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Abstract 
Network monitoring plays a crucial role in the arsenal of tools used by network operators to ensure 
security. With the majority of network traffic now encrypted and the emergence of new protocols that 
extend encryption to previously unencrypted communications, traditional monitoring techniques that 
rely on the visibility of unencrypted network traffic have become obsolete. Consequently, solutions 
must now depend on the traffic metadata provided by widely used flow monitoring infrastructures. 
One of the protocols that get encrypted alternatives is DNS. DNS over HTTPS (DoH) is one 
of the attempts to encrypt DNS traffic that received broad adoption among users and resolvers. 
The DoH implementation is already incorporated in most browsers, proxies, and operating systems. 
While DoH improves users' privacy, it leaves network operators and specialized Intrusion Detection 
Systems (IDS) blind to DNS traffic. Moreover, operators are unaware of DoH usage by users as DoH 
is designed to blend with other HTTPS traffic. Since its standardization in October 2018, the DoH 
has been studied extensively from various perspectives, including detection. This work proposes a 
reliable detection method using a combination of techniques, including machine learning, to identify 
DoH and distinguish it from regular HTTPS traffic, bringing awareness to network operators and 
allowing them to act according to their security policies. The work studies DoH thoroughly aligned 
with the data-centric concept of machine learning, enabling the creation of comprehensive datasets 
and designing effective practical detection mechanisms utilizing data sources of broadly present flow 
monitoring infrastructures. Moreover, the proposed detection method is tested in various scenarios, 
uncovering its characteristics and effectiveness compared with other state-of-the-art approaches. 
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Abstrakt 
Síťový monitoring hraje klíčovou roli v arzenálu nástrojů používaných síťovými operátory k zajištění 
bezpečnosti. S většinou dnes již šifrovaného síťového provozu a s nástupem nových protokolů, 
které rozšiřují šifrování na dříve nešifrovanou komunikaci, se tradiční monitorovací techniky, které 
spoléhají na viditelnost nešifrovaného síťového provozu, staly zastaralými. V tomto důsledku musí 
řešení nyní spoléhat na metadata extrahovaná široce rozšířenými monitorovacími infrastrukturami 
pracujícími na úrovni síťových toků. Jedním z protokolů, který dostává šifrované alternativy, je 
DNS. DNS over HTTPS (DoH) je jedním z pokusů o šifrování DNS provozu, který získal širokou 
podporu mezi uživateli a překladači doménových jmen. Implementace DoH je již integrována 
do většiny prohlížečů, proxy serverů a operačních systémů. I když DoH zlepšuje soukromí uživatelů, 
zanechává síťové operátory a specializované systémy detekce vniknutí (IDS) slepé vůči DNS provozu. 
Navíc operátoři si nejsou vědomi používání DoH uživateli, protože DoH je navrženo tak, aby 
se zamíchalo mezi ostatní HTTPS provoz. Od standardizace v říjnu 2018 bylo DoH důkladně 
studováno z různých perspektiv, včetně detekce. Tato práce navrhuje spolehlivou metodu detekce 
s využitím kombinace technik, včetně strojového učení, k identifikaci DoH a jeho odlišení od běžného 
HTTPS provozu, což zvyšuje povědomí síťových operátorů o používání DoH a umožňuje jim jednat 
v souladu se svými bezpečnostními politikami. Práce podrobně zkoumá DoH v souladu s datově 
orientovaným konceptem strojového učení, což umožňuje vytvoření komplexních datových sad 
a návrh účinných praktických mechanismů detekce s využitím datových zdrojů široce rozšířených 
monitorovacích infrastruktur pracujících na úrovni síťových toků. Navíc navržená metoda detekce 
je testována v různých scénářích, odhalujících její charakteristiky a účinnost ve srovnání s jinými 
nej modernějšími přístupy. 
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Rozšířený abstrakt 
V současné době, firmy, organizace i jednotlivci čelí zvýšenému množství útoků. Velké množství 
útoků probíhá s využitím síťové komunikace. Již dlouhou dobu existují různá řešení pro zabezpečení 
této komunikace, která zahrnují systémy monitorování sítě, detekce vniknutí a prevence vniknutí. 
Nicméně tyto systémy stále alespoň z části spoléhají na inspekci nešifrovaného provozu. Avšak s pos
tupným přechodem k šifrovaným protokolům, je většina dnešní komunikace již šifrována což snižuje 
využití předchozích technik a tedy omezuje některé předchozí schopnosti těchto systémů. Kvůli 
šifrovanému provozu jsme odkázáni na práci pouze s dosud nešifrovanými identifikačními částmi 
nebo statistickými metadaty jednotlivých paketů či celých spojení. 

V posledních letech je zde snaha přivést šifrování i do dosud nešifrovaného protokolu pro re
zoluci doménových jmen (DNS). Jedním z takových protokolů, který získal rychle na popularitě je 
DNS over HTTPS (DoH), kterému se tato práce věnuje. Od jeho schválené definice v říjnu 2018 
se v krátké době stal součástí komunikace různých aplikací jako jsou webové prohlížeče, doménové 
proxy servery a dokonce operační systémy. Jeho rychlé adopci pohla kombinace s již existujícím 
HTTPS, kdy jsou DNS data nově přenášena tímto velmi rozšířeným protokolem. Nicméně, protože 
je DNS přenášeno pomocí HTTPS využívající stejný port transportní vrstvy jako zbytek HTTPS 
komunikace, je tento protokol z pohledu síťového monitoringu nerozlišitelný od ostatního HTTPS 
provozu. Tato technologie, která přináší větší soukromí uživatelům zároveň omezuje aplikaci 
současných bezpečnostních mechanismů založených na inspekci DNS provozu. Navíc, síťoví operá
toři ztrácí schopnost identifikovat použití tohoto protokolu uživateli. Této vlastnosti pak využívají 
útočníci a škodlivé programy ke skrytí jejich aktivit. 

Od definice tohoto protokolu se výzkumníci zabývají zkoumáním jeho charakteristik a návrhem 
metod jeho detekce. V posledních letech vzniklo několik takových metod. Současné navržené 
metody detekce jsou z valné většiny postaveny na využití strojového učení, kde vstupem jsou 
statistiky získané z paketů nebo síťových toků. Tradiční detekční metody založené na IP blocklistech 
se ukazují jako neefektivní vzhledem k velkému množství DoH serverů a jejich rychlému zastarávání 
a neúplnosti. Avšak tyto metody pracují se statistikami, které jsou mnohdy velmi specializované 
a obtížně získatelné z velkého množství toků, se kterými se současné monitorovací systémy musejí 
potýkat, což snižuje aplikovatelnost těchto metod v praxi. Tato práce si dává za cíl navrhnout novou 
detekční metodu založenou na strojovém učení, která je efektivní a použitelná v praxi. 

Kvůli velkému množství dat, současné monitorovací systémy agregují pakety do síťových toků, 
ze kterých získávají omezené množství statistik, které je možné počítat efektivně a průběžně na běžící 
sekvenci paketů. Následně jsou exportovány pomocí standardních protokolů NetFlow a IPFIX. 
Pro zvýšení aplikovatelnosti navrhované detekční metody, se tato práce zaměřuje pouze na využití 
základních statistik extrahovaných těmito široce nasazenými systémy. Jelikož jsou dostupné vstupní 
informace poměrně výrazně omezeny, je nutné důkladně prozkoumat charakteristiky protokolu DoH. 
Mezi publikovanými pracemi zabývajícími se protokolem DoH existují mezery, které bylo nezbytné 
vyplnit pro navržení efektivní detekční metody, jako je zkoumání podoby DoH provozu a charak
teristikami existujících implementací klientské i serverové části. Tato práce přináší výsledky těchto 
zkoumání. Navíc, existující publikované datové sady, se kterými výzkumníci pracují jsou omezené, 
nedostatečně variabilní, obsahující pouze malé množství různých serverů, jejichž implementace 
a konfigurace se ukázala mít největší vliv na vlastnosti DoH komunikace, nebo obsahují data pouze 
z uměle generovaného provozu. 

Tato práce inklinuje k datově centrickému konceptu strojového učení, kdy hluboká doménová 
znalost vede k vytvoření dostatečně variabilních a obsáhlých datových sad, obsahujících i komunikaci 
z reálné sítě, které jsou součástí této práce, a které umožňují návrh výsledného detekčního řešení. 
I vysoce přesné metody detekce založené pouze na strojovém učení generují velké množství falešně 
pozitivních detekcí na síti v průběhu času. Navržená detekční metoda kombinuje několik přístupů 



včetně strojového učení a eliminuje počet falešných pozitiv. Metoda dosahuje vysoké přesnosti, 
vyšší nebo srovnatelné s ostatními publikovanými metodami a je ukázáno, že je méně náchylná 
k degradaci přesnosti v čase i při nasazení v jiném prostředí než ve kterém byla natrénována. 
Tyto vlastnosti jsou odhaleny a prezentovány ve srovnání s ostatními metodami, které se podařilo 
reprodukovat a validovat, na již zmíněné robustní kolekci datových sad, v závěru této práce. 
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Chapter 1 

Introduction 

These days, companies are facing an increasing amount of attacks. From the network perspective, 
the security operators depend on network monitoring, intrusion detection, and prevention systems. 
The existing solutions rely on the ability of network content inspection. However, most of the 
network traffic is encrypted, and novel secure approaches to older unencrypted protocols are being 
proposed, decreasing the effectiveness of those systems. Moreover, the amount of data that needs 
to be processed is increasing and can be referred to as the Big Data problem. In combination 
with encrypted traffic, techniques such as deep packet inspection can no longer be used effectively. 
Therefore, the monitoring solutions rely more on network metadata extracted from aggregated 
information of network connections that can be extracted even on high-speed and backbone networks. 

One of the network protocols that is still used unencrypted is the Domain Name System (DNS) 
protocol. The protocol is getting its encrypted alternatives, such as DNS over TLS (DoT), DNS over 
Quic (DoQ), and DNS over HTTPS (DoH). The motivation behind making the protocol encrypted is 
to improve the users' privacy and prevent potential observatories, such as Internet Service Providers 
(ISP) and other parties, from being able to spy on them. 

The last mentioned protocol, DNS over HTTPS, was proposed five years ago and became very 
popular with its implementation immediately present in major browsers [8,9,115], later even in 
operating systems [59,113,132] and other applications. The protocol uses a simple principle where 
unencrypted DNS messages are transferred via an encrypted Hypertext Transfer Protocol Secure 
(HTTPS) channel. This simple solution makes it very easy to implement either on the client or 
server side, where just a combination of two existing solutions is required. 

Nevertheless, this privacy-preserving technology raised concerns mainly from the security 
community [86, 137]. The security systems strongly rely on the inspection of plain-text DNS. 
Encrypted DNS bypasses the security solutions, which become unusable and blind, increasing the 
risk of potential security breaches. The main concerns about this particular protocol are attributed 
to its stealthiness. The DoH is designed to blend into other HTTPS traffic since it uses the same 
port as regular HTTPS protocol. This becomes very risky since the security operators are losing the 
ability to identify whether the protocol is being used on the network. In contrast, other mentioned 
encrypted DNS protocols operate on dedicated ports and can be easily identified by them. Moreover, 
due to this very critical ability (stealthiness), the protocol became very popular among the threat 
actors [62]. 

As mentioned, detecting DoH is not possible by simple techniques such as port identification. 
Moreover, the wide internet scans to build Internet Protocol (IP) based blocklists proved to be highly 
unreliable due to many private resolvers [44,45]. Therefore, other techniques, such as machine 
learning-based detectors, provide a viable option to detect DoH traffic. This area of research 
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represents an open challenge several research teams are competing in, which was also identified by 
Hynek et al. [62] in their survey. 

Reliable identification of DoH in regular HTTPS traffic would be very beneficial to network 
operators and would help improve security. This work aims to research a solution, proposing a 
reliable and effective detection method and further studying the DoH behavior. 

1.1 Goals of the Thesis 

The main goals of this thesis come from the motivation of the work to research a reliable solution to 
detect DoH, as stated, that would be beneficial to the network operators and help increase security. 
The main goals of the thesis are the following: 

• Propose a reliable detection method to identify DoH and distinguish it from other regular 
HTTPS traffic (covered in Chapter 7). 

• Test the proposed method and challenge it in multiple scenarios, revealing its characteristics 
and usability in the real environment and further comparing it to other published methods 
(covered in Chapter 8). 

The main goals would not be possible to achieve without a deep understanding of the protocol 
behavior. Moreover, since the work intends to use machine learning to solve the defined problem, 
quality data to work with is an essential asset. Hence, working on the main goals brought other 
goals and results that are not of less importance. The other goals are the following: 

• Analysis of the DoH resolvers representing one side of the communication and their charac
teristics (covered in Chapter 4). 

• Analysis of the impact of DoH on the browsers' behavior as the first and widely used stable 
client applications adopting resolution technology and single query characteristics (covered 
in Chapter 5). 

• Analysis of the traffic shape of DoH (covered in Chapter 5). 

• Creation of robust and comprehensive datasets as a source to support the creation of detection 
method and to provide a source of data for methods comparison (covered in Chapter 6). 

• Further creation of supportive applications such as monitoring of resolvers and experimental 
PCAP processing tool NetExP (covered in Chapter 2). 

Author's Contribution 

The findings presented as author's work in this thesis were either independently created and assessed 
by this thesis's author or collaboratively produced within a team. When working in a team, the author 
was the leading person in a team responsible for the results. A l l the interim, as well as the final 
outcomes, were achieved with valuable assistance and under the supervision of doc. Ing. Ondrej 
Rysavý, Ph.D. 
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1.2 Thesis Structure 

The thesis starts by providing necessary information about the technologies involved, described 
in Chapter 2. Current state-of-the-art is covered in following Chapter 3. The analysis starts 
with Chapter 4 that analyzes the well-known DoH servers as a representative sample that should 
be known to the users and from which the users might likely choose. Moreover, different server 
deployments may influence traffic characteristics the most. Chapter 5 aims to analyze the behavior 
of the DoH. It begins with looking at single query DoH (some applications such as malware might 
use) performance, then analyzing the impact of different HTTP methods on DoH in browsers, 
and then finishes with traffic shape analysis uncovering the DoH traffic characteristics. Chapter 7 
proposes a reliable DoH detection method. Moreover, the detection method is challenged by several 
tests (covering testing on real-world traffic and data drift testing) as presented in Chapter 8. The 
detection method is also compared to other published methods that were thoroughly reproduced for 
this particular purpose. Finally, the work is concluded in Chapter 9. 
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Chapter 2 

Background 

This chapter covers the necessary technical background for the work. An introduction of the core 
DNS over HTTPS (DoH) protocol is provided. Since DoH is a composite of existing protocols, 
a brief description of the aspects and characteristics of the compound protocols influencing the 
behavior of DoH is also covered. Moreover, several other encryption protocols exist or are being 
proposed, and a short introduction is also provided to put the DoH into the context of DNS over 
Encryption. Network monitoring is an area of this work that provides a data source for the study, 
and the proposed solution relies on it. Moreover, the proposed solution is targeted to be deployed 
alongside an existing network monitoring infrastructure. The last area focuses on machine learning 
and data processing. The proposed solution is designed using several shallow learning algorithms; 
the data are preprocessed, and the results are benchmarked using several metrics. A l l those aspects 
are covered in this chapter. 

2.1 Protocols 

DoH is a compound of existing protocols, which includes unencrypted DNS protocol carrying the 
core queries and responses. DNS messages are transferred through an encrypted HTTPS channel 
that combines TLS and HTTP protocols. A l l of those protocols have their characteristics. Hence, 
this section briefly introduces them. Moreover, a brief introduction of other DNS over Encryption 
alternatives is provided to put DoH into a context of other DNS over Encryption alternatives. 

2.1.1 Domain Name System 

The Domain Name System provides a DNS protocol that enables hosts the translation of domain 
names into IP addresses. The protocol was first introduced in RFC 1035 [95] and extended by 
numerous RFCs later1. The communication uses messages of a simple format depicted in Figure 2.1. 

The message is divided into multiple parts, where some are optional. The message always 
contains a header determining whether it is a question or an answer. The header is followed by the 
question part that carries three fields: query type, query class, and query domain name. This part 
is followed by a possibly empty list of resource records with the Answer that answers the question, 
the Authority that points toward an authoritative name server, Additional section contains additional 
information related to the query but not strictly answering the question itself [95]. 

The DNS message can be transmitted using both UDP and TCP transport protocols. The 
reserved port of DNS is 53 in both cases. The UDP payload messages are restricted to 512 bytes. 

1https://help.dyn.com/articles/dns-rfcs/ 
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+ + 
I Header | 

+ + 
| Question | the question for the name server 

+ + 

| Answer | RRs answering the question 
+ + 

| Authority | RRs pointing toward an authority 
+ + 

| Additional | RRs holding additional information 
+ + 

Figure 2.1: DNS message format [95]. 

TC bit is set in the header for a longer DNS message, and the message is truncated. In the case 
of TCP protocol, the two-byte length field is added before the DNS message in the TCP payload, 
giving the length of the message [95]. A DNS message can use the maximum TCP payload size, 
which is not limited to only 512 bytes, as in the UDP case. Later, RFC 6891 [33] defines a way how 
to advertise an option to set a larger response size so that messages reaching more than 512 bytes 
does not need to be truncated and can be transmitted over UDP. 

EDNS(O) Padding Option 

The Extension Mechanism for DNS (EDNS(O) also denoted as EDNS in this work) Padding Option 
defined in RFC 7830 [89] is an option extending the DNS protocol. It can influence the traffic 
shape of the encrypted DNS. This feature adds padding of determined size to the DNS messages, 
both queries and responses. The queries and responses transmitted over encrypted channels can 
be subject to correlation analysis, where the sizes can be used to reconstruct the original queries, 
knowing their unencrypted counterparts. The padding in the encrypted DNS traffic aims to make it 
harder to apply such correlation techniques. Later, it was extended in RFC 8467 [90] by introducing 
several policies that can be applied. 

2.1.2 HTTP(S) 

HTTP is part of the DoH technical stack and exists in various versions. The HTTP/1.0, a former 
HTTP protocol, was closely followed by the HTTP/1.1, which introduced extensions to the protocol 
and improvements such as persistent connections, advanced caching options, compression, and so 
forth [43]. 

The HTTP/2 was introduced in 2015 by RFC 7540 [13]. HTTP/2 version contains many 
changes to the previous one. The former text-oriented protocol is now binary, contributing to 
its overall efficiency and extending the functionality that correlates better with today's needs. The 
protocol also allows multiple streams over a single TCP connection, prioritization, and multiplexing. 
In addition, the header and the data can be transmitted as separate parts in different data frames. 
The protocol is more complicated to implement than the previous versions, leaving more room for 
the variances in implementations and options used. 

The TLS protocol provides a secured stream-oriented connection to HTTP. The HTTP proto
cols are mostly encrypted these days. HTTP/1.1 may be seen unencrypted, but HTTP/2 is used 
solely in combination with TLS despite the existence of HTTP/2 over TCP, which is mostly not 
implemented [111]. Several TLS versions exist, particularly TLS 1.0, TLS 1.1, TLS 1.2, and TLS 
1.3. The first two versions are already deprecated, suffering from various attacks and providing 
weak encryption mechanisms. HTTP embedded in TLS is denoted as HTTPS. The TLS 1.3 [114] 
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is the newest version currently on the rise while adding more security and improving connection 
efficiency, but an abundance of HTTPS traffic uses TLS1.2. 

2.1.3 DNS over HTTPS 

The DoH was standardized by IETF as RFC 8484 [51] in 2018 to enhance the privacy of do
main name resolution and prevent on-path devices from interfering with the DNS resolution pro
cess [51]. The RFC-compliant DoH protocol uses traditional DNS wire format messages as defined 
in RFC 1035 [95] and sends them to the resolver as HTTP POST or GET requests. The DNS 
messages can be created as defined by DNS standard, including additional options and extensions 
such as EDNS(O) [89]. The DoH is designed and recommended to be used in cooperation with 
HTTP/2 [ 13] to maintain its efficiency due to the possibility of sending multiple concurrent requests, 
which overcame the head-of-line blocking on the application layer that was an issue in the case of 
previous DNS over TLS. However, the head-of-line blocking is still present on the transport layer. 
The protocol utilizes features such as creating multiple streams within a single TCP connection and 
multiplexing using separated frames to transmit headers and data. 

DoH brings a disadvantage of an additional payload of HTTP headers. To identify DNS data 
in the HTTP stream, string application/dns-message should be used for Content-Type header in all 
DoH messages and in Accepts header field for queries. RFC 8484 does not define any additional 
specialties that should be included in the application messages except for new headers, possible 
cache-control options, and the body data format. However, the amount of headers is not limited, and 
DoH clients and servers are free to include more headers in DoH messages as necessary. In addition, 
the DoH is defined to operate on HTTP path dns-query, but not strictly limited to. In reality, many 
different U R L paths can exist. 

Compared to other DNS protocols, DoH does not have a specially dedicated transport port but 
uses HTTPS port 443 along with regular HTTPS traffic. Since a specific U R L path must be used to 
target specific DoH resolvers, many different DoH resolvers can reside on the same domain, sharing 
many IP addresses. Moreover, the DoH is meant to be used solely between clients and resolvers, not 
encrypting communication between the resolvers. 

POST Method 

HTTP POST method is one of two HTTP methods that are defined in RFC 8484 to be used for 
handling DoH queries. Figure 2.2 depicts HTTP POST carrying DNS example query. The HTTP 
header contains the request field Content-Type representing the media type of value application/dns-
message. The body of the message contains a DNS query in the DNS wire format [95]. The HTTP 
header may contain Accept field to clarify what type of response the client expects, e.g., binary. 

GET Method 

The second defined option to carry DNS queries is using the HTTP GET method. DNS query 
transmitted via HTTP GET is shown in Figure 2.3. The request's body is empty as the queried 
domain is encoded in base64url format as the value of the dns variable. 

DoH Response 

The DoH response (see example in Figure 2.4) should be of type application/dns-message, though 
RFC 8484 [51] notes that other formats may be introduced. The data payload for this media type is a 
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:method = POST 
:scheme — https 
:authority = dnsserver.example.net 
:path = /dns-query 
accept = application/dns-message 
content-type = application/dns-message 
content-length = 33 

<33 bytes represented by the following hex encoding> 
00 00 01 00 00 01 00 00 00 00 00 00 03 77 77 77 
07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 01 00 
01 

Figure 2.2: DOH POST query example [51]. 

:method = GET 
:scheme = https 
:authority = dnsserver.example.net 
:path = /dns-query? (no space or Carriage Return (CR)) 

dns=AAABAAABAAAAAAAAAWE-NjJjaGFyYWNOZXJsYWJl (no space or CR) 
bCltYWtlcyliYXNlNjRlcmwtZGlzdGluY3QtZnJvbSlz (no space or CR) 
dGFuZGFyZCliYXNINjQHZXhhbXBsZQNjb20AAAEAAQ 

accept = application/dns-message 

Figure 2.3: DOH GET query example [51]. 

single message in the on-the-wire format. The maximum DNS message size is defined to be 65535 
bytes, but in reality, the average size of each message payload reaches about a hundred bytes [42]. 

Each DNS request has its counterpart response mapped to one HTTPS message exchange. 
When combined with HTTP/2, the messages can be transferred over multiple channels, allowing 
out-of-order delivery of particular responses thanks to HTTP/2 multistreaming functionality. 

:status = 200 
content-type = application/dns-message 
content-length = 61 
cache-control — max-age=3 7 0 9 

<61 bytes represented by the following hex encoding> 
00 00 81 80 00 01 00 01 00 00 00 00 03 77 77 77 
07 65 78 61 6d 70 6c 65 03 63 6f 6d 00 00 l c 00 
01 cO 0c 00 l c 00 01 00 00 Oe 7d 00 10 20 01 Od 
b8 ab cd 00 12 00 01 00 02 00 03 00 04 

Figure 2.4: DOH response example [51]. 

DNS over JSON 

Another DoH option can be considered DNS in JSON defined in RFC 8427 [49] and is worth 
mentioning since it is also meant to be transmitted over HTTPS. Global DNS resolver providers 
such as Cloudflare and Google implement the option to exchange DNS information using JSON 
format. It can be considered as a regular REST API call returning JSON data object. In this case, 
the client set content-type to application/dns-json. 

The request URI can be seen in Figure 2.5. The main variables are name for the domain name 
in plain text and type for the DNS response. The response can be seen in Figure 2.6. The response 
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fields and information are similar for both Google and Cloud Flare providers (provided examples 
come from Cloud Flare developers' documentation [29]). 

curl -H 'accept: application-json' \ 
'https://cloudflare-dns.com/dns-query?name=example.cornstype=AAAA' 

Figure 2.5: DOH JSON request example. 

{ 
"Status": 0, 
"TC": false, 
"RD": true, 
"RA" : true, 
"AD": true, 
"CD": false, 
"Question": [ 
{ 
"name": "example.com.", 
"type": 28 

] , 
"Answer": [ 
{ 
"name": "example.com.", 
"type": 28, 
"TTL": 1 7 2 6 , 
"data": "2606:2800:220:1:248:1893:25c8:1946" 

> 

] 
} 

Figure 2.6: DOH JSON response. 

This particular method is not considered to be covered in this work and is not further referred to 
as DNS over HTTPS. 

2.1.4 Current State of DoH Implementation 

The DoH is a protocol denned a few years ago and drafted in RFC 8484 by P. Hofmann (from 
ICANN) and P. McManus (from Mozilla) [50]. The publication of this RFC unleashed a wave of 
interest as well as criticisms. 

The effort of content delivery network providers, in combination with application and operating 
system vendors, accelerated the adoption of the DoH protocol. Mozilla added the first support for 
DoH in version 62 of their Firefox browser [115], and in February 2020, DoH was the default option 
for all US users [36]. Chromium project introduced support for DoH in version 83 of Chrome 
browser [9]. Support in other browsers based on the Chromium code base, such as new Edge, Brave, 
and Opera, followed shortly. Furthermore, Chrome for Android devices introduced the support 
since version 85 [8]. Microsoft enabled DoH in Windows 10 operation system insider preview build 
19628 by the 13th of May 2020 [79]. Apple also announced the DoH for iOS version 14 and macOS 
version 11 [25]. Moreover, the number of DoT/DoH servers has increased significantly in 2019, as 
Chaoyin Lu et al. [83] reveals. 
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2.1.5 Other DNS over Encryption Protocols 

Other DNS over Encryption protocols providing alternatives to DoH include DNS over TLS (DoT) 
standardized in 2016, and the most recent standard, DNS over QUIC (DoQ) standardized in May 
2022. 

The DNS over TLS protocol brings encryption and authentication to the DNS communication 
by encapsulating the DNS messages directly in the TLS session. It is defined in the RFC 7858 [57]. 
Standard port 853 is used as the default port for this protocol. The communication between two 
entities, client and server, uses the TCP transport protocol. Once the client creates a successful 
TCP connection, it proceeds with TLS Handshake defined in RFC 5246 [37]. The authentication 
continues if required, but it is not necessary. To minimize the latency, the clients do not have to wait 
for the responses, and they can pipeline multiple queries over one TLS session. The transmitted 
data are the same as in the case of DNS used with TCP transport protocol. Compared to DoH, 
which is meant to be used with HTTP/2, DoT has the disadvantage of head-of-line blocking on the 
application level [14]. The client has to wait for responses to the sent queries, which is effectively 
overcome by the HTTP/2 multistream feature in DNS over HTTPS. 

The DNS over QUIC brings another encryption alternative for DNS communication. The DoQ 
was finally standardized in RFC 9250 [60], but the beginning of the proposals can be traced down to 
2017. Compared to the DoH and DoT, it operates over UDP transport protocol instead of over TCP. 
The DoQ uses QUIC [63] protocol directly to transmit the DNS messages. The QUIC protocol is 
not affected by the TCP packet loss and retransmission, where the communication needs to wait. 
Thanks to multiple independent data streams, it overcame the head-of-line blocking either on the 
application level and transport layer. The protocol is designed not only to transmit the DNS messages 
between clients and resolvers but also between resolvers. The DoQ has defined dedicated port 853 
similarly to DoT but on UDP. The DoQ excludes the need for HTTP to be part of the communication, 
increasing privacy and reducing unnecessary payload to be transmitted. Due to the existence of 
several DoQ drafts, the implementation is ongoing, and many operating resolvers exist with various 
draft version implementations, as shown by Kosek et al. [76]. 

The two aforementioned protocols provide a viable alternative to the DoH with different ad
vantages and disadvantages. However, both have defined dedicated ports anchored in the RFCs 
definition and can be easily identified or blocked. 

2.2 Network Monitoring 

Computer network monitoring and network traffic processing work with the logical assets of the 
network traffic, the packets. The packets are sequences of bits that together create one small fragment 
of a logical piece of information transferred over the network. 

Full packet capture is one of the ways to deal with network traffic. Many network monitoring and 
processing tools work directly with the packets, extracting and analyzing information from them. 
Techniques such as deep packet inspection can be used, and all layers can be traversed up to the 
application layer where the user data of interest resides. Many tools focusing on this task exist, 
either open-source or commercial. However, as almost all network traffic became encrypted and the 
data are no longer readable by observers, the usability of such tools is decreasing. Moreover, the 
amount of data that is transferred over the network is increasing, increasing the cost and required 
processing power of solutions, further limiting the usability. The packet-level tools mostly focus on 
the rest of the unencrypted protocols, such as DNS. They are intended for offline full packet capture 
processing and forensics. This extreme approach of full packet capture benefits from information 
from all packets available. 
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Flow-based monitoring is an alternative widely adopted these days and already present on most 
network devices, such as switches and routers. The flow-based monitoring represents a compromise 
where the packets belonging to one connection are aggregated into so-called flows. Only metadata 
such as packet lengths and timings are mostly collected per flow. The flow monitoring and processing 
tools rely on such metadata and work solely with them. Compared to full packet capture, some 
data are lost, but when most protocols are encrypted, the loss is not that significant. Moreover, this 
approach can be used on high-speed and backbone networks. It can be considered as a Big Data 
approach. As many works proved, the aggregated flow data can be reliably used in combination 
with detection methods for various attacks [93,97] and are utilized by researchers to solve various 
network-related tasks [123]. Moreover, many commercial solutions are based on network flows data 
source, e.g., Flowmon A D S 2 , Cisco Stealthwatch3. 

This work consider only flow-based approach, since most current monitoring infrastructure 
support it which makes it viable data source for practical system. Special emphasis is on the 
usability of the proposed solution that can be deployed to real, even high-speed networks. 

2.2.1 Flow Monitoring Architecture 

As mentioned earlier, the flow-based network monitoring approach is one of the prevalent ap
proaches [53], mainly due to its flexibility and broad support by networking hardware [125]. The 
typical flow monitoring infrastructure diagram is provided in Figure 2.7. 

