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PREFACE 
The future is not set. Every day we make decisions whose outcomes are unknown 
to us and often depend on chance. Deterministic mathematical programming and 
optimization help us determine what decisions to make, under given circumstances. 
A downside of these approaches is that they are not well suited for problems that 
contain uncertainty. This proves to be a major issue since the parameters in opti­
mization models (e.g. prices of certain products, demand, etc.) are in fact random 
and evolve in time. These are the cases where stochastic optimization takes over. 

The aim of this text is to give a description of the basics of stochastic pro­
gramming and to acquaint the reader with some of the methods used for solving 
stochastic programmes (for clarification, we will use the word programme in the 
context of optimization and the word program for software implementations). The 
implementation of these solution methods will be done in a software called AIMMS, 
that is designed for optimization modelling. The thesis will be divided into several 
chapters. 

Chapter 1 will be devoted to the introduction of deterministic and stochastic 
programming. The main objective will be to thoroughly describe the two-stage 
linear stochastic programme and support this description with a number of solution 
methods suited for dealing with this particular kind of problem. 

Chapter 2 will introduce the software A I M M S . We will cover the creation of 
optimization programs in A I M M S as well as describe the usage of several impor­
tant features of A I M M S to show that it is a truly viable software, that is able to 
successfully deal with stochastic programmes. 

Chapter 3 focuses on practical implementation of the knowledge gained from 
Chapter 2. We will construct a general two-stage linear stochastic program in 
A I M M S that will allow the user to formulate and solve any problem of this kind 
with ease. In addition to that we will program the methods for solving two-stage 
linear stochastic programmes, that we described in Chapter 1, and we will give a 
comparison of these solution methods. We will also show the usage of this general 
program on a very well known example. 

In Chapter 4 we will encounter a real life stochastic problem. We will use the 
tools and knowledge we acquired throughout the previous chapters to deal with this 
problem. 

Moreover, we should mention that this thesis contributes to the research activ­
ities of Technology Agency of the Czech Republic within the research project No. 
TE02000236 "Waste-to-Energy (WtE) Competence Centre". 
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1 BASIC NOTIONS AND THEORETICAL RE­
SULTS 

In this chapter we will describe the basic theoretical ideas of deterministic and 
stochastic programming, needed for modelling in A I M M S . The deterministic pro­
gramming will be approached very lightly since its applications in A I M M S were 
already shown in [8]. 

1.1 Mathematical Programming 

We will start with a brief description of the basic concepts of mathematical pro­
gramming. For a thorough understanding see [1] or [11]. 

The goal of mathematical programming is to find an optimal value of the objective 
function with respect to given constraints (set of inequalities). These constraints 
form the feasible set. The optimal value is either minimum or maximum (depending 
on a specific problem) of the objective function in the feasible set. 

A lot of practical optimization problems, even rather complex ones, are modelled 
as linear programmes. Using the matrix-vector formulation we can write these as 
follows: 

min c T x 
s.t. A x = b (1.1) 

x > 0. 
The notation we use follows the conventional notation utilized throughout the field 
of mathematical programming (see [1], [11] or [12]); we will, thus, omit a thorough 
description of the equations, which, we fell, are clear from the context. Even though 
these models have a substantial limitation in the assumption of linearity in the 
objective function and constraints, they are used in a vast area of applications 
spanning engineering, transportation, agriculture, etc. 

For modelling a closer approximation of the desired real-life problem a more 
general model must be used 

mmg0(x) 
s.t. &(x) <0,z = l , . . . , m (1.2) 

X G I C K " 

This form is known as a mathematical programming problem. The set X C W1 as 
well as the real functions <7i(x), % — 0 , . . . , m are given by the modelling process. 
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Depending on the properties of the functions gi and the set X, programme (1.2) is 
called: 

• linear, if the set X is convex polyhedral and the functions <7J(X),Z = 0 , . . . ,m 
are linear, 

• nonlinear, if at least one of the functions <7J(X),Z = 0 , . . . ,m is nonlinear or 
X is not a convex polyhedral set; among nonlinear programmes, we denote a 
programme as 

— convex, if X fl {x | ^ ( x ) , i = l,...,m} is a convex set and #o(x) is 
a convex function (in particular if the functions gi(x),i = 0 , . . . ,m are 
convex and X is a convex set), and 

— nonconvex, if either X fl {x | ^j(x),z = 1,... ,m} is not a convex set or 
the objective function #o(x) is not convex. 

Another class of problems arises when some of the variables Xj,j = 1,..., n can only 
take integer values. This is called (mixed) integer programming. 

1.2 Deterministic Programming 

Deterministic program is a mathematical programme for which all the parameters 
and coefficients (in objective function and constraints) are fully known; there is 
neither uncertainty nor randomness. 

A deterministic programme can be expressed in the following form that is further 
suitable for stochastic programmes: 

min# 0(x, a) 
s.t. <7J(X, a) < 0, % — 1,..., m (1.3) 

x G l C f , 

where a e 1* is a K-dimensional constant vector. 
A linear programme (1.1) can be a special case of a deterministic programme if 

all the coefficients of vectors b, c and the matrix A are fully known. 

1.3 Stochastic Programming 

As we stated earlier, in the preface, the future is not set. The biggest limitation 
of deterministic programming is that it requires all the parameters of the model 
to be fully known. However, the real-world applications can hardly ever fulfil this 
requirement. To give just some examples we mention: crop yield (depending on 
weather conditions), demand on certain product throughout some time period, prices 
of basically anything, changes in legislation (restrictions or liberations of quotas), 
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etc. Using deterministic programming in these situations can return distorted and 
far-fetched results (see [6]). 

Because of all this uncertainty a different approach must be adopted. One of the 
ways to deal with the uncertainty lies in stochastic programming where the uncertain 
parameters are modelled as random variables (see [6]). 

Let the triplet (fi, A, P) be a probability space. The mapping £ : Q —y M. is 
called a random variable if for all x G K. holds 

{u : < x} e A. 

The general stochastic programme has the following form cf. 1.3: 

mmg0(x,£) 
s.t. <7i(x,£) < 0,i = l,...,m (1.4) 

x G l C f , 

where £ = (£i, • • •, £ x ) T

5 £(w) : —>• RK is a finite-dimensional random vector, 
formed by random variables on the probability space (Q, A, P). 

The feasible set C(£) of (1.4) can be written in the form: 

C(£) = { x e X | & ( x , £ ) < 0 , i = l , . . . , m } . 

Now, a new question arises: How do we solve problems like (1.4)? When a partic­
ular realization of random parameters £ p is observed and becomes known; one can 
replace £ in (1.4) by creating a deterministic programme (1.3). However, this 
does not help in situations when we cannot wait for the particular realization and 
need to solve the problem now. 

This basic partition gives us the two approaches we may take to solve a stochastic 
programme. The wait-and-see approach, being the one that uses the particular real­
ization of £ and solves a deterministic programme. And the here-and-now approach 
that finds "somehow optimal" solution for all the possible realizations of 

1.4 Decisions, Stages and Recourse 

Recourse programmes are stochastic programmes in which some decisions or recourse 
actions can be taken after uncertainty is disclosed (see [6], [12]). In these kind of 
programmes we can distinguish between two types of decisions: 

• A number of decisions have to be taken before the realization of the random 
vector These are called first-stage decisions and the period when these 
decisions are taken is called the first stage. 
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• A number of decisions have to be taken after the realization of the random 
vector £. These are called second-stage decisions and the corresponding period 
is called the second stage. 

First stage decisions are usually denoted by the vector x, while second-stage de­
cisions are represented by the vector y or y(uj) or even y(w,x), if one wishes to 
emphasize that second-stage decisions differ as functions of the realization of the 
random vector and of the first-stage decision. The sequence of events and decisions 
is thus summarized as 

x —y £(u) —y y(w,x). 

1.5 Two-Stage Programme with Fixed Recourse 
The classical two-stage stochastic linear programme with fixed recourse is the prob­
lem of finding 

min c T x + £^[min qT(o;)y(a;)] 
s.t. A x = b, 

T(w)x + W y ( u ) = h(w), a.s. l ' j 

x > 0,y(w) > 0. 

As in the previous section, a distinction is made between the first stage and the sec­
ond stage. The first-stage decisions are represented by the vector x. Corresponding 
to x are the first-stage vectors and matrices c, b, and A . In the second stage, a 
number of random events u G Q may be realized. For a given realization u, the 
second-stage problem data q(o>), h(u) and T(u) become known. Each component 
of q, T, and h is, thus, a possible random variable. W is called the recourse matrix, 
which is here assumed to be fixed. Piecing together the stochastic components of 
the second-stage data we obtain a vector £(UJ). As indicated before, a single ran­
dom event u (or state of the world) influences several random variables, here, all 
components of 

Let, also, S C 1 " be the support of i.e. the smallest closed subset in Rn s.t. 
P(S) = 1. As we just stated, when the random event u is realized, the second-stage 
problem data, q, T and h become known. Then the second-stage decision y(w) 
must be taken. The dependence of y on u is of a completely different nature from 
the dependence of q, or other parameters, on u. It is not functional but simply 
indicates that the decisions y are typically not the same under different realizations 
of ÜÜ. They are chosen so that the constraints of (1.5) hold almost surely (denoted 
a.s.), i.e. for Vu; G Q except for sets with zero probability. 

The objective function of (1.5) contains a deterministic term c T x and the ex­
pectation of the second-stage objective qT(o;)y(a;) taken over all realizations of the 
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random event u. This second-stage term is the more difficult one because, for each 
u, the value y(u) is the solution of a linear programme. To stress this fact, one 
sometimes uses the notion of a deterministic equivalent programme. For a given 
realization u, let 

Q(x, = min{q T ( W )y | W y = h(u) - T(w)x, y > 0} (1.6) 

be the second-stage value function. Then, we define the expected second-stage value 
function 

Q(x) = i ^ Q ( x , £ M ) (1.7) 

and the deterministic equivalent programme (DEP) 

min c T x + Q(x) 
s.t. A x = b, (1.8) 

x > 0. 

This representation of a stochastic programme clearly illustrates that the major 
difference from a deterministic formulation is in the second-stage value function. 
If that function is given then a stochastic programme is just an ordinary nonlin­
ear programme. Formulation (1.5) is the simplest form of a stochastic two-stage 
programme. Extensions are easily modelled; for example, if first-stage or second-
stage decisions are to be integers. Similarly, nonlinear first-stage and second-stage 
objectives or constraints can easily be incorporated. 

