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ABSTRACT
This master’s thesis introduces the basic concepts of mathematical and, most impor-
tantly, stochastic programming. Moreover, it gives a description of the usage of the
software AIMMS in constructing and solving various optimization problems.
Our main goal is to program several methods for solving these stochastic programming
problems in AIMMS and show the usage and usefulness of these methods on chosen
problems. One of the problems we chose is an incineration plant model.
All the AIMMS programs, that we describe and use in our text, and their source codes
will be enclosed in the appendices.

KEYWORDS
optimization, stochastic programming, AIMMS, scenario-based programs, L-shaped
method, incineration

ABSTRAKT
Tato diplomová práce uvádí základní poznatky matematického a především stochastic-
kého programování. Navíc se zabývá použitím softwaru AIMMS při vytváření a řešení
optimalizačních problémů.
Naším hlavním cílem je naprogramovat v softwaru AIMMS několik metod řešení prob-
lémů stochastického programování a ukázat jejich použití a užitečnost na vybraných
problémech. Jedním z problémů, který jsme si zvolili, je model spalovny.
Všechny AIMMS programy, které v našem textu použijeme a popíšeme, a jejich zdrojové
kódy budou přiloženy v dodatcích.
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PREFACE

The future is not set. Every day we make decisions whose outcomes are unknown
to us and often depend on chance. Deterministic mathematical programming and
optimization help us determine what decisions to make, under given circumstances.
A downside of these approaches is that they are not well suited for problems that
contain uncertainty. This proves to be a major issue since the parameters in opti-
mization models (e.g. prices of certain products, demand, etc.) are in fact random
and evolve in time. These are the cases where stochastic optimization takes over.

The aim of this text is to give a description of the basics of stochastic pro-
gramming and to acquaint the reader with some of the methods used for solving
stochastic programmes (for clarification, we will use the word programme in the
context of optimization and the word program for software implementations). The
implementation of these solution methods will be done in a software called AIMMS,
that is designed for optimization modelling. The thesis will be divided into several
chapters.

Chapter 1 will be devoted to the introduction of deterministic and stochastic
programming. The main objective will be to thoroughly describe the two-stage
linear stochastic programme and support this description with a number of solution
methods suited for dealing with this particular kind of problem.

Chapter 2 will introduce the software AIMMS. We will cover the creation of
optimization programs in AIMMS as well as describe the usage of several impor-
tant features of AIMMS to show that it is a truly viable software, that is able to
successfully deal with stochastic programmes.

Chapter 3 focuses on practical implementation of the knowledge gained from
Chapter 2. We will construct a general two-stage linear stochastic program in
AIMMS that will allow the user to formulate and solve any problem of this kind
with ease. In addition to that we will program the methods for solving two-stage
linear stochastic programmes, that we described in Chapter 1, and we will give a
comparison of these solution methods. We will also show the usage of this general
program on a very well known example.

In Chapter 4 we will encounter a real life stochastic problem. We will use the
tools and knowledge we acquired throughout the previous chapters to deal with this
problem.

Moreover, we should mention that this thesis contributes to the research activ-
ities of Technology Agency of the Czech Republic within the research project No.
TE02000236 “Waste-to-Energy (WtE) Competence Centre”.
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1 BASIC NOTIONS AND THEORETICAL RE-
SULTS

In this chapter we will describe the basic theoretical ideas of deterministic and
stochastic programming, needed for modelling in AIMMS. The deterministic pro-
gramming will be approached very lightly since its applications in AIMMS were
already shown in [8].

1.1 Mathematical Programming

We will start with a brief description of the basic concepts of mathematical pro-
gramming. For a thorough understanding see [1] or [11].

The goal of mathematical programming is to find an optimal value of the objective
function with respect to given constraints (set of inequalities). These constraints
form the feasible set. The optimal value is either minimum or maximum (depending
on a specific problem) of the objective function in the feasible set.

A lot of practical optimization problems, even rather complex ones, are modelled
as linear programmes. Using the matrix-vector formulation we can write these as
follows:

min c𝑇 x
s.t. Ax = b

x ≥ 0.

(1.1)

The notation we use follows the conventional notation utilized throughout the field
of mathematical programming (see [1], [11] or [12]); we will, thus, omit a thorough
description of the equations, which, we fell, are clear from the context. Even though
these models have a substantial limitation in the assumption of linearity in the
objective function and constraints, they are used in a vast area of applications
spanning engineering, transportation, agriculture, etc.

For modelling a closer approximation of the desired real-life problem a more
general model must be used

min 𝑔0(x)
s.t. 𝑔𝑖(x) ≤ 0, 𝑖 = 1, . . . , 𝑚

x ∈ 𝑋 ⊂ R𝑛.

(1.2)

This form is known as a mathematical programming problem. The set 𝑋 ⊂ R𝑛 as
well as the real functions 𝑔𝑖(x), 𝑖 = 0, . . . , 𝑚 are given by the modelling process.
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Depending on the properties of the functions 𝑔𝑖 and the set 𝑋, programme (1.2) is
called:

• linear, if the set 𝑋 is convex polyhedral and the functions 𝑔𝑖(x), 𝑖 = 0, . . . , 𝑚

are linear,
• nonlinear, if at least one of the functions 𝑔𝑖(x), 𝑖 = 0, . . . , 𝑚 is nonlinear or

𝑋 is not a convex polyhedral set; among nonlinear programmes, we denote a
programme as

– convex, if 𝑋 ∩ {x | 𝑔𝑖(x), 𝑖 = 1, . . . , 𝑚} is a convex set and 𝑔0(x) is
a convex function (in particular if the functions 𝑔𝑖(x), 𝑖 = 0, . . . , 𝑚 are
convex and 𝑋 is a convex set), and

– nonconvex, if either 𝑋 ∩ {x | 𝑔𝑖(x), 𝑖 = 1, . . . , 𝑚} is not a convex set or
the objective function 𝑔0(x) is not convex.

Another class of problems arises when some of the variables 𝑥𝑗, 𝑗 = 1, . . . , 𝑛 can only
take integer values. This is called (mixed) integer programming.

1.2 Deterministic Programming

Deterministic program is a mathematical programme for which all the parameters
and coefficients (in objective function and constraints) are fully known; there is
neither uncertainty nor randomness.

A deterministic programme can be expressed in the following form that is further
suitable for stochastic programmes:

min 𝑔0(x, a)
s.t. 𝑔𝑖(x, a) ≤ 0, 𝑖 = 1, . . . , 𝑚

x ∈ 𝑋 ⊂ R𝑛,

(1.3)

where a ∈ R𝑘 is a K-dimensional constant vector.
A linear programme (1.1) can be a special case of a deterministic programme if

all the coefficients of vectors b, c and the matrix A are fully known.

1.3 Stochastic Programming

As we stated earlier, in the preface, the future is not set. The biggest limitation
of deterministic programming is that it requires all the parameters of the model
to be fully known. However, the real-world applications can hardly ever fulfil this
requirement. To give just some examples we mention: crop yield (depending on
weather conditions), demand on certain product throughout some time period, prices
of basically anything, changes in legislation (restrictions or liberations of quotas),
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etc. Using deterministic programming in these situations can return distorted and
far-fetched results (see [6]).

Because of all this uncertainty a different approach must be adopted. One of the
ways to deal with the uncertainty lies in stochastic programming where the uncertain
parameters are modelled as random variables (see [6]).

Let the triplet (Ω, 𝐴, 𝑃 ) be a probability space. The mapping 𝜉 : Ω −→ R is
called a random variable if for all 𝑥 ∈ R holds

{𝜔 : 𝜉(𝜔) ≤ 𝑥} ∈ 𝐴.

The general stochastic programme has the following form cf. 1.3:

min 𝑔0(x, 𝜉)
s.t. 𝑔𝑖(x, 𝜉) ≤ 0, 𝑖 = 1, . . . , 𝑚

x ∈ 𝑋 ⊂ R𝑛,

(1.4)

where 𝜉 = (𝜉1, . . . , 𝜉𝐾)𝑇 , 𝜉(𝜔) : Ω −→ R𝐾 is a finite-dimensional random vector,
formed by random variables on the probability space (Ω, 𝐴, 𝑃 ).

The feasible set 𝐶(𝜉) of (1.4) can be written in the form:

𝐶(𝜉) = {x ∈ 𝑋 | 𝑔𝑖(x, 𝜉) ≤ 0, 𝑖 = 1, . . . , 𝑚}.

Now, a new question arises: How do we solve problems like (1.4)? When a partic-
ular realization of random parameters 𝜉𝑝 is observed and becomes known; one can
replace 𝜉 in (1.4) by 𝜉𝑝, creating a deterministic programme (1.3). However, this
does not help in situations when we cannot wait for the particular realization and
need to solve the problem now.

This basic partition gives us the two approaches we may take to solve a stochastic
programme. The wait-and-see approach, being the one that uses the particular real-
ization of 𝜉 and solves a deterministic programme. And the here-and-now approach
that finds “somehow optimal” solution for all the possible realizations of 𝜉.

1.4 Decisions, Stages and Recourse

Recourse programmes are stochastic programmes in which some decisions or recourse
actions can be taken after uncertainty is disclosed (see [6], [12]). In these kind of
programmes we can distinguish between two types of decisions:

• A number of decisions have to be taken before the realization of the random
vector 𝜉. These are called first-stage decisions and the period when these
decisions are taken is called the first stage.
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• A number of decisions have to be taken after the realization of the random
vector 𝜉. These are called second-stage decisions and the corresponding period
is called the second stage.

First stage decisions are usually denoted by the vector x, while second-stage de-
cisions are represented by the vector y or y(𝜔) or even y(𝜔, x), if one wishes to
emphasize that second-stage decisions differ as functions of the realization of the
random vector and of the first-stage decision. The sequence of events and decisions
is thus summarized as

x −→ 𝜉(𝜔) −→ y(𝜔, x).

1.5 Two-Stage Programme with Fixed Recourse

The classical two-stage stochastic linear programme with fixed recourse is the prob-
lem of finding

min c𝑇 x + 𝐸𝜉[min q𝑇 (𝜔)y(𝜔)]
s.t. Ax = b,

T(𝜔)x + Wy(𝜔) = h(𝜔), a.s.
x ≥ 0, y(𝜔) ≥ 0.

(1.5)

As in the previous section, a distinction is made between the first stage and the sec-
ond stage. The first-stage decisions are represented by the vector x. Corresponding
to x are the first-stage vectors and matrices c, b, and A. In the second stage, a
number of random events 𝜔 ∈ Ω may be realized. For a given realization 𝜔, the
second-stage problem data q(𝜔), h(𝜔) and T(𝜔) become known. Each component
of q, T, and h is, thus, a possible random variable. W is called the recourse matrix,
which is here assumed to be fixed. Piecing together the stochastic components of
the second-stage data we obtain a vector 𝜉(𝜔). As indicated before, a single ran-
dom event 𝜔 (or state of the world) influences several random variables, here, all
components of 𝜉.

Let, also, Ξ ⊂ R𝑛 be the support of 𝜉, i.e. the smallest closed subset in R𝑛 s.t.
𝑃 (Ξ) = 1. As we just stated, when the random event 𝜔 is realized, the second-stage
problem data, q, T and h become known. Then the second-stage decision y(𝜔)
must be taken. The dependence of y on 𝜔 is of a completely different nature from
the dependence of q, or other parameters, on 𝜔. It is not functional but simply
indicates that the decisions y are typically not the same under different realizations
of 𝜔. They are chosen so that the constraints of (1.5) hold almost surely (denoted
a.s.), i.e. for ∀𝜔 ∈ Ω except for sets with zero probability.

