecules is called unique and assume that each UMI at a given genomic locus rep-
resents a different unique molecule. Otherwise, the percentile method considering
sequencing error issues attempts to remove UMIs at a given locus whose counts fall
below a threshold of the mean of all nonzero UMIs. In addition, three other methods

have been developed by this tool.
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All of the methods work with UMI networks formed by linking UMIs separated by a
single edit distance. These networks are afterwards reduced to obtain representative
UMIs. The first one, called cluster, merges all UMIs within the network to keep
only the UMI with the highest count. The number of unique molecules is then
the same as the number of networks formed at a given genomic position, however
the method usually underestimates the number of unique molecules for complex
networks. Because of that, the adjacency method in which it is possible that a
complex network originates from more than one UMI, has been developed. It works
with the node counts to iteratively remove the node with the highest abundance
and its neighbours from the network. Even though UMIs with an edit distance of
two between any two nodes are removed individually in two different steps. The
number of predicted unique molecules with the same genomic coordinates is equal
to the number of steps to resolve the network formed at this specific locus. In the
third and final method, called directional, networks consist of nodes and directional
edges that connect nodes a single edit distance apart if the counts of the first node
is approximately two times greater than the counts of the second node. The node
with the highest count is then considered the key node from which the network
originated. In order to estimate the number of unique molecules, the number of
directional networks formed is observed.

Unique (6) Percentile (5)

ACGT TCGT ACGT: 456 TCGT: 2 Mean = 104

ACAG CCGT AAAT: 90 CCGT: 2 Threshold = 1.04
ACAT AAAT ACAT: 72 ACAG: 1 DROP: ACAG

Cluster (1) Adjacency (3) Directional(2)

TCGT CCGT

Fig. 4.1: Methods for estimating unique molecules (red bases - sequencing errors,

blue bases - PCR errors, () - number of estimated unique molecules) [43]
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4.2 Gencore

Gencore [47] is a tool, which is useful for performing deduplication and consensus
read generation for NGS sequencing data. According to authors, a comparison with
Picard [48] , Samtools [56] and UMI-tools [43] showed that the tool is much faster
and more memory efficient with similar or even better results. This tool, as well as
UMI-tools, does not require any additional BAM preprocessing before performing
deduplication [43]. Besides this position sorted BAM file, a FASTA file as reference
genome is also required as an input. As illustrated in the workflow shown in Fig.
4.2, all mapped read pairs are firstly grouped by mapping position where in each
group, read pairs are then clustered by their UMIs. Formed clusters are then filtered
by its supporting reads number. For the remaining clusters, a consensus reads are
generated and overlapped region of the paired reads for each read pair in a cluster is
computed. With the consideration of the quality scores, each base in the overlapped
region is scored according to its paired base. These scores are then summarized
to obtain a total cluster score. On top of that, base diversity for each position in
the mapping region is computed and most frequently represented bases are then
assembled to generate consensus read. As a result, an output in HTML or JSON

format reporting particular metrics is generated.
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Preprocessing
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Fig. 4.2: Schematic of the gencore pipeline [47]
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4.3 UMI-Reducer

UMI-reducer [49] was also developed to differentiate technical duplicates, which are
collapsed to a singe unique read, from biological duplicates, which are considered
as separate unique reads. However, tool is only suitable for RNA data [47], the
final set of all unique reads seems to be very effective in the estimation of mRNA
abundance. As shown in Fig. 4.3, to obtain BAM-formatted alignment file that
includes biologically unique reads with their mapping positions, raw reads are firstly
mapped to reference genome. Secondly, the BAM file is then analyzed to identify
reads that are mapped to the same position in the genome. Additionally, if these
reads have identical UMIs, they are categorized as PCR duplicates and afterwards
are collapsed into a single read. The final set of reads annotated to the genomic
region can be easily used to count the number of reads per gene in each genomic

region.

read (with UMI)
-, N
e N RAW READS
= /
READS ENTER PIPELINE
| UMI-Reducer |
READS MAP TO GENOME
. ~ .
! o — - — e )
- - — — ] 1 |
- - Genome
Biological Technical
Replicate Replicate
COLLAPSE TECHNICAL REPLICATES
 —
T — - —
— - — — —

Genome

Fig. 4.3: UMI-Reducer pipeline [49]

34



4.4 zUMls

In the zUMIs pipeline [50], shown in Fig. 4.4, the first step is filtering, where
according to a user-defined threshold, reads that have lower quality UMIs/BCs are
removed. Using the splice-aware aligner STAR [51], the remaining reads are then
mapped to the genome. Using Rsubread featureCounts [52], reads are assigned to
genes based on two annotation files from gtf with provided exon and intron positions.
The output is then read into R, generating count tables for UMIs and reads per gene

per BC. In addition, several data and plots for quality measures are generated.

Filtering Mapping Counting Summarizing
BC+UMI reads cDNA reads Reads Genome P,
GTF BAM — , 3005
= GTF - = = g 10000
— — — - - — 3 o0 S2eu0s
- — y ) /4 ||i-
N K N K W -
>n bases BC & 1 hit two-pass el Introns
<p phred UMI per read + . mapping Fraction of reads in the dataset
100

05 050 075
Mexon Wintron ©* Ambiguity ™ Intergenic MUnmapped

025

.
o050 ' .
BAM i
Fiered — [ Reads § [ |F | H

= Multimapped | ===| === g +
— %000 - . — —_—
b - [ UMIs & i exon intron Ambiguity Intergenic Unmapped

o G # reads (mio) =2

Fig. 4.4: Schematic of the zUMIs pipeline [50]

4.5 Other methods

Picard MarkDuplicates

Picard MarkDuplicates [48] takes as an input BAM or SAM file and locates and tags
duplicate reads by comparing sequences in the prime positions of both reads and
read pairs. By the sums of reads base-quality scores, collected duplicate reads are
distinguished into primary and duplicate reads. As a result, new SAM or BAM file
with identified duplicates together with metrics file containing numbers of duplicates

for both single- and paired-end are obtained as the output.

fgbio

Fgbio [53] also provides a set of well-tested tools to analyze genomic data, especially
tools for manipulating UMIs or reads tagged with UMIs. This tool makes it also

possible to group reads together that originated from the same molecule.
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Similarly to UMI-tools [49], reads with the same mapping positions are grouped
by one of three methods. In the first one, called identity, only reads with the
same UMIs are grouped together. The second one, edit method, clusters reads that
are within specific edit difference from each other. The last but not least is the
adjacency method, which is pretty much the same as described in UMI-tools [43]
section. Then there is the paired method, which is very similar to previous one,

however more preferred when template with pair of UMIs is produced.