• • • 
• • • 

• • • • • • • • • 
• • • • • • • • • 
• • • • • • 

Probe 1 Probe 1 
NetFlow/IPFIX 

I » 

r 
NetFlow/IPFIX 

I Collector Flow Analysis 

Figure 2.7: Simplified diagram of flow monitoring infrastructure. 

The flow monitoring infrastructure consists of network probes or network devices capable of 
flow export distributed throughout the monitored network. The probes observe ongoing traffic and 
create statistical flow records, which are then sent to a single collector device to perform the analysis 
and post-processing. 

2.2.2 Network Flow Representation 

The data extracted by monitoring probes or network devices that the collector stores are flow records. 
Flow records can be defined as aggregated information of packets transferred through the network 
that shares some common properties [53]. The common properties are called flow-key and usually 
consist of IP addresses, ports, and transport protocol. 

Besides the flow key, there are no standardized features that each flow record needs to carry. Flow 
traditionally contains the number of transferred bytes and packets [85]. These standard flow features 

2https://www.flowmon.com/en/products/software-modules/anomaly-detection-system  
3https://www.cisco.com/c/en_hk/products/security/stealthwatch/index.html 
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can be extended for information from an application layer (such as HTTP headers, DNS payload, 
or Transport Layer Security fingerprints) or statistics of the aggregated communication. However, 
these extended flow fields are not standard and vary widely based on monitoring infrastructure [53]. 
Most of the probes work with statistics that can be computed on running sequences and have low 
space and time complexity. 

Table 2.1: Flow record features available across multiple Flow Export protocols. 

Flow Record 
Source IP address 

Destination IP address 
Source Port 

Destination Port 
Transport Layer protocol 

Number of packets 
Number of bytes 

Time start 
Time end 

The flows are transmitted between probes and collectors using flow export protocols. Multiple 
standardized flow export protocols are currently in use [53]—NetFlowV5 [27], NetFlowV9 [28], 
and IPFIX [4]. While NetFlowV9 and IPFIX support templates, and thus it is possible to customize 
the flow features highly, NetFlowV5 has fixed records and does not allow any addition of flow 
features [27]. NetFlowV5 thus highly limits the feature availability. However, according to Hofstede 
et al. [53], it is still the most used flow export protocol. Table 2.1 shows a subset of features carrying 
identification and flow statistics that are commonly present [53], and are supported by all currently 
used flow export protocols. 

According to Hofstede et al. [53], flow records usually describe only unidirectional communica
tion. Thus, the bidirectional network communication is split into two records, aggregating packets 
in a single direction. When necessary for additional analysis, the bidirectional flows can be created 
from two unidirectional by applying flow stitching on the collector. 

2.2.3 Network Flow Traffic Processing 

Despite the existence of commercial and open-source monitoring tools such as exporters or probes, 
there is a need to explore new useful attributes that can be extracted from flows and used for machine 
learning. Existing flow records can be extended by the new attributes if necessary. Several such tools 
are available and provide an opportunity to process offline traffic with which the researchers work. 
This is especially important as it allows the opportunity to analyze traffic and extract characteristics 
that can be used for detection using machine learning techniques. 

One such popular open-source tool is a Wireshark4 and its command line alternative tshark. 
The tshark can process network traffic in the form of raw PCAP files and aggregate packets into 
connections. It provides many parsers so it can precisely parse various application protocols. 
However, its ability to extract custom statistics from flows is limited or complicated. 

One of the big data tools that can extract packet data from raw PCAP files and aggregate them 
into flows with statistical information extracted is Spark-ndx processing platform built on Apache 
Spark, extracting data stored in Hadoop Distributed File System (HDFS), and results are pushed into 

4https://github.com/wireshark/wireshark 
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Cassandra database. It should be deployed on distributed hardware and can process vast amounts 
of data as measured in Jerabek et al. [67] work. However, the need to operate such a platform on 
distributed hardware makes it very impractical for researchers. 

The nfdump5 represents a known open-source toolset that can work with Netflow data supporting 
various formats, including NetflowV5 and IPFIX. The tools can even process raw PCAP files and 
extract Netflow data directly from them. Despite the many options to configure and fast processing, 
the toolset provides limited or complicated options to craft custom statistics extracted from the 
traffic. 

The ipfixprobe6 is another open-source tool developed by CESNET organization that processes 
raw traffic or offline PCAP stored traffic and extracts IPFIX records. The tool is fast and low resource 
intensive but with limited configuration options extracting only predefined features. Additionally, 
the tool provides values such as the payload size of a sequence of the first 30 packets that can later 
be used for ad-hoc custom statistics computing. 

The DoHLyzer1 or similar CICFlowMeters are tools for extracting network flows from offline 
captured PCAP traffic. The tools extract several statistical attributes from bidirectional flows. The 
tools are slow to process and very resource-intensive, with few options to configure and extract 
predefined features only. 

Many tools can extract aggregated flow data with statistical features from captured network 
traffic or an interface. However, the tools are either complicated to maintain, resource-intensive, 
slow, or lack configurability or easy extensibility. The machine learning discipline relies on data, 
and as mentioned earlier, the data can be transformed and aggregated in a different way to gain 
new attributes, providing better knowledge. Therefore, the NetExP9 tool that represents an easily 
extensible framework for flow aggregation and statistical feature extraction was developed. This 
tool is further used in this work as a main input data source. 

2.3 Machine Learning Methods 

The work involves machine learning and data mining methods to propose a detection solution. This 
section briefly describes methods, machine learning algorithms, and metrics used for performance 
benchmarking in this work. 

In the case of this work, the data source is the network flow described earlier. The IP source 
and destination address is an identifier of packets at the IP layer. The source and destination ports 
are identifiers of the transport layer. Another important property is a transport protocol. These 
attributes create a 5-tuple, the identifier, for each flow. 

Besides the 5-tuple identifying flow, each flow is further represented as a tuple (vector) of 
attribute values V - {x\,X2, ...,x„) where n is a number of attributes. Each x,- represents one of 
the statistical attributes calculated on a single flow. The attributes describe the characteristics of 
flow. A. W. Moore et al. provided 248 flow discriminators for the flow classification in [98]. Not 
all attributes are needed to produce reliable classifiers. The correct amount and combination of 
attributes should be researched with respect to other aspects, such as the computational complexity 
of attributes. A tuple consisting of attribute values is then used for further processing and machine 
learning. 

5https://github.com/phaag/nfdump  
6https://github.com/CESNET/ipfixprobe  
7https://github.com/ahlashkari/DoHLyzer  
shttps://github.com/datthinhl801/cicflowmeter  
9 https ://github. com/kj erabek/netexp 

15 

https://github.com/phaag/nfdump
https://github.com/CESNET/ipfixprobe
https://github.com/ahlashkari/DoHLyzer
https://github.com/datthinhl801/cicflowmeter


2.3.1 Data Preprocessing 

The data preprocessing includes several data transformation techniques that either transform the 
input data for better understanding or for easier algorithm handling. Some of those techniques were 
used in this work. 

Aggregation 

One of the data transformation techniques is aggregation. The aggregation takes pieces of data that 
logically belong together (individual packets in this work) and aggregates them into flows. Then 
aggregated information such as sums or means of new aggregated entity is computed. 

Attribute Construction 

New attributes can be constructed from existing attributes by using arithmetic operations and added 
to the current set of attributes. The newly constructed attributes can help represent the data better. 
Such a process is also known as feature polynomialization. 

Normalization 

Normalization (also called scaling) is a technique that transforms data so that it falls into a certain 
range, e.g., between 0 and 1. This input values transformation technique is especially useful for neural 
networks, or algorithms involving distance measuring such as K-nearest neighbors, or clustering. 
While for other algorithms, such as decision trees, the technique does not bring any benefits as it is 
invariant [47]. Two commonly used methods are min-max and z-score normalization. 

The min-max normalization performs a linear transformation of values of a certain attribute. 
Suppose that all values of an attribute A fit in between min^ and max a- Then the normalization 
maps the value a to new_valueA so that it fits the range of new_minA and new_maxA- The 
transformation function looks as follows: 

value a -miriA, . N . ,„ 
new_valueA (new_maxA - new_minA) + new_minA (2.1) 

max a - minA 
The commonly used min-max normalization transforms values to fit between 0 and 1. 
The z-score normalization (also called standard or zero-mean) is another commonly used nor

malization. The values of attribute A are normalized based on mean of attribute A values and 
standard_deviation of the attribute A values. The function looks as follows: 

value a - mean(A) 
new_valueA = ——-,—-j—j———ttt (2.2) 

standard_deviatwn(A) 

This normalization is useful when there are outliers that would infer the linear normalization or 
when the minimum or maximum of the attribute values is unknown. 

Data Balancing 

The datasets that are used for classification tasks are constructed of samples that belong to two or 
more classes. At least one class of interest exists in such datasets. However, the class of interest 
usually contains fewer data samples than the other with normal data samples. Such imbalanced 
datasets can cause models to be less sensitive to the minority data class. Hence, techniques such as 
sampling or data augmentation are involved. 
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To handle the imbalanced datasets, the majority class can be reduced using sampling techniques, 
and many different approaches to data sampling, such as random sampling, exist. On the other 
hand, new artificially created data can be added to the minority class. Techniques to augment data 
samples by simple duplication or more specialized Synthetic Minority Over-sampling (SMOTE) 
can be used. The techniques of sampling and augmentation can be combined to improve overall 
accuracy [23]. 

2.3.2 Machine Learning Algorithms 

Many machine learning algorithms exist and can be divided into multiple categories. Two main 
categories that can be useful in the work are supervised and unsupervised learning methods. A l l the 
algorithms work with data samples that are, in this case, represented by the flow attributes. 

Supervised learning for classification works with datasets containing data samples with a pre-
assigned label. The number of labels depends on the number of so-called classes that should be 
distinguished. The labels are assigned either manually or automatically. The supervised algorithm 
is used to build a classification model upon the labeled data samples. The process of building a 
classification model is divided into two phases: training and testing. The labeled data are split 
into two parts, one devoted to each of the phases. The model is built on the training part and then 
validated on the unused testing part. The process of training and validation of the model has various 
approaches, which are not further described in this work. 

The other category, unsupervised learning (clustering), does not require training and testing 
phases. The algorithms split the data into multiple classes based on the similarity. The algorithms 
take input parameters, e.g. number of classes and the input data. The data divided into multiple 
clusters is an output. These algorithms can work with unknown data, and hence it should be difficult 
to find the best parameters, such as the number of clusters for different tasks [104]. 

Only a brief description of algorithms that were later utilized in this work is provided. The 
description of the algorithms is primarily based on the knowledge taken from [47], [103], and [92]. 
Only statistical (shallow-learning) algorithms are considered. The neural networks (deep-learning) 
were not considered and used in this work since other algorithms proved to be very effective. 

Decision Tree 

The Decision Tree classification algorithm is one of the effective algorithms that is used as a base 
classifier in more complicated algorithms such as ensemble methods. A decision tree is a flow
chart-like tree structure. Every non-leaf node represents a test on an attribute of the tested data 
tuple. A l l leaf nodes hold the class labels. The topmost node is the root node. The algorithm learns 
decision tree induction from class-labeled training tuples. The approaches often used are ID3, C4.5, 
and CART. The decision trees are built in a top-down recursive divide-and-conquer manner using 
these approaches. 

During the tree build phase, the algorithm is applied to a training data set of data tuples. The 
most promising attribute is chosen for each decision using a heuristic procedure. The procedure 
employs attribute selection measures such as information gain, gain ratio or gini index. The chosen 
procedure influences the tree structure if the tree is strictly binary or not. There should be a branch 
for each discrete value; in this case, the tree is a binary tree. The tree should also be binary for 
discrete values. For continuous-valued attributes, the split points are determined to split values for 
classes on different ranges. 

The generated decision trees have a problem with overfitting the data. When the trees are 
generated from training tuples, there are many branches generated that reflect anomalies and noise 
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in training data. This problem is solved by tree pruning. The tree pruning reduces the number of 
branches of the tree. The pruned trees are smaller and less complex. It is usually faster and better 
in the classification of independent testing data. There are several methods of pruning including 
prepruning and postpruning. 

Tree-Based Algorithms 

The Random Forest is a tree-based algorithm and it is one of the ensemble methods. Those methods 
combine a series of k base classifiers to create an improved composite classification model. The 
result of the ensemble is a class prediction based on the resulting vote from the base classifiers. The 
ensembles may produce more accurate classification, mitigating errors produced by individual base 
classifiers. In the case of ensembles, the error has to be in more than half of the base classifiers' 
results. The Random Forest classifier consists of decision trees as its base classifiers. Several 
techniques for improving the accuracy of this ensemble classifier exist. 

One of the methods is bagging. To create multiple decision trees, different training tuples are 
chosen. For each decision tree, a bootstrap D , of training data tuples d of training data set D is 
created. Some of the d tuples could be missing, and some of the d tuples may occur more than once, 
in resulting D , training set to train a base decision tree. The other technique is to pick a random 
different set of attributes for each base decision tree. 

Another method used to improve the accuracy of the ensemble classifiers is called boosting. The 
boosting technique works with each training tuple and assigns it a weight. The base classifiers are 
iteratively trained, and the weight of each tuple is changed upon the ability of the trained classifier to 
correctly classify the training tuple. When a training tuple is misclassified, the weight is increased 
so that more attention is given to the tuple in the next training iteration. The final ensemble classifier 
is a collection of base classifiers, and the weight of a vote is a function of its accuracy. Examples of 
ensembles using the boosting method are Adaboost and others. 

An ensemble method does not solve the overfitting problem of the base decision trees. Hence, 
hyperparameters such as the maximum allowed depth of the trees should be carefully tuned. 

Naive Bayes 

The Naive Bayes classifier is another example of a classification algorithm that is often used in 
network traffic classification tasks [99,135]. Based on a probability, bayesian classifiers predict if 
a sample tuple belongs to a particular class. The Naive Bayes classifier performance and accuracy 
are comparable to Decision Trees and some Neural Network classifiers [47]. 

The Bayesian classifiers are based on the general Bayesian theorem 2.3. Let assume that X is 
a data tuple, called „evidence". The H is then some hypothesis that X belongs to some class C. 
P{H | X) is the posterior probability, a probability that data tuple X belongs to class C. 

, , x P(X\H)P(H) 
P(H | X) = V ^ V ; (2.3) 

P(H) is prior probability and it is independent of X. P{H) is based on less information than 
posterior probability P(H \ X). P{X) is then the prior probability of X. The P(X \ H) is then 
the posterior probability of X conditioned on H. [47] 

The Naive Bayes, or Simple Bayesian classifier is based on certain assumptions that features of 
the data vector are conditionally independent. In the case of this work the the individual flow is 
represented by x. Then there is a set of k possible flow classes C = (C\, Ci,Cy,Cjt). The 
conditional probability for C, could be then described as follows: 
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P(x I Cí)P{Cí) 
p(c'U)--řuňMm^ (24) 

Where P(Cj) is the prior probability of class Cj and P(x \ Cj) is the conditional probability of 
flow x that belongs to class Cj. 

It can be assumed that each flow x is a collection of attributes of flow then x is a vector 
(A i , A2,A„)r [140]. The conditional probability then can be written as: 

n 
P{x\Cj) = Y\P{An\Cj). (2.5) 

k=l 
The equation then can be written as follows: 

ft" P(An I Cj)P(Cj) 

Naive Bayes assume attribute independence. The attributes are continuous-valued and thus are 
subject of Gaussian distribution with a mean n and standard deviation cr, defined by 

1 _(x-pÝ 
g{x,n,cr)= e z- 2 , (2.7) 

V27TO-

P{Ak\Cj) = g{Ak,ncJ,(rcJ). (2.8) 

Where Ak is one of the attributes. The / ic , and crc, should be computed from values of attributes 
Ak that belong to a given class Cj [47]. 

K-Nearest Neighbors 

The K-Nearest Neighbors classifier is a supervised learning method that works on a principle where 
it searches a k nearest data points (neighbors) in n dimensional space for an unknown data point. 
This way the unknown data point is identified as belonging to a certain category by finding the k 
closest neighbors belonging to that category. 

The Euclidean distance is used as a metric determining the closeness of the data points [47]. 
Given two data points in n dimensional space, X\ - (x\\,x\2, •••,x\n) and X2 - {x2\,X2i, . . . ,*2n) 

the euclidean distance is defined as: 

distance {X\, X2) 
n 

^ -x2i)2. (2.9) 
' i=l 

The algorithm is sensitive to a combination of small-number attributes and large-number at
tributes. The large-number attributes can outweigh the smaller ones. In this case, the scaling of 
the input data should be employed before passing into the algorithm and computing the distances 
between the data points. 

K-Means 

The K-Means algorithm falls into the category of unsupervised machine learning. It partitions a set 
of n data tuples into k clusters based on similarity. The k is specified as an input parameter. The 
measure of similarity is based on the mean value of the objects in a cluster. 
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The algorithm randomly chooses k objects that represent the center of a cluster. In each iteration, 
the most similar object is taken and added to the cluster. The shortest distant object from the cluster 
center is chosen. The new mean representing the center of the cluster is computed. The algorithm 
iterates until the criterion function converges. The square-error criterion is typically used and it is 
defined as: 

k 

E = YJYJ\p-mi\2- (2-10) 

Assume that p represents the object in space, mt is the mean of the cluster Q . The E then 
represents the sum of the square error of objects in the whole data set. 

The method is sensitive to noise because the points that are more distant can significantly change 
the mean of the cluster. Hence, an appropriate input data normalization can be used to improve the 
accuracy of the method. 

2.3.3 Performance Measurement 

Many statistical metrics that can be used to determine the performance of the classification algorithm 
exist. In this work, only two classification classes are considered, the DoH and non-DoH flows. 

• True positive (TP) refers to a number of positive flows that were correctly labeled. 

• True negative (TN) refers to a number of negative flows that were correctly labeled. 

• False positive (FP) refers to a number of negative flows that were incorrectly labeled as 
positive. 

• False negative (FN) refers to a number of positive flows that were incorrectly labeled as 
negative. 

• Positive (P) refers to the total number of positive flows. 

• Negative (N) refers to the total number of negative flows. 

The provided terms represent keys in the confusion matrix 2.2. The matrix provides well-
arranged schema for analyzing the recognition of the classifier for tuples of different classes. 

Table 2.2: Confusion matrix for two classes. P' and N ' denotes predicted positives and predicted 
negatives respectively. 

Predicted 
Ci c2 

Total 

Actual C i TP FN P 
Actual 

c 2 
FP TN N 

Total P' N' P + N 

The final performance is measured on the unseen test part of the dataset. Based on the information 
depicted in the confusion matrix several statistical indicators can be computed. The first and most 
often used is accuracy. The accuracy measure should be used in cases where the testing data 
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in classification classes are equally split. Otherwise, the results can produce non-representative 
performance. It can be defined by the equation: 

TP + TN 
accuracy(M) - — - — . (2.11) 

Where M is the classifier. The other statistic is an error rate that is simply 1 - accuracy(M). 
The error rate can be determined as a percentage of the incorrectly classified data tuples. It can be 
also defined by the equation: 

, . FP+FN 
error rate(M) — . (2.12) 

v ' P + N 
This equation works well also for cases where the data in classes are balanced. For the other 

cases, sensitivity and specificity can be used to better reflect the reality. The sensitivity represents 
the proportion of positive tuples that are correctly identified. The specificity is the proportion of 
negative data tuples that are correctly identified. Those measures can be computed by the following 
equations: 

TP 

sensitivity {M) - —, (2.13) 

TN 
specificity(M) = — . (2.14) 

The other two widely used measures are precision and recall. The precision computes what 
portion of tuples labeled as positive are actually positive. The recall gives a portion of positive 
tuples labeled as positive. The measurements are formulated as: 

TP 
precision(M) , (2.15) 
y v ' TP + FP 

TP TP 
recall(M) = = — . (2.16) 

TP + FN P 
The precision and recall can be combined into a single measure. It is F l measure, that is 

computed by the following equation: 

Fl = Přepon-recall 
precision + recall 

The Fl measure represented by the equation 2.17 is the harmonic mean of precision and recall. 
It better reflects the performance of the results when samples of input classes are imbalanced. 

Performance Measurement in the Context of Network Flow Detection 

This work focuses on DoH detection in regular HTTPS traffic. To measure the performance of the 
detector, the three main metrics are important and used to measure the accuracy of the detector. 

In the domain of security, especially network monitoring, where the solution is based on an 
assessment of individual flows, it is important to provide a high-accuracy solution. The flowing 
network traffic can reach high throughputs, counting thousands or even higher numbers of flow 
records per second. Even a very accurate solution reaching a 0.99 F l score with a very low error rate 
can produce an immense amount of false positives and false negatives when considering the time 
frame of hours reaching up to thousands missclassified flows. Such an amount of misclassified flows 
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can make even a very accurate solution impractical since the network operators have to investigate 
them. 

The false positives are important, especially in the case of DoH detection, where the user would 
be prevented from accessing legitimate service when active action of blockage is connected to the 
detection. Hence, in this case, precision is another important measure that should be pushed to the 
maximum. 

The F l measure is used as a primary metric in this work with the aim to reach a desirable 
maximum near one and then precision that should also be maximized. The false positives produced 
by the detector would be decreased as much as possible, ideally down to 0. The ideal state would 
also be not to generate false negatives. However, this metric is less important and already partly 
represented by the F l score. Furthermore, the confusion matrix is also provided since it represents 
well the absolute numbers. 

2.3.4 Model-Centric and Data-Centric Concepts 

In machine learning, there was established two concepts of how to deal with machine learning 
problems. Those can be called model-centric and data-centric. 

The model-centric concept has been the main focus in the last years. The researchers focused on 
developing and designing machine learning algorithms, tuning their performance to the maximum. 
The measures were taken as a prize to be won [118]. Many practices as seed fixing and cherry 
picking, to reach maximum performance, were employed [82]. The researchers concentrated more 
on the models, feature engineering, and model architectures while the data was treated as a static 
asset [22]. 

However, in recent years, the researchers and teams realized that more emphasis should be on 
the data [121] used to develop successful solutions. The data-centric concept puts more emphasis on 
data that are used in machine learning models. In practice, the concept covers many techniques not 
only for improving datasets but also the general solution; some of the techniques can be recognized: 
understanding the data, better data collection, filtration of unnecessary samples that can ruin the 
models, data augmentation and many others [64]. The concepts cover error analysis, identifying the 
data that leads to errors, data consistency, and benchmarking. 

This work inclines more to the data-centric concept. Hence, it focuses more on the understanding 
of the DoH communication, bringing the thorough domain knowledge (provided in Chapter 4 and 
Chapter 5) to be able to create comprehensive and representative datasets to work with. Moreover, 
domain knowledge helps to mitigate the influence of unwanted data by filtering the samples leading 
to errors before passing them into the classifier, helping the proposed method to be less prone to 
overfitting and making the final solution more practical. 

22 



Chapter 3 

Related Work 

Since the DoH specification in RFC 8484 [51] was published in October 2018, researchers have 
studied privacy, security, measuring performance, and other protocol characteristics. 

DoH, as well as other DNS over Encryption protocols, brings many benefits to user privacy. 
However, as new protocols are being proposed and gaining popularity, many new challenges come. 
The survey work by Yan et al. [137] conducted in 2020 pointed to some challenges, including 
possible decentralization of the DNS ecosystem overtaken by large public resolver providers and 
lost control over some currently used local security mechanisms. Later, the survey work by Lyu et 
al. [86] summarizes the existing literature in the years 2016 to 2021, focusing on DNS encryption 
and security, providing a view into DNS over Encryption protocols, their performance, privacy, and 
misuse by malware. They pose concerns about the risk of untrustable resolvers providing DNS over 
Encryption services and monopolizing the DNS ecosystem. They suggest that the transition to new 
protocols comes at the risk of additional attacks related to TCP and TLS. Moreover, misconfiguration 
on the client or server-side may make the privacy mechanisms less effective. Hynek et al. [62] in 
their survey published in 2022 studying existing works defined still unsolved open challenges in this 
area that include: effective DoH blocking or filtering, detection of legitimate or illegal use, detection 
of malicious use, and detection of system bypassing. A l l the identified areas focus on increasing 
security in the computer networks and are mainly related to DoH. 

This thesis aims to design practically usable and reliable DoH classifier by following a data-
centric concept focusing on comprehensive analysis of DoH, understanding its environment, and 
creating datasets. The presented DoH related works are thus organized into three main categories 
covered in the following sections. The first focuses on the analysis and performance measurement 
of DoH, touching also other DNS and DNS over Encryption alternatives. The second category 
covers DoH from the user privacy perspective. The last category focuses on the security of DoH, 
aiming primarily at detecting DoH in regular HTTPS traffic and eventually detecting DoH tunnels 
and other malicious misuse. 

3.1 Analysis and Performance Measurements 

The migration from DNS towards DoH impacts latency and web browsing activities in different host 
environments using various providers as identified in a series of works by Hounsel et al. [54,55]. 
Their measurements reveal that the DoH outperforms DoT for longer queries. Traditional DNS has 
a better response time than DoH and DoT mainly because of the overhead introduced by encrypted 
underlying transport channels of DoH and DoT. Finally, Hounsel et al. [56] later made a large-scale 
measurement in the US, showing that users do not necessarily need to trade their performance for 
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privacy. The results show that DoT for page loading outperformed traditional DNS even though the 
resolution latency was higher. They also show that there was high variation when using different 
DoH providers. The performance was also varying across multiple ISPs. Around the world, 
performance measurement by Chhabra et al. [24] showed that bandwidth is the most significant 
contributor to performance degradation. Moreover, the DoH performance analysis made in Africa 
by Mbewe et al. [91] showed that other aspects such as location, caching, and even features like the 
TLS version and its traffic overhead directly impact the DoH performance. Another study focusing 
on DNS over Encryption performance comparison was made by Kosek et al. [77]. They performed 
experiments evaluating the most recent DoQ, other DNS over Encryption alternatives, and traditional 
DNS assessing influence on the page load time. They show that DoQ is about 10% faster than DoH, 
achieving similar performance as traditional DNS over U D P Recently proposed protocol Oblivious 
DNS over HTTPS (ODoH) defined in RFC 9230 [74] designed to work in cooperation with DoH 
serves as a proxy for DoH. The protocol aims to protect users from relying on big resolver providers 
capable of identifying the clients' behavior. Singanamalla et al. [120] implemented the protocol, 
and they performed a series of experiments assessing page load times in browsers comparing the 
DoH with ODoH. They show that there is only a slight tradeoff in performance between using those 
protocols. The delays can vary based on the chosen ODoH server. 

Other studies compared the performance of local and publicly available DNS and DoH resolvers. 
Callejo et al. [19] conducted an over-the-world measurement of the impact of DoH in comparison to 
traditional DNS in terms of page loading times. They found an increase in median resolution delays 
in tens of milliseconds depending on public DoH resolver provider compared to local DNS resolvers. 
Another study by Affinito et al. [3] compared local DNS resolvers of Italian ISPs to public resolvers. 
They showed that local resolvers outperformed the public ones, which is aligned with the previously 
mentioned work. They further compared the performance of public DNS to the DoH of two public 
resolver providers and showed almost no difference in their performance. Nevertheless, they also 
studied the ability of the resolvers to block malicious and phishing domains. A l l challenged resolvers 
showed promising blocking accuracy, but some public resolvers slightly outperformed the local ones. 
Doan et al. [40] focused solely on measuring DNS services, emphasizing public centralized DNS 
resolvers using an extensive network of RIPE Atlas probes. They show that about 30% of probes use 
public resolvers while the rest use locals. The public resolvers provide lower latencies as a benefit in 
most regions. The authors show still prevalent usage of local DNS resolvers, but they raise concerns 
that the portion of DNS centralization might change with higher adoption of DoT or DoH. 

DoH protocol does not have an impact only on the performance as it brings another overhead. 
The DoH resolvers should also be analyzed. Since the proposal, the researchers have been focusing 
on this task. Deccio et al. [35] conducted a discovery of DoT and DoH resolvers and found 9 DoH 
resolvers. They tested only the TCP TFO feature of those servers. Lu et al. [83] made a similar 
attempt. They found 17 DoH resolvers, provided performance measurements, and mapped some 
basic features. They aimed at DoT as well. Bottger et al. [14] took ten currently provided open 
DoH resolvers from a well-known DoH curl list [126], performed a basic functionality check, and 
measured their performance. Those studies were made recently after the RFC 8484 proposal when 
only a few DoH servers were deployed. A more recent study by Garcia et al. [45] performed a large-
scale internet scan searching for operating DoH resolvers in 2021. The work was later extended 
in 2022 [44]. They discovered 4354 DoH resolver IP addresses and tested TLS certificates. In the 
same year, Luo et al. [84] made a similar scan and found 5715 DoH resolvers. They examined 
certificates and DNSSEC checks. Moreover, they focused on DoT as well. Both works included 
endpoints obtained from the curl DoH resolver list [126]. Others also focus on alternative DNS 
encryption protocols, particularly DoT and DoQ. Kosek et al. [76] periodically scanned the Internet 
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for DoQ resolvers in 2021 and 2022 for 27 weeks, revealing an increase of DoQ responding endpoints 
reaching 1217. 

DoH is implemented in the applications and operating systems because the protocol standard 
does not define a discovery mechanism; the applications come with a predefined setting that the 
users can change. The users' behavior concerning the DoH settings was studied by Nisenoff et 
al. [108]. They conducted a small-scale survey of users, showing that uninformed users mostly stick 
to the default DNS security setting. When informed about the technology, users tend to change the 
default settings either to switch off the security or change a provider. However, the ability of users 
to choose their own DoH provider is limited in some world locations, as shown by Basso [11] in 
his work. He measured DoT and DoH resolver endpoint blockage using a voluntarily hosted OONI 
Probe network. He discovered that the popular Cloudflare's and Google's DNS over Encryption 
services are the most blocked. Otherwise, he found that 80% of services were always reachable. 
The blocking occurred on various levels, either during the DNS resolution of those services or when 
attempting to establish a TLS connection. 

Despite the considerable amount of studies focusing on DoH performance comparison, the 
influence of two RFC 8484 defined HTTP methods on DoH was not well studied. Moreover, another 
area that was covered briefly is single query DoH. The single query or short flow DoH connections 
are especially important since they can be used by malware like a Flubot [117] to hide their malicious 
domain resolutions. Moreover, many DoH resolver implementations and possible configurations 
complement the limited number of currently existing client implementations. The resolvers are the 
critical point for maintaining privacy and security of the whole ecosystem. Together with clients, 
they create variable combinations influencing the DoH traffic shape. The study of the network traffic 
characteristics and traffic shape should also be covered. 

