
V Y S O K É U Č E N I T E C H N I C K E V B R N E
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ
ÚSTAV MATEMATIKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF MATHEMATICS

STOCHASTIC OPTIMIZATION IN AIMMS

DIPLOMOVÁ P R A C E
MASTER'S THESIS

AUTOR P R A C E Be. JAKUB KUDELA
AUTHOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

F A K U L T A STROJNÍHO INŽENÝRSTVÍ

ÚSTAV M A T E M A T I K Y

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF MATHEMATICS

STOCHASTIC OPTIMIZATION IN AIMMS

STOCHASTICKÁ OPTIMALIZACE V PROGRAMU AIMMS

DIPLOMOVÁ PRÁCE
MASTER'S THESIS

AUTOR PRÁCE
AUTHOR

VEDOUCÍ PRÁCE
SUPERVISOR

Be. JAKUB KUDELA

RNDr. PAVEL POPELA, Ph.D.

BRNO 2014

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav matematiky
Akademický rok: 2013/2014

Z A D Á N Í D I P L O M O V É P R Á C E

student(ka): Bc. Jakub Kůdela

který/která studuje v magisterském navazujícím studijním programu

obor: Matematické inženýrství (3901T021)

Ředitel ústavu Vám v souladu se zákonem č.l 11/1998 o vysokých školách a se Studijním a
zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Stochastická optimalizace v programu AIMMS

v anglickém jazyce:

Stochastic optimization in AIMMS

Stručná charakteristika problematiky úkolu:

Optimalizační přístupy hrají důležitou roli v řadě aplikačních oblastí. Navíc je často nutné řešit
zahrnutí neurčitosti do modelu. Stochastické programování pak představuje účinný nástroj pro
modelování a řešení rozhodovacích problémů v podmínkách neurčitosti. Optimalizační software
AIMMS, který není běžně používán na Vysokém učení technickém v Brně nabízí možnou podporu
pro řešení stochastických modelů. Student se proto zaměří na problémy podpory implementace
vybraných modelů a metod stochastické optimalizace v AIMMS.

Cíle diplomové práce:

Student prostuduje a uvede aktuální teoretické poznatky stochastického programování. Následně
vybere vhodné úlohy stochastického programování a zaměří se na formulaci modelů a návrhy
metod řešení. Implementace modelů a metod v AIMMS bude podstatnou částí diplomové práce.

A B S T R A C T
This master's thesis introduces the basic concepts of mathematical and, most impor­

tantly, stochastic programming. Moreover, it gives a description of the usage of the
software AIMMS in constructing and solving various optimization problems.
Our main goal is to program several methods for solving these stochastic programming
problems in AIMMS and show the usage and usefulness of these methods on chosen
problems. One of the problems we chose is an incineration plant model.
All the AIMMS programs, that we describe and use in our text, and their source codes
will be enclosed in the appendices.

K E Y W O R D S
optimization, stochastic programming, AIMMS, scenario­based programs, L­shaped
method, incineration

A B S T R A K T
Tato diplomová práce uvádí základní poznatky matematického a především stochastic­

kého programování. Navíc se zabývá použitím softwaru AIMMS při vytváření a řešení
optimalizačních problémů.
Naším hlavním cílem je naprogramovat v softwaru AIMMS několik metod řešení prob­

lémů stochastického programování a ukázat jejich použití a užitečnost na vybraných
problémech. Jedním z problémů, který jsme si zvolili, je model spalovny.
Všechny AIMMS programy, které v našem textu použijeme a popíšeme, a jejich zdrojové
kódy budou přiloženy v dodatcích.

KLÍČOVÁ SLOVA
optimalizace, stochastické programování, AIMMS, scénářové úlohy, metoda L­shaped,
spalovna

KŮDELA, Jakub Stochastic optimization in AIMMS: master's thesis. Brno: Brno Uni­

versity of Technology, Faculty of Mechanical Engineering, Institute of Mathematics,
2014. 65 p. Supervised by RNDr. Pavel Popela, PhD.

D E C L A R A T I O N

I declare that I have written my master's thesis on the theme of "Stochastic optimization

in AIM M S " independently, under the guidance of the master's thesis supervisor and using

the technical literature and other sources of information which are all quoted in the thesis

and detailed in the list of literature at the end of the thesis.

As the author of the master's thesis I furthermore declare that, as regards the creation

of this master's thesis, I have not infringed any copyright. In particular, I have not

unlawfully encroached on anyone's personal and/or ownership rights and I am fully aware

of the consequences in the case of breaking Regulation §11 and the following of the

Copyright Act No 121/2000 Sb., and of the rights related to intellectual property right

and changes in some Acts (Intellectual Property Act) and formulated in later regulations,

inclusive of the possible consequences resulting from the provisions of Criminal Act No

40/2009 Sb., Section 2, Head VI, Part 4.

Brno

(author's signature)

A C K N O W L E D G E M E N T

I would like to thank my supervisor, RNDr. Pavel Popela, Ph.D., for his valuable advices

and helpful comments.

My deepest gratitude goes to my family for their endless support and love.

Brno

(author's signature)

CONTENTS

Preface 8

1 Basic Not ions and Theoret ical Results 9
1.1 Mathematical Programming 9
1.2 Deterministic Programming 10
1.3 Stochastic Programming 10
1.4 Decisions, Stages and Recourse 11
1.5 Two-Stage Programme with Fixed Recourse 12

1.5.1 Basic Properties 13
1.6 Scenario Representations 15
1.7 Multistage Stochastic Programmes 16
1.8 The L-Shaped Method 18

1.8.1 Outer Linearization 18
1.8.2 Inner Linearization 20

1.9 Progressive Hedging Algorithm 21
1.10 Sample Average Approximation 23

2 A I M M S 26
2.1 About A I M M S 26
2.2 Licenses 27

2.2.1 Student License 27
2.2.2 Academic License 27

2.3 Sets, Parameters, Variables and Constraints 29
2.4 Mathematical Programmes 30
2.5 The G M P Library 31
2.6 Particular Solver Settings 33
2.7 Miscellaneous 33

3 The General Two-Stage Linear P rog ram 35
3.1 The Farmer Example 38

3.1.1 Problem Formulation 38
3.1.2 Scenario Representation Approach 39
3.1.3 Sample Average Approximation Approach 43
3.1.4 Extension: Distribution Analysis 45

3.2 Extension: Solution Methods 46
3.2.1 Results comparison 49

4 Real-life Example : A n Incineration Plant 56
4.1 The Incineration Process 56
4.2 Simplified Problem Formulation 57

4.3 Nonlinearity and Real Data 60

Conclus ion 63

Bib l iography 64

PREFACE
The future is not set. Every day we make decisions whose outcomes are unknown
to us and often depend on chance. Deterministic mathematical programming and
optimization help us determine what decisions to make, under given circumstances.
A downside of these approaches is that they are not well suited for problems that
contain uncertainty. This proves to be a major issue since the parameters in opti­
mization models (e.g. prices of certain products, demand, etc.) are in fact random
and evolve in time. These are the cases where stochastic optimization takes over.

The aim of this text is to give a description of the basics of stochastic pro­
gramming and to acquaint the reader with some of the methods used for solving
stochastic programmes (for clarification, we will use the word programme in the
context of optimization and the word program for software implementations). The
implementation of these solution methods will be done in a software called AIMMS,
that is designed for optimization modelling. The thesis will be divided into several
chapters.

Chapter 1 will be devoted to the introduction of deterministic and stochastic
programming. The main objective will be to thoroughly describe the two-stage
linear stochastic programme and support this description with a number of solution
methods suited for dealing with this particular kind of problem.

Chapter 2 will introduce the software A I M M S . We will cover the creation of
optimization programs in A I M M S as well as describe the usage of several impor­
tant features of A I M M S to show that it is a truly viable software, that is able to
successfully deal with stochastic programmes.

Chapter 3 focuses on practical implementation of the knowledge gained from
Chapter 2. We will construct a general two-stage linear stochastic program in
A I M M S that will allow the user to formulate and solve any problem of this kind
with ease. In addition to that we will program the methods for solving two-stage
linear stochastic programmes, that we described in Chapter 1, and we will give a
comparison of these solution methods. We will also show the usage of this general
program on a very well known example.

In Chapter 4 we will encounter a real life stochastic problem. We will use the
tools and knowledge we acquired throughout the previous chapters to deal with this
problem.

Moreover, we should mention that this thesis contributes to the research activ­
ities of Technology Agency of the Czech Republic within the research project No.
TE02000236 "Waste-to-Energy (WtE) Competence Centre".

8

1 BASIC NOTIONS AND THEORETICAL RE­
SULTS

In this chapter we will describe the basic theoretical ideas of deterministic and
stochastic programming, needed for modelling in A I M M S . The deterministic pro­
gramming will be approached very lightly since its applications in A I M M S were
already shown in [8].

1.1 Mathematical Programming

We will start with a brief description of the basic concepts of mathematical pro­
gramming. For a thorough understanding see [1] or [11].

The goal of mathematical programming is to find an optimal value of the objective
function with respect to given constraints (set of inequalities). These constraints
form the feasible set. The optimal value is either minimum or maximum (depending
on a specific problem) of the objective function in the feasible set.

A lot of practical optimization problems, even rather complex ones, are modelled
as linear programmes. Using the matrix-vector formulation we can write these as
follows:

min c T x
s.t. A x = b (1.1)

x > 0.
The notation we use follows the conventional notation utilized throughout the field
of mathematical programming (see [1], [11] or [12]); we will, thus, omit a thorough
description of the equations, which, we fell, are clear from the context. Even though
these models have a substantial limitation in the assumption of linearity in the
objective function and constraints, they are used in a vast area of applications
spanning engineering, transportation, agriculture, etc.

For modelling a closer approximation of the desired real-life problem a more
general model must be used

mmg0(x)
s.t. &(x) <0,z = l , . . . , m (1.2)

X G I C K "

This form is known as a mathematical programming problem. The set X C W1 as
well as the real functions <7i(x), % — 0 , . . . , m are given by the modelling process.

9

Depending on the properties of the functions gi and the set X, programme (1.2) is
called:

• linear, if the set X is convex polyhedral and the functions <7J(X),Z = 0 , . . . ,m
are linear,

• nonlinear, if at least one of the functions <7J(X),Z = 0 , . . . ,m is nonlinear or
X is not a convex polyhedral set; among nonlinear programmes, we denote a
programme as

— convex, if X fl {x | ^ (x) , i = l,...,m} is a convex set and #o(x) is
a convex function (in particular if the functions gi(x),i = 0 , . . . ,m are
convex and X is a convex set), and

— nonconvex, if either X fl {x | ^j(x),z = 1,... ,m} is not a convex set or
the objective function #o(x) is not convex.

Another class of problems arises when some of the variables Xj,j = 1,..., n can only
take integer values. This is called (mixed) integer programming.

1.2 Deterministic Programming

Deterministic program is a mathematical programme for which all the parameters
and coefficients (in objective function and constraints) are fully known; there is
neither uncertainty nor randomness.

A deterministic programme can be expressed in the following form that is further
suitable for stochastic programmes:

min# 0(x, a)
s.t. <7J(X, a) < 0, % — 1,..., m (1.3)

x G l C f ,

where a e 1* is a K-dimensional constant vector.
A linear programme (1.1) can be a special case of a deterministic programme if

all the coefficients of vectors b, c and the matrix A are fully known.

1.3 Stochastic Programming

As we stated earlier, in the preface, the future is not set. The biggest limitation
of deterministic programming is that it requires all the parameters of the model
to be fully known. However, the real-world applications can hardly ever fulfil this
requirement. To give just some examples we mention: crop yield (depending on
weather conditions), demand on certain product throughout some time period, prices
of basically anything, changes in legislation (restrictions or liberations of quotas),

10

etc. Using deterministic programming in these situations can return distorted and
far-fetched results (see [6]).

Because of all this uncertainty a different approach must be adopted. One of the
ways to deal with the uncertainty lies in stochastic programming where the uncertain
parameters are modelled as random variables (see [6]).

Let the triplet (fi, A, P) be a probability space. The mapping £ : Q —y M. is
called a random variable if for all x G K. holds

{u : < x} e A.

The general stochastic programme has the following form cf. 1.3:

mmg0(x,£)
s.t. <7i(x,£) < 0,i = l,...,m (1.4)

x G l C f ,

where £ = (£i, • • •, £ x) T

5 £(w) : —>• RK is a finite-dimensional random vector,
formed by random variables on the probability space (Q, A, P).

The feasible set C(£) of (1.4) can be written in the form:

C(£) = { x e X | & (x , £) < 0 , i = l , . . . , m } .

Now, a new question arises: How do we solve problems like (1.4)? When a partic­
ular realization of random parameters £ p is observed and becomes known; one can
replace £ in (1.4) by creating a deterministic programme (1.3). However, this
does not help in situations when we cannot wait for the particular realization and
need to solve the problem now.

This basic partition gives us the two approaches we may take to solve a stochastic
programme. The wait-and-see approach, being the one that uses the particular real­
ization of £ and solves a deterministic programme. And the here-and-now approach
that finds "somehow optimal" solution for all the possible realizations of

1.4 Decisions, Stages and Recourse

Recourse programmes are stochastic programmes in which some decisions or recourse
actions can be taken after uncertainty is disclosed (see [6], [12]). In these kind of
programmes we can distinguish between two types of decisions:

• A number of decisions have to be taken before the realization of the random
vector These are called first-stage decisions and the period when these
decisions are taken is called the first stage.

11

• A number of decisions have to be taken after the realization of the random
vector £. These are called second-stage decisions and the corresponding period
is called the second stage.

First stage decisions are usually denoted by the vector x, while second-stage de­
cisions are represented by the vector y or y(uj) or even y(w,x), if one wishes to
emphasize that second-stage decisions differ as functions of the realization of the
random vector and of the first-stage decision. The sequence of events and decisions
is thus summarized as

x —y £(u) —y y(w,x).