The objective function of (1.5) contains a deterministic term c𝑇 x and the ex-
pectation of the second-stage objective q𝑇 (𝜔)y(𝜔) taken over all realizations of the
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random event 𝜔. This second-stage term is the more difficult one because, for each
𝜔, the value y(𝜔) is the solution of a linear programme. To stress this fact, one
sometimes uses the notion of a deterministic equivalent programme. For a given
realization 𝜔, let

𝑄(x, 𝜉(𝜔)) = min
𝑦

{q𝑇 (𝜔)y | Wy = h(𝜔) − T(𝜔)x, y ≥ 0} (1.6)

be the second-stage value function. Then, we define the expected second-stage value
function

𝒬(x) = 𝐸𝜉𝑄(x, 𝜉(𝜔)) (1.7)

and the deterministic equivalent programme (DEP)

min c𝑇 x + 𝒬(x)
s.t. Ax = b,

x ≥ 0.

(1.8)

This representation of a stochastic programme clearly illustrates that the major
difference from a deterministic formulation is in the second-stage value function.
If that function is given then a stochastic programme is just an ordinary nonlin-
ear programme. Formulation (1.5) is the simplest form of a stochastic two-stage
programme. Extensions are easily modelled; for example, if first-stage or second-
stage decisions are to be integers. Similarly, nonlinear first-stage and second-stage
objectives or constraints can easily be incorporated.

The generalization of the programme (1.8) for a non-linear case may have the
following form:

min 𝑔0(x) + 𝒬(x)
s.t. 𝑔1

𝑖 (x) ≤ 0, 𝑖 = 1, . . . , 𝑚1,
(1.9)

where 𝒬(x) = 𝐸𝜉𝑄(x, 𝜉(𝜔)) and

𝑄(x, 𝜉(𝜔) = miny 𝑞(y, 𝜉(𝜔)
s.t. 𝑡𝑗(x, 𝜉(𝜔)) + 𝑔2

𝑗 (y, 𝜉(𝜔)) ≤ 0 a.s. , 𝑗 = 1, . . . , 𝑚2.
(1.10)

By 𝑔1
𝑖 , 𝑖 = 1, . . . , 𝑚1 and 𝑔2

𝑗 , 𝑗 = 1, . . . , 𝑚2 we understand the first and second stage
constraints, respectively. A very important aspect of two-stage (and also multi-
stage) programmes is the fact that the first-stage decision x must satisfy so-called
nonanticipativity condition. The decision x must be made before the realization of
the random vector 𝜉 and, therefore, must be independent on it.

1.5.1 Basic Properties

In this section we briefly introduce the basic properties and theory of stochastic
programming. All the following results are thoroughly discussed (with examples
and proofs) in [6].
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Although we set the recourse matrix W to be fixed, here we study the situation
where this matrix can be random. This is because the main issues about definitions
of second-stage feasibility sets depend on whether W is fixed.

For fixed x, 𝜉, the value 𝑄(x, 𝜉) of the second-stage programme is given by

𝑄(x, 𝜉(𝜔)) = min
𝑦

{q𝑇 (𝜔)y | W(𝜔)y = h(𝜔) − T(𝜔)x, y ≥ 0}. (1.11)

When the mathematical programme (1.11) is unbounded below or infeasible, the
value of the second-stage programme is defined to be −∞ or +∞, respectively.

The expected second-stage value function is, as given in (1.7)

𝒬(x) = 𝐸𝜉𝑄(x, 𝜉(𝜔)).

Let us first consider the situation when 𝜉 is a finite discrete random variable, namely,
𝜉 ∈ Ξ with Ξ a finite or countable set. The second-stage value function is then the
weighted sum of the 𝑄(x, 𝜉) values for the various possible realizations of 𝜉. To make
the definition complete, we make the additional convention +∞+(−∞) = +∞. This
corresponds to a conservative attitude, rejecting any first-stage decision that could
lead to an undefined recourse action even if there is some realization of the random
vector inducing an infinitely low-cost function. Let 𝐾1 = {x|Ax = b, x ≥ 0} be
the set determined by the fixed constraints, namely, those that do not depend on
the particular realization of the random vector, and let 𝐾2 = {x|𝒬(x) < ∞} be
the second-stage feasibility set. We may now redefine the deterministic equivalent
programme as follows

min 𝑧 = c𝑇 x + 𝒬(x)
s.t. x ∈ 𝐾1 ∩ 𝐾2.

(1.12)

From a practical point of view, it is not absolutely necessary to have a complete
description of the region of finiteness of 𝒬(x). On the other hand, it is desirable to
be able to check if a particular first-stage decision x leads to a finite second-stage
value without having to compute that value. The definition of 𝐾2 is not useful in
that respect. Therefore, we consider an alternative definition. Let

𝐾2(𝜉) = {x|𝑄(x, 𝜉) < +∞}

be the elementary feasibility sets and

𝐾𝑃
2 (𝜉) = {x| for all 𝜉 ∈ Ξ,

y ≥ 0 exists s.t. Wy = h − Tx}
= ∩𝜉∈Ξ𝐾2(𝜉).

The set 𝐾2 is said to define the possibility interpretation of second-stage feasibility
sets. A decision x belongs to the set 𝐾𝑃

2 if, for all possible values of the random
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vector 𝜉, a feasible second-stage decision y can be taken.

Theorem 1.
a. For each 𝜉, the elementary feasibility set is a closed convex polyhedron, hence

the set 𝐾𝑃
2 is closed and convex.

b. When Ξ is finite, then 𝐾𝑃
2 is also polyhedral and coincides with 𝐾2.

Proposition 2. If 𝜉 has finite second moments, then

𝑃 (𝜔|𝑄(x, 𝜉) < ∞) = 1 implies 𝒬(x) < ∞.

Theorem 3. For a stochastic programme with fixed recourse where 𝜉 has finite
second moments, the sets 𝐾𝑃

2 and 𝐾2 coincide.

Theorem 4. When W is fixed and 𝜉 has finite second moments:
a. 𝐾2 is closed and convex.
b. If T is fixed, 𝐾2 is polyhedral.
c. Let Ξ𝑇 be the support of the distribution of T. If h(𝜉) and T(𝜉) are independent

and Ξ𝑇 is polyhedral, then 𝐾2 is polyhedral.

Theorem 5. For a stochastic programme with fixed recourse, 𝑄(x, 𝜉) is
a. a piecewise linear convex function in (h, T);
b. a piecewise linear concave function in q;
c. a piecewise linear convex function in x for all x in 𝐾 = 𝐾1 ∩ 𝐾2.

Theorem 6. For a stochastic programme with fixed recourse where 𝜉 has finite
second moments,
a. 𝒬(x) is a Lipschitzian convex function and is finite on 𝐾2.
b. When 𝜉 is finite, 𝒬(x) is piecewise linear.
c. If 𝐹 (x) is an absolutely continuous distribution, 𝒬(x) is differentiable on 𝐾2.

1.6 Scenario Representations

Let us now look at the expected values that are used in the formulations (1.8) and
(1.10). These can be written in the following integral form

𝐸𝜉(𝑓(x, 𝜉)) =
∫︁

Ξ
(𝑓(x, 𝜉) d𝑃, (1.13)

which brings problems since these integrals are often multidimensional and hard to
compute. Because of this fact we will use an approach called scenario analysis and
create scenario-based programmes.
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The uncertainty is modelled by scenarios, i.e. set of particular realizations 𝜉𝑠 of
the random vector 𝜉. The set of all scenarios is denoted by

𝑆 = {𝑠𝑖, 𝑖 = 1, . . . , 𝑁},

where 𝑁 is the number of scenarios. We can take all scenarios if the set Ξ is finite
and small. However, if the set Ξ is too large, we would have to ask some expert
from the desired field to give us a set of most relevant scenarios. We denote 𝑝𝑠 the
probability of scenario 𝑠 ∈ 𝑆 : 𝑝𝑠 = 𝑃 (𝜉 = 𝜉𝑠) ≥ 0 and ∑︀

𝑠∈𝑆 𝑝𝑠 = 1. Therefore, we
can rewrite (1.13) as

𝐸𝜉(𝑓(x, 𝜉)) =
∑︁
𝑠∈𝑆

𝑝𝑠𝑓(x, 𝜉). (1.14)

From now on we will use the following notation: y𝑠 = y(𝜉𝑠), q𝑠 = q(𝜉𝑠), W𝑠 =
W(𝜉𝑠), T𝑠 = T(𝜉𝑠), h𝑠 = h(𝜉𝑠).

The scenario-based two-stage stochastic linear programme has now the following
form:

min 𝑧 = c𝑇 x + ∑︀
𝑠∈𝑆 𝑝𝑠𝑄(x, 𝜉𝑠)

s.t. Ax = b,

x ≥ 0,

(1.15)

where
𝑄(x, 𝜉𝑠) = miny𝑠

q𝑇
𝑠 y𝑠

s.t. T𝑠x + W𝑠y𝑠 = h𝑠,

y𝑠 ≥ 0.

(1.16)

Fusing together (1.15) and (1.16) we get

min 𝑧 = c𝑇 x + ∑︀
𝑠∈𝑆 𝑝𝑠q𝑇

𝑠 y𝑠

s.t. Ax = b,

T𝑠x + W𝑠y𝑠 = h𝑠, 𝑠 = 1, . . . , 𝑆,

x ≥ 0, y𝑠 ≥ 0, 𝑠 = 1, . . . , 𝑆.

(1.17)

It is easy to see that the size of the programme grows quickly with the number of
scenarios. We can rewrite the general two-stage stochastic programme (1.10) in a
similar manner.

1.7 Multistage Stochastic Programmes

The previous sections in this chapter were about stochastic programmes with two
stages. A lot of real-life decision problems, however, involve a sequence of decisions
that react to outcomes that develop over time. These decisions take place in different
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Fig. 1.1: A tree of seven scenarios over four periods.

stages (or periods). We will denote the last stage as 𝐻. For further and more detailed
information see [6].

The description of scenarios is often made on a tree such as that in Fig. 1.1. Here,
there are seven scenarios that are evident in the last stage (𝐻 = 4). In previous
stages (𝑡 ≤ 3), we have a more limited number of possible realizations, which we
call the stage 𝑡 scenarios. Each of these period 𝑡 scenarios is said to have a single
ancestor scenario in stage (𝑡 − 1) and perhaps several descendant scenarios in stage
(𝑡 + 1). We note that different scenarios at stage 𝑡 may correspond to the same 𝜉

realizations and are only distinguished by differences in their ancestors.

For a proper description of the multistage stochastic programme, we will use the
form that does not use scenarios. The multistage stochastic linear programme with
fixed recourse then takes the following form (see [6])

min c1𝑇 x1 + 𝐸𝜉2 [min c2𝑇 (𝜔)x2(𝜔)] + · · · + 𝐸𝜉𝐻 [min c𝐻𝑇 (𝜔)x𝐻(𝜔)]
s.t. W1x1 = h1,

T1(𝜔)x1 + W2x2(𝜔) = h2(𝜔),
...
T𝐻−1(𝜔)x𝐻−1 + W𝐻x𝐻(𝜔) = h𝐻(𝜔),
x1 ≥ 0, x𝑡(𝜔) ≥ 0, 𝑡 = 2, . . . , 𝐻.

