
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND

COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

DISTRIBUTED ACOUSTIC SENSING SYSTEM DATA
ANALYSIS APPLIED FOR PERIMETER PROTECTION
ANALÝZA DAT Z OPTICKÉHO DISTRIBUOVANÉHO AKUSTICKÉHO SENZORICKÉHO SYSTÉMU PRO
OCHRANU PERIMETRU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Jakub Senčák
AUTOR PRÁCE

SUPERVISOR Ing. Adrián Tomášov
VEDOUCÍ PRÁCE

BRNO 2023

T B R N O F A C U L T Y OF E L E C T R I C A L

U N I V E R S I T Y E N G I N E E R I N G

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N

Master's Thesis
Master's study program Information Secur i ty

Department of Telecommunications

Student: Be. Jakub Sencäk ID: 196504

Year of
2 Academic year: 2022/23

study:

TITLE O F THESIS :

Distributed acoustic sensing system data analysis applied for perimeter
protection

INSTRUCTION:

The thesis focuses on distributed acoustic sensing (DAS) system data in HDF5 format. The semestral part of the

thesis studies DAS principles and the output format of the deployed system, followed by an implementation of

conversion from data to audio signal (in W A V format). This part also investigates the possibilities of real-time

data analysis. The diploma thesis proposes a graphical user interface displaying real-time data with various chart

manipulation methods. The final program is tested with a real DAS system deployed onto the faculty optical

sensoric polygon.

R E C O M M E N D E D L I T E R A T U R E :

[1] P A R K E R , Tom; SHATALIN, Sergey; F A R H A D I R O U S H A N , Mahmoud. Distributed Acoustic Sens ing-a new

tool for seismic applications, first break, 2014, 32.2.

[2] C O L L E T T E , Andrew. Python and HDF5: unlocking scientific da ta . " O'Reilly Media, Inc.", 2013.

Date of project Deadline for
6.2.2023 19.5.2023

specification: submission:

Supervisor: Ing. Adrián Tomášov

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board

WARNING:

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

ABSTRACT
Th is work focuses on fiber opt ic sensing using distr ibuted acoustic sensing. The goal was
to create a mult ip lat form application for data visual ization obtained by an Optasense
O D H - F interrogator. Th is work was motivated by the lack of open-source visual izat ion
software for fiber opt ic sensing. Distr ibuted acoustic sensing was explained with light
scatter ing effects such as Rayleigh, Raman , and Mandelsam-Br i l lou in scatter ing. A web
appl icat ion was implemented. There are two parts, back-end was writ ten in Py thon , and
the frontend was writ ten using the Svelte framework. The results of this work can be
used as a basis for creating visual ization software for distr ibuted acoustic sensing.

KEYWORDS
fiber opt ics, distr ibuted acoustic sensing, opt ical t ime domain reflectometry, strain and
vibration measurement, visual izat ion software, web appl icat ion, Svelte framework

ABSTRAKT
Táto práca sa zameriava na snímanie opt ických vlákien pomocou distr ibuovaného akus­
t ického snímania. Cieľom bolo vytvoriť mul t ip la t formovú aplikáciu na vizualizáciu údajov
získaných zariadení Optasense O D H - F . Tá to práca bola motivovaná nedostatkom apli­
kácií s otvoreným zdrojovým kódom na vizualizáciu dát získaných pri snímaní pomocou
opt ických vlákien. Práca vysvetľuje distr ibuované akustické snímanie a efekty rozptylu
svetla, ako je Rayleighov, Ramanov a Mandelsamov-Br i l lou inov rozptyl. Výsledkom práce
je webová aplikácia. Apl ikácia sa skladá z dvoch hlavných častí - server napísaný v j a ­
zyku Python a klientskej časti implementovanej vo frameworku Svelte. Výsledky tejto
práce možno použiť ako základ pre vytvorenie vizualizačného softvéru pre distr ibuované
akustické snímanie.

KĽÚČOVÉ SLOVÁ
optické vlákna, distr ibuované akustické snímanie, opt ická reflektometria v časovej oblast i ,
meranie vibrácií, vizualizačný softvér, webová aplikácia, Svelte framework

Typeset by the t h e s i s package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍRENÝ ABSTRAKT
Optické v lákna sa v dnešnej dobe používajú hlavne na prenos informácií a to

medzi datacentrami alebo až k n á m domov. Spolu s vývojom optických vlákien

a laserových diód začínajú vznikať aj ďalšie odvetvia. Vzniká opt ická reflektometria

a jej rôzne m e t ó d y ako O T D R (optická reflektometria v časovej oblasti) a O F D R

(optická reflektometria vo frekvenčnej oblasti). Tie sa používajú na meranie rôznych

defektov vlákien - praskliny, zlomy, pretrhnutia a zvary. Meranie funguje na pr incípe

vyslania svetelného pulzu do opt ického v lákna a pri prechode v láknom sa svetlo rôzne

láme a od ráža od centier rozptylu (z angl. scattering center). Cen t rá rozptylu môžu

byť rôzne nečistoty, nerovnoměrnos t i vo vlákne ako aj s amotné molekuly a a tómy

mater iá lu , z k to rého je v lákno vyrobené .

Podľa toho, od akých centier rozptylu sa svetlo odráža , rozlišujeme rôzne efekty

odrazu svetla. Mie efekt je spôsobený odrazom od nečistôt vo vlákne väčších ako je

vlnová dĺžka signálu z laserovej diódy. Rayleighov odraz je zase spôsobený odrazmi

od a tómov a molekúl a všeobecne od centier menších než je vlnová dĺžka svetelného

paprsku. Ramanov odraz je odrazom od kryštalickej mriežky mater iá lu , z k torého

je mate r iá l vyrobený. Mandelsam-Brillouinov odraz je odraz od vibrácií a tómov

a molekúl v mater iá l i .

Dis t r ibuované akustické snímanie DAS (z anglického Distributed Acoustic Sens­

ing) umožňuje využiť tieto odrazy na merania rôznych externých veličín. Zaují­

mavosťou je, že tieto merania sa môžu vykonávať distribuovane. To znamená , že na

viacerých miestach na celej dĺžke v lákna dochádza k meraniam. Toho sa dosiahne

meran ím časového rozdielu medzi vys laním svetelného pulzu do v lákna a časom,

keď svetelný odraz dorazí do fotodetektora. Merajú sa rôzne zmeny vo vlastnostiach

vyslaného svetelného pulzu, ako zvýšená alebo znížená vlnová dĺžka, ú t l m výkonu

ampl i t údy a zmeny vo fáze odrazeného signálu oproti signálu vyslaného. Základnou

vlastnosťou na to aby mohol byť odrazový efekt použi tý pre dis t r ibuované snímanie

je rovnomerné rozloženie odrazových centier po celej dĺžke vlákna.