Je

Je [54] tool has the ability to extract UMIs from reads and filter duplicates with or
without pre-defined list of UMIs. Besides that, it also offers the remarkable ability
to handle mismatches in the UMI sequence during filtering. Moreover, complex
barcoding configurations are supported, such as barcodes inserted at each fragment
end in paired-end sequencing used to sample multiplexing or to use one of the
barcodes as UMI. These barcodes are useful when large numbers of libraries are
pooled and need to be sequenced in a single run to make next-generation sequencing
as efficient and affordable as possible [55]. Basically, Picard’s MarkDuplicates tool
48] is used to identify PCR read duplicates based on their mapping positions, UMIs,

and chosen scoring strategy.
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5 Implementation

This section describes an automated bench-marking pipeline created to compare
performance of our algorithm called My UMI tool with the existing one called
UMI-tools [43]. The proposed pipeline is presented graphically in Fig. 5.1 as a
flowchart. The UMI-tools was selected for comparison as it gives a good repre-
sentation of the methodology used in quantitative research and has relatively high
prediction accuracy. Moreover, because of its effectiveness, it is one of the most
commonly used tools. Thus to obtain the total number of unique molecules be-
comes a challenging task, especially when the purpose is to obtain efficiency and
effectiveness improvements. At first step in the proposed pipeline, the user selects a
FASTQ-format sequence files of interest for further processing. These files contain
multiple sequences including UMI barcodes and developed computational pipeline
simultaneously processes them by two different approaches as illustrated by the
blue and red arrows in Fig. 5.1. Moreover, the user can select one or more files at
once, which indicates that the number of final output files changes depending on

the number of input files.

Input files

| My_UMI_tool }—) STAR aligner —){ UMI-tools
Qutput files ||

Fig. 5.1: Schematic diagram of the proposed pipeline

After the selection of input files, there are two ways to proceed from here. Reads
from input files could be mapped to the genome and assigned to genes first, using
STAR aligner [51], and then proceeded by UMI-tools. Otherwise, input FASTQ files
could be proceed by our algorithm My UMI tool first and remaining reads mapped
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to the reference genome. Before the proposed approaches will be described in detail,
Tab. 5.1 includes a short overview to help with orientation and understanding of the
analysis phases and included input and output files for each individual tool involved

in the proposed pipeline.

Tab. 5.1: Input and output files for involved tools in proposed pipeline

Input files Output files
My_UMI_ tool | FASTQ (Reads) FASTQ
TSV
FASTA (Reference sequence)
STAR alignment GTF (Annotations) BAM
Index file BAM.BAI
FASTQ (Reads)
BAM
UMI-tools BAM BAM.BAI
TSV

5.1 STAR aligner

For accurate alignment, fast universal RNA-seq aligner, called STAR [51], is used.
This aligner was designed to align the non-contiguous sequences directly to the
reference genome. STAR outputs aligned sequences in BAM files, compressed binary
version of a SAM file, sorted by coordinates. There is also a BAM index file (BAI),
which provides an index of the corresponding BAM file.

Generally, the aligner involves two basic steps. Firstly, genome index files are
generated, and secondly, reads are mapped to the genome. The output of the
first step is genome index file, generated from input FASTA file of the reference
genome sequence and annotation file. In particular, these two files have to match
chromosome names. However, these indexes need to be generated just once for each
combination of genome and annotation. Therefore, in our case, index file is loaded
from the disk. In the second step, the output index file of the first step is combined
with input reads (sequences) in the form of FASTQ file to finally map reads to
the genome and write output BAM file. The mapping algorithm itself includes
another two steps. The first one, seed searching step is the sequential search for a
Maximal Mappable Prefix (MMP). To obtain MMP, read sequence, read location,

and a reference genome sequence must be given.
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The MMP refers to the longest substring of read sequence that corresponds to one or
more exact substrings of a reference genome sequence. As shown in Fig. 5.2 if there
is an exon-exon junction in a read sequence, it cannot be mapped contiguously to
the genome. At this point, the seed searching step is applied, and thus, the first seed
is mapped to a donor splice site. The unmapped portion of the read is subsequently
processed by the MMP search again and afterwards is mapped to an acceptor splice
site. By this approach, not only splice junctions are identified, but also mismatches

and indels.
Map Map again
MMP 1 MMP 2

RNA-seq read

- - e - -

exons in the genome

Fig. 5.2: Schematic representation of the MMP search in the STAR algorithm

5.2 UMI-tools

The UMI-tools deduplication algorithm [43] consists of three main steps. The first
step before deduplication is extracting UMIs from raw reads to keep the sequence
and remove the random nucleotides. The second and the most computationally
intensive part is mapping reads. In our case, reads are mapped to the genome using
STAR aligner described previously. After the reads are mapped, the final SAM
file is converted to BAM file using samtools [56], set of utilities that manipulate
alignments in the BAM format. In the next step, BAM file needs to be sorted
and indexed in order to run the deduplication procedure on it. In our application,
marked duplicates as well as all reads retained are needed. Therefore, the particular

command was used to obtain final TSV file where each read is marked with its read

group.
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5.3 My_UMI_tool

As mentioned previously, the necessity for tools with low complexity leads us to
design and develop a new algorithm shown in Fig. 5.3. The proposed tool has been
developed in R programming language and is freely available on GitHub (https://
github.com/lujbarilikova/My_UMI_tool). To provide accurate estimation of the
total number of unique molecules, some publicly available tools were implemented in
the algorithm as well. The presented tool avoids time consuming alignment before
deduplication in order to design fast algorithm that can efficiently determine the
absolute number of unique molecules by identifying duplicate reads.

To implement our method within the framework of removing PCR duplicates, we
developed a command line tool called My UMI tool. Proposed method comprises
the following stages: pre-processing of reads from the input file in FASTQ format,
clustering reads by UMI, clustering reads using freely available VSEARCH tool [57],
determination of starting gap count, correction of UMI errors and final identification
of duplicates to generate the final FASTQ file with deduplicated reads as well as
TSV file containing all reads, each of them marked with its read group. The above-

mentioned stages are described in the following subsections.

Groups of
» sequences with the
same UMI

FASTQ wl UMI + read
input file Preprocessing 7 sequences Clustering
by UMIs

VSEARCH
clustering

Sequences with the
same UMI & high
similarity

Determination
of starting gap
count

) S ith th UMI error
FASTQ & TSV _ Postprocessing =€duences wih the correction Sequences of the

output file S|mllar U.MI.& < same fragmet
similarity

Fig. 5.3: Schematic diagram of My UMI tool algorithm
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5.3.1 Pre-processing

To begin, the proposed pipeline requires FASTQ files as an input, which are text
files comprising the nucleotide sequence and its quality (Phred) score for each base,
represented as an ASCII character [58]. However, unprocessed FASTQ files cannot
be used in downstream processing steps. Furthermore, UMI sequences, separated
from the sequences of the fragments are stored in a header of each sequence in
FASTQ file and need to be retained for further processes. Therefore, in the pre-
processing step, shown in Fig. 5.4, UMIs are extracted from the header of each
sequence in FASTQ file, added to the read name, and consequently stored with
corresponding sequences to a separate data structure. After pre-processing, these
UMIs are used to generate read groups consisting only of sequences with the similar