(1.18)

All the equalities hold a.s., similarly to the model (1.5). The deterministic equivalent
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Fig. 1.2: The deterministic equivalent matrix for a problem with seven scenarios in
four periods.

programme to (1.18) for the case with a finite number of scenarios is still a linear
programme. It has the structural form indicated in Fig. 1.2, where we use an
additional superscript to index distinct values of 𝑊 𝑡 and 𝑇 𝑡 for different scenarios.

1.8 The L-Shaped Method

In this section we give a brief overview of one of the most commonly used methods
for solving large-scale two-stage linear problems. We are going to follow the same
notation as presented in [6].

1.8.1 Outer Linearization

Consider the general formulation in (1.5) or (1.8). The basic idea of the L-shaped
method is to approximate the nonlinear term in the objective of these problems.
A general principle behind this approach is that, because the nonlinear objective
term (the recourse function) involves a solution of all second-stage recourse linear
programmes, we want to avoid numerous function evaluations for it. Therefore, we
use that term to build a master problem in x, but we only evaluate the recourse
function exactly as a subproblem.

To make this approach possible, we assume that the random vector 𝜉 has finite
support. Let 𝑠 = 1, . . . , 𝑁 index its possible realizations and let 𝑝𝑠 be their prob-
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Fig. 1.3: Block structure of the two-stage extensive form.

abilities. Under this assumption, we may now write the deterministic equivalent
programme in the extensive form. This form is created by associating one set of
the second-stage decisions, say, y𝑠, to each realization 𝜉, i.e., to each realization of
q𝑠, h𝑠, and T𝑠 . It is a large-scale linear problem that we can define as the extensive
form (1.17).

The block structure of the extensive form appears in Fig. 1.3. This picture has
given rise to the name, L-shaped method for the following algorithm:
Step 0: Set 𝑟 = 𝑞 = 𝜈 = 0.

Step 1: Set 𝜈 = 𝜈 + 1. Solve the linear programme

min c𝑇 x + 𝜃

s.t. Ax = b,

D𝑙x ≥ d𝑙, 𝑙 = 1, . . . , 𝑟,

E𝑙x + 𝜃 ≥ e𝑙, 𝑙 = 1, . . . , 𝑠,

x ≥ 0, 𝜃 ∈ R.

(1.19)

Let (x𝜈 , 𝜃𝜈) be an optimal solution. If 𝑞 = 0, 𝜃𝜈 is set equal to −∞ and is not
considered in the computation of x𝜈 .

Step 2: For 𝑠 = 1, . . . , 𝑁 solve the linear programme

min 𝑤′ = e𝑇 v+ + e𝑇 v−

s.t. Wy + Iv+ − Iv− = h𝑘 − T𝑘x𝜈

y ≥ 0, v+ ≥ 0, v− ≥ 0,

(1.20)

where e𝑇 = [1, 1, . . . , 1], until, for some 𝑠, the optimal value 𝑤′ > 0. In this
case, let 𝜎𝜈 be the associated simplex multipliers and define

D𝑟+1 = (𝜎𝜈)𝑇 T𝑠
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and
𝑑𝑟+1 = (𝜎𝜈)𝑇 h𝑠

to generate a constraint (called a feasibility cut) of type (D𝑙x ≥ d𝑙). Set
𝑟 = 𝑟 + 1, add to the constraint set, and return to Step 1. If for all 𝑠, w′ = 0,

go to Step 3.
Step 3: For 𝑠 = 1, . . . , 𝑁 solve the linear programme

min 𝑤 = q𝑇
𝑠 y

s.t. Wy = h𝑘 − T𝑘x𝜈 ,

y ≥ 0.

(1.21)

Let 𝜋𝜈
𝑠 be the simplex multipliers associated with the optimal solution of

problem 𝑠 of type (1.21), i.e. optimal solution of the dual problem to (1.16).
Define

E𝑞+1 =
𝑁∑︁

𝑠=1
𝑝𝑠(𝜋𝜈

𝑘)𝑇 T𝑠

and
𝑒𝑞+1 =

𝑁∑︁
𝑠=1

𝑝𝑠(𝜋𝜈
𝑘)𝑇 h𝑠.

Let 𝑤𝜈 = 𝑒𝑞+1−E𝑞+1x𝜈 . If 𝜃𝜈 ≥ 𝑤𝜈 , stop; x𝜈 is an optimal solution. Otherwise
set 𝑞 = 𝑞 + 1, add constraint (called a optimality cut) to constraint set (E𝑙x +
𝜃 ≥ e𝑙), and return to Step 1.

The method consists of solving an approximation of (1.8) by using an outer lin-
earization of 𝒬. Two types of constraints are sequentially added: (i) feasibility cuts
determining {𝑥|𝒬(𝑥) < ∞} and (ii) optimality cuts, which are linear approxima-
tions to 𝒬 on its domain of finiteness.

1.8.2 Inner Linearization

The most direct alternative to an outer linearization approach is an inner lineariza-
tion or column generation approach; this approach is also known as Dantzig-Wolfe
decomposition (see [?]). We can derive this approach from the L-shaped method by
taking duals.

Consider the following dual linear programme to (1.19).

max 𝜁 = 𝜌𝑇 b + ∑︀𝑟
𝑙=1 𝜎𝑙𝑑𝑙 + ∑︀𝑞

𝑙=1 𝜋𝑙𝑒𝑙

s.t. 𝜌𝑇 A + ∑︀𝑟
𝑙=1 𝜎𝑙D𝑙 + ∑︀𝑞

𝑙=1 𝜋𝑙E𝑙 ≤ c𝑇 ,∑︀𝑞
𝑙=1 𝜋𝑙 = 1, 𝜎𝑙 ≥ 0, 𝑙 = 1, . . . , 𝑟, 𝜋𝑙 ≥ 0, 𝑙 = 1, . . . , 𝑞.

(1.22)

The linear programme (1.22) includes multipliers 𝜎𝑙 on extreme rays of the duals
of the subproblems. The 𝜋𝑙 multipliers - the expectations of extreme points of the
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duals of the subproblems. To see this, suppose (1.22) is solved to obtain a multiplier
x𝜈 . Now consider the following dual to (1.21):

max 𝑤 = 𝜋𝑇 (h𝑠 − T𝑠x𝜈)
s.t. 𝜋𝑇 W ≤ q𝑇 .

(1.23)

If (1.23) is unbounded for any 𝑠, then we must have some 𝜎𝜈 s.t. 𝜎𝜈𝑇 W ≤ 0 and
𝜎𝜈𝑇 (h𝑠 − T𝑠x𝑠) > 0 or (1.20) has a feasible dual solution (hence optimal primal
solution) with a positive value. So, the second step in the outer linearization is
equivalent to checking whether (1.23) is unbounded for any 𝑘. In this case we
construct D𝑟+1 and 𝑑𝑟+1 as in the outer linearization and add them to (1.22).

This is the algorithm for the inner linearization:
Step 0: Set 𝑟 = 𝑞 = 𝜈 = 0.

Step 1: Set 𝜈 = 𝜈 + 1 and solve the linear programme (1.22). Let the solution be
(𝜌𝜈 , 𝜎𝜈 , 𝜋𝜈) with a dual solution (x𝜈 , Θ𝜈).

Step 2: For 𝑠 = 1, . . . , 𝑁, solve (1.23). If any infeasibile problem is found, stop
and evaluate the formulation. If an unbounded solution with extreme ray 𝜎𝜈

is found for any 𝑠, then form new columns 𝑑𝑟+1 and D𝑟+1, set 𝑟 = 𝑟 + 1 and
return to Step 1.
If all problems (1.23) are solvable, then form new columns 𝑒𝑞+1 and E𝑞+1 as
in the outer linearization. If 𝑒𝑞+1 − E𝑞+1x𝜈 − Θ ≤ 0, then stop; (𝜌𝜈 , 𝜎𝜈 , 𝜋𝜈)
and (x𝜈 , Θ𝜈) are the optimal values of the original problem.
If 𝑒𝑞+1 − E𝑞+1x𝜈 − Θ > 0, set 𝑞 = 𝑞 + 1, and return to Step 1.

It is easy to see that the inner linearization method takes the same steps as the
outer linearization, except that we solve the duals of the subproblems instead of the
primals.

We presented both the inner and outer approximation, because we are going to
program the outer linearization algorithm in AIMMS and we felt obliged to acquaint
the reader with both of them. Moreover, it is quite clear that the Step 2 in both of
those procedures is very well parallelizable (i.e. if we have a multi-core processor, we
can command each core to solve one subproblem while at the same time the other
core solve the next one and so on, effectively reducing the computing time). We will
take advantage of this nice feature once we implement this algorithm into AIMMS.

1.9 Progressive Hedging Algorithm

We will present another solution method for stochastic programming problems,
namely the progressive hedging algorithm. Since it is not the purpose of this text,
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we will not present the proper insight and only give a brief description of the algo-
rithm for two-stage problems. For more information about progressive hedging see
[7] and [6]. This algorithm is used for solving problems of the following form:

min 𝐸𝜉(𝑓(x, y(𝜉)))
s.t. 𝑔𝑖(x, y(𝜉)) ≤ 0, 𝑖 = 1, . . . , 𝑚.

(1.24)

Furthermore, we suppose that we deal with a problem with a finite number of sce-
narios. The algorithm revolves around the idea, that if x are the first stage decisions
and y(𝜉) (ory(𝑠)) are the second stage decisions, at first we suppose different first
stage decisions x for different scenarios 𝑠. The condition, that x must be the same
for all scenarios, is enforced by a penalization term.

Step 0: Choose the penalty parameter 𝜌 > 0 and the termination parameter 𝜖 > 0.
Set W0(𝑠) = w0

1(𝑠) = 0, X̂
0(𝑠) = (0, 0) for all 𝑠 ∈ 𝑆 and 𝑗 = 1.

Step 1: For all 𝑠 ∈ 𝑆 solve the following problem:

min 𝑓(x, y(𝑠)) + w𝑗−1
1 (𝑠)𝑇 x + 1

2𝜌(x − x̂𝑗−1)2

s.t. 𝑔𝑖(x, y(𝑠)) ≤ 0, 𝑖 = 1, . . . , 𝑚
(1.25)

and denote its solution as X𝑗(𝑠) = (x(𝑠), y(𝑠)).
Step 2: For all 𝑠 ∈ 𝑆 calculate an average solution X̂

𝑗(𝑠) = (x̂𝑗(𝑠), ŷ𝑗(𝑠)):

x̂𝑗(𝑠) = x̂𝑗 = ∑︀
𝑠∈𝑆 𝑝𝑠x(𝑠),

ŷ𝑗(𝑠) = y𝑗(𝑠).

If the terminal condition

𝛿 = (𝑁‖x̂𝑗−1 − x̂𝑗‖2 +
∑︁
𝑠∈𝑆

‖ŷ𝑗−1(𝑠) − ŷ𝑗(𝑠)‖2 +
∑︁
𝑠∈𝑆

𝑝𝑠‖x𝑗(𝑠) − x̂𝑗‖2) 1
2 ≤ 𝜖

holds, then stop. X̂
𝑗(𝑠) = (x̂𝑗(𝑠), ŷ𝑗(𝑠)) is the solution to the original problem

with given tolerance. Otherwise set

w𝑗
1(𝑠) = w𝑗−1(𝑠) + 𝜌(x𝑗(𝑠) − x̂𝑗),

𝑗 = 𝑗 + 1,

and return to Step 1.
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1.10 Sample Average Approximation

In this section we introduce a sampling method for solving large scale stochastic
programming problems. We concentrate on the “exterior” approach where a random
sample is generated outside of an optimization procedure, and then the constructed,
so-called sample average approximation (SAA), problem is solved by an appropriate
deterministic algorithm. For more detailed description and statistical analysis of
this method see [12].