3.2 Privacy 

The studies focusing on user privacy were trying to prove that fingerprinting or DNS pairing in 
encrypted DNS is possible and achievable even with currently designed counter mechanisms. The 
works [18,61] study pairing queries with responses in encrypted DNS channel pointing to insufficient 
DNS padding used in encryption was conducted in 2020. Moreover, Hynek et al. [61] show that 
using HTTP/2 for DoH transmission makes the pairing unreliable and nearly impossible. Siby et 
al. [119] attempt to show that traffic analysis-based monitoring and censoring of DNS is possible 
even when DoH or DoT are used. They show that standard padding schemes are ineffective. The 
study of Trevisan et al. [127] confirms the results of the previous works and points out that the 
padding of the sizes is insufficient to protect users' privacy. They have been able to attempt further 
attacks identifying the visited websites even with encrypted SNI. Dahanayaka et al. [32] showed 
a feasible website fingerprinting approach and presented the results of their proposed methods 
that achieved high accuracy on close-set and open-set datasets. They further studied the model's 
performance degradation over several weeks. Zou et al. [141] used a different approach. They 
proposed a machine learning model based on n-shot learning capable of distinguishing user-visited 
websites from DoH traffic using only a few traces to train the model. They showed high accuracy 
not only in closed environment but also in open environment. Another approach was proposed by 
Muhlauser et al. [102]. They studied the possibility of identifying Android applications using DoH 
or DoT encrypted DNS traces. They achieved very high accuracy when EDNS padding was not used. 
When EDNS padding was employed, the performance dropped significantly but was still above 70%. 
Unlike previous works, Niakanlahiji et al. [106] proposed a novel client-side obfuscation approach 
that helps prevent users from traffic analysis attacks and privacy leakage. Using techniques such as 

25 



compression-aware padding, fake query injection, and random delaying of queries, they claim they 
were able to decrease traffic analysis accuracy from 95% to 9%. 

3.3 Detection and Security 

The works covered in the security category mainly include DoH detection approaches. The detection 
approaches focus on identifying DoH protocol and detecting malicious threads such as DNS tunnels 
inside DoH. The first mention of the necessity of DoH detection was in 2020 by Bumglang et al. [16] 
in their survey about the impact of mass DoH deployment. Garcia et al. [44], in their large internet 
measurement, also studied the completeness of publicly available DoH blocklists. According to 
their conclusions, IP-based DoH blocklisting is inefficient due to the incompleteness of publicly 
available blocklists. 

Several researchers attempted to identify DoH mostly employing machine learning methods. 
One of the first DoH detection approaches that used teletraffic engineering to recognize DoH was 
proposed by Vekshin et al. [129]. They studied the shape of the DoH traffic using flows extended 
for information about the first 30 individual packets — packet lengths, packet times, Transmission 
Control Protocol (TCP) flags, and direction. They extracted 18 discriminatory features from those 
extended flows that proved efficient in DoH recognition, and their detector achieved an accuracy 
of 99.6%. Moreover, they also published their own dataset [128]. DoH detection was also studied 
by MontazeriShatoori et al. [97]. They use extended flows with 28 traffic features along with 
machine learning to distinguish DoH from regular HTTPS traffic. They evaluated multiple machine 
learning approaches, and the best one achieved an F l score of 0.993. Moreover, they published the 
CIRA-CIC-DoHBrw-2020 [96] dataset used during their study, which became the de-facto standard 
dataset for DoH detection. In addition to regular DoH, they proposed second-layer detection that 
had successful results in malicious DoH detection. Banadaki [10] designs his method using the 
CIRA-CIC-DoHBrw-2020 dataset, which achieves an accuracy of 100%. His approach utilizes 
machine learning algorithms with time-related features. However, he also uses IP addresses and 
ports in its feature vectors, which is criticized by Behnke et al. [12]. Behnke et al. then improved 
the Banadaki proposal by further exploring his feature vector. They removed overfitting features 
(IP addresses and ports), further reduced statistically insignificant features, and finally measured 
several trained models. Their improved approach achieved a high F l of 0.998. Following studies 
that also used CIRA-CIC-DoHBrw-2020 dataset made by Casanova et al. [21], Jha et al. [72], 
Zebin et al. [138] and Mitsuhashi et al. [94] also performed well in DoH detection tasks achieving 
over 99% accuracy or 0.99 of F l score. Konopa et al. [75] trained a standard multilayer forward 
neural network to distinguish between DoH, regular HTTPS, and HTTP It achieved only 94.4% 
accuracy—significantly lower compared to other proposals. The authors of previously mentioned 
works explored the effectiveness of different machine learning algorithms and techniques to build 
their methods. A recent approach by Nguyen et al. [105] proposed a Transformer Neural Network 
to detect DoH. They used custom datasets and CICFlowmeter to extract 29 features and achieved an 
F l score of 0.99. A l l of the mentioned approaches used statistical features extracted from flows. 

Nevertheless, methods focusing on packet-based approaches were also proposed. One such 
technique was published by Wu et al. [136]. They used an autoencoder-based method to detect 
DoH resolvers. Using their approach they were successful in identifying DoH resolvers. Another 
packet-based approach was proposed by Csikor et al. [31]. They created a DNS over HTTPS 
classifier that achieved over 97% accuracy. They created their own large dataset to train and test 
the model's performance. They used metadata extracted from single packets and directly classified 
them. Since they work with packet lengths, they also study which padding strategy is best to 
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counter the model and decrease its performance. Nijeboer [107] provided a simple algorithm with 
predefined thresholds detecting DoH from just packet sizes. The algorithm is combined with JA3 
fingerprinting of the DoH resolvers. 

Many other researchers focused solely on detecting DoH tunnels and malicious use in DoH 
traffic. L i et al. [81] evaluated several machine and deep learning classifiers on the task of DoH 
tunnel detection. Their later study [80] proposed a federated learning approach for DoH tunnel 
detection. They claim that the federated learning approach gives an advantage to preserving privacy 
but sharing knowledge between networks. They continued using the same CIRA-CIC-DoHBrw-2020 
dataset but transformed flows into figures that were then used for detection. Alenezi et al. [6] tested 
several machine learning models on DoH tunneling detection tasks. Moure et al. [100] used statistical 
traffic analysis and then designed a classifier for the same detection task. Simpler methods based 
on thresholds were also proposed. Kwan et al. [78] explored simple techniques based on thresholds 
to distinguish between benign DoH and tunnels. They propose a DNS tunneling prototype dnsst to 
circumvent possible censorship. Another method based on thresholds was proposed by Steadman et 
al. [124]. The method was aimed at detecting DoH data exfiltration attacks. Additionally, they used 
an IP-based prefilter to separate DoH from other HTTPS traffic. A different approach dealing with 
data exfiltration in DoH was presented by Zhan et al. [139]. Their method combined techniques 
of TLS client fingerprinting (benign clients as browsers or proxies) with a machine learning-based 
flow detector. They used their own captured dataset from different parts of the world. Khodjeava 
et al. [73] conducted several experiments using several publicly available datasets and proposed a 
method for detecting malicious DNS tunnels, including tunnels in DoH. Their experiments covered 
raw PCAP processing using multiple tools extracting statistical flow features enriched by entropy. 
Qiu et al. [112] also used DoH and HTTPS separation using IP addresses of known DoH resolvers, 
and they proposed a detection method for DoH tunnels based on a dual-tier classifier. In the first 
layer, they employ autoencoders to distinguish the benign and malicious flows. In the second layer, 
they identify a tunneling tool that generated the traffic. Du et al. [41] also employed autoencoders 
in their DoH tunnel detection approach. However, they work directly with packet metadata, where 
several packets are grouped into flows as input into the B i - L S T M autoencoder. They claim that 
their approach is lightweight and capable of high processing speeds. Another technique using 
an autoencoder-based method working directly with packet metadata sequences for detecting DoH 
tunnels was presented by Ding et al. [38]. They treated DoH tunnels as an anomaly. They used a mix 
of publicly available datasets, and their specialty was using their bidirectional GRU-based network 
to automatically learn feature representations. A l l of the aforementioned methods for DoH tunnel 
or exfiltration detection achieved high F l scores, reaching or crossing the line of 0.99. The majority 
of researchers were working with the CIRA-CIC-DoHBrw-2020 dataset, sometimes combined with 
other publicly available datasets, or they created their custom dataset. A l l of the approaches worked 
with flow representation and statistical features extracted from flows, except for a few working 
directly with packet metadata. 

Another work that can be seen as complementary to DoH detection is a study presented by 
Huang et al. [58]. They did experiments showing downgrade attacks that made browsers fall back 
from encrypted DoH to unencrypted DNS and made them successful. They show the possibility of 
downgrade attacks by blocking the resolution of DoH in most browsers. They argue a long recovery 
to DoH and recommend revising the implementation and DoH protocol. Since the DoH does not 
provide self-discovery mechanisms, the implementations use internally mapped IP addresses to 
prevent initial clean DNS resolution or require DNS resolution before using DoH. The successful 
downgrade attacks show the possibility of blocking detected DoH connections, preventing the 
implementations from recovery, and falling back to DNS, which can be inspected by current security 
solutions in enterprise networks. 
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Even though all mentioned studies focusing on DoH and DoH tunnel detections claimed very 
high accuracy, significant limitations still prevent their mass deployment. Either they are packet-
based or require specialized data sources — flows extended for information about individual packets 
as in the case of Vekshin [129] or non-standard time-related features as created by DoHLyzer 
tool and provided within CIRA-CIC-DoHBrw-2020 dataset or by CICFlowmeter, which are then 
used by majority existing studies [10,12,21,94,97,105,136]. These approaches require features 
such as median or mode of packet lengths, which cannot be computed on the running sequence. 
It means that the monitoring apparatus needs to hold the information about all packets in the 
memory. The computational and memory complexity prevents its deployment on monitoring 
infrastructures where hardware resources are limited—router or high-speed monitoring probes. The 
only approach that relies on standard telemetry data was proposed by Konopa et al. [75], who 
trained a standard multilayer forward neural network to distinguish between DoH, regular HTTPS, 
and HTTP. Nevertheless, it achieved only 94.4% accuracy— significantly lower than other proposals. 
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Chapter 4 

Weil-Known DoH Resolvers Analysis 

This work focus at the problem of DoH detection in a more data-centric way. Hence, understanding 
the communication participants creating the data is very beneficial. The study of well-known DoH 
resolvers creates the first building block on which further analysis stands. It aims to show different 
characteristics that may influence DoH communication. Covering possible variability of server-
side communication helps determine the different aspects that should be considered for creating 
more comprehensive datasets for DoH detection and analysis of the DoH traffic shape. Moreover, 
several security and privacy tests covered in this chapter show that some publicly available DoH 
resolvers represent a potential security risk, further amplifying the need for their regulation from 
the perspective of network operators. 

Since the DoH protocol proposal in 2018, it has been implemented in browsers, proxies, and 
operating systems. With traditional DNS, the host has been automatically configured to a preferred 
resolver as provided by the DHCP option, or users might choose a custom from a variety of publicly 
available DNS resolvers [20]. In the case of the DoH, the automatic setting of the local DNS 
resolver is not an option, even if some implementations check whether the automatically set resolver 
supports DoH. The applications or systems come with a few predefined public DoH resolvers they 
use by default. However, users have the option to choose custom. Users who want to choose a 
custom server for DoH resolution depend on publicly available lists of DoH resolvers. Such lists 
are manually maintained and contain resolvers known to the community; hence, they are named as 
well-known. They can be taken as a representative sample. 

There are currently several widely deployed open-source client implementations [126]. On the 
other hand, the situation of deployed DoH resolvers is less transparent due to private implementations 
and specific settings managed by different providers that affect the performance and security of the 
entire ecosystem [44,84]. 

This chapter is based on article [69] published by the author of this thesis. The chapter studies 
the well-known DoH resolvers from the most comprehensive publicly available list maintained by 
the curl community [126], uncovering their internal characteristics by long-term monitoring and 
challenging the servers with various additional measurements. Over 500 unique DoH resolvers 
were tested over the period of 2 years, from September 2020 to December 2022. The presented 
results extend the previous studies by the number of resolvers, studying not covered aspects, such 
as long-term IP discovery important for block list creation, resolvers feature progression, HTTP 
headers, and EDNS padding influencing security, privacy, effectiveness, and traffic shape of DoH 
communication. 
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4.1 Methodology 

The well-known resolvers exploration and analysis are done in two phases. The first phase focuses 
on long-term resolvers monitoring, covering only basic properties (Section 4.1.1). The second phase 
further challenges the servers to obtain a detailed analysis of TLS certificates, other DNS protocol 
support, HTTP headers, and EDNS padding (Section 4.1.2). The output from both phases represents 
novel comprehensive long-term data containing many DoH resolvers suitable for further analysis 
(Section 4.2). 

4.1.1 Long-Term DoH Resolvers Monitoring 

For more than two years, from September 2020 to December 2022 (27 months in total)1, well-
known DoH resolvers from the list maintained by the curl community [126] were monitored. The 
curl community list was chosen as the most comprehensive among existing actively maintained DoH 
resolver lists. Other maintained lists, such as the AdGuard list [2] contained only 76 resolvers, and the 
DNSCrypt list [39] contained 127 resolvers. Other lists contain only a subset of resolvers provided 
in the monitored list. In addition, the curl list is cited in many related works [14,44,45,83,84] and 
hence potentially receiving higher attention even by users. 

The monitoring consisted of actively probing the resolvers and testing the availability of the 
features presented in Table 4.1. In addition to only probing for IP support, the discovered IP 
addresses were also collected. 

Table 4.1: Summary of tested categories with specific versions and methods. 

Probing Categories Specifics 
Supported TLS versions 
Supported HTTP methods 
Available via 
Supported HTTP version 
Provided certificates 

1.0, 1.1, 1.2, 1.3 
GET, POST 
IPv4,IPv6 
HTTP/2 
Let's Encrypt Certificate 

The monitoring occurred from the device attached to the Brno University of Technology network. 
The resolver testing was powered by a Python script utilizing dnslib2 and running OpenSSL 3 library 
to test TLS. The domain names were resolved using Google DNS service over standard U D P The 
checks were run once per hour. Extracted data were fed into the database. A l l records were extended 
for the timestamp of their insertion so the results could be tracked in time. 

The collected data were cleaned before analysis. Inactive endpoints remained in the monitoring 
in case of their renewed activity. Hence, inactive endpoint records were removed from the data, 
and only records that satisfied two conditions remained: endpoint correctly responded to both DoH 
POST and GET queries (RFC 8484 defines that those two methods must be implemented), and they 
supported at least one TLS version (RFC 8484 mentions in protocol design requirements that the 
protocol must use HTTPS secure transport) [51]. 

'Note that in January and February 2021, the server running the tool was under maintenance; thus, values from this 
period are missing. 

2https://github.com/paulc/dnslib  
3https://github.com/openssl/openssl 
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4.1.2 DoH Resolvers Properties Testing 

The resolvers identified as active in the last month of the monitoring period were further examined. 
The resolvers were challenged to uncover the following aspects: 

1. TLS certificates inspection; 

2. support of other DNS and DNS over Encryption protocols; 

3. HTTP header sizes, variety, and minimalism in responses; 

4. EDNS padding capability and strategies. 

The active probing occurred on a separate measurement point in the same university network. 
A l l the measurements were done within one day. 

The measurements are further divided into two categories. The first category gathers information 
about TLS certificates and other DNS protocol support. These properties are affected by the resolver 
domain and are shared by all resolvers on that domain. The second category focuses on resolver-
specific features and utilizes regular DoH queries. 

Tests Towards Resolver Domain 

The measurements were done for a set of DoH resolver domain names. Although domains can be 
resolved to pools of IP addresses, the reason might be for load-balancing purposes, and all these 
servers run the same deployment. The aim is to get TLS certificates and determine whether the DoH 
resolvers behind the domain are open to other DNS resolution protocols. 

The TLS certificate inspection was done using testssl.sh tool 4. The tool can test the domains in 
parallel based on the list of domains. The testing tool was restricted to testing only TLS certificates. 
The tool could not connect to 18 cases, even after several retrials; hence that data is missing. 

Secondly, tests whether the domains also host other DNS resolution options than only DoH was 
made. Standard DNS over UDP (DoUDP, UDP, port 53), DNS over TCP (DoTCP, TCP, port 53) 
were queried together with its encrypted alternatives DNS over TLS (DoT, TCP, port 853) and most 
recently proposed DNS over QUIC (DoQ, UDP, port 853). The domains were queried using dig 5 , 
which was set for three retries on failure, and q 6 , a publicly available command line tool, also used 
to query 3 times on failure. 

Tests Towards Resolver 

The data transmitted over the encrypted channel consisting of HTTP headers and the DNS message 
(particularly the EDNS padding feature) were of interest. Hence, a set of DoH resolvers was queried. 

The resolvers were queried using a Python script utilizing the dnslib library. The servers were 
challenged with correct DoH queries using the POST method, sending only minimal HTTP headers 
required content-type and accept both with application/dns-message value. Resolvers were tested 
using both HTTP/1.1 and HTTP/2 versions since many servers can operate both. 

The HTTP Header test case collects headers from each correct query response using HTTP/1.1 
and HTTP/2 protocols. For HTTP/2, the test was repeated to compare the possible differences 
between header values sent in each response over the same connection. 

4https://testssl.sh 
5https://linux.die.net/man/l/dig 
6https://github.com/natesales/q 
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In the EDNS test case, experiments with queries of different EDNS padding sizes were done. 
According to RFC 7830, the responder must pad the DNS message if the sender uses padding; 
otherwise, it violates the standard [89]. Several strategies for EDNS padding size responses can be 
expected in replies, some recommended in RFC 8467 [90]. Several padding cases were tested: no 
padding, padding in multiples of 128 and 468, and padding with a power of two from 0 to 2048. 

4.1.3 Limitations 

Despite the careful design of the methodology, there are some limitations. A l l experiments are run 
from a single client location, which can provide skewed data if geolocation DNS serving, firewall 
filtering, or other measures are applied to the client's address. Those mechanisms can impact the 
results so that not all IPs would be discovered, and some resolvers might be falsely marked as 
inactive or not working. 

Potential blocking of the client address was mitigated by performing slow long-term querying of 
the servers done once per hour, which resembles a robot scraping activity pattern or lifetime checks 
and hence be considered harmless and generally allowed to operate. Still, DoH server monitoring 
checks can miss some DoH resolvers. The final active testing could create more queries quickly, 
even though a limit on the number of requests was set. 

Another limitation is that the last seen timestamp was not attached to domain IP address mapping; 
hence, only IPs' first discovery times per endpoint can be presented. 

4.2 Results 

This section provides insight into the results of the long-term (over 27 months) periodic measurement 
of well-known DoH resolvers. In addition, it presents the results of other extended resolver challenges 
carried out at the end of the monitoring period. 

4.2.1 Monitoring Insights 

The monitoring relies on the DoH resolvers list manually maintained by the curl community [126]. 
Over the monitoring period, the list was continually extended. New resolvers were irregularly added 
as the community discovered and reported them. Figure 4.1 depicts the cumulative increase of 
unique resolvers as they were observed and added to monitoring. Since the list was maintained 
manually, some endpoints that appeared on the list were not responding correctly or were not active 
anymore. Sometimes, they remained on the list with an inactive flag to notify users that they were 
not active. A slowly increasing gap between active and inactive servers can be observed. 

Over the whole period, 480 endpoints were seen and measured, from which 431 correctly 
responded at least part of one month. More than half of the resolvers, from mostly smaller and 
less known resolver providers, were added in November 2022. At the end of the measurement, 378 
endpoints responded correctly and were considered for further investigation. 

Together with correct responses, several other fundamental features were tested. Figure 4.2 
presents feature support percentage among the active resolvers each month. 

TLS 1.2 has almost 100% adoption, and the support of TLS 1.3 in deployments is also high, 
about 90%. Obsolete and deprecated TLS 1.0 and 1.1 are supported by less than 30%, slowly 
degraded to 11% minimum in July 2022, and slightly increased with new servers added to the list. 
TLS 1.0 and TLS 1.1 are not solely deployed but accompany newer TLS versions. 
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Figure 4.1: Cumulative increase of resolvers over the whole monitoring period. 
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Figure 4.2: DoH resolvers features ratio captured over time. 

Moreover, the Let's Encrypt certificates deployment was the most prevalent as they represent the 
most used provider of automated SSL certificate deployment on servers [1]. It seems that around 
60% of resolvers are using such certificates. 

Some resolvers do not support HTTP/2 despite being the preferred DoH [51 ] transmission option, 
mainly due to its performance. While only 2% of endpoints missed HTTP/2 support initially, it 
raised up to 10% of deployments over the whole monitoring period. Almost 100% of servers are 
available via IPv4, while IPv6 was configured on 80% to 90% of endpoints, with a significant drop 
at the end of measurement to under 60% as new resolvers were added to the list. Some resolvers 
were provided solely via IPv6. 

4.2.2 IP Discovery 

The results of periodic DNS queries are shown in Figure 4.3. It captures the progress of discovering 
new IP addresses for each resolver and discovering new resolvers. Each spike value above zero 
represents the number of addresses or resolvers found daily. Days without discoveries were filled 
with zero values. The inconsistency of the initial deployment causes a gap after the first discoveries 
of IPs and endpoints. 

It can be observed that new IP addresses are not solely aligned with new resolver findings 
but mostly continue for more days. New IP addresses still pop up even after several days. Some 
resolvers are available on several IP addresses, and DNS load balancing with Round-robin or different 
mechanisms is employed. Another case of this phenomenon can occur when the resolver frequently 
changes IPs, e.g., when deployed on dynamic cloud infrastructure. A l l endpoint IP addresses are 
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New IPv4 Addresses Discovered 
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Figure 4.3: Ammount of DoH resolvers added together with IP address discovery over time, displayed 
using logarithmic scale. 

mostly discovered in a few days with no later findings. In addition, some isolated extremes can be 
observed. Those mostly occur when some changes happen in stabilized deployment. 

In total, the graph contains 1994 IP addresses (862 IPv4 and 1132 IPv6) and 431 resolvers. IP 
addresses are not unique since per endpoint collection was used; hence, some share the same IP. 
The unique IP addresses are 1405 (834 IPv4 and 571 IPv6). 

4.2.3 End of Monitoring Summary 

At the end of the measurement period, the data from the last month (December 2022) was analyzed. 
Summary information covering several aspects of the most current state of the well-known resolvers 
is provided in Table 4.2. 

A l l measures are extracted from 378 resolvers that satisfied the DoH correctness condition. The 
total amount of resolvers resides on 355 unique resolver domains. The unique domains are divided 
into multiple subdomain levels, splitting the 281 unique second-level domains (SLD). According to 
the curl community list, the domains are managed by 276 providers, with 42 providers managing 
more than one endpoint. 

DoH resolvers are, in more than half of cases, available on both IP versions. Only four endpoints 
provide access solely via IPv6, and 161 only via IPv4. Moreover, 40 resolver domains are deployed 
on shared infrastructure, sharing IP addresses with at least one other domain. Those domains can 
be divided into 17 groups sharing the same IPs, which makes 2.3 domains on average served on the 
same IPs within the 40. 

Additionally, 11 domains provide DoH resolution services on multiple U R L paths simultane
ously, which differs from the official RFC 8484 definition. Despite domains sharing multiple U R L 
paths within the same domain, other resolvers also choose non-officially defined paths to serve DoH. 

Table 4.3 provides insight into the URI paths used. Most of the resolvers follow the RFC 
8484 with official dns-query, and the second most often is / path. The other category consists of 
infrequent paths such as uncensored, adblock, adultfilter, ads, má family, mostly describing their 
purpose. Some not intuitive ones include pO and x-oisd. 
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Table 4.2: Summary of data analysis results from last monitoring month. 

# °lc 
Total unique endpoints active 378 100 
Both IPvs endpoints 213 56.3 
Only IPv4 endpoints 161 42.6 
Only IPv6 endpoints 4 1.1 
Total unique domains 355 100 
Unique SLD domains 281 79.2 
Unique domains sharing IPs 40 11.3 
Unique domains with multiple paths 11 3.1 

Total providers 
Providers with more than one endpoint 

276 
42 

100 
15.2 

Table 4.3: Portions of RFC 8484 defined path and other paths found among active resolvers. 

URL Path # °Jc 
dns-query 328 86.77 
/ 22 5.8 
other 28 7.4 

4.2.4 T L S Certificates 

DNS over HTTPS is closely bound to HTTPS and hence TLS to provide confidentiality to the DNS 
protocol. As such, the well-known resolvers certificate checks were done to asses validity, whether 
security standards are met, and the identity of the issuers. Data from 18 resolvers were incomplete 
since they did not respond, leaving us with certificate information from 337 domains. 

The testing identified certification authorities (CA) issuing the TLS certificates for DoH resolvers. 
Long-term monitoring already revealed that the certificates Let's Encrypt C A issued cover more than 
60% of all endpoints. The second most represented C A issues free certificates using an automated 
process and covers another 10%. Cloudflare's 3.3% of free certificates for their hosted services create 
almost 80% of free automated, well-known DoH resolvers' TLS deployments. The rest is covered 
mainly by paid C A with a more complicated certificate issuing process, as presented in Table 4.4. 

Table 4.4: Portions of TLS certificate C A names among certificates acquired during testing. 

C A Name # % C A Name # % 
1) Let's Encrypt 221 65 6) Cloudflare 11 3.3 
2) ZeroS SL 36 10.7 7) Google 9 2.7 
3) DigiCert 20 5.9 8) GlobalSign 7 2.1 
4) other 15 4.5 9) Buypass 5 1.5 
5) Sectigo 13 3.9 

The 6 endpoints had issues with their certificates. Five endpoints suffered from expired certifi
cates; one had an incomplete certificate chain. The issues were reported to administrators of the 
problematic DoH services. No other certificate-related problems were found. 
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4.2.5 Support of Other DNS-Related Protocols 

Results of the DoUDP, DoTCP, with its encrypted complements DoT, DoQ, queries were analyzed, 
and the results are presented in Table 4.5. Note that all tested endpoints already satisfied the DoH 
deployment condition. 

Table 4.5: Amounts of DoH resolver domain hosting services responding to other DNS protocols. 

Protocol Only Both At least one 
DoUDP 151 

146 169 
DoTCP 164 

146 169 

DoQ 29 
28 251 DoT 251 
28 251 

All together 13 
At least one 276 

Table 4.5 shows that over three-quarters of the resolvers' domains host at least one other service 
to resolve DNS. Most of the resolvers' domain services also run longer existing DoT Surprisingly, 
29 resolver domains also already host only recently standardized DoQ. At the same time, less than 
half of the resolvers' domain services provide unencrypted versions of the DNS. Only 13 support 
all tested DNS resolution options, and 276 support at least one other, leaving 79 resolvers' domains 
hosting DoH solely. 

4.2.6 H T T P Headers 

The HTTP Headers are an integral part of DoH, without which the DoH can not operate. The 
results of the headers returned in the resolver's query response and their content were analyzed. 
HTTP/1.1 headers were analyzed first. Its content showed almost the same results and amount with 
HTTP/2 headers, except for a possibly different impact on the number of headers exchanged during 
the connection when the HPACK compression mechanism is involved. 

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 
HTTP/1 H e a d e r Size 

Figure 4.4: HTTP/1.1 response header sizes of all endpoints. 

HTTP/1.1 header sizes can be easily computed from the obtained DoH responses. The histogram 
presented in Figure 4.4 depicts header sizes obtained from all endpoints. At least half of the 
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resolvers' configurations keep the response headers minimal, reaching up to 200 bytes. However, 
some configurations stuff the response with headers reaching up to 1000 bytes. 

While all current clients are sending only minimal HTTP headers necessary for proper DoH 
functionality, limiting to content-type, accept, and content-length, the DoH resolvers are responding 
with a huge variety of headers. Detailed insight into frequently used HTTP headers is provided 
in Figure 4.5. The graph represents the number of each header name provided in all responses. 
The headers with less than ten occurrences were discarded from the view as most were individual 
occurrences. 

Based on the analysis of HTTPS headers, the following header categories in the responses were 
identified: 

• DoH Related - Headers belonging to this category are the HTTP, or DoH recommended 
or mandatory covering content-type, content-length, date, and those related to caching and 
potentially security. 

• Unrelated - Some endpoints are sending the headers, in our opinion, not related to DoH, such 
as content-security-policy, especially when the endpoints are serving only DoH. 

• Potentially Harmful - Headers such as expect-ct, x-powered-by, and server, quite often seen 
in the replies, are recommended to be removed by OWASP [109]. 

• Privacy - Even though report-to and nel headers serve for monitoring purposes [17], they 
use the clients to send network-related information actively based on the server's requested 
policy without the user's knowledge. The reporting mechanism is incorporated directly into 
the browser reporting information. The information is mostly sent to third-party monitoring 
appliances, potentially causing privacy leakage [133,134]. 

The header values revealed some useful information. The report-to headers were all routed 
to Cloudflare's monitoring endpoints accompanied by nel with default policy settings instructing 
clients to report all network failures and no successes for the domain they were using. Provided 
server and x-powered-by headers revealed software that powers the DoH endpoints. The server 
header uncovered 53 AdguardDNS, 52 h20/dnsdist7, 27 cloudflare, and 6 DNS-over-HTTPS 8 in 
the specific version used, the rest values contained either apache, nginx, or changed values as 
recommended by OWASP [109]. The x-powered-by revealed additional 60 DNS-over-HTTPS with 
a version. None of the resolvers send any cookie-related headers. 

When HTTP/2 is used, the amount of transmitted headers is reduced thanks to the HPACK 
compression mechanism [110]. The transmitted header sizes will depend on the HPACK implemen
tation and settings. However, when a high number of headers is transmitted, the effectivity may drop 
with some configurations, causing unnecessary header retransmission. In addition, some headers 
change values over requests and would be included in each exchange with the required ones. 

We analyzed two exchanges within one connection over HTTP/2 towards all HTTP/2 capable 
DoH resolvers and identified several headers often transmitted repeatedly containing different values. 
Some of the headers are date, cache-control, expires, and others. Those can influence the traffic 
shape of DoH clients communicating with different resolvers. 

7https://dnsdist.org/guides/dns-over-https.html  
shttps://github.com/ml3253/dns-over-https 
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Figure 4.5: Detailed view into the frequency of specific HTTP header occurring in DoH resolvers 
replies. 

4.2.7 EDNS Padding 

EDNS padding testing results show that only 66 resolvers support this feature. The rest answer the 
queries but do not perform padding in the answers. 

Table 4.6: EDNS padding strategies used by DoH resolvers together with their amounts revealed 
during testing. 

Strategy # % 
Not replying with padding 312 82.5 
Replying with padding 66 17.5 
Padding message to multiplies of 468 35 53 
Padding message to multiplies of 64 plus 4 21 31.8 
Reply half query padding size 6 9.1 
Random padding size 4 6.1 

The resolvers providing DoH response EDNS padding used four different strategies as summa
rized in Table 4.6. Most resolvers were stuffing the DNS responses to have the size of 468 bytes 
multiples. The second common strategy was padding the size to multiples of 64 plus an additional 
4 bytes. The last two strategies were to reply with random padding or use padding of half the size of 
the requests padding size. Most of the servers could respond to messages padded up to 1024 size; 
otherwise responded without padding or with error. 
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4.3 Discussion 

The results show that the monitored well-known resolvers keep a stable portion of various feature 
support among the servers. Only the end of the monitoring period showed slight drops in IPv6 and 
HTTP/2 feature coverages and increases in TLS 1.0, TLS 1.1, and Let's encrypt certificates support 
as new resolvers were added to the list. 