1.5 Two-Stage Programme with Fixed Recourse
The classical two-stage stochastic linear programme with fixed recourse is the prob­
lem of finding

min c T x + £^[min qT(o;)y(a;)]
s.t. A x = b,

T(w)x + W y (u) = h(w), a.s. l ' j

x > 0,y(w) > 0.

As in the previous section, a distinction is made between the first stage and the sec­
ond stage. The first-stage decisions are represented by the vector x. Corresponding
to x are the first-stage vectors and matrices c, b, and A . In the second stage, a
number of random events u G Q may be realized. For a given realization u, the
second-stage problem data q(o>), h(u) and T(u) become known. Each component
of q, T, and h is, thus, a possible random variable. W is called the recourse matrix,
which is here assumed to be fixed. Piecing together the stochastic components of
the second-stage data we obtain a vector £(UJ). As indicated before, a single ran­
dom event u (or state of the world) influences several random variables, here, all
components of

Let, also, S C 1 " be the support of i.e. the smallest closed subset in Rn s.t.
P(S) = 1. As we just stated, when the random event u is realized, the second-stage
problem data, q, T and h become known. Then the second-stage decision y(w)
must be taken. The dependence of y on u is of a completely different nature from
the dependence of q, or other parameters, on u. It is not functional but simply
indicates that the decisions y are typically not the same under different realizations
of ÜÜ. They are chosen so that the constraints of (1.5) hold almost surely (denoted
a.s.), i.e. for Vu; G Q except for sets with zero probability.

The objective function of (1.5) contains a deterministic term c T x and the ex­
pectation of the second-stage objective qT(o;)y(a;) taken over all realizations of the

12

random event u. This second-stage term is the more difficult one because, for each
u, the value y(u) is the solution of a linear programme. To stress this fact, one
sometimes uses the notion of a deterministic equivalent programme. For a given
realization u, let

Q(x, = min{q T (W)y | W y = h(u) - T(w)x, y > 0} (1.6)

be the second-stage value function. Then, we define the expected second-stage value
function

Q(x) = i ^ Q (x , £ M) (1.7)

and the deterministic equivalent programme (DEP)

min c T x + Q(x)
s.t. A x = b, (1.8)

x > 0.

This representation of a stochastic programme clearly illustrates that the major
difference from a deterministic formulation is in the second-stage value function.
If that function is given then a stochastic programme is just an ordinary nonlin­
ear programme. Formulation (1.5) is the simplest form of a stochastic two-stage
programme. Extensions are easily modelled; for example, if first-stage or second-
stage decisions are to be integers. Similarly, nonlinear first-stage and second-stage
objectives or constraints can easily be incorporated.

The generalization of the programme (1.8) for a non-linear case may have the
following form:

minc/0(x) + Q(x)

s.t. ^ (x) < 0, i = 1,... ,77li,

where Q(x) = E^Q^x., £(UJ)) and

Q(x, £(UJ) = m in y q(y,£(u)
s.t. *j(x,£(a;)) + flj(y,£(w)) < 0 a.s. , j = 1,... ,m2.

By gl, % — 1,..., mi and g?,j = 1,..., m<i we understand the first and second stage
constraints, respectively. A very important aspect of two-stage (and also multi­
stage) programmes is the fact that the first-stage decision x must satisfy so-called
nonanticipativity condition. The decision x must be made before the realization of
the random vector £ and, therefore, must be independent on it.

1.5.1 Bas ic Proper t ies

In this section we briefly introduce the basic properties and theory of stochastic
programming. A l l the following results are thoroughly discussed (with examples
and proofs) in [6].

13

Although we set the recourse matrix W to be fixed, here we study the situation
where this matrix can be random. This is because the main issues about definitions
of second-stage feasibility sets depend on whether W is fixed.

For fixed x, the value Q(x, £) of the second-stage programme is given by

Q(x ,£(^)) = min{q T (W)y | W(w)y = h(w) - T(w)x,y > 0}. (1.11)

When the mathematical programme (1.11) is unbounded below or infeasible, the
value of the second-stage programme is defined to be —oo or +oo, respectively.

The expected second-stage value function is, as given in (1.7)

Q(x) = i ^ Q (x , £ M) .

Let us first consider the situation when £ is a finite discrete random variable, namely,
£ G S with S a finite or countable set. The second-stage value function is then the
weighted sum of the Q(x, £) values for the various possible realizations of To make
the definition complete, we make the additional convention +oo+(—oo) = +oo. This
corresponds to a conservative attitude, rejecting any first-stage decision that could
lead to an undefined recourse action even if there is some realization of the random
vector inducing an infinitely low-cost function. Let K\ = { x | A x = b , x > 0} be
the set determined by the fixed constraints, namely, those that do not depend on
the particular realization of the random vector, and let K2 = (x|Q(x) < oo} be
the second-stage feasibility set. We may now redefine the deterministic equivalent
programme as follows

minz = c T x + Q (x)
s.t. x e ^ n i f j .

From a practical point of view, it is not absolutely necessary to have a complete
description of the region of finiteness of Q(x). On the other hand, it is desirable to
be able to check if a particular first-stage decision x leads to a finite second-stage
value without having to compute that value. The definition of K2 is not useful in
that respect. Therefore, we consider an alternative definition. Let

tf2(£) = {x |Q(x,e)<+oo}

be the elementary feasibility sets and

Af (£) = {x| for a l U e S,

y > 0 exists s.t. W y = h - Tx}
= ^K2{£).

The set K2 is said to define the possibility interpretation of second-stage feasibility
sets. A decision x belongs to the set K2 if, for all possible values of the random

14

vector a feasible second-stage decision y can be taken.

Theorem 1.

a. For each the elementary feasibility set is a closed convex polyhedron, hence
the set K2 is closed and convex.

b. When S is finite, then is also polyhedral and coincides with K2.

Propos i t ion 2. If ^ has finite second moments, then

P(u;|Q(x, £) < 00) = 1 implies Q(x) < 00.

Theorem 3. For a stochastic programme with fixed recourse where £ has finite
second moments, the sets K2 and K2 coincide.

Theorem 4. When W is fixed and £ has finite second moments:
a. K2 is closed and convex.
b. If T is fixed, K2 is polyhedral.
c. Let H T be the support of the distribution of T. If h(£) and T(£) are independent

and is polyhedral, then K2 is polyhedral.

Theorem 5. For a stochastic programme with fixed recourse, Q(x, £) is
a. a piecewise linear convex function in (h, T) ;
b. a piecewise linear concave function in q;
c. a piecewise linear convex function in x for all x in K = K\ fl K2.

Theorem 6. For a stochastic programme with fixed recourse where £ has finite
second moments,
a. Q(x) is a Lipschitzian convex function and is finite on K2.
b. When £ is finite, Q(x) is piecewise linear.
c. If P(x) is an absolutely continuous distribution, Q(x) is differentiable on K2.

1.6 Scenario Representations

Let us now look at the expected values that are used in the formulations (1.8) and
(1.10). These can be written in the following integral form

which brings problems since these integrals are often multidimensional and hard to
compute. Because of this fact we will use an approach called scenario analysis and
create scenario-based programmes.

15

The uncertainty is modelled by scenarios, i.e. set of particular realizations £ s of
the random vector The set of all scenarios is denoted by

S = {si,i = l,...,N},

where TV is the number of scenarios. We can take all scenarios if the set S is finite
and small. However, if the set S is too large, we would have to ask some expert
from the desired field to give us a set of most relevant scenarios. We denote ps the
probability of scenario s G S : ps = P(£ = £s) > 0 and J2s&sPs — 1- Therefore, we
can rewrite (1.13) as

i ^ (/ (x , 0) = £ p s / (x , 0 - (1-14)

From now on we will use the following notation: y s = y (£ s) , q s = q (£ s) , W s =

w(r),Ts = T(r),h s = h(r).
The scenario-based two-stage stochastic linear programme has now the following

form:

minz = c T x + £ s e s P s < 2 (x , £ s)

s.t. A x = b, (1.15)

x > 0,

where
Q(x ,£ s) = m i n y s q f y s

s.t. T s x + W s y s = h s , (1.16)

y s >o.
Fusing together (1.15) and (1.16) we get

minz = c T x + Ese5Psq^ys
s.t. A x = b,

T s x + W s y s = h s , 8=1,...,S,
x > 0 , y s > 0 , s=l,...,S.

; i . i 7)

It is easy to see that the size of the programme grows quickly with the number of
scenarios. We can rewrite the general two-stage stochastic programme (1.10) in a
similar manner.

1.7 Multistage Stochastic Programmes
The previous sections in this chapter were about stochastic programmes with two
stages. A lot of real-life decision problems, however, involve a sequence of decisions
that react to outcomes that develop over time. These decisions take place in different

16

Period 1 Period 2 Period 3 Period 4

stages (or periods). We will denote the last stage as H. For further and more detailed
information see [6].

The description of scenarios is often made on a tree such as that in Fig. 1.1. Here,
there are seven scenarios that are evident in the last stage (H = 4). In previous
stages (t < 3), we have a more limited number of possible realizations, which we
call the stage t scenarios. Each of these period t scenarios is said to have a single
ancestor scenario in stage (t — 1) and perhaps several descendant scenarios in stage
(t + 1). We note that different scenarios at stage t may correspond to the same £
realizations and are only distinguished by differences in their ancestors.

For a proper description of the multistage stochastic programme, we will use the
form that does not use scenarios. The multistage stochastic linear programme with
fixed recourse then takes the following form (see [6])

min c l T x 1 + i^2[minc 2 T(u;)x 2(a;)] + • • • + E^H [min CHT\U)XH(U)]

s.t. = h \

T ^ w W + W V f w) = h 2(w),
. (1.18)

T H " 1 (o ;) x H - 1 + WHxH(cu) = hH(co),
x 1 > 0,x'(u;) > 0,* = 2, ...,H.

A l l the equalities hold a.s., similarly to the model (1.5). The deterministic equivalent

17

-,3,2

3-3,3

W3,4
3j] ,4,5

Fig. 1.2: The deterministic equivalent matrix for a problem with seven scenarios in
four periods.

programme to (1.18) for the case with a finite number of scenarios is still a linear
programme. It has the structural form indicated in Fig. 1.2, where we use an
additional superscript to index distinct values of Wl and T* for different scenarios.

1.8 The L-Shaped Method
In this section we give a brief overview of one of the most commonly used methods
for solving large-scale two-stage linear problems. We are going to follow the same
notation as presented in [6].

1.8.1 Outer L inear iza t ion

Consider the general formulation in (1.5) or (1.8). The basic idea of the L-shaped
method is to approximate the nonlinear term in the objective of these problems.
A general principle behind this approach is that, because the nonlinear objective
term (the recourse function) involves a solution of all second-stage recourse linear
programmes, we want to avoid numerous function evaluations for it. Therefore, we
use that term to build a master problem in x, but we only evaluate the recourse
function exactly subproblem.

To make this approach possible, we assume that the random vector £ has finite
support. Let s = 1,..., N index its possible realizations and let ps be their prob-

18

T x W

T 2 W

T K
W

Fig. 1.3: Block structure of the two-stage extensive form.

abilities. Under this assumption, we may now write the deterministic equivalent
programme in the extensive form. This form is created by associating one set of
the second-stage decisions, say, y s , to each realization i.e., to each realization of
q s , h s , and Ts . It is a large-scale linear problem that we can define as the extensive
form (1.17).

The block structure of the extensive form appears in Fig. 1.3. This picture has
given rise to the name, L-shaped method for the following algorithm:
Step 0: Set r = q = v = 0.
Step 1: Set v — v + 1. Solve the linear programme

min c T x + 9
s.t. A x = b,

Dzx > dh

E z x + # > eh

x > 0,0 e R.

Let (x", 9U) be an optimal solution. If q = 0, 9U is set equal to —oo and is not
considered in the computation of x".

Step 2: For s = 1,..., N solve the linear programme

min w' = e T v + + e T v~
s.t. W y + Iv+ - Iv" = h f c - Tfcx^ (1.20)

y > o,v+ > o,v~ > o,

where e T = [1,1, . . . , 1], until, for some s, the optimal value w' > 0. In this
case, let cru be the associated simplex multipliers and define

D r + 1 = (O t T s

l = l,...,r,
I = 1,... ,s,

[1.19)

19

and
dr+l = {cru)Th.a

to generate a constraint (called a feasibility cut) of type (D/x > dj). Set
r = r + 1, add to the constraint set, and return to Step 1. If for all s,w' = 0,
go to Step 3.

Step 3: For s = 1,..., N solve the linear programme

min w = qjy
s.t. W y = h , - T f c x " , (1.21)

y >o.

Let 7Tg be the simplex multipliers associated with the optimal solution of
problem s of type (1.21), i.e. optimal solution of the dual problem to (1.16).
Define

N

s=l

and
N

e<?+l = & s «) T h s -
s=l

Let wv = eq+i — E^+ix^. If 6V > wu, stop; x^ is an optimal solution. Otherwise
set 5 = 5 + 1, add constraint (called a optimality cut) to constraint set (E^x +
9 > ei), and return to Step 1.

The method consists of solving an approximation of (1.8) by using an outer lin­
earization of Q. Two types of constraints are sequentially added: (i) feasibility cuts
determining {x|Q(x) < oo} and (ii) optimality cuts, which are linear approxima­
tions to Q on its domain of fmiteness.

1.8.2 Inner L inear iza t ion

The most direct alternative to an outer linearization approach is an inner lineariza­
tion or column generation approach; this approach is also known as Dantzig-Wolfe
decomposition (see [?]). We can derive this approach from the L-shaped method by
taking duals.