Let us consider a stochastic programming problem in the following form

min
𝑥∈𝑋

{𝑓(𝑥) := 𝐸𝜉[𝐹 (x, 𝜉(𝜔))]}. (1.26)

The expectation in (1.26) is taken with respect to the probability distribution of 𝜉

which assumed to be known. We denote by Ξ ∈ R𝑑 the support of the probability
distribution of 𝜉, that is, Ξ is the smallest closed set in R𝑑 such that the probability
of the event 𝜉 ∈ R𝑑 ∖ Ξ is zero.

Often one can view the optimization problem (1.26) as a two-stage stochastic
programming problem with 𝐹 (x, 𝜉(𝜔)) and 𝜉 being the optimal value and data
vector, respectively, of the corresponding second stage programme. For example, in
the case of two-stage linear stochastic programming with recourse, 𝐹 (x, 𝜉(𝜔)) :=
c𝑇 x + 𝒬(x, 𝜉(𝜔)), where 𝒬(x, 𝜉(𝜔)) is the optimal value of the following second
stage problem

miny qT((𝜔))y
𝑠.𝑡. T(𝜔)x + W(𝜔)y = h(𝜔), a.s.

y ≥ 0,

(1.27)

with 𝜉 : (q, T, W, h) . As such we need to consider situations where 𝐹 (x, 𝜉(𝜔))
can take values −∞ or +∞. That is, unless stated otherwise, we assume that
𝐹 (x, 𝜉(𝜔)) is an extended real valued function and the expected value 𝐸𝜉[𝐹 (x, 𝜉(𝜔))]
is well defined for every considered x ∈ R𝑛.

If 𝜉 has a finite number of possible realizations (scenarios), say Ξ = {𝜉1, . . . , 𝜉𝑁}
with respective probabilities 𝑝𝑠, 𝑠 = 1, . . . , 𝑁 , then we can write the expected value
function in the form

𝑓(x) =
𝑁∑︁

𝑠=1
𝑝𝑠𝐹 (x, 𝜉𝑠). (1.28)

Note, however, that even a crude discretization of the probability distribution of 𝜉

leads to an exponential growth of the number of scenarios. For example, if com-
ponents of the random vector 𝜉 are independent, each having just three possible
realizations, then the total number of scenarios 𝑁 = 3𝑑. No computer in a foresee-
able future will be able to handle calculations involving 3100 scenarios. Therefore,
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that way or another, one needs to reduce the number of scenarios to a manageable
level. In this section we discuss an approach to solving the expected value problem
(1.26), referred to as the true optimization problem, by using Monte Carlo sampling
technique.

Suppose that we can generate a sample of 𝑁 replications of the random vector 𝜉. In
the Monte Carlo sampling method this is accomplished by generating a random (or
rather pseudorandom) sequence 𝑈1, 𝑈2, . . . , of numbers independent of each other
and uniformly distributed on the interval [0, 1], and then constructing a sample of
𝜉 by an appropriate transformation. In that way we can consider the sequence
𝜔 := {𝑈1, 𝑈2, . . . } as an element of the probability space equipped with the corre-
sponding (product) probability measure, and the sample 𝜉𝑖 = 𝜉𝑖(𝜔), 𝑖 = 1, 2, . . . ,
as a function of 𝜔. We can view the generated sample 𝜉1, 𝜉2, . . . , as a sequence of
random, vectors, each having the same probability distribution as 𝜉. If the gen-
erated random vectors are (stochastically) independent of each other, we say that
the sample is independent identically distributed (iid). By 𝜉1, 𝜉2, . . . , we denote a
particular realization of the considered random sample.

With the generated sample 𝜉1, . . . , 𝜉𝑁 , we associate the sample average function

𝑓𝑁(x) := 1
𝑁

𝑁∑︁
𝑖=1

𝐹 (x, 𝜉𝑖). (1.29)

Since each 𝜉𝑖 has the same probability distribution as 𝜉, we have that for any
x ∈ 𝑋, 𝐸[𝐹 (x, 𝜉𝑖)] = 𝑓(x) and hence

𝐸[𝑓𝑁(x)] = 𝑓(x). (1.30)

That is, 𝑓𝑁(x) is an unbiased estimator of 𝑓(x). Moreover, under various conditions
the Law of Large Numbers can be applied with the implication that 𝑓𝑁(x) converges
with probability one to 𝑓(x) as 𝑁 −→ ∞. In that case we say that 𝑓𝑁(x) is a
consistent estimator of 𝑓(x). This certainly holds true if the sample is iid.

For the purpose of solving a particular stochastic programming problem, sam-
pling techniques can be applied in different ways. One approach uses sampling in an
“interior” fashion. Such algorithms aim at solving the considered problem by resort-
ing to sampling whenever the procedure requires to compute (approximately) the
value, and may be derivatives, of the expected value function at a current iteration
point. Typically such an algorithm is tailored for a specific class of optimization
problems and tries to mimic its deterministic counterpart. Often different samples
are used each time the true function or its derivatives are estimated at different
iteration points.
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We will discuss an alternative approach, referred to as the “exterior” method.
First, a sample 𝜉1, . . . , 𝜉𝑁 is generated, and then the true problem (1.26) is approx-
imated by the optimization problem

min
x∈𝑋

{𝑓𝑁(x) = 1
𝑁

𝑁∑︁
𝑖=1

𝐹 (x, 𝜉𝑖)}. (1.31)

Note that once the sample is generated, i.e., numerical values of vectors are
computed, 𝑓𝑁(x) becomes a deterministic function and its value can be calculated
at any given point x ∈ 𝑋. From an optimization point of view, problem (1.31) can
be considered as a stochastic programming problem with the finite set {𝜉1, . . . , 𝜉𝑁} of
scenarios each with equal probability 1

𝑁
. Therefore, any numerical algorithm suitable

for the considered class of problems can be applied to (1.31). The optimal value
𝑧𝑁 and an optimal solution �̂�𝑁 of the problem (1.31) are considered as statistical
estimators of their counterparts of the true problem (1.26).

The above approach is called “exterior” since the sample is generated outside of the
considered optimization problem, and then the constructed problem (1.31) is solved
by an appropriate deterministic algorithm. It should be noted that this method is
not an algorithm, but rather a general approach to solving stochastic programmes.
One still needs to employ a particular (hopefully efficient) deterministic algorithm
in order to solve the obtained problem (1.31). We refer to (1.31) as the sample
average approximation (SAA) problem. The approach is also known as the sample
path or the stochastic counterpart method.

We are going to use this approach to generate problems on which we shall test our
AIMMS implementation of solution algorithms.
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2 AIMMS

In this chapter we will describe the usage of the software we utilized for constructing
and solving our optimization problems. The first section will be devoted to the
software itself. Other section will deal with its different procedures and features
that will be used for constructing our programs.

2.1 About AIMMS

AIMMS is an acronym for “Advanced Interactive Multidimensional Modelling Sys-
tem”. It is a software system designed for modelling and solving large-scale optimiza-
tion problems. It consists of an algebraic modelling language, an integrated develop-
ment environment, a graphical user interface and a graphical end-user environment.
AIMMS is linked to multiple solvers through the AIMMS Open Solver Interface.
These solvers are: CPLEX, GUROBI, MOSEK, XA, CP Optimizer, CONOPT, MI-
NOS, SNOPT, LGO, AOA, PATH and CP Optimizer. For more information about
AIMMS see [5], [18] or their web page [13].

Formulation of optimization models takes place through declarative language el-
ements such as sets and indices, as well as scalar and multidimensional parameters,
variables and constraints, which are common to all algebraic modelling languages,
and allow for a thorough description of most problems in mathematical program-
ming.

Procedures and control flow statements are available in AIMMS for
• the exchange of data with external data sources
• data pre- and post-processing tasks around optimization models
• user interface event handling
• the construction of hybrid algorithms for problem types for which no direct

efficient solvers are available.
AIMMS supports a wide range of mathematical optimization problem types:

• Linear programming
• Quadratic programming
• Nonlinear programming
• Mixed-integer programming
• Mixed-integer nonlinear programming
• Global optimization
• Complementarity problems (MPECs)
• Stochastic programming
• Robust optimization
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• Constraint programming
Uncertainty can be taken into account in deterministic linear and mixed integer
optimization models in AIMMS through the specification of additional attributes,
such that stochastic or robust optimization techniques can be applied alongside the
existing deterministic solution techniques.

Custom hybrid and decomposition algorithms can be constructed using the GMP
system library which makes available at the modelling level many of the basic build-
ing blocks used internally by the higher level solution methods present in AIMMS,
matrix modification methods, as well as specialized steps for customizing solution
algorithms for specific problem types.

2.2 Licenses

In order to use the software one must have installed a proper license. There are two
types of licenses that AIMMS offers for academic/non-commercial use. For more
information about other types of licenses see the company web page [13].

2.2.1 Student License

The AIMMS Student license is limited in the number of identifiers (200) and the
size of the optimization models (300x300), allowing students to create and run small
AIMMS models on their own computer.

The free student license is equipped with the solvers CPLEX, GUROBI, MOSEK
and XA for linear and mixed integer programming, CONOPT and KNITRO for
nonlinear programming, AOA for mixed integer nonlinear programming, PATH for
mixed complementarity programming, BARON (restricted size 10x10) for global
optimization and RO Add-on for Robust Optimization.

This license is not suitable for our purposes but we mention it anyway for the sake
of informing the reader about the possibility of obtaining this free license without
the need of registration.

2.2.2 Academic License

The Free AIMMS Academic License is an unrestricted license for academic people
(students, teachers, professors and researchers).

Because we are going to deal with rather large-scale optimization problems, this
is the license we shall use. It contains all the AIMMS-supported solvers and we can
introduce as many variables and identifiers as we please.
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However, to obtain this license one has to go through a process of registration,
which although not being very long may still discourage some people from getting
this license.

We strongly recommend to obtain the academic license to everyone who intends
to seriously work with AIMMS. You can get the Academic License in here [14].

Fig. 2.1: Declaration of identifiers
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2.3 Sets, Parameters, Variables and Constraints

In order to successfully create an optimization model, one has to be able to define
variables and describe relations between these variables in a form of equalities or
inequalities.

Fig. 2.2: Parameter declaration

In AIMMS the declaration of new variables, sets, parameters, constraints, etc.
is done either via the graphical interface, as shown in the figures 2.1 and 2.2, or
directly writing the source code (like in GAMS):

DECLARATION SECTION

PARAMETER:
identifier : newparameter
definition : 50 ;

ENDSECTION ;

These declarations are fairly straight forward and natural, so we will omit a
more detailed walk through. However, there are some special features regarding
the declaration of sets that will be used throughout our programs, so we decided to
highlight them:

• The function ElementRange lets us create a set of elements with sequential
character, e.g. subsets of integers with fixed distance between each element
(2.3).

• Every new set can be handled like a subset of some of the predefined sets.
These in addition to others contain Integers, which will get handy when work-
ing with flow control statements. But most importantly we can define our
set as a subset of AllVariables or AllConstraints. This allows use to split
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Fig. 2.3: Set declaration - ElementRange

the AIMMS program into several separate programs, i.e. we can choose the
variables and constraints that are going to be used in creating certain math-
ematical programme (see next section). This will end up being extremely
useful in construction of the L-shaped method (section 1.8) and in our effort
to compare different techniques for solving stochastic programmes.