Rôzne odrazové efekty sa používajú na rôzne účely. Napr ík lad na meranie okolitej

teploty sa hodí najlepšie Mandelsam-Brillouinov odraz, pretože vzniká pri odra­

zoch od vibrujúcich a tómov. Vo všeobecnost i D A S systémy nachádza jú použi t ie

v detekcii vibrácií , ťahu a detekcii pohybu. Napr ík lad v opt ických gyroskopoch

a akcelerometroch, kde ich najväčšou výhodou je vysoká presnosť a min imálny

drift. Akt ívne sa používajú v detekcii a lokalizácii zemetrasení , ochrane perimetru,

ak t ívnom moni torovaní budov, stavieb a mostov. Ďalšie zaujímavé využi t ia sú

v biosenzoroch a v chémii pri zisťovaní rôznych v las tnos t í chemikálií . Výhodou

optických vlákien je ich vysoká odolnosť voči nepr iazn ivým ex te rným javom a nízka

ovplyvnitelhosť e lek t romagnet ickým šumom. To z nich robí ideálne m é d i u m pre

nebezpečné prostredia, ako sú vysokorádioakt ívne prostredia, nebezpečné chemi-

kálie a vysoké napä t i a . Ďalšou výhodou je ma lý rozmer optického vlákna. Preto sa

využívajú ako súčasť monitorovania vrtov v ropnom priemysle. Možnost i použi t ia

tejto technológie sú naozaj široké.

Zariadenie schopné merať signál v opt ických v láknach sa nazýva D A S interroga-

tor. A s i najbližší preklad do slovenčiny je "vyšetrovateľ". Tento názov sa veľmi

nehodí preto budeme ďalej používať DAS systém alebo len zariadenie. V n a š o m prí­

pade boli merania vykonávané na zar iadení OptaSense O D H - F . Zariadenie sa pripojí

na optické v lákno z jednej strany. Použi té optické vlákno môže byť buď špeciálne

v lákno určené na merania alebo už existujúca opt ická infrastruktura. Zariadenie

umožňuje rôzne nastavenia merania, vzorkovacie frekvencie, nastavenie svetelného

pulzu, nastavenia G P S lokácie a ďalšie.

V ý s t u p o m meran í je súbor vo formáte H D F 5 (Hierarchical Data Formát v5),

ktorý umožňuje ukladať d á t a v podobe podobnej Linuxovému súborovému systému.

H D F 5 súbor je založený na modele H D F 5 , k to rý definuje základné súčast i súboru

a jeho š t ruktúry , ale s a m o t n á š t r u k t ú r a a rozloženie stanovuje sys tém alebo vývojář.

Tieto d á t a zo zariadenia je možné v reá lnom čase zobrazovať pomocou aplikácie

OptaSense OS6. Aplikácia umožňuje zobrazovať horný pohľad na sledovanú oblasť

a udalosti, k toré sa detekujú na jednot l ivých miestach okolo vlákna.

Cieľom tejto práce bolo vytvoriť aplikáciu na zobrazovanie dá t z D A S systému,

k to rá bude mul t ip la t formná , keďže jediný softvér na zobrazovanie dá t z tohoto sys­

t é m u je p ropr ie tá rny a nie je možné ho upravovať. Z tohto dôvodu sme vybral i

dizajn aplikácie ako webovú aplikáciu. Aplikáciu sme rozdelili na dve hlavné časti

a to na klienta, k to rý bude spus tený v prehl iadači a serverovú časť, k to rá posiela

d á t a do klientskej časti .

Kl ientská časť aplikácie je pos tavená na frameworku Svelte, k to rý kompiluje

celý projekt do čistého JavaScriptu. Pre porovnanie, frameworky ako React a Vue

pracujú s v i r tuá lnou reprezentáciou webových objektov, zatiaľ čo Svelte vše tky kom­

ponenty kompiluje do j edného súboru , k to rý potom vykonáva aktual izácie webovej

aplikácie. T ý m t o spôsobom sa obetuje kompilačný čas za čas pri behu aplikácie.

Výsledkom je teda rýchla aplikácia s vysokou reaktivitou. Svelte aplikácie sú takto

oveľa rýchlejšie oproti konkurencii. Svelte framework tiež umožňuje pomerne rýchlu

implementác iu a nezaťažuje vývoj á ra so zložitými konceptami aktual izácie elemen­

tov.

Vizualizácia dá t je implementovaná ako tepe lná mapa (z anglického heatmap),

k to rá sa vykresľuje do Canvas elementu. Hodnoty sú reprezentované v tepelnej

mape pomocou farieb. Farby združujeme do farebných m á p podľa toho, ako sa me­

nia hodnoty s farbou. Poznáme štyri základné druhy farebných m á p . Sekvenčné sú

buď jednofarebné alebo viacfarebné, pri tomto type zmeny v saturáci i alebo svetlosti

farby reprezentujú zmeny hodnô t a používajú sa napr ík lad pri radení . Rozchádza-

júce sa mapy obyčajne začínajú v strede jednou farbou a do minima a maxima sa

rozchádzajú dve rôzne farby. Používajú sa, ak sú hodnoty okolo jednej strednej

hodnoty. Cyklické mapy začínajú a končia v rovnakej farbe. Pos ledným typom sú

kvalitatívne farebné mapy, k toré zobrazujú rôzne farby a zobrazujú informácie bez

jednoznačného poradia. Užívateľ m á možnosť si vybrať farebnú mapu podľa svojej

subjektívnej preferencie.

Webová aplikácia umožňuje vybrať dá tový súbor otvoriť ho a prehrávať d á t a

z neho, tak ako boli z aznamenané D A S sys témom. Umožňuje tiež pozastaviť prehrá­

vanie a znova ho spustiť, nastavovať rýchlosť prehrávania a exportovať zobrazené

d á t a do formátu P N G .

N a komunikáciu klient-server sme navrhli j ednoduchý protokol. Komunikác ia

prebieha pomocou WebSocketov tak, že si klient so serverom vymieňajú bezstavové

informácie.

Serverová časť aplikácie zabezpečuje čí tanie a spracovanie súborov. A po tom, čo

si užívateľ zvolí súbor , k to rý chce zobrazovať v klientskej časti , sa súbor nač í t a a to

tak, aby príliš nezaťažoval operačnú pamäť počí tača . Spust í sa predspracovanie dát ,

pretože nespracované d á t a by nezobrazovali informácie pochopi teľným spôsobom

a navyše by ich bolo príliš veľa. Predspracovanie vytiahne po t r ebné informácie

z datasetu a tie sa nás ledne uložia do numpy súboru , k to rý m á už aj prijateľnú

veľkosť aj vhodné dá t a . Tento súbor sa potom čí ta a posiela do klientskej časti

aplikácie, kde sa d á t a zobrazujú.