Resolvers using deprecated TLS 1.0 and TLS 1.1 versions may be subject to downgrade attacks 
since the older versions of TLS represent security risks as they rely on weak cryptography algorithms 
that can be utilized in man-in-the-middle attacks. Their usage may lower the security of the DoH. 
It can be expected that the deprecated versions are supported intentionally for possible backward 
compatibility with older versions of the OpenSSL library on clients. 

The long-term resolvers IP discovery revealed that it might take a few days to discover all 
endpoint's IP addresses due to DNS load-balancing and other dynamic DNS mechanisms. This 
fact may be considered when creating DoH resolvers label lists on which the existence of some 
proposed DoH works [38,124] rely. The data also support the premise of Garcia et al. [44] that the 
environment of DoH resolvers is volatile and constantly changing as new resolvers are added, and 
others disappear. 

Almost 80% of the servers use CAs that are issuing certificates for free, even using automated 
deployment. The portion of resolvers using free C A issuers is also similar to the results of Garcia 
et al. [44] although they examined much more resolver IP addresses from the whole internet scan. 
The huge employment of free automated certificate deployment makes the trustworthiness of such 
services questionable since many potentially malicious actors can hide their deployments under the 
certificates of such loosely verifying CAs. Only six endpoints had an issue with the certificates. 
The operators of the problematic resolvers were notified about the issues. 

The results are aligned with a recently published study of DoH resolvers internet scan performed 
by Garcia et al. [44] and also with other works [16,84] statements arguing the necessity for DoH 
detection and resolvers discovery. Not all resolvers are necessarily secure and represent a risk to 
users' privacy. The users and companies should choose carefully which DoH resolvers can be 
permitted. This is also aligned with the DoH detection task that can help enforce security policy 
and hence increase security. 

The well-known resolvers are taken in this work as a representative sample of publicly available 
DoH resolvers present on the Internet available to the users. The results show that not all endpoints 
comply with RFC 8484 official U R L path dns-query. In addition to the official URL, the root path 
would also be considered in DoH resolver discovery as it represents 5.8% of cases. Moreover, the 
DoH may be served from multiple paths within one domain, and multiple domains can be served 
from the same IP address. Which may complicate the verification of the endpoints whether they are 
providing DoH services. The verification of the RFC-compliant U R L path might be limiting, and 
some resolvers may be missed. More common paths may be tested, at least including the root path 
that is the second most common. 

The analysis shows quite a huge variety of HTTP headers that the resolvers are sending the 
small headers sent by the clients. More than half of the tested resolvers are sending unnecessary 
high headers that should have an impact on the traffic shape of the communication. Another 
unveiled characteristic shows that only 17.5% of DoH resolvers were capable of responding with 
EDNS padding. Resolvers used four different strategies of EDNS padding. Related works [24,91] 
presented that the bandwidth significantly influences the DoH performance and also traffic shape. 
The resolvers responding with different amounts of headers and implementing different EDNS 
padding strategies should be used when creating a comprehensive DoH dataset. The variability 
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coverage in the data contributes to proper traffic analysis and the later creation of the detection 
method for this work. 
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Chapter 5 

DoH Measurements and Traffic Analysis 

The previous chapter provided a thorough analysis of the server side of the DoH ecosystem required 
for understanding the target domain. This chapter, along with the followed data-centric approach 
used in this thesis, complements the knowledge by detailed analysis of DoH communication patterns 
and puts more emphasis on the client side of the DoH environment. The work also focuses on 
creating a more practical detection method with limited information extracted by existing monitoring 
infrastructure. Hence, the understanding of the DoH communication shape and difference between 
the rest of the HTTPS traffic should help to use the limited data source more effectively. Presented 
results covered in this chapter were also published in article [68] published by the author. 

Many works were published on performance comparison of DoH to other protocols, especially 
with former unencrypted DNS protocol. The works focused on various aspects of studying perfor
mance of various protocols [54-56,77,120], different aspects and locations [24,91] and comparing 
local resolvers with public ones [3,19]. The works did not study the influence of HTTP methods 
POST and GET on DoH resolution. 

DoH is designed to be used with HTTP/2 to use the protocol's advantages that introduced 
communication multiplexed across multiple streams and other effective mechanisms. DoH using 
HTTP/2 is meant to utilize long-living connections, pushing all necessary queries over a single 
encrypted channel, amortizing the initial overhead introduced by TLS handshake and HTTP/2 
preface. However, the technology does not prohibit the clients from using single query connections. 
Those can be used by applications such as malware to hide their activities. 

This chapter aims to cover the problem of single DoH queries and the influence of DoH using two 
defined HTTP methods (POST and GET), and DoH traffic analysis. Moreover, since the previous 
Chapter 4 brought the analysis of DoH resolvers, this chapter builds on the knowledge and assesses 
multiple resolvers taken from well-known resolvers with various characteristics during the traffic 
analysis. Compared to the previous chapter, this chapter focuses more on the client side of the DoH 
ecosystem. The chapter brings a complementary knowledge of DoH. 

Four different analysis of DoH that was not thoroughly covered by existing works are presented 
here. The first analysis aims to analyze single DoH queries as those can be used by smaller applica
tions and malware to resolve domains. The second shows the behavior of browser implementations 
covering the most advanced client implementations. The third analysis focuses on the impact of 
DoH resolution using two different HTTP methods, POST and GET, which were not studied before, 
showing whether there is a significant difference. The last analysis builds on all prior knowledge 
and studies the traffic characteristics of DoH. 
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5.1 Single DoH Query Analysis 

The first experiments aim at measuring single DoH requests. The experiments estimate the expected 
overhead of DoH compared to the traditional DNS transaction. Moreover, it shows the potential 
length and other characteristics of the connections. Results can be used to set the baseline for 
the minimal length of connections where actual DNS data can be transmitted or identification of 
unsuccessful DoH requests generated by browsers. 

The RFC 8484 [51] defines that the DoH supports two HTTP methods to be used for querying: 
GET or POST. In addition to those two methods, an experimental DoH with JSON encoding is 
supported by big DNS providers such as Cloudflare, Google, etc. Thus, JSON-encoded DoH is 
considered as another variant in experiments since it may also be used in single query connections. 

5.1.1 Methodology 

The domain names used in queries stem from the top one million domains from the Cisco Umbrella 
dataset [26]. Only resolvable domains were included in the dataset, yielding approximately 800,000 
domain queries for each type of request method. A l l queries were done towards Cloudflare servers. 

Only a few standalone tools can perform just a single query. Those tools are command-line 
tools such as nslookup (for DNS queries), Curl community-developed simple curl-doh (for DoH), 
and my simple command-line tool for querying DoH for both GET and POST commands. Using 
browsers and proxies is unsuitable for this task since the number of queries in a single flow can not 
be controlled. 

Host 

Docker Container 

Tool 

Tcpdump 

Volume 

DNS Server 

Figure 5.1: Container structure for data generation. 

A Docker container that enables capturing network traffic on its interface (see Figure 5.1) was 
used to run the toolset. The hardware platform was Supermicro SuperTwin2 6026TT-TF server 
equipped with eight Intel (R) Xeon E5520 @ 2.26 GHz. The cluster consists of 4 nodes. The nodes 
are equipped with 48 GB R A M and 16 C P U cores. The cluster is connected via lGb/s links to the 
campus network. The tools were run simultaneously on all cluster nodes. The resulting data are 
published as part of the dataset [71]. 

5.1.2 Results 

The captured packets were aggregated into flows. The following flow statistics were computed: 
payload size, number of packets, and overall flow duration. As flow duration follows the normal 
positively skewed distribution, medians were used for comparison rather than means. Figure 5.2 
consists of graphs showing the differences of DoH using POST, GET, and JSON. Note that the DNS 
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comparison. 

Figure 5.2: Comparison of DNS and DoH options statistics. 

in JSON is used here only as a reference since it would represent similar characteristics to small 
REST API calls. Additionally, the metrics are compared with the traditional DNS. 

Figure 5.2a show the medians of the flow payload sizes for single pairs of DNS queries. To 
transmit a single DNS query and response of about 178 bytes using clear DNS, nearly 27 times 
more bytes are necessary to transmit it over DoH (POST, GET) or DoH with JSON. The differences 
between individual DoH and DNS over JSON are not so significant, and each method exceeds 
the other method in one of the monitored statistics. Regarding payload size, the most efficient 
encrypting approach is DoH using the POST method. The GET method shows a 0.27% increase in 
payload size over the POST method, and DNS over JSON shows a 2.66% increase (based on median 
values). From the number of packets perspective, the most effective method is the DoH with the 
GET method. POST method utilizes 21.43% more packets, and DNS over JSON uses 14.29% more 
packets on average. 

The DNS over JSON shows the shortest duration from the encrypted methods. HTTP method 
GET requires 0.86% more time, and method POST 9.38% more time than DNS over JSON. The 
time and complexity of creating queries can be the factors to consider for the applications; hence, 
the DoH using the GET and JSON methods would be the primary options. 

Unsurprisingly, a single query response pair transferred using DoH requires more data and 
packets transmitted compared to DNS. DoH has to proceed with several phases of connection 
establishment. Compared to the traditional DNS, it can be seen that the DNS represents only a 
fraction of data transferred over the DoH channel. The overhead for a single query is significant and 
very costly but still can be used by some applications requiring limited domain name resolutions 
or actors hiding their activity. The initial overhead is amortized when more queries are transmitted 
over a securely established connection. 

In addition, queries using HTTP/2 and HTTP/1.1 were measured to compare the behavior of 
single query DoH. The POST method was used to show the difference between the two versions. 
A slight difference can be observed mainly in the number of packets (see Figure 5.2e) as HTTP/2 
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frames and splits the message into separate packets, which also leads slightly longer duration of the 
HTTP/2 flows (see Figure 5.2f). However, both are almost the same regarding overall flow size (see 
Figure 5.2d). 

5.2 DoH-Enabled Browser Analysis 

Besides the implementations of the DoH protocol in operating systems, web browsers represent 
the most common applications currently implementing DoH. Applications no longer rely on the 
operating system domain resolution services but on their own. When enabled, a web browser has to 
discover an appropriate DoH server address. 

The configuration varies depending on the browser. Browsers based on the Chromium code 
base have few predefined and hard-coded DoH resolvers, providing the possibility to set custom 
resolvers. Firefox provides default DoH options; the primary option is Cloudflare's resolver. Users 
also have the possibility to set up a custom resolver. 

The browsers are discussed and analyzed since they represent the first and most stable imple
mentation of the DoH protocol that is actively used. Compared to operating systems, the browsers 
can be much more easily controlled to generate DoH traffic while providing options for additional 
configuration. Therefore, those applications are used for data generation and testing. 

5.2.1 Chrome 

Chrome browser has implemented DoH resolution since version 78 (only experimental then). In 
the experimental version, the DoH was only activated when the system's DNS servers were set to 
one of the servers in a hard-coded table. Chrome released official support for DoH in version 83. 
Currently, the number of provided hard-coded servers [7] is increasing, and users can set their own 
server when needed. The setting of Chrome DoH is tightly related to the system settings. Chrome 
has supported DoH on Android OS since version 85. 

DoH in Chrome works as follows: i) Chrome DoH client asks the system-configured DNS 
servers to resolve the following dns.google domain, ii) If a valid server address is retrieved, it 
establishes the HTTPS connection to the DoH server, iii) The DoH session is used for resolving all 
other domain names. The DNS message is Base64 encoded and sent as a query parameter in the 
HTTP/2 GET command. The answer is sent in a data stream of HTTP/2 in the DNS wire format. 

Chrome contains a fallback mechanism if the DoH service replies error code. In this case, 
Chrome tries to resolve the domain using the system's DNS resolver. Chrome DoH also supports 
EDNS padding [90] which allows DoH clients and servers to increase the size of a DNS message, 
thwarting the size-based correlation of encrypted DNS messages. 

5.2.2 Firefox 

Firefox has provided a more tuneable environment for DoH since the beginning of the support of 
the DoH protocol. Users can set modes of DoH (force, try, off), HTTP methods (GET, POST) used 
for resolution, and a custom DoH server. The default provider is Cloudflare, but it is possible to 
specify any custom provider. When using the predefined provider, the browser attempts to resolve 
its domain name and selects one of the retrieved IP addresses to establish a DoH connection. In 
default settings, it queries m o z i l l a . c loudf l a re -dns . com domain. 

Upon successfully acquiring a DoH server address, the browser starts multiple connections with 
the server. One of the connections lasts for the entire lifetime of the web browser session. This 
connection is kept alive by using PING commands of HTTP/2 if necessary. The POST method 
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sends DNS queries in the wire format. In the answer, the data stream also contains DNS wire 
format, which is indicated by application/dns-message content type. The requests coming 
from browser applications are uniform, either GET or POST. The change can be observed whether 
the server uses HTTP/2 or HTTP/1.1. Previously, the Firefox browser did not support EDNS padding 
as Chrome did. It was reported as an enhancement in Mozilla's bug report system [101], and later 
solved. However, the versions not supporting EDNS padding were used to generate all data in this 
work. 

5.2.3 Other Browsers 

Many browsers based on the Chromium code base such as Chrome, Edge, Opera and others contain 
the same DoH resolution implementation. The setting is similar to the one implemented in Chrome. 
Safari browser does not implement DoH. 

5.3 Browser Page Load Impact of DoH POST and GET Methods 

This section conducts an experiment that aims to measure the impact of different DoH methods on 
page loading. The two RFC 8484 defined methods are also compared to traditional DNS. 

5.3.1 Methodology 

Web browsers were used to generate DoH data. In experiments, the web pages were visited. The 
source of webpages was the Majestic Million dataset [87] maintaining the top million of visited 
websites on the internet. The Firefox browser was used in the experiments since it provides more 
configuration options (set HTTP POST or GET method for DoH resolution) than Chrome. The data 
were generated by browsers running in the Docker containers as depicted in Figure 5.3. The traffic 
is then captured on the Docker network interface. 
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Figure 5.3: DoH generation browser. 

The browser is prevented from running in headless mode to simulate the close-to-real browser 
behavior better. Instead, X virtual frame buffer is used. It implements the XI1 display server 
protocol where all graphical operations are made in virtual memory without graphical output [34]. 
This mimics the browser's usual usage of the browser by a user. The Selenium script drove the 
browser operations. 

The browser cache was disabled, and the DNS cache expiration was set to 0. This way, every 
domain has to be resolved and not acquired from the cache. The requests for the web pages are 

DNS Server 

Web Server 
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made separately. Before each request, the browser is opened, and after each request, the browser is 
closed. Using this operational pattern, the browser generates more DoH traffic. The generated data 
are part of the whole dataset [71]. Besides the captured traffic, HTTP Archive Veiwer (HAR) logs 
were recorded to obtain event logs from which the page load times could be retrieved. 

The same infrastructure as in the previous experiment (see Section 5.1) was used. The measure
ments run simultaneously on separate machines. About 100,000 pages were loaded by the browser. 
The same Cloudflare resolver for domain resolution was used for queries using DNS, DoH GET, and 
DoH POST methods. The measurement was repeated three times to provide more reliable results, 
reducing the influence of unexpected network conditions. The round trip times of the resolver for 
both DoH and DNS were similar. The round trip time was measured, and the average difference 
between DNS and DoH servers from our measurement point was 0.02ms. Cloudflare's DoH resolver 
accepts HTTP/2 connections. 

5.3.2 Results 

The presented results focus on the page load times. The page load times are extracted from captured 
H A R log records. They represent a time period between domainsLookupStart and domComplete 
browser events. Figure 5.4 shows the results of the measurements towards the Cloudflare's resolvers 
presenting the distributions. 

DNS DoH GET DoH POST 
Resolution method 

Figure 5.4: DoH page load time comparison of DNS, DoH using GET and POST towards Cloudflares 
server. 

The distribution of the differences in all categories has a similar shape. The medians were 
chosen as the leading value in comparison due to the positively skewed distribution. Surprisingly, 
the DNS method appears to be the slowest, while DoH using the POST method is the fastest, with a 
difference of about ~ 100m s between the DoH methods and ~ 200ms between the slowest DNS and 
fastest DoH POST. According to the measurements, the difference between DNS and DoH POST 
reaches ~ 5%. The difference is relatively low. 

To confirm the results, DoH methods were measured again towards Google's DoH resolver. The 
methodology is still aligned with previous experiments. Figure 5.5 depicts the comparison, and a 
similar gap between medians of resolution methods as in the previous measurement is present. In 
both cases, the DoH POST method has slightly better performance in page load times. 
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Figure 5.5: DoH page load time comparison DoH using GET and POST towards Google server. 

The POST method is a winner in this experiment with respect to web page load latency. Also, 
POST requests are generally smaller than their GET equivalents. However, the results are given by 
the methodology where the DNS caching mechanism is disabled. In reality, domain name caching 
can reduce the resolution time, and the GET method may be more suitable since the responses 
to POST requests are generally not cacheable (unless a special response header sent which is not 
advised for DoH) [51]. Privacy Google's best practices for DoH [46] claim that using the POST 
method is more suitable for privacy-critical applications, where caching is undesirable. 

5.4 Traffic Analysis of DoH Towards Multiple Resolvers 

The browsers are applications implementing the client side of the DoH protocol. The client-side 
applications use minimal HTTP headers to produce DoH queries. If possible, they effectively utilize 
DoH over HTTP/2, capable of resolution also using HTTP/1.1. This section analyzes the charac
teristics of DoH communication, considering different DoH resolvers. Many providers currently 
deploy DoH servers in their installations using various DoH software, versions, configurations, op
erating systems, etc. The previous Chapter 4 covered the characteristics of various DoH resolvers. 
Moreover, the DoH resolvers are part of the HTTPS ecosystem, including load-balancers, reverse 
proxies, etc. Thus, to determine the real-world DoH traffic characteristics, all parts of the ecosystem 
should be considered. 

The analysis aims to characterize DoH traffic by showing the similarities and differences of a 
DoH resolvers sample. Also, the difference between DoH and regular HTTPS communication is 
provided. 

5.4.1 Methodology 

The traffic used for the analysis is generated using the same methodology as in the previous 
experiment (see Section 5.3.1). A sample of servers covering different characteristics is taken 
from a well-known resolvers list. Moreover, the resolvers providing only HTTP/1.1 support are also 
chosen to show the differences between HTTP/1.1 and HTTP/2 DoH communication. 
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5.4.2 Results 

The results are presented on the set of graphs showing the correlation between average payload 
size and packet number of flows. The correlation of those features was chosen for demonstrative 
purposes covering the differences in DoH communication. 
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Figure 5.6: HTTP/1.1 DoH servers payload size to packets comparison. 

Only a small portion of DoH resolvers exclusively operate on HTTP/1.1. Two such resolvers 
doh.li and jit were chosen to and the ratio of average TCP payload sizes to packet numbers is shown 
in Figure 5.6. Flow includes statistics from all packets within a flow; zero values, e.g., empty TCP 
acknowledgment packets, are included. 

The observable difference is mainly caused by different HTTP headers sent in DoH responses 
generated by the resolvers. While the web browser (DoH client) always sends minimal necessary 
HTTP headers in requests. Each server sends responses containing various HTTP headers, including 
unnecessary ones, e.g., X-Powered-By as presented in previous Chapter 4. The HTTP/1.1 does not 
compress the headers sent in plain text, representing a significant overhead in each message. In 
most cases, the size of header lines exceeds the amount of DNS data. DNS resolution should be 
fast. Applications (primarily browsers) send multiple requests in a short period. The head-of-line 
(HOL) blocking should cause a considerable performance decrease in the case of HTTP/1.1. The 
browsers try to overcome the problem by opening multiple connections and sending requests in 
parallel connections. Unfortunately, the problem with HOL blocking is still present there. 

The majority of the servers from the DoH list support HTTP/2. Figure 5.7 depicts the ratio of 
packet size to packet number in this case for HTTP/2 DoH servers. It can be observed that the average 
size of the packets is lower compared to the previous one utilizing HTTP/1.1, which is caused by the 
design of HTTP/2. The HTTP/2 performs HPACK header compression [110] mechanism in each 
request/response. Moreover, data and headers can be transferred in separated frames (also packets), 
which lowers the average payload size and increases the number of packets. One HTTP/2 flow can 
hold multiple streams, leading to an increased number of packets exchanged within a single flow. It 
can be seen that using this characterization, it is possible to distinguish different DoH resolvers. 

Each connection always begins with a TLS handshake that has a similar characteristic for 
all communications and significantly contributes to the increased size/packet ratio, especially in 
short-flow characteristics. The TLS handshake is amortized near 1,000 packets in a flow. Thus, 
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Figure 5.7: HTTP/2 DoH servers payload size to packets comparison. 

for long-term DoH connections, corresponding curves converge to their specific constant average 
payload sizes. 

Noticeable differences can be observed in the shape of curves for HTTP/1.1 and HTTP/2 cases. 
While DoH with HTTP/2 is decreasing average sizes the connections with HTTP/1.1 are increasing 
sizes up to some point. It can also be seen that the HTTP/1.1 connections are shorter in comparison 
to HTTP/2. Even the failed connections are included in the graphs which can cause the slump in 
short connections. 
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Figure 5.8: CIRA-CIC-DoHBrw-2020 dataset HTTP/2 DoH servers payload size to packets com
parison. 

To confirm the results data from another public dataset was examined. The most used CIRA-
CIC-DoHBrw-2020 dataset [96,97] was processed, and the data are shown in Figure 5.8. According 
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to the dataset specification, data were generated from the Firefox and Chrome DoH communication 
with servers on HTTP/2. Only a benign part of the dataset was used. The dataset has fewer flows than 
the generated one but with a longer duration. Nevertheless, characteristics similar to the generated 
data can be observed. The difference between multiple resolvers using the same browser, as well 
as the difference between using Chrome and Firefox browsers towards the same resolvers, can be 
identified. Similar characteristics can be observed. Moreover, it is shown that the Firefox browser 
has a lower ratio than Chrome when using the same resolvers. It can be attributed to Chrome's 
implementation of EDNS padding. 

DoH network traffic of different web browsers and DoH servers can be distinguished by using a 
simple payload size to packet number ratio. The protocol analysis shows that EDNS extension and 
HTTP header size are the most significant contributors to the characteristics. 
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Figure 5.9: HTTP/2 DoH servers payload size to packets comparison together with the rest non-DoH 
HTTPS traffic. The graphs include trend lines that support the trends useful for showing the trends 
of DoH resolvers. 

Filtered DoH traffic can be further put into contrast with the rest of the HTTP traffic provided 
in datasets. Figure 5.9 depicts both DoH traffic generated towards multiple DoH resolvers and the 
regular HTTPS traffic, all in blue color. The traffic is generated as described in the methodology; 
single web pages were visited, and connections contain various transferred assets. Mostly flows car
rying images, short presentation videos, CSS, JavaScript files, data, and other standard documents. 
Hence, the regular HTTPS traffic mostly lacks longer streams and interactions, as can be observed. 
The depicted HTTPS traffic contains larger packets (reaching up to 64 KB) , which is caused by 
enabled TCP offloading in virtualized infrastructure. This fact does not change the validity of DoH 
characteristics but provides a view into regular HTTPS traffic in one of the possible environments. 
The graph is zoomed in for better coverage of the difference between DoH and the rest of HTTPS 
rather than the full picture of HTTPS traffic. 

Figure 5.10 provides similar observation, except that it comes from the ClRA-ClC-DoHBrw-
2020 dataset data. The dataset is generated differently. Hence, the characteristics of the non-DoH 
traffic are different. During the generation, longer interactions were made, and the non-DoH traffic 
got higher diversity and behaved more realistically. However, it can be seen that the DoH can still 
be distinguished considering the feature of payload size to packet number ratio. 
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Figure 5.10: CIRA-CIC-DoHBrw-2020 dataset HTTP/2 DoH servers payload size to packets com
parison together with the rest of non-DoH HTTPS traffic. 

Additionally, compared to regular HTTPS, the DoH creates more equal connections regarding 
packets sent and received. Small DoH requests have their small counterpart responses. Despite 
the stream multiplexing (supported in HTTP/2), each DoH request/response is mapped into a single 
network packet [61], which defines the traffic shape of DoH connections as demonstrated. Apart from 
initial handshakes, both TLS and HTTP/2, the DoH connection is usually long-lasting and contains 
smaller packets that are sparsely distributed in the connections. Nevertheless, such traffic shape 
is also common for other HTTP-based APIs, and those are particularly challenging to distinguish 
from DoH. Browsers create a DoH connection at the startup and then use it till it shuts down. This 
behavior resembles other applications, such as operating systems and proxies implementing DoH 
protocol. 

5.5 Discussion 

Results provided in this section cover three related DoH areas. The first, single query DoH producing 
short DoH connections shows the increased overhead of the protocol to achieve the same results over 
an encrypted channel. The traditional DNS has a lower response time caused by the overhead of 
DoH, which is aligned with the results of previous works [54,55]. Single DoH query in connection 
takes up to 14 to 17 packets. The HTTP2 caused an increase of an additional - 1 1 packets, reaching 
28 packets. It is expected that such flows can be produced by the applications requiring only single 
resolution, scripts, or malware applications trying to hide their presence in the network. 

The second area brought the result of the differences between DoH HTTP POST and GET 
methods. The resolution using the DoH POST method produced the lowest page load times. 
Moreover, the DNS was outperformed by the DoH in page load times. Similar results were presented 
by Hounsel et al. [56] where the DoT resolution achieved better results than traditional DNS. 

The results presented in this chapter that are the most beneficial for designing DoH detection 
methods covering the behavior of DoH traffic comes from the browsers representing one of DoH 
utilizing applications and their traffic analysis. The browsers create long-lasting connections and use 
them for DoH resolution. The browsers choose HTTP/2 if provided but can operate using HTTP/1.1. 
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Only a few resolvers provide HTTP/1.1 only, as presented in previous Chapter 4. When HTTP/1.1 
is used, the browser utilizes multiple connections for resolution. Otherwise, a single long-lasting 
HTTP/2 connection is used, and other started connections are terminated. The HTTP/2 connections 
separate requests and responses into single network packets [61]. Moreover, those are separated 
from transmitted headers. 

Additionally, the traffic analysis showed that the DoH flows towards different resolvers can be 
distinguished. The amount of HTTP headers and EDNS padding are the factors that influence 
the packet sizes the most, which confirms the observations from the previous chapter. The DoH 
has a different traffic shape than most of the HTTPS traffic. It creates long-lasting connections, 
transferring small packets with an almost equal amount of packets sent and received due to small 
separated packets carrying request/response communication. The discovered characteristics of the 
browsers and previously discussed resolvers give a lead for creating more comprehensive datasets 
for the detection task than the most popular CIRA-CIC-DoHBrw-2020 dataset. According to 
the analysis, better quality datasets should include more variety of traffic generated by multiple 
applications such as browsers and various DoH resolvers, both using different amounts of HTTP 
headers as well as implementing various EDNS padding strategies. 

The unveiled characteristics show potential discriminators that can be used for designing robust 
feature vector used as an input into the machine learning method, creating a core of the DoH 
detection. Moreover, as the analysis showed, different resolvers can be distinguished from the 
traffic; the design of the features should focus on covering DoH traffic generally rather than crafting 
specialized features, forcing the method to learn specific DoH resolvers characteristics and limiting 
the generalization. Finally, the observed characteristics show potential to be covered by information 
provided in broadly used Netflow telemetry. 
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Chapter 6 

Datasets 

Despite the immense amount of published works focusing on DoH and DoH tunnel detection in 
recent years, the amount and quality of available datasets are very limited. Some works created 
and used their own datasets but did not published them, and some published them, including CIRA-
CIC-DoHBrw-2020 created by Montazerishatoori et al. [97] and dataset created by Vekshin et 
al. [128]. Those published were reused by other researchers in their works. Most of the works use 
the CIRA-CIC-DoHBrw-2020 dataset, which was also studied in the previous chapter. The CIRA-
CIC-DoHBrw-2020 dataset contains a limited amount of DoH traces towards only four resolvers 
creating similar characteristics compared to the traces, that can be easily generated as seen in the 
same section. The other dataset created by Vekshin et al. [128] contains only two resolvers. The 
limited available datasets show the need for the creation of more comprehensive datasets covering 
a wide variety of DoH traffic characteristics. 

Collected data prepared in the form of a described dataset are an indispensable part of any data 
mining and machine learning task. This chapter takes the already covered knowledge presented in 
previous chapters and uses it to create and publish more comprehensive datasets than the currently 
available ones. The datasets presented in this work were created and designed to propose a DoH 
detector and measure its performance. 

Collection of Datasets 

2023 

First Generated Generated 

2023 Simulated Network 1 2021 
Environment i 2022 

1 1 ' 1 1 
2023 

CESNET Network 1 
Environment 

1 1 1 CESNET Network 1 
Environment 

Real-World Additional 5-week 

CESNET Network 1 
Environment 

Figure 6.1: Timeline of datasets creation. 

As the first attempt, clearly artificially generated dataset was created [71] to be used in the 
process of the DoH detector proposal presented in this work. The dataset is described in Section 6.1. 
Later, the methodology of artificial creation was improved, and a new, more comprehensive dataset 
containing data from the CESNET2 ISP network was published [65]. This dataset is covered in 
Section 6.2. This dataset was later extended [70] by an additional 5-week capture in the same real 
CESNET2 ISP network to measure the time data drift of DoH detection models. This additional 
dataset is presented in Section 6.3. Figure 6.1 depicts the timeline of datasets created and used in 
this work together with their summary presented in Table 6.1. 
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Table 6.1: Summary of datasets created and used in the thesis. 

Dataset Published Type Resolvers Clients Size 
First Generated [71] Generated 11 1 55.5 GB 

Collection of Datasets [65] 
Generated 16 2 250.5 GB 

Collection of Datasets [65] 
Real-World Captured Unknown Unknown 179 GB 

Additional 5-week [70] Real-World Captured Unknown Unknown 52 GB 

6.1 First Generated Dataset 

Other published datasets are limited in the diversity of traffic and in the amount of DoH traces. 
Moreover, the datasets were published later in 2020, along with the work that used them and was 
not present previously. Hence, new datasets needed to be created to study the DoH. The first 
generated dataset designated for DoH detection was created to cover the variability of possible 
traffic differences mainly caused by DoH resolvers. The dataset contains traffic generated towards a 
randomly chosen sample of 11 DoH resolvers from the well-known resolvers list. This dataset was 
published later [71] together with other generated traffic covering previous experiments presented 
in Section 5. Similarly, two other published datasets were produced and published at the time 
of this dataset generation, one by Vekshin et al. [128] together with their detection method [129] 
and the second mostly used in other works by MontazeriShatoori et al. [96] together with their 
detection method [97]. However, compared to the dataset presented in this section, their datasets 
were generated only towards a small number of resolvers mostly covering big effective resolvers; 
the first contains traffic towards two and the second towards four resolvers. 