For more informations about declaration of different identifiers and set procedures
see [4], [2] and [5].

2.4 Mathematical Programmes

Once we have all our variables and constraints fully describing the problem we are
about to solve, we can construct a mathematical programme, i.e. we identify the
objective function, the direction of optimization and sets of constraints and variables
we want to include. Moreover we can inform the solver about the type of our problem
as shown in the figure 2.4.

Now, the easiest way of solving this mathematical programme is simply to write
a procedure with a solve statement and a name of the mathematical programme:

PROCEDURE
identifier : Procedure_1
body :

solve mathprog;

ENDPROCEDURE ;

The solution of our mathematical programme can be observed in the Math Program
Inspector (Tools-Diagnostic Tools-Math Program Inspector).
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We will use the solve statement quite rarely since it does not offer as much flexibility
as working with the GMP library. But we will get to that later on.

Fig. 2.4: Mathematical programme

2.5 The GMP Library

With every mathematical programme declared as part of our model, the GMP
library allows us to associate one or more Generated Math Program instances
(GMPs), and with each GMP:

• a conceptual matrix of coefficients that can be manipulated,
• a repository of initial, intermediate or final solutions, and
• a pool of local or remote solver sessions.
There is an extensive amount of procedures in the GMP library. All these pro-

cedures are profoundly described in [4] and [2]. These procedures help us manage
and adjust our mathematical programmes and solver sessions in such a way, that we
are able to program solution algorithms. We are going to pinpoint just those that
were crucial in constructing our solution algorithms:

• GMP::Instance::Generate generates a mathematical programme instance
from a symbolic mathematical programme.

• GMP::Instance::CreateSolverSession creates a new solver session for a
generated mathematical programme.

• GMP::Solution::RetrieveFromModel stores the solution from the model
identifiers into the solution repository of a generated mathematical programme.

• GMP::Solution::SendToSolverSession initializes a solver session with the
values in the solution from the solution repository of a generated mathematical
programme.
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Fig. 2.5: Concepts associated with a GMP

• GMP::SolverSession::Execute invokes the solution algorithm to solve the
mathematical programme for which it had been generated.

• GMP::SolverSession::AsynchronousExecute invokes the solution algo-
rithm to asynchronous solve a generated mathematical programme by using a
solver session.

• GMP::SolverSession::WaitForCompletion has a set of objects as its in-
put. The set of objects may contain solver sessions that are asynchronous
executing and events. This procedure lets AIMMS wait until all the solver
sessions have completed their asynchronous execution and all the events get
activated.

• GMP::Solution::RetrieveFromSolverSession stores the solution from a
solver session into the solution repository of a generated mathematical pro-
gramme.

• GMP::Solution::SendToModel initializes the model identifiers with the
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values in the solution from the solution repository of a generated mathematical
programme.

• GMP::SolverSession::GetProgramStatus returns the program status of
the last execution of a solver session.

• GMP::Instance::DeleteSolverSession deletes the specified solver session.
• GMP::Instance::Solve starts up a solver session to solve a generated math-

ematical programme. In addition, it copies the initial solution from the model
identifiers via solution 1 in the solution repository and stores the final solution
via solution 1 back in the model identifiers. This procedure is an equivalent of
the solve statement, it takes all the necessary steps to solve the mathematical
programme (e.g. creating solver sessions), but it does not allow us to choose
asynchronous execution.

• GMP::Row::Add adds an empty row to the matrix of a generated mathe-
matical programme.

• GMP::Coefficient::Set sets the value of a (linear) coefficient in a generated
mathematical programme.

• GMP::Row::SetRightHandSide changes the right-hand-side of a row in a
generated mathematical programme.

• GMP::Row::SetType changes the type of a row in the matrix of a generated
mathematical programme.

2.6 Particular Solver Settings

In order to successfully implement the L-shaped method we must adjust settings of
the solvers we use Fig. 2.6. These adjustments included:

• Disabling presolves and enabling the computation of unbounded rays, which
allows us to compute the simplex multipliers in case of an unbounded solution.

• Setting the thread limits to 2, since we worked with a 2 core computer.
• Choosing the deterministic approach in parallel computation. The default

value of this setting is opportunistic and leads to different results, but reaches
them significantly faster. For more information on this topic see [16].

2.7 Miscellaneous

There are several features of AIMMS that we would like to mention, but we do
not feel like writing an entire section about each of these. Therefore, we decided
to summarize them in this section. There are, of course, a lot more features and
procedures in AIMMS that we do not have the chance to mention. If anyone is
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Fig. 2.6: Solver settings

interested in deeper undestanding of AIMMS we encourage them to delve into the
manuals [2], [3], [4] and [5].
Data cases: This feature allows us to solve different problems with the same model.

We can save particular values of the model parameters into separate cases and
work with these cases without any need to construct a whole new model.

GAMS compatability: If we already have a model description done in GAMS,
we can avoid reformulation the whole thing to AIMMS simply by importing
the GAMS source code into AIMMS. This is done by selecting the text file
with the GAMS source code in File-Open-Model and running the compiler.

Data import from Excel: Another nice feature is that we can avoid filling the
values of parameters in AIMMS altogether by importing them from an Excel
file (or other supported database file).

Embedded stochastic optimization procedures: There are procedures already
contained in AIMMS that deal directly with stochastic programming. These
use the GMP library and as we the Scenario Generation Module to create
and solve stochastic programmes. However, as we will discover later on, these
procedures do not offer any significant simplification nor do they speed up the
solution process.
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3 THE GENERAL TWO-STAGE LINEAR PRO-
GRAM

In this chapter, we are going to exploit the possibilities enabled by the AIMMS’
programming language and GUI. We will use the properties of the classic formula-
tion of the two-stage stochastic linear programme (1.5) to create a general AIMMS
program (from now on we will call it the General Program) for solving these kind
of problems.

The purpose of the General Program is to design an easy and end-user friendly
way of filling all the necessary parameters of one’s model (taking in account the fact
that the modelled problem itself must have a two-stage linear structure).

Fig. 3.1: Page 1

The end-user should be able to work with this program without any (or close
to none) knowledge of the programming language of AIMMS. Although naturally
some understanding of stochastic programming is still required.

Let us once more look at the equation describing the scenario representation of the
two-stage linear stochastic programme with fixed recourse:

min 𝑧 = c𝑇 x + ∑︀
𝑠∈𝑆 𝑝𝑠q𝑇

𝑠 y𝑠

s.t. Ax = b,

T𝑠x + W𝑠y𝑠 = h𝑠, 𝑠 = 1, . . . , 𝑆,

x ≥ 0, y𝑠 ≥ 0, 𝑠 = 1, . . . , 𝑆.

(3.1)
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The most important factors in making a general program are the dimensions of
the vectors (c, x, q, y𝑠, b, h𝑠), the sizes of the matrices (A, T𝑠, W𝑠) and number of
scenarios (𝑆). These factors and their relations can be described in the following
way:

• Number of scenarios: 𝑆.
• Number of first stage variables: dim x = dim c = number of columns of A =

number of columns of T𝑠, 𝑠 = 1, . . . , 𝑆.
• Number of first stage conditions: dim b = number of rows of A.
• Number of second stage variables: dim y𝑠 = dim q𝑠 = number of columns of

W𝑠, 𝑠 = 1, . . . , 𝑆.

• Number of second stage conditions: dim h𝑠 = number of rows of T𝑠 = number
of rows of W𝑠, 𝑠 = 1, . . . , 𝑆.

We will neglect the dependence of these numbers on different scenarios. Instead
of taking values for all the scenarios, we only consider their maximums. If, for
some scenario, is this maximum bigger than the actual value, we just put the extra
parameters in the respective vectors and matrices to 0. This will help us to simplify
the model a bit; we exchange the need for 2 more numbers for each scenario for a
need to fill zeroes in certain places.

Fig. 3.2: Page 2

Another slight adjustment of the original programme (3.1) is that the equalities
in the conditions will be replaced by inequalities - namely by less that equal. The
reason for this is that in order to use equalities we would need to introduce the
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concept of slack variables (see [11]). This replacement is enabled due to the fact
that every equality can be written as 2 inequalities, that have the same coefficients
but differ in signs ≤ and ≥. Moreover every inequality can change its sign from one
to another just by multiplying all the coefficients by −1.

These two procedures allow us to design a structure of any two-stage linear
stochastic programme given just by the 5 values described above. Since everything
is written as general as possible, and we took care of the inconveniences hidden in the
equalities and scenarios, we are able to write the AIMMS mathematical programme
with ease.

Fig. 3.3: Page 3

After this it is a simple matter of filling up all the vectors and matrices with
desired coefficients. We created a graphical environment, in which the end-user can
simply fill and adjust all parameters of the model and potentially solve it just by a
click on a button. This environment is shown in Fig. 3.1, 3.2 and 3.3.

Notice the parameter DesignedProbability in Fig. 3.2. Here, the user inserts the
probabilities of each scenario. These do not have to add up to 1, since AIMMS will
automatically rescale them in a way that they do add up to 1. This allows us to
avoid writing numbers like 1

7 if we have 7 scenarios, all with the same probability,
and instead write just 1 everywhere.

The solution process used for solving this problem uses embedded procedures in
AIMMS that are designed to deal with stochastic programmes, that are either linear
or mix-integer linear programmes. These are closely described in [4].
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In the following section, we will show the usage of this General Program on a
very well known example.

3.1 The Farmer Example

We will use the notorious farmer example (see [6]) to describe the functionality of
the General Program more closely. Moreover, we will expand our General Program
by adding procedures that address generating random numbers (depending on given
distribution), which is going to help us solve the kind of problems, that instead of
giving us set of possible scenarios give us just information about the distribution of
some parameters. We shall solve these problems via sample average approximation
(1.10).

3.1.1 Problem Formulation

Consider a farmer, who specializes in raising three crops: wheat, corn, and sugar
beets. During the winter, he needs to decide how much land, from his 500 acres
field, he should devote to each crop, in order to maximize his profit. In other words,
how many acres of land should he devote to grain, corn and sugar beets?

The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are
needed to feed his cattle. These amounts can be raised on the farm or bought from
a wholesaler, whose prices are naturally high compared to the price, at which is
the farmer able to produce his own crops. Any production in excess of the feeding
requirement would be sold.

Selling prices are $170 and $150 per ton of wheat and corn, respectively. The
purchase prices are 40% more than this due to the wholesaler’s margin and trans-
portation costs.

The third profitable crop, sugar beet, is sold at $36/T; however, the government
imposes a quota on sugar beet production. Any amount in excess of the quota can
be sold only at $10/T. The farmer’s quota for next year is 6000 T.

The uncertainty of this problem lies in the weather conditions, that significantly
affect the yields of each crop.

Most crops need rain and moisture at the beginning of the planting period, then
a lot of sunshine with occasional rain. Sunshine and dry weather is also important
during the harvesting period. Due to the above requirements, the yields depend on
the weather during the whole planting period.
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We will address this problem by modelling uncertainty in the crop’s yields via sce-
nario representation (with respect to given scenarios) and sample average approxi-
mation (with respect to given distribution function). Moreover, in order to use the
general AIMMS program, we need to reformulate the problem from maximization
to minimization one. This is done by simply changing the signs of elements in the
vectors c and q in (3.1).