The generalization of the programme (1.8) for a non-linear case may have the 
following form: 

minc/0(x) + Q(x) 

s.t. ^ ( x ) < 0, i = 1,... ,77li, 

where Q(x) = E^Q^x., £(UJ)) and 

Q(x, £(UJ) = m in y q(y,£(u) 
s.t. *j(x,£(a;)) + flj(y,£(w)) < 0 a.s. , j = 1,... ,m2. 

By gl, % — 1,..., mi and g?,j = 1,..., m<i we understand the first and second stage 
constraints, respectively. A very important aspect of two-stage (and also multi­
stage) programmes is the fact that the first-stage decision x must satisfy so-called 
nonanticipativity condition. The decision x must be made before the realization of 
the random vector £ and, therefore, must be independent on it. 

1.5.1 Bas ic Proper t ies 

In this section we briefly introduce the basic properties and theory of stochastic 
programming. A l l the following results are thoroughly discussed (with examples 
and proofs) in [6]. 
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Although we set the recourse matrix W to be fixed, here we study the situation 
where this matrix can be random. This is because the main issues about definitions 
of second-stage feasibility sets depend on whether W is fixed. 

For fixed x, the value Q(x, £) of the second-stage programme is given by 

Q(x ,£(^) ) = min{q T ( W )y | W(w)y = h(w) - T(w)x,y > 0}. (1.11) 

When the mathematical programme (1.11) is unbounded below or infeasible, the 
value of the second-stage programme is defined to be —oo or +oo, respectively. 

The expected second-stage value function is, as given in (1.7) 

Q(x) = i ^ Q ( x , £ M ) . 

Let us first consider the situation when £ is a finite discrete random variable, namely, 
£ G S with S a finite or countable set. The second-stage value function is then the 
weighted sum of the Q(x, £) values for the various possible realizations of To make 
the definition complete, we make the additional convention +oo+(—oo) = +oo. This 
corresponds to a conservative attitude, rejecting any first-stage decision that could 
lead to an undefined recourse action even if there is some realization of the random 
vector inducing an infinitely low-cost function. Let K\ = { x | A x = b , x > 0} be 
the set determined by the fixed constraints, namely, those that do not depend on 
the particular realization of the random vector, and let K2 = (x|Q(x) < oo} be 
the second-stage feasibility set. We may now redefine the deterministic equivalent 
programme as follows 

minz = c T x + Q ( x ) 
s.t. x e ^ n i f j . 

From a practical point of view, it is not absolutely necessary to have a complete 
description of the region of finiteness of Q(x). On the other hand, it is desirable to 
be able to check if a particular first-stage decision x leads to a finite second-stage 
value without having to compute that value. The definition of K2 is not useful in 
that respect. Therefore, we consider an alternative definition. Let 

tf2(£) = {x |Q(x,e)<+oo} 

be the elementary feasibility sets and 

Af (£ ) = {x| for a l U e S, 

y > 0 exists s.t. W y = h - Tx} 
= ^K2{£). 

The set K2 is said to define the possibility interpretation of second-stage feasibility 
sets. A decision x belongs to the set K2 if, for all possible values of the random 
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vector a feasible second-stage decision y can be taken. 

Theorem 1. 

a. For each the elementary feasibility set is a closed convex polyhedron, hence 
the set K2 is closed and convex. 

b. When S is finite, then is also polyhedral and coincides with K2. 

Propos i t ion 2. If ^ has finite second moments, then 

P(u;|Q(x, £) < 00) = 1 implies Q(x) < 00. 

Theorem 3. For a stochastic programme with fixed recourse where £ has finite 
second moments, the sets K2 and K2 coincide. 

Theorem 4. When W is fixed and £ has finite second moments: 
a. K2 is closed and convex. 
b. If T is fixed, K2 is polyhedral. 
c. Let H T be the support of the distribution of T. If h(£) and T(£) are independent 

and is polyhedral, then K2 is polyhedral. 

Theorem 5. For a stochastic programme with fixed recourse, Q(x, £) is 
a. a piecewise linear convex function in (h, T) ; 
b. a piecewise linear concave function in q; 
c. a piecewise linear convex function in x for all x in K = K\ fl K2. 

Theorem 6. For a stochastic programme with fixed recourse where £ has finite 
second moments, 
a. Q(x) is a Lipschitzian convex function and is finite on K2. 
b. When £ is finite, Q(x) is piecewise linear. 
c. If P(x) is an absolutely continuous distribution, Q(x) is differentiable on K2. 

1.6 Scenario Representations 

Let us now look at the expected values that are used in the formulations (1.8) and 
(1.10). These can be written in the following integral form 

which brings problems since these integrals are often multidimensional and hard to 
compute. Because of this fact we will use an approach called scenario analysis and 
create scenario-based programmes. 
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The uncertainty is modelled by scenarios, i.e. set of particular realizations £ s of 
the random vector The set of all scenarios is denoted by 

S = {si,i = l,...,N}, 

where TV is the number of scenarios. We can take all scenarios if the set S is finite 
and small. However, if the set S is too large, we would have to ask some expert 
from the desired field to give us a set of most relevant scenarios. We denote ps the 
probability of scenario s G S : ps = P(£ = £s) > 0 and J2s&sPs — 1- Therefore, we 
can rewrite (1.13) as 

i ^ ( / ( x , 0 ) = £ p s / ( x , 0 - (1-14) 

From now on we will use the following notation: y s = y ( £ s ) , q s = q ( £ s ) , W s = 

w(r),Ts = T(r),h s = h(r). 
The scenario-based two-stage stochastic linear programme has now the following 

form: 

minz = c T x + £ s e s P s < 2 ( x , £ s ) 

s.t. A x = b, (1.15) 

x > 0, 

where 
Q(x ,£ s ) = m i n y s q f y s 

s.t. T s x + W s y s = h s , (1.16) 

y s >o. 
Fusing together (1.15) and (1.16) we get 

minz = c T x + Ese5Psq^ys 
s.t. A x = b, 

T s x + W s y s = h s , 8=1,...,S, 
x > 0 , y s > 0 , s=l,...,S. 

; i . i 7 ) 

It is easy to see that the size of the programme grows quickly with the number of 
scenarios. We can rewrite the general two-stage stochastic programme (1.10) in a 
similar manner. 

1.7 Multistage Stochastic Programmes 
The previous sections in this chapter were about stochastic programmes with two 
stages. A lot of real-life decision problems, however, involve a sequence of decisions 
that react to outcomes that develop over time. These decisions take place in different 
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Period 1 Period 2 Period 3 Period 4 

stages (or periods). We will denote the last stage as H. For further and more detailed 
information see [6]. 

The description of scenarios is often made on a tree such as that in Fig. 1.1. Here, 
there are seven scenarios that are evident in the last stage (H = 4). In previous 
stages (t < 3), we have a more limited number of possible realizations, which we 
call the stage t scenarios. Each of these period t scenarios is said to have a single 
ancestor scenario in stage (t — 1) and perhaps several descendant scenarios in stage 
(t + 1). We note that different scenarios at stage t may correspond to the same £ 
realizations and are only distinguished by differences in their ancestors. 

For a proper description of the multistage stochastic programme, we will use the 
form that does not use scenarios. The multistage stochastic linear programme with 
fixed recourse then takes the following form (see [6]) 

min c l T x 1 + i^2[minc 2 T(u;)x 2(a;)] + • • • + E^H [min CHT\U)XH(U)] 

s.t. = h \ 

T ^ w W + W V f w ) = h 2(w), 
. (1.18) 

T H " 1 ( o ; ) x H - 1 + WHxH(cu) = hH(co), 
x 1 > 0,x'(u;) > 0,* = 2, ...,H. 

A l l the equalities hold a.s., similarly to the model (1.5). The deterministic equivalent 
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-,3,2 

3-3,3 

W3,4 
3j] ,4,5 

Fig. 1.2: The deterministic equivalent matrix for a problem with seven scenarios in 
four periods. 

programme to (1.18) for the case with a finite number of scenarios is still a linear 
programme. It has the structural form indicated in Fig. 1.2, where we use an 
additional superscript to index distinct values of Wl and T* for different scenarios. 

1.8 The L-Shaped Method 
In this section we give a brief overview of one of the most commonly used methods 
for solving large-scale two-stage linear problems. We are going to follow the same 
notation as presented in [6]. 

1.8.1 Outer L inear iza t ion 

Consider the general formulation in (1.5) or (1.8). The basic idea of the L-shaped 
method is to approximate the nonlinear term in the objective of these problems. 
A general principle behind this approach is that, because the nonlinear objective 
term (the recourse function) involves a solution of all second-stage recourse linear 
programmes, we want to avoid numerous function evaluations for it. Therefore, we 
use that term to build a master problem in x, but we only evaluate the recourse 
function exactly subproblem. 

To make this approach possible, we assume that the random vector £ has finite 
support. Let s = 1,..., N index its possible realizations and let ps be their prob-
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T x W 

T 2 W 

T K 
W 

Fig. 1.3: Block structure of the two-stage extensive form. 

abilities. Under this assumption, we may now write the deterministic equivalent 
programme in the extensive form. This form is created by associating one set of 
the second-stage decisions, say, y s , to each realization i.e., to each realization of 
q s , h s , and Ts . It is a large-scale linear problem that we can define as the extensive 
form (1.17). 

The block structure of the extensive form appears in Fig. 1.3. This picture has 
given rise to the name, L-shaped method for the following algorithm: 
Step 0: Set r = q = v = 0. 
Step 1: Set v — v + 1. Solve the linear programme 

min c T x + 9 
s.t. A x = b, 

Dzx > dh 

E z x + # > eh 

x > 0,0 e R. 

Let (x", 9U) be an optimal solution. If q = 0, 9U is set equal to —oo and is not 
considered in the computation of x". 

Step 2: For s = 1,..., N solve the linear programme 

min w' = e T v + + e T v~ 
s.t. W y + Iv+ - Iv" = h f c - Tfcx^ (1.20) 

y > o,v+ > o,v~ > o, 

where e T = [1,1, . . . , 1], until, for some s, the optimal value w' > 0. In this 
case, let cru be the associated simplex multipliers and define 

D r + 1 = (O t T s 

l = l,...,r, 
I = 1,... ,s, 

[1.19) 
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and 
dr+l = {cru)Th.a 

to generate a constraint (called a feasibility cut) of type (D/x > dj). Set 
r = r + 1, add to the constraint set, and return to Step 1. If for all s,w' = 0, 
go to Step 3. 