6.1.1 Methodology 

The Firefox browser had one of the first implementations of the DoH protocol, and it provided the 
most configuration options, such as whether the POST or GET method should be used for resolution, 
modes of DoH enforcements, and whether to use additional headers. Firefox also supported DoH 
on Linux, which simplified the option for automation and deployment of the generation process; 
Chrome did not support DoH on Linux, only on the Windows operating system. 

To generate the DoH traffic, the Firefox browser was used in the Docker container. Using the 
Docker container does not influence the traffic with specific properties; however, it simplified the 
generation process automation and provided an isolated application environment. The platform 
utilized in the data generation process using Firefox browser was Supermicro SuperTwin2 6026TT-
TF server equipped with eight Intel (R) Xeon E5520 @ 2.26 GHz. The cluster consists of 4 nodes. 
The nodes were equipped with 48 GB R A M and 16 CPU cores. The platform was directly connected 
to the Brno University of Technology network. Network traffic was captured directly in the container 
using the tepdump command-line tool. 

Python and Selenium libraries were used to automate the generation process. To be able to 
provide more realistic behavior of the browser, we used an X-virtual frame buffer, which implements 
the XI1 display server protocol where all graphical operations are made in virtual memory without 
graphical output [34]. The browser then works with a standard graphical output even within the 
container. 

A sample of 11 chosen resolvers was taken from the curl community list of known DoH 
resolvers [126]. Firefox had disabled the local web cache during web page access to get more 
network traffic samples. The process consists of opening the browser, fetching the website, timeout, 
and waiting for the loading of the website, followed by browser closing. The schema of this 
generation is depicted in Figure 6.2. This process was repeated 200 times for DoH POST and GET 
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Figure 6.2: Firefox browser traffic generation schema. 

methods and for each of the 11 DoH resolvers. Together, 4400 different websites were visited taken 
from the Majestic Million dataset [87]. 

6.1.2 Data Description 

The dataset consists of network traffic generated by the Firefox browser. In total, 4400 web pages 
were visited, and services of 11 resolvers were employed. The Firefox browser was enforced to 
make 200 fetches by each of the supported DoH HTTP methods. 

The dataset consists of full-packet captures of DoH and regular HTTPS traffic generated solely by 
the Firefox browser application. Full-packet captures are in standardized PCAP format [48], which 
is a default for libpcap library and broadly supported by network analysis software, e.g., Wireshark1, 
tcpdump2 or IDS Suricata3. The PCAP files do not provide a separate DoH and regular HTTPS 
traffic. The relevant traffic belonging to each category can be distinguished by the IP addresses 
of DoH resolvers shipped together with a dataset. Since specific DoH resolvers were used, the IP 
labeling provides an accurate way to separate the DoH data. Table 6.2 summarizes the statistics of 
the dataset. 

Table 6.2: Total stats of captured data. 

Name Value 
DoH resolvers 11 
DoH clients 1 
Total web pages visited 4400 
Total data size 55.5 GB 
Connections 761 K 

'https: //www.wir eshark.com  
2 h t t p s : //www.tcpdump.org  
3 h t t p s : / / s u r i c a t a . i o 
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6.2 Collection of DoH Datasets 

The new, more comprehensive dataset that overcome the limitations of previously published datasets 
was created and published [65]. The dataset is denoted as a collection since it consists of multiple 
DoH traffic data created by multiple ways and is presented in this section4. 

The collection of datasets consists of captures of DoH traffic and regular HTTPS traffic that 
comes both from controlled and real-world environments. The real-world dataset was collected in 
an ISP backbone network servicing half a million users. The other generated dataset with DoH 
captures consists of traffic generated by several techniques and two browsers towards 16 selected 
DoH servers of various implementations and with different configurations. The generated part 
contains 64 000 web page accesses and related DoH communication. The datasets aim to provide 
a more comprehensive sample of DoH traffic as observed in real networks and various available 
implementations and configurations. 

6.2.1 Methodology 

The datasets contain all DoH, and regular HTTPS captured flows. The common attribute of the whole 
dataset collection is that the data are captured in a pure form, where the process and all necessary 
methodologies are covered in the following sections. The dataset consists of the generated network 
traffic denoted as Generated Data covered by Section 6.2.2, and traffic captured from a real network 
referred to as Real-World Data presented in Section 6.2.3. 

Since the data are filtered only for TCP port 443 covering DoH and the rest of HTTPS traffic, 
the dataset may contain all sorts of DoH and non-DoH HTTPS flows, e.g., long, short, successful, 
failed, and even containing only one packet in the way they appeared during the capturing process. 
No additional filtering that would lead to information loss except those mentioned in the following 
two sections was performed. 

6.2.2 Generated Data Methodology 

As opposed to the first generated dataset covered in the section above, this dataset uses two DoH-
enabled web browsers for making web requests. In addition to Firefox, Chrome browser was also 
used. The Chrome browser did not provide the same configuration options as Firefox, but it enforced 
EDNS padding, which Firefox did not implement at that time. Together, they have the most advanced 
DoH implementations covering client-side variability. Since the primary target is DoH and Non-
DoH traffic generation, all possible settings that can affect the DoH traffic characteristics (such as 
packet sizes) generated by those applications should be covered. 

The generated data samples were created by visiting a collection of websites that are part of the 
Majestic Million list [87]. The URLs were taken from the beginning of the list, and each website 
was visited by one of the browsers. None of the URLs is used more than once. 

DoH traffic characteristics are mostly influenced by client-server interaction. As mentioned 
earlier, the resolvers vary in their implementations (different software and versions) and different 
configurations. Moreover, the HTTPS ecosystem on the server side can consist of proxies, firewalls, 
load balancers, and other systems that impact network communication. To cover various DoH traffic 
patterns, a different sample of 16 DoH servers was chosen to generate datasets. The 16 DoH servers 
were chosen to cover various DoH traffic patterns as described in previous chapters (see Chapter 4 
and Chapter 5). 

4This section is based on the published article [65] presenting the published dataset by the author. 

56 



The whole traffic generation process took place at the Brno University of Technology, Faculty 
of Information Technology. The machines were directly connected to the university network. 

Firefox Browser Traffic Generation 

The Firefox browser in version 76.0.1 was used in the Docker container. The methodology is 
similar to the case of the previously generated dataset presented in Section 6.1.1. The process, 
configuration, and hosted hardware are the same. In addition to the previous configuration, the 
container was restricted to use 4 CPUs and 4 GB of R A M at maximum. 

Website Domains Lisls 

Figure 6.3: Firefox browser traffic generation schema. 

Firefox had disabled the local web cache during web page access as it proved to generate more 
network traffic samples. The browser was opened and closed between each page visit. The schema 
of the generation process is also the same as depicted in Figure 6.3. However, the number of fetched 
websites is much higher. The process was repeated 1000 times for DoH POST and GET methods 
for each of the 16 DoH servers. Together, 32 000 different websites were fetched. 

Chrome Browser Traffic Generation 

Since the used version of Chrome browser (94.0.4606.81) did not support DoH on Linux OS at the 
time of data generation, the same generation environment as in the case of Firefox could not be 
reused. The Chrome browser generation took place on a separate machine running Windows OS 
without any virtual environment. The machine was equipped with 3rd generation Intel Core i5, 8 
GB R A M , also connected directly to the same university network as in the case of Firefox. 

The traffic generation process was similar to Firefox. It consisted of opening the browser with 
the given website, timeout for website loading, and followed by browser closing. This generation is 
shown in the supportive schema in Figure 6.4. A Python script and Selenium handled the automation 
as in the previous case, except that the resolver was set manually for each resolver. The same 16 
DoH servers as in the case of Firefox were used. Chrome does not allow enforcement of HTTP GET 
or POST querying methods for DoH. Hence, the amount of fetched websites is similar to the Firefox 
case: 2x1000 only with the default Chrome method used. In total, 32000 different websites were 
fetched. 
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Figure 6.4: Chrome browser traffic generation schema. 

6.2.3 Real-World Data Methodology 

The Real-World data of the dataset were captured on the monitoring points of the CESNET organi
zation, which is the Czech National Research and Education Network operator. CESNET operates 
a backbone network infrastructure called CESNET2, which half-million users use. CESNET2 pro
vides internet connectivity to universities, campuses, research centers, schools, hospitals, and some 
government offices. The topology of the CESNET2 backbone network is depicted in Figure 6.5. 

nx100 Gb/s — 100 Gb/s 
n*10Gb/s 10 Gb/s • uzel (PoP) 1-2,5 Gb/s 

o uživatel (user) <1 Gb/s 

ACONET 

Figure 6.5: The topology of CESNET2 network [65]. 

The six monitoring points are located at the perimeter of the CESNET2 network in three locations 
in the Czech Republic — Prague, Brno, and Ostrava. Each of them is connected to one or multiple 
100 Gbps lines via passive optical TAP. Since the packet capture is distributed across multiple points 
and locations, there could be small time deviations even if all the points are synchronized via Network 
Time Protocol (NTP). The time shift between monitoring probes does not affect connections that are 
routed symmetrically, meaning that all packets belonging to the one TCP connection pass through 
the same monitoring point. 
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The Real-World Data may contain small shifts in interarrival time values between packets in 
the opposite directions of some flows that are routed asymmetrically on the CESNET2 network — 
packets in the same direction are always routed via the same monitoring points, so no shift is present 
there. However, the timestamp inaccuracies are very small, and they do not cause any significant 
disturbances in packet order within the connection (HTTPS requests are always before HTTPS 
responses) and have a very low impact on the timing. Hence, this does not lower the data quality 
by any means. Moreover, since the distributed monitoring infrastructure is common in large-scale 
network monitoring [53], these data imperfections are viable for the dataset, creating the detection 
algorithms prepared for such deployment. 

Capturing Filter \ Traffic \ Packet \ Anonymization 
Preparation J Capture l Deduplication / and Flow Export 

Figure 6.6: Real-World Data creation process. 

As it can be seen in Figure 6.6, the creation of Real-World data can be divided into four steps: 
(i) Capturing filter preparation, (ii) Traffic Capture, (Hi) Deduplication, (iv) Anonymization. Each 
step is described in the following sections. 

Capturing Filter Preparation 

The monitoring points can process lOOGbps traffic; however, it is not possible to capture all 
ongoing traffic due to bandwidth limitation and the writing speeds of the storage, which would result 
in missing packets in the dataset. Therefore, it was necessary to create a capturing filter with this 
limitation in mind and reduce the amount of captured data to certain IP subsets so that all packets can 
be captured. Since the use of DoH is still small, all DoH traffic could be captured by filtering based 
on the DoH resolver's list taken from the monitoring of well-known DoH resolvers (see Chapter 4). 

In the case of HTTPS traffic, the capturing was limited to the selected /24, and /22 IPv4 address 
ranges assigned to the university campus. Additionally, the whole capturing process was monitored 
for packet drops to ensure that all transmitted packets in filtered connections were saved on the disks 
and the points were not overloaded; thus, no artificial packet drops were added, and all the original 
data were captured, and hence the quality was guaranteed. 

The capturing filters remained unchanged during the whole process of capturing. No changes 
were observed in the monitoring of resolvers during that period. A l l the data come from the same 
subset of IPs monitored for the whole period of data capture, ensuring the consistency of the data. 

Traffic Capture 

The traffic was captured on the previously mentioned distributed metering points in parallel for a 
certain period and then collected and merged into a single PCAP file using mergecap utility5. 

Packet Deduplication 

Since a backbone ISP network can also carry transit traffic, there is a chance of capturing duplicate 
packets on distributed monitoring infrastructure. The deduplication was performed with editcap6 

5https://www.wireshark.org/docs/man-pages/mergecap.html  
6https://www.wireshark.org/docs/man-pages/edi tcap.html 
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utility with a time window of 10 ms. Thus, if there are two or more duplicate packets within 10 ms 
time window, only the first packet will be preserved. 

Anonymization and Flow Export 

Since data from real ISP backbone lines are used, sensitive information has to be removed from the 
final data. The anonymization of captured traffic was performed automatically; thus, nobody could 
view or analyze raw source data. 

SRC MAC Addr I DST MAC Addr 

SRCIPAddr DST IP Addr 

TLS 

Packet 1 Packet 2 Packet 3 Packet 4 Packet 5 

Figure 6.7: Structure of the packet. The red fields are always anonymized, orange field is 
anonymized for other IP addresses than the known DoH servers, and green fields are always left 
intact. 

At first, all addresses (IPv4, IPv6, and MAC) were anonymized, except the IP addresses of DoH 
resolvers, which remained unmodified. The anonymization process replaced each address by a part 
of its SHA256 hash (the first N bytes, where N is the length of the corresponding address). The 
hashing algorithm ensures that a particular address is always mapped onto the same anonymized 
value. 

After the flow export, the payload from all packets was also anonymized by substituting every 
byte with the letter ' X ' . Removing packets' payload does not damage packet metadata; however, it 
ensures the privacy of the real users. 

6.2.4 Data Description 

The datasets consist of labeled HTTPS traffic. The traffic is either the DoH or regular HTTPS 
communication. The primary focus of this dataset collection is to provide variable and representative 
DoH traffic obtained from communication with many available DoH services. The collection of 
datasets contains DoH and HTTPS packets in the total amount of 430 GB of raw binary data. Full-
packet captures are in standardized PCAP format and can be processed by regular network traffic 
processing tools and libraries. 

Generated Data 

The datasets with generated traffic were created in a controlled environment to provide samples of 
DoH communication for different existing implementations in operating systems and web browsers. 
The traffic originates from DoH-capable browsers Firefox and Chrome. Browsers access a large 
collection of web pages, and both DoH and HTTPS communication are captured. 

Ethernel 
header 

-
IP 

header 
-

TCP 
header 

- Payload 

60 



A sample of 16 different DoH servers was chosen to include a diversity of traffic characteristics 
related to domain name resolution. For each DoH server, traffic was generated by fetching 2000 
websites on each web browser. In total, 64 000 website requests were generated, and corresponding 
HTTPS communication was captured. Traffic samples generated by the Firefox browser contain 
packets up to 64 K B because the browser was executed in a virtual environment with TCP offloading 
enabled [131]. It provides more variability in the data, influencing only connections transmitting 
bigger data, not influencing DoH connections. Hence, it creates a complement to variability together 
with traffic generated by Chrome with TCP offloading disabled. 

Table 6.3: Total statistics of Firefox and Chrome generated data. 

(a) Total statistics of Firefox (b) Total statistics of Chrome 
generated data. generated data. 

Name Value Name Value 
Total data size 131GB Total data size 119.5 GB 
DoHresolvers 16 DoHresolvers 16 
Connections ~ 1.25 M Connections ~723 K 

Table 6.3a shows summary metrics of all raw generated traffic data by Firefox across all generated 
datasets in the collection. Table 6.3b depicts summary information about all traffic data that 
comes Chrome browser across all generated datasets in the collection. The difference in the 
number of connections can be caused by the generating process discussed later and browser-specific 
implementation. 

The Chrome browser implements EDNS padding, slightly impacting the DoH flow character
istics when compared to the Firefox DoH flow, which yields an increased diversity of DoH traffic 
(POST and GET methods). 

Real-World Data 

The real-world data contains DoH and web-based HTTPS communication transmitted over standard 
HTTPS port 443. The real-world traffic captures were anonymized to protect the privacy of real users 
(packets have no payload, clients' IP and M A C addresses were hashed). However, anonymization 
does not pose a major limitation for data usability since it maintains the original timestamps of the 
packets and other important network traffic characteristics. The DoH captures contain only DNS 
over HTTPS communication, obtained by filtering connections using the IP addresses of known 
DoH resolvers. 

Most DoH connections involve Google DoH resolvers, and the five most popular resolvers 
represent more than 93% of all DoH traffic, as depicted in Figure 6.8. 

Table 6.4: Total stats of captured data. 

Name Value 
Total data size 179 GB 
Total time -10 Days 
Connections - 5 . 4 M 
Number of unique Client IP addresses 116263 
Number of unique Server IP addresses 9343 
Number of unique DoH Resolver's IP addresses 142 
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Figure 6.8: DoH resolvers' share. 

The importance of the real-world dataset is that it contains the HTTPS traffic of thousands of 
genuine users. The Table 6.4 shows the overall statistics of the captured dataset. It should be noticed 
that there are 116263 unique client addresses in the network. 

6.3 Additional 5-week Real-World Dataset 

Additional capture was made to provide data mainly for the demonstration of detectors' data drift. To 
provide insight into long-term and short-term usability and degradation of proposed DoH detectors 
in a real network environment. The data were captured in the same environment with the same 
setting as in the case of the previous capture on the CESNET ISP network. 

6.3.1 Methodology 

The methodology follows the same capturing, processing, and anonymization procedures as de
scribed in Section 6.2.3. However, the times of capture are different. The capture was automatically 
performed every Monday evening for five weeks between 28 November and 26 December 2022. The 
procedure was stopped during Christmas since the traffic was captured from the university campus, 
and the activity on the network went down during that time. 

6.3.2 Data Description 

The dataset consists of 5 weeks of separated labeled DoH and regular HTTPS traffic. The dataset is 
again in the form of full-packet capture in standardized PCAP format [48] that any of the standard 
processing tools can process. Table 6.5 summarizes the dataset statistics. 

Table 6.5: Total stats of captured data. 

Name Value 
Total data size 52 GB 
Total time 5 Weeks 
Connections -503 K 

62 



Chapter 7 

Proposed DoH Detection Approach 

This chapter covers one of the main goals of this thesis and presents the proposal of the DoH 
detector that is motivated by mass DoH employment. The detection method proposal was published 
in article [66] by the author, and this chapter is based on the results presented in the published 
paper. DoH is widely misused due to its stealthiness in the network. Compared to other encrypted 
DNS approaches, DoH is designed to blend into regular HTTPS traffic, making its reliable detection 
challenging. As discussed in Chapter 4, DoH cannot be reliably detected by lists of IP addresses 
and domain names due to multiple small and private DoH resolvers and changes in their deployment 
on the Internet. Therefore, researchers already use the statistical properties of connections in 
combination with Machine Learning (ML) to recognize DoH and achieve an accuracy of more than 
99%. The high accuracy of these detectors comes with the requirement of additional information 
about the connections, such as individual packet lengths [129] or median and mode of packet 
sizes [10,12,21,94,97,138]. Extraction of these traffic features is usually not supported by standard 
network monitoring tools that can be deployed on high-speed networks, which significantly limits 
the possibility of their deployment. 

Additionally, survey [62] also identified the difficulty of detecting single query DoH, which 
needs to be addressed. Since DoH creates a DNS Application Programming Interface (API) over 
HTTPS, short connections have very similar characteristics to other HTTPS API requests. Moreover, 
other no-payload parameters, such as HTTP headers or the size of the HTTP/2 preface, influence 
the connection shape much more significantly than the DoH payload itself, as shown in the previous 
chapters, making the classifier fit specific server settings. Nevertheless, previous studies did not 
focus on short DoH connection [62] problems, even though they significantly influence the accuracy 
of DoH detection in the real world. 

Given that none of the existing proposals provide a satisfactory solution for reliable DoH 
detection in the real environment. Particularly, they use hard-to-compute features and ML-based 
classifiers with low but still unacceptable false positive rates. Low false positive rate is important 
property of network detectors that make large number of inferences. Even 0.001 false positive rate is 
not enough when deployed on a network with throughput of 1000 flows per second, since it produces 
one alarm every second overwhelming the security personnel with a high amount of false alarms [5]. 
The proposed DoH detector can work with the standard flow data source, making it deployable to 
almost any flow monitoring infrastructure (from local area networks to high-speed backbone lines) 
while still maintaining a high accuracy of over 99.9%. The standard flow statistics can be obtained 
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from all NetFlow capable appliances, such as switches1, firewalls2, or specialized flow monitoring 
probes such as Flowmon 3. To overcome the information-limited standard flow telemetry data source, 
a combination of heterogeneous classifiers is used—IP-based, machine learning, and active probing 
detectors. The industry-proven IP filtering is based on the dynamic list of identified DoH servers, 
automatically adjusted when the new DoH server is identified in the monitored communication. 
The ML-based DoH classifier is used to identify candidate DoH servers by performing an online 
analysis of flow data, which are then confirmed by the active probing detector, resulting in almost 
zero false positives. Moreover, the proposed multi-classifier approach can detect even short DoH 
connections, which are neglected by existing works. 

7.1 Used Datasets 

High-quality datasets are crucial for designing a reliable and accurate network classifier. The de-
facto standard dataset created for DoH detection is called CIRA-CIC-DoHBrw-2020 [96], and it is 
used by the majority of related works. The CIRA-CIC-DoHBrw-2020 contains DoH and regular 
HTTPS traffic in the form of extended flow records and PCAP files. The traffic, either DoH or 
regular HTTPS, was generated by Firefox and Chrome browsers, querying only four DoH resolvers 
at varying network speeds. 

Simulated Network 
Environment 

CIRA-CIC-DoHBrw-2020 
Collection of Datasets 

First Generated Generated 

2021 2022 

CESNET Network 
Environment 

Real-World 

Figure 7.1: Used datasets timeline. 

Nevertheless, the behavior of DoH resolvers and browsers significantly differ as stated in previous 
Chapter 5; thus, the four resolvers in CIRA-CIC-DoHBrw-2020 cover just a fraction of DoH traffic 
shapes that can be observed on the internet. To overcome the limited number of DoH resolvers in 
the CIRA-CIC-DoHBrw-2020 dataset, the first generated dataset described in Section 6.1 is also 
used. The DoH queries are generated against 11 different DoH servers, making the dataset more 
comprehensive. 

Packet captures (PCAP files) from both CIRA-CIC-DoHBrw-2020 and the first generated datasets 
was merged into one Design dataset, which was used for detector design. A similar approach of 
merging two datasets to provide a more comprehensive one was also used in other published 
works [72,93]. The packet captures were then processed by the NetExP tool, aggregating the 
packets into standard bidirectional flow records. 

'https://www.cisco.com/c/dam/en/us/td/docs/security/stealthwatch/netf low/ 
Cisco_NetFlow_Configuration.pdf 

2https://www.cisco.com/c/en/us/td/docs/security/asa/special/netflow/ 
asa_netflow.html#bidirectionalflows 

3https://www.f lowmon.com/en/products/appliances/probe 
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Table 7.1: Overall information about used datasets containing the number of used DoH resolvers, 
the number of DoH flows, and the number of Non-DoH flows. 

Dataset Sources Servers DoH Non-DoH 
Design dataset CIRA-CIC-DoHBrw-2020 [96] and First Generated Dataset [71] 12 - 1 9 1 K - 1 . 3 M 
Evaluation dataset Collection of Datasets - Generated [65] 16 -254 K - 1 . 1 M 
Real World dataset Collection of Datasets - Real-World [65] 137 - 1 . 6 M -123 K 

The whole proposal was evaluated using completely different datasets to make a trustworthy and 
independent evaluation. For this purpose, the generated and real-world parts from the huge collection 
of DoH datasets (see Section 6.2) were used. The generated part, named Evaluation dataset, was 
created similarly to CIRA-CIC-DoHBrw-2020 and the first generated dataset; nevertheless, it was 
created at a different time and contained traffic towards more DoH servers; thus, its use for evaluation 
simulates the system's real-world deployment in the same environment. The second part represents 
capture from a real-world network called Real World dataset, which simulates deployment of the 
method in a different environment and helps evaluate the robustness and sensitivity to data drift. 
The summary of all used datasets is in Table 7.1 4. 

7.2 The Proposed DoH Detector 

The proposed detector is constrained to use traditional flow telemetry with standard features (see Sec
tion 2.2.1) only. This limitation makes the solution practical and compatible with most of the cur
rently available monitoring infrastructure. The sole machine-learning method leads to a high number 
of false positives in flow classification even when achieving almost absolute accuracy considering 
the high throughput of a network. The proposed method, hence, does not rely solely on machine 
learning. Instead, the deployment of a heterogeneous detection approach was chosen. The detector 
utilizes three different types of detection—IP-based, ML-based, and active probing detection. 

The detection pipeline uses a feed-forward loop, where a reliable but resource-consuming 
verification step creates a blocklist/allowlist, which is then utilized by a fast IP-based detector. To 
limit the number of active probes, an ML-based classifier was deployed, which selects the DoH-
suspicious flows that are worth verifying. Using three different classifiers, the proposed approach 
overcomes each detector limitation: The obsolescence of IP lists is mitigated by active verification 
and continuous updates, the M L inaccuracy is mitigated by active verification, and the resources 
needed by active verification are minimized by IP list and M L prefiltration. The processing pipeline 
of the proposed detection system is depicted in Figure 7.2 labeled as DoH Detector and can be 
divided into six following steps: 
Flow Stitching is an optional step needed to be deployed into flow monitoring infrastructure with 
unidirectional flow records. Since the proposed approach requires bidirectional flow records, which 
are still not widely adopted by flow monitoring infrastructures [53], their reconstruction from two 
unidirectional records is needed. 
IP-based Detection uses knowledge acquired from previous IP inspections to recognize DoH 
resolvers. In the absence of any previous knowledge about the destination IP address, the flow is 
forwarded to the next step. 
Filtration step performs pre-filtration of flows. When the flow is too short for reliable DoH detection, 
it is directly labeled as non-DoH. Other flows proceed to the following step. Further information 
about this step is provided in Section 7.2.4. 

4 Only flows where features can be calculated are counted hence the numbers might be different than elsewhere in 
work. 
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Figure 7.2: Holistic view of the proposed approach with the DoH detector design in context of the 
monitoring infrastructure. 

Classification uses machine learning to detect DoH traffic. Moreover, this step also performs feature 
extraction. A detailed description of this step is provided in Section 7.2.3. 
Verification step uses active DoH queries to the suspected DoH resolver to confirm its DoH 
resolution capability. When verified, the DoH resolver's IP address is stored in the DoH blocklist, 
which is then used in the filtration step. This step is further described in Section 7.2.5. 
IP Rule Extraction processes the detection results and maintains a blocklist/allow list which is then 
used by the IP-based detector. 

Each component is described in the following sections. Their description follows the order 
as they are depicted in Figure 7.2 except for the classification and filtration. The necessity of the 
filtration step arises from the limitations posed by the M L classifier and only standard NetFlow 
telemetry data. Hence, it is described after the classification. Measurement and demonstrations in 
the following sections are made on the design dataset. The evaluation and real-world datasets are 
held exclusively for the final evaluation of the whole system (see Section 7.3). 

7.2.1 Flow Stitching 

Flow stitching performs the conversion of unidirectional flow records into bidirectional. Flow stitch
ing is a standard process that can reconstruct one bidirectional flow record from two unidirectional 
records. It is often placed or implemented on the collector. Multiple open-source tools are capable 
of flow stitching, such as BiFlow Aggregator5 or Cisco Joy 6. The features of bidirectional flows 
created by stitching are shown in Table 7.2. These flow records are then directly forwarded to the 
IP-based detection stage. 

Naturally, the flow stitching adds some latency to the detection pipeline depending on the 
aggregation time window of the stitching tool. The aggregation windows should be set for particular 
monitoring infrastructure and its overall latency and jitter. Nevertheless, since flows from both 
directions are going to be exported at a similar time, the flow stitching aggregation time window 
could be very small in the order of seconds; hence, similar latency would be added. 

5https://github.com/CESNET/Nemea-Modules/tree/master /biflow_aggregator 
6https://developer.cisco.com/codeexchange/github/repo/cisco/joy 
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Table 7.2: Bidirectional flow record after application of flow stitching. The fields denoted in italic 
are statistical features and thus can be used for detection. Other features are specific to the dataset 
and should not be used. The table contains shortcuts for C and S which denotes client and server 
respectively. 

Flow Record 
Source IP address 

Destination IP address 
Source Port 

Destination Port 
Transport Layer protocol 

Time start 
Time end 

Total Number of packets 
Total Number of bytes 

Number of packets S —> C 
Number of bytes S —> C 

Number of packets C —> S 
Number of bytes C —> S 

Duration 

7.2.2 IP-Based Detection 

The IP-based detection uses previously acquired knowledge about server IP addresses, maintained 
by IP Rule Extraction and the database, to prevent unnecessary active verification. It directly detects 
DoH or regular HTTPS by observing the servers' IP address field in the flow. When there is no prior 
knowledge about the servers' IP address, the flow is forwarded to the next stage. 

7.2.3 Classification 

The classification step uses a machine-learning classifier for an additional selection of DoH-
suspicious flows. The description of the classification step is provided before filtration since the 
M L classifier showed unsatisfactory results (but comparable with previous proposals) when used 
with short connections and only NetFlow telemetry data. This limitation is then mitigated by the 
filtration step, which is described afterward. The machine-learning-based classifier relies solely 
on the statistical properties of the flows to learn the DoH traffic shape. This section describes the 
process of creating the machine learning model for DoH detection. 

Feature Selection 

Identifying discriminative features from the incoming flow data is one of the essential tasks during the 
detector design. The selected features directly influence the detector's performance. To determine 
features properly, the analysis of the Design dataset was performed. Moreover, the information from 
previous traffic observations mainly covered in Chapter 5 has been used and summarized here. The 
following DoH characteristics can be observed that can discriminate DoH from other HTTPS traffic: 

Observation 7.2.1 The DoH, in comparison to non-DoH HTTPS traffic, transmits fewer data in 
requests and responses. 
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Observation 7.2.2 The DoH connections last longer, containing many short transactions, creating 
an overall higher number of smaller packets in the flow. 

Observation 7.2.3 DoH in the browser creates multiple streams over the same HTTP/2 connection 
and uses multiplexing for faster DNS resolution. 

Observation 7.2.4 The packet size variance of DoH is lower compared to other HTTPS traffic. 

Observation 7.2.5 The DoH connections are more symmetrical, than regular HTTPS in terms of 
transferred packets and bytes in each direction. 

The statistical bidirectional flow feature set is relatively limited, as seen in Table 7.2. Instead 
of using features directly, all possible pairs were created by applying division since it creates ratios 
representing potential discriminators, leaving us with 21 features—ratios of the original features. 
Consequently, a feature reduction step was performed by calculating the pair-wise Pearson correlation 
coefficient. The feature reduction removed features that showed near-perfect correlation—their 
Pearson correlation coefficient was higher than 0.9 [116]. 

Table 7.3: Selected features together with their Gini importance. The abbreviation stands for: 
C —> S - represents Client-to-Server direction, S —> C - represents Server-to-Client direction, 
sc-byteslsc-packets represents number of transferred bytes/packets in S —> C direction, cs-byteslcs-
packets represents number of transferred bytes/packets in C —> S direction. 

id Feature Name Gini Formula 
1 mean payload size S —> C 0.293 sc-bytes 

sc-pkts 
2 mean time between packets S —> C 0.269 sc-pkts 

duration 
3 mean payload size C —> S 0.247 cs—bytes 

cs-packets 
4 num packets C —> S to packets ratio 0.191 cs-packets 

total-packets 

The final feature set is listed in Table 7.3 with the corresponding importance based on the com
puted Gini index. The final features are also related to traffic observations. The most essential fea
ture #1 and also feature #3 capture the DoH behavior from Observation 7.2.1 and Observation 7.2.2. 
Feature #4 captures the flow symmetry property from Observation 7.2.5. Observation 7.2.3 is cap
tured by feature #2. Unfortunately, used features cannot describe Observation 7.2.4 since it cannot 
be computed or approximated from traditional flow data. 