Výsledkom práce je teda webová aplikácia na vizualizáciu dá t zo sys tému D A S

na kontrolu perimetru. Aplikáciu sme otestovali na dá tach , k toré sme zaznamenali

pri behan í po chodníku neďaleko zakopaného optického v lákna v perimetri neďaleko

školy. D á t a boli n a h r a n é so vzorkovacou frekvenciou 20 kHz. D á t a sme spracovali

a zobrazili v nami implementovanej aplikácii.

P r i tom, ako som robil na tejto práci , som sa naučil ako funguje sys tém D A S ,

rôzne optické javy, k toré nas távajú pri odraze svetla v opt ických v láknach a naš­

tudoval si rôzne použi t ia tejto technológie v praxi. P r i implementovaní webovej

aplikácie som sa naučil framework Svelte a programovať v jazyku JavaScript. P r i

implementáci i serverovej časti som sa zase naučil používať moduly a knižnice pre

dizajn asynchrónnej aplikácie, komunikácie pomocou WebSocketov, používať ob­

jekty typu generá tor a p rácu s H D F 5 súbormi .

T á t o p ráca môže slúžiť ako vzor pri implementáci i vizualizácií nad d á t a m i z D A S

sytémov. Je tiež zák ladom pre p rácu s d á t a m i z D A S sys tému a práci s H D F 5

súbormi . Ďalšia p ráca na tejto aplikácii bude zahŕňať zlepšovanie vizualizačného

algoritmu a pr idávanie dalších funkcionalit, ako je zoom, výber dá t a zvýrazňovanie

udalost í . Nad d á t a m i tiež môže bežať aj analýza pomocou umelej inteligencie, k to rá

môže kategorizovať udalosti, k to ré sa stali pozdĺž optického vlákna.

SENČÁK, Jakub. Distributed acoustic sensing system data analysis applied for perime­

ter protection. Brno: Brno University of Technology, Fakul ta elektrotechniky a komu­

nikačních technologií, Ústav telekomunikací, 2023, 82 p. Master 's Thesis. Advised by

Ing. Adrián Tomášov

Author's Declaration

Author: Be. Jakub Sencäk

Author's ID: 196504

Paper type: Master 's Thesis

Academic year: 2022 /23

Topic: Distr ibuted acoustic sensing system data

analysis applied for perimeter protection

I declare that I have writ ten this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibl iography at the end of the paper.

A s the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and /o r ownership rights.

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l .

of the Czech Republ ic, Sect ion 2, Head VI , Part 4.

Brno

author 's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I want to thank my supervisor Ing. Adrián Tomášov for leading me during my struggles

with this work, for his t ime during our consultat ions, and for lots of patience.

Contents

Introduction 15

1 Fiber-optic sensing 16

1.1 Fiber optic sensors 16

1.1.1 Fiber-optic sensing applications in different fields 16

1.1.2 Perimeter security 17

1.2 Opt ical fibers 18

1.3 Light scattering effects in fiber optics 19

1.3.1 M i e scattering 19

1.3.2 Rayleigh scattering 20

1.3.3 Raman scattering 21

1.3.4 Br i l lou in scattering 21

2 Distributed Sensing 23

2.1 Distributed sensing based on Br i l louin scattering 23

2.2 Distributed sensing based on Rayleigh scattering 24

2.3 Opt ical reflectometry 25

2.3.1 Opt ical Time Domain Reflectometry 25

2.3.2 O F D R 26

2.4 Distributed Acoustic Sensing 27

2.4.1 Measurements 28

2.4.2 Advantages of D A S systems 28

2.4.3 Disadvantages to traditional sensors 28

2.4.4 IDAS 29

2.5 OptaSense O D H - F 29

2.6 Exis t ing technology for H D F 5 data visualization 30

2.6.1 H D F 5 file format 30

2.6.2 OptaSense OS6 31

2.6.3 h5web 32

3 Software design 34

3.1 Software design analysis 34

3.1.1 Use cases 34

3.1.2 Appl icat ion requirements 36

3.2 Back-end 37

3.2.1 Exis t ing R E S T based servers for H D F 5 data access 37

3.2.2 WebSockets 38

3.2.3 Py thon asyncio library 39

3.3 Frontend 40

3.3.1 Svelte 40

3.3.2 Real-time capabilities 41

3.3.3 Da ta processing 41

3.3.4 Software design frontend for D A S data visualization 42

3.4 H T M L chart rendering 43

3.4.1 H T M L S V G graphics 43

3.4.2 Canvas graphics 43

3.4.3 Heatmap visualization 45

3.4.4 Colormaps for a heatmap chart 46

3.5 Prototype 48

4 Implementation of D A S visualization application 50

4.1 Py thon back-end application implementation 50

4.1.1 Client-server communication from the server side 50

4.1.2 Processing raw data from the D A S interrogator 54

4.2 Program implementation of H D F 5 to W A V 56

4.2.1 Reading H D F 5 files 56

4.2.2 Data processing for converting raw H D F 5 data to W A V 58

4.3 Frontend client application 59

4.4 Svelte components 60

4.4.1 Svelte stores 60

4.4.2 Stylesheet wi th dark and light mode 62

4.4.3 Heatmap chart rendering to a canvas element 63

4.4.4 Setting the speed property 65

4.4.5 Properties column items explained 66

4.5 Testing the application 67

Conclusion 69

Bibliography 70

Symbols and abbreviations 74

List of appendices 76

A Installing dependencies 77
A . l Optasense visualizer application usage 77
A.2 Svelte 77

B OptaSense D A S system measurement

properties

C Printing the H D F 5 data structure and metadata

List of Figures
1.1 3x3 system for perimeter protection using two Sagnac interferome­

ters [2] 18

1.2 Comparison of different scattering effects [36] 20

2.1 Example of basic O T D R reflectometer 26

2.2 Basic H D F 5 file structure 31

2.3 OptaSense OS6 visualization software [27] 32

2.4 h5web application with an example data visualization 33

3.1 Appl icat ion use cases 35

3.2 Data flow in the application - reading the data, then processing it

and displaying it (optionally) edit the view 36

3.3 Appl icat ion overview. The server reads the data from the data storage

and sends it to the client application, where it is shown to the user. . 37

3.4 WebSocket handshake, communication, and connection close diagram. 39

3.5 Appl icat ion overview 42

3.6 Sequential colormap [29] 47

3.7 Examples of cyclic colormaps [29] 47

3.8 Examples of diverging colormaps [29] 47

3.9 Examples of qualitative colormaps [29] 48

3.10 Prototype of D A S visualization application 49

4.1 U M L diagram of the back-end 52

4.2 U M L diagram of the back-end 57

4.3 File structure of the client side of the project 61

4.4 The heatmap data visualization. Someone is running along the buried

fiber optic cable 68

List of Tables
4.1 W A V compatible types 59

B . l H D F 5 groups and their attributes from the data file 79

B.2 H D F 5 groups and their attributes from the data file 80

B.3 H D F 5 groups and their attributes from the running data file 81

Introduction
W i t h the discovery of laser diodes and optical fibers, the data transmission lines

increased the throughput drastically. It enabled fast and reliable communication

between data centers and later into our homes. Optical reflectometry enabled to

study the inner structure of the fiber itself, the joints, cracks, and imperfections in

the fiber. Further research discovered that optical fibers can also be used as sensors.