3.1.2 Scenario Representation Approach

Assume, we asked an expert to give us some possible scenarios for the yields, de-
pending on weather. This expert then gave us these three scenarios: mean yields for
the ordinary weather (scenario 𝑠1), profitable yields when the weather is favourable
(scenario 𝑠2), and lower yields when the weather is unfavourable (scenario 𝑠3). The
probabilities of all the scenarios are equal (𝑝1 = 𝑝2 = 𝑝3 = 1

3). All data and param-
eters are given in the following table:

Parameter Wheat Corn Sugar beet
Profitable yield [T/ac] 3 3.6 24
Mean yield [T/ac] 2.5 3 20
Lower yield [T/ac] 2 2.4 16
Planting cost [%/ac] 150 230 260

Selling price [%/T] 170 150
36 under 6000 T
10 over 6000 T

Purchase price [%/T] 238 210 not important
Requirement for feeding [T] 200 240 0

It can be observed, that this model has the two-stage linear structure. This means
that there are two decision moments, when the farmer has to decide.

The first one being in winter, when he has to determine how to parcel his land
for each crop for the next year. This decision must be taken with no information
about future weather (apart from the three possible scenarios). We call this the first
stage decision.

The second decision moment comes in place after the realization of the random
variable (the weather condition), after the harvest. Now, the farmer has to decide
what amount of crops he should sell or buy to fit the feeding requirement and make
maximum profit.

We will use the following notation for the model variables:
• 𝑥1: acres devoted to wheat,
• 𝑥2: acres devoted to corn,
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• 𝑥3: acres devoted to sugar beet,
• 𝑦𝑠

1: tons of wheat purchased, 𝑠 = 1, . . . , 3,
• 𝑦𝑠

2: tons of wheat sold, 𝑠 = 1, . . . , 3,
• 𝑦𝑠

3: tons of corn purchased, 𝑠 = 1, . . . , 3,
• 𝑦𝑠

4: tons of corn sold, 𝑠 = 1, . . . , 3,
• 𝑦𝑠

5: tons of sugar beet sold under quota, 𝑠 = 1, . . . , 3,
• 𝑦𝑠

6: tons of sugar beet sold over quota, 𝑠 = 1, . . . , 3,
• 𝑧: expected profit.

Fig. 3.4: First stage part, land requirements

And following notation for the parameters (and their values):
• 𝑐1: planting cost of wheat (= 150),
• 𝑐2: planting cost of corn (= 230),
• 𝑐3: planting cost of sugar beat (= 260),
• 𝑞1: purchasing price of wheat (= 238),
• 𝑞2: selling price of wheat (= -170),
• 𝑞3: purchasing price of corn (= 210),
• 𝑞4: selling price of corn (= -150),
• 𝑞5: selling price of sugar beet sold under quota (= -36),
• 𝑞6: selling price of sugar beet over under quota (= -10),
• 𝑡𝑠

1: yield of wheat, 𝑠 = 1, . . . , 3 (= {2.5, 3, 2 }),
• 𝑡𝑠

2: yield of corn, 𝑠 = 1, . . . , 3 (= {3, 3.6, 2.4 }),
• 𝑡𝑠

3: yield of sugar beet, 𝑠 = 1, . . . , 3 (= {20, 24, 16 }),
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• 𝑝𝑠: probability of scenario 𝑠 (= 1
3).

Now we can write down the equations describing our model:

min 𝑧 = c𝑇 x + ∑︀
𝑠∈𝑆 𝑝𝑠q𝑇

𝑠 y𝑠

s.t. ∑︀3
𝑖=1 𝑥𝑖 ≤ 500,

𝑡𝑠
1𝑥1 + 𝑦𝑠

1 − 𝑦𝑠
2 ≥ 200, 𝑠 = 1, . . . , 3,

𝑡𝑠
2𝑥2 + 𝑦𝑠

3 − 𝑦𝑠
4 ≥ 240, 𝑠 = 1, . . . , 3,

𝑡𝑠
3𝑥3 − 𝑦𝑠

5 − 𝑦𝑠
6 ≥ 0, 𝑠 = 1, . . . , 3,

𝑦𝑠
5 ≤ 6000, 𝑠 = 1, . . . , 3,

x ≥ 0, y𝑠 ≥ 0, 𝑠 = 1, . . . , 3.

(3.2)

Fig. 3.5: Second stage part, equations guarding production and consumption

The first inequality states that we cannot plant crops on more that 500 acres
of land. The second and third ones stand as the feeding requirements. The fourth
inequality ensures that we do not sell more sugar beets than we produce and the
fifth one shows the impact of the quota on sugar beets. The last one is a safe
guard against impossible solutions (i.e. we plant a negative amount of acres with
wheat,. . . ).

We are almost ready to rewrite the problem into our AIMMS general model. The
last step that remains is to change all the inequalities with ≥ to ≤ :
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−𝑡𝑠
1𝑥1 − 𝑦𝑠

1 + 𝑦𝑠
2 ≤ −200, 𝑠 = 1, . . . , 3,

−𝑡𝑠
2𝑥2 − 𝑦𝑠

3 + 𝑦𝑠
4 ≤ −240, 𝑠 = 1, . . . , 3,

−𝑡𝑠
3𝑥3 + 𝑦𝑠

5 + 𝑦𝑠
6 ≤ 0, 𝑠 = 1, . . . , 3.

As we stated before in the section about the AIMMS General Program, the most
important numbers to create the model are these: number of scenarios, number
of first stage variables, number of first stage conditions, number of second stage
variables and number of second stage conditions. In our case these take the following
values:

• number of scenarios = 3,
• number of first stage variables = 3,
• number of first stage conditions = 1,
• number of second stage variables = 6,
• number of second stage conditions = 4.

We do not need to take into consideration the nonnegativity constraints, since they
are already embedded in our AIMMS general model.

Now we can finally proceed to transfer our farmer problem into the AIMMS general
model, as shown in Fig. 3.4 and 3.5.

In the Fig. 3.6 we can observe the optimal solution to our farmers problem.
This consists of the optimal first stage decision, in the x.Stochastic part of the table
(same for all the scenarios), and the optimal strategies in individual scenarios, in
the y.Stochastic part. The last part of the table shows the value of the objective
function in individual scenarios and the weighted mean of these values, which is the
optimal value of the objective function of our farmer’s problem. In other words, we
advise the farmer to plant 170 acres with wheat, 80 acres with corn and 250 acres
with sugar beet. The expected profit is going to be 108390$.
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Fig. 3.6: Results and optimal strategies

3.1.3 Sample Average Approximation Approach

Imagine, we asked a different expert, than the one from the previous section, and
he told us, that the yield is a continuous random variable. To illustrate this, let us
assume that the yield can be appropriately described by a uniform random variable,
inside some range [𝑙, 𝑢]. All other parameters of the model remain the same, so we
will not mention how to deal with them again.

For the sake of comparison, we may take 𝑙 to be 80% of the mean yield and 𝑢 to
be 120% of the mean yield (as given in the previous section), so that the expectations
for the yields will be the same as in the previous section. This random yield applies
to all the crops at once, i.e. in our sample average approximation will be the mean
yield for every crop multiplied by a number from [0.8, 1.2] in each generated scenario.

Our goal, now, is to generate a certain number (𝑁) of scenarios that will obey this
distribution requirement and incorporate these scenarios into our General Model.
Luckily, AIMMS supports a wide variety of functions that generate random numbers,
based on given distribution (see [4]). For our purpose serves the Uniform(min,max)
function.

We use this function to generate a 𝑁 × 1 vector of random numbers from Uni-
form(0.8,1.2) and, for each scenario, multiply the appropriate values of T𝑠 (in our
case the whole matrix T𝑠) with a corresponding value from our random vector. Since
the rest of the second stage parameters (W𝑠, h𝑠 and q𝑠) remain for each scenario
unchanged, we can proceed in creating a procedure, that will fill up the vectors and
matrices of our General Model with appropriate coefficients. This procedure is a bit
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Fig. 3.7: Scenarios generated by distribution

longer so we will not present it here, however, it can be found in the source code
appendix.

In our case we generated 𝑁 = 10000 scenarios (shown in Fig. 3.7) and solved the
problem. The results are shown in Fig. 3.8. We can, again, observe the optimal first
stage decisions in x.Stochastic: devoting 137.6 acres to wheat, 84.7 acres to corn
and 277.7 acres to sugar beet; the recourse actions in y.Stochastic and the expected
profit of 112225$.

Fig. 3.8: Results of the sample average approximation
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3.1.4 Extension: Distribution Analysis

As we created the model using sample average approximation approach, some very
natural questions arrived: What if the bounds of the distribution were different?
What if the distribution itself is different from the one we used? How does a slight
change of the distribution affect the optimal solution?

Fig. 3.9: Change in uniform distribution and distribution analysis

All these questions are addressed in the last page of our program (Fig. 3.9 and
Fig. 3.10). Here, the end-user is enabled to change the parameters of the uniform
distribution (lower and upper bound), choose the number of scenarios and create
his own sample average approximation, and see how it changes the results.

Or he can choose normal distribution instead, decide on its parameters (mean
and deviation), and see how this change in distribution alters the results. (Just
to clarify: the procedure guarding these manipulations creates a vector of random
numbers from desired distribution, multiplies the mean yield with numbers from
this vector and creates scenarios.)

On the right-hand side of the page, there is the section dealing with the last
question about slight changes in parameters of the distribution. The end-user can
observe the effects of increasing a distribution parameter on the optimal expected
value. The tables and graphs on this page are self-explanatory.
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Fig. 3.10: Change in normal distribution and distribution analysis

3.2 Extension: Solution Methods

As we stated earlier, the solution method used for solving our General Program is
the one that is embedded in AIMMS. In addition to this one we decided to program
another solution methods. These methods consist of the L-shaped method (the
Benders decomposition) - its single and dual-core version, the progressive hedging
algorithm (both described in the chapter 1) and the last algorithm, that simply solves
the problem in the form 1.17; this last algorithm is basically the simplex method (or
its variation used by the solver) and since it does not utilize the particular structure
of the two-stage linear programme, we shall denote it as the Naive algorithm. The
source codes of these solution method are quite extensive and can be found in the
appendix; we decided to briefly describe the crucial parts of the source code for
single core Benders decomposition (as described in section 1.8.2), to give the reader
at least some insight into its AIMMS implementation.

First of, we generate and solve the master problem:

MasterGMP:=GMP::Instance::Generate(master);
...
GMP::Instance::Solve(MasterGMP);

Then, we start solving the subproblems, generated by scenarios:

SubGMP:=GMP::Instance::Generate(subprog);
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GMP::Instance::Solve(SubGMP);
solstatus:=GMP::Solution::GetProgramStatus(SubGMP, 1);

If we detect an unbounded solution, we break the cycle, that solves the subproblems,
and compute appropriate coefficients:

if solstatus = ’Unbounded’ then
zsubsol(sb):=zsub;
usol(sb,ssc):=u(ssc);
FeasF(is):=sum(ssc,u(ssc)*Tsub(ssc,is));
FeasSmallF:=sum(ssc,u(ssc)*hsub(ssc));
break;
endif;

If we detect an infeasible solution, we break the procedure altogether and stop:

if solstatus = ’Infeasible’ then
Errorstatus:="Infeasibility";
break;
endif;

After the solving of subproblems ends (either by a detection of unbounded/infeasible
solution or by completing the solution process of all the subproblems), we check for
the solution status of the last subproblem.