UMIs. These steps are described in detail in the following sections respectively.

head
HN558@595: 316 :HHFYIBGX9:1:11181:15629:1880_GGCAAG
WN558@595: 316 :HHFYIBGX9:1:11181:13305:1883_TaTGGG
N558@595: 316 :HHFVIBGX9:1:11181:28475: 1885_GGATTT
N558@595: 316 :HHFVIBGX9:1:11181:21326:1886_GAGGTG
WN558@595: 316 HHFVYIBGXS:1:11181:16876: 10908 _ATTTCA

| seq umi

TATACAGATGACCCGCCGaaCAGTTTCOGaEAAACCARAGTCTTTOOATTCCOOOGaGAGTATAGTTGE GGCAAD
TATATGAATGAGTGAGTOAGTOCATGAGTGAGTEAGTEAATGAATGAGT AAAAAALALAAAAAALALAAGA TATGOO
TAAGTTCTGTATATGAGOAAGRAAAALAAGAAAATALAAGTATGT TTGAAAAAAALAAAAARAAAAAAN GRATTT
TATAAAAATTECACTAGACTAGC TAAACGGAAAAAAAAAALAAAAAAAMGATCGOAAGAGCACACGTCTG GAGETE
TATATCCTCRACCAGATOCAGTACTATAAGAACAGAACATTTTGGATGTTATTATTAAGAACCAAATGT ATTTCA

L L ka2

L L ka2

Fig. 5.4: Preprocessing step

5.3.2 Clustering by UMls

In particular, no study, to our knowledge, has considered clustering approaches
for recognizing UMIs that are expected to correspond to the same pre-amplified
molecule as the first step when identifying PCR duplicates. In general, this step is
based on the similarity between UMIs. As mentioned previously, UMI sequence is
identified in a header of a each sequence in the FASTQ file, and then it is trimmed
and each read sequence is annotated with the corresponding UMI. The main reason
for handling UMIs first and afterwards the corresponding sequence of the read sep-
arately is that UMIs are usually much shorter than actual sequences. Most of the

time, this approach is convenient, simple, and time-efficient.
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As a result, sequences with the identical UMI are grouped together, suggesting that
they may belong to the same fragment. The output of this step will be subsequently
used as input to the next step, where groups of sequences with the same UMI will

be clustered according to their similarity.

5.3.3 VSEARCH clustering

A second clustering step should be carried out on UMI clusters to further partition
the sequences based on the non-UMI part of the reads. As indicated above, when
merging multiple reads with the identical UMIs into a single cluster, checking that
the rest of the sequence is also similar is recommended. The sequences within the
cluster would be expected to differ only due to PCR and sequencing errors. Following
this, reads of each group with the identical UMI are clustered by corresponding
sequence similarity using VSEARCH, fast and accurate open source clustering tool
used in a variety of bioinformatics applications.

In VSEARCH tool, de novo clustering is done using greedy and heuristic centroid-
based algorithm, shown in Fig. 5.5, with a user-specified sequence similarity thresh-
old. The algorithm works with initially empty database of centroid sequences. Each
sequence from an input file is considered as query sequence and is subsequently clus-
tered with the first centroid sequence with similarity threshold equal to or above
the threshold.

T Sequence similarity threshold
Q Centroid sequence

Query sequence

Fig. 5.5: Centroid-based algorithm
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At first, sequences are quickly filtered according to statistics of shared words,
which determines the similarity between sequences without the need to align them.
In the next step, determining optimal global alignment between query sequence and
the most promising candidates from database of centroid sequences in accordance
with the number of words in common with the query, takes place. In other words,
the alignment is firstly performed with the sequence having the largest number of
words in common with the query sequence and then respectively with sequences with
a decreasing number of shared words. If the query sequence is not clustered with
the centroid sequence due to sequence similarity lower than the defined threshold, it
becomes the centroid of a new cluster and is automatically added to the database.

Once the reads are partitioned into clusters, each corresponding to a single
molecule, the next step is multiple sequence alignment using the center star method
shown in Fig. 5.6, with the centroid as the center sequence, in order to build a
consensus sequence for each cluster utilizing information from all reads in the cor-
responding cluster. To achieve this, all the pairwise alignments between the center
sequence and the remaining sequences are merged. As a result, multiple alignment

by adding sequences in decreasing order of similarity to center sequence is produced.

Pairwise alignment Multiple alignment

|| & s | |

O Centroid sequence:

Query sequences:

Fig. 5.6: Center star method for multiple sequence alignment

Determination of starting gap count

In addition, from generated multiple alignments, each sequence within-cluster is as-

signed with the number of starting gaps from the corresponding consensus sequence.
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It is assumed that taking the number of gaps at the beginning of a consensus se-
quence into account could help to identify reads that originated from the same
fragment. That is to say, each sequence is annotated with the corresponding UMI
sequence, cluster number generated by the VSEARCH algorithm influenced by a
given threshold, and finally, the number of starting gaps derived from a consensus

sequelnce.

5.3.4 Correction of UMI errors

However, one of the main issues in our knowledge of UMIs is UMI error, which should
be taken into consideration. One primary problem with UMI errors, resulting from
nucleotide substitutions during PCR or nucleotide insertions or deletions during
sequencing, is that additional artificial UMIs are created and therefore the estimation
of the number of unique molecules might be negatively affected. In order to reduce
the probability of wrong cluster allocation of reads and improve quantification using
UMIs, nucleotide miscalling and substitution errors are not ignored.

Besides, as show in Fig. 5.7, there is also UMI collision depending mainly on the
length of UMIs. Usually, the longer UMI length is, the higher diversity of UMIs is
observed and therefore the number of UMIs is higher than the number of identical
molecules. Unfortunately, this approach results in problems related to UMI errors
when two UMIs become identical through amplification step by chance. Apart from
that, it is also possible that two molecules are initially tagged with the same UMI.
In addition, minimizing the impact of chimeric reads, which could also be an artifact

of PCR amplification, is another important challenge.

AACAGT AAGAGT TATCCA GGATAC
I S | |
I S | |

UMI error UMI collision Chimeric reads

Fig. 5.7: UMI features, where each column represents reads with the same UMI,
shown on the top of the column, and each color represents reads originating from

the same molecule
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There are many alternative methods available for solving these problems. One
way to overcome this problem is to create clusters of sequences only with the identical
UMIs, as described previously, and then examine these clusters. In our case, as
shown in upper section of Fig. 5.8, all single-nucleotide different UMIs that could
be observed for each unique combination of original UMI in the selected clusters
are determined and eventually considered as similar. Two clusters of sequences can
be clustered together only if their UMIs are similar. It is considered, that it will
be sufficient for our purposes to deal only with the UMIs that are single-nucleotide
different, and as a next step, only clusters whose counts of sequences are above a
particular empirically chosen threshold are selected. Simply said, only those clusters
are selected, whose counts of sequences are substantially higher than average counts.
As shown in lower section of Fig. 5.8, these clusters are then considered as central
clusters. Afterwards, remaining clusters assigned with the UMI similar to UMI of
the central cluster, and at the same time, whose counts of sequences are substantially
lower than average counts are selected and considered as nodes.