Machine Learning Classifier 

Given the aforementioned selected features, several classification algorithms were applied to the 
dataset. Python programming language was employed using Scikit-Learn7 and XGBoost 8 libraries 
for learning classification models. Random Forest, K-Nearest Neighbors (KNN—in this case, 4NN 
was used, which was chosen as the best performing during the hyperparameter tuning phase), 
Naive Bayes classifiers, and popular boosted algorithms XGBoost and AdaBoosted Decision Trees 
classifiers were utilized. A detailed description of these ML-based algorithms, which are commonly 
used in networking tasks [15] is provided in Section 2.3.2. 

The standard metrics for unbalanced datasets were used as described in Section 2.3.3 to determine 
the best-performing algorithm for DoH detection. In particular, precision (2.15), recall (2.16), and 

7 h t t p s : / / s c i k i t - learn.org  
8 h t t p s : //xgboost.ai 
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Fl measure (2.17) were calculated9. The primary measure is the Fl measure, showing the classifier's 
overall performance. However, the precision metric is also important since practical applications in 
network monitoring aim to reduce the number of false positives. 

The process of algorithm evaluation followed a standard machine-learning classifier design. 
First, the Design dataset (see Table 7.1) was divided into the train (75%) and test (25%) parts using 
stratified sampling. The train part was used for hyperparameter tuning using cross-validation and 
training the classifier, and the validation part was reserved for classifier evaluation. 

Then, the features within each part were standardized using Z-score normalization (also called 
standardization) since the feature values fall into different ranges. Feature normalization was 
applied, particularly for features #1, #2, and #3 from Table 7.3, which contain values ranging from 
0 to hundreds. 

Table 7.4: Performance metrics of classifiers. 

Algorithm F l Precision Recall 
XGBoost 0.973 0.981 0.966 
Ada-boosted DT 0.970 0.978 0.963 
K N N 0.963 0.972 0.955 
Random Forest 0.955 0.979 0.931 
Naive B ayes 0.422 0.304 0.693 

Each algorithm requires setting proper input parameters, also called hyperparameters. The 
hyperparameter tuning of all algorithms was done experimentally using a grid-search technique and 
5-fold cross-validation on the train part. Models with the best hyperparameters were then trained on 
the whole train part and evaluated on the test part. Table 7.4 presents performance results computed 
using standard metrics numerically. Most algorithms performed well, capable of achieving an F l 
score of higher than 0.95, except for the Naive Bayes. Among them, the best performance is achieved 
by boosting algorithms. The XGBoost algorithm had the best performance and achieved Fl - 0.973 
with the following hyperparameters: maximum depth of seven and subsample of 0.9. 

Table 7.5: Confusion matrix for XGBoost classifier. 

Predicted 
DoH HTTPS 

Actual 
DoH 46192 1643 

Actual 
HTTPS 881 281609 

The detailed performance of the best-performing XGBoost classifier for DoH recognition can 
be seen in Table 7.5. Although the F l of 0.973 can be considered high accuracy, it may still not 
be accurate enough for deployment on the computer network due to a high number of predictions 
per second. According to Hofstede et al. [52], the Czech national research and educational network 
creates up to 10000 flows per second—the same number of predictions per second would be made 
by the classifier when deployed on this network. Therefore, the classifier would produce around 2.6 
false positive10 detections per second (9360 false positive detections per hour). Generating such 

9 Abreviations have following meaning: True Positives (TP), False Positives (FP), False Negatives (FN), True Negatives 
(TN) 

1 0FP/(FP+FN+TP+TN) = 0.0026 
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a large number of misclassifications would overwhelm the administrators and the system, causing 
such detection not to be beneficial. Hence, there is a need to push the detection system toward more 
accurate detection. 

Minimum number of packets in flow 

Figure 7.3: Stacked histogram of misclassified flows. 

Further investigation revealed that short flows are the main cause of reduced accuracy. Figure 7.3 
shows the number of false positive detections depending on the number of packets in flows. It can 
be seen that misclassification happens more often when flows have less than 100 packets. To reduce 
false positives, the elimination of shorter flows is needed since those cannot be reliably recognized 
by the machine-learning classifier that uses standard flow information. 

7.2.4 Filtration 

The DoH connection (similarly to other HTTPS connections) involves a TCP handshake, Transport 
Layer Security (TLS) handshake, HTTP/2 preface, application data transfer phase, and TCP termi
nation, as shown in Figure 7.4. Each phase amounts to several packet exchanges. Based on the 
measurement of single query DoH presented in Section 5.1, it was determined that one DNS request 
and response over HTTP/2 requires (on average) 28 packets (HTTP/1.1 requires an average of only 
17 packets"), with only two packets carrying the actual DNS payload. The number of packets in 
the HTTP/2 preface can be even higher since the single query measurement does not need to set up 
multiple channels as other more complicated connections made by browsers might do. 

The shorter flows might not contain any DoH queries at all. Browsers usually create multiple 
connections to the target server to optimize the loading process. The browser contacts the server with 
several connections—at least one connection is then used, and the rest are failed or terminated12. 
Such connections do not transmit any application data. 

Hynek et al. [62] mentioned short DoH connections as challenging. Particularly, the single-
query DoH produces flows with similar statistics as other short API calls. The influence of many 
HTTP/2 preface packets compared to the small portion of DoH data is high and complicates reliable 

"Lower number of packets is caused by missing novel HTTP/2 features such as connection preface, multiplexing and 
HTTP header and payload transmission separation. 

1 2The number of parallel connections created by a browser is not specific for DoH and can often be configured [122], 
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Figure 7.4: Schema of HTTPS (DoH) flow with all connection prefaces highlighted. 

DoH detection. Therefore, the determination of the minimal number of packets in the flow carrying 
enough DoH packets is needed to recognize DoH from other HTTPS traffic reliably. 

Determining the Minimal Number of Packets Threshold 

There are multiple ways to determine the minimal number of packets in flow needed for reliably 
distinguishing DoH from regular HTTPS traffic. One of the approaches would be to add the threshold 
to hyperparameters and find the best value during the hyperparameter tuning phase. Another way 
would be to use an unsupervised clustering method to group samples automatically and measure the 
ability to separate samples into two classes by measuring the intra-class similarity. Both approaches 
were used. 

At first, the experiments with threshold tuning were performed. The best-performing XGBoost 
algorithm was used, and the minimum packet threshold was incrementally increased. The model 
was retrained each time the threshold was raised. As expected, the model's accuracy increases with 
a higher threshold, as shown in Figure 7.5. The model reaches first stable performance around 116 
packets and then maintains similar accuracy. 
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Figure 7.5: Minimum number of packets in flow hyperparameter tuning. 

In the second approach, the K-Means [47] clustering method was used with k-means-i-i- initial
ization to determine the minimal packet lengths. It was done by using the algorithm's ability to 
group samples into a predefined number of k clusters (in this case, k -2, the same as the number of 
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classes) based on their similarity. Applying the algorithm to all flows without filtration would lead 
to a different capability of distinguishing the samples reliably than when applied to filtered flows. 

The dataset without filtration was clustered, and then the required number of packets in flows 
was increased. The intra-class similarity was measured by calculating the purity score of the 
resulting clusters. Since the dataset is highly imbalanced in favor of the non-DoH class, random 
undersampling was applied before each clustering to balance the dataset and correctly compute the 
purity score. Undersampling rather than over-sampling was chosen since there was enough data to 
work with, and it works only with real data records without the need for any data augmentation. 
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Figure 7.6: Purity score of the converged clusters based on minimum packets in flows. 

The results are depicted in Figure 7.6. It can be seen that the minimal number of packets in flow 
highly influences the DoH recognition capability of the clustering method. More packets in flows 
make the recognition more reliable, which is consistent with previous observations. The 90% purity 
index of both clusters is reached when flows have at least 112 packets. 

In addition, the estimation of the average number of packets in the DoH connection needed for 
fetching one website was performed. The DoH connections of the top 10000 visited websites from 
the Majestic Million dataset were investigated. The average number of unique domain references 
by these websites was 20, leading to an equal number of DNS resolutions. Measured in terms of 
packets, this gives roughly 120 packets in a DoH flow corresponding to one website visit. 

A l l experiments showed satisfactory DoH detection performance with similar values ranging 
from 112-116 packets, while flows with more packets are generally more reliably recognized. It 
was decided to set the filtration threshold to >120 packets since such a number of DoH packets is 
generated during an average single web page visit. According to Crichton et al. study [30], users 
mostly visit more than one site in a short period and spend on average 1.7 hours browsing in 35.9 
browser tabs daily. Even when considering DNS caching mechanisms, there is a high probability of 
generating longer DoH flows than the estimated 120 packets. In practice, the threshold thus could 
be set to even higher numbers of packets in a flow, which would improve the model accuracy even 
more. 

Final Classifier Fvaluation After Filtration 

The final experiments of the detection module accuracy were performed on the flows that fulfilled the 
requirement for the minimal number of packets—the flows with less than 120 packets were filtered 
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out. The filtration reduced the number of DoH flows to 16 728 (8.74% of the original dataset) and 
123 222 (9.34%) non-DoH flows. Despite a more than 90% reduction in flows, the number of unique 
DoH servers and their IPs remained the same. 

Table 7.6: Performance metrics of classifiers on reduced dataset—it contains only flows with >120 
packets. (See Table 7.4 for comparison.) 

Algorithm F l Precision Recall 
XGBoost 0.996 0.995 0.997 
Random Forest 0.995 0.993 0.997 
Ada-boosted DT 0.994 0.991 0.996 
K N N 0.993 0.991 0.996 
Naive B ayes 0.927 0.887 0.971 

The accuracy of classifiers reached on the reduced dataset is shown in Table 7.6. The classifi
cation methodology remained unchanged, with the data split into the train (75%) and the test part 
(25%) using stratified sampling. Nevertheless, hyperparameter tuning was not performed, and the 
same hyperparameters as in the previous evaluation (described in Section 7.2.3) were used. The 
best performing algorithm was again the XGBoost, achieving F l of 0.996. 

Table 7.7: Confusion matrix for XGBoost classifier evaluated on the reduced dataset—it contains 
only flows with >120 packets. 

Predicted 
DoH HTTPS 

Actual 
DoH 4169 13 

Actual 
HTTPS 20 30786 

The detailed results of the XGBoost algorithm are provided in Table 7.7. It can be seen that the 
number of false positives is significantly reduced (see Table 7.5). Since the number of misclassifi-
cations is relatively low, they could be investigated manually. The 20 false positives were generated 
mainly by telemetry and analytical services embedded in the websites by advertisement. These types 
of flows show similar traffic shape characteristics as DoH, which justifies their misclassifications. 
The false negatives can be identified as anomalous, with at least one feature value standing out or at 
the edge of the decision boundary. 

7.2.5 Verification 

The next step in the DoH detection pipeline is active server verification. Active verification is the 
most accurate way used in the past by multiple researchers [130,136]. 

The active probing module generates DoH requests, for example.com domain to /dns-query 
endpoint via both HTTP GET and HTTP POST methods, as specified in [51]. The servers hosted 
on shared infrastructures usually require a domain name for a successful connection. Therefore, 
the active verification can use a domain name from TLS handshake when extracted by monitoring 
appliances, available passive DNS services (providing IP-domain mappings), or direct IP queries. 
Passive DNS and direct IP queries are the only options in this case where the lack of extracted 
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domain name is present. Moreover, additional paths such as root path may be tested if the RFC 
defined path is not responding. 

The active probing approach always comes with ethical consideration and the correct setting 
of the probing rate. When using an aggressive rate, the source IP address could be marked as 
malicious and blocked by service providers, resulting in reduced verification efficiency. Moreover, 
active requests always consume some target resources. Nevertheless, in this case, the HTTPS 
servers are probed; thus, they should be scaled adequately for HTTP requests. Moreover, by storing 
even non-DoH server IP addresses, it was ensured that the active probing module checks each IP 
address/domain only once in 24 hours, thus limiting the target resource utilization to a minimum. 

7.2.6 IP Rule Extraction 

The verification results are then processed, and the servers' IP addresses are extracted and stored in 
the database IP DoH Server Filtration Rules, as seen in Figure 7.2. Both results, the confirmed DoH 
and confirmed non-DoH servers, are stored in the database and used for direct detection in the IP-
based detection step. The database then limits the amount of ML-based detection and verification, 
thus increasing the whole system's performance. 

As Gracia et al. [44] discussed, the detection of DoH by blocklists is inefficient due to fast 
blocklist obsolescence. Consequently, the non-DoH addresses are stored only for 24 hours, and 
the DoH resolvers are regularly checked (every 24 hours) to maintain the timeliness of the stored 
information. 

7.3 Experimental Results 

The whole proposed DoH detector depicted in Figure 7.2 was evaluated using a separate Evaluation 
dataset (see Section 7.1). Using an utterly separate dataset captured in the same network environment 
with different properties not seen during the design phase is similar to actual deployment, with the 
benefits of the ground truth labels. Thus, the correctness of the evaluation performance can be 
guaranteed. 

The evaluation simulated the deployment of the system in the same network environment. The 
dataset PCAP files were processed with the NetExP tool (as in the case of the Design dataset). Since 
the NetExP creates bidirectional flow records, its extraction also represents a flow stitching phase. 
The flows were processed in the original order by the detection pipeline. The XGBoost classifier was 
used as proposed in Section 7.2.4, which was trained on the train part of the Design dataset. Since 
the Evaluation dataset is more than one year old, active verification was not performed; instead, the 
ground truth labels provided within the dataset were used. The evaluation process was set to classify 
one flow at a time without any parallelization and other performance optimization techniques. 

The final evaluation dataset contained 254 788 DoH flows, and 1 142 329 non-DoH flows. 
Nevertheless, there are only 25 078 DoH, and 137 327 non-DoH flows with more than 120 packets 
that would pass the filtration step. The confusion matrix of the overall system evaluation is shown 
in Table 7.8. The system achieved an F l of 0.998 with a precision of 1.0 and a recall of 0.995. No 
false positives have been observed, which is expected due to the verification stage. However, there 
are 1147 false-negative flows. 

Despite the false negatives, the system was capable of identifying all DoH servers' IP addresses 
in the dataset—thus, the created blocklist was complete. A l l false negatives occurred due to the 
latency of the DoH server identification. From 16 different resolvers, 15 were selected by M L for 
verification during the first occurrence of flow with more than 120 packets; the missing one was 
selected after several occurrences. However, almost all false negatives (except one) were then created 
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by the filtration module. Before the first flow with more than 120 packets, the filtration module 
automatically marked shorter connections as non-DoH. On average, the system falsely marked nine 
short DoH flows before a longer DoH flow was received and successfully identified as DoH. 

Table 7.8: Confusion matrix representing the final evaluation of the system. 

Predicted 
DoH HTTPS 

Actual 
DoH 252 641 1147 

Actual 
HTTPS 0 1 142 329 

Overall, the dataset contained flows toward 76 870 unique IP addresses. The system labeled 
23 unique DoH server IP addresses (some of the DoH resolvers had more than one address) and 
allowlisted another 87 IP addresses as false positives. It is worth noting that those false positives 
created by M L are expected and handled by the Verification and IP-based Detection stages. Thus, 
the whole detection system will not raise false alarms. In total, only 110 flows were forwarded to the 
verification stage. Assuming a large network with 10000 flows per second, the Evaluation dataset 
represents 139.7 seconds of traffic, meaning the active verification would create -0.7 active requests 
per second, which can be considered very low and acceptable for real-world deployment. 

7.3.1 Evaluation of the Data Drift 

The network traffic is often susceptible to data drift [88] (sometimes called concept drift)—a 
phenomenon in which the underlying distribution of the data changes in time due to novel services 
or updates of the network infrastructure. Thus, the robustness of the novel method to data drift was 
evaluated. The Real World traffic captured in the real backbone network [65] was used for that. This 
traffic was captured a year apart from the design data on an entirely different network setup. We 
used the proposed detector with M L trained on the design dataset and evaluated it on the Real World 
traffic dataset with the same methodology as in the previous section. The performance results are 
shown in Table 7.9. 

Table 7.9: Confusion matrix for data drift susceptibility of the system. 

Predicted 
DoH HTTPS 

Actual 
DoH 1549 380 42210 

Actual 
HTTPS 0 123 050 

The proposed detector achieved an F l score of 0.987 and an accuracy of 97.5%. Given the 
different training and testing network environments and the year gap between training data and 
testing data, which might be considered an extreme case, the detector showed stable performance 
with only ~ 0.01 F l score drop and a 2.4 percentage point drop in accuracy. For comparison, 
other work also dealing with encrypted network traffic and data drift of Malekghaini et al. [88] 
experienced a drop of up to 40 percentage points when trained and evaluated on year-apart data. 
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Table 7.10: Comparison of related work metrics. The abbreviations stands for: NF - Number of 
required statistical features; D - Dataset; S - Number of DoH Servers in the dataset; SFE - Short 
flow elimination before passed to M L model; DoHBrw - CIRA-CIC-DoHBrw-2020 dataset [96]; 
pkts - Packets; ppkts - Payload packets. 

Paper S NF Features Dataset SFE Best algorithm F l Accuracy 
Proposed method 12 4 Standard DoHBrw, 

Custom 
< 120 pkts XGBoost 0.998 99.9% 

Vekshin et al. [129] 2 18 Extended Custom < 5 ppkts Ada-Boosted DT - 99.6% 
MontazeriShatoori et 4 28 Extended DoHBrw - Random Forest 0.993 -
al. [97] 
Banadaki^lO] 4 34 Extended DoHBrw - L G B M - 100% 
Jha et al. [72] 2 N / A c Extended Custom - DeepFM 0.995 -
Casanova et al. [21] 4 28 Extended DoHBrw - B i L S T M 0.987" 99.0% 
Behnkeetal. [12] 4 26 Extended DoHBrw - Random Forest 0.998 -
Mitsuhashi et al. [94] 4 28 Extended DoHBrw - XGBoost 0.998 99.8% 
Nguyen et al. [105] 4 29 Extended Custom - Transformer N N 0.99 -
Konopa et al. [75] N / A c 3 Standard Custom - Feed Forward N N - 94.4% 
Zebin etal. [138] 4 29 Extended DoHBrw - Balanced Stacked RF 0.999 99.98% 
a There is concern about general applicability of this detector, since the classifier is fitted on IP addresses from the used 

dataset. 
b Score is computed from provided confusion matrix. 
c Authors do not provide this information. 

7.4 Discussion 

The proposed system performs similarly or better than the other related works as summarized in 
Table 7.10, while trained and validated on a more comprehensive DoH dataset containing traffic 
towards more DoH resolvers including real-world traffic where different resolvers and their config
uration highly influences the DoH traffic shape (as shown in Chapter 5). Due to the rich dataset and 
thorough analysis, this is the first work that points out the short DoH flow phenomena and designs 
the detection pipeline accordingly. Moreover, the majority of previous works suffer from reliance 
on specialized hard-to-obtain features. The tailored features improve the accuracy, but they also 
limit mass deployment due to the necessity of installing specialized network probes. 

This proposal works with easy-to-obtain features available in almost all network monitoring 
infrastructures, even those with NetFlowV5. The only related work that also works with features 
extractable from traditional NetFlow is the Konopa et al. [75], who achieved an accuracy of 94.4% in 
DoH detection. Compared to them, the proposed system achieved 99.9% accuracy while evaluated 
on the biggest DoH dataset available. The proposed system also addresses the desirable elimination 
of false positives. The increased precision is due to the use of three heterogeneous classifiers, each 
of which has advantages and limitations that together create a more robust and precise DoH detector. 

While the goal was to minimize false positives, the detector can still produce some when DoH 
and non-DoH services are both hosted behind a single IP address. Such cases cannot be distinguished 
by IP addresses but by domain names. Since the majority of flow monitoring infrastructures support 
only NetFlowV5 [53] and do not support the extraction of domain names from TLS handshakes, it 
might be considered a limitation, even though it is caused by the underlying network monitoring 
infrastructure. When extraction of domain names is supported, modification of the presented 
architecture is trivial (block list would use domain names instead of IP addresses), and the false 
positives would be mitigated. 

The detection system also suffers from false negatives, mainly caused by the detection latency. 
Nonetheless, the majority of false negatives could be mitigated by back-labeling of flows automat
ically labeled as non-DoH by the filter. It would require additional temporal storage of short flows 
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that would wait for at least several seconds for the potential labels because a long one often follows 
short DoH flows (as discussed in Section 7.2.4). 

Furthermore, skilled adversaries can bypass detection by limiting the number of packets in 
their DoH connections. Nevertheless, such packet limitation would significantly impact the DoH 
performance. Moreover, DoH only encrypts DNS, and more skilled adversaries would rather use 
other stealthy communication, such as HTTPS-based V P N or other multipurpose tunneling tools. 

Despite all the mentioned limitations (mainly caused by the limited availability of traffic features), 
the proposed DoH detector proved to be accurate and computationally efficient. Most work is done 
using simple list-based filtering and classification using a pre-computed model. Only a fraction 
of inputs require verification through active probing. Moreover, the detector's input consists of 
standard NetFlow records available on various network devices. 

Table 7.10 provides a supporting summary of the related works compared to the proposed 
method and shows the data source and other characteristics in which the methods were created and 
evaluated. However, the performance of all methods can not be qualitatively compared since not all 
methods used the same dataset. Hence, the final performance of the methods may differ. Methods 
should be compared in similar conditions while using the same data and multiple scenarios. Such a 
comparison and testing is needed and provided in the following chapter. 
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Chapter 8 

Comparison with Existing DoH 
Detection Approaches 

Over the past years, there have been multiple ML-based proposals for DoH detection, often surpass
ing the 99% detection accuracy. These novel ML-based DoH detectors have often been evaluated 
using a different lab-created dataset from a limited time period. However, without using the same 
data, the proposals cannot be qualitatively compared; thus, we still lack the answers to basic ques
tions such as „What is the most accurate detection approach?1' or ,fiow do the detectors behave in 
long-term?". Therefore, this chapter aims to compare several ML-based DoH detection approaches 
with the proposed one in six data scenarios, answering six different research questions1. 

Methodologies of the published works for DoH detection were followed, and detectors were 
recreated to evaluate their properties using a previously presented Collection of datasets with DoH 
traffic (see Section 6.2). Additionally, subsequent capture of real-world DoH traffic as described in 
Section 6.3 was used to study the long-term properties of ML-based DoH detectors. These datasets 
allowed to evaluate DoH detectors thoroughly and finally show the advantages and disadvantages of 
published DoH detection approaches and the proposed one. 

8.1 Used Datasets 

For the comparative analysis, the comprehensive collection of datasets described in Section 6.2 was 
used, which is provided in the form of PCAP files, allowing extraction of all features used by the 
detector proposals. 

Together, the collection of datasets provides a comprehensive set of DoH and regular HTTPS 
data. The real-world part contains timing and other network characteristics as present in a real 
network, while the generated part contains a large set of DoH resolvers, each with slightly different 
characteristics. The two datasets are very different in terms of packet timing and size distribution. 
They are thus ideal for assessing the usability of models trained on lab-created data in the real-world 
environment. 

Nevertheless, the collection of datasets does not allow for experiments with data drift—a phe
nomenon where the distribution of the input data changes over time, which causes the obsolescence 
of trained M L models. There have been numerous reports about ongoing data drift [88]. To allow 
experiments concerning the longitudinal usability of the detectors, the additional 5-week capture 
described in Section 6.3 was used. The information about all used types of datasets is provided 

'The results presented in this chapter were also applied for publication by the author at the time of finishing this thesis. 
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Figure 8.1: Timeline of dataset capturing. 

in Table 8.1, and the datasets involved in the comparison together with the times of dataset capturing 
are graphically shown in Figure 8.1. 

Table 8.1: Statistics about used types of dataset. Please note that the number of connections is 
not equal to the number of flows referred elsewhere in the work since each flow exporter performs 
different connections splitting into multiple flows with an active/inactive timeout mechanism. 

Type Name Other Connections DoH Connections Size 
Real-World - 1 5 6 K - 5 . 2 M 179 GB 
Generated - 1 . 6 M -346 K 250 GB 

Add. 5-week ~17K -486 K 52 GB 

8.2 Selected DoH Detection Approaches 

Several machine-learning approaches were published to distinguish DoH and regular HTTPS (non-
DoH). Some of them focus only on the DoH detection task, while others include the task as the first 
stage, and in the second stage, they further focus on malicious DoH detection. Alternatively, some 
approaches focus solely on malicious DoH detection. Since the method proposed in the in Chapter 7 
(further denoted as proposed method) focuses on the detection of DoH in regular HTTPS and works 
with flows, the comparison is limited to DoH recognition and flow methods only. 

Table 8.2: Criteria summary for comparison of published DoH detection methods. 

Paper PCAP processing Features No identifiers Defined architecture 
MontazeriShatoori et at. [97] / / / / 

Mitsuhashi et at. [94] / / / / 
Behnkeetal. [12] / / / / 

Casanova et at. [21] / / / / 
Zebin etal. [138] / / / / 

Vekshin etal. [129] / / / / 

Konopa et at. [75] X / / X 
Jha et at. [72] / X / / 
Banadaki [10] / / X / 

Nguyen et at. [105] / / / X 

Out of all published approaches, only those methods that satisfied the following criteria that 
enable fair comparison and reproduction of the proposed methodology were chosen to be compared 
along the proposed method: 

1. published method of PCAP processing and feature extraction; 
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2. precisely defined features that were used for detection; 

3. not used identifiers (IP addresses, ports) as features; 

4. defined architecture of the algorithm used for classification (e.g., number of hidden layers). 

As shown in Table 8.2, only the studies of MontazeriShatoori et al. [97], Mitsuhashi et al. [94], 
Behnke et al. [12], Casanova et al. [21], Zebin et al. [138], Vekshin et al. [129] satisfied the 
conditions. Some works did not include a tool or description of flow extraction from PCAP files 
and could not be reproduced; other studies did not provide the exact features they involved in the 
detection. Furthermore, the works that used flow identifiers such as IP addresses or ports in the 
feature vector were not included. As discussed by Behnke et al. [12], these features would overfit 
the lab-created datasets, which prevents their comparability with other approaches. 

The selected approaches and the proposed method used different methodologies that included 
traffic processing tools, flow elimination, balancing, scaling, and a number of features and achieved 
their best results with different algorithms. Table 8.3 summarizes the selected approaches with the 
mentioned metrics. 

Table 8.3: Selected DoH detection approach summary. The abbreviations stand for: NF - Number 
of required statistical features; FE - Flow elimination before passed to M L model; pkts - Packets; 
ppkts - Payload packets. 

Paper NF Tool FE Balancing Scaling Best algorithm F l Accuracy 
MontazeriShatoori et 
al. [97] 

28 DoHLyzer NaN - - Random Forest 0.993 -

Mitsuhashi et al. [94] 28 DoHLyzer NaN - - XGBoost 0.998 99.8% 
Behnke etal. [12] 26 DoHLyzer NaN - - Random Forest 0.998 -
Casanova et al. [21] 28 DoHLyzer NaN resampling min-max B i L S T M 0.987a 99.0% 
Zebin etal. [138] 29 DoHLyzer NaN S M O T E min-max Bal. Stacked RF 0.999 99.98% 

Vekshin etal. [129] 18 ipfixprobe NaN, 
< 5ppkts 

S M O T E - Ada-Boosted DT 0.976 a 99.6% 

Proposed method 4 NetExP 
NaN, 

< 120pkts - standard XGBoost 0.998 99.9% 

Score is computed from provided confusion matrix. 

8.3 General Methodology 

Six selected approaches and the proposed method differ in raw data processing, extracted features, 
algorithms used, and accompanied preprocessing. The common methodology was established 
to treat all the subjected approaches the same way for all prepared cases. General processing 
methodology is depicted in Figure 8.2. For the implementation, an automated pipeline was created 
that ensured no deviance in the methodology for each evaluated detection proposal to avoid any 
accidental mistakes and maintain comparable results. 

8.3.1 Data Preparation 

At first, the datasets described in Section 8.1 are in the form of raw PCAP files. There are three 
groups, the Real-World, Generated, and Add. 5-week, each consisting of several PCAP files. The 
first two groups of files are treated differently than the third. Each file in the first two groups is split 
in a ratio of 70:30 such that new files dedicated to train and holdout parts are created. The train part 
is dedicated to hyper-parameters tuning of the algorithms, and then it is used to train the model for 
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Figure 8.2: Structure of general processing methodology common for all cases. 

performance evaluation. The holdout part is kept exclusively for final performance evaluation. The 
splitting follows the machine learning best practices also used by other works. 

A l l the PCAP files are processed by each processing tool used in the selected studies (namely 
DoHLyzer, NetExP, and ipfixprobe) in the same way as in the original experiments. The data are split 
in its raw PCAP format before processing because each tool process flows differently with varying 
timeouts generating a nonidentical number of flows on the output. This way, it can be guaranteed 
that the original source is the same as the input, and the tool's processing is considered part of the 
study approach. Processed PCAP files are merged into several datasets that later serve in different 
combinations as input into different cases for answering research questions (see Figure 8.3). 

8.3.2 Algorithm Selection and Tuning 

Only the algorithms that achieved the best classification performance in the concerned studies were 
chosen to represent each approach (see Table 8.3). The algorithms are fed with the appropriate 
features. Moreover, scaling and balancing were used, as the authors described in their works. The 
algorithms were tuned using grid-search and K-Fold (5) on the train part before each measurement. 
The Bi-directional L S T M architecture was left intact; only hyper-parameters, such as the learning 
rate or optimizer algorithm that the authors also tuned, as they mentioned in their work [21], were 
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tuned. The best hyper-parameters were found for each training dataset (see training parts of each 
research question in Figure 8.3). Each study model's hyper-parameters were tuned for each training 
dataset separately since each training dataset has different characteristics and sizes. That way, it can 
be achieved fair comparison. 

8.3.3 Measurement 

For the final measurement, each model was trained on the whole train part using the best-found 
hyper-parameters for each training dataset, and then the performance was measured on the holdout 
part of each belonging training dataset. A l l the seeds were left intact (not fixed) and randomized by 
default at the measurement part, and for each of the five repeats, the model was retrained before each 
measurement. Instead of taking a score of only one run that can represent a best or worst achieved 
score based on cherry-picked seeds, rather the mean and deviation upon several runs with random 
seeds are presented. This way, more realistic results can be shown, including the stability of the 
algorithm results and the boundaries between which the performance can fall in reality. 