Analyzing the signal coming back from the fiber using optical reflectometry to mea­

sure different external properties. A n d further, by clever t iming, it is possible to

measure these properties in multiple places along the wire, thus creating distributed

sensing.

The work explains the topic of D A S (Distributed Acoustic Sensing), which uses

optical fiber as a sensor array. Light pulses are sent from the light source through the

fiber. The light is reflected and scattered on imperfections in the fiber and is reflected

back to the light source, where its properties are measured, like changes in frequency

and phase. If there is a strain on the fiber or the fiber is subjected to vibrations

of any type, it is possible to interpret them as an audio signal or some movement.

D A S is used for applications such as perimeter monitoring, earthquake detection

and localization, traffic monitoring and incident detection, and many more. One of

the uses is the possibility to hear, interpret the data as an audio signal, and use it

as a microphone, which makes optical fiber a big security vulnerability. Especially

dangerous is that the attackers do not need access to the server room or the devices

but can connect to the fiber anywhere. There is also the issue of detecting these

kinds of attacks because D A S does not impact existing communication on the fiber.

The main goal of this work is to implement an application that takes the data

in H D F 5 file format and converts it to W A V audio file format. The second goal is

to design an application for displaying the data in a waterfall graph. The design

includes studying existing technology and technology capable of displaying the data

in real-time.

The first chapter explains fiber optic sensing in general and introduces different

light scattering effects, like Rayleigh and Raman scattering. It also explains the

principles in the field of optical reflectometry and explains how the D A S system

works, and the methods for measuring the strain on the fiber. A n important part is

studying the H D F 5 file format and especially the output of the D A S system. The

second chapter explains the software design of the data visualization application

and the important technologies that make it - WebSockets, Svelte framework, and

H T M L rendering options using Canvas and S V G graphics. The last chapter covers

the implementation. It focuses on the most interesting parts of implementing client-

server communication, Svelte components, data processing, and data visualization.

15

1 Fiber-optic sensing
Light has revolutionized data transmission and made high data rates possible using

optical fibers and laser diodes. Apar t from the intended usage, data transmission

lines made from optical fibers have a new use case in sensing. The optical fiber can

be used to measure useful external properties thanks to the detection and analysis

of different light scattering effects of the interaction between the light and the fiber,

as discussed in Section 1.3.

This chapter wi l l discuss fiber optics, optical reflectometry, distributed sensing,

and different light scattering effects in the fiber.

1.1 Fiber optic sensors

Fiber optic sensors have three main parts - a light source, a medium that light

passes through, and a detector. The principle these sensors use is to generate light

at the source light (laser diode L D) , then passes through the medium, which can

be a scanned material or an optical fiber (Section 1.2). The medium affects the

light signal and changes signal properties measured at the detector. This way, fiber

optic sensors can detect external properties such as vibrations (seismic, acoustic),

pressure, acceleration, rotation, and chemical properties.

There are two types of sensors based on the medium used 1:

• intrinsic sensors - the optical fiber is a measuring medium.

• extrinsic sensors - use optical fiber to get the signal to and from the actual

sensor.

There are two types of optical fiber sensors based on the location of the mea­

surement:

1. Point - These sensors measure only at the location of the transducer 2

2. Quasi-distributed - They use many sensors along the fiber to measure

3. Distributed - The sensing element is the optical wire. It can measure at thou­

sands of points along the optical wire thanks to different scattering effects, as

discussed in Section 1.3. It can use existing telecommunication infrastructure

to bui ld the sensing network.

1.1.1 Fiber-optic sensing applications in different fields

The advantage of fiber optic sensing compared to other kinds of sensing is that it is

immune to signal interference. The optic fiber is made of glass or transparent plastic.

1https: //www.rp-photonics.com/fiber optic sensors.html
2device transforming energy from one form of energy to another form of energy

16

http://www.rp-photonics.com/fiber

It can be used in environments that would be dangerous or harsh for other types

of sensors. It is good to mention environments such as flammable, explosive, harsh

chemicals, high voltage, or environments that would create electromagnetic noise.

Thanks to these properties, fiber-optic sensing has many different applications.

The applications include:

• Fiber-optic gyroscopes - rotation measurement thanks to the Sagnac effect.

They can replace older ring-laser technology [31].

• Fiber-optic accelerometers - vibration measurements wi th added electromag­

netic interference immunity [30].

• Fiber-optic bio-sensors - thanks to glass fibers' chemical and thermal stability,

these sensors are perfect for measuring harsh chemicals. Measurements can

be done in hard-to-get or small spaces. They also measure on small sample

volumes [8].

• Vibration detection - seismic, acoustic, and even underwater.

— Seismology - measuring and locating earthquakes [10].

— Building monitoring - bridge monitoring for changes such as cracks [1].

— Perimeter protection - detecting and localizing intrusion into an area,

more in Section 1.1.2.

— Location detection - fiber-optic sensors can detect traffic and vehicles

in cities and on highways or locate trains along train tracks [10].

— Fiber-optic hydrophones - under-water detection systems for seismic

monitoring [11].

1.1.2 Perimeter security

In the early 2000s, perimeter protection using fiber optics was based on breaking

or cutting the fiber, triggering an alarm. This is good enough for one-time use

because after the wire is broken, there is no choice but to replace or repair the

wire. This system can not tell the location when using a single wire. Newer systems

used Sagnac effect, which uses a Sagnac interferometer and a closed loop made

of fiber optic wires, for example, 3x3 3 wire system. Sagnac interferometer detects

changes in the phase of light, and thanks to signal processing and calculating the

time difference between amplitudes, the position of an intruder is calculated. Such

an interferometer has a conversion unit from optical to electric signal. The electric

signal is then sampled using a fast A / D converter with high sampling rates. The

accuracy of such a system is 20-50 meters which is more than sufficient for perimeter

protection [2].

3 three by three

17

L

Photodetector Photodetector

- Laser

Photodetector

1 i r
Demodulator

Fig . 1.1: 3x3 system for perimeter protection using two Sagnac interferometers [2].