Original UMI Single-nucleotide different UMIs

AAAAAA  [BAAAAA BAAAAAL TIAAAAA
AGAAAA| [ABAAAA |ATAAAA
AABIAAA [NABAAA AT AAR
ANABAA WAA TR
AARAGA| [AAAABA [AANATA

AAaAAAlel [AAAAAE [AAAAAT]

ACGTAA

Fig. 5.8: My UMI tool method for resolving UMI errors (central cluster repre-
sented by grey color, node clusters represented by red, green and yellow with the
number of sequences shown in the middle of the circle)
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To finally cluster sequences with similar barcodes, the naive way is to compute
pairwise string distances between read sequences corresponding to node clusters
and read sequence from the central cluster. As a string metric, restricted Damerau-
Levenshtein (DL) distance [59] is used to quantify the dissimilarity between two finite
sequences. In theory, DL distance between two sequences is the minimum transform
operations, such as insertions, deletions, substitutions or transpositions, required to
change one sequence into the other. Accordingly, the lower the dissimilarity is, the
closer the node clusters are to the central one. At the end, read sequences of node
clusters with the dissimilarity lower than preferred threshold are assigned with the
UMI corresponding to central cluster.

Typically, each UMI is observed multiple times and by this, we analyzed if UMIs
originated from a single unique molecule prior to PCR amplification or from a com-
bination of errors during PCR and sequencing or may originate from multiple unique

molecules, which by chance have similar UMIs.

5.3.5 Post-processing

Once the information about UMI sequence, cluster number and the number of start-
ing gaps is collected and assigned to the header of every single input sequence, desired
output files can be readily produced by post-processing step.

The chosen parameters describing input sequences are used to identify reads
with the same header as potential PCR duplicates, and remove them in order to
generate final deduplicated FASTQ file. The FASTQ file output is subsequently
used as an input for VSEARCH algorithm to generate BAM files described in a
previous section.

To compare the results obtained using two different algorithms for deduplication,
final results are also exported to a tab-separated file (TSV) containing all sequences
from input FASTA file. Obviously, this file is not crucial for final deduplication
but provides additional information about sequences in order to calculate summary

statistics.
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6 Application

The bench-marking pipeline is performed using Snakemake tool, known as a scalable
bioinformatics workflow engine [60]. Snakemake workflows were designed to be hu-
man readable and are essentially Python based scripts defining rules that describes
how to create output files from input files. The whole workflow works with depen-
dencies between corresponding rules that arise from one rule that needs an input
file, that is also an output file of another rule. To assess the performance of both
tools under the impact of various conditions, the above-described pipeline is tested
on simulated genomic data, and therefore, this section also contains a summary of

the method used to simulate data from chosen reference sequence.

6.1 Data simulation

The purpose of simulation shown in Fig. 6.1 is to generate synthetic next-generation
reads for which original UMI is known. This step is essential for testing proposed

bench-marking pipeline to compare My UMI tool performance against UMI-tools.

Fragmentation  Sequences of Replication Biol?_gictalcljy
i —_—>
desired length replicate
sequences

umi
attachment

umi

i Amplification
exctraction Amplified (ﬂ Sequegceih
sequences assigned wi
random UMI

Fig. 6.1: Schematic diagram of data simulation

Suggested simulation can be seen as two stage process: generation of biological
duplication and generation of technical duplication. At first, target sequences from
required input reference FASTA file are fragmented to a desired length using sliding
window size of 75 nucleotides with a step size of 1 nucleotide. Obtained sequences
are randomly replicated to simulate biological duplication. Afterwards, to each
individual read sequence, random UMI sequence is attached. The UMI sequence
needs to be preserved, and therefore, it is also assigned to the head of a corresponding
read sequence. These sequences are then exported to FASTA file, as the next step

only accepts input sequences in FASTA format.
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Technical duplication or library amplification in the second step is performed
using ART, a next-generation sequencing read simulator [61]. This tool simulates
sequencing reads by mimicking real sequencing process with empirical error models
or quality profiles summarized from large re-calibrated sequencing data. To generate
final FASTQ file, simulation of Illumina sequencers is used and since this technology
reads out one base at a time, the main error mode is substitution rather than
insertion or deletion. At the end, UMIs are extracted from the read sequences and
assigned to the head of the read as well. Final head of each read sequence then
consist of the original UMI sequence and UMI sequence after the amplification, so

the UMI errors can be observed.

6.2 Results and discussion

Tools proposed in the pipeline are validated with both simulated and experimen-
tal datasets. The advantage of a simulated dataset is that it is allowed to assess
performance where the number of duplicated, as well as unique reads are known
and can be afterwards used as an objective measure of performance. On the other
hand, experimental dataset provides the opportunity to evaluate whether the results
lead to biologically relevant conclusions. The detailed information about simulated
datasets are shown in Tab. 6.1. Six types of simulated datasets containing different
number of replicated and amplified sequences are examined. As a reference FASTA
file, BRNO-ONCO (BRONCO) panel provided by CEITEC-MU, was used. The
BRONCO panel, containing 296 genes, is an attempt to reveal germinal pathogenic
variants in genes considered as genetic risk component of a tumour disease. The
sequencing was performed on an Illumina NextSeq 500 machine with sequencing

library prepared using the SureSelect HS XT technology.

Tab. 6.1: Detailed information about simulated datasets

Datasetl | Dataset2 | Dataset3 | Dataset4 | Dataset5 | Dataset6

Number of sequences

3200 1420 16 347 890 212 1420
from reference FASTA
d licati
Random replication 1:50 1:50 1:50 1:10 1.3 1:10
(from:to)
Number of replicated
82 466 36 025 416 457 5 029 639 8 014
sequences
Number of reads
20 40 5 1000 10 000 500

per amplicon

Number of sequences
in final FASTQ file

1649320 | 1441000 | 2082285 | 5029 000 | 5112000 | 4 014 000
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6.2.1 Results from simulated datasets

For each dataset, two by two contingency table summarising the results from both
tools are constructed. Multiple contingency tables are then used to determine sen-

sitivity, specificity, accuracy, precision and F1-score as follows:

Sensitivity(Recall) = TP/(TP + FN), (6.1)
Specificity = TN/(TN + FP), (6.2)

Accuracy = (TP+TN)/(TP+ FP+ FN +TN), (6.3)
Precision =TP/(TP + FP), (6.4)

F1 — score =2 - (Recall - Precision)/(Recall + Precision). (6.5)

The reporting statistical measures are defined using true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) counts where:

TP represents duplicate read marked as duplicate,

TN represents unique read marked as unique,

FP represents unique read marked duplicate,

FN represents duplicate read marked as unique.