Table 8.4: The percentage of DoH flows that were filtered by each flow exportation tool due to 
the impossibility of feature computation. This was usually caused by a low number of packets and 
unidirectional communication. Such filtering results in a false-negative classification of the filtered 
DoH flows. 

Holdout DoHLyzer ipflxprobe NetExP NetExP 
Dataset All Filter 

Generated 24.3% 26.4% 32.8% 93.6% 
Real-World 28.0% 50.9% 17.4% 97.1% 

Add. 5-week 26.6% 26.3% 38.7% 95.8% 

Since imbalanced datasets are assessed, to measure the performance, an F l score was chosen, 
which is a recommended measure when dealing with imbalanced data. However, all methods have 
different constraints on the input flows. For example, Vekshin et al. [129] require flows with at least 
five packets; shorter flows are simply removed from the classification task, and the performance 
metrics are reported without them. Similarly, Montazerishatoori et al. [97] Mitshuhashi et al., 
Behnke et al. [12], Zebin et al. [138], and Casanova et al. [21] discards flow with NaN values2 

and reports all the performance metric without considering them. The percentage of filtered DoH 
flows in each dataset is shown in Table 8.4. It can be observed that the ipflxprobe tool used by 
Vekshin et al. [129] discards more than 50% of all DoH flows in the Real-World dataset and directly 
classify them as non-DoH. The proposed method using the NetExP tool filters NaN values (denoted 
as All) similarly to other methods using DoHLyzer and flows with less than 120 packets (denoted 
as Filter), including those with NaN values; hence, the drop is high, reaching up to ~ 97% in the 
case of Real-World dataset. Not considering filtered flows in the performance metric does not reflect 
the true performance of the classifiers since a lot of DoH connections could be missed by such 
prefiltration. Therefore, two distinctive metrics are used: 

Fl-classifled is computed just from the flows that were admitted to the classification. This metric 
was mainly used across the detection proposal studies. 

2They occur due to the impossibility of feature computation—usually division by zero or short packet sequence. 
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Fl-all is computed from all flows in the dataset. The flows that were not admitted to the classification 
due to the filtration are assigned with a non-DoH prediction label—similarly, as it would be 
in the real deployment. 

Measurement of the Proposed Method 

A l l selected studies in Section 8.2 presented only a single DoH detector proposal except the proposed 
method, where three main classifier parts are presented. The 1) ML-based classification of all flows 
(further denoted as All Flow scenario), the 2) ML-based classification of flows that contain more 
than 120 packets (further denoted as Filtered scenario) for improving accuracy, and the 3) approach 
utilizes the M L model from the Filtered scenario for the creation of a DoH resolver blocklist. This 
blocklist is then used for classification, even very short flows (this approach is further denoted as a 
Simulation scenario). 

Since the proposed method presents the results of the three parts separately, three results are also 
compared. The All-flows and Filtered scenarios are directly comparable with all other approaches 
since they utilize ML-only. Nevertheless, the simulation scenario utilizes active probing and 
blocklist, giving the classifier a significant advantage in some test cases, which should be considered 
when interpreting the results. 
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Figure 8.3: Processed datasets that are used as input to answer defined research questions. 

8.4 Comparative Analysis 

The analysis is divided into six research questions (RQ) and thus also experiments. For each 
experiment, the methodology described in the previous Section 8.3 was followed. The created 
automated pipeline ensured no deviance in the methodology for each evaluated detection proposal 
to avoid any accidental mistakes and maintain comparable results. The results are presented in the 
following sections. 

8.4.1 RQ1: How effective is the proposed method compared to other DoH detection 
approaches on a lab-created dataset? 

This research question concerns the general reproducibility of the selected DoH detection proposals 
and the proposed method since all of them have been primarily evaluated using lab-created data. As 
demonstrated in Figure 8.3, the pre-split Generated Train part was used to train the models and then 
the Generated Holdout to test their performance. 

Results 

The results of the experiment are shown in the Figure 8.4. The experiment confirmed the reported 
performance of each proposal, and the excellent accuracy of the methods was achieved, often 
reaching up to a mean Fl-classified score of 0.99. The only exception that did not reach the expected 
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Figure 8.4: RQ1: The performance of DoH detection proposals trained on the generated dataset 
and tested on the generated dataset. The exact measured values of both F l scores are written under 
each column. The whiskers in the plot represent the standard deviation observed during different 
random seeds. 

accuracy was the Casanova et al. [21] who reported in their study an F l score of 0.987. Despite 
the increased effort spent in hyperparameter tuning and special care in model recreation, a slightly 
lower F l score of 0.93 with a very low standard deviation of 0.001 across the runs was achieved. 

As expected, the measured Fl -a l l performance shows a significant decrease compared to F l -
classified. The highest accuracy drop between the F l -a l l and Fl-classified experienced the proposed 
method Filtered, which discards flows shorter than 120 packets. Then followed by Vekshin et 
al. [129], who discard flow shorter than five payload packets. On the other hand, the proposed 
method Simulated showed the highest F l score on Fl -a l l where only a few flows were missed before 
correctly classifying all other flows. 

Answer RQ1: Almost all DoH detection approaches performed similarly well. There is no 
significant difference in the results. Even the all-flow scenario of the proposed method shows 
comparable performance to the other methods while working with only four features. However, the 
results are slightly lower together with Casanova et al. [21] and Vekshin et al. [129]. 

When looking at the F l -a l l measure, proposed method Simulated can be considered the most 
effective method, followed by other methods that use DoHLyzer as the datasource, namely Montaz-
eriShatoori [97], Mitsuhashi et al. [94], Behnke et al. [12] and Zebin et al. [138] since they perform 
minimal packet filtration. 
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8.4.2 RQ2: How effective is the proposed method compared to other DoH detection 
approaches on a real-world ISP dataset? 

This research question aimed to validate the accuracy of the approaches when working with real-
world data. As shown in Figure 8.3, a real-world dataset for both training and testing (holdout 
dataset) was used. 

Results 
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Figure 8.5: RQ2: The performance of DoH detection proposals trained and tested on real-world 
datasets. The exact measured values of both F l scores are written under each column. The whiskers 
in the plot represent the standard deviation observed during different random seeds. 

The results of the experiments depicted in Figure 8.5 confirm that the DoH detection proposals 
achieve excellent performance even on real-world data. Since real-world data contain less variability 
in the traffic because most of the DoH is serviced by two major DoH resolvers (see Section 6.2), an 
increase in mean Fl-classified scores across most of the proposals can be observed. Compared to 
generated data, Casanova et al. [21] achieved on real-world data similar accuracy as reported in their 
study. Only the proposed method in the simulation scenario with the active verification performed 
worse than in the case with generated data. 

Such performance drop is caused by the lack of long connections to some DoH resolvers. Due 
to the condition of minimal packets in the flow (at least 120) for maintaining reasonable accuracy, 
some flows are directly discarded and classified as non-DoH. Naturally, when there is no flow with 
at least 120 packets for some resolvers, these resolvers will always be falsely classified as non-DoH. 

When looking at the performance measured with Fl-a l l , it can be seen that by far the largest 
performance drop experienced by the proposed method in the Filtered scenario. This is caused by 
the shape of real-world traffic, where the majority of DoH connections are short. Similarly, Vekshin 
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et al. [129] missed a lot of DoH connections due to his prefiltration to flow with at least five payload 
packets. 

Answer RQ2: This experiment revealed that the DoH detection approaches are again very 
accurate in real-world datasets. Most of the approaches achieve almost absolute accuracy on F l -
classified. The slightly lower mean accuracy is achieved by Casanova et al. [21]. 

The proposed approach Simulated scenario suffers from many short connections that are present 
in the real network hence lowering accuracy since the short flows are skipped and not passed into the 
detection module, which is the cause of the lower accuracy of the detection technique. On the other 
hand, when considering the all-flow scenario of the proposed method the accuracy is comparable to 
the rest of the methods. 

Similarly, as in the previous RQ1 when considering Fl -a l l , the methods using the DoHLyzer 
data source outperform the Vekshin et al. [129] and proposed method Filtered since they are filtering 
more flows before passing into the classifier. However, the simplified features necessary for the 
proposed method all-flow scenario do not need to discard that much of flows in the real-world 
dataset and hence not lowering the overall accuracy when considering the F l -a l l case. 

Overall, the proposed method seems to outperform the other methods, given the simplicity of 
features needed for an equally accurate method. 

8.4.3 RQ3: How effective are DoH detectors trained on the lab-created datasets in 
real-world ISP deployment? 

This research question aims to evaluate the real-world usability of the detectors trained on the 
laboratory-generated dataset. To simulate this deployment setup, the trained part of the generated 
dataset was used for training, and all detectors were evaluated using the holdout part from the 
real-world dataset. 

Results 

The results are shown in the Figure 8.6. As can be seen, the models trained using the generated 
dataset are mostly struggling to classify DoH accurately, and most of them are unusable. The only 
approach that remains usable is the proposed method in filtering and simulation scenarios, as it 
achieves almost the same Fl-classified performance as in the previous case. The reason behind such 
a difference can be attributed to the strict filtering condition of at least 120 packets, where the DoH 
traffic shape became very distinctive. The traffic shape of shorter DoH flows is highly influenced by 
the TCP/TLS handshakes or HTTP/2 preface, and it is difficult to recognize DoH from other short 
HTTPS communication as discussed in previous Chapter 5 and Chapter 7. Since the datasets come 
from a different environment, the classifiers fail to generalize on short flows and misclassify them. 

The approach that also achieved far better performance than the others is the Casanova et al. [21] 
despite its lowered performance on generated holdout. The neural networks have low explainability, 
the reasons why it performed this way are unknown and hardly obtainable. 

Answer RQ3: As shown in our results, most of the plain ML-based methods are ineffective when 
trained in one environment and deployed in another. Therefore, the lab-created dataset must be used 
only as a benchmark and not in production. The deployment into the real world is not concerned by 
the DoH detector proposals, except for the proposed method, which also performed the best in this 
experiment with the Simulation scenario. 
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Figure 8.6: RQ3: The performance of DoH detection proposals trained using Generated dataset 
tested on the real-world dataset. The exact measured values of both F l scores are written under each 
column. The whiskers in the plot represent the standard deviation observed during different random 
seeds. 

8.4.4 RQ4: How effective are DoH detectors trained on both types of datasets (lab-
created and real-world mixed together) in detecting DoH traffic in real-world 
ISP deployment? 

The research question RQ4 aims to find out the influence of the generated dataset on real-world 
performance. The real-world dataset contains mainly two DoH resolvers (see Section 6.2). The data 
are similar to the real-world environment but lack the variability of the generated dataset. Therefore, 
the rare DoH resolvers might get misclassified as non-DoH. 

In this experiment, the training parts consist of a mix of the real world and generated dataset. 
The whole generated training dataset and 1/2 of the real-world training dataset were used. 

From the deployment perspective, this scenario can be seen from two angles. The first covers the 
case where a laboratory-created dataset exits, and the developers are planning to deploy the detector 
in the real network hence adding some traffic from the real network to the training set. On the other 
side, it could represent a case where real network traffic is captured with a limited amount of data, 
and the developers want to add the laboratory data (data from another environment) to provide more 
source data, possibly to make the model more robust. 

Results 

The results of the performed experiments are shown in the in Figure 8.7. As can be seen, the 
performance of the approaches experienced a small decrease in performance compared to the 
training on the real-world data only shown in Figure 8.5. The biggest decrease was experienced by 
the proposed method in the all-flow scenario. The drop can be attributed to only four features, which 
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Figure 8.7: RQ4: The performance of DoH detection proposals trained using generated dataset 
and 1/2 of real-world train dataset. Proposals were tested on the real-world holdout dataset. The 
exact measured values of both F l scores are written under each column. The whiskers in the plot 
represent the standard deviation observed during different random seeds. 

limits the capability of covering the nuances of the more complex dataset. However, the simulation 
scenario proves to be stable compared to training on real-world data only and achieves the same 
performance. Moreover, Casanova et al. [21] Bi-directional L S T M approach showed increased and 
more stable performance, which is now comparable to the other methods with the DoHLyzer data 
source. 

Answer RQ4: The experiment showed that the DoH approaches are still very effective. However, 
the mixture of the Real-World with the Generated dataset does not bring many benefits but rather 
slightly decreases the performance of most detectors in comparison to the case when trained on the 
real-world dataset only. 

The proposed method all-flow scenario decreased performance in this case, but the filtered and 
simulated scenarios seem to be unchanged. 

8.4.5 RQ5: Is data drift a significant phenomenon in the DoH detection task? 

Data drift is an important phenomenon that needs to be considered when designing the network 
detector. The longevity of detectors is an important parameter that depends on various factors, 
such as the detector design, underlying network infrastructure, or specific time in a year that causes 
different network traffic shapes or simply changes in the classified service itself. 

This research question tests the susceptibility of DoH detectors to data drift on the CESNET2 
network backbone environment. During the time between the captures, there was no change in the 
CESNET2 network or monitoring infrastructure, and thus the data drift originates from the traffic 
itself. The extreme case is studied here, where the training dataset was captured at least one year 
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before the evaluation data to test the longevity of the detectors truly. Therefore the train part of the 
real-world dataset was used for training, and for evaluation, the Additional 5-week dataset was used. 

Results 
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Figure 8.8: RQ5: The performance of proposed detectors trained on the real-world dataset and 
evaluated on the whole Additional 5-week dataset. The time difference between the training and 
testing dataset is at least one year. 

The results depicted in Figure 8.8 show an expected significant performance drop across all the 
approaches except the proposed method and Vekshin et al. [129] that proved to be more resistant to 
the longitudinal data drift and suffered only small or no performance degradation. Moreover, the 
proposed method in the simulation case very effectively mitigated the data drift with the adaptive 
blocklist approach. 

Compared to the proposed method and Vekshin et al. [129], the approaches using DoHLyzer 
as a data source proved to be more affected by the longitudinal data drift in both Fl-classified and 
Fl -a l l measures. 

Answer RQ5: Despite the extreme case of training and evaluation data captured more than a 
year apart. It can be concluded that some of the approaches still maintain high accuracy—Vekshin 
et al. [129] and the proposed method achieved an Fl-classified score over 0.95. Moreover, the 
detection method in the simulation scenario achieved almost absolute accuracy. Other approaches 
did not perform that well and are more prone to long-term data drift; however, they still achieved 
the Fl-classified score of over 0.5. 
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8.4.6 RQ6: How does DoH detection performance degrade over a month in real-
world ISP networks? 

The previous research question showed the extreme case of long data drift. This research question 
aims to examine the data drift over a single month. For this experiment, only the Additional 5-
week dataset was used. As shown in the Figure 8.3, the training and hyperparameter tuning were 
performed on the first week, the same way as described in Section 8.3, while the detectors were 
evaluated on the remaining weeks separately to observe the potential degradation in the classification 
performance. In the case of the simulation scenario of the proposed method, the blocklist was reset 
so that the evaluation for each weak starts with the empty blocklist. In this experiment, only the 
Fl-classified measure is presented. 

Results 

The per-week accuracy of each approach is shown in Figure 8.9. The common trend in performance 
changes. The high performance in Week 2, which then decreases in Week 3. In Week 4, there 
is a small increase, followed by a more noticeable decrease in Week 5. The last large decrease 
is common to all measured approaches and can be attributed to Christmas. Since the CESNET2 
network is mainly used by universities and research institutions in the Czech Republic, a public 
holiday such as Christmas often results in significant traffic shape and distribution changes due to a 
significantly lower amount of transferred data. 
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Figure 8.9: RQ6: Per-week Fl-classified performance of the DoH detectors trained on the Week 1 
of the Additional 5-week dataset. The whiskers in the plot represent the standard deviation observed 
during different random seeds. 

Most of the approaches performed with similar accuracy as reported in the original studies with 
Fl-classified scores over 0.99, with the exception of Vekshin et al. [129] and Casanova et al. [21]. 

The performance of Vekshin et al. [129] significantly drops in Week 3 and Week 5. This per
formance instability can be attributed to the smaller training set compared to previous experiments. 
The smaller set was probably fitted too well, and the model then struggled to deal with the network 
changes. 

Casanova et al. [21], as in previous cases, poses a large variance in the performance depending 
on the run. The Fl-classified score is similar to the one achieved on the generated dataset, which is 
0.05 lower than reported in the original study. 
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Answer RQ6: The experiments show that data drift in the short term does not significantly affect 
the performance of the classifiers, except for Vekshin et al. [129] and Casanova et al. [21]. 

The proposed method results show similar performance when compared to other methods based 
on the DoHLyzer data source. 

8.5 Discussion 

The existing ML-based detectors' performance was evaluated in different scenarios along with the 
proposed method. The best performing across the measured DoH detection proposals are tree-
based algorithms, with the exception of Casanova et al. [21], who considered neural networks only. 
However, the neural network showed a large variability in performance. Figure 8.10 depicts the 
overall Fl-classified performance across all the evaluated cases. The proposed method shows the 
most stable performance with the smallest deviation across all tested scenarios. Generally, the 
proposed method and Vekshin et al. [129] show a lower variance across the experiments. This 
can be attributed to additional flow filtration that the rest of the methods did not use. The other 
approaches based on the feature provided by DoHLyzer show similar performance and variance. 
Nevertheless, the detector proposed by Mitsuhasi et al. [94] achieved a slightly better performance 
than others. 
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Figure 8.10: Boxplot of the measured mean Fl-classified performances for each DoH detection 
proposal across experiments performed in RQ1-RQ5. The whiskers represent the minimum or 
maximum observed value. 

The results showed that the lab-created datasets can be far more challenging than the real-world 
ones. The DoH detectors achieved better performance when trained and tested on the real-world 
dataset compared to the generated one. Nevertheless, most of the M L models proved to be unusable 
in real-world deployment when trained on the lab-created dataset or generally when trained on the 
data from one particular computer network and deployed to a different one. 

The performance of the models in the RQ3 experiment (trained on the generated and evaluated 
on real-world datasets) differed vastly. Detectors that performed better in RQ1 and RQ2 (trained and 
evaluated on similar network data) failed when used with data from different network environments. 
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More simple but generally less accurate models (in order of 0.01 of F l score) showed higher 
transferability. Moreover, they can handle really long time between training and deployment due to 
lower overfitting and higher generalization. 

The data drift (caused by the old training set) can be considered a relatively small problem in the 
case of DoH detection. Detectors, even one year after training, showed relatively good performance. 
Nevertheless, most models should be retrained more often—at least once a month to maintain the 
accuracy over time. Nevertheless, the models should be trained on a sufficient amount of data to 
mitigate the effect observed with Vekshin et al. [129], which failed to generalize and showed a 
significant performance variability when trained on data from a single week. 

Moreover, the results show that the proposed approaches utilizing a similar set of features 
extracted by the same DoHLyzer tool have almost the same performance in every test except for 
Casanova et al. [21]. The approaches focused mostly on algorithm tuning methods with little 
deviance in the preprocessing phase, such as scaling or sampling involved, bringing almost no 
benefits. Those can be considered more model-centric approaches. On the other hand, the other 
approaches, including Vekshin et al. [129] and the proposed method, show different characteristics 
and better generalization, and those can be taken as more data-centric. 

The combination of three detection stages of the proposed method where the ML-based detector 
is deployed together with the blocklist shows superior performance over ML-based only proposals. 
It can detect even single-query flows, which are considered a major challenge by the survey from 
Hynek et al. [62]. However, small and private DoH resolvers used stealthily (with very short DoH 
connections, e.g., for Command & Control server access) would still be missed even with current 
solutions. 

Machine learning methods are powerful and can help solve the problems such as DoH detection. 
However, their sole deployment in computer networks has a downside of high inaccuracy when con
sidering high bandwidth environments, potentially creating an immense amount of false positives 
and also skipping at least ~ 25% of the flows that are not covered by the methods. The combina
tion of machine learning methods with other mechanisms using the advantage of the deployment 
environment can help create a more practical solution. 

The proposed method relies on a minimal feature vector that is lightweight to compute and can 
be obtained from any flow monitoring device (including switches and firewalls), which makes the 
solution far more deployable than the other compared methods. The other methods rely on features 
that cannot be extracted efficiently in high-speed networks, potentially limiting the applicability 
of the methods to smaller networks. Moreover, the proposed method provides the advantage of 
maintaining stable high accuracy in environments where frequent retraining is not feasible (e.g., due 
to privacy policies preventing frequent and automatic traffic captures). 
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Chapter 9 

Conclusion 

DNS over HTTPS is a privacy technology that brings encryption to DNS protocol by encapsulating 
unencrypted DNS messages into encrypted HTTPS. The DoH standardized in October 2018 has 
already gained adoption among users and service providers. The implementation is present in the 
majority of web browsers, proxies, and operating systems, and when present, it is enabled as a 
default option for DNS resolution. It is not the only proposed protocol that aims to bring encryption 
to DNS; several other protocols exist, such as DNS over TLS and recently standardized DNS over 
QUIC. Compared to other DNS over Encryption alternatives, DoH is designed to blend into other 
HTTPS traffic. On one side desired privacy-preserving feature for users, on the other side, it leaves 
network operators unaware of its presence, representing a potential security risk. 

Since its proposal, DoH has been studied by several research teams from various perspectives, 
including performance measurements, comparing the protocol with other alternatives, and identify
ing the bottlenecks decreasing resolution efficiency. Privacy and security were other areas that were 
studied, including correlation attacks, DoH detection, and malicious DoH tunnel detection. Many 
works were published trying to solve the last two tasks using machine learning methods. However, 
most of the works only briefly studied the DoH protocol characteristics and rather inclined to a 
model-centric approach tuning the machine learning detection algorithms on the limited published 
datasets. The published methods claimed high accuracy but paid little attention to the practicality 
of the solution utilizing complex attributes, making the solution broadly impractical or very limited. 

This work aimed to propose a reliable DoH detection method with a special emphasis on the 
practicality of the final solution and its broad applicability. The design of the detection method 
also relies on machine learning, but the work inclines more to a data-centric concept of machine 
learning. The work focuses on a thorough understanding of the protocol characteristics to create 
quality and comprehensive datasets and design effective detection method. 

At first, the well-known DoH resolvers were studied as a representative sample of one side 
of the DoH ecosystem. The results showed the security and privacy gaps present in a portion of 
resolvers that further motivate the regulation of the resolvers by network operators. Moreover, it 
uncovered characteristics such as header sizes and EDNS padding strategies used by resolvers that 
create variability in packet sizes influencing the traffic shape of the DoH communication. Gain 
knowledge was used to improve methodologies and better identify subjects of traffic analysis. 

Several measurements filling the gaps of existing works were conducted studying single DoH 
flows that can be used by small applications such as malware trying to hide their activities or 
analysis of the traffic characteristics towards multiple resolvers. The single flow analysis uncovered 
a minimum number of packets necessary to transmit one request/response pair. Analysis of DoH 
traffic characteristics showed that DoH creates longer connections consisting of more packets with 
less average size than other HTTPS traffic. DoH resolvers can be distinguished by the sizes given, 
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mainly by the header sizes they are using. The analysis of the most used dataset CIRA-CIC-
DoHBrw-2020 or the other dataset published by Vekshin et al. [128] showed their limited variability 
and amount of DoH traces that could be improved. The analysis helped determine the characteristics 
of DoH, and this knowledge was used to create more comprehensive datasets to propose a DoH 
detection method and to verify it. Several datasets were created, published, and used in this work. 

Analysis, datasets, and supportive tools were complementary goals of this thesis, providing a 
necessary background supporting the main goals, which consist of proposing a reliable detection 
method and its testing. The proposed method is designed to work with a limited data source extracted 
by a broadly deployed flow monitoring infrastructure. The machine learning model is combined 
with filtration and block lists to improve the system's general applicability and higher accuracy. The 
combination of methods showed to be necessary considering high throughput networks generating 
high false positive numbers when relying solely on machine learning. 

The proposed solution was subject to testing along with other similar state-of-the-art methods 
in six different scenarios. The methodologies and proposed methods were recreated, trained, and 
tested on the same comprehensive collection of datasets created in this work to provide a fair 
comparison of the approaches. The scenarios were designed to test various aspects of the solutions, 
including real-world applicability, generalization, or longevity of the trained models. The proposed 
detection method showed the highest stability across all tested scenarios while providing very high 
accuracy capable of covering all flows. Compared to other approaches, the proposed method uses 
only four features that are lightweight and can be extracted from most currently deployed monitoring 
infrastructures, even on high speed and backbone networks. The other approaches are designed to 
work with complex and hard-to-compute statistical flow features that can not be computed on running 
sequences, limiting their applicability. Moreover, the other approaches tend to fit the environment 
well, showing a low generalization capability. 

The sole usage of machine learning shows its limits in this network detection task, where 
even high-accuracy models produce a high amount of false positives over time, potentially over
whelming network operators. The machine learning method combined together with other more 
exact commonly used approaches in computer networks, including filtration and blocklists, show 
superior performance when combined together over sole machine learning solution. Moreover, the 
work shows that domain knowledge helps to create more comprehensive datasets and helps design 
effective solution. The proposed method solves the problem of DoH detection addressing practi
cability, lightweigthness, compatibility with existing infrastructures, stability, generalization among 
networks, and high accuracy, limiting the number of false positives. The method even solves the 
problem with the detection of short flows. Hence, the solution is considered satisfactory, fulfilling 
the goals set at the beginning of this thesis. 

94 



Bibliography 

[1] A A S , J., B A R N E S , R., C A S E , B . , DURUMERIC, Z . , E C K E R S L E Y , R et al. Let's Encrypt: an 
automated certificate authority to encrypt the entire web. In: Proceedings of the 2019 ACM 
SIGSAC Conference on Computer and Communications Security. 2019, p. 2473-2487. 

[2] A D G U A R D . Known DNS Providers. Accessed: January 2023. Available at: https://adguard-
dns.io/kb/general/dns-providers/. 

[3] AFFINITO, A. , BOTTA, A . and V E N T R E , G . Local and Public DNS Resolvers: do you trade 
off performance against security? In: IEEE. 2022 IFIP Networking Conference (IFIP 
Networking). 2022, p. 1-9. 

[4] A I T K E N , P., C L A I S E , B . and T R A M M E L L , B . Specification of the IP Flow Information Export 
(IPFIX) Protocol for the Exchange of Flow Information [RFC 7011]. 7011. September 2013. 
Available at: https://www.rfc-editor.org/info/rfc7011. 

[5] A L A H M A D I , B . A. , A X O N , L . and MARTINOVIC, I. 99% False Positives: A Qualitative Study 
of {SOC} Analysts' Perspectives on Security Alarms. In: 31st USENIX Security Symposium 
(USENIX Security 22). 2022, p. 2783-2800. 

[6] A L E N E Z I , R. and LUDWIG, S. A . Classifying DNS tunneling tools for malicious DoH traffic. 
In: IEEE. 2021 IEEE Symposium Series on Computational Intelligence (SSCI). 2021, p. 1-9. 

[7] AUTHORS, T. C. Chromium code search: doh_provider_entry.cc. Accessed: June 
2021. Available at: https: //source.chromium.org/chromium/chromium/src/+/master: 
net/dns/public/doh_provider_entry.cc. 

[8] B A H E U X , K . A safer and more private browsing experience on Android with Secure DNS. 
Accessed: May 2021. Available at: https://blog.chromium.org/2020/09/a-safer-and-
more-private-browsing.html. 

[9] B A H E U X , K . A safer and more private browsing experience with Secure DNS. Accessed: May 
2021. Available at: https://blog.chromium.org/2020/05/a-safer-and-more-private-
browsing-DoH.html. 

[10] B A N A D A K I , Y. M . and ROBERT, S. Detecting malicious dns over https traffic in domain name 
system using machine learning classifiers. Journal of Computer Sciences and Applications. 
2020, vol. 8, no. 2, p. 46-55. 

[11] BASSO, S. Measuring DoT/DoH blocking using OONI probe: a preliminary study. In: NDSS 
DNS Privacy Workshop. 2021. 

95 

https://adguard-
https://www.rfc-editor.org/info/rfc7011
http://chromium.org/chromium/
https://blog.chromium.org/2020/09/a-safer-and-
https://blog.chromium.org/2020/05/a-safer-and-more-private-


[12] B E H N K E , M . , BRINER, N . , C U L L E N , D., SCHWERDTFEGER, K . , W A R R E N , J . et al. Feature 

engineering and machine learning model comparison for malicious activity detection in the 
dns-over-https protocol. IEEE Access. IEEE. 2021 , vol. 9, p. 129902-129916 . 

[13] B E L S H E , M . , PEON, R. and THOMSON, M . Hypertext Transfer Protocol Version 2 (HTTP/2) 
[RFC 7540] . 7540. May 2015 . Available at: https://www.rfc-editor.org/info/rfc7540. 

[14] BOTTGER, T , C U A D R A D O , F , ANTICHI, G., FERNANDES, E. L . , T Y S O N , G. et al. An Empir
ical Study of the Cost of DNS-over-HTTPS. In: Proceedings of the Internet Measurement 
Conference. 2019 , p. 1 5 - 2 1 . 

[15] B O U T A B A , R., SALAHUDDIN, M . A. , L I M A M , N . , A Y O U B I , S., SHAHRIAR, N . et al. A com
prehensive survey on machine learning for networking: evolution, applications and research 
opportunities. Journal of Internet Services and Applications. Springer. 2018 , vol. 9, no. 1, 
p. 1-99. 

[16] B U M A N G L A G , K . and KETTANI , H . On the impact of DNS over HTTPS paradigm on cy
ber systems. In: IEEE. 2020 3rd International Conference on Information and Computer 
Technologies (ICICT). 2020, p. 4 9 4 - 1 9 9 . 

[17] BURNETT, S., C H E N , L . , CREAGER, D. A. , EFIMOV, M . , GRIGORIK, I. et al. Network error 

logging: Client-side measurement of end-to-end web service reliability. In: 17th USENIX 
Symposium on Networked Systems Design and Implementation (NSDI20). 2020 , p. 9 8 5 - 9 9 8 . 

[18] BUSHART, J . and Rossow, C. Padding ain't enough: Assessing the privacy guarantees of 
encrypted {DNS}. In: 10th USENIX Workshop on Free and Open Communications on the 
Internet (FOCI 20). 2020 . 

[19] C A L L E J O , P., B A G N U L O , M . , RUIZ, J . G., L U T U , A. , G A R C I A M A R T I N E Z , A . et al. Measuring 
DoH with web ads. Computer Networks. Elsevier. 2022 , vol. 212 , p. 109046. 

[20] C A L L E J O , P., C U E V A S , R., V A L L I N A RODRIGUEZ, N . and R U M I N , A. C. Measuring the global 
recursive DNS infrastructure: a view from the edge. IEEE Access. IEEE. 2019 , vol. 7, 
p. 168020-168028 . 

[21] CASANOVA, L . F G. and L I N , P-C. Generalized classification of DNS over HTTPS traffic with 
deep learning. In: IEEE. 2021 Asia-Pacific Signal and Information Processing Association 
Annual Summit and Conference (APSIPA ASC). 2021 , p. 1 9 0 3 - 1 9 0 7 . 