Thanks to research and technological advancements, new devices based on Dis­

tributed Acoustic Sensing (DAS) systems are used. These systems use scattering

effects that happen in the fiber during the passage of photons through the fiber's

medium. These effects are then analyzed at the source of light. The light bounces

from imperfections in the fiber and is propagated backward as scattering (backs-

cattering). Nothing special happens when the fiber is not moving, but when the

fiber is affected in any way, for example, by vibrations of an intruder or just by

voice alone, the back-scattering changes. These changes can then be analyzed and

categorized as an intrusion.

1.2 Optical fibers

A s optical sensing uses existing fiber optic transmission lines, it is important to

account for different kinds of optical fibers, materials, and production methods.

Optical fibers consist of three main elements core, cladding, and coating. Materials

from which core and cladding are made are plastic or glass SÍ2O3.

All-glass fiber dopants, such as GeC>2, P2O5, B2O3, can be added to all-glass

fibers to adjust the refractive index. The core usually has a higher refractive index

than cladding by about 1 %. Lowering the refractive index can be done by doping

fluorine, which is done in the core when the refracting index is too high and needs to

be lowered 4. The radius of core ranges from 3.7 pm to 200 um and radius of cladding

is up-to 140 p m [5].

Plastic optics uses organic material in the form of polymers - chains. Materials

used are acrylic, polycarbonate, polystyrene, or l iquid silicone. The core of plastic

4https: //www.rp-photonics.com/fiber core.html

18

http://www.rp-photonics.com/fiber

fiber has a popular diameter of 980 um.

Although the purpose of the coating is simply protection, the fiber would be

very fragile without it. It is usually without special color but can be painted to

ease the identification of individual fibers. There are multiple layers of coating, at

least primary and secondary. The primary coating is softer to allow the bending of

the fiber. Secondary is harder to protect inner layers. Materials such as acrylate,

silicone, polyimide,e or carbon are used depending on the application of the optical

fiber, for example. For example, acrylate has l imited temperature resistance; in

this case, silicone is better as it is heat resistant up to 200 °C [5]. For more extreme

applications, Polyimide is used as it can withstand temperatures up to 350 °C, and

it is also resistant to chemicals and abrasion [5].

1.3 Light scattering effects in fiber optics

Light precisely photons traveling through a medium - atmosphere, glasses, glass

optical fiber, or any other medium can bounce from what is called scattering cen­

ters in the medium. Scattering centers are any non-uniformities in the medium

such as vacancy defects (missing atoms in otherwise uniform structure), foreign

particles, bubbles, trapped gas molecules, fractures, micro-cracks, any changes in

refractive index, density fluctuations, manufacturing imperfections, and others [6].

Scattering centers create different kinds of scattering, as wi l l be discussed in the

next sections. They include Mie scattering (Section 1.3.1), Rayleigh scattering (Sec­

tion 1.3.2), Raman scattering (Section 1.3.3) or Brillouin scattering (Section 1.3.4).

For comparison, Figure 1.2 shows all of these different scattering effects:

• 1 - input radiation from a laser diode.

• 2 - Rayleigh scattering

• 3 and 4 - Br i l louin scattering lines

• 5 and 6 - Raman scattering

1.3.1 Mie scattering

Mie scattering is an optical phenomenon happening when light traveling through a

medium bounces from scattering centers the same length or bigger than the wave­

length of the light. Mie scattering applies to any spherical particles located in the

medium. This also applies to the smaller particles. But we distinguish Mie scatter­

ing for particles bigger than the wavelength of light for clarity. For particles smaller

than the wavelength of light we distinguish a special case of Mie scattering, and we

call it Rayleigh scattering, which wi l l be discussed in the next Section 1.3.2. That

said, there are differences between these two types. The scattered light's amplitudes

19

G

/ o _ / r fo~ / b fo fo—fs / o _ / r Frequency

Fig . 1.2: Comparison of different scattering effects [36].

are stronger for forward scattering in Mie scattering 5 . Large defects are usually not

uniformly distributed along the fiber, which prevents it from being used in D A S

systems [10].

1.3.2 Rayleigh scattering

Rayleigh scattering is an optical phenomenon named after Br i t i sh physicist Lord

Rayleigh. Light is scattered from scattering centers much smaller than the wave­

length of the light, for example, individual molecules or atoms. This is opposite to

Mie scattering 1.3.1, where light is scattering from larger scattering centers. The

difference is that amplitudes are the same for forward and backscattering in Rayleigh

scattering 6 . Compared to other scattering processes, Rayleigh is linear scattering

process whereas Raman and Brillouin scatterings are nonlinear7.

Only a small portion of the back-scattered light returns to the source - most of

it leaves the fiber on the sides. Rayleigh scattering is used in D A S , as discussed in

Section 2.4.
5https: //www.rp-photonics.com/rayleigh scattering.html
6https: //www.rp-photonics.com/rayleigh scattering.html
7Nonlinear light effects occur when the output intensity does not increase proportionally to the

input intensity; for example doubling the optical input intensities does not result in double the
output intensity. These nonlinear effects tend to weaken significantly at low optical intensities.

20

http://www.rp-photonics.com/rayleigh
http://www.rp-photonics.com/rayleigh

When solidified in a medium, not al l scattering centers cause Rayleigh scatter­

ing. A t a wavelength of about 0.95 um (microns), glass optical fibers have a high

attenuation band caused by scattering and absorption by hydroxide ions [6]. Silica

glass is an amorphous material wi th random density fluctuations due to its irregular

microscopic structure. This can be limited by an annealing process but can not be

removed completely 8 .

1.3.3 Raman scattering

The effect photons have when interacting wi th the crystal lattice of glass is called

Raman scattering. A transparent optical medium, such as glass, has a crystal lattice.

The lattice is naturally vibrating, causing a delayed nonlinear response to the light

passing through it. The photon traveling through the medium experiences a loss in

energy due to interactions with the medium. This is also called inelastic scattering.

This is further explained in the next Section 1.3.4.

Raman scattering can be measured by sending two light waves with different

wavelengths through the optical medium. The signal wi th longer wavelength expe­

riences optical amplification at the expense of the one wi th a shorter wavelength.

This is used in Raman lasers, Raman amplifiers, or Raman spectroscopy 9.

1.3.4 Brillouin scattering

Also known as Mandelsam-Brillouin scattering, it was first described by Raman in

the 1920s. Br i l louin scattering is a scattering effect created when light traveling

through a medium is scattered during interaction wi th thermal vibrations of these

molecules. A s described earlier, it is very similar to Raman scattering. The intensity

is much lower than Rayleigh scattering; see Section 1.3.2. But at the same time,

much stronger than Raman scattering. For comparison, see Figure 1.2.

The difference between Raman and Br i l louin scattering is in the type of inter­

actions wi th vibrations of the crystal lattice and molecules. To describe the funda­

mental quanta of lattice vibrations involved in these interactions, we use the term

phonons.