Consider the following dual linear programme to (1.19).

max C = pTb + E[=i &idi + £?=i 7rze/

s.t. p T A + Er=iO-jD, + E L i T j E , < c T , (1.22)
E j L i T J = 1, o-j > 0, Z = 1,..., r, 7Tj > 0, Z = 1,..., g.

The linear programme (1.22) includes multipliers cr; on extreme rays of the duals
of the subproblems. The iri multipliers - the expectations of extreme points of the

20

duals of the subproblems. To see this, suppose (1.22) is solved to obtain a multiplier
x". Now consider the following dual to (1.21):

maxu>
s.t.

7T

7T

•T(hs - T s x ")
(1.23)

If (1.23) is unbounded for any s, then we must have some cru s.t. cruTW < 0 and
cruT(hs — T s x s) > 0 or (1.20) has a feasible dual solution (hence optimal primal
solution) with a positive value. So, the second step in the outer linearization is
equivalent to checking whether (1.23) is unbounded for any k. In this case we
construct D r + 1 and dr+i as in the outer linearization and add them to (1.22).

This is the algorithm for the inner linearization:
Step 0: Set r = q = v = 0.
Step 1: Set v — v + 1 and solve the linear programme (1.22). Let the solution be

(pu,cru,7vu) with a dual solution (^ , 0 ") .
Step 2: For s = 1,...,N, solve (1.23). If any infeasibile problem is found, stop

and evaluate the formulation. If an unbounded solution with extreme ray av

is found for any s, then form new columns dr+i and D r + i , set r = r + 1 and
return to Step 1.
If all problems (1-23) are solvable, then form new columns eq+\ and E g + 1 as
in the outer linearization. If eq+i — Eq+1x.u — 0 < 0, then stop; (pu,cru,iru)
and (x", 0") are the optimal values of the original problem.
If eq+i — Eq+ix.u — 0 > 0, set q — q + 1, and return to Step 1.

It is easy to see that the inner linearization method takes the same steps as the
outer linearization, except that we solve the duals of the subproblems instead of the

We presented both the inner and outer approximation, because we are going to
program the outer linearization algorithm in A I M M S and we felt obliged to acquaint
the reader with both of them. Moreover, it is quite clear that the Step 2 in both of
those procedures is very well parallelizable (i.e. if we have a multi-core processor, we
can command each core to solve one subproblem while at the same time the other
core solve the next one and so on, effectively reducing the computing time). We will
take advantage of this nice feature once we implement this algorithm into A I M M S .

We will present another solution method for stochastic programming problems,
namely the progressive hedging algorithm. Since it is not the purpose of this text,

primals.

1.9 Progressive Hedging Algorithm

21

we will not present the proper insight and only give a brief description of the algo­
rithm for two-stage problems. For more information about progressive hedging see
[7] and [6]. This algorithm is used for solving problems of the following form:

m i n ^ (/ (x , y (0)) _
s.t. £i(x,y(£)) < 0 , i = 1, . . . ,m.

Furthermore, we suppose that we deal with a problem with a finite number of sce­
narios. The algorithm revolves around the idea, that if x are the first stage decisions
and y(£) (ory(s)) are the second stage decisions, at first we suppose different first
stage decisions x for different scenarios s. The condition, that x must be the same
for all scenarios, is enforced by a penalization term.

Step 0: Choose the penalty parameter p > 0 and the termination parameter e > 0.
Set W°(s) = w°(s) = 0, X°(s) = (0, 0) for all s G S and j = 1.

Step 1: For all s G S solve the following problem:

min/(x,y(s)) + w J

1 " 1 (s) T x+ |p(x - x J _ 1) 2 ^
s.t. £i(x,y(s)) < 0 , i = 1, . . . , m

and denote its solution as X J ' (s) = (x(s),y(s)).
Step 2: For all s G S calculate an average solution X (s) = (x J(s), y J(s)):

X ^ s) = X 7 ' = E s e5Ps x (s) ;

yj'(S) = yJ'(S).

If the terminal condition

5 = (N\\xj-1 - i?\\2 + ^ \\f-\s) - f(s)\\2 + J2Ps\\xJ(s) - x l 2) ^ < e

holds, then stop. X (s) = (x J(s), y3{s)) is the solution to the original problem
with given tolerance. Otherwise set

wj(s) = wj-\s) + p{x>{s) - x J) ,

J = j + l ,

and return to Step 1.

22

file:////f-/s

1.10 Sample Average Approximation
In this section we introduce a sampling method for solving large scale stochastic
programming problems. We concentrate on the "exterior" approach where a random
sample is generated outside of an optimization procedure, and then the constructed,
so-called sample average approximation (SAA), problem is solved by an appropriate
deterministic algorithm. For more detailed description and statistical analysis of
this method see [12].

Let us consider a stochastic programming problem in the following form

mm{f{x):=Et[F(x,t{u))]}. (1.26)

The expectation in (1.26) is taken with respect to the probability distribution of £
which assumed to be known. We denote by S e M.d the support of the probability
distribution of that is, H is the smallest closed set in M.d such that the probability
of the event £ G M.d \ S is zero.

Often one can view the optimization problem (1.26) as a two-stage stochastic
programming problem with -F(x, £(oo)) and £ being the optimal value and data
vector, respectively, of the corresponding second stage programme. For example, in
the case of two-stage linear stochastic programming with recourse, F (x , £(UJ)) '•—

c T x + Q(x, £(UJ)), where Q(x, £(UJ)) is the optimal value of the following second
stage problem

m i % q T ((w)) y
s.t. T(w)x + W(w)y = h{u), a.s. (1.27)

y >0,

with £ : (q, T, W , h) . As such we need to consider situations where F(x , £(UJ))

can take values —oo or +oo. That is, unless stated otherwise, we assume that
F(x , £(UJ)) is an extended real valued function and the expected value £^[F(x,
is well defined for every considered x e K " .

If £ has a finite number of possible realizations (scenarios), say S = j ^ 1 , . . . , £ N }
with respective probabilities ps, s = 1,..., N, then we can write the expected value
function in the form

N

/ (x) = ^ p s F (x , r) . (1-28)
s=l

Note, however, that even a crude discretization of the probability distribution of £
leads to an exponential growth of the number of scenarios. For example, if com­
ponents of the random vector £ are independent, each having just three possible
realizations, then the total number of scenarios N = 3d. No computer in a foresee­
able future will be able to handle calculations involving 3 1 0 0 scenarios. Therefore,

23

that way or another, one needs to reduce the number of scenarios to a manageable
level. In this section we discuss an approach to solving the expected value problem
(1.26), referred to as the true optimization problem, by using Monte Carlo sampling
technique.

Suppose that we can generate a sample of TV replications of the random vector In
the Monte Carlo sampling method this is accomplished by generating a random (or
rather pseudorandom) sequence U\, U2, • • •, of numbers independent of each other
and uniformly distributed on the interval [0,1], and then constructing a sample of
£ by an appropriate transformation. In that way we can consider the sequence
u := {Ui, U2, • • •} as an element of the probability space equipped with the corre­
sponding (product) probability measure, and the sample £j = £i(ou),i = 1,2,...,
as a function of u. We can view the generated sample £ 1 ; £ 2 , . . . , as a sequence of
random, vectors, each having the same probability distribution as If the gen­
erated random vectors are (stochastically) independent of each other, we say that
the sample is independent identically distributed (iid). By £1,62, •••, we denote a
particular realization of the considered random sample.

With the generated sample £1,..., we associate the sample average function

1 N

M x) : = - £ F (x , &) . (1-29)
JV i=i

Since each £ t has the same probability distribution as we have that for any
x e X, E[F(x, &)] = /(x) and hence

E[Ar(x)] = /(x). (1.30)

That is, / J V (X) is an unbiased estimator of /(x). Moreover, under various conditions
the Law of Large Numbers can be applied with the implication that / A T (X) converges
with probability one to /(x) as TV —> 00. In that case we say that / J V (X) is a
consistent estimator of /(x). This certainly holds true if the sample is iid.

For the purpose of solving a particular stochastic programming problem, sam­
pling techniques can be applied in different ways. One approach uses sampling in an
"interior" fashion. Such algorithms aim at solving the considered problem by resort­
ing to sampling whenever the procedure requires to compute (approximately) the
value, and may be derivatives, of the expected value function at a current iteration
point. Typically such an algorithm is tailored for a specific class of optimization
problems and tries to mimic its deterministic counterpart. Often different samples
are used each time the true function or its derivatives are estimated at different
iteration points.

24

We will discuss an alternative approach, referred to as the "exterior" method.
First, a sample £ 1 , • • •, £ J V is generated, and then the true problem (1.26) is approx­
imated by the optimization problem

i N

min{/^(x) = - ^ F (x , 6) } . (1.31)

Note that once the sample is generated, i.e., numerical values of vectors are
computed, / J V (X) becomes a deterministic function and its value can be calculated
at any given point x G X. From an optimization point of view, problem (1.31) can
be considered as a stochastic programming problem with the finite set { £ i , . . . , £N} of
scenarios each with equal probability Therefore, any numerical algorithm suitable
for the considered class of problems can be applied to (1.31). The optimal value
ZN and an optimal solution xN of the problem (1.31) are considered as statistical
estimators of their counterparts of the true problem (1.26).

The above approach is called "exterior" since the sample is generated outside of the
considered optimization problem, and then the constructed problem (1.31) is solved
by an appropriate deterministic algorithm. It should be noted that this method is
not an algorithm, but rather a general approach to solving stochastic programmes.
One still needs to employ a particular (hopefully efficient) deterministic algorithm
in order to solve the obtained problem (1.31). We refer to (1.31) as the sample
average approximation (SAA) problem. The approach is also known as the sample
path or the stochastic counterpart method.

We are going to use this approach to generate problems on which we shall test our
A I M M S implementation of solution algorithms.

25

2 AIMMS
In this chapter we will describe the usage of the software we utilized for constructing
and solving our optimization problems. The first section will be devoted to the
software itself. Other section will deal with its different procedures and features
that will be used for constructing our programs.

2.1 About AIMMS

A I M M S is an acronym for "Advanced Interactive Multidimensional Modelling Sys­
tem". It is a software system designed for modelling and solving large-scale optimiza­
tion problems. It consists of an algebraic modelling language, an integrated develop­
ment environment, a graphical user interface and a graphical end-user environment.
A I M M S is linked to multiple solvers through the A I M M S Open Solver Interface.
These solvers are: C P L E X , GUROBI , M O S E K , X A , CP Optimizer, C O N O P T , MI­
NOS, SNOPT, L G O , A O A , P A T H and CP Optimizer. For more information about
A I M M S see [5], [18] or their web page [13].

Formulation of optimization models takes place through declarative language el­
ements such as sets and indices, as well as scalar and multidimensional parameters,
variables and constraints, which are common to all algebraic modelling languages,
and allow for a thorough description of most problems in mathematical program­
ming.

Procedures and control flow statements are available in A I M M S for
• the exchange of data with external data sources
• data pre- and post-processing tasks around optimization models
• user interface event handling
• the construction of hybrid algorithms for problem types for which no direct

efficient solvers are available.
A I M M S supports a wide range of mathematical optimization problem types:

• Linear programming
• Quadratic programming
• Nonlinear programming
• Mixed-integer programming
• Mixed-integer nonlinear programming
• Global optimization
• Complementarity problems (MPECs)
• Stochastic programming
• Robust optimization

26

• Constraint programming
Uncertainty can be taken into account in deterministic linear and mixed integer
optimization models in A I M M S through the specification of additional attributes,
such that stochastic or robust optimization techniques can be applied alongside the
existing deterministic solution techniques.

Custom hybrid and decomposition algorithms can be constructed using the G M P
system library which makes available at the modelling level many of the basic build­
ing blocks used internally by the higher level solution methods present in AIMMS,
matrix modification methods, as well as specialized steps for customizing solution
algorithms for specific problem types.

2.2 Licenses

In order to use the software one must have installed a proper license. There are two
types of licenses that A I M M S offers for academic/non-commercial use. For more
information about other types of licenses see the company web page [13].

2.2.1 Student License

The A I M M S Student license is limited in the number of identifiers (200) and the
size of the optimization models (300x300), allowing students to create and run small
A I M M S models on their own computer.

The free student license is equipped with the solvers C P L E X , GUROBI , M O S E K
and X A for linear and mixed integer programming, C O N O P T and K N I T R O for
nonlinear programming, A O A for mixed integer nonlinear programming, P A T H for
mixed complementarity programming, B A R O N (restricted size 10x10) for global
optimization and RO Add-on for Robust Optimization.

This license is not suitable for our purposes but we mention it anyway for the sake
of informing the reader about the possibility of obtaining this free license without
the need of registration.

2.2.2 Academic License

The Free A I M M S Academic License is an unrestricted license for academic people
(students, teachers, professors and researchers).

Because we are going to deal with rather large-scale optimization problems, this
is the license we shall use. It contains all the AIMMS-supported solvers and we can
introduce as many variables and identifiers as we please.

27

However, to obtain this license one has to go through a process of registration,
which although not being very long may still discourage some people from getting
this license.

We strongly recommend to obtain the academic license to everyone who intends
to seriously work with A I M M S . You can get the Academic License in here [14].

Fig. 2.1: Declaration of identifiers

28

2.3 Sets, Parameters, Variables and Constraints
In order to successfully create an optimization model, one has to be able to define
variables and describe relations between these variables in a form of equalities or
inequalities.