Step 3: For s = 1,..., N solve the linear programme 

min w = qjy 
s.t. W y = h , - T f c x " , (1.21) 

y >o. 

Let 7Tg be the simplex multipliers associated with the optimal solution of 
problem s of type (1.21), i.e. optimal solution of the dual problem to (1.16). 
Define 

N 

s=l 

and 
N 

e<?+l = & s « ) T h s -
s=l 

Let wv = eq+i — E^+ix^. If 6V > wu, stop; x^ is an optimal solution. Otherwise 
set 5 = 5 + 1, add constraint (called a optimality cut) to constraint set (E^x + 
9 > ei), and return to Step 1. 

The method consists of solving an approximation of (1.8) by using an outer lin­
earization of Q. Two types of constraints are sequentially added: (i) feasibility cuts 
determining {x|Q(x) < oo} and (ii) optimality cuts, which are linear approxima­
tions to Q on its domain of fmiteness. 

1.8.2 Inner L inear iza t ion 

The most direct alternative to an outer linearization approach is an inner lineariza­
tion or column generation approach; this approach is also known as Dantzig-Wolfe 
decomposition (see [?]). We can derive this approach from the L-shaped method by 
taking duals. 

Consider the following dual linear programme to (1.19). 

max C = pTb + E[=i &idi + £?=i 7rze/ 

s.t. p T A + Er=iO-jD, + E L i T j E , < c T , (1.22) 
E j L i T J = 1, o-j > 0, Z = 1,..., r, 7Tj > 0, Z = 1,..., g. 

The linear programme (1.22) includes multipliers cr; on extreme rays of the duals 
of the subproblems. The iri multipliers - the expectations of extreme points of the 
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duals of the subproblems. To see this, suppose (1.22) is solved to obtain a multiplier 
x". Now consider the following dual to (1.21): 

maxu> 
s.t. 

7T 

7T 

•T(hs - T s x " ) 
(1.23) 

If (1.23) is unbounded for any s, then we must have some cru s.t. cruTW < 0 and 
cruT(hs — T s x s ) > 0 or (1.20) has a feasible dual solution (hence optimal primal 
solution) with a positive value. So, the second step in the outer linearization is 
equivalent to checking whether (1.23) is unbounded for any k. In this case we 
construct D r + 1 and dr+i as in the outer linearization and add them to (1.22). 

This is the algorithm for the inner linearization: 
Step 0: Set r = q = v = 0. 
Step 1: Set v — v + 1 and solve the linear programme (1.22). Let the solution be 

(pu,cru,7vu) with a dual solution ( ^ , 0 " ) . 
Step 2: For s = 1,...,N, solve (1.23). If any infeasibile problem is found, stop 

and evaluate the formulation. If an unbounded solution with extreme ray av 

is found for any s, then form new columns dr+i and D r + i , set r = r + 1 and 
return to Step 1. 
If all problems (1-23) are solvable, then form new columns eq+\ and E g + 1 as 
in the outer linearization. If eq+i — Eq+1x.u — 0 < 0, then stop; (pu,cru,iru) 
and (x", 0") are the optimal values of the original problem. 
If eq+i — Eq+ix.u — 0 > 0, set q — q + 1, and return to Step 1. 

It is easy to see that the inner linearization method takes the same steps as the 
outer linearization, except that we solve the duals of the subproblems instead of the 

We presented both the inner and outer approximation, because we are going to 
program the outer linearization algorithm in A I M M S and we felt obliged to acquaint 
the reader with both of them. Moreover, it is quite clear that the Step 2 in both of 
those procedures is very well parallelizable (i.e. if we have a multi-core processor, we 
can command each core to solve one subproblem while at the same time the other 
core solve the next one and so on, effectively reducing the computing time). We will 
take advantage of this nice feature once we implement this algorithm into A I M M S . 

We will present another solution method for stochastic programming problems, 
namely the progressive hedging algorithm. Since it is not the purpose of this text, 

primals. 

1.9 Progressive Hedging Algorithm 
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we will not present the proper insight and only give a brief description of the algo­
rithm for two-stage problems. For more information about progressive hedging see 
[7] and [6]. This algorithm is used for solving problems of the following form: 

m i n ^ ( / ( x , y ( 0 ) ) _ 
s.t. £i(x,y(£)) < 0 , i = 1, . . . ,m. 

Furthermore, we suppose that we deal with a problem with a finite number of sce­
narios. The algorithm revolves around the idea, that if x are the first stage decisions 
and y(£) (ory(s)) are the second stage decisions, at first we suppose different first 
stage decisions x for different scenarios s. The condition, that x must be the same 
for all scenarios, is enforced by a penalization term. 

Step 0: Choose the penalty parameter p > 0 and the termination parameter e > 0. 
Set W°(s) = w°(s) = 0, X°(s) = (0, 0) for all s G S and j = 1. 

Step 1: For all s G S solve the following problem: 

min/(x,y(s)) + w J

1 " 1 ( s ) T x+ |p(x - x J _ 1 ) 2 ^ 
s.t. £i(x,y(s)) < 0 , i = 1, . . . , m 

and denote its solution as X J ' (s) = (x(s),y(s)). 
Step 2: For all s G S calculate an average solution X (s) = (x J(s), y J(s)): 

X ^ s ) = X 7 ' = E s e5Ps x ( s ) ; 

yj'(S) = yJ'(S). 

If the terminal condition 

5 = (N\\xj-1 - i?\\2 + ^ \\f-\s) - f(s)\\2 + J2Ps\\xJ(s) - x l 2 ) ^ < e 

holds, then stop. X (s) = (x J(s), y3{s)) is the solution to the original problem 
with given tolerance. Otherwise set 

wj(s) = wj-\s) + p{x>{s) - x J ) , 

J = j + l , 

and return to Step 1. 
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1.10 Sample Average Approximation 
In this section we introduce a sampling method for solving large scale stochastic 
programming problems. We concentrate on the "exterior" approach where a random 
sample is generated outside of an optimization procedure, and then the constructed, 
so-called sample average approximation (SAA), problem is solved by an appropriate 
deterministic algorithm. For more detailed description and statistical analysis of 
this method see [12]. 

Let us consider a stochastic programming problem in the following form 

mm{f{x):=Et[F(x,t{u))]}. (1.26) 

The expectation in (1.26) is taken with respect to the probability distribution of £ 
which assumed to be known. We denote by S e M.d the support of the probability 
distribution of that is, H is the smallest closed set in M.d such that the probability 
of the event £ G M.d \ S is zero. 

Often one can view the optimization problem (1.26) as a two-stage stochastic 
programming problem with -F(x, £(oo)) and £ being the optimal value and data 
vector, respectively, of the corresponding second stage programme. For example, in 
the case of two-stage linear stochastic programming with recourse, F (x , £(UJ)) '•— 

c T x + Q(x, £(UJ)), where Q(x, £(UJ)) is the optimal value of the following second 
stage problem 

m i % q T ( ( w ) ) y 
s.t. T(w)x + W(w)y = h{u), a.s. (1.27) 

y >0, 

with £ : (q, T, W , h) . As such we need to consider situations where F(x , £(UJ)) 

can take values —oo or +oo. That is, unless stated otherwise, we assume that 
F(x , £(UJ)) is an extended real valued function and the expected value £^[F(x, 
is well defined for every considered x e K " . 

If £ has a finite number of possible realizations (scenarios), say S = j ^ 1 , . . . , £ N } 
with respective probabilities ps, s = 1,..., N, then we can write the expected value 
function in the form 

N 

/ (x) = ^ p s F ( x , r ) . (1-28) 
s=l 

Note, however, that even a crude discretization of the probability distribution of £ 
leads to an exponential growth of the number of scenarios. For example, if com­
ponents of the random vector £ are independent, each having just three possible 
realizations, then the total number of scenarios N = 3d. No computer in a foresee­
able future will be able to handle calculations involving 3 1 0 0 scenarios. Therefore, 
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that way or another, one needs to reduce the number of scenarios to a manageable 
level. In this section we discuss an approach to solving the expected value problem 
(1.26), referred to as the true optimization problem, by using Monte Carlo sampling 
technique. 

Suppose that we can generate a sample of TV replications of the random vector In 
the Monte Carlo sampling method this is accomplished by generating a random (or 
rather pseudorandom) sequence U\, U2, • • •, of numbers independent of each other 
and uniformly distributed on the interval [0,1], and then constructing a sample of 
£ by an appropriate transformation. In that way we can consider the sequence 
u := {Ui, U2, • • •} as an element of the probability space equipped with the corre­
sponding (product) probability measure, and the sample £j = £i(ou),i = 1,2,..., 
as a function of u. We can view the generated sample £ 1 ; £ 2 , . . . , as a sequence of 
random, vectors, each having the same probability distribution as If the gen­
erated random vectors are (stochastically) independent of each other, we say that 
the sample is independent identically distributed (iid). By £1,62, •••, we denote a 
particular realization of the considered random sample. 

With the generated sample £1,..., we associate the sample average function 

1 N 

M x ) : = - £ F ( x , & ) . (1-29) 
JV i=i 

Since each £ t has the same probability distribution as we have that for any 
x e X, E[F(x, &)] = /(x) and hence 

E[Ar(x)] = /(x). (1.30) 

That is, / J V ( X ) is an unbiased estimator of /(x). Moreover, under various conditions 
the Law of Large Numbers can be applied with the implication that / A T ( X ) converges 
with probability one to /(x) as TV —> 00. In that case we say that / J V ( X ) is a 
consistent estimator of /(x). This certainly holds true if the sample is iid. 

For the purpose of solving a particular stochastic programming problem, sam­
pling techniques can be applied in different ways. One approach uses sampling in an 
"interior" fashion. Such algorithms aim at solving the considered problem by resort­
ing to sampling whenever the procedure requires to compute (approximately) the 
value, and may be derivatives, of the expected value function at a current iteration 
point. Typically such an algorithm is tailored for a specific class of optimization 
problems and tries to mimic its deterministic counterpart. Often different samples 
are used each time the true function or its derivatives are estimated at different 
iteration points. 
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We will discuss an alternative approach, referred to as the "exterior" method. 
First, a sample £ 1 , • • •, £ J V is generated, and then the true problem (1.26) is approx­
imated by the optimization problem 

i N 

min{/^(x) = - ^ F ( x , 6 ) } . (1.31) 

Note that once the sample is generated, i.e., numerical values of vectors are 
computed, / J V ( X ) becomes a deterministic function and its value can be calculated 
at any given point x G X. From an optimization point of view, problem (1.31) can 
be considered as a stochastic programming problem with the finite set { £ i , . . . , £N} of 
scenarios each with equal probability Therefore, any numerical algorithm suitable 
for the considered class of problems can be applied to (1.31). The optimal value 
ZN and an optimal solution xN of the problem (1.31) are considered as statistical 
estimators of their counterparts of the true problem (1.26). 