Sensitivity, also known as recall or true positive test, is defined as the proportion
of duplicate reads that are marked as duplicates. In other words, a highly sensitive
tool is one that correctly identifies duplicate reads. Specificity, on the other hand,
evaluates the ability of a tool to determine the unique reads correctly or to determine
reads that are not duplicates. In general, if the sensitivity is high, specificity is
usually relatively low. It means that a tool is good at determining which one are
duplicate reads, but it also means that tool has a fairly high rate of false positives.
Likewise, high specificity means that the tool has lower sensitivity and quite high
rate of false negatives. Accuracy is simply a ratio of correctly predicted observation
to the total observations and estimates how correct a tool differentiates duplicate
and unique reads or how close a decision if the read is duplicate or not is to its
true state. Precision measures how many reads marked as duplicates are actual
duplicates, i.e. the percentage of correct predictions. Precisely working tool also
means how repeatable is its measurement. F1l-score is the harmonic average of the
precision and recall and takes both, false positives and false negatives into account.
In contrast to accuracy, Fl-score should give a better measure of the incorrectly
classified reads as the accuracy takes only true positives and true negatives into

consideration.
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The first dataset consists of 1 649 320 read sequences and only 82 466 of them
are truly unique. As seen in Tab. 6.2, My UMI tool marked 83 395 of the read
sequences as unique and 81 398 of them were identified correctly. This gave the
tool a specificity of 98,70 %, which describes its ability to correctly determine if the
read is unique or not. Accordingly, from all the 1 566 854 duplicate read sequences,
the tool marked 1 564 857 of them correctly as duplicates, which gave the tool a
sensitivity of 99,87 %. From all the observations, 99,81 % were identified correctly,
which defines an accuracy of a tool. From all the 1 565 925 read sequences marked
as duplicates, 1 564 857 are actual duplicates, which consequently resulted in the
precision of 99,93 %. As seen in 6.3, similar results were obtained using UMI-tools.
However, besides sensitivity, according to the statistical measures, the performance
of My UMI tool is either better or the same.

Tab. 6.2: My _UMI _ tool Datasetl

Datasetl Duplicate | Unique | Row total
Marked as Duplicate | 1 564 857 1 068 1 565 925
Marked as Unique 1997 | 81398 83 395
Column total 1 566 854 | 82 466 1 649 320
Tab. 6.3: UMI-tools Datasetl
Datasetl Duplicate | Unique | Row total
Marked as Duplicate | 1 545 301 1641 1 546 942
Marked as Unique 1390 80 284 81 674
Column total 1 546 691 81 925 1 628 616

50




The second dataset is quite similar to the first one, except that the number of
replicated sequences is reduced from 82 466 to 36 025, as well as the number of
reads per amplicon is increased from 20 to 40. Essentially, 36 025 is the number
of unique sequences that needs to be reached. As seen in Tab. 6.4 and Tab. 6.5,
by My UMI tool 35 203 of them were determined as unique, whereas by UMI-
tools only 34 590 of them were determined as unique. Despite sensitivity, as in
the previous case, My UMI tool performs the same or even better than UMI-tools

when processing this dataset.

Tab. 6.4: My_UMI  tool Dataset2

Dataset2 Duplicate | Unique | Row total
Marked as Duplicate | 1 403 339 822 1404 161
Marked as Unique 1636 | 35203 36 839
Column total 1404 975 | 36 025 1 441 000
Tab. 6.5: UMI-tools Dataset2
Dataset2 Duplicate | Unique | Row total
Marked as Duplicate | 1 382 040 1312 1 383 352
Marked as Unique 1249 | 34 590 35 839
Column total 1383289 | 35902 1419 191
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The third dataset consists of 416 457 unique read sequences and the number
of reads per amplicon is set only to 5. Consequently, in this dataset, biological
duplication predominates. The total number of read sequences obtained in the
final FASTQ file is 2 082 285. From the final results shown in Tab. 6.14 and
Tab. 6.15, it can be seen that the best specificity is obtained compared to other
results from the remaining datasets. Despite the satisfactory values of specificity of
99,33 % and 99,06 % respectively for My UMI tool and UMI-tools, analysing this
dataset and its results from Tab. 6.6 and Tab. 6.7, the precision, accuracy, F-score,
and sensitivity produce the lowest performance profiles when comparing to other

datasets.

Tab. 6.6: My _UMI tool Dataset3

Dataset3 Duplicate | Unique | Row total
Marked as Duplicate | 1 658 229 2777 1 661 006
Marked as Unique 7599 | 413 680 421 279
Column total 1 665 828 | 416 457 | 2 082 285

Tab. 6.7: UMI-tools Dataset3

Dataset3 Duplicate | Unique | Row total
Marked as Duplicate | 1 642 746 3 855 1 646 601
Marked as Unique 2 112 | 408 291 410 403
Column total 1644 858 | 412 146 | 2 057 004
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The fourth dataset, containing 5 029 000 read sequences, was simulated with
significantly higher number of reads per amplicon, as shown in Tab. 6.1. Therefore,
it is assumed that in this dataset, technical duplication plays a predominant role
when compared to previous simulations. As seen in Tab. 6.8, by M__ UMI_ tool,
from all the 5 020 734 read sequences marked as duplicates, only 227 read sequences
are false positive, which consequently resulted in the precision of 100 %. In the case
of UMI-tools with the results in Tab. 6.9 and according to Tab. 6.15, the specificity
reached only 87,99 %, which is substantially less than obtained by M UMI tool,
where specificity of 95,49 % was achieved. However, from all the datasets, the

corresponding specificity is the lowest obtained by both tools.

Tab. 6.8: My_UMI  tool Dataset4

Dataset4 Duplicate | Unique | Row total
Marked as Duplicate | 5 020 507 227 5 020 734
Marked as Unique 3 464 4 802 8 266
Column total 5023 971 5029 5 029 000

Tab. 6.9: UMI-tools Dataset4

Dataset4 Duplicate | Unique | Row total
Marked as Duplicate | 4 891 873 604 4 892 477
Marked as Unique 749 4 425 5 174
Column total 4 892 622 5029 | 4897 651
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The fifth dataset is quite similar to the previous one, however, due to very low
number of replicated sequences and at the same time, a very high number of reads
per amplicon, technical duplication has a much greater effect on the final dataset.
Results shown in Tab. 6.10 and Tab. 6.11 are, as expected, also very similar
to those observed in the previous dataset. As the technical duplication increases,
the capability to determine the unique reads correctly decreases and, therefore,
My UMI tool shows 96,24 % of specificity with a sensitivity of 99,96 %, while
UMI-tool shows 91,71 % of specificity with a sensitivity of 99,99 %. Consequently,
besides specificity, remaining statistical measures reached the best results over all
the datasets decisively.