There are two types of phonons:

• acoustic phonons - associated with backward Br i l lou in scattering; show linear

dispersion relation in bulk.

• optical phonons - associated wi th Raman scattering relate to molecular v i ­

brations; have flat dispersion. The forward Br i l louin scattering has similar

phonon dispersion called Raman-like scattering.

8https: //www.rp-photonics.com/rayleigh scattering.html
9https: //www.rp-photonics.com/raman scattering.html

21

http://www.rp-photonics.com/rayleigh
http://www.rp-photonics.com/raman

Bri l louin scattering in optical fibers primarily occurs in the backward direction,

but there can also be some weaker forward Br i l louin scattering due to the acoustic

waveguide's influence [13].

Br i l louin scattering is used in Br i l lou in spectroscopy. Thanks to its uniform

distribution along the fiber, it can also be used in D A S systems, although it is much

weaker than Rayleigh scattering [10]. Br i l louin line width T = 1/r measures material

viscosity. In fiber-optic sensing, the Br i l lou in scattering measures temperature even

in distributed manner 1 0 [13].

For distributed sensing, please see Chapter 2

22

2 Distributed Sensing
Distributed sensing (in general) is a technology using optical fiber as an array of

sensors. It was started in the field of optical reflectometry. There are thousands of

vir tual sensors along the optical fiber. These sensors are not real devices but rather

a clever way of measuring differences in the light signal properties, such as changes

in phase. It can measure tension, compression, temperature, vibrations, and other

strain impacting the fiber and, consequently, the light passing through it [10].

Distributed sensing can be based on a single scattering effect (Rayleigh, Raman,

or Bri l louin) . These effects can be combined to improve measurement properties,

like accuracy and spatial resolution [18].

We distinguish multiple distributed sensing systems depending on what is mea­

sured:

• Distributed Acoustic Sensing (DAS) - recording sound and vibrations.

• Distributed Vibration Sensing (DVS) - vibration detection.

• Distributed Strain Sensing (DSS) - twisting, pulling, bending.

• Distributed Temperature Sensing (DTS) - temperature measurements.

The work wi l l focus on D A S rather than the other Distributed sensing methods

because the D A S is used for the measurements. That said, other Distributed sensing

methods are quite similar.

The scattering effects create dispersion effects in the light, which leads to distor­

tion of the light pulse, making it broader. The superposition of neighboring light

pulses also limits the transmission frequency. The maximum frequency possible on

a transmission line is approximated by Formula 2.1. It takes into account the fact

that the light has to travel from the light source to the end of the fiber and back to

the starting point at the light source.

n{2L + 2P + 3D)

2.1 Distributed sensing based on Brillouin scattering

Bri l louin scattering has been used for distributed sensing since the 1980s when dis­

tributed temperature measurement was introduced. Scattering centers for Br i l louin

scattering are the molecules of the fiber. A s they are evenly distributed along the

entire length of the optical fiber, it is a perfect candidate for distributed sensing.

The Br i l louin scattering has a backward and a frontward scattering effect, and both

can be used for distributed sensing [13].

23

Bri l louin scattering is mostly used for distributed measurements of temperature

in D T S as the scattering effect depends on the temperature vibrations of atoms and

molecules in the optic fiber [14].

There are also acoustic waves present in the fiber when vibrations or strain

affect the fiber. When an acoustic wave interacts wi th an optical wave, it creates

a scattering effect, which produces a new optical wave wi th a shifted frequency.

This wave is referred to as the Stokes wave if it has a lower frequency than the

original pump wave (the source wave) and as the anti-Stokes wave if it has a higher

frequency. It is possible to stimulate this phenomenon, resulting in an exponential

amplification of the optical Stokes wave. This process is called Stimulated Brillouin

Scattering (SBS).

Brillouin Optical Time Domain Reflectometry (B O T D R) is a technique based

on spontaneous Brillouin scattering. Its biggest advantage is that it only needs

access to one end of the fiber. Nonetheless, the spatial resolution of this approach is

restricted to approximately 1 m, determined by the phonon lifetime in optical fibers

(10ns) [13].

2.2 Distributed sensing based on Rayleigh scattering

Rayleigh scattering, as discussed in Section 1.3.2, is a great candidate for distributed

sensing as it can extract three main properties of light - intensity, phase, and polar­

ization. The biggest advantage of Rayleigh scattering is that it is almost completely

free from external physical fields - electromagnetic, microwave, and others. The

signal is also quite strong power-wise compared to Br i l louin and Raman scattering;

see Figure 1.2 for a comparison of the two. In Rayleigh-based distributed sensors,

scattering is used to track and reveal propagation effects such as attenuation and

gain, phase interference, and polarization variation.

Rayleigh scattering originates from the light reflecting back from the molecules

and atoms in the fiber. This differs from the scattering from the crystalline lattice

(Raman scattering) and atom vibrations (Bri l louin scattering). Rayleigh scatter­

ing can sense more than strain and temperature - it senses chemical concentration,

pressure, vibrations, ionizing radiation, and relative humidity. Polarization enables

sensors to detect changes in the magnetic field, twist, and geometrical layout. De­

tection of phase changes is crucial for sensing based on Rayleigh scattering.

The back-scattered light can be characterized as the coherent superposition of

the light generated from randomly distributed scattering centers in the fiber. The

scattering centers create radiation in all directions, but some light travels back to the

source, where it can be detected and analyzed. According to Rayleigh's theory, the

backscattered light is in phase wi th the incident light and has the same polarization.

24

The intensity of the light reflected by the scattering center has random quality as

the density of the material changes throughout the fiber. Neglecting the polarization

effects and dispersion, the complex envelope b(t) of the backscattered light can be

described as follows in Equation 2.2. j3 is the propagation constant of the optic fiber,

a(z) describes the attenuation accumulated up to z, cn and zn are random amplitude

and position of the nth scattering center. The r„ is a group delay introduced by the

propagation up to zn, and factor 2 accounts for the roundtrip propagation; aft) is a

wave function of the signal from the light source, the statistics of c„ and zn are not

important in this context [14].

b{t) = J2 cne-2[a{Zn)+^Zn]a(t - 2 r n) (2.2)

Tn = znd(3/du (2.3)

The measurement involves retrieving the attenuation a(z) by measuring b(t).

This creates two modes of measurement either it means to first probe the fiber by

continuous wave signals at different frequencies to measure the frequency response

and then compare it to the values during the real measurement (frequency domain),

or to measure the response of the fiber by analyzing the roundtrip propagation

through the fiber (time domain) [14].