The above approach is called "exterior" since the sample is generated outside of the 
considered optimization problem, and then the constructed problem (1.31) is solved 
by an appropriate deterministic algorithm. It should be noted that this method is 
not an algorithm, but rather a general approach to solving stochastic programmes. 
One still needs to employ a particular (hopefully efficient) deterministic algorithm 
in order to solve the obtained problem (1.31). We refer to (1.31) as the sample 
average approximation (SAA) problem. The approach is also known as the sample 
path or the stochastic counterpart method. 

We are going to use this approach to generate problems on which we shall test our 
A I M M S implementation of solution algorithms. 

25 



2 AIMMS 
In this chapter we will describe the usage of the software we utilized for constructing 
and solving our optimization problems. The first section will be devoted to the 
software itself. Other section will deal with its different procedures and features 
that will be used for constructing our programs. 

2.1 About AIMMS 

A I M M S is an acronym for "Advanced Interactive Multidimensional Modelling Sys­
tem". It is a software system designed for modelling and solving large-scale optimiza­
tion problems. It consists of an algebraic modelling language, an integrated develop­
ment environment, a graphical user interface and a graphical end-user environment. 
A I M M S is linked to multiple solvers through the A I M M S Open Solver Interface. 
These solvers are: C P L E X , GUROBI , M O S E K , X A , CP Optimizer, C O N O P T , MI­
NOS, SNOPT, L G O , A O A , P A T H and CP Optimizer. For more information about 
A I M M S see [5], [18] or their web page [13]. 

Formulation of optimization models takes place through declarative language el­
ements such as sets and indices, as well as scalar and multidimensional parameters, 
variables and constraints, which are common to all algebraic modelling languages, 
and allow for a thorough description of most problems in mathematical program­
ming. 

Procedures and control flow statements are available in A I M M S for 
• the exchange of data with external data sources 
• data pre- and post-processing tasks around optimization models 
• user interface event handling 
• the construction of hybrid algorithms for problem types for which no direct 

efficient solvers are available. 
A I M M S supports a wide range of mathematical optimization problem types: 

• Linear programming 
• Quadratic programming 
• Nonlinear programming 
• Mixed-integer programming 
• Mixed-integer nonlinear programming 
• Global optimization 
• Complementarity problems (MPECs) 
• Stochastic programming 
• Robust optimization 
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• Constraint programming 
Uncertainty can be taken into account in deterministic linear and mixed integer 
optimization models in A I M M S through the specification of additional attributes, 
such that stochastic or robust optimization techniques can be applied alongside the 
existing deterministic solution techniques. 

Custom hybrid and decomposition algorithms can be constructed using the G M P 
system library which makes available at the modelling level many of the basic build­
ing blocks used internally by the higher level solution methods present in AIMMS, 
matrix modification methods, as well as specialized steps for customizing solution 
algorithms for specific problem types. 

2.2 Licenses 

In order to use the software one must have installed a proper license. There are two 
types of licenses that A I M M S offers for academic/non-commercial use. For more 
information about other types of licenses see the company web page [13]. 

2.2.1 Student License 

The A I M M S Student license is limited in the number of identifiers (200) and the 
size of the optimization models (300x300), allowing students to create and run small 
A I M M S models on their own computer. 

The free student license is equipped with the solvers C P L E X , GUROBI , M O S E K 
and X A for linear and mixed integer programming, C O N O P T and K N I T R O for 
nonlinear programming, A O A for mixed integer nonlinear programming, P A T H for 
mixed complementarity programming, B A R O N (restricted size 10x10) for global 
optimization and RO Add-on for Robust Optimization. 

This license is not suitable for our purposes but we mention it anyway for the sake 
of informing the reader about the possibility of obtaining this free license without 
the need of registration. 

2.2.2 Academic License 

The Free A I M M S Academic License is an unrestricted license for academic people 
(students, teachers, professors and researchers). 

Because we are going to deal with rather large-scale optimization problems, this 
is the license we shall use. It contains all the AIMMS-supported solvers and we can 
introduce as many variables and identifiers as we please. 
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However, to obtain this license one has to go through a process of registration, 
which although not being very long may still discourage some people from getting 
this license. 

We strongly recommend to obtain the academic license to everyone who intends 
to seriously work with A I M M S . You can get the Academic License in here [14]. 

Fig. 2.1: Declaration of identifiers 
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2.3 Sets, Parameters, Variables and Constraints 
In order to successfully create an optimization model, one has to be able to define 
variables and describe relations between these variables in a form of equalities or 
inequalities. 

0 AIM MS - Non-commtsdal Educations Stand-Alone V riion [Jakub Kudela) 
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Fig. 2.2: Parameter declaration 

In A I M M S the declaration of new variables, sets, parameters, constraints, etc. 
is done either via the graphical interface, as shown in the figures 2.1 and 2.2, or 
directly writing the source code (like in GAMS) : 

D E C L A R A T I O N S E C T I O N 

P A R A M E T E R : 

identifier : newparameter 
definition : 50 ; 

E N D S E C T I O N ; 

These declarations are fairly straight forward and natural, so we will omit a 
more detailed walk through. However, there are some special features regarding 
the declaration of sets that will be used throughout our programs, so we decided to 
highlight them: 

• The function ElementRange lets us create a set of elements with sequential 
character, e.g. subsets of integers with fixed distance between each element 
(2.3). 

• Every new set can be handled like a subset of some of the predefined sets. 
These in addition to others contain Integers, which will get handy when work­
ing with flow control statements. But most importantly we can define our 
set as a subset of AllVariables or AllConstraints. This allows use to split 
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Fig. 2.3: Set declaration ­ ElementRange 

the A I M M S program into several separate programs, i.e. we can choose the 
variables and constraints that are going to be used in creating certain math­

ematical programme (see next section). This will end up being extremely 
useful in construction of the L­shaped method (section 1.8) and in our effort 
to compare different techniques for solving stochastic programmes. 

For more informations about declaration of different identifiers and set procedures 
see [4], [2] and [5]. 

2.4 Mathematical Programmes 

Once we have all our variables and constraints fully describing the problem we are 
about to solve, we can construct a mathematical programme, i.e. we identify the 
objective function, the direction of optimization and sets of constraints and variables 
we want to include. Moreover we can inform the solver about the type of our problem 
as shown in the figure 2.4. 

Now, the easiest way of solving this mathematical programme is simply to write 
a procedure with a solve statement and a name of the mathematical programme: 

PROCEDURE 
identifier : Procedure_l 
body : 

solve mathprog; 

ENDPROCEDURE ; 

The solution of our mathematical programme can be observed in the Math Program 
Inspector (Tools­Diagnostic Tools­Math Program Inspector). 
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We will use the solve statement quite rarely since it does not offer as much flexibility 
as working with the G M P library. But we will get to that later on. 

*^lMM^-Non-rnrvim=rrwlFHMr?i;r,n^l^tanri-ilr,n=^r:ir,nlhtMhl-|iripW 1 = 1 ^ —£3— 

File Edit Data Run Settings Took Window Help 

^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

Type • « « M l PiK,r_-J i i | 1 } | f l - | » § | V | B . | B | B . ^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

Idenlil.ei 

llhifrhvf 'sr 

mathprog -

Type Wizard
 1 B K*** 

^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

Idenlil.ei 

llhifrhvf 'sr 
• automatic! Network OK 1 

^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

r.iiiixliiiinls 's: 

Vanables '/: 

Text 

Type * 

Violation penally 

a l l C o a s t s a i n t s 

ä l l V a r i a b l e s 

au tomat ic 

s ~ 1 _ 1 
r LP r Ls i 

Cancel 

P NLP r MLS 

C MIR r RM1P 

r MI NLP r RMINLP 

C 2P <~ MIQP 

C QCP r Miqcp 

C MCP r MPCC 

C COP r CSP 

^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

Comment 

s ~ 1 _ 1 
r LP r Ls i 

Cancel 

P NLP r MLS 

C MIR r RM1P 

r MI NLP r RMINLP 

C 2P <~ MIQP 

C QCP r Miqcp 

C MCP r MPCC 

C COP r CSP 

^ 'Mainjustfcrthesis 
- 2 -'^claratlon 

[p] newparameter 
i L H newseel 

; :- E l * 
1 g mattiprog 

\ LE) Mainlnilialization 
r Lfij Ma in Execution 
; [£j MainTerminatJc-n 

@ Piece dared Identifiers [read-only] 

Comment 

s ~ 1 _ 1 
r LP r Ls i 

Cancel 

P NLP r MLS 

C MIR r RM1P 

r MI NLP r RMINLP 

C 2P <~ MIQP 

C QCP r Miqcp 

C MCP r MPCC 

C COP r CSP 

^ Model i n T f f l 

Comment 

^ Model i n T f f l 

Errors/Warnings 

O No errors 

J justforthesis.prj | Act.Cas-e; 
READ •'1 

Fig. 2.4: Mathematical programme 

2.5 The GMP Library 
With every mathematical programme declared as part of our model, the G M P 
library allows us to associate one or more Generated Math Program instances 
(GMPs), and with each G M P : 

• a conceptual matrix of coefficients that can be manipulated, 
• a repository of initial, intermediate or final solutions, and 
• a pool of local or remote solver sessions. 
There is an extensive amount of procedures in the G M P library. A l l these pro­

cedures are profoundly described in [4] and [2]. These procedures help us manage 
and adjust our mathematical programmes and solver sessions in such a way, that we 
are able to program solution algorithms. We are going to pinpoint just those that 
were crucial in constructing our solution algorithms: 

• GMP:: Ins tance: :Genera te generates a mathematical programme instance 
from a symbolic mathematical programme. 

• GMP::Instance: :CreateSolverSession creates a new solver session for a 
generated mathematical programme. 

• G M P : : S o l u t i o n : : R e t r i e v e P r o m M o d e l stores the solution from the model 
identifiers into the solution repository of a generated mathematical programme. 