0 AIM MS - Non-commtsdal Educations Stand-Alone V riion [Jakub Kudela)

File Edit View Data Run Sett ng; Tools Window Help I
[T] i l ^ g X tttt I--"1 • B B B 1 0 M B 0 Í a i s a « H [T] i l ^ g X tttt I--"1 • B B B 1 0 M B 0 Í a i s a « H

: =' -.r'cithEjî .amb
MainjustForthesis

Ö - ü Declaration
Type ž =.-£".£ TS

: =' -.r'cithEjî .amb
MainjustForthesis

Ö - ü Declaration 1 den I i Fiei r . e ^ a r a meter

f Mainlnrtializaticn Index domain 9
f [S MainE-'.Biuticn
• [EJ MainTerminalion

Predeclared Identifiers [read-only]

Text f [S MainE-'.Biuticn
• [EJ MainTerminalion

Predeclared Identifiers [read-only]
Range f

f [S MainE-'.Biuticn
• [EJ MainTerminalion

Predeclared Identifiers [read-only]
Unit B

Default

Piopeilji f

S Definition 9 50

C Initial dala

Comment

Sjg Model BIBB j ju:tfcrthe:;Í5.prj | Act.Case: V" READY

Fig. 2.2: Parameter declaration

In A I M M S the declaration of new variables, sets, parameters, constraints, etc.
is done either via the graphical interface, as shown in the figures 2.1 and 2.2, or
directly writing the source code (like in GAMS) :

D E C L A R A T I O N S E C T I O N

P A R A M E T E R :

identifier : newparameter
definition : 50 ;

E N D S E C T I O N ;

These declarations are fairly straight forward and natural, so we will omit a
more detailed walk through. However, there are some special features regarding
the declaration of sets that will be used throughout our programs, so we decided to
highlight them:

• The function ElementRange lets us create a set of elements with sequential
character, e.g. subsets of integers with fixed distance between each element
(2.3).

• Every new set can be handled like a subset of some of the predefined sets.
These in addition to others contain Integers, which will get handy when work­
ing with flow control statements. But most importantly we can define our
set as a subset of AllVariables or AllConstraints. This allows use to split

29

© * AIMMS - Non-commercial Educational Stand-Alone fersion [Jakub Kud la) 1 = 1 a i - i i - l

File Edit View Data Run settings Tool; Window Help

[Ľ 3 * ifel Cl X M t#4 IE
1 ^ SS LEJ [£ S S f f i t

Model Ecplorerijustfortheiis.amb- newpararneter i.
^1

 1 Main jjstľcrthesis
- £jj Declaration

Type M l B U H B H j / J J Ü J d l l i l ^1
 1 Main jjstľcrthesis

- £jj Declaration
Identifier „ — , . . t

Index domain
\ U) Mainlnitialization
f ü] Ma i n Execution

Subset of I n t e g e r s \ U) Mainlnitialization
f ü] Ma i n Execution

Text

@ Piececlared Identifiers [read-only] Index
Paiametei
Piopeilji
• rdei by

(• Definition E l eme t R d a g e (1 , n e w p a r a i n e t e r)

C Initial data

Comment

^ Model MSBB
j justfortrieiis.pr] | Art.Ca5.ei V" READY

Fig. 2.3: Set declaration ­ ElementRange

the A I M M S program into several separate programs, i.e. we can choose the
variables and constraints that are going to be used in creating certain math­

ematical programme (see next section). This will end up being extremely
useful in construction of the L­shaped method (section 1.8) and in our effort
to compare different techniques for solving stochastic programmes.

For more informations about declaration of different identifiers and set procedures
see [4], [2] and [5].

2.4 Mathematical Programmes

Once we have all our variables and constraints fully describing the problem we are
about to solve, we can construct a mathematical programme, i.e. we identify the
objective function, the direction of optimization and sets of constraints and variables
we want to include. Moreover we can inform the solver about the type of our problem
as shown in the figure 2.4.

Now, the easiest way of solving this mathematical programme is simply to write
a procedure with a solve statement and a name of the mathematical programme:

PROCEDURE
identifier : Procedure_l
body :

solve mathprog;

ENDPROCEDURE ;

The solution of our mathematical programme can be observed in the Math Program
Inspector (Tools­Diagnostic Tools­Math Program Inspector).

30

http://Art.Ca5.ei

We will use the solve statement quite rarely since it does not offer as much flexibility
as working with the G M P library. But we will get to that later on.

*^lMM^-Non-rnrvim=rrwlFHMr?i;r,n^l^tanri-ilr,n=^r:ir,nlhtMhl-|iripW 1 = 1 ^ —£3—

File Edit Data Run Settings Took Window Help

^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

Type • « « M l PiK,r_-J i i | 1 } | f l - | » § | V | B . | B | B . ^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

Idenlil.ei

llhifrhvf 'sr

mathprog -

Type Wizard
 1 B K***

^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

Idenlil.ei

llhifrhvf 'sr
• automatic! Network OK 1

^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

r.iiiixliiiinls 's:

Vanables '/:

Text

Type *

Violation penally

a l l C o a s t s a i n t s

ä l l V a r i a b l e s

au tomat ic

s ~ 1 _ 1
r LP r Ls i

Cancel

P NLP r MLS

C MIR r RM1P

r MI NLP r RMINLP

C 2P <~ MIQP

C QCP r Miqcp

C MCP r MPCC

C COP r CSP

^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

Comment

s ~ 1 _ 1
r LP r Ls i

Cancel

P NLP r MLS

C MIR r RM1P

r MI NLP r RMINLP

C 2P <~ MIQP

C QCP r Miqcp

C MCP r MPCC

C COP r CSP

^ 'Mainjustfcrthesis
- 2 -'^claratlon

[p] newparameter
i L H newseel

; :- E l *
1 g mattiprog

\ LE) Mainlnilialization
r Lfij Ma in Execution
; [£j MainTerminatJc-n

@ Piece dared Identifiers [read-only]

Comment

s ~ 1 _ 1
r LP r Ls i

Cancel

P NLP r MLS

C MIR r RM1P

r MI NLP r RMINLP

C 2P <~ MIQP

C QCP r Miqcp

C MCP r MPCC

C COP r CSP

^ Model i n T f f l

Comment

^ Model i n T f f l

Errors/Warnings

O No errors

J justforthesis.prj | Act.Cas-e;
READ •'1

Fig. 2.4: Mathematical programme

2.5 The GMP Library
With every mathematical programme declared as part of our model, the G M P
library allows us to associate one or more Generated Math Program instances
(GMPs), and with each G M P :

• a conceptual matrix of coefficients that can be manipulated,
• a repository of initial, intermediate or final solutions, and
• a pool of local or remote solver sessions.
There is an extensive amount of procedures in the G M P library. A l l these pro­

cedures are profoundly described in [4] and [2]. These procedures help us manage
and adjust our mathematical programmes and solver sessions in such a way, that we
are able to program solution algorithms. We are going to pinpoint just those that
were crucial in constructing our solution algorithms:

• GMP:: Ins tance: :Genera te generates a mathematical programme instance
from a symbolic mathematical programme.

• GMP::Instance: :CreateSolverSession creates a new solver session for a
generated mathematical programme.

• G M P : : S o l u t i o n : : R e t r i e v e P r o m M o d e l stores the solution from the model
identifiers into the solution repository of a generated mathematical programme.

• GMP::Solut ion: :SendToSolverSess ion initializes a solver session with the
values in the solution from the solution repository of a generated mathematical
programme.

31

S V M I S O I . I C M l ' e All Mathematical Programs

• symbolic variables
• symbolic const rain is

G E N E R A T E D M P e All Generate (Mathematical Programs

M A T R I X

• genera led columns
• genera led rows
• generated matrix coefficients
• mapping to symbolic variables and constraints

S O L U T I O N R E P O S I T O R Y £ Integers

S O L U T I O N 1 S O L U T I O N 1

• s o l u t i o n s iacus
• 1 . 1 va lues
• [bas is i n f o r m a t i o n]

• [marg ina ls]

•

S O L V E R S E S S I O M P O O L = All Sol verSessi oris

SDL VP R SESSION 1

• so lver p r o c e s s sped f i ca i i o r j
• so lver o p t i o n s e l l i n g s

Fig. 2.5: Concepts associated with a G M P

• GMP::SolverSess ion: :Execute invokes the solution algorithm to solve the
mathematical programme for which it had been generated.

• GMP::SolverSess ion: :AsynchronousExecute invokes the solution algo­
rithm to asynchronous solve a generated mathematical programme by using a
solver session.

• G M P : : Solver Session: :Wai tFor Comple t ion has a set of objects as its in­
put. The set of objects may contain solver sessions that are asynchronous
executing and events. This procedure lets A I M M S wait until all the solver
sessions have completed their asynchronous execution and all the events get
activated.

• GMP::Solu t ion: :Ret r ieveFromSolverSess ion stores the solution from a
solver session into the solution repository of a generated mathematical pro­
gramme.

• G M P : : S o l u t i o n : : S e n d T o M o d e l initializes the model identifiers with the

32

values in the solution from the solution repository of a generated mathematical
programme.

• G M P : : Solver Session: :GetProgramStatus returns the program status of
the last execution of a solver session.

• GMP::Instance: :DeleteSolverSession deletes the specified solver session.
• GMP:: Ins tance: :Solve starts up a solver session to solve a generated math­

ematical programme. In addition, it copies the initial solution from the model
identifiers via solution 1 in the solution repository and stores the final solution
via solution 1 back in the model identifiers. This procedure is an equivalent of
the solve statement, it takes all the necessary steps to solve the mathematical
programme (e.g. creating solver sessions), but it does not allow us to choose
asynchronous execution.

• G M P : : R o w : : A d d adds an empty row to the matrix of a generated mathe­
matical programme.

• GMP::Coeff ic ient : :Set sets the value of a (linear) coefficient in a generated
mathematical programme.

• G M P : : R o w : : S e t R i g h t H a n d S i d e changes the right-hand-side of a row in a
generated mathematical programme.

• G M P : : R o w : : S e t T y p e changes the type of a row in the matrix of a generated
mathematical programme.

2.6 Particular Solver Settings

In order to successfully implement the L-shaped method we must adjust settings of
the solvers we use Fig. 2.6. These adjustments included:

• Disabling presolves and enabling the computation of unbounded rays, which
allows us to compute the simplex multipliers in case of an unbounded solution.

• Setting the thread limits to 2, since we worked with a 2 core computer.
• Choosing the deterministic approach in parallel computation. The default

value of this setting is opportunistic and leads to different results, but reaches
them significantly faster. For more information on this topic see [16].

2.7 Miscellaneous

There are several features of A I M M S that we would like to mention, but we do
not feel like writing an entire section about each of these. Therefore, we decided
to summarize them in this section. There are, of course, a lot more features and
procedures in A I M M S that we do not have the chance to mention. If anyone is

33

1=1 G U R O B I 5.5

| fJTj G e n e r a l

| |_0J Barr ier

| fjDj MIP

\ [pj MIP cu ts

| [_0J Para l le l

| [o] P r e s o l v e

\ L»J Q P

| Q r j S imp le r

| Q f j Tun ing

T o] Logg ing

&•••[•] I P O P T 3 , 1 0 . 1

&••••£][] L G D L 0

S l - S M I N O S

i - - [o j M O S E K 6 . 0

• I fjDj P A T H 4 . 6

J [pj S N O P T 7.2

• I |_0J X A 15

••[•] N B T S O L

Op t i ons wi th n o n d e f a u l t va lue

31 O p t i o n Value

S t a r t u p case initial

S e e d 1 2 3 4 5 6 7

R o u n d i n g compat ib i l i ty Aimnns 3 7

C P L E X 12.5 : u n b o u n d e d ray Yes

C P L E X 12 ,5 : :g loba l t h r e a d limit 2

C P L E X 12 ,5 : :pa ra l l e l mode Determinis t ic

C P L E X 1 2 , 5 : : p r e s o l v e No

G U R O B I 5 .5 : u n b o u n d e d ray Yes

G U R O B I 5 . 5 : : t h r e a d limit 2

G U R O B I 5 . 5 : : p r e s o l v e O f f

Para l le l mode

Oppor tun is t i c

(* Determinis t ic

Help

D e f a u l t

App ly

Impor t

E x p o r t

O K C a n c e l

Fig. 2.6: Solver settings

interested in deeper undestanding of A I M M S we encourage them to delve into the
manuals [2], [3], [4] and [5].
D a t a cases: This feature allows us to solve different problems with the same model.

We can save particular values of the model parameters into separate cases and
work with these cases without any need to construct a whole new model.

G A M S compatabi l i ty: If we already have a model description done in G A M S ,
we can avoid reformulation the whole thing to A I M M S simply by importing
the G A M S source code into A I M M S . This is done by selecting the text file
with the G A M S source code in F i l e - O p e n - M o d e l and running the compiler.

D a t a impor t from Exce l : Another nice feature is that we can avoid filling the
values of parameters in A I M M S altogether by importing them from an Excel
file (or other supported database file).

Embedded stochastic opt imiza t ion procedures: There are procedures already
contained in A I M M S that deal directly with stochastic programming. These
use the G M P library and as we the Scenario Generation Module to create
and solve stochastic programmes. However, as we will discover later on, these
procedures do not offer any significant simplification nor do they speed up the
solution process.

34

3 T H E G E N E R A L TWO-STAGE LINEAR PRO­
G R A M

In this chapter, we are going to exploit the possibilities enabled by the A I M M S '
programming language and GUI. We will use the properties of the classic formula­
tion of the two-stage stochastic linear programme (1.5) to create a general A I M M S
program (from now on we will call it the General Program) for solving these kind
of problems.

The purpose of the General Program is to design an easy and end-user friendly
way of filling all the necessary parameters of one's model (taking in account the fact
that the modelled problem itself must have a two-stage linear structure).