Tab. 6.10: My UMI tool Datasetb

Datasetb Duplicate | Unique | Row total
Marked as Duplicate | 5 109 084 24 5 109 108
Marked as Unique 2277 615 2 892
Column total 5111 361 639 | 5112 000

Tab. 6.11: UMI-tools Datasetb

Datasetb Duplicate | Unique | Row total
Marked as Duplicate | 5 078 300 93 | 5078 353
Marked as Unique 115 586 701
Column total 5078 415 639 | 5079 054
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The last dataset that is considered represents a combination of the biological and
technical duplication. As the technical duplication slightly prevails, the results are
similar and as shown in Tab. 6.14 and Tab. 6.15, and besides specificity, all the sta-
tistical measures by both tools achieved nearly 100 %. Accordingly, My UMI_ tool
shows 96,84 % of specificity, while UMI-tool shows only 91,75 % of specificity. From
all the read sequences marked by My UMI tool as duplicates, only 254 of them
were marked incorrectly. In case of UMI-tools, there were 662 read sequences in-
correctly marked as duplicates. Additionally, from Tab. 6.12 and Tab. 6.13, it may
look like there are a lot of false negatives in the case of My UMI tool, but the

results clearly indicates the much bigger difference in true positives between these

two tools.
Tab. 6.12: My UMI tool Dataset6
Dataset6 Duplicate | Unique | Row total
Marked as Duplicate | 4 003 095 254 4 003 349
Marked as Unique 2 877 7774 10 651
Column total 4 005 972 8028 | 4014 000
Tab. 6.13: UMI-tools Dataset6
Dataset6 Duplicate | Unique | Row total
Marked as Duplicate | 3 908 129 662 3 908 791
Marked as Unique 839 7 366 8 205
Column total 3 908 968 8028 | 3916 996
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The final statistics for six simulated datasets used for testing are shown in Tab.
6.14 and Tab. 6.15. In general, the higher the number of reads per amplicon is set,
the better the sensitivity and at the same time, the worse the specificity is obtained.
However, there were no significant differences between My UMI  tool and UMI-
tools as far as the accuracy is concerned. The single most striking observation to
emerge from the comparison of the tools was the specificity of 97,39 % achieved by
My_UMI_ tool and specificity of 94,14 % achieved by UMI-tools. What is important
to mention is the fact that UMI-tools allow multi-mapping reads that are usually
removed and, therefore, as seen from contingency tables, the total number of the
read sequences marked either as a duplicate or unique differ from the original number
of read sequences. On the other hand, as seen from Tab. 6.14, the time performance
was slightly disappointing. This was probably as a result of repeatedly writing the
results to files and reloading them in an effort to process the data, but the trade-off
between longer computation times before alignment associated with larger datasets

and better classification performance is usually worthwhile.

Tab. 6.14: Final statistics for My umi_ tool

Sensitivity | Specificity | Accuracy | Precision | F1-score | Run-time
(%] (%] (%] (%] (%] [s]

Dataset1 99,87 98,70 99,81 99,93 99,90 2258
Dataset2 99,88 97,72 99,83 99,94 99,91 9198
Dataset3 99,54 99,33 99,50 99,83 99,69 2256
Dataset4 99,93 95,49 99,93 100,0 99,96 1460
Datasetb 99,96 96,24 99,95 100,0 99,98 2253
Dataset6 99,93 96,84 99,92 99,99 99,96 2563
Average 99,85 97,39 99,82 99,95 99,90 3331

Tab. 6.15: Final statistics for UMI-tools

Sensitivity | Specificity | Accuracy | Precision | F1-score | Run-time
[%] [%] [%] [%] [%] [s]

Dataset1 99,91 98,00 99,81 99,89 99,90 420
Dataset2 99,91 96,35 99,82 99,91 99,91 208
Dataset3 99,87 99,06 99,71 99,77 99,82 421
Dataset4 99,98 87,99 99,97 99,99 99,99 129
Dataset5 99,99 91,71 100,0 100,0 100,0 150
Dataset6 99,98 91,75 99,96 99,98 99,98 334
Average 99,94 94,14 99,92 99,92 99,93 277
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6.2.2 Comparison with real datasets

In order to evaluate the performance of My UMI tool tool on real data, sam-
ples prepared by two different protocols, Formalin-Fixation and Paraffin-Embedding
(FFPE) and Freshly Frozen (FF), from Chronic Lymphocytic Leukemia (CLL) pa-
tients are studied. Library of sequences was subsequently generated by all-in-one
library preparation protocol QuantSeq 3’ mRNA-Seq Library Prep Kit with an ad-
ditional module with UMIs [62].

As shown in Tab. 6.16, when comparing results from the proposed My UMI  tool
tool method to those obtained by available tool UMI-tools for handling UMIs in NGS
data sets, it must be pointed out that a high percentage of sequences in both sam-
ples are clustered and mapped identically in both tools. From this standpoint, it
can be considered that these sequences are mapped correctly.

In this samples, UMIs are six bases long and it is important to highlight the
fact that even UMIs with three error bases were grouped by UMI-tools together and
this could be considered as very exaggerative. In line with the ideas of UMI-tools
and its acceptance of UMI errors, it can be concluded that 5.76 % of sequences in
FFPE sample and 14.67 % of sequences in FF sample are therefore clustered by
My_ UMI  tool more complexly in smaller groups.

In contrast, My UMI tool expects UMIs to be only with one error base at
maximum and corresponding 1,83 % of sequences in FFPE sample and 1.5 % of
sequences in FF sample, more complexly grouped by UMI-tools, could be the result
of mentioned alignment before deduplication. After the alignment, reads aligned
to the genome with the same mapping position are grouped together and then, by
examining all UMIs at the single locus, clustered by different methods to resolve
UMI errors.

Tab. 6.16: Final statistics

Sample FFPE sample | FF sample
[70] (7]
Clustered in both tools 92,41 83,83
Clustered in My_UMI_ tool 5,76 14,67
Clustered in UMI-tools 1,83 1,50
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7 Conclusions

As stated in the Introduction, the main purpose of this work was to design an
algorithm that can efficiently determine the absolute number of unique molecules
by identifying duplicate reads in an input file. In general, the presented tools to
solve PCR errors usually start with time-consuming alignment before deduplication.
Moreover, multi-mapping reads defined as sequences that map more than once on
the genome due to multiple copies of a gene, are typically allowed. This makes it
difficult to distinguish between genuinely multi-mapping reads and reads that just
come from multiple fragments of the same gene. Many tools ignore these sequences
as defaults, which means that at least 20-30% of the data are lost.