• GMP::Solut ion: :SendToSolverSess ion initializes a solver session with the 
values in the solution from the solution repository of a generated mathematical 
programme. 
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Fig. 2.5: Concepts associated with a G M P 

• GMP::SolverSess ion: :Execute invokes the solution algorithm to solve the 
mathematical programme for which it had been generated. 

• GMP::SolverSess ion: :AsynchronousExecute invokes the solution algo­
rithm to asynchronous solve a generated mathematical programme by using a 
solver session. 

• G M P : : Solver Session: :Wai tFor Comple t ion has a set of objects as its in­
put. The set of objects may contain solver sessions that are asynchronous 
executing and events. This procedure lets A I M M S wait until all the solver 
sessions have completed their asynchronous execution and all the events get 
activated. 

• GMP::Solu t ion: :Ret r ieveFromSolverSess ion stores the solution from a 
solver session into the solution repository of a generated mathematical pro­
gramme. 

• G M P : : S o l u t i o n : : S e n d T o M o d e l initializes the model identifiers with the 
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values in the solution from the solution repository of a generated mathematical 
programme. 

• G M P : : Solver Session: :GetProgramStatus returns the program status of 
the last execution of a solver session. 

• GMP::Instance: :DeleteSolverSession deletes the specified solver session. 
• GMP:: Ins tance: :Solve starts up a solver session to solve a generated math­

ematical programme. In addition, it copies the initial solution from the model 
identifiers via solution 1 in the solution repository and stores the final solution 
via solution 1 back in the model identifiers. This procedure is an equivalent of 
the solve statement, it takes all the necessary steps to solve the mathematical 
programme (e.g. creating solver sessions), but it does not allow us to choose 
asynchronous execution. 

• G M P : : R o w : : A d d adds an empty row to the matrix of a generated mathe­
matical programme. 

• GMP::Coeff ic ient : :Set sets the value of a (linear) coefficient in a generated 
mathematical programme. 

• G M P : : R o w : : S e t R i g h t H a n d S i d e changes the right-hand-side of a row in a 
generated mathematical programme. 

• G M P : : R o w : : S e t T y p e changes the type of a row in the matrix of a generated 
mathematical programme. 

2.6 Particular Solver Settings 

In order to successfully implement the L-shaped method we must adjust settings of 
the solvers we use Fig. 2.6. These adjustments included: 

• Disabling presolves and enabling the computation of unbounded rays, which 
allows us to compute the simplex multipliers in case of an unbounded solution. 

• Setting the thread limits to 2, since we worked with a 2 core computer. 
• Choosing the deterministic approach in parallel computation. The default 

value of this setting is opportunistic and leads to different results, but reaches 
them significantly faster. For more information on this topic see [16]. 

2.7 Miscellaneous 

There are several features of A I M M S that we would like to mention, but we do 
not feel like writing an entire section about each of these. Therefore, we decided 
to summarize them in this section. There are, of course, a lot more features and 
procedures in A I M M S that we do not have the chance to mention. If anyone is 
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Fig. 2.6: Solver settings 

interested in deeper undestanding of A I M M S we encourage them to delve into the 
manuals [2], [3], [4] and [5]. 
D a t a cases: This feature allows us to solve different problems with the same model. 

We can save particular values of the model parameters into separate cases and 
work with these cases without any need to construct a whole new model. 

G A M S compatabi l i ty: If we already have a model description done in G A M S , 
we can avoid reformulation the whole thing to A I M M S simply by importing 
the G A M S source code into A I M M S . This is done by selecting the text file 
with the G A M S source code in F i l e - O p e n - M o d e l and running the compiler. 

D a t a impor t from Exce l : Another nice feature is that we can avoid filling the 
values of parameters in A I M M S altogether by importing them from an Excel 
file (or other supported database file). 

Embedded stochastic opt imiza t ion procedures: There are procedures already 
contained in A I M M S that deal directly with stochastic programming. These 
use the G M P library and as we the Scenario Generation Module to create 
and solve stochastic programmes. However, as we will discover later on, these 
procedures do not offer any significant simplification nor do they speed up the 
solution process. 
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3 T H E G E N E R A L TWO-STAGE LINEAR PRO­
G R A M 

In this chapter, we are going to exploit the possibilities enabled by the A I M M S ' 
programming language and GUI. We will use the properties of the classic formula­
tion of the two-stage stochastic linear programme (1.5) to create a general A I M M S 
program (from now on we will call it the General Program) for solving these kind 
of problems. 

The purpose of the General Program is to design an easy and end-user friendly 
way of filling all the necessary parameters of one's model (taking in account the fact 
that the modelled problem itself must have a two-stage linear structure). 

O AIMMS-Nor 

: : " - : : ; : 
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m 

TwoStageWithFixedRE Ad.Ca; 

Fig. 3.1: Page 1 

The end-user should be able to work with this program without any (or close 
to none) knowledge of the programming language of A I M M S . Although naturally 
some understanding of stochastic programming is still required. 

Let us once more look at the equation describing the scenario representation of the 
two-stage linear stochastic programme with fixed recourse: 

minz = c T x + E s £ 5 P s q f y s 

s.t. A x = b, 
T s x + W s y s = h s , s 
x > 0 , y s > 0 , s 

1,-

1,-

.,S, 

.,S. 

(3.1) 
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The most important factors in making a general program are the dimensions of 
the vectors (c, x, q, y s , b, h s ) , the sizes of the matrices ( A , T S , W s ) and number of 
scenarios (S). These factors and their relations can be described in the following 
way: 

• Number of scenarios: S. 
• Number of first stage variables: d imx = dime = number of columns of A = 

number of columns of T s , s = 1,..., S. 
• Number of first stage conditions: d imb = number of rows of A . 
• Number of second stage variables: d imy s = d i m q s = number of columns of 

WA,8=l,...,S. 
• Number of second stage conditions: dim h s = number of rows of T s = number 

of rows of W s , s = 1,..., S. 
We will neglect the dependence of these numbers on different scenarios. Instead 
of taking values for all the scenarios, we only consider their maximums. If, for 
some scenario, is this maximum bigger than the actual value, we just put the extra 
parameters in the respective vectors and matrices to 0. This will help us to simplify 
the model a bit; we exchange the need for 2 more numbers for each scenario for a 
need to fill zeroes in certain places. 
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Fig. 3.2: Page 2 

Another slight adjustment of the original programme (3.1) is that the equalities 
in the conditions will be replaced by inequalities - namely by less that equal. The 
reason for this is that in order to use equalities we would need to introduce the 
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concept of slack variables (see [11]). This replacement is enabled due to the fact 
that every equality can be written as 2 inequalities, that have the same coefficients 
but differ in signs < and >. Moreover every inequality can change its sign from one 
to another just by multiplying all the coefficients by —1. 

These two procedures allow us to design a structure of any two­stage linear 
stochastic programme given just by the 5 values described above. Since everything 
is written as general as possible, and we took care of the inconveniences hidden in the 
equalities and scenarios, we are able to write the A I M M S mathematical programme 
with ease. 

ilVIMS • Non-c=rrmercial Educational Stand-AIons Verso- ;.ak.o Kude a: 
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Fig. 3.3: Page 3 

After this it is a simple matter of filling up all the vectors and matrices with 
desired coefficients. We created a graphical environment, in which the end­user can 
simply fill and adjust all parameters of the model and potentially solve it just by a 
click on a button. This environment is shown in Fig. 3.1, 3.2 and 3.3. 

Notice the parameter DesignedProbability in Fig. 3.2. Here, the user inserts the 
probabilities of each scenario. These do not have to add up to 1, since A I M M S will 
automatically rescale them in a way that they do add up to 1. This allows us to 
avoid writing numbers like | if we have 7 scenarios, all with the same probability, 
and instead write just 1 everywhere. 

The solution process used for solving this problem uses embedded procedures in 
A I M M S that are designed to deal with stochastic programmes, that are either linear 
or mix­integer linear programmes. These are closely described in [4]. 
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In the following section, we will show the usage of this General Program on a 
very well known example. 

3.1 The Farmer Example 

We will use the notorious farmer example (see [6]) to describe the functionality of 
the General Program more closely. Moreover, we will expand our General Program 
by adding procedures that address generating random numbers (depending on given 
distribution), which is going to help us solve the kind of problems, that instead of 
giving us set of possible scenarios give us just information about the distribution of 
some parameters. We shall solve these problems via sample average approximation 
(1.10). 

3.1.1 P r o b l e m Formula t ion 

Consider a farmer, who specializes in raising three crops: wheat, corn, and sugar 
beets. During the winter, he needs to decide how much land, from his 500 acres 
field, he should devote to each crop, in order to maximize his profit. In other words, 
how many acres of land should he devote to grain, corn and sugar beets? 

The farmer knows that at least 200 tons (T) of wheat and 240 T of corn are 
needed to feed his cattle. These amounts can be raised on the farm or bought from 
a wholesaler, whose prices are naturally high compared to the price, at which is 
the farmer able to produce his own crops. Any production in excess of the feeding 
requirement would be sold. 

Selling prices are $170 and $150 per ton of wheat and corn, respectively. The 
purchase prices are 40% more than this due to the wholesaler's margin and trans­
portation costs. 

The third profitable crop, sugar beet, is sold at $36/T; however, the government 
imposes a quota on sugar beet production. Any amount in excess of the quota can 
be sold only at $10/T. The farmer's quota for next year is 6000 T. 

The uncertainty of this problem lies in the weather conditions, that significantly 
affect the yields of each crop. 

Most crops need rain and moisture at the beginning of the planting period, then 
a lot of sunshine with occasional rain. Sunshine and dry weather is also important 
during the harvesting period. Due to the above requirements, the yields depend on 
the weather during the whole planting period. 
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We will address this problem by modelling uncertainty in the crop's yields via sce­
nario representation (with respect to given scenarios) and sample average approxi­
mation (with respect to given distribution function). Moreover, in order to use the 
general A I M M S program, we need to reformulate the problem from maximization 
to minimization one. This is done by simply changing the signs of elements in the 
vectors c and q in (3.1). 