O AIMMS-Nor

: : " - : : ; :
\S\ InitialSet
E NrOfFirslStageVariables
[S] AConrJHIons
E NrOfAConciti-jnE
E A(ac,is)

E b<ac>
E * i s :
E l «w
[C] Fi r s1 Stage Co nstrairrts[ac)

J SecondStageDecl
E NrOfStages
E SscondStageSet
E NrQfSeconflSlageVarlables
E ^ages
E Periods
\S\ Scenarios
E NrOfScenarios
E StageB ranches
|~J lliCfSecGncSlageCoii.Jitions
[51 SecondStageCanditicns
E Tinputisc.ssc.is;
E Winp-ut(sb,ssc,sss)
E hjrput[sb,ssc)
E qiiput(st),sss;
E T(ssc,is)
E W[ssc,sss)
E h(ssc)

E q (s s s]
E ScenaricProbaDllrtyisc;
E DesignedProbabilit^Csb;
[R| 3CBri3ricTrBBl.1appingtsc.st]
E PeriodToS.tage(st,pe)

m

TwoStageWithFixedRE Ad.Ca;

Fig. 3.1: Page 1

The end-user should be able to work with this program without any (or close
to none) knowledge of the programming language of A I M M S . Although naturally
some understanding of stochastic programming is still required.

Let us once more look at the equation describing the scenario representation of the
two-stage linear stochastic programme with fixed recourse:

minz = c T x + E s £ 5 P s q f y s

s.t. A x = b,
T s x + W s y s = h s , s
x > 0 , y s > 0 , s

1,-

1,-

.,S,

.,S.

(3.1)

35

http://3CBri3ricTrBBl.1appingtsc.st

The most important factors in making a general program are the dimensions of
the vectors (c, x, q, y s , b, h s) , the sizes of the matrices (A , T S , W s) and number of
scenarios (S). These factors and their relations can be described in the following
way:

• Number of scenarios: S.
• Number of first stage variables: d imx = dime = number of columns of A =

number of columns of T s , s = 1,..., S.
• Number of first stage conditions: d imb = number of rows of A .
• Number of second stage variables: d imy s = d i m q s = number of columns of

WA,8=l,...,S.
• Number of second stage conditions: dim h s = number of rows of T s = number

of rows of W s , s = 1,..., S.
We will neglect the dependence of these numbers on different scenarios. Instead
of taking values for all the scenarios, we only consider their maximums. If, for
some scenario, is this maximum bigger than the actual value, we just put the extra
parameters in the respective vectors and matrices to 0. This will help us to simplify
the model a bit; we exchange the need for 2 more numbers for each scenario for a
need to fill zeroes in certain places.

File Edit View Data Run Settings

Model Explorer: Two St a a; eWithFixedR.ee ours

^ Tit r,l,iC!:"Ji::--
|S nitidlle:
[p| N-<r i's*:".*!-.qcW ;-.l.cs
|5 ACor: ! ' : : " . .
\W N-O-ftCsnano-s
|P AC-
IP l-U.l

lv
|C I if=.Jtace Jc-3fair:s:£:i
f.v-ndf^.qilDBrt
|P N-<KS',>:|i:.s

|p N'OT.C:':i"dT.'-.:jeV!n;.t-
|S *»oes

1 •"
|5 S:'i:-:no.s
\W N V J : e - i - M
|5 r.^.-jsri'mr-ici
|P N-O";";..'3i"„jtC?ndiUorL.

|p "II . ' .t :
fp" w -:-J:;SD ••: -a)
|p hirp..''-ili.Si:')
|P nil !. '..('.:
\E <:=: =l
|P VW{.ssc,sss)
|P Wssc)
[p_ qf• • 0

|p K: i r ' : n o - " o l ' 7 t s : l
[p| L>esia-ea ":5aPnt>:iPi
|p, r.:v";i'io"'ssW;ipp "-jjsrsl]
|p K - y d v ^ a e i . : •-?)

Help

• p*ge2 1 m

•.••; ;-;::-:3taaeVariables 6.00
NrQfScenarios 3.LHJ
N rOfSe co n rJSta q e C o n d iti o r s 4O0

5 6 Cr=i:;ri : - • : : ?: :

1 2 3
Win put

1 2 3 + 5 6 hiniKit

2
3
4-

2

2
3

3

2
3

Fig. 3.2: Page 2

Another slight adjustment of the original programme (3.1) is that the equalities
in the conditions will be replaced by inequalities - namely by less that equal. The
reason for this is that in order to use equalities we would need to introduce the

36

http://eWithFixedR.ee

concept of slack variables (see [11]). This replacement is enabled due to the fact
that every equality can be written as 2 inequalities, that have the same coefficients
but differ in signs < and >. Moreover every inequality can change its sign from one
to another just by multiplying all the coefficients by —1.

These two procedures allow us to design a structure of any two­stage linear
stochastic programme given just by the 5 values described above. Since everything
is written as general as possible, and we took care of the inconveniences hidden in the
equalities and scenarios, we are able to write the A I M M S mathematical programme
with ease.

ilVIMS • Non-c=rrmercial Educational Stand-AIons Verso- ;.ak.o Kude a:

File Edit View Data Run settings Tool; Window Help

% I :H I <n m I 3 A % B X a s
1

M=ur "voS' ,gcW*-
r »e:Ri:: :>..\se

- | l ; I irrjtaceJe:
[S_ 1-nii.iir."'
|p r,-<i-<-rs-S-\geV„- >e.s
Q£ *Ľora; j -s
|p N-rY4r.andri< •
|P Ala: : i
\E 1 , 1 • ••• I
|P <>•••)

|v r.it

\Q Tit -i'maacCo" "air's '••.?.)

[F K-I

|p N-iy:e::-d:!a:eva'ia!? e =

[S_ f.V: ~ ;

|5 Pi:-ads
Ip I. • i:
|S j-ajeUa-itnei

I. i • ' : icm. i
15 Si:;:nd.S' .geCard * o".'.
[p| iro_::sD.ss: s<
|P iV"i>j';st.
|P riirB-:.sb.ss:i
[F qirr .-'-.h.:--J
|P "(;•.••.".
|p ;;c ; i i
|P IKssc)
IP m
[p| -r-^'ic "ohsr> -vis-j
I p DeMg"i:d~'::!>-iľ lily s t •]
|P, ľ.e' d'n. eer.'dH-' LÍÍI.ÍII
fp" 3d'OÍqc(•;' |>e)

Two5taaeWithFÍKedRs| Act.Cas

Fig. 3.3: Page 3

After this it is a simple matter of filling up all the vectors and matrices with
desired coefficients. We created a graphical environment, in which the end­user can
simply fill and adjust all parameters of the model and potentially solve it just by a
click on a button. This environment is shown in Fig. 3.1, 3.2 and 3.3.

Notice the parameter DesignedProbability in Fig. 3.2. Here, the user inserts the
probabilities of each scenario. These do not have to add up to 1, since A I M M S will
automatically rescale them in a way that they do add up to 1. This allows us to
avoid writing numbers like | if we have 7 scenarios, all with the same probability,
and instead write just 1 everywhere.

The solution process used for solving this problem uses embedded procedures in
A I M M S that are designed to deal with stochastic programmes, that are either linear
or mix­integer linear programmes. These are closely described in [4].

37

In the following section, we will show the usage of this General Program on a
very well known example.

3.1 The Farmer Example

We will use the notorious farmer example (see [6]) to describe the functionality of
the General Program more closely. Moreover, we will expand our General Program
by adding procedures that address generating random numbers (depending on given
distribution), which is going to help us solve the kind of problems, that instead of
giving us set of possible scenarios give us just information about the distribution of
some parameters. We shall solve these problems via sample average approximation
(1.10).

3.1.1 P r o b l e m Formula t ion

Consider a farmer, who specializes in raising three crops: wheat, corn, and sugar
beets. During the winter, he needs to decide how much land, from his 500 acres
field, he should devote to each crop, in order to maximize his profit. In other words,
how many acres of land should he devote to grain, corn and sugar beets?

The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are
needed to feed his cattle. These amounts can be raised on the farm or bought from
a wholesaler, whose prices are naturally high compared to the price, at which is
the farmer able to produce his own crops. Any production in excess of the feeding
requirement would be sold.

Selling prices are $170 and $150 per ton of wheat and corn, respectively. The
purchase prices are 40% more than this due to the wholesaler's margin and trans­
portation costs.

The third profitable crop, sugar beet, is sold at $36/T; however, the government
imposes a quota on sugar beet production. Any amount in excess of the quota can
be sold only at $10/T. The farmer's quota for next year is 6000 T.

The uncertainty of this problem lies in the weather conditions, that significantly
affect the yields of each crop.

Most crops need rain and moisture at the beginning of the planting period, then
a lot of sunshine with occasional rain. Sunshine and dry weather is also important
during the harvesting period. Due to the above requirements, the yields depend on
the weather during the whole planting period.

38

We will address this problem by modelling uncertainty in the crop's yields via sce­
nario representation (with respect to given scenarios) and sample average approxi­
mation (with respect to given distribution function). Moreover, in order to use the
general A I M M S program, we need to reformulate the problem from maximization
to minimization one. This is done by simply changing the signs of elements in the
vectors c and q in (3.1).

3.1.2 Scenario Representat ion A p p r o a c h

Assume, we asked an expert to give us some possible scenarios for the yields, de­
pending on weather. This expert then gave us these three scenarios: mean yields for
the ordinary weather (scenario s 1), profitable yields when the weather is favourable
(scenario s2), and lower yields when the weather is unfavourable (scenario s3). The
probabilities of all the scenarios are equal (pi = P2 = Pz = \)- A l l data and param­
eters are given in the following table:

Parameter Wheat Corn Sugar beet

Profitable yield [T/ac] 3 3.6 24
Mean yield [T/ac] 2.5 3 20
Lower yield [T/ac] 2 2.4 16
Planting cost [%/ac] 150 230 260

Selling price [%/T] 170 150
36 under 6000 T
10 over 6000 T

Purchase price [%/T] 238 210 not important
Requirement for feeding [T] 200 240 0

It can be observed, that this model has the two-stage linear structure. This means
that there are two decision moments, when the farmer has to decide.

The first one being in winter, when he has to determine how to parcel his land
for each crop for the next year. This decision must be taken with no information
about future weather (apart from the three possible scenarios). We call this the first
stage decision.

The second decision moment comes in place after the realization of the random
variable (the weather condition), after the harvest. Now, the farmer has to decide
what amount of crops he should sell or buy to fit the feeding requirement and make
maximum profit.

We will use the following notation for the model variables:
• X \ \ acres devoted to wheat,
• x 2 : acres devoted to corn,

39

,3,
,3,

,3,

x3: acres devoted to sugar beet.
y{: tons of wheat purchased, s =
y2. tons of wheat sold, s — 1,..
y|: tons of corn purchased, s — 1,
y|: tons of corn sold, s = 1,..., 3,
y|: tons of sugar beet sold under quota, s — 1,

tons of sugar beet sold over quota, s — 1,.
z: expected profit.

,3,
,3,

O A1MMS - Nor

File Edit View Data Object Run Settings Took Window Help

s.% a m fli * I 1 1 lata • * | i Q B i a
Model Explorer: Two StageWith Fixed Recoi
© - T.voStage ' ittiFixedRecourse
l$t-g FirstStageDecl
+ Q ^c-ji"ic3tagcDed

Create
^ Solve 11
_ J Mainlnllializatiori

MainExecLrtion
MainTermination
MakeFarmer
SolveBenders
Randoming

j»j Do5ensilMly
+ £jj Panco "ring anc Faming
+ J| SeriEiii.it.
+ ^ Callback Procedures by Tree
l $ H ^ ScenarionTree Creation Procedures by Tree
+ 0 Scenario Generation Module [read-only]
+ 0 Stochastic Decomposition Module [read-onlyj

Predeclared Identifiers Tead-cnl.;

V : : - -s:;::-::r r:

ico.ooa
230.000
260.000

TuioStageWithFciedRe Art.Ca;

Fig. 3.4: First stage part, land requirements

And following notation for the parameters (and their values):
• c\. planting cost of wheat (= 150),
• c 2: planting cost of corn (= 230),
• C 3 : planting cost of sugar beat (= 260),
• q\. purchasing price of wheat (= 238),
• q2: selling price of wheat (= -170),
• q3: purchasing price of corn (= 210),
• g 4: selling price of corn (= -150),
• q5: selling price of sugar beet sold under quota (= -36),
• q$: selling price of sugar beet over under quota (= -10),
. t\: yield of wheat, s = 1,..., 3 (= {2.5, 3, 2 }),
. ts

2: yield of corn, s = 1,..., 3 (= {3, 3.6, 2.4 }),
. ts

3: yield of sugar beet, s = 1,..., 3 (= {20, 24, 16 }),

40

http://SeriEiii.it

• ps: probability of scenario s (= |).
Now we can write down the equations describing our model:

min z = c T x + J2ses Ps^ys

s.t. E?=i m < 500,
ta

1x1+ya

1-ya

2> 200, s = 1,
^ x 2 + y | - y | > 240, s = 1,

^ 3 - 2/1 — 2/1 > 0, s = 1,
y | < 6000, s = 1,
x > 0 , y s > 0 , s = l ,

,3,
,3,
,3,
,3,
,3.

(3.2)

Model Explorer: TwoStaoeWithFhtedRecoui

@ .'>- T.vL=3t3=;s-'-itnFi!'.S'-R5course
r i - g FirstStageDe-cl
i - g SecondStageDecl

[EJ Create
2 Solve It
_ J Mainlnllializatiori

MainExecution
Ma inTermi nation
MakeFarmer

j»j SolveBenders
Ranaoming

[EJ DoSensilivity
+ £jj Ranc'D "ring anc Faming
+ § j Sensiti.it.
+ ^ Callback Procedures by Tree

Scenarion Tree Creation Procedures by Tree
+ 0 Scenario Generation Module [read-only]

Stochastic Decornpasltlciri Module [read-onlyj
ijf] Predeclared Identifiers [read-onl;\

•""Page? ^Ternpla-

TwoStageWith Fixed Rel Art. Case: ir

Nrat3ecord3taoeVarlables 6.00
3

NrOfSecon dS-taq eConditions too 238.0 -170.0 210.0 -150.0 -35.0
238.0 -170.0 210.0 -150.0 -3S.0
238.0 -170.0 210.0 -150.0 -35.0

Tinput
1 2 3

Winput
1 2 3 4 - 5 6 hinout

2
3

-2.5
-3.0

-20.0

-1.0 1.0
-1.0 1.0

1.0 1.0
1.0

-200.0
-240.0

6000.0
2

1
2
3

-3.0
-3.6

-24.0

-1.0 1.0
-1.0 1.0

1.0 1.0
1.0

2
-200.0
-240.0

6000.0
3

2
3

-2.0
-2.4

-1S.0

-10 10
-1.0 1.0

1.0 1.0
1.0

-200.0
-240.0

6000.0

Fig. 3.5: Second stage part, equations guarding production and consumption

The first inequality states that we cannot plant crops on more that 500 acres
of land. The second and third ones stand as the feeding requirements. The fourth
inequality ensures that we do not sell more sugar beets than we produce and the
fifth one shows the impact of the quota on sugar beets. The last one is a safe
guard against impossible solutions (i.e. we plant a negative amount of acres with
wheat,...).