The design of My UMI tool was based on a comprehensive study of the strengths
of each available tool, where the reader can look up the individual tool in the fourth
section of this work. In addition, these findings provide additional information about
all of the disadvantages of the mentioned tools and why there is such interest to con-
tinually innovate and develop new tools. Proposed method comprises the following
stages: pre-processing of reads from the input file in FASTQ format, clustering
reads by UMI, clustering reads with the same UMI according their similarity, deter-
mination of starting gap count, correction of UMI errors and final identification of
duplicates to generate the final FASTQ file with deduplicated reads as well as TSV
file containing all reads, each of them marked with its read group. Additionally, to
evaluate the performance of My UMI  tool under the impact of various conditions,
the above-described algorithm is tested on simulated genomic data, as well as ex-
perimental data. The performance is compared with the UMI-tools as it is one of
the most commonly used tools with high prediction accuracy. The results show that
avoiding time-consuming alignment before deduplication does not seem to impact
the final determination of the absolute number of unique molecules and are equal
to or better than results that are currently accepted.

In summary, this work argued that My UMI tool is a valuable tool for dedu-
plicating next-generation sequencing data using UMIs, where duplicate reads are
removed from the sample to prepare data for downstream analysis. Apart from
existing tools, My_UMI_ tool is designed to avoid alignment before deduplication
and, therefore, will fill the gap in the currently available tools. Although time per-
formance is not ideal, it is still believed that this tool will be useful in applications
such as analysis of transposable elements or Alu elements, which make up more
than 10% of the human genome. From this point of view, getting a set of correctly
deduplicated reads before an alignment is crucial and, therefore, will significantly

solve the problem with multi-mapping reads.

o8



Bibliography

1]

2]

[10]

[11]

[12]

TRINGE, Susannah Green; RUBIN, Edward M. Metagenomics: DNA sequenc-

ing of environmental samples. Nature reviews genetics, 2005, 6.11: 805-814.

WHEELER, David A., et al. The complete genome of an individual by massively
parallel DNA sequencing. Nature, 2008, 452.7189: 872-876.

RABBANI, Bahareh, et al. Next generation sequencing: implications in per-
sonalized medicine and pharmacogenomics. Molecular BioSystems, 2016, 12.6:
1818-1830.

LUPSKI, James R., et al. Whole-genome sequencing in a patient with Char-
cot—Marie-Tooth neuropathy. New England Journal of Medicine, 2010, 362.13:
1181-1191.

ILLUMINA. An introduction to next-generation  sequencing  tech-
nology [online]. Illumina, 2017, Pub.No. 770-2012-008-B. Available
from: https://www.illumina.com/content/dam/illumina-marketing/

documents/products/illumina_sequencing introduction.pdf

HUGHES, Christopher; MA, Bin; LAJOIE, Gilles A. De novo sequencing meth-
ods in proteomics. In: Proteome Bioinformatics. Humana Press, 2010. p. 105—
121.

ALTELAAR, AF Maarten; MUNOZ, Javier; HECK, Albert JR. Next-
generation proteomics: towards an integrative view of proteome dynamics. Na-
ture Reviews Genetics, 2013, 14.1: 35-48.

JOVEL, Juan, et al. Characterization of the gut microbiome using 16S or shot-

gun metagenomics. Frontiers in microbiology, 2016, 7: 459.

WOOD, Derrick E.; SALZBERG, Steven L. Kraken: ultrafast metagenomic se-

quence classification using exact alignments. Genome biology, 2014, 15.3: R46.

HUTTENHOWER, Curtis, et al. Structure, function and diversity of the
healthy human microbiome. Nature, 2012, 486.7402: 207.

COHEN, Jonathan; POWDERLY, William G; OPAL Steven M. Infectious Dis-
eases. 4. Elsevier Health Sciences, 2016. ISBN 978-0702063381

GAWAD, Charles; KOH, Winston; QUAKE, Stephen R. Single-cell genome
sequencing: current state of the science. Nature Reviews Genetics, 2016, 17.3:
175.

99


https://www.illumina.com/content/dam/illumina-marketing/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

CHEN, Geng; SHI, Tieliu. Single-cell RNA-seq technologies and related com-

putational data analysis. Frontiers in genetics, 2019, 10: 317.

WANG, Jian; SONG, Yuanlin. Single cell sequencing: a distinct new field.

Clinical and translational medicine, 2017, 6.1: 10.

PAPALEXI, Efthymia; SATIJA, Rahul. Single-cell RNA sequencing to explore

immune cell heterogeneity. Nature Reviews Immunology, 2018, 18.1: 35.

PETTERSSON, Erik; LUNDEBERG, Joakim; AHMADIAN, Afshin. Genera-
tions of sequencing technologies. Genomics, 2009, 93.2: 105-111.

HEATHER, James M.; CHAIN, Benjamin. The sequence of sequencers: The
history of sequencing DNA. Genomics, 2016, 107.1: 1-8.

KCHOUK, Mehdi; GIBRAT, Jean-Francois; ELLOUMI, Mourad. Generations
of sequencing technologies: from first to next generation. Biology and Medicine,
2017, 9.3.

WARNER Patrick, et al. Sanger sequencing White paper [online]. University
of Minnesota Genomics Center. Available from: http://genomics.umn.edu/

downloads/sanger white_paper.pdf

EL-METWALLY, Sara; OUDA, Osama M.; HELMY, Mohamed. Nezt gen-
eration sequencing technologies and challenges in sequence assembly. Springer
Science & Business, 2014.

MELDRUM, CIliff; DOYLE, Maria A.; TOTHILL, Richard W. Next-generation
sequencing for cancer diagnostics: a practical perspective. The Clinical Bio-
chemist Reviews, 2011, 32.4: 177.

MOORTHIE, Sowmiya; MATTOCKS, Christopher J.; WRIGHT, Caroline F.
Review of massively parallel DNA sequencing technologies. The HUGO journal,
2011, 5.1-4: 1-12.

KULSKI, Jerzy K. Next-generation sequencing—an overview of the history,
tools, and “Omic” applications. Next Generation Sequencing—Advances, Appli-
cations and Challenges, 2016, 3—60.

AMBARDAR, Sheetal, et al. High throughput sequencing: an overview of se-
quencing chemistry. Indian journal of microbiology, 2016, 56.4: 394—404.

ESCALANTE, Ana E., et al. The study of biodiversity in the era of massive
sequencing. Revista Mexicana de Biodiversidad, 2014, 85.4: 1249-1264.

60


http://genomics.umn.edu/

2]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

KUMAR, Santosh; BANKS, Travis W.; CLOUTIER, Sylvie. SNP discovery
through next-generation sequencing and its applications. International journal
of plant genomics, 2012, 2012.

VOELKERDING, Karl V.; DAMES, Shale A.; DURTSCHI, Jacob D. Next-
generation sequencing: from basic research to diagnostics. Clinical chemistry,
2009, 55.4: 641-658.

SCHADT, Eric E.; TURNER, Steve; KASARSKIS, Andrew. A window into
third-generation sequencing. Human molecular genetics, 2010, 19.R2: R227—
R240.

RHOADS, Anthony; AU, Kin Fai. PacBio sequencing and its applications. Ge-
nomics, proteomics & bioinformatics, 2015, 13.5: 278-289.