3.1.2 Scenario Representat ion A p p r o a c h 

Assume, we asked an expert to give us some possible scenarios for the yields, de­
pending on weather. This expert then gave us these three scenarios: mean yields for 
the ordinary weather (scenario s 1), profitable yields when the weather is favourable 
(scenario s2), and lower yields when the weather is unfavourable (scenario s3). The 
probabilities of all the scenarios are equal (pi = P2 = Pz = \)- A l l data and param­
eters are given in the following table: 

Parameter Wheat Corn Sugar beet 

Profitable yield [T/ac] 3 3.6 24 
Mean yield [T/ac] 2.5 3 20 
Lower yield [T/ac] 2 2.4 16 
Planting cost [%/ac] 150 230 260 

Selling price [%/T] 170 150 
36 under 6000 T 
10 over 6000 T 

Purchase price [%/T] 238 210 not important 
Requirement for feeding [T] 200 240 0 

It can be observed, that this model has the two-stage linear structure. This means 
that there are two decision moments, when the farmer has to decide. 

The first one being in winter, when he has to determine how to parcel his land 
for each crop for the next year. This decision must be taken with no information 
about future weather (apart from the three possible scenarios). We call this the first 
stage decision. 

The second decision moment comes in place after the realization of the random 
variable (the weather condition), after the harvest. Now, the farmer has to decide 
what amount of crops he should sell or buy to fit the feeding requirement and make 
maximum profit. 

We will use the following notation for the model variables: 
• X \ \ acres devoted to wheat, 
• x 2 : acres devoted to corn, 
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,3, 
,3, 

,3, 

x3: acres devoted to sugar beet. 
y{: tons of wheat purchased, s = 
y2. tons of wheat sold, s — 1,.. 
y|: tons of corn purchased, s — 1, 
y|: tons of corn sold, s = 1,..., 3, 
y|: tons of sugar beet sold under quota, s — 1, 

tons of sugar beet sold over quota, s — 1,. 
z: expected profit. 

,3, 
,3, 
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Fig. 3.4: First stage part, land requirements 

And following notation for the parameters (and their values): 
• c\. planting cost of wheat (= 150), 
• c 2: planting cost of corn (= 230), 
• C 3 : planting cost of sugar beat (= 260), 
• q\. purchasing price of wheat (= 238), 
• q2: selling price of wheat (= -170), 
• q3: purchasing price of corn (= 210), 
• g 4: selling price of corn (= -150), 
• q5: selling price of sugar beet sold under quota (= -36), 
• q$: selling price of sugar beet over under quota (= -10), 
. t\: yield of wheat, s = 1,..., 3 (= {2.5, 3, 2 }), 
. ts

2: yield of corn, s = 1,..., 3 (= {3, 3.6, 2.4 }), 
. ts

3: yield of sugar beet, s = 1,..., 3 (= {20, 24, 16 }), 
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• ps: probability of scenario s (= |). 
Now we can write down the equations describing our model: 

min z = c T x + J2ses Ps^ys 

s.t. E?=i m < 500, 
ta

1x1+ya

1-ya

2> 200, s = 1, 
^ x 2 + y | - y | > 240, s = 1, 

^ 3 - 2/1 — 2/1 > 0, s = 1, 
y | < 6000, s = 1, 
x > 0 , y s > 0 , s = l , 

,3, 
,3, 
,3, 
,3, 
,3. 

(3.2) 
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Fig. 3.5: Second stage part, equations guarding production and consumption 

The first inequality states that we cannot plant crops on more that 500 acres 
of land. The second and third ones stand as the feeding requirements. The fourth 
inequality ensures that we do not sell more sugar beets than we produce and the 
fifth one shows the impact of the quota on sugar beets. The last one is a safe 
guard against impossible solutions (i.e. we plant a negative amount of acres with 
wheat,...). 

We are almost ready to rewrite the problem into our A I M M S general model. The 
last step that remains is to change all the inequalities with > to < : 
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- t f s i - y f + y i < - 2 0 0 , s = i , . . . , 3 , 

-ts

2x2-ys

3 + yt<-240, s = l , . . . , 3 , 
- t | x 3 + 2/| + 2/1 < 0, s = l , . . . , 3 . 

As we stated before in the section about the A I M M S General Program, the most 
important numbers to create the model are these: number of scenarios, number 
of first stage variables, number of first stage conditions, number of second stage 
variables and number of second stage conditions. In our case these take the following 
values: 

• number of scenarios = 3, 
• number of first stage variables = 3, 
• number of first stage conditions = 1, 
• number of second stage variables = 6, 
• number of second stage conditions = 4. 

We do not need to take into consideration the nonnegativity constraints, since they 
are already embedded in our A I M M S general model. 

Now we can finally proceed to transfer our farmer problem into the A I M M S general 
model, as shown in Fig. 3.4 and 3.5. 

In the Fig. 3.6 we can observe the optimal solution to our farmers problem. 
This consists of the optimal first stage decision, in the x.Stochastic part of the table 
(same for all the scenarios), and the optimal strategies in individual scenarios, in 
the y.Stochastic part. The last part of the table shows the value of the objective 
function in individual scenarios and the weighted mean of these values, which is the 
optimal value of the objective function of our farmer's problem. In other words, we 
advise the farmer to plant 170 acres with wheat, 80 acres with corn and 250 acres 
with sugar beet. The expected profit is going to be 108390$. 
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Fig. 3.6: Results and optimal strategies 

3.1.3 Sample Average A p p r o x i m a t i o n A p p r o a c h 

Imagine, we asked a different expert, than the one from the previous section, and 
he told us, that the yield is a continuous random variable. To illustrate this, let us 
assume that the yield can be appropriately described by a uniform random variable, 
inside some range [/, u}. A l l other parameters of the model remain the same, so we 
will not mention how to deal with them again. 

For the sake of comparison, we may take / to be 80% of the mean yield and u to 
be 120% of the mean yield (as given in the previous section), so that the expectations 
for the yields will be the same as in the previous section. This random yield applies 
to all the crops at once, i.e. in our sample average approximation will be the mean 
yield for every crop multiplied by a number from [0.8,1.2] in each generated scenario. 

Our goal, now, is to generate a certain number (TV) of scenarios that will obey this 
distribution requirement and incorporate these scenarios into our General Model. 
Luckily, A I M M S supports a wide variety of functions that generate random numbers, 
based on given distribution (see [4]). For our purpose serves the Uniform(min,max) 
function. 

We use this function to generate a TV x 1 vector of random numbers from Uni-
form(0.8,1.2) and, for each scenario, multiply the appropriate values of T s (in our 
case the whole matrix T s ) with a corresponding value from our random vector. Since 
the rest of the second stage parameters ( W s , h s and q s) remain for each scenario 
unchanged, we can proceed in creating a procedure, that will fill up the vectors and 
matrices of our General Model with appropriate coefficients. This procedure is a bit 
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Fig. 3.7: Scenarios generated by distribution 

longer so we will not present it here, however, it can be found in the source code 
appendix. 

In our case we generated TV = 10000 scenarios (shown in Fig. 3.7) and solved the 
problem. The results are shown in Fig. 3.8. We can, again, observe the optimal first 
stage decisions in x.Stochastic: devoting 137.6 acres to wheat, 84.7 acres to corn 
and 277.7 acres to sugar beet; the recourse actions in y.Stochastic and the expected 
profit of 112225$. 
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Fig. 3.8: Results of the sample average approximation 
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3.1.4 Ex tens ion : D is t r i bu t i on Ana lys is 

As we created the model using sample average approximation approach, some very 
natural questions arrived: What if the bounds of the distribution were different? 
What if the distribution itself is different from the one we used? How does a slight 
change of the distribution affect the optimal solution? 

Q AIM MS- j Stand-Alone ''.'trs- o~ .ak.3 Kud; aj 
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Fig. 3.9: Change in uniform distribution and distribution analysis 

A l l these questions are addressed in the last page of our program (Fig. 3.9 and 
Fig. 3.10). Here, the end-user is enabled to change the parameters of the uniform 
distribution (lower and upper bound), choose the number of scenarios and create 
his own sample average approximation, and see how it changes the results. 

Or he can choose normal distribution instead, decide on its parameters (mean 
and deviation), and see how this change in distribution alters the results. (Just 
to clarify: the procedure guarding these manipulations creates a vector of random 
numbers from desired distribution, multiplies the mean yield with numbers from 
this vector and creates scenarios.) 

On the right-hand side of the page, there is the section dealing with the last 
question about slight changes in parameters of the distribution. The end-user can 
observe the effects of increasing a distribution parameter on the optimal expected 
value. The tables and graphs on this page are self-explanatory. 
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Fig. 3.10: Change in normal distribution and distribution analysis 

3.2 Extension: Solution Methods 
As we stated earlier, the solution method used for solving our General Program is 
the one that is embedded in A I M M S . In addition to this one we decided to program 
another solution methods. These methods consist of the L-shaped method (the 
Benders decomposition) - its single and dual-core version, the progressive hedging 
algorithm (both described in the chapter 1) and the last algorithm, that simply solves 
the problem in the form 1.17; this last algorithm is basically the simplex method (or 
its variation used by the solver) and since it does not utilize the particular structure 
of the two-stage linear programme, we shall denote it as the Naive algorithm. The 
source codes of these solution method are quite extensive and can be found in the 
appendix; we decided to briefly describe the crucial parts of the source code for 
single core Benders decomposition (as described in section 1.8.2), to give the reader 
at least some insight into its A I M M S implementation. 

First of, we generate and solve the master problem: 

MasterGMP:=GMP::Instance::Generate(master); 

GMP::Instance::Solve(MasterGMP); 

Then, we start solving the subproblems, generated by scenarios: 

SubGMP:=GMP::Instance::Generate(subprog); 
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GMP::Instance::Solve(SubGMP); 
solstatus:=GMP::Solution::GetProgramStatus(SubGMP, 1); 

If we detect an unbounded solution, we break the cycle, that solves the subproblems, 
and compute appropriate coefficients: 

i f solstatus = 'Unbounded' then 
zsubsol(sb):=zsub; 
usol(sb,ssc):=u(ssc); 
FeasF(is):=sum(ssc,u(ssc)*Tsub(ssc,is)); 
FeasSmallF:=sum(ssc,u(ssc)*hsub(ssc)); 
break; 
endif; 

If we detect an infeasible solution, we break the procedure altogether and stop: 

i f solstatus = 'Infeasible' then 
Errorstatus:="Infeasibility"; 
break; 
endif; 

After the solving of subproblems ends (either by a detection of unbounded/infeasible 
solution or by completing the solution process of all the subproblems), we check for 
the solution status of the last subproblem. 