We are almost ready to rewrite the problem into our A I M M S general model. The
last step that remains is to change all the inequalities with > to < :

41

http://Sensiti.it

- t f s i - y f + y i < - 2 0 0 , s = i , . . . , 3 ,

-ts

2x2-ys

3 + yt<-240, s = l , . . . , 3 ,
- t | x 3 + 2/| + 2/1 < 0, s = l , . . . , 3 .

As we stated before in the section about the A I M M S General Program, the most
important numbers to create the model are these: number of scenarios, number
of first stage variables, number of first stage conditions, number of second stage
variables and number of second stage conditions. In our case these take the following
values:

• number of scenarios = 3,
• number of first stage variables = 3,
• number of first stage conditions = 1,
• number of second stage variables = 6,
• number of second stage conditions = 4.

We do not need to take into consideration the nonnegativity constraints, since they
are already embedded in our A I M M S general model.

Now we can finally proceed to transfer our farmer problem into the A I M M S general
model, as shown in Fig. 3.4 and 3.5.

In the Fig. 3.6 we can observe the optimal solution to our farmers problem.
This consists of the optimal first stage decision, in the x.Stochastic part of the table
(same for all the scenarios), and the optimal strategies in individual scenarios, in
the y.Stochastic part. The last part of the table shows the value of the objective
function in individual scenarios and the weighted mean of these values, which is the
optimal value of the objective function of our farmer's problem. In other words, we
advise the farmer to plant 170 acres with wheat, 80 acres with corn and 250 acres
with sugar beet. The expected profit is going to be 108390$.

42

Fig. 3.6: Results and optimal strategies

3.1.3 Sample Average A p p r o x i m a t i o n A p p r o a c h

Imagine, we asked a different expert, than the one from the previous section, and
he told us, that the yield is a continuous random variable. To illustrate this, let us
assume that the yield can be appropriately described by a uniform random variable,
inside some range [/, u}. A l l other parameters of the model remain the same, so we
will not mention how to deal with them again.

For the sake of comparison, we may take / to be 80% of the mean yield and u to
be 120% of the mean yield (as given in the previous section), so that the expectations
for the yields will be the same as in the previous section. This random yield applies
to all the crops at once, i.e. in our sample average approximation will be the mean
yield for every crop multiplied by a number from [0.8,1.2] in each generated scenario.

Our goal, now, is to generate a certain number (TV) of scenarios that will obey this
distribution requirement and incorporate these scenarios into our General Model.
Luckily, A I M M S supports a wide variety of functions that generate random numbers,
based on given distribution (see [4]). For our purpose serves the Uniform(min,max)
function.

We use this function to generate a TV x 1 vector of random numbers from Uni-
form(0.8,1.2) and, for each scenario, multiply the appropriate values of T s (in our
case the whole matrix T s) with a corresponding value from our random vector. Since
the rest of the second stage parameters (W s , h s and q s) remain for each scenario
unchanged, we can proceed in creating a procedure, that will fill up the vectors and
matrices of our General Model with appropriate coefficients. This procedure is a bit

43

JB % .-H - m | s * % e

"5l i - ' i . - c
p| M l - i
5| ACo~in>";
p| KIVAC.rd-:.-.
-p]

P|
.Pj '
V| K'-

- (i:--. i i
_Pj r.ivs' . i ji ' .

p| IVO'OCCJ- iO-.„jcV„- ..be:.
S|:teqes

_5j t-c: 1.
5| : ti—i- - -
P| K-0*0:8- --I,.
S| :;i.-.jtHi.rTvi
p| r - i :- ' • i• : >' i :
5| !-.e?3i*;-;,nn:9"ii'o--;
p| Inpdtsb.ssc^)
"p] . r i
p| r -pL'-sh is: i
P |«
P|
Pi •
P| r.
p| <*:•••)
p | ' . : • . •

~p\ DCS 3"C3 "Si'M'l V..I')
p,| r.rn~H- i fss'.'/vpp "Ms: i
p| I'M iidliVtaiWil pel

- - • • - 1
1 2 3 4 5 6 I ; : ; ::=•::.- I II • : : : : 1 2 3 4 5 6 I ; : ; ::=•::.- I

-.CO
2
3

238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0

1.00 _d
1.00
1.00
1.00 - J

2
3

238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0
238.0 -170.0 210.0 -150.0 -36.0 -10.0

1.00 _d
1.00
1.00
1.00 - J

1 2P 3
Win put

1 2 3 4 5 6 I
2
3
4

-2.7
-32

-21.6

-1.0 1.0
-1.0 1.0

1.0 1.0
1.0

-200.0
-240.0

BOOO.O
2

2
3

-2.5
-30

-20.3

-1.0 1.0
-1.0 1.0

1.0 1.0
1.0

-200.0
-240.0

6000.0
3

2
3

-24
-2.8

-1.0 1.0
|Winput[3,l,3:b

1.0 1.0
1.0

-200.0
-240.0

6000.0
+

 1
-2.7 -1.0 1.0 -200.0

Fig. 3.7: Scenarios generated by distribution

longer so we will not present it here, however, it can be found in the source code
appendix.

In our case we generated TV = 10000 scenarios (shown in Fig. 3.7) and solved the
problem. The results are shown in Fig. 3.8. We can, again, observe the optimal first
stage decisions in x.Stochastic: devoting 137.6 acres to wheat, 84.7 acres to corn
and 277.7 acres to sugar beet; the recourse actions in y.Stochastic and the expected
profit of 112225$.

; M, - •*:(VflJB*i'- I t W O
• i i-

S | l - W . C
~p\ rv i r i-.vr.'-McVv il'c:
5| A::O-:1I J-S
p| K'lVAC^ra*:)";
P|

"Pi :
P| • -

PI
_5j '•• i •' I • I
p| K-i^:efs-tr.-,jev.--.-nei
5| Ctoqes
S| l -
Sjsn.-.,-
P|
S| C
P|H
S} ••>: 'I i : -<r<-
P| -•' '
p| -.- DJ-M >l(
P| I PL'
P|q-pL'
P| K t K H
p| Wflsscs,,]

"Pi '
P| otsss]
p| •-.n:~;t' 9-"3r»:.ril VKI
P| DCS -.I.MiI'v.hJ
'pj ' < • i i ' " ; l .1 . .
p| I f : I : •.••A:>(,' :-t>|

x.Stochastic
1 2 3

y. Stochastic
1 2 3 4 5 6 Stochastic

[10000]

i. a-. - ; —
137.5 S4.7 277.7
137.6 84.7 277.7
137.6 847 2777
137.6 847 2777

153.5 20.9 f?9S.9
110.6 10.8 5012.7
145.3 14.9 5573.1
120.6 3.3 5174.9
97.1 20.7 4794.9

-122331
-84678

-11524E
-93774
-72444

-112226 3

Fig. 3.8: Results of the sample average approximation

44

3.1.4 Ex tens ion : D is t r i bu t i on Ana lys is

As we created the model using sample average approximation approach, some very
natural questions arrived: What if the bounds of the distribution were different?
What if the distribution itself is different from the one we used? How does a slight
change of the distribution affect the optimal solution?

Q AIM MS- j Stand-Alone ''.'trs- o~ .ak.3 Kud; aj

"@ MainTwoStageWithFixedRec
~ | FirstSlageDecl

••••[S] InilialSet
- E NrOfFirsfStageVariables

•••B ACondrflons
••-[0 NrOfAConditicns
• E A(ac,is)

• - B f(ac)
E His;

•Ly] nasi
ICl Firs1StageCcnstrainfs[ac)

- Q ! ; >:i"i-::3tac«D«cl
i B NrOfStages

B 3ecorir:3tage3et
B NrOfSecondStageVariables
B Stages
IS; Periods
B Scenarios
B NrOfScenarios
E StageBranches
B NrOfSecondSlageConaitions
B SecGiidStageCondHions
B Tinputisc.ssc.is:
B Winp-ut[sb,ssc,sss]
B hinputf.sb.ssc)
B qinputfsc.sss;
B T(ssc,is)
B W[S£C,£SS)

E h (s s c >
E <l(sss)
B ScenarloProt)aPilily(sc)
B DesignedProtiabilityfsb;
| ^ | ScenarioTreeMapping[sc,sl]
fp] PeriodToStage<st,pe)

NrOfScenarios

C hanga Di=tii ;uti-:n

lowsr:ouna

HrfJfSfeps 10
l.lliv.aUiB 0.500
MasValue 1 000

DO - I = ti ~LI11CI-

C;.edi,s function opfi "ui

-64321.57414 SolVal(1)

Fig. 3.9: Change in uniform distribution and distribution analysis

A l l these questions are addressed in the last page of our program (Fig. 3.9 and
Fig. 3.10). Here, the end-user is enabled to change the parameters of the uniform
distribution (lower and upper bound), choose the number of scenarios and create
his own sample average approximation, and see how it changes the results.

Or he can choose normal distribution instead, decide on its parameters (mean
and deviation), and see how this change in distribution alters the results. (Just
to clarify: the procedure guarding these manipulations creates a vector of random
numbers from desired distribution, multiplies the mean yield with numbers from
this vector and creates scenarios.)

On the right-hand side of the page, there is the section dealing with the last
question about slight changes in parameters of the distribution. The end-user can
observe the effects of increasing a distribution parameter on the optimal expected
value. The tables and graphs on this page are self-explanatory.

45

http://hinputf.sb.ssc

"© MainTwoSlageWitfiFixedRecc-urse
— FirstStageDecl

E InitialSet
E NrOfFirslStageVarlables
E ACondriions
E NrQfACondlticns
E Afac.is)
• ;<ac;
• : 11

E FirstSlageCcnstraintstacl
SecondStageDecl

E NrOfStages
E SecondStageSet
E NrOfSeconrJSIage Variables
E Stages
E Fri1:-:;E
E Scenarios
• E NrOfScenarlos
E StageBranches
E NrOfSecondSlageConditicn
E SecondStageCondlUons
E Tirput[sb,ssc,is)
• E Winp-jt[sb,ssc,sss]
E nifiput[sb,ssc)
E qinput[sb,sss)
E T(ssc,is)
E W[ssc,sss)
E h (s s c '

E M555)
E ScenarioProbabilily(sc)
• E DesigneflProDablliMst)]

ScenarioTreeMapping[sc,
E PeriodTo3tage(st,pe)

na an 1.000

Change Distrhirticn

• / : ' : : ; p s 30 Do ci&ti'i ;utiüii anal..sis

Objectiue function cptlmui

8.2074 3clVal(20;

Fig. 3.10: Change in normal distribution and distribution analysis

3.2 Extension: Solution Methods
As we stated earlier, the solution method used for solving our General Program is
the one that is embedded in A I M M S . In addition to this one we decided to program
another solution methods. These methods consist of the L-shaped method (the
Benders decomposition) - its single and dual-core version, the progressive hedging
algorithm (both described in the chapter 1) and the last algorithm, that simply solves
the problem in the form 1.17; this last algorithm is basically the simplex method (or
its variation used by the solver) and since it does not utilize the particular structure
of the two-stage linear programme, we shall denote it as the Naive algorithm. The
source codes of these solution method are quite extensive and can be found in the
appendix; we decided to briefly describe the crucial parts of the source code for
single core Benders decomposition (as described in section 1.8.2), to give the reader
at least some insight into its A I M M S implementation.

First of, we generate and solve the master problem:

MasterGMP:=GMP::Instance::Generate(master);

GMP::Instance::Solve(MasterGMP);

Then, we start solving the subproblems, generated by scenarios:

SubGMP:=GMP::Instance::Generate(subprog);

46

GMP::Instance::Solve(SubGMP);
solstatus:=GMP::Solution::GetProgramStatus(SubGMP, 1);

If we detect an unbounded solution, we break the cycle, that solves the subproblems,
and compute appropriate coefficients:

i f solstatus = 'Unbounded' then
zsubsol(sb):=zsub;
usol(sb,ssc):=u(ssc);
FeasF(is):=sum(ssc,u(ssc)*Tsub(ssc,is));
FeasSmallF:=sum(ssc,u(ssc)*hsub(ssc));
break;
endif;

If we detect an infeasible solution, we break the procedure altogether and stop:

i f solstatus = 'Infeasible' then
Errorstatus:="Infeasibility";
break;
endif;

After the solving of subproblems ends (either by a detection of unbounded/infeasible
solution or by completing the solution process of all the subproblems), we check for
the solution status of the last subproblem.