If the solution status was unbounded, we update the matrices of the master
problem (and, thus, generate a feasibility cut) and repeat:

if solstatus = ’Unbounded’ then
GMP::Row::Add(MasterGMP,addconst(lastIterSet));
for (is) do
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),FeasF(is));
endfor;
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,0);
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet),FeasSmallF);
endif;

If the last solution status was optimal, then all of the subproblems have optimal
solution. If the following condition is satisfied, we arrived at the optimal solution of
the whole problem and stop:

if solstatus = ’Optimal’ then
OptD(is):=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)*
sum(ssc,-usol(sb,ssc)*Tinput(sb,ssc,is)));
OptSmallD:=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)*
sum(ssc,-usol(sb,ssc)*hinput(sb,ssc)));
if theta+epsilon>=OptSmallD - sum(is,xsol(is)*OptD(is)) then
solutionstatus:="solution found";
errorval:=OptSmallD - sum(is,xsol(is)*OptD(is)) - theta;
break;
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Fig. 3.11: Page devoted to different solution methods.

And if not, we generate an optimality cut and repeat:

else errorval:=OptSmallD - sum(is,xsol(is)*OptD(is)) - theta;
GMP::Row::Add(MasterGMP,addconst(lastIterSet));
for (is) do
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),OptD(is));
endfor;
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,1);
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet),OptSmallD);
GMP::Row::SetType(MasterGMP,addconst(lastIterSet),’>=’);
endif;

The progressive hedging algorithm is mainly designed for solving convex prob-
lems and is not well-suited for simple linear problems. It does not utilize the ad-
vantage of linearity in the case of scenario-based linear programme, as the solved
scenario-related programme contains an additional quadratic term that ruins the
linearity. In spite of this fact, we chose to incorporate this solution method because
our General Program can be very easily modified (by adding constraints and/or
adding terms in the objective function) to be a convex programme.

To compare these solution methods we programmed a stopwatch procedure (see
[15]) that measures the time it took the given method to reach the optimal solution.
We also designed one page in the GUI to summarize the results obtained by different
solution methods (Fig. 3.11). The source code of this program can be found in
Appendix 2.
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3.2.1 Results comparison

The aim of this section is to compare the used solution methods. For this purpose we
generated in our General Program several linear programmes of a different size and
observed how fast did the methods reach the optimum. We will omit the progressive
hedging algorithm from the full comparison, since it is not designed for solving linear
programmes (it does solve them, but the amount of time it takes is rather large).

First of all, we let all the algorithms solve the original farmer’s problem, as presented
in section 3.1.2. The results (computational times) are presented in the following
table:

algorithm computational time
Embedded 0.02
Naive 0.02
Benders: single core 0.48
Benders: dual core 0.46
Progressive hedging 5.28

From these results it is fairly obvious, that the progressive hedging algorithm is not
very well suited for these kinds of problems.

For further comparison, we decided to test the speed of our algorithms on ran-
domly generated problems (we have used the straightforward and internal support
of AIMMS for random number generation). Furthermore, we decided to find out
how does the size of the second stage part of the two-stage linear programme affect
the computational times of the presented algorithm. However, it is not our goal to
give a thorough statistical insight into this problematic; we just want to gain primal
knowledge of this phenomena and leave a profound analysis for our future studies.
We constructed the problems as follows:

• number of first stage variables = 10,
• number of first stage conditions = 5,
• A = Round(Uniform(0.3,1)),
• b = Uniform(1000,2500),
• c = Uniform(-4500,-3700),
• T = Uniform(50,100),
• W = Uniform(7,20),
• h = Uniform(700,1500),
• q = Uniform(-300,-180).
The other three parameters, namely, a number of second stage conditions, a

number of second stage variables and a number of scenarios, will vary for each
programme. We chose 2 values for the number of scenarios: 200 and 500. The
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number of second stage conditions and the number of second stage variables will
be both from {50, 60, 70, 80, 90, 100}, for the problems with 200 scenarios, and from
{20, 30, 40, 50}, for the problems with 500 scenarios.

All the inequalities are chosen to be of a ≤ type and all the parameters are
chosen in such a way, that there always exists an optimal solution. This is easy to
see, since a zero solution (i.e. a solution where all the variables are zero vectors) is
a feasible solution.

To summarize, the comparison process looks like this:
• We choose a number of scenarios, a number of second stage conditions and a

number of second stage variables.
• We generate the vectors and matrices.
• We run all our algorithms on this generated problem and find the amount of

time it took the specific algorithm to find optimum.
The results of this comparison are presented in the following tables and figures.
First for the problems with 200 scenarios:

200 scenarios - Naive algorithm
# of second # of second stage conditions

stage variables 50 60 70 80 90 100
50 26.46 39.12 79.38 151.11 41.88 103.48
60 43.3 64.4 96.54 73.81 89.55 45.15
70 39.01 44.85 98.62 63.9 163.69 219.39
80 97.38 67.24 143.79 141.52 98.27 108.3
90 49.09 84.02 98.39 208.52 175.79 136.89
100 53.45 49.51 102.42 184.66 66.41 308.59

200 scenarios - Embedded algorithm
# of second # of second stage conditions

stage variables 50 60 70 80 90 100
50 25.92 39.21 80.57 147.57 41.54 98.38
60 42.55 64.97 95.92 74.83 89.1 45.64
70 39.34 41.78 100.1 65.19 186.54 212.85
80 91.9 68.45 140.99 144 99.58 108.31
90 46.85 84.92 98.72 211.85 176.56 124.32
100 69.83 51.27 96.92 184.58 67.15 327.13
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Fig. 3.12: Graph: 200 scenarios, 60 second stage conditions

200 scenarios - Benders decomposition: single core
# of second # of second stage conditions

stage variables 50 60 70 80 90 100
50 90.38 70.15 79.64 84.9 44.76 110.3
60 112.15 86.12 77.44 87.47 77.54 68.67
70 172.16 81.66 102.64 82.57 72.47 131.57
80 118.43 109.45 63.19 87.39 55.82 101.5
90 79.48 138.98 93.92 121.91 88.87 100.69
100 50.58 92.28 65.06 75.21 96.18 117.73

200 scenarios - Benders decomposition: dual core
# of second # of second stage conditions

stage variables 50 60 70 80 90 100
50 52.03 66.69 74.43 80.47 42.73 94.91
60 57.31 80.07 71.2 82.13 71.15 64.52
70 83.38 77.01 96.34 79.19 69.59 125.81
80 79.65 101.39 59.05 82.1 54.21 97.14
90 75.03 130.44 89.38 114.25 85.09 94.63
100 43.95 86.72 61.79 74.75 95.36 112.45

And here for the problems with 500 scenarios:
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Fig. 3.13: Graph: 200 scenarios, 100 second stage conditions

Fig. 3.14: Graph: 200 scenarios, 80 second stage variables
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500 scenarios - Naive algorithm
# of second # of second stage conditions

stage variables 20 30 40 50
20 94.56 101.96 88.26 230.43
30 74 113.93 123.94 361.59
40 57.72 100.36 81.06 208.51
50 27.94 103.25 126.2 119.87

500 scenarios - Embedded algorithm
# of second # of second stage conditions

stage variables 20 30 40 50
20 93.81 100.48 82.85 234.09
30 62.8 114.6 122.75 358.48
40 66.74 103.54 82.88 207.11
50 28.42 102.42 129.17 126.98

500 scenarios - Benders decomposition: single core
# of second # of second stage conditions

stage variables 20 30 40 50
20 94.81 94.03 182.88 132.19
30 106.53 114.35 161.52 125.38
40 86.81 176.75 147.26 100.54
50 92.98 49.93 154 118.57

500 scenarios - Benders decomposition: dual core
# of second # of second stage conditions

stage variables 20 30 40 50
20 92.62 89.85 174.19 124.08
30 112.03 107.77 152.6 125.28
40 80.06 162.41 154.02 99.84
50 88.24 48.39 149.14 115.96

From the results above, we deduce that (at least for our generated problems) the
Naive algorithm and the AIMMS Embedded algorithm are basically the same algo-
rithm. We can, also, notice that the parallelization done in the dual core version
of the Benders decomposition offers a slight, but noticeable, improvement in the
computing time. On the other hand, the results of the comparison between the
Naive algorithm and the Benders decomposition (either dual or single core version)
are not very clear. Each of these algorithms performed better than the other one
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Fig. 3.15: Graph: 500 scenarios, 20 second stage conditions

Fig. 3.16: Graph: 500 scenarios, 50 second stage conditions

Fig. 3.17: Graph: 500 scenarios, 40 second stage variables
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at some problems. However, we only generated one instance for each configuration
so any conclusions we make may end up being premature. Generally speaking, as
the problem grows in size, the Benders decomposition should be faster than our
Naive algorithm. Another important factor is the particular structure of the gener-
ated problems, that we chose to test our algorithms on. This dependence remains
unknown for us and hopefully will be a part of our future studies.
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4 REAL-LIFE EXAMPLE: AN INCINERATION
PLANT

The task is to model the waste-to-energy process of an incineration plant, opti-
mize this process and determine the parameters of its most important components,
namely a steam turbine or a boiler, as an important part of the incinerator. In fact,
also the capacity of incinerator can be optimised in the similar way. The focus is on
the simplified model that may easily utilize AIMMS user interface and may help to
give a rough estimate for the incinerator optimal design. It also allows visualization
of the function 𝒬(x) in 1.7.

4.1 The Incineration Process

Incineration is a waste treatment process that consists of the combustion of organic
substances, contained in waste materials.

The heat, produced by a boiler, is used to generate steam which is then used to
drive a steam turbine and, thus, produce electricity. Other option for the usage of
this steam is district heating (industrial or municipal). More can be found in ([19],
[9]).

Our incineration plant deals with burning a municipal solid waste (MSW), which
is a waste type consisting of everyday items that are discarded by the public. The
composition of this waste varies throughout the year and its lower heating value
(LHV), i.e. the amount of heat we are able to get from a certain quantity of the
material by burning it, changes randomly. We want to optimize the waste-to-energy
process for 24 years.

The technological process of the incineration plant (Fig. 4.1) can be described as
follows:

1. MSW, that was transported to the plant, is stored and regularly mixed. This
ensures that the structure of the waste is roughly the same throughout a day.

2. The waste is moved by a feeding unit into a firing grate and is burned. The
heat generated by the combustion heats up water inside a boiler and turns
this water into a steam.

3. The steam is, then, run through a steam turbine and generates electricity.
4. The steam that has not been used for generating electricity either goes to other

technological processes or heats up water, that will end up in district heating.
5. The slag that remains after burning is decomposed into ashes and metals and

can be used in other processes.
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Fig. 4.1: The technological process of the incineration plant. [17]

6. Separation of gases and vapour takes place; this treatment reduces the pollu-
tant emissions to the atmosphere.

4.2 Simplified Problem Formulation

We will present here a profound insight into a model that is the simplest possible one,
however, it is still approximately suitable for the introduced incineration problem.
After that, we will show that AIMMS is useful even without its optimization tools.

The goal is to determine the size of a boiler. The objective function comprises of
the investment cost of the boiler (linearly depending on the boiler’s size) and the
recourse, which in this case is the amount of money that we will get from using that
boiler. Since we deal with stochastic programming, some of the problem parameters
will depend on a realization of the random vector (𝜉).

First of, we define our variables and parameters:
• variable 𝑥: the size of the boiler,
• variable 𝑦: the amount of energy (generated by the boiler) that we sell,
• parameter 𝑡(𝜉): energy transformation coefficient,
• parameter ℎ(𝜉): energy demand,
• parameters 𝑙, 𝑢: lower and upper bounds on the size of the boiler,
• parameter 𝑐: cost for a unit size of a boiler,
• parameter 𝑞(𝜉): cost of energy,
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We will proceed to define our stochastic programme as follows:

min 𝑧 = 𝑐 · 𝑥 + 𝒬(𝑥)
s.t. 𝑥 ∈ [𝑙, 𝑢].