If the solution status was unbounded, we update the matrices of the master 
problem (and, thus, generate a feasibility cut) and repeat: 

i f solstatus = 'Unbounded' then 
GMP::Row::Add(MasterGMP,addconst(lastIterSet)); 
for (is) do 
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),FeasF(is)); 
endfor; 
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,0); 
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet),FeasSmallF); 
endif; 

If the last solution status was optimal, then all of the subproblems have optimal 
solution. If the following condition is satisfied, we arrived at the optimal solution of 
the whole problem and stop: 

i f solstatus = 'Optimal' then 
OptD(is):=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)* 
sum(ssc,-usol(sb,ssc)*Tinput(sb,ssc,is))) ; 
OptSmallD:=sum(sb, (DesignedProbability(sb)/ScenarioProbSum)* 
sum(ssc,-usol(sb,ssc)*hinput(sb,ssc))); 
i f theta+epsilon>=OptSmallD - sum(is,xsol(is)*OptD(is)) then 
solutionstatus:="solution found"; 
errorval:=OptSmallD - sum(is,xsol(is)*OptD(is)) - theta; 
break; 
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Fig. 3.11: Page devoted to different solution methods. 

And if not, we generate an optimality cut and repeat: 

else errorval:=0ptSmallD - sum(is,xsol(is)*0ptD(is)) - theta; 
GMP::Row::Add(MasterGMP,addconst(lastIterSet)); 
for (is) do 
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),x(is),0ptD(is)); 
endfor; 
GMP::Coefficient::Set(MasterGMP,addconst(lastIterSet),theta,1); 
GMP::Row::SetRightHandSide(MasterGMP,addconst(lastIterSet).OptSmallD); 
GMP::Row::SetType(MasterGMP,addconst(lastIterSet) ,'>='); 
endif; 

The progressive hedging algorithm is mainly designed for solving convex prob­
lems and is not well-suited for simple linear problems. It does not utilize the ad­
vantage of linearity in the case of scenario-based linear programme, as the solved 
scenario-related programme contains an additional quadratic term that ruins the 
linearity. In spite of this fact, we chose to incorporate this solution method because 
our General Program can be very easily modified (by adding constraints and/or 
adding terms in the objective function) to be a convex programme. 

To compare these solution methods we programmed a stopwatch procedure (see 
[15]) that measures the time it took the given method to reach the optimal solution. 
We also designed one page in the GUI to summarize the results obtained by different 
solution methods (Fig. 3.11). The source code of this program can be found in 
Appendix 2. 
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3.2.1 Resul ts compar ison 

The aim of this section is to compare the used solution methods. For this purpose we 
generated in our General Program several linear programmes of a different size and 
observed how fast did the methods reach the optimum. We will omit the progressive 
hedging algorithm from the full comparison, since it is not designed for solving linear 
programmes (it does solve them, but the amount of time it takes is rather large). 

First of all, we let all the algorithms solve the original farmer's problem, as presented 
in section 3.1.2. The results (computational times) are presented in the following 
table: 

algorithm computational time 
Embedded 0.02 
Naive 0.02 
Benders: single core 0.48 
Benders: dual core 0.46 
Progressive hedging 5.28 

From these results it is fairly obvious, that the progressive hedging algorithm is not 
very well suited for these kinds of problems. 

For further comparison, we decided to test the speed of our algorithms on ran­
domly generated problems (we have used the straightforward and internal support 
of A I M M S for random number generation). Furthermore, we decided to find out 
how does the size of the second stage part of the two-stage linear programme affect 
the computational times of the presented algorithm. However, it is not our goal to 
give a thorough statistical insight into this problematic; we just want to gain primal 
knowledge of this phenomena and leave a profound analysis for our future studies. 
We constructed the problems as follows: 

• number of first stage variables = 10, 
• number of first stage conditions = 5, 
. A = Round(Uniform(0.3,l)), 
. b = Uniform( 1000,2500), 
. c = Uniform(-4500,-3700), 
. T = Uniform(50,100), 
. W = Uniform(7,20), 
. h = Uniform(700,1500), 
. q = Uniform(-300,-180). 
The other three parameters, namely, a number of second stage conditions, a 

number of second stage variables and a number of scenarios, will vary for each 
programme. We chose 2 values for the number of scenarios: 200 and 500. The 
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number of second stage conditions and the number of second stage variables will 
be both from {50, 60, 70, 80,90,100}, for the problems with 200 scenarios, and from 
{20,30,40,50}, for the problems with 500 scenarios. 

A l l the inequalities are chosen to be of a < type and all the parameters are 
chosen in such a way, that there always exists an optimal solution. This is easy to 
see, since a zero solution (i.e. a solution where all the variables are zero vectors) is 
a feasible solution. 

To summarize, the comparison process looks like this: 
• We choose a number of scenarios, a number of second stage conditions and a 

number of second stage variables. 
• We generate the vectors and matrices. 
• We run all our algorithms on this generated problem and find the amount of 

time it took the specific algorithm to find optimum. 
The results of this comparison are presented in the following tables and figures. 
First for the problems with 200 scenarios: 

200 scenarios - Naive algorithm 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 50 60 70 80 90 100 
50 26.46 39.12 79.38 151.11 41.88 103.48 
60 43.3 64.4 96.54 73.81 89.55 45.15 
70 39.01 44.85 98.62 63.9 163.69 219.39 
80 97.38 67.24 143.79 141.52 98.27 108.3 
90 49.09 84.02 98.39 208.52 175.79 136.89 
100 53.45 49.51 102.42 184.66 66.41 308.59 

200 scenarios - Embedded algorithm 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 50 60 70 80 90 100 
50 25.92 39.21 80.57 147.57 41.54 98.38 
60 42.55 64.97 95.92 74.83 89.1 45.64 
70 39.34 41.78 100.1 65.19 186.54 212.85 
80 91.9 68.45 140.99 144 99.58 108.31 
90 46.85 84.92 98.72 211.85 176.56 124.32 
100 69.83 51.27 96.92 184.58 67.15 327.13 
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200 scenarios, 60 second stage conditions 
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Fig. 3.12: Graph: 200 scenarios, 60 second stage conditions 

200 scenarios - Benders decomposition: single core 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 50 60 70 80 90 100 
50 90.38 70.15 79.64 84.9 44.76 110.3 
60 112.15 86.12 77.44 87.47 77.54 68.67 
70 172.16 81.66 102.64 82.57 72.47 131.57 
80 118.43 109.45 63.19 87.39 55.82 101.5 
90 79.48 138.98 93.92 121.91 88.87 100.69 
100 50.58 92.28 65.06 75.21 96.18 117.73 

200 scenarios - Benders decomposition: dual core 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 50 60 70 80 90 100 
50 52.03 66.69 74.43 80.47 42.73 94.91 
60 57.31 80.07 71.2 82.13 71.15 64.52 
70 83.38 77.01 96.34 79.19 69.59 125.81 
80 79.65 101.39 59.05 82.1 54.21 97.14 
90 75.03 130.44 89.38 114.25 85.09 94.63 
100 43.95 86.72 61.79 74.75 95.36 112.45 

And here for the problems with 500 scenarios: 
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500 scenarios - Naive algorithm 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 20 30 40 50 
20 94.56 101.96 88.26 230.43 
30 74 113.93 123.94 361.59 
40 57.72 100.36 81.06 208.51 
50 27.94 103.25 126.2 119.87 

500 scenarios - Embedded algorithm 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 20 30 40 50 
20 93.81 100.48 82.85 234.09 
30 62.8 114.6 122.75 358.48 
40 66.74 103.54 82.88 207.11 
50 28.42 102.42 129.17 126.98 

500 scenarios - Benders decomposition: single core 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 20 30 40 50 
20 94.81 94.03 182.88 132.19 
30 106.53 114.35 161.52 125.38 
40 86.81 176.75 147.26 100.54 
50 92.98 49.93 154 118.57 

500 scenarios - Benders decomposition: dual core 
# of second 

stage variables 
# of second stage conditions # of second 

stage variables 20 30 40 50 
20 92.62 89.85 174.19 124.08 
30 112.03 107.77 152.6 125.28 
40 80.06 162.41 154.02 99.84 
50 88.24 48.39 149.14 115.96 

From the results above, we deduce that (at least for our generated problems) the 
Naive algorithm and the A I M M S Embedded algorithm are basically the same algo­
rithm. We can, also, notice that the parallelization done in the dual core version 
of the Benders decomposition offers a slight, but noticeable, improvement in the 
computing time. On the other hand, the results of the comparison between the 
Naive algorithm and the Benders decomposition (either dual or single core version) 
are not very clear. Each of these algorithms performed better than the other one 
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Fig. 3.15: Graph: 500 scenarios, 20 second stage conditions 
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Fig. 3.16: Graph: 500 scenarios, 50 second stage conditions 
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Fig. 3.17: Graph: 500 scenarios, 40 second stage variables 
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at some problems. However, we only generated one instance for each configuration 
so any conclusions we make may end up being premature. Generally speaking, as 
the problem grows in size, the Benders decomposition should be faster than our 
Naive algorithm. Another important factor is the particular structure of the gener­
ated problems, that we chose to test our algorithms on. This dependence remains 
unknown for us and hopefully will be a part of our future studies. 
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4 REAL-LIFE E X A M P L E : A N INCINERATION 
P L A N T 

The task is to model the waste-to-energy process of an incineration plant, opti­
mize this process and determine the parameters of its most important components, 
namely a steam turbine or a boiler, as an important part of the incinerator. In fact, 
also the capacity of incinerator can be optimised in the similar way. The focus is on 
the simplified model that may easily utilize A I M M S user interface and may help to 
give a rough estimate for the incinerator optimal design. It also allows visualization 
of the function Q(x) in 1.7. 

4.1 The Incineration Process 

Incineration is a waste treatment process that consists of the combustion of organic 
substances, contained in waste materials. 

The heat, produced by a boiler, is used to generate steam which is then used to 
drive a steam turbine and, thus, produce electricity. Other option for the usage of 
this steam is district heating (industrial or municipal). More can be found in ([19], 
[9])-

Our incineration plant deals with burning a municipal solid waste (MSW), which 
is a waste type consisting of everyday items that are discarded by the public. The 
composition of this waste varies throughout the year and its lower heating value 
(LHV), i.e. the amount of heat we are able to get from a certain quantity of the 
material by burning it, changes randomly. We want to optimize the waste-to-energy 
process for 24 years. 

The technological process of the incineration plant (Fig. 4.1) can be described as 
follows: 

1. MSW, that was transported to the plant, is stored and regularly mixed. This 
ensures that the structure of the waste is roughly the same throughout a day. 