If the solution status was unbounded, we update the matrices of the master
problem (and, thus, generate a feasibility cut) and repeat:

i f solstatus = 'Unbounded' then
GMP::Row::Add(MasterGMP,addconst(lastIterSet));
for (is) do
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),FeasF(is));
endfor;
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,0);
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet),FeasSmallF);
endif;

If the last solution status was optimal, then all of the subproblems have optimal
solution. If the following condition is satisfied, we arrived at the optimal solution of
the whole problem and stop:

i f solstatus = 'Optimal' then
OptD(is):=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)*
sum(ssc,-usol(sb,ssc)*Tinput(sb,ssc,is))) ;
OptSmallD:=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)*
sum(ssc,-usol(sb,ssc)*hinput(sb,ssc)));
i f theta+epsilon>=OptSmallD - sum(is,xsol(is)*OptD(is)) then
solutionstatus:="solution found";
errorval:=OptSmallD - sum(is,xsol(is)*OptD(is)) - theta;
break;

47

"© MalnTwoStageWitfiFixedRec&uTse
+ Q '.aLeFormulation
i-Wl FirstStaoeDecl
+ 2 : = :onaStaqeDecl

[£J Create_S1cchdata
[£j FillMatrices
[gj Randoming
_pj S'DlveE~n;s'~'~yc
I Ü SolveNaive

SolveBenders
[EJ SoheBendeisDualCareParal

_pj SolveProgresslveHedglng
_pj 1.1 aJnTermi nation

Randoming and Farming
- Q "endersmaster

|y] zmaster
i\Š\ master_sub|ect_tQ

[5] master_var

i |v] tfieta

[C] ma stero bj
[FÜ] master

• MasterGMP

i B M O I M
: E ^

+ § EendersSiiGcr.-jGlems
+ 2 Eeii'j^rsDualCore
+ 2 FrcsrsssiveHedginc,
+ S slop.-vatch

r

I P B g,3

Solve Embedded

5.0 lyeProgressiveH edging

Solve Benders

Solve Benders Dual Core

zlaTirneEmbedded Ü.040

1

ElaTimerJaive 0 1 00

- laTimeBenders 1.860

E1 aT m eBend ersD ua 1 1.6 70

J -laTirneHedging 352.930 I

I 1

Overall -126492

-•

znaive -126492

zmaster -126492

zmasterdualcore -126492

zhedgactual -129150

leduj i ;
73 in)

tni
7:5 fill

159.00
70 CICI

xdualeore
159.00

76 00

xhedg
159.38

70 97

Fig. 3.11: Page devoted to different solution methods.

And if not, we generate an optimality cut and repeat:

else errorval:=0ptSmallD - sum(is,xsol(is)*0ptD(is)) - theta;
GMP::Row::Add(MasterGMP,addconst(lastIterSet));
for (is) do
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),0ptD(is));
endfor;
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,1);
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet).OptSmallD);
GMP::Row::SetType(MasterGMP,addconst(lastIterSet) ,'>=');
endif;

The progressive hedging algorithm is mainly designed for solving convex prob­
lems and is not well-suited for simple linear problems. It does not utilize the ad­
vantage of linearity in the case of scenario-based linear programme, as the solved
scenario-related programme contains an additional quadratic term that ruins the
linearity. In spite of this fact, we chose to incorporate this solution method because
our General Program can be very easily modified (by adding constraints and/or
adding terms in the objective function) to be a convex programme.

To compare these solution methods we programmed a stopwatch procedure (see
[15]) that measures the time it took the given method to reach the optimal solution.
We also designed one page in the GUI to summarize the results obtained by different
solution methods (Fig. 3.11). The source code of this program can be found in
Appendix 2.

48

3.2.1 Resul ts compar ison

The aim of this section is to compare the used solution methods. For this purpose we
generated in our General Program several linear programmes of a different size and
observed how fast did the methods reach the optimum. We will omit the progressive
hedging algorithm from the full comparison, since it is not designed for solving linear
programmes (it does solve them, but the amount of time it takes is rather large).

First of all, we let all the algorithms solve the original farmer's problem, as presented
in section 3.1.2. The results (computational times) are presented in the following
table:

algorithm computational time
Embedded 0.02
Naive 0.02
Benders: single core 0.48
Benders: dual core 0.46
Progressive hedging 5.28

From these results it is fairly obvious, that the progressive hedging algorithm is not
very well suited for these kinds of problems.

For further comparison, we decided to test the speed of our algorithms on ran­
domly generated problems (we have used the straightforward and internal support
of A I M M S for random number generation). Furthermore, we decided to find out
how does the size of the second stage part of the two-stage linear programme affect
the computational times of the presented algorithm. However, it is not our goal to
give a thorough statistical insight into this problematic; we just want to gain primal
knowledge of this phenomena and leave a profound analysis for our future studies.
We constructed the problems as follows:

• number of first stage variables = 10,
• number of first stage conditions = 5,
. A = Round(Uniform(0.3,l)),
. b = Uniform(1000,2500),
. c = Uniform(-4500,-3700),
. T = Uniform(50,100),
. W = Uniform(7,20),
. h = Uniform(700,1500),
. q = Uniform(-300,-180).
The other three parameters, namely, a number of second stage conditions, a

number of second stage variables and a number of scenarios, will vary for each
programme. We chose 2 values for the number of scenarios: 200 and 500. The

49

number of second stage conditions and the number of second stage variables will
be both from {50, 60, 70, 80,90,100}, for the problems with 200 scenarios, and from
{20,30,40,50}, for the problems with 500 scenarios.

A l l the inequalities are chosen to be of a < type and all the parameters are
chosen in such a way, that there always exists an optimal solution. This is easy to
see, since a zero solution (i.e. a solution where all the variables are zero vectors) is
a feasible solution.

To summarize, the comparison process looks like this:
• We choose a number of scenarios, a number of second stage conditions and a

number of second stage variables.
• We generate the vectors and matrices.
• We run all our algorithms on this generated problem and find the amount of

time it took the specific algorithm to find optimum.
The results of this comparison are presented in the following tables and figures.
First for the problems with 200 scenarios:

200 scenarios - Naive algorithm
of second

stage variables
of second stage conditions # of second

stage variables 50 60 70 80 90 100
50 26.46 39.12 79.38 151.11 41.88 103.48
60 43.3 64.4 96.54 73.81 89.55 45.15
70 39.01 44.85 98.62 63.9 163.69 219.39
80 97.38 67.24 143.79 141.52 98.27 108.3
90 49.09 84.02 98.39 208.52 175.79 136.89
100 53.45 49.51 102.42 184.66 66.41 308.59

200 scenarios - Embedded algorithm
of second

stage variables
of second stage conditions # of second

stage variables 50 60 70 80 90 100
50 25.92 39.21 80.57 147.57 41.54 98.38
60 42.55 64.97 95.92 74.83 89.1 45.64
70 39.34 41.78 100.1 65.19 186.54 212.85
80 91.9 68.45 140.99 144 99.58 108.31
90 46.85 84.92 98.72 211.85 176.56 124.32
100 69.83 51.27 96.92 184.58 67.15 327.13

50

200 scenarios, 60 second stage conditions

0

50 50 70 SO 90 100

of second stage variables

^ ^ ~ N a i v e Bendersdual Embedded ^ ^ B e n d e r s

Fig. 3.12: Graph: 200 scenarios, 60 second stage conditions

200 scenarios - Benders decomposition: single core
of second

stage variables
of second stage conditions # of second

stage variables 50 60 70 80 90 100
50 90.38 70.15 79.64 84.9 44.76 110.3
60 112.15 86.12 77.44 87.47 77.54 68.67
70 172.16 81.66 102.64 82.57 72.47 131.57
80 118.43 109.45 63.19 87.39 55.82 101.5
90 79.48 138.98 93.92 121.91 88.87 100.69
100 50.58 92.28 65.06 75.21 96.18 117.73

200 scenarios - Benders decomposition: dual core
of second

stage variables
of second stage conditions # of second

stage variables 50 60 70 80 90 100
50 52.03 66.69 74.43 80.47 42.73 94.91
60 57.31 80.07 71.2 82.13 71.15 64.52
70 83.38 77.01 96.34 79.19 69.59 125.81
80 79.65 101.39 59.05 82.1 54.21 97.14
90 75.03 130.44 89.38 114.25 85.09 94.63
100 43.95 86.72 61.79 74.75 95.36 112.45

And here for the problems with 500 scenarios:

51

500 scenarios - Naive algorithm
of second

stage variables
of second stage conditions # of second

stage variables 20 30 40 50
20 94.56 101.96 88.26 230.43
30 74 113.93 123.94 361.59
40 57.72 100.36 81.06 208.51
50 27.94 103.25 126.2 119.87

500 scenarios - Embedded algorithm
of second

stage variables
of second stage conditions # of second

stage variables 20 30 40 50
20 93.81 100.48 82.85 234.09
30 62.8 114.6 122.75 358.48
40 66.74 103.54 82.88 207.11
50 28.42 102.42 129.17 126.98

500 scenarios - Benders decomposition: single core
of second

stage variables
of second stage conditions # of second

stage variables 20 30 40 50
20 94.81 94.03 182.88 132.19
30 106.53 114.35 161.52 125.38
40 86.81 176.75 147.26 100.54
50 92.98 49.93 154 118.57

500 scenarios - Benders decomposition: dual core
of second

stage variables
of second stage conditions # of second

stage variables 20 30 40 50
20 92.62 89.85 174.19 124.08
30 112.03 107.77 152.6 125.28
40 80.06 162.41 154.02 99.84
50 88.24 48.39 149.14 115.96

From the results above, we deduce that (at least for our generated problems) the
Naive algorithm and the A I M M S Embedded algorithm are basically the same algo­
rithm. We can, also, notice that the parallelization done in the dual core version
of the Benders decomposition offers a slight, but noticeable, improvement in the
computing time. On the other hand, the results of the comparison between the
Naive algorithm and the Benders decomposition (either dual or single core version)
are not very clear. Each of these algorithms performed better than the other one

53

500 scenarios, 20 second stage conditions

U of second stage variables

•BendersDual ^ ^ H B e n d e r s Naive Embedded

Fig. 3.15: Graph: 500 scenarios, 20 second stage conditions

500 scenarios, 50 second stage conditions

33 40

of second stage variables

BendersDual • Benders Naive H Embedded

Fig. 3.16: Graph: 500 scenarios, 50 second stage conditions

500 scenarios, 40 second stage variables

30 40

of second stage conditions

BendersDual • Benders Naive H Embedded

Fig. 3.17: Graph: 500 scenarios, 40 second stage variables

54

at some problems. However, we only generated one instance for each configuration
so any conclusions we make may end up being premature. Generally speaking, as
the problem grows in size, the Benders decomposition should be faster than our
Naive algorithm. Another important factor is the particular structure of the gener­
ated problems, that we chose to test our algorithms on. This dependence remains
unknown for us and hopefully will be a part of our future studies.

55

4 REAL-LIFE E X A M P L E : A N INCINERATION
P L A N T

The task is to model the waste-to-energy process of an incineration plant, opti­
mize this process and determine the parameters of its most important components,
namely a steam turbine or a boiler, as an important part of the incinerator. In fact,
also the capacity of incinerator can be optimised in the similar way. The focus is on
the simplified model that may easily utilize A I M M S user interface and may help to
give a rough estimate for the incinerator optimal design. It also allows visualization
of the function Q(x) in 1.7.

4.1 The Incineration Process

Incineration is a waste treatment process that consists of the combustion of organic
substances, contained in waste materials.

The heat, produced by a boiler, is used to generate steam which is then used to
drive a steam turbine and, thus, produce electricity. Other option for the usage of
this steam is district heating (industrial or municipal). More can be found in ([19],
[9])-

Our incineration plant deals with burning a municipal solid waste (MSW), which
is a waste type consisting of everyday items that are discarded by the public. The
composition of this waste varies throughout the year and its lower heating value
(LHV), i.e. the amount of heat we are able to get from a certain quantity of the
material by burning it, changes randomly. We want to optimize the waste-to-energy
process for 24 years.

The technological process of the incineration plant (Fig. 4.1) can be described as
follows:

1. MSW, that was transported to the plant, is stored and regularly mixed. This
ensures that the structure of the waste is roughly the same throughout a day.

2. The waste is moved by a feeding unit into a firing grate and is burned. The
heat generated by the combustion heats up water inside a boiler and turns
this water into a steam.

3. The steam is, then, run through a steam turbine and generates electricity.
4. The steam that has not been used for generating electricity either goes to other

technological processes or heats up water, that will end up in district heating.
5. The slag that remains after burning is decomposed into ashes and metals and

can be used in other processes.

56

Fig. 4.1: The technological process of the incineration plant. [17]

6. Separation of gases and vapour takes place; this treatment reduces the pollu­
tant emissions to the atmosphere.

4.2 Simplified Problem Formulation

We will present here a profound insight into a model that is the simplest possible one,
however, it is still approximately suitable for the introduced incineration problem.
After that, we will show that A I M M S is useful even without its optimization tools.

The goal is to determine the size of a boiler. The objective function comprises of
the investment cost of the boiler (linearly depending on the boiler's size) and the
recourse, which in this case is the amount of money that we will get from using that
boiler. Since we deal with stochastic programming, some of the problem parameters
will depend on a realization of the random vector (£).

First of, we define our variables and parameters:
• variable x: the size of the boiler,
• variable y: the amount of energy (generated by the boiler) that we sell,
• parameter £(<•): energy transformation coefficient,
• parameter h(£): energy demand,
• parameters l,u: lower and upper bounds on the size of the boiler,
• parameter c: cost for a unit size of a boiler,
• parameter g(£): cost of energy,

57

We will proceed to define our stochastic programme as follows:

min z = c • x + Q(x)
s.t. x G [/,u}.

Q(x) = EeQ(x,£).
Q(x,£) = mmy q(£)-y (4.1)

s.t. y<t(£)-x,
y < K£),

y>o.

The randomness will be treated via scenarios (as shown in chapter 1). Given a
fixed number of scenarios TV (i.e. £ s : the realizations of the random vector £), our
problem becomes:

minz = c- x + J2s=iPsQ(x,€s)
s.t. x G [/,u}.

Q(x,£a) = m i n s e 5 qs-ys

s.t. y <ts • x,

V < hs,
y>o.