𝒬(𝑥) = 𝐸𝜉𝑄(𝑥, 𝜉).
𝑄(𝑥, 𝜉) = min𝑦 𝑞(𝜉) · 𝑦

s.t. 𝑦 ≤ 𝑡(𝜉) · 𝑥,

𝑦 ≤ ℎ(𝜉),
𝑦 ≥ 0.

(4.1)

The randomness will be treated via scenarios (as shown in chapter 1). Given a
fixed number of scenarios 𝑁 (i.e. 𝜉𝑠: the realizations of the random vector 𝜉), our
problem becomes:

min 𝑧 = 𝑐 · 𝑥 + ∑︀𝑁
𝑠=1 𝑝𝑠𝑄(𝑥, 𝜉𝑠)

s.t. 𝑥 ∈ [𝑙, 𝑢].
𝑄(𝑥, 𝜉𝑠) = min𝑠∈𝑆 𝑞𝑠 · 𝑦𝑠

s.t. 𝑦 ≤ 𝑡𝑠 · 𝑥,

𝑦 ≤ ℎ𝑠,

𝑦 ≥ 0.

(4.2)

We have to emphasize the fact that 4.2 model is the simple version of real-world
models published in [10]. Its motivation was discussed with colleagues from ÚPEI
(Institute of Process and Environmental Engineering): Michal Touš, Radek Šom-
plák, Martin Pavlas and my supervisor, as the suitable tool for initial estimates of
the capacity of a boiler or an incinerator, before the advanced models are available.
The advantage of the model is that only aggregated data is needed and the user
can easily check whether the optimal capacity tends to boundary capacities/sizes or
interior point solution can be expected.

We shall, now, derive the solution for a particular realization of the random vector
𝜉, i.e. we will treat the random parameters as deterministic ones. (This corresponds
to solving the problem for only one scenario).

To obtain it we will firstly deal with the second stage problem:

𝑄(𝑥, 𝜉𝑠) = min 𝑞𝑠 · 𝑦𝑠

s.t. 𝑦 ≤ 𝑡𝑠 · 𝑥,

𝑦 ≤ ℎ𝑠,

𝑦 ≥ 0.

We can easily derive a relation between 𝑦 and 𝑥: 𝑦 ∈ [0, min(𝑡𝑠 · 𝑥, ℎ𝑠)]. We will
define a point �̂� as �̂� = ℎ𝑠/𝑡𝑠. Now, given that 𝑞 < 0, 𝑡𝑠 > 0, ℎ𝑠 > 0 (which are
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Fig. 4.2: Multiple scenarios case.

natural condition on the parameters), we obtain 𝑄(𝑥, 𝜉𝑠) = 𝑞 · min(𝑡𝑠 · 𝑥, ℎ𝑠). There
are three possible outcomes, depending on the position of �̂�:

• 𝑄(𝑥, 𝜉𝑠) = 𝑞 · 𝑡𝑠 · 𝑥 for �̂� ≥ 𝑢,
• 𝑄(𝑥, 𝜉𝑠) = 𝑞 · ℎ𝑠 for �̂� ≤ 𝑙,
• 𝑄(𝑥, 𝜉𝑠) = 𝑞 · 𝑡𝑠 · 𝑥 for 𝑥 ∈ [𝑙, �̂�] and 𝑄(𝑥, 𝜉𝑠) = 𝑞 · ℎ𝑠 for 𝑥 ∈ [�̂�, 𝑢]

Now, we focus on the first stage part:

min 𝑧 = 𝑐 · 𝑥 + 𝑄(𝑥, 𝜉𝑠)
s.t. 𝑥 ∈ [𝑙, 𝑢].

Once we take into account the results of the second stage, the overall results easily
emerge. We will denote the overall optimal solution as 𝑥* and obtain it as follows:

• if |𝑡𝑠 · 𝑞| > 𝑐 and �̂� ∈ [𝑢, 𝑙] then 𝑥* = �̂�,
• if |𝑡𝑠 · 𝑞| > 𝑐 and �̂� ≤ 𝑙 then 𝑥* = 𝑙,
• if |𝑡𝑠 · 𝑞| > 𝑐 and �̂� ≥ 𝑢 then 𝑥* = 𝑢,
• if |𝑡𝑠 · 𝑞| ≤ 𝑐 then 𝑥* = 𝑙.

This whole procedure was basically an effort to find a combination of values of
the problem parameters, that would lead to an optimal solution, which is not a
boundary value of the interval [𝑙, 𝑢]. Thus, our effort was successful since we found
such a combination.

In the case of multiple scenarios we were not able to arrive at any similar general
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results. We used AIMMS GUI to illustrate the process of obtaining the overall
objective function in the case of multiple scenarios (Fig. 4.2).

Moreover, we programmed the same procedure in MATLAB; we did this because
we feel that the MATLAB environment is more suited for this kind of computations
and, for anyone not completely familiar with AIMMS, even more user-friendly. Apart
from easy adjustment of the model parameters, it gives a graphical result as shown
in Fig. 4.3. The MATLAB program is enclosed in the appendix.

Fig. 4.3: Matlab implementation

4.3 Nonlinearity and Real Data

We asked our colleagues from Institute of Process and Environmental Engineering
(BUT) for some real data, regarding our incineration model. The data, we were
given, can be summarized in the following expressions:

• The task is to find the optimal capacity of a new boiler for an incineration
plant, whose lifespan is 24 years. The range of this capacity is between 50000
and 400000 tons per year. The objective function is comprised of costs (for
construction, maintenance, etc.) and earned money (from selling heat, ...).

• The function describing the cost of both constructing and running this boiler
was determined as:

cost = 2688000𝑥0.7,

where 𝑥 denotes the capacity of the boiler in tons.
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• Our incineration plant produces both heat and electricity. The relationship
between the capacity and the amount of produced heat and electricity is gov-
erned by the following inequality:

0.001𝑥 ≥ 0.2876 + 0.0126𝑦1 + 0.0828𝑦2,

where 𝑦1 and 𝑦2 are the amount of heat and electricity, respectively; their unit
is GWh

24 years .
• The incineration plant makes money by selling this heat and electricity and,

also, by charging the processing of municipal solid waste. The prices are going
to be treated as random parameters with the following properties:

– the price of 1 GWh of heat: 𝑞1 ∼ 𝑁(−1044000, 72000),
– the price of 1 GWh of electricity: 𝑞2 ∼ 𝑁(−1650000, 100000),
– the price of 1 ton of processed MSW: 𝑞3 ∼ 𝑁(−1500, 100),

where 𝑁(𝜇, 𝜎) stands for normal distribution.
• The amount of heat, we can produce, is restricted by demand (in GWh

24 years):
ℎ1 ∼ 𝑁(6000, 600).

• The amount of generated electricity is also restricted by (in GWh
24 years): ℎ2 ∼

𝑁(1000, 100).
• The amount of processed solid waste over the lifespan of the incineration plant

will be equal to 24 times the capacity of the boiler (i.e. we use the boiler to
its full potential). Since the price of this procedure is random, we will use an
additional variable 𝑦3.

First of, we need to deal with the nonlinearity in the function describing costs.
We approach this by constructing an outer approximation of this function. This
approximation is done via construction of tangents of the original function. Since
the cost function is concave, its tangents have their function value always ≥ than
the concave function itself.

We programmed an AIMMS implementation of this procedure; since it is not
the purpose of this text, we will omit any description and just present the results
for our problem in Fig. 4.4.

We decided to use for our approximation 2 tangent lines. The program gave us
the following results:

• 𝜏1(𝑥) = 56500𝑥 + 2879244000, for 𝑥 ∈ [50000, 190140],
• 𝜏2(𝑥) = 43000𝑥 + 5446954000, for 𝑥 ∈ [190140, 400000].
This allows us to split out problem in two linear problems. The first one with

𝑥 ∈ [50000, 190140] the cost function described as 𝜏1(𝑥) and the second one with
𝑥 ∈ [190140, 400000] the cost function described as 𝜏2(𝑥). These problems can be
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Fig. 4.4: Approximation of a concave function (blue) by 2 tangents (red).

summarized for a fixed number of scenarios 𝑁 , as follows:

min 𝑧 = 𝜏𝑘(𝑥) + ∑︀𝑁
𝑠=1 𝑝𝑠q𝑇

𝑠 y𝑠

s.t. 0.001𝑥 − 0.0126𝑦𝑠
1 − 0.0828𝑦𝑠

2 ≥ 0.2876, 𝑠 = 1, . . . , 𝑁,

𝑦𝑠
1 ≤ ℎ𝑠

1, 𝑠 = 1, . . . , 𝑁,

𝑦𝑠
2 ≤ ℎ𝑠

2, 𝑠 = 1, . . . , 𝑁,

24𝑥 − 𝑦𝑠
3 = 0, 𝑠 = 1, . . . , 𝑁,

𝑥 ∈ [𝑙𝑘, 𝑢𝑘], y𝑠 ≥ 0, 𝑠 = 1, . . . , 𝑁, 𝑘 = 1, 2,

where [𝑙1, 𝑢1] = [50000, 190140] and [𝑙2, 𝑢2] = [190140, 400000]. The optimal solution
of the whole problem will be determined as the best one of the two partial solutions.
We used our General Program to model and solve this problem; we chose to generate
100 scenarios for the random parameters. Without further ado, we present the
results:

• For 𝑥 ∈ [50000, 190140] the optimal capacity is �̂� = 93125 with objective
𝑧 = −7.85𝑒9.

• For 𝑥 ∈ [190140, 400000] the optimal capacity is �̂� = 247386 with objective
𝑧 = −8.4𝑒9.

Just for clarification, the negative value of the objective 𝑧 indicates that the incin-
eration plant is profitable. From this we gain the optimal capacity for the whole
problem 𝑥* = 247386 tons for year.
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CONCLUSION

In this master’s thesis we dealt with optimization and stochastic programming. We
described the basic tools of mathematical programming in Chapter 1; in the same
chapter, we presented the main ideas of stochastic programming along with the solu-
tion methods used for solving these stochastic programming problems. This chapter
laid the theoretical foundations for implementations and algorithms we constructed
in Chapter 3.

Chapter 2 served as the introduction to the optimization modelling software
AIMMS. We mentioned the crucial ideas and functions in AIMMS, that allowed us
to use the theoretical results from Chapter 1 and create stochastic programmes in
AIMMS.

The most important part of our work is contained in Chapter 3. Here, we com-
bined the theoretical results from stochastic programming with the functionality
of AIMMS. We constructed in AIMMS a general two-stage linear stochastic pro-
gram and an end-user interface, for this program. This program can be used for
solving any kind of two-stage linear stochastic problem. Moreover, we implemented
and compared several solution methods described in Chapter 1, namely, the sample
average approximation, the benders decomposition and the progressive hedging al-
gorithm. This comparison was carried out on generated problems of different size
and on the Farmer example.

In Chapter 4 we have shown that AIMMS is useful even without its optimiza-
tion tools and functions; we used its graphical interface to obtain the solution of a
simplified incineration problem.

We hope, that this text will be helpful to anyone, who is interested in stochastic
programming and, mainly, in the usage of AIMMS in dealing with stochastic pro-
gramming problems. We enclosed in the appendices all the constructed AIMMS
programs we described throughout the thesis.
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