2. The waste is moved by a feeding unit into a firing grate and is burned. The 
heat generated by the combustion heats up water inside a boiler and turns 
this water into a steam. 

3. The steam is, then, run through a steam turbine and generates electricity. 
4. The steam that has not been used for generating electricity either goes to other 

technological processes or heats up water, that will end up in district heating. 
5. The slag that remains after burning is decomposed into ashes and metals and 

can be used in other processes. 
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Fig. 4.1: The technological process of the incineration plant. [17] 

6. Separation of gases and vapour takes place; this treatment reduces the pollu­
tant emissions to the atmosphere. 

4.2 Simplified Problem Formulation 

We will present here a profound insight into a model that is the simplest possible one, 
however, it is still approximately suitable for the introduced incineration problem. 
After that, we will show that A I M M S is useful even without its optimization tools. 

The goal is to determine the size of a boiler. The objective function comprises of 
the investment cost of the boiler (linearly depending on the boiler's size) and the 
recourse, which in this case is the amount of money that we will get from using that 
boiler. Since we deal with stochastic programming, some of the problem parameters 
will depend on a realization of the random vector (£). 

First of, we define our variables and parameters: 
• variable x: the size of the boiler, 
• variable y: the amount of energy (generated by the boiler) that we sell, 
• parameter £(<•): energy transformation coefficient, 
• parameter h(£): energy demand, 
• parameters l,u: lower and upper bounds on the size of the boiler, 
• parameter c: cost for a unit size of a boiler, 
• parameter g(£): cost of energy, 
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We will proceed to define our stochastic programme as follows: 

min z = c • x + Q(x) 
s.t. x G [/,u}. 

Q(x) = EeQ(x,£). 
Q(x,£) = mmy q(£)-y (4.1) 

s.t. y<t(£)-x, 
y < K£), 

y>o. 

The randomness will be treated via scenarios (as shown in chapter 1). Given a 
fixed number of scenarios TV (i.e. £ s : the realizations of the random vector £), our 
problem becomes: 

minz = c- x + J2s=iPsQ(x,€s) 
s.t. x G [/,u}. 

Q(x,£a) = m i n s e 5 qs-ys 

s.t. y <ts • x, 

V < hs, 
y>o. 

We have to emphasize the fact that 4.2 model is the simple version of real-world 
models published in [10]. Its motivation was discussed with colleagues from UPEI 
(Institute of Process and Environmental Engineering): Michal Tous, Radek Som-
plak, Martin Pavlas and my supervisor, as the suitable tool for initial estimates of 
the capacity of a boiler or an incinerator, before the advanced models are available. 
The advantage of the model is that only aggregated data is needed and the user 
can easily check whether the optimal capacity tends to boundary capacities/sizes or 
interior point solution can be expected. 

We shall, now, derive the solution for a particular realization of the random vector 
£, i.e. we will treat the random parameters as deterministic ones. (This corresponds 
to solving the problem for only one scenario). 

To obtain it we will firstly deal with the second stage problem: 

Q(x,£s) = mmqs-ys 

s.t. y <ts • x, 
y < ha, 

y>o. 

We can easily derive a relation between y and x: y G [0,min(ts • x,hs)]. We will 
define a point x as x = hs/ts. Now, given that q < 0, ts > 0, hs > 0 (which are 
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Fig. 4.2: Multiple scenarios case. 

natural condition on the parameters), we obtain Q(x, £s) = q • min(t s • x, hs). There 
are three possible outcomes, depending on the position of x: 

• Q(x, £s) = q • ts • x for x > u, 

• Q{%, is) — Q ' hs for x < I, 
• Q(x, £s) = q • ts • x for x G [/, x] and Q(x, £s) = q • hs for x G [x, u] 

Now, we focus on the first stage part: 

min^ = c • x + Q(x, £s) 
s.t. x G [/,u}. 

Once we take into account the results of the second stage, the overall results easily 
emerge. We will denote the overall optimal solution as x* and obtain it as follows: 

if |ts si > c and x, G [u, I] then x* = x 
if |ts q\ > c and x, < I then x* = I, 
if Its q\ > c and x > u then x* = u, 
if Its q\ < c then x* = I. 

This whole procedure was basically an effort to find a combination of values of 
the problem parameters, that would lead to an optimal solution, which is not a 
boundary value of the interval [l,u]. Thus, our effort was successful since we found 
such a combination. 

In the case of multiple scenarios we were not able to arrive at any similar general 
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results. We used A I M M S GUI to illustrate the process of obtaining the overall 
objective function in the case of multiple scenarios (Fig. 4.2). 

Moreover, we programmed the same procedure in M A T L A B ; we did this because 
we feel that the M A T L A B environment is more suited for this kind of computations 
and, for anyone not completely familiar with A I M M S , even more user-friendly. Apart 
from easy adjustment of the model parameters, it gives a graphical result as shown 
in Fig. 4.3. The M A T L A B program is enclosed in the appendix. 

H Figure 1 ^ B ° | B 1 - ^ - 1 

p a a a i»|^^giae<t-|a|nB|»a 

Fig. 4.3: Matlab implementation 

4.3 Nonlinearity and Real Data 
We asked our colleagues from Institute of Process and Environmental Engineering 
(BUT) for some real data, regarding our incineration model. The data, we were 
given, can be summarized in the following expressions: 

• The task is to find the optimal capacity of a new boiler for an incineration 
plant, whose lifespan is 24 years. The range of this capacity is between 50000 
and 400000 tons per year. The objective function is comprised of costs (for 
construction, maintenance, etc.) and earned money (from selling heat, ...). 

• The function describing the cost of both constructing and running this boiler 
was determined as: 

cost = 2688000x0-7, 

where x denotes the capacity of the boiler in tons. 
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• Our incineration plant produces both heat and electricity. The relationship 
between the capacity and the amount of produced heat and electricity is gov­
erned by the following inequality: 

0.001a; > 0.2876 + 0.0126yi + 0.0828y2; 

where y\ and y2 are the amount of heat and electricity, respectively; their unit 

• The incineration plant makes money by selling this heat and electricity and, 
also, by charging the processing of municipal solid waste. The prices are going 
to be treated as random parameters with the following properties: 

- the price of 1 GWh of heat: qx ~ N(-1044000, 72000), 
- the price of 1 GWh of electricity: q2 ~ N{-1650000,100000), 
- the price of 1 ton of processed MSW: q3 ~ 7V(—1500,100), 

where N(/j,, a) stands for normal distribution. 
• The amount of heat, we can produce, is restricted by demand (in 22^TS)'-

h ~ TV(6000,600). 
• The amount of generated electricity is also restricted by (in 2 ^ ^ r s ) : h2 ~ 

#(1000,100). 

• The amount of processed solid waste over the lifespan of the incineration plant 
will be equal to 24 times the capacity of the boiler (i.e. we use the boiler to 
its full potential). Since the price of this procedure is random, we will use an 
additional variable 2/3. 

First of, we need to deal with the nonlinearity in the function describing costs. 
We approach this by constructing an outer approximation of this function. This 
approximation is done via construction of tangents of the original function. Since 
the cost function is concave, its tangents have their function value always > than 
the concave function itself. 

We programmed an A I M M S implementation of this procedure; since it is not 
the purpose of this text, we will omit any description and just present the results 
for our problem in Fig. 4.4. 

We decided to use for our approximation 2 tangent lines. The program gave us 
the following results: 

. T l ( x ) = 56500a; + 2879244000, for x G [50000,190140], 

. r2(x) = 43000a; + 5446954000, for x G [190140,400000]. 
This allows us to split out problem in two linear problems. The first one with 

x G [50000,190140] the cost function described as T\(x) and the second one with 
x G [190140,400000] the cost function described as T2(X). These problems can be 
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Fig. 4.4: Approximation of a concave function (blue) by 2 tangents (red). 

summarized for a fixed number of scenarios N, as follows: 

mm z 
s.t. O.OOlx - 0.0126yf - 0.0828y| > 0.2876, s = 1, 

2/l < s = l; 

ys2 <hs

2, S = 1, 

24a;-1/1 = 0, s = 1, 
x E [lk,uk],ya > 0, s = 1, 1,2, 

where [Zi,ui] = [50000,190140] and [ / 2 ,M 2 ] = [190140,400000]. The optimal solution 
of the whole problem will be determined as the best one of the two partial solutions. 
We used our General Program to model and solve this problem; we chose to generate 
100 scenarios for the random parameters. Without further ado, we present the 
results: 

• For x e [50000,190140] the optimal capacity is x = 93125 with objective 

z = -7.85e9. 
• For x e [190140,400000] the optimal capacity is x = 247386 with objective 

z = -8.4e9. 
Just for clarification, the negative value of the objective z indicates that the incin­
eration plant is profitable. From this we gain the optimal capacity for the whole 
problem x* = 247386 tons for year. 
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CONCLUSION 
In this master's thesis we dealt with optimization and stochastic programming. We 
described the basic tools of mathematical programming in Chapter 1; in the same 
chapter, we presented the main ideas of stochastic programming along with the solu­
tion methods used for solving these stochastic programming problems. This chapter 
laid the theoretical foundations for implementations and algorithms we constructed 
in Chapter 3. 

Chapter 2 served as the introduction to the optimization modelling software 
A I M M S . We mentioned the crucial ideas and functions in A I M M S , that allowed us 
to use the theoretical results from Chapter 1 and create stochastic programmes in 
A I M M S . 

The most important part of our work is contained in Chapter 3. Here, we com­
bined the theoretical results from stochastic programming with the functionality 
of A I M M S . We constructed in A I M M S a general two-stage linear stochastic pro­
gram and an end-user interface, for this program. This program can be used for 
solving any kind of two-stage linear stochastic problem. Moreover, we implemented 
and compared several solution methods described in Chapter 1, namely, the sample 
average approximation, the benders decomposition and the progressive hedging al­
gorithm. This comparison was carried out on generated problems of different size 
and on the Farmer example. 

In Chapter 4 we have shown that A I M M S is useful even without its optimiza­
tion tools and functions; we used its graphical interface to obtain the solution of a 
simplified incineration problem. 

We hope, that this text will be helpful to anyone, who is interested in stochastic 
programming and, mainly, in the usage of A I M M S in dealing with stochastic pro­
gramming problems. We enclosed in the appendices all the constructed A I M M S 
programs we described throughout the thesis. 
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