[22] C H A K R A B O R T Y , G. and K R I S H N A , M . Analysis of unstructured data: Applications of text 
analytics and sentiment mining. In: SAS global forum. 2014, p. 1288-2014 . 

[23] C H A W L A , N . V . , BOWYER, K . W , H A L L , L . O. and K E G E L M E Y E R , W . P. SMOTE: synthetic 
minority over-sampling technique. Journal of artificial intelligence research. 2002 , vol. 16, 
p. 3 2 1 - 3 5 7 . 

[24] C H H A B R A , R., M U R L E Y , P., K U M A R , D., B A I L E Y , M . and W A N G , G. Measuring DNS-

over-HTTPS performance around the world. In: Proceedings of the 21st ACM Internet 
Measurement Conference. 2021 , p. 3 5 1 - 3 6 5 . 

[25] C I M P A N U , C. Apple adds support for encrypted DNS (DoH and DoT). Accessed: May 2021. 
Available at: https://www.zdnet.com/article/apple-adds-support-for-encrypted-
dns-doh-and-dot/. 

96 

https://www.rfc-editor.org/info/rfc7540
https://www.zdnet.com/article/apple-adds-support-for-encrypted-


[26] Cisco. Umbrella Popularity List. Accessed: May 2019. Available at: http://s3-us-west-
1.amazonaws.com/umbrella-static/top-lm.csv.zip. 

[27] Cisco SYSTEMS, INC.. NetFlow Export Datagram Format. September 2007 . Ac
cessed: December 2022. Available at: https://www.cisco.eom/c/en/us/td/docs/net_mgmt/ 
netflow_collection_engine/3-6/user/guide/format.html. 

[28] C L A I S E , B . Cisco Systems NetFlow Services Export Version 9 [ R F C 3954] . 3954. October 
2004. Available at: https://doi.org/10.17487/RFC3954. 

[29] C L O U D F L A R E . Using JSON. Accessed: May 2021. Available at: h t tps : / / 
developers.cloudflare.com/l.l.l.l/dns-over-https/j son-format/. 

[30] CRICHTON, K. , CHRISTIN, N . and C R A N O R , L . F . HOW do home computer users browse the 
web? ACM Transactions on the Web (TWEB). A C M New York, NY. 2021 , vol. 16, no. 1, 
p. 1-27. 

[31] CSIKOR, L. , SINGH, H. , K A N G , M . S. and D I V A K A R A N , D. M . Privacy of DNS-over-HTTPS: 
Requiem for a Dream? In: IEEE. 2021 IEEE European Symposium on Security and Privacy 
(EuroS&P). 2021 , p. 2 5 2 - 2 7 1 . 

[32] D A H A N A Y A K A , T., W A N G , Z . , JOURJON, G . and SENEVIRATNE, S. Inline Traffic Analysis 
Attacks on DNS over HTTPS. In: IEEE. 2022 IEEE 47th Conference on Local Computer 
Networks (LCN). 2022 , p. 132 -139 . 

[33] D A M A S , J., G R A F F , M . and V I X I E , P. Extension Mechanisms for DNS (EDNS(0)). Data-
tracker.Ietf.Org, 2013 . Available at: https://datatracker.ietf.org/doc/html/rfc6891. 

[34] D A V I D P. WIGGINS, I. XVFB. 2010 . Accessed: September 2021. Available at: https: 
//www.x.org/releases/XllR7.6/doc/man/manl/Xvfb.l.xhtml. 

[35] DECCIO, C. and DAVIS, J. DNS privacy in practice and preparation. In: Proceedings of 
the 15th International Conference on Emerging Networking Experiments And Technologies. 
2019, p. 1 3 8 - 1 4 3 . 

[36] D E C K E L M A N N , S. Firefox continues push to bring DNS over HTTPS by default for US users. 
Accessed: May 2021. Available at: https://blog.mozilla.org/blog/2020/02/25/firefox-
continues-push-to-bring-dns-over-https-by-def\ault-for-us-users/. 

[37] DIERKS, T. and RESCORLA, E. The transport layer security (TLS) protocol version 1.2. R F C 
5246, August. 2008 . 

[38] DING, S., Z H A N G , D., G E , J., Y U A N , X . and Du, X . Encrypt DNS traffic: automated feature 
learning method for detecting DNS tunnels. In: IEEE. 2021 IEEE Intl Conf on Parallel 
& Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable 
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/Social-
Com/SustainCom). 2021 , p. 3 5 2 - 3 5 9 . 

[39] D N S C R Y P T . List of public DoH and DNSCrypt servers. Accessed: January 2023. Available at: 
https: / /dnscrypt.info/public- servers/. 

[40] D O A N , T. V . , FRIES, J. and BAJPAI, V . Evaluating public DNS services in the wake of increasing 
centralization of DNS. In: IEEE. 2021IFIP Networking Conference (IFIP Networking). 2021 , 
p. 1-9. 

97 

http://s3-us-west-
http://amazonaws.com/umbrella-
https://www.cisco.eom/c/en/us/td/docs/net_mgmt/
https://doi.org/10.17487/RFC3954
https://datatracker.ietf.org/doc/html/rfc6891
http://www.x.org/releases/XllR7.6/doc/man/manl/Xvfb.l.xhtml
https://blog.mozilla.org/blog/2020/02/25/firef


[41] Du, X . , L iu , D., DING, S., L iu , Z . , Y U A N , X . et al. Design of an Autoencoder-based Anomaly 
Detection for the DoH traffic System. In: IEEE. 2022 IEEE 25th International Conference 
on Computer Supported Cooperative Work in Design (CSCWD). 2022 , p. 7 6 3 - 7 6 8 . 

[42] FEDERRATH, H. , FUCHS, K.-P., H E R R M A N N , D. and PIOSECNY, C . Privacy-preserving DNS: 
analysis of broadcast, range queries and mix-based protection methods. In: Springer. Com
puter Security-ESORICS 2011: 16th European Symposium on Research in Computer Secu
rity, Leuven, Belgium, September 12-14, 2011. Proceedings 16. 2011 , p. 6 6 5 - 6 8 3 . 

[43] FIELDING, R., GETTYS, J., M O G U L , J., F R Y S T Y K , H. , MASINTER, L . et al. RFC 2616: Hypertext 

transfer protocol-HTTP/1.1, June 1999. Status: Standards Track. 1999, vol. 1, no. 11, 
p . 1 8 2 9 - 1 8 4 1 . 

[44] G A R C Í A , S., BOGADO, J., H Y N E K , K. , V E K S H I N , D., Č E J K A , T. et al. Large scale analysis of doh 
deployment on the internet. In: Springer. European Symposium on Research in Computer 
Security. 2022 , p. 1 4 5 - 1 6 5 . 

[45] G A R C Í A , S., H Y N E K , K. , V E K S H I N , D., Č E J K A , T. and WASICEK, A . Large scale measurement 
on the adoption of encrypted DNS. ArXiv preprint arXiv:2107.04436. 2021 . 

[46] GOOGLE. Privacy best practices. Accessed: September 2021. Available at: https: 
//developers.google.com/speed/public-dns/docs/doh#privacy_best_practices. 

[47] H A N , J., PEI, J. and TONG, H. Data mining: concepts and techniques. Morgan Kaufmann, 
2022 . 

[48] HARRIS , G . and RICHARDSON, M . PCAP Capture File Format. Internet-Draft draft-gharris-
opsawg-pcap-02. Internet Engineering Task Force, June 2021 . Work in Progress. Available 
at: https://datatracker.ietf.org/doc/html/draft-gharris-opsawg-pcap-02. 

[49] H O F F M A N , P. Representing DNS Messages in JSON. Datatracker.Ietf.Org, 2020 . Available 
at: https://datatracker.ietf.org/doc/rfc8427/. 

[50] H O F F M A N , P. and M C M A N U S , P. History For Draft IETF DOH-DNS-Over-HTTPS-14. 
Datatracker.Ietf.Org, 2019. Available at: https://datatracker.ietf.org/doc/rfc8484/ 
history/ . 

[51] H O F F M A N , P. E. and M C M A N U S , P. DNS Queries over HTTPS (DoH) [RFC 8484] . 8484. 

October 2018 . 

[52] HOFSTEDE, R., BARTOS, V , SPEROTTO, A . and PRAS, A. Towards real-time intrusion detection 
for NetFlow and IPFIX. In: IEEE. Proceedings of the 9th International Conference on 
Network and Service Management (CNSM 2013). 2013 , p. 2 2 7 - 2 3 4 . 

[53] HOFSTEDE, R., ČELEDA, P., T R A M M E L L , B . , D R A G O , L, SADRE, R. et al. Flow monitoring 
explained: From packet capture to data analysis with netflow and ipfix. IEEE Communications 
Surveys & Tutorials. IEEE. 2014 , vol. 16, no. 4 , p. 2 0 3 7 - 2 0 6 4 . 

[54] HOUNSEL, A. , BORGOLTE, K , SCHMITT, P., H O L L A N D , J. and FEAMSTER, N . Analyzing the 

costs (and benefits) of DNS, DoT, and DoH for the modern web. In: Proceedings of the 
applied networking research workshop. 2019 , p. 2 0 - 2 2 . 

98 

https://datatracker.ietf.org/doc/html/draft-gharris-opsawg-pcap-02
https://datatracker.ietf.org/doc/rfc8427/
https://datatracker.ietf.org/doc/rfc8484/


[55] HouNSEL, A. , BORGOLTE, K. , SCHMITT, P., H O L L A N D , J. and FEAMSTER, N . Comparing the 
effects of DNS, DoT, and DoH on web performance. In: Proceedings of The Web Conference 
2020. 2020, p. 562-572. 

[56] HOUNSEL, A. , SCHMITT, P., BORGOLTE, K. and FEAMSTER, N . Can encrypted dns be fast? 

In: Springer. Passive and Active Measurement: 22nd International Conference, PAM 2021, 
Virtual Event, March 29-April 1, 2021, Proceedings 22. 2021, p. 444-459. 

[57] Hu, Z., Z H U , L . , H E I D E M A N N , J., M A N K I N , A. , WESSELS, D. et al. Specification for dns over 
transport layer security (tls). IETF RFC7858, May. 2016. 

[58] H U A N G , Q., C H A N G , D. and L i , Z. A Comprehensive Study of {DNS-over-HTTPS} Down
grade Attack. In: 10th USENIX Workshop on Free and Open Communications on the Internet 
(FOCI 20). 2020. 

[59] Hue, M . How to enable DNS over HTTPS (DoH) on Windows 11. November 2022. 
Accessed: December 2022. Available at: https://pureinfotech.com/enable-dns-over-
https-windows-11/. 

[60] H U I T E M A , C , DICKINSON, S. and M A N K I N , A . DNS over Dedicated QUIC Connections. 
Datatracker.Ietf.Org, 2022. Available at: https://datatracker.ietf.org/doc/rfc9250/. 

[61] H Y N E K , K. and Č E J K A , T. Privacy illusion: Beware of unpadded DoH. In: IEEE. 2020 11th 
IEEE Annual Information Technology, Electronics and Mobile Communication Conference 
(IEMCON). 2020, p. 0621-0628. 

[62] H Y N E K , K. , V E K S H I N , D., L U X E M B U R K , J., Č E J K A , T. and WASICEK, A . Summary of DNS 

overhttps abuse. IEEE Access. IEEE. 2022, vol. 10, p. 54668-54680. 

[63] IYENGAR, J . and THOMSON, M . RFC 9000 QUIC: A UDP-based multiplexed and secure 
transport. Omtermet Emgomeeromg Task Force. 2021. 

[64] JARRAHI, M . H. , M E M A R I A N I , A. and G U H A , S. The Principles of Data-Centric AI. Commu
nications of the ACM. A C M New York, NY, USA. 2023, vol. 66, no. 8, p. 84-92. 

[65] JEŘÁBEK, K. , H Y N E K , K. , Č E J K A , T. and R Y S A V Ý , O. Collection of datasets with DNS over 
HTTPS traffic. Data in Brief. Elsevier. 2022, vol. 42, p. 108310. 

[66] J E R A B E K , K. , H Y N E K , K. , RYSAVÝ, O. and BURGETOVA, I. DNS over HTTPS Detection Using 
Standard Flow Telemetry. IEEE Access. IEEE. 2023. 

[67] JEŘÁBEK, K. and RYSAVÝ, O. Big data network flow processing using Apache Spark. In: Pro
ceedings of the 6th conference on the engineering of computer based systems. 2019, p. 1-9. 

[68] J E R A B E K , K. , RYSAVÝ, O. and BURGETOVA, I. Measurement and characterization of DNS over 
HTTPS traffic. ArXiv preprint arXiv:2204.03975. 2022. 

[69] J E R A B E K , K. , RYSAVÝ, O. and BURGETOVA, I. Analysis of Well-Known DNS over HTTPS 
Resolvers. In: IEEE. 2023 IEEE 13th Annual Computing and Communication Workshop and 
Conference (CCWC). 2023, p. 0516-0524. 

[70] JEŘÁBEK, K., H Y N E K , K. and RYSAVÝ, O. Five-week DoH Dataset collected on ISP backbone 
lines. Zenodo, september 2023. DOI: 10.528l/zenodo.8348773. Available at: https: 
//doi.org/10.5281/zenodo. 8348773. 

99 

https://pureinfotech.com/enable-dns-over-
https://datatracker.ietf.org/doc/rfc9250/


[71] JEŘÁBEK, K . and STUCHLÝ, S. DNS Over HTTPS network traffic. IEEE Dataport, 2021. DOI: 
10.21227/96ea-2055. Available at: https://dx.doi.org/10.21227/96ea-2055. 

[72] JHA, H. , PATEL, I., L i , G . , CHERUKURI , A . K . and T H A S E E N , S. Detection of Tunneling in 
DNS over HTTPS. In: IEEE. 2021 7th International Conference on Signal Processing and 
Communication (ICSC). 2021, p. 42-41. 

[73] KHODJAEVA, Y., ZINCIR HEYWOOD, N . and ZINCIR, I. Can We Detect Malicious Behaviours 
in Encrypted DNS Tunnels Using Network Flow Entropy? Journal of Cyber Security and 
Mobility. 2022, p. 461-196. 

[74] K I N N E A R , E., M C M A N U S , P., P A U L Y , T , V E R M A , T. and WOOD, C. Oblivious DNS over HTTPS. 
Datatracker.Ietf.Org, 2022. Available at: https://datatracker.ietf.org/doc/rfc9230/. 

[75] KONOPA, M . , F E S L , J., JELÍNEK, J., FESLOVÁ, M . , C E H Á K , J . et al. Using machine learning for 
DNS over HTTPS detection. In: Proc. 19th Eur. Conf. Cyber Warfare. 2020, p. 205. 

[76] K O S E K , M . , D O A N , T. V . , G R A N D E R A T H , M . and BAJPAI, V . One to rule them all? a first 
look at dns over quic. In: Springer. International Conference on Passive and Active Network 
Measurement. 2022, p. 537-551. 

[77] K O S E K , M . , S C H U M A N N , L . , M A R X , R., D O A N , T. V . and BAJPAI, V . DNS privacy with speed? 
evaluating DNS over QUIC and its impact on web performance. In: Proceedings of the 22nd 
ACM Internet Measurement Conference. 2022, p. 44-50. 

[78] K W A N , C , JANISZEWSKI, P., Qiu, S., W A N G , C. and BOCOVICH, C. Exploring simple detection 

techniques for DNS-over-HTTPS tunnels. In: Proceedings of the ACM SIGCOMM 2021 
Workshop on Free and Open Communications on the Internet. 2021, p. 31-42. 

[79] L E B L A N C , B. Announcing Windows 10 Insider Preview Build 19628. Accessed: May 2021. 
Available at: https://blogs.windows.com/windows-insider/2020/05/13/announcing-
windows-10-insider-preview-build-19628/. 

[80] L i , B., H E , S., PENG, H. , Z H A N G , E. and X I N , J . Detecting DoH tunnels with privacy protection 
using federated learning. In: SPIE. International Conference on Network Communication 
and Information Security (ICNIS2021). 2022, vol. 12175, p. 133-141. 

[81] L i , Y., DANDOUSH, A . and Liu , J . Evaluation and Optimization of learning-based DNS 
over HTTPS Traffic Classification. In: IEEE. 2021 International Symposium on Networks, 
Computers and Communications (ISNCC). 2021, p. 1-6. 

[82] LIPTON, Z . C. and STEINHARDT, J . Research for practice: troubling trends in machine-learning 
scholarship. Communications of the ACM. A C M New York, NY, USA. 2019, vol. 62, no. 6, 
p. 45-53. 

[83] Lu , C , L iu , B., L I , Z . , H A O , S., D U A N , H. et al. An end-to-end, large-scale measurement of 
dns-over-encryption: How far have we come? In: Proceedings of the Internet Measurement 
Conference. 2019, p. 22-35. 

[84] Luo, M . , Y A O , Y , X I N , L . , J IANG, Z . , W A N G , Q. et al. Measurement for encrypted open 
resolvers: Applications and security. Computer Networks. Elsevier. 2022, vol. 213, p. 109081. 

100 

https://dx.doi.org/10.21227/96ea-2055
https://datatracker.ietf.org/doc/rfc9230/
https://blogs.windows.com/windows-insider/2020/05/13/announcing-


[85] L U X E M B U R K , J. and C E J K A , T. Fine-grained TLS services classification with reject option. 
Computer Networks. Elsevier. 2023 , vol. 220 , p. 109467. 

[86] L Y U , M . , G H A R A K H E I L I , H . H. and S I V A R A M A N , V . A survey on DNS encryption: Current 
development, malware misuse, and inference techniques. ACM Computing Surveys. A C M 
New York, NY. 2022 , vol. 55 , no. 8, p. 1-28. 

[87] MAJESTIC. The Majestic Million. 2021 . Accessed: July 2021. Available at: h t tps : / / 
majestic.com/reports/majestic-million. 

[88] M A L E K G H A I N I , N . , A K B A R I , E., SALAHUDDIN, M . A. , L I M A M , N . , B O U T A B A , R. et al. Deep 

learning for encrypted traffic classification in the face of data drift: An empirical study. 
Computer Networks. Elsevier. 2023 , vol. 225 , p. 109648. 

[89] M A Y R H O F E R , A . The EDNS(0) Padding Option. Datatracker.Ietf.Org, 2016. Available at: 
https://datatracker, ietf.org/doc/html/rfc7830. 

[90] M A Y R H O F E R , A . Padding Policies for Extension Mechanisms for DNS (EDNS (0)). Internet 
Requests for Comments, IETF, RFC. 2018 , vol. 8467. 

[91] M B E W E , E. S. and C H A V U L A , J. On QoE impact of DoH and DoT in Africa: Why a user's DNS 
choice matters. In: Springer. Towards new e-Infrastructure and e-Services for Developing 
Countries: 12th EAI International Conference, AFRICOMM 2020, Ebene City, Mauritius, 
December 2-4, 2020, Proceedings 12. 2021 , p. 2 8 9 - 3 0 4 . 

[92] M I T C H E L L , T. M . Machine learning. 1997'. 

[93] MITSUHASHI, R., JIN, Y , IIDA, K. , SHINAGAWA, T. and T A K A I , Y. Malicious DNS Tunnel 
Tool Recognition using Persistent DoH Traffic Analysis. IEEE Transactions on Network and 
Service Management. IEEE. 2022. 

[94] MITSUHASHI, R., JIN, Y , IIDA, K. , SHINAGAWA, T. and T A K A I , Y. Detection of DGA-
based Malware Communications from DoH Traffic Using Machine Learning Analysis. In: 
IEEE. 2023 IEEE20th Consumer Communications & Networking Conference (CCNC). 2023 , 
p. 2 2 4 - 2 2 9 . 

[95] MOCKAPETRIS , P. Domain names - implementation and specification [RFC 1035]. 1035. 
November 1987. Available at: https://www.rfc-editor.org/info/rfcl035. 

[96] MONTAZERISHATOORI, M . , DAVIDSON, L . , K A U R , G . and L A S H K A R I , A. H. CIRA-CIC-
DoHBrw-2020. Accessed: May 2022. Available at: https://www.unb.ca/cic/datasets/ 
dohbrw-2020.html. 

[97] MONTAZERISHATOORI, M . , DAVIDSON, L. , K A U R , G . and L A S H K A R I , A. H. Detection of doh 
tunnels using time-series classification of encrypted traffic. In: IEEE. 2020 IEEE Intl Conf 
on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and 
Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and 
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). 2020 , p. 6 3 - 7 0 . 

[98] M O O R E , A. , Z U E V , D. and C R O G A N , M . Discriminators for use in flow-based classification. 
2013 . 

101 

http://majestic.com/reports/majestic-million
https://datatracker
http://ietf.org/doc/html/rfc7830
https://www.rfc-editor.org/info/rfcl035
https://www.unb.ca/cic/datasets/


[99] M O O R E , A . W. and Z U E V , D. Internet traffic classification using bayesian analysis techniques. 
In: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement 
and modeling of computer systems. 2005, p. 50-60. 

[100] M O U R E GARRIDO, M . , C A M P O , C . and G A R C I A RUBIO, C . Detecting Malicious Use of DoH 
Tunnels Using Statistical Traffic Analysis. In: Proceedings of the 19th ACM International 
Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks. 
2022, p. 25-32. 

[101] M O Z I L L A . Bug 1543811: EDNS Padding support for encrypted DNS transports. Accessed: 
May 2021. Available at: https://bugzilla.mozilla.org/show_bug.cgi?id=1543811. 

[102] M Ü H L H A U S E R , M . , PRIDÖHL, H. and H E R R M A N N , D. HOW private is Android's private DNS 
setting? Identifying apps by encrypted DNS traffic. In: Proceedings of the 16th International 
Conference on Availability, Reliability and Security. 2021, p. 1-10. 

[103] M U R P H Y , K. P. Machine learning: a probabilistic perspective. MIT press, 2012. 

[104] N A M D E V , N , A G R A W A L , S. and SILKARI , S. Recent advancement in machine learning based 
internet traffic classification. Procedia Computer Science. Elsevier. 2015, vol. 60, p. 784-791. 

[105] N G U Y E N , T. A . and P A R K , M . Doh tunneling detection system for enterprise network using 
deep learning technique. Applied Sciences. MDPI. 2022, vol. 12, no. 5, p. 2416. 

[106] N I A K A N L A H I J I , A. , ORLOWSKI, S., V A H I D , A . and JAFARIAN, J. H . Toward practical defense 
against traffic analysis attacks on encrypted DNS traffic. Computers & Security. Elsevier. 
2023, vol. 124, p. 103001. 

[107] NIJEBOER, F . Detection ofhttps encrypted dns traffic. 2020. B.S. thesis. University of Twente. 

[108] NISENOFF, A. , FEAMSTER, N , HOOFNAGLE, M . A . and Z I N K , S. User expectations and 

understanding of encrypted DNS settings. In: Proc. NDSS DNS Privacy Workshop. Virtual 
Event. 2021. 

[109] OWASP. OWASP Cheat Sheet Series. Accessed: January 2023. Available at: https: 
//cheatsheetseries.owasp.org/cheatsheets/HTTP_Headers_Cheat\_Sheet.html. 

[110] PEON, R. and R U E L L A N , H. HPACK: Header compression for HTTP/2. 2015. 

[ I l l ] PRASEED, A . and T H I L A G A M , P. S. Multiplexed asymmetric attacks: Next-generation DDoS 
on HTTP/2 servers. IEEE Transactions on Information Forensics and Security. IEEE. 2019, 
vol. 15, p. 1790-1800. 

[112] Qiu, Y., L i , B., JIAO, L. , Z H U , Y. and L iu , Q. Detection of DoH Tunnels with Dual-
Tier Classifier. In: IEEE. 2022 18th International Conference on Mobility, Sensing and 
Networking (MSN). 2022, p. 417-121. 

[113] QUAD9 FOUNDATION. IOS and MacOS Mobile Provisioning Profiles Are Here! March 2022. 
Accessed: December 2022. Available at: https://www.quad9.net/news/blog/ios-mobile-
provisioning-profi les/ . 

[114] RESCORLA, E. et al. Rfc 8446: The transport layer security (tls) protocol version 1.3. Internet 
Engineering Task Force (IETF). 2018, p. 25. 

102 

https://bugzilla.mozilla.org/show_bug
https://www.quad9.net/news/blog/ios-mobile-


[115] ROACH, A . Trusted Recursive Resolver. Accessed: May 2021. Available at: h t tps : / / 
wiki.mozilla.org/Trusted_Recursive_Resolver. 

[116] S A B I L L A , S. I., SARNO, R . and T R I Y A N A , K . Optimizing threshold using pearson correlation 
for selecting features of electronic nose signals. Int. J. Intell. Eng. Syst. 2019, vol. 12, no. 6, 
p. 81-90. 

[117] SALSABILA, H. , M A R D H I Y A H , S. and HADIPRAKOSO, R . B . Flubot Malware Hybrid Analysis 
on Android Operating System. In: IEEE. 2022 International Conference on Informatics, 
Multimedia, Cyber and Information System (ICIMCIS). 2022, p. 202-206. 

[118] S C U L L E Y , D., SNOEK, J., WILTSCHKO, A . and R A H I M I , A. Winner's curse? On pace, progress, 
and empirical rigor. 2018. 

[119] SIBY, S., JUAREZ, M . , D I A Z , C , V A L L I N A RODRIGUEZ, N . and TRONCOSO, C. Encrypted 

DNS-> Privacy? A traffic analysis perspective. ArXiv preprint arXiv:1906.09682. 2019. 

[120] S I N G A N A M A L L A , S., C H U N H A P A N Y A , S., VAVRUSA, M . , V E R M A , T., W U , P. et al. Oblivious dns 

over https (odoh): A practical privacy enhancement to dns. ArXiv preprint arXiv:2011.10121. 
2020. 

[121] SINGH, P. Systematic review of data-centric approaches in artificial intelligence and machine 
learning. Data Science and Management. Elsevier. 2023. 

[122] SMITH, P. G. Professional website performance: optimizing the front-end and back-end. John 
Wiley & Sons, 2012. 

[123] SPEROTTO, A. , SCHAFFRATH, G., SADRE, R . , M O R A R I U , C , PRAS, A. et al. An overview of 
IP flow-based intrusion detection. IEEE communications surveys & tutorials. IEEE. 2010, 
vol. 12, no. 3, p. 343-356. 

[124] S T E A D M A N , J. and SCOTT H A Y W A R D , S. Detecting data exfiltration over encrypted dns. In: 
IEEE. 2022 IEEE 8th International Conference on Network Softwarization (NetSoft). 2022, 
p. 429-137. 

[125] STEINBERGER, J., S C H E H L M A N N , L . , A B T , S. and BAIER, H . Anomaly Detection and mitigation 
at Internet scale: A survey. In: Springer. Emerging Management Mechanisms for the 
Future Internet: 7th IFIP WG 6.6 International Conference on Autonomous Infrastructure, 
Management, and Security, AIMS 2013, Barcelona, Spain, June 25-28, 2013. Proceedings 7. 
2013, p. 49-60. 

[126] STENBERG, D. DNS over HTTPS • curl/curl Wiki. Accessed: May 2021. Available at: https: 
//github.com/curl/curl/wiki /DNS-over-HTTPS. 

[127] TREVISAN, M . , SORO, F , M E L L I A , M . , D R A G O , I. and M O R L A , R . Attacking DoH and 

E C H : Does server name encryption protect users' privacy? ACM Transactions on Internet 
Technology. A C M New York, NY. 2023, vol. 23, no. 1, p. 1-22. 

[128] V E K S H I N , D., H Y N E K , K . and C E J K A , T. Dataset used for detecting DNS over HTTPS 
by Machine Learning. Zenodo, may 2020. DOI: 10.528l/zenodo.3906526. Available at: 
https: //doi.org/10.5281/zenodo.3906526. 

103 

http://wiki.mozilla.org/Trusted_Recursive_Resolver


[129] V E K S H I N , D., H Y N E K , K. and C E J K A , T. Doh insight: Detecting dns over https by machine 
learning. In: Proceedings of the 15th International Conference on Availability, Reliability 
and Security. 2020, p. 1-8. 

[130] V E S E L Y , V . and ZADNI'K, M . HOW to detect cryptocurrency miners? By traffic forensics! 
Digital Investigation. Elsevier. 2019, vol. 31, p. 100884. 

[131] V M W A R E , INC. TCP segmentation offload. 2020. Available at: https: 
//docs. vTnware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking. doc/ 
GUID-E105A601-9331-496C-A213-F76EA3863E31 .html. 

[132] V Y A S , K. Android 13 finally adds native support for DNS over HTTPS. April 2022. Accessed: 
November2022. Available at: https://www.xda-developers.com/android-13-dns-https-
support/. 

[133] W3C. Network Error Logging. Accessed: January 2023. Available at: https: 
//w3c.github.io/network-error-logging/#privacy-considerations. 

[134] W3C. Reporting API. Accessed: January 2023. Available at: ht tps : / /w3c .gi thub. io/ 
reporting/#privacy. 

[135] W A N G , Y., X I A N G , Y. and Y u , S. Internet traffic classification using machine learning: a 
token-based approach. In: IEEE. 201114th IEEE International Conference on Computational 
Science and Engineering. 2011, p. 285-289. 

[136] Wu, J., Z H U , Y , L I , B., L I U , Q. and F A N G , B. Peek inside the encrypted world: Autoencoder-
based detection of doh resolvers. In: IEEE. 2021 IEEE 20th International Conference on 
Trust, Security and Privacy in Computing and Communications (TrustCom). 2021, p. 783-
790. 

[137] Y A N , Z. and L E E , J.-H. The road to DNS privacy. Future Generation Computer Systems. 
Elsevier. 2020, vol. 112, p. 604-611. 

[138] Z E B I N , T , R E Z V Y , S. and Luo, Y. An explainable Al-based intrusion detection system for 
DNS over HTTPS (DoH) attacks. IEEE Transactions on Information Forensics and Security. 
IEEE. 2022, vol. 17, p. 2339-2349. 

[139] Z H A N , M . , L I , Y , Y U , G . , L I , B. and W A N G , W. Detecting DNS over HTTPS based data 
exfiltration. Computer Networks. Elsevier. 2022, vol. 209, p. 108919. 

[140] Z H O U , W , D O N G , L. , B I C , L. , Z H O U , M . and C H E N , L . Internet traffic classification using 
feed-forward neural network. In: IEEE. 2011 International conference on computational 
problem-solving (ICCP). 2011, p. 641-646. 

[141] Zou, F , M E N G , D., G A O , W. and L i , L . DePL: Detecting Privacy Leakage in DNS-over-
HTTPS Traffic. In: IEEE. 2021 IEEE 20th International Conference on Trust, Security and 
Privacy in Computing and Communications (TrustCom). 2021, p. 577-586. 

104 

http://vTnware.com/en/VMware
https://www.xda-developers.com/android-13-dns-https-
https://w3c.github.io/