We have to emphasize the fact that 4.2 model is the simple version of real-world
models published in [10]. Its motivation was discussed with colleagues from UPEI
(Institute of Process and Environmental Engineering): Michal Tous, Radek Som-
plak, Martin Pavlas and my supervisor, as the suitable tool for initial estimates of
the capacity of a boiler or an incinerator, before the advanced models are available.
The advantage of the model is that only aggregated data is needed and the user
can easily check whether the optimal capacity tends to boundary capacities/sizes or
interior point solution can be expected.

We shall, now, derive the solution for a particular realization of the random vector
£, i.e. we will treat the random parameters as deterministic ones. (This corresponds
to solving the problem for only one scenario).

To obtain it we will firstly deal with the second stage problem:

Q(x,£s) = mmqs-ys

s.t. y <ts • x,
y < ha,

y>o.

We can easily derive a relation between y and x: y G [0,min(ts • x,hs)]. We will
define a point x as x = hs/ts. Now, given that q < 0, ts > 0, hs > 0 (which are

58

O 'i:t. J 'vlS - Mon-eom-isrcial Ic^-cs S:c-d-ibn= Vs-s'o- :Jskul: <udea;

File Edit View Data Run Settings- l o o t Window Help

m otx^aax Lf • staBIm
Model Eaplorer: Two St a g eWi th Fixed Recourse, a mb •

:El z

| |gp| MathProg
! [ft] SP_GMP_PowerExpModel
I [g] SPRoot_Name

[S] NormalConstr
'• \s\ NormalVar

[£J Crea1e_S1cchdata
[£J FillMatrices
OS Ranflomlng
£i SolveE,"nceccec
[£J SolveNaive
U j SolveBenders
El SolveBendersDualCoreParallel
[Q SotveProgressiveHedging

| UainTermination
Randomino. and Farming

+ Q - 5^dersmaster
+ 2 BendersSiiGproGlems
+ ^ Benders Dual Co re
+ Q Pre jres&L-eHecQing
+ § stop-.-Yatch
+ 5 | graphs
j - j ^ Incineration

UEJ StartStop watch
U StopStopwatch
El Speedanalysis

_pj incine rati on_p race dure
i ^ Callback: Procedures by Tree

Scenaricn Tree Creation Procedures By Tree
j - - ^ Scenario Generation Module [read-only]
+ 0 Stochastic Decomposition Module [read-only]
@ Predeclared Identifiers [read-only]

J .

150
min_tx_h(0,1)

Objective function for each scenario
• 1 • ! B 3 n i ms
• 7 0 8 • & m o

150 300
objective_one(0,1)

Q*_ .a lues

• 6 M7 CDS Ml' 0 1 0

°1

-175,000.

-350,000

-525,000

-700,000 J , ,
0 150 300

-266899.117 Qx_values(0,1)

Overall objective function

150 300
-164791.7805 objective _mean(0)

Fig. 4.2: Multiple scenarios case.

natural condition on the parameters), we obtain Q(x, £s) = q • min(t s • x, hs). There
are three possible outcomes, depending on the position of x:

• Q(x, £s) = q • ts • x for x > u,

• Q{%, is) — Q ' hs for x < I,
• Q(x, £s) = q • ts • x for x G [/, x] and Q(x, £s) = q • hs for x G [x, u]

Now, we focus on the first stage part:

min^ = c • x + Q(x, £s)
s.t. x G [/,u}.

Once we take into account the results of the second stage, the overall results easily
emerge. We will denote the overall optimal solution as x* and obtain it as follows:

if |ts si > c and x, G [u, I] then x* = x
if |ts q\ > c and x, < I then x* = I,
if Its q\ > c and x > u then x* = u,
if Its q\ < c then x* = I.

This whole procedure was basically an effort to find a combination of values of
the problem parameters, that would lead to an optimal solution, which is not a
boundary value of the interval [l,u]. Thus, our effort was successful since we found
such a combination.

In the case of multiple scenarios we were not able to arrive at any similar general

59

results. We used A I M M S GUI to illustrate the process of obtaining the overall
objective function in the case of multiple scenarios (Fig. 4.2).

Moreover, we programmed the same procedure in M A T L A B ; we did this because
we feel that the M A T L A B environment is more suited for this kind of computations
and, for anyone not completely familiar with A I M M S , even more user-friendly. Apart
from easy adjustment of the model parameters, it gives a graphical result as shown
in Fig. 4.3. The M A T L A B program is enclosed in the appendix.

H Figure 1 ^ B ° | B 1 - ^ - 1

p a a a i»|^^giae<t-|a|nB|»a

Fig. 4.3: Matlab implementation

4.3 Nonlinearity and Real Data
We asked our colleagues from Institute of Process and Environmental Engineering
(BUT) for some real data, regarding our incineration model. The data, we were
given, can be summarized in the following expressions:

• The task is to find the optimal capacity of a new boiler for an incineration
plant, whose lifespan is 24 years. The range of this capacity is between 50000
and 400000 tons per year. The objective function is comprised of costs (for
construction, maintenance, etc.) and earned money (from selling heat, ...).

• The function describing the cost of both constructing and running this boiler
was determined as:

cost = 2688000x0-7,

where x denotes the capacity of the boiler in tons.

60

• Our incineration plant produces both heat and electricity. The relationship
between the capacity and the amount of produced heat and electricity is gov­
erned by the following inequality:

0.001a; > 0.2876 + 0.0126yi + 0.0828y2;

where y\ and y2 are the amount of heat and electricity, respectively; their unit

• The incineration plant makes money by selling this heat and electricity and,
also, by charging the processing of municipal solid waste. The prices are going
to be treated as random parameters with the following properties:

- the price of 1 GWh of heat: qx ~ N(-1044000, 72000),
- the price of 1 GWh of electricity: q2 ~ N{-1650000,100000),
- the price of 1 ton of processed MSW: q3 ~ 7V(—1500,100),

where N(/j,, a) stands for normal distribution.
• The amount of heat, we can produce, is restricted by demand (in 22^TS)'-

h ~ TV(6000,600).
• The amount of generated electricity is also restricted by (in 2 ^ ^ r s) : h2 ~

#(1000,100).

• The amount of processed solid waste over the lifespan of the incineration plant
will be equal to 24 times the capacity of the boiler (i.e. we use the boiler to
its full potential). Since the price of this procedure is random, we will use an
additional variable 2/3.

First of, we need to deal with the nonlinearity in the function describing costs.
We approach this by constructing an outer approximation of this function. This
approximation is done via construction of tangents of the original function. Since
the cost function is concave, its tangents have their function value always > than
the concave function itself.

We programmed an A I M M S implementation of this procedure; since it is not
the purpose of this text, we will omit any description and just present the results
for our problem in Fig. 4.4.

We decided to use for our approximation 2 tangent lines. The program gave us
the following results:

. T l (x) = 56500a; + 2879244000, for x G [50000,190140],

. r2(x) = 43000a; + 5446954000, for x G [190140,400000].
This allows us to split out problem in two linear problems. The first one with

x G [50000,190140] the cost function described as T\(x) and the second one with
x G [190140,400000] the cost function described as T2(X). These problems can be

61

> I g \mOm\

NrOfValues = 100
NrOflneq = 2.00
xmin = 50000
xmax = deS

w/al TanqentCoeffA TanqentCo&fTB
1
2

1 1
295707.1

5G.5
43.0

3eG
5eG

I • I I ±1

Fig. 4.4: Approximation of a concave function (blue) by 2 tangents (red).

summarized for a fixed number of scenarios N, as follows:

mm z
s.t. O.OOlx - 0.0126yf - 0.0828y| > 0.2876, s = 1,

2/l < s = l;

ys2 <hs

2, S = 1,

24a;-1/1 = 0, s = 1,
x E [lk,uk],ya > 0, s = 1, 1,2,

where [Zi,ui] = [50000,190140] and [/ 2 ,M 2] = [190140,400000]. The optimal solution
of the whole problem will be determined as the best one of the two partial solutions.
We used our General Program to model and solve this problem; we chose to generate
100 scenarios for the random parameters. Without further ado, we present the
results:

• For x e [50000,190140] the optimal capacity is x = 93125 with objective

z = -7.85e9.
• For x e [190140,400000] the optimal capacity is x = 247386 with objective

z = -8.4e9.
Just for clarification, the negative value of the objective z indicates that the incin­
eration plant is profitable. From this we gain the optimal capacity for the whole
problem x* = 247386 tons for year.

62

CONCLUSION
In this master's thesis we dealt with optimization and stochastic programming. We
described the basic tools of mathematical programming in Chapter 1; in the same
chapter, we presented the main ideas of stochastic programming along with the solu­
tion methods used for solving these stochastic programming problems. This chapter
laid the theoretical foundations for implementations and algorithms we constructed
in Chapter 3.

Chapter 2 served as the introduction to the optimization modelling software
A I M M S . We mentioned the crucial ideas and functions in A I M M S , that allowed us
to use the theoretical results from Chapter 1 and create stochastic programmes in
A I M M S .

The most important part of our work is contained in Chapter 3. Here, we com­
bined the theoretical results from stochastic programming with the functionality
of A I M M S . We constructed in A I M M S a general two-stage linear stochastic pro­
gram and an end-user interface, for this program. This program can be used for
solving any kind of two-stage linear stochastic problem. Moreover, we implemented
and compared several solution methods described in Chapter 1, namely, the sample
average approximation, the benders decomposition and the progressive hedging al­
gorithm. This comparison was carried out on generated problems of different size
and on the Farmer example.

In Chapter 4 we have shown that A I M M S is useful even without its optimiza­
tion tools and functions; we used its graphical interface to obtain the solution of a
simplified incineration problem.

We hope, that this text will be helpful to anyone, who is interested in stochastic
programming and, mainly, in the usage of A I M M S in dealing with stochastic pro­
gramming problems. We enclosed in the appendices all the constructed A I M M S
programs we described throughout the thesis.

63

BIBLIOGRAPHY
[1] B A Z A R A A , M . S. - SHERALI , H. D. - S H E E T Y , C. M.:Nonlinear Program­

ming: Theory and Algorithms. John Wiley Sons, New York, second edition,
1993. ISBN 0-471-55793-5.

[2] BISSCHOP, J.: Aimms Function Reference. Haarlem: Paragon Decision
Technology, 2012. [Cited 7.4.2014]
http://www.aimms.com/downloads/other-references-and-guides/
function-reference

[3] BISSCHOP, J.: Aimms Optimization Modeling. Haarlem: Paragon Decision
Technology, 2007. ISBN 1847539122.

[4] BISSCHOP, J. - ROELOFS, M . : Aimms Language Reference. Haarlem:
Paragon Decision Technology, 2007. ISBN 1847539114.

[5] BISSCHOP, J. - ROELOFS, M . : Aimms ­ User's Guide. Haarlem: Paragon
Decision Technology, 2007. ISBN 1847537820.

[6] BIRGE, J. R. - L O U V E A U X , F.: Introduction to Stochastic Programming. New
York: Springer Series in Operations Research, Springer Verlag, 1997. ISBN 0-

387-98217-5.

[7] KLIMEŠ, L.: Stochastic programming algorithms. Diplomová práce. Brno:
Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2010.

[8] K U D E L A , J.: Optimalizační úlohy v programu AIMMS. Bakalářská práce.
Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2012.

[9] ŠOMPLÁK, R.: Využití metod stochastického programování pro hodnocení in­

vestic v energetických zdrojích. Diplomová práce. Brno: Vysoké učení technické
v Brně, Fakulta strojního inženýrství, 2011.

[10] ŠOMPLÁK, R. - U C E K A J , V . - P O P E L A , P. - P A V L A S , M . : Waste­to­Energy
Facility Planning Supported by Stochasting Programming ­ Part I Introduction.
Chemical Engineering Transactions, 2012, vol. 29, no. 1, p. 649-654. ISSN: 1974-

9791.

[11] R A R D I N , R. L.: Optimization in operations research. New Jersey: Prentice
Hall, 1998. ISBN 0023984155.

[12] RUSZCZYNSKI , A. - SHAPIRO, A.: Handbooks in Operations Research and
Management Science, vol. 10: Stochastic Programming. Amsterdam: Elsevier,
2003. ISBN 978-0-444-50854-6

64

http://www.aimms.com/downloads/other-references-and-guides/

[13] A I M M S . Cited [7.4.2014].
http://business.aimms.com/

[14] A I M M S : Academic License. Cited [27.5.2014].
http://www.aimms.com/academic/free-academic-license

[15] A I M M S blog: Creating StopWatch in A I M M S to time execution. Cited
[2.5.2014].
http://blog.aimms.com/2011/12/
creating-stopwatch-in-aimms-to-time-execution/

[16] I B M : C P L E X Cited [16.4.2014].
http://pic.dhe.ibm.com/infocenter/cosinfoc/vl2r2/index.jsp?topic=
% 2 F i l o g . odms . ide. help°/o2FContentyo2FOptimization°/o2FDocumentation°/o
2FOPL_Studio0/o2F_pubskel0/o2Fglobals0/o2Feclipse_and_xplatform°/o2Fps_
opl990.html

[17] WtERT: Incineration. Cited [2.1.2014].
http://www.wtert.eu/default.asp?ShowDok=13>

[18] Wikipedia: AIMMS. Cited [7.4.2014].
http://en.wikipedia.org/wiki/AIMMS

[19] Wikipedia: Incineration. Cited [7.4.2014].
http://en.wikipedia.org/wiki/Incineration

65

http://business.aimms.com/
http://www.aimms.com/academic/free-academic-license
http://blog.aimms.com/2011/12/
http://pic.dhe.ibm.com/infocenter/cosinfoc/vl2r2/index.jsp?topic=
http://www.wtert.eu/default.asp?ShowDok=13
http://en.wikipedia.org/wiki/AIMMS
http://en.wikipedia.org/wiki/Incineration