2.3 Optical reflectometry

Optical reflectometry is used for measuring optical cable properties; it can detect

defects, joints, breaks, or other damage and their location on the wire. It is the

basis for Optical Time Domain Reflectometry (O T D R) or Optical Frequency Domain

Reflectometry (O F D R) and other optical sensors such as D A S . A pulse of light is

sent from the source, such as a light-emitting diode (L E D) or a laser diode (LD) . The

light travels from the source through the optical fiber in pulses and is reflected from

the other side of the wire through connections, breaks, damage, or imperfections in

the material. A l l of these create some back-scattering toward the light source [25].

2.3.1 Optical Time Domain Reflectometry

Phase-Sensitive Optical Time Domain Reflectometry ($ - O T D R) is the most widely

used method. When a strain is applied to the fiber, it causes phase-shift changes

in the light signal. Provides high sensitivity, resolution, and sampling rates in the

frequency range between hertz and kilohertz. $ - O T D R has limitations in measuring

25

Waveform
generator

CLK

Visualization
(PC)

Laser

Photo-detector
(photodiode)

Fig . 2.1: Example of basic O T D R reflectometer.

slowly changing effects and noise components [15]. The optical time domain reflec­

tometer was proposed back in 1976 by Barnoski and Jensen. The principle is to

send a light pulse through the fiber to measure the impulse response; see Figure 2.1.

2.3.2 OFDR

O F D R analyzes interference of signal between the init ial signal and the back-scattered

signal but focuses on the frequency scan. A source of light has to be a laser diode

that can be precisely tuned to a certain frequency. The signal given by O F D R con­

tains frequency information that can be processed wi th the Fourier transformation.

The output would be the position of the reflective elements along the fiber length.

There are also other methods to measure light properties such as C-OFDR - co­

herent version of O F D R using light wi th the frequency wi th linear dependency but

having problems wi th high noise levels, and DSS - Mandelstam-Bril louin [21].

26

2.4 Distributed Acoustic Sensing

Implementation of D A S system is usually done by O T D R , O F D R , or analysis of

other light properties such as polarization and back-scatter correlation. D A S allows

the measurement on thousands of points on an optical wire without the need to

cut the wire or have multiple sensors distributed along the wire. The measurement

mechanism is based on optical reflectometry, the same as in D T S , a variant of

O T D R . D A S relies on non-uniformities spread evenly along the fiber. A s discussed

in Section 1.3.2, the best suited for this application is Rayleigh scattering, which

describes light scattering from particles smaller than the wavelength of the light. In

this case, the particles are molecules and atoms in the fiber.

Scattering effects suitable for the use in D A S measurements are Bri l louin , Raman

and Rayleigh

During measurement, pulses of light are sent into the optical fiber. The fiber

creates a light scattering (e.g., Rayleigh scattering) in the glass that travels back

to the sensing unit (on the same side as the light source), which can be interpreted

based on the arrival time as a position on the wire. Back-scattering light from the

optical fiber segment is detected at the light source. If a strain or a vibration is

applied to the optical fiber, it detects changes in amplitude or phase, which means

that the fiber wire segment is externally affected somehow. D A S is used in a wide

range of applications, from locating seismic activity, locating trains along the train

tracks, as a gyroscope or an accelerometer or even as a microphone [9], [21].

D A S uses optical fiber as many sensors along its length. The fiber is capable

of detecting vibrations along it can also detect acoustic properties as they are also

vibrations but of sound. These sensors allow for measuring acoustic properties such

as frequency, amplitude, and phase [9].

When installing cables, it is crucial to consider both cable design and installation

methods. The rigidity of the fiber is a significant factor because stiffer cables can

reduce sensitivity. Opt imal results are achieved by uti l izing a single-mode fiber wi th

minimal protection buried in the ground. The contact with the surroundings is also

essential as it can impact the signal-to-noise ratio and alter the frequency content

of the recorded signal.

When using an existing fiber optic infrastructure, it is hard to know what parts

of the fiber are in contact with, for example, soil or ground, when measuring seismic

activity, as good contact is crucial to yield good results. When monitoring boreholes,

the wire can be lowered into the hole, but the quality of measurements wi l l vary. For

this purpose, mounting the cable to the bore pipe is a better solution. Good contact

wi th the ground or seafloor is very hard to achieve, for example, in underwater

applications for measuring underwater seismic activity. When laying the fiber optic

27

cable, the cable can stretch over crevices and underwater valleys and dips, failing to

make contact, which hinders the measurements and has to be accounted for.

There are also special optic fibers being developed for making the connection wi th

the ground uniform. They have a better signal-to-noise ratio and good transmission

of external vibrations on the fiber while maintaining mechanical protection [10].

2.4.1 Measurements

The fiber is divided into segments representing a sensor located along the fiber.

These sensors are just vir tual - they are not real devices. B y measuring time dif­

ferences between the time light was transmitted and the reflected light reached the

sensor, interrogator devices can identify what portion of the fiber is affected. Each

segment is called Gauge Length and represents a sensor. The location of a sensor

is in the middle of the gauge length. Sometimes neighboring segments can overlap.

The signal is formed between two points on the reflectogram corresponding to the

edges of the gauge length. Setting gauge length is crucial to get the correct mea­

surement. If the gauge length is too small, it degrades the signal-to-noise ratio. If

too big, it creates signal distortion. Calibrat ion is sometimes necessary to account

for insufficient ground contact and to make measurements as precise as possible [10].

2.4.2 Advantages of DAS systems

The possibility of using existing fiber-optic infrastructure makes deploying sensing

arrays very easy and cheap. Unused fiber optic wires laid for later activation, when

higher bandwidth is required, are called dark-fibers and can also be used for dis­

tributed sensing. D A S technology can be applied to many different applications wi th

the biggest advantages over the traditional sensors and electric devices in terms of

no electromagnetic interference and adverse conditions - radioactivity, harsh chem­

ical environments, high temperature, underwater, and others, see Section 1.1.1. It

is hard to imagine the limitations of this new technology [10].

2.4.3 Disadvantages to traditional sensors

When using D A S for seismology, good contact with the ground is necessary. W i t h

insufficient contact, the D A S technology can provide unsuitable values. Traditional

seismometers plot data instantaneously in comparison to D A S systems that plot data

wi th time delay [10]. The size of fiber-optic sensors such as fiber-optic gyroscopes

is stil l huge compared to Microelectromechanical Systems (M E M S) sensors used in

today's microelectronics. M E M S can be soldered to P C B s and used in a wide range

28

of applications, but they also have weaknesses, like poorer precision and low heat

resistance.

2.4.4 iDAS

The distributed acoustic sensor is a new addition to distributed optical fiber sensors

used in the energy industry and can be used in many applications, for example,

in detecting seismic activity. i D A S (intelligent distributed acoustic sensor) is one

type of D A S sensor. One of the applications of this sensor is to record an acoustic

signal. To determine the signal fidelity, a certain part of the wire is subjected to

a known signal, for example, a sine wave. A measurement is made, and the result

is compared wi th the existing recording device. The result suggests that i D A S has

very good signal properties. The measured signal shows that almost no measurable

crosstalk is exhibited between the two sensing channels on the wire.