EISENSTEIN, Michael. The battle for sequencing supremacy. Nature biotech-
nology, 2012, 30.11: 1023.

GOODWIN, Sara; MCPHERSON, John D.; MCCOMBIE, W. Richard. Com-
ing of age: ten years of next-generation sequencing technologies. Nature Reviews
Genetics, 2016, 17.6: 333.

LU, Hengyun; GIORDANO, Francesca; NING, Zemin. Oxford Nanopore Min-
ION sequencing and genome assembly. Genomics, proteomics € bioinformatics,
2016, 14.5: 265-279.

JAIN, Miten, et al. The Oxford Nanopore MinlON: delivery of nanopore se-

quencing to the genomics community. Genome biology, 2016, 17.1: 239.
FRIEDMANN, Theodore, et al. Advances in genetics. Academic Press, 1996.

BLOW, Nathan. DNA sequencing: generation next-next. Nature Methods, 2008,
5.3: 267-274.

STARK, Rory; GRZELAK, Marta; HADFIELD, James. RNA sequencing: the
teenage years. Nature Reviews Genetics, 2019, 20.11: 631-656.

KUMAR, Ravi, et al. A high-throughput method for Illumina RNA-Seq library

preparation. Frontiers in plant science, 2012, 3: 202.

OIKONOMOPOULOS, Spyros, et al. Benchmarking of the Oxford Nanopore
MinION sequencing for quantitative and qualitative assessment of cDNA pop-
ulations. Scientific reports, 2016, 6.1: 1-13.

61



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

GONZALEZ-GARAY, Manuel L. Introduction to isoform sequencing using pa-
cific biosciences technology (Iso-Seq). In: Transcriptomics and Gene Regulation.
Springer, Dordrecht, 2016. p. 141-160.

GARALDE, Daniel R., et al. Highly parallel direct RNA sequencing on an array
of nanopores. Nature methods, 2018, 15.3: 201.

DOYLE Maria; PHIPSON Belinda; DASHNOW Harriet. RNA-Seq reads to
counts (Galaxzy Training Materials) [online], 2020. Available from: http://

genomics.umn.edu/downloads/sanger_white_paper.pdf

FU, Yu, et al. Elimination of PCR duplicates in RNA-seq and small RNA-seq

using unique molecular identifiers. Bmc Genomics, 2018, 19.1: 531.

SMITH, Tom; HEGER, Andreas; SUDBERY, Ian. UMI-tools: modeling se-
quencing errors in Unique Molecular Identifiers to improve quantification accu-
racy. Genome research, 2017, 27.3: 491-499.

ISLAM, Saiful, et al. Quantitative single-cell RNA-seq with unique molecular
identifiers. Nature methods, 2014, 11.2: 163.

CLEMENT, Kendell, et al. AmpUMI: design and analysis of unique molecular
identifiers for deep amplicon sequencing. Bioinformatics, 2018, 34.13: i202—
i210.

SENA, Johnny A., et al. Unique Molecular Identifiers reveal a novel sequencing
artefact with implications for RNA-Seq based gene expression analysis. Scien-
tific reports, 2018, 8.1: 1-13.

CHEN, Shifu, et al. gencore: an efficient tool to generate consensus reads for
error suppressing and duplicate removing of NGS data. BMC' bioinformatics,
2019, 20.23: 606.

BROAD INSTITUTE. Picard toolkit [online]. GitHub repository, 2019. Avail-
able from: http://broadinstitute.github.io/picard/

MANGUL, Serghei, et al. UMI-Reducer: Collapsing duplicate sequencing reads
via Unique Molecular Identifiers. bioRziv, 2017, 103267.

PAREKH, Swati, et al. zUMIs-a fast and flexible pipeline to process RNA
sequencing data with UMIs. Gigascience, 2018, 7.6: giy059.

DOBIN, Alexander, et al. STAR: wultrafast universal RNA-seq
aligner. Bioinformatics, 2013, 29.1: 15-21.

62


http://broadinstitute.github.io/picard/

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

LIAO, Yang; SMYTH, Gordon K.; SHI, Wei. featureCounts: an efficient general
purpose program for assigning sequence reads to genomic features. Bioinformat-
ics, 2014, 30.7: 923-930.

FENNELL Tim; HOMER Nails. fgbio toolkit [online]. Fulcrum Genomics, 2019.
Available from: http://fulcrumgenomics.github.io/fgbio/

GIRARDOT, Charles, et al. Je, a versatile suite to handle multiplexed NGS
libraries with unique molecular identifiers. BMC' bioinformatics, 2016, 17.1:
419.

SMITH, Andrew M., et al. Highly-multiplexed barcode sequencing: an efficient
method for parallel analysis of pooled samples. Nucleic acids research, 2010,
38.13: el42-el42.

LI, Heng, et al. The sequence alignment/map format and SAMtools. Bioinfor-
matics, 2009, 25.16: 2078-2079.

ROGNES, Torbjgrn, et al. VSEARCH: a versatile open source tool for metage-
nomics. PeerJ, 2016, 4: e2584.

COCK, Peter JA, et al. The Sanger FASTQ file format for sequences with
quality scores, and the Solexa/Illumina FASTQ variants. Nucleic acids research,
2010, 38.6: 1767-1771.

HOSANGADI, Sandeep. Distance measures for sequences. arXiv preprint
arXiw:1208.5713, 2012.

KOSTER, Johannes; RAHMANN, Sven. Snakemake—a scalable bioinformatics
workflow engine. Bioinformatics, 2012, 28.19: 2520-2522.

HUANG, Weichun, et al. ART: a next-generation sequencing read simulator.
Bioinformatics, 2012, 28.4: 593-594.

MOLL, Pamela, et al. QuantSeq 3 mRNA sequencing for RNA quantification.
Nature methods, 2014, 11.12: 972.

63



List of abbreviations

ASCII
ATP
BAM
BC
CCD
cDNA
DL
DNA
dsDNA
FF
FFPE
QC
mtDNA
NGS
ONT
PCR
rRNA
RNA
RNA-seq
UMI
SAM
SGS
SMRT
TSV
ZMW

American Standard Code for Information Interchange
Adenosine Phospho-Sulphate
Compressed binary version of a SAM
Barcode

Charge-Coupled Device
Complementary DNA
Damerau-Levenshtein
Deoxyribonucleic Acid
Double-Stranded DNA

Freshly Frozen

Formalin-Fixation and Paraffin-Embedding
Quality Control

Mitochondrial DNA

Next Generation Sequencing
Oxford-Nanopore Technology
Polymerase Chain Reaction
ribosomal Ribonucleic Acid
Ribonucleic Acid

RNA-sequencing

Unique Molecular Identifier
Sequence Alignment Map

Second Generation of Sequencing
Single-Molecule, Real-Time
Tab-Separated Values

Zero Mode Waveguide
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