The maximum sampling rate can be calculated from the speed of light that travels

in glass at a speed of about 200 000 km/s , which corresponds to approximately 10 kHz

for 10 k m long wire [9].

• Acoustic bandwidth.

• Dynamic range - 120 dB as reported in [12].

• Spatial resolution - about 1 m to 10 m, but up to 25 cm is possible.

• Measurement range - The fiber length can be anywhere from a few hundred

meters to more than 100 km.

2.5 OptaSense ODH-F

Data used in this project are obtained from OptaSense ODH-F Distributed Acoustic

Sensing Interrogator1 (Interrogator). This device is capable of monitoring optical

fiber up to 5 0 k m long (in qualitative mode). It allows for sequential monitoring of

four cables at the same time. It is used for in-well flow monitoring, pipeline integrity

management, and border security.

OptaSense uses Coherent <&-OTDR (C - O T D R) , for further explanation see Sec­

tion 2.3.1

OptaSense comes wi th DxS Visualization Software capable of analyzing and pro­

cessing output data from the unit. It can show the signal spectrum in a water­

fall graph and create analysis, process the signal using Fast Fourier Transforma­

tion (F F T) , and extract data to .wav format. It has the l imitat ion that it can

only run in the Windows ecosystem and is proprietary software, so scientists cannot

change how they work with the data or how it is displayed.

xhttps://www.optasense.com/technology/odhf/

29

https://www.optasense.com/technology/odhf/

2.6 Existing technology for HDF5 data visualization

This section focuses on data processing and visualization using existing software for

visualizing scientific data. First is OptaSense OS6 software which is a purpose-made

solution for OptaSense devices. Next is the h5web library, written in React, which

creates a web page for visualizing the content of H D F 5 files.

2.6.1 HDF5 file format

The data captured by the Optasense Interrogator is collected in Hierarchical Data

Format v5 (HDF5) and saved into a file wi th .h5 suffix. H D F 5 creates a model

for managing and storing data. The H D F Group 2 maintains the format and its

corresponding software package. Specifically, the H D F 5 format is used to store

data, but only one of the three parts makes up the full H D F 5 model. Parts of the

H D F 5 model are:

• Fi le format - files ending with .h5

• Data model - specifies the building blocks of the H D F 5 file format

• Software - libraries, tools, A P I s

H D F 5 data model has a folder-like organization, where the folders are called

groups. This model specifies the format in which the data are stored in the form

of Abstract Data Model (A D M) , which specifies the organization of the data and

the types of data. Every H D F 5 file has to have a root group "/"• Working wi th

groups is very similar to directories on Linux systems; see Section 4.2.1. Each group

can have datasets that contain raw data, attributes, data types, and other objects.

H D F 5 file can also specify links to other libraries and tools such as compression and

filtering.

H D F 5 dataset has connections wi th other H D F 5 objects:

• attributes - named data object containing the name and the value

• datatypes:

— Atomic datatypes - time, string, integer, float.

— Composite datatypes - array, enumeration, compound, variable length.

• data - data itself, for example, the result of measurement.

• dataspace - the shape of the data.

2https://www.hdfgroup.org/

30

https://www.hdfgroup.org/

Data
Dataset

Fig . 2.2: Basic H D F 5 file structure.

2.6.2 OptaSense OS6

The OptaSense company provides visualization software for their devices called Op­

taSense O S 6 3 . It supports only Windows operating system. OS6 provides features

for monitoring areas or land, for example, a compound or an industrial building.

This product is tailor-made for OptaSense devices by the OptaSense company. This

system has only one window for everything. The primary view is the monitored

area; the background picture is the aerial view of the monitored space, as seen in

the picture 2.3. The user can open the sidebar on the right side. The sidebar

provides multiple different options:

• Spectrogram - Raw data visualization.

• Alerts - When an action is detected along the wire, it is logged.

• Notifications - Notifications about system state.

• System status - Overview of all OptaSense units and their state.

There is also a feature that takes raw data from interrogator units and processes

them using machine learning. This way, different actions are detected and catego­

rized into different alerts, such as walking, driving cars, etc. In addition, the user

can see the activities detected and triggered in the area overview wi th live moni­

toring and a timeline at the top of the screen. To easily look at different locations

or start a new view, a feature type to search lets the user start a search by typing

into the view. For example, the user starts writ ing "water..." as a waterfall, and the

program wi l l look for this feature and open the waterfall visualization window. OS6

saves all detected activities, shown in the Historic timeline window, which shows all

alerts during a specified time range. The animations look very nice, although some

look choppy, mostly when showing activities on top of the waterfall view.

It proves that it is possible to create a real-time data visualization from the D A S

system. It lacks one important step, which is the ability to be used not only on

Windows machines and be multi-platform. A n d although it provides enough tools

3https://www.optasense.com/technology/os/

31

https://www.optasense.com/technology/os/

Fig . 2.3: OptaSense OS6 visualization software [27].

for data analysis, it is unsuitable for further scientific work such as custom editing

the visualization or exporting data to images and further processing for machine

learning and activity categorization.

2.6.3 h5web

The h5web 4 library is a set of components written in React 5 . H5web uses existing

H D F 5 libraries, such as h5wasm (reading H D F 5 files in the browser) and h5grove

(server for accessing H D F 5 files). It displays the contents of the H D F 5 file and shows

different graphs according to the input from the user. From the presentation of the

library by its developer, it is safe to say that although it provides the necessary

equipment for opening H D F 5 files elegantly and provides advanced graphing tech­

niques, it lacks the ability to receive the data and display them as they were coming

from the D A S system. For this purpose, the library would need to add support by

creating a new React component capable of such behavior.

4https://h5web.panose.eu/
5React is a JavaScript library used to create interactive user interface h t t p s : / / r e a c t j s . o r g /

32

https://h5web.panose.eu/
https://reactjs.org/

Fig . 2.4: h5web application wi th an example data visualization.

33

3 Software design
There are many ways to implement data visualization. St i l l , choosing the right so­

lution, programming language, or framework is hard, so this chapter first provides

information on what this application should do. Second, it studies the existing Op-

taSense software and other solutions accessible from the internet. Lastly, it explains

the software design decisions for implementing this data visualization.

3.1 Software design analysis

Unified Modelling Language (U M L) is a design language made to make it easier

for developers and system designers to communicate wi th each other. U M L uses

different visualization types, graphs, and charts to ease the understanding of complex

systems. This way, software design is more understandable and standardized. A n d

when developers, software designers, and management speak the same language -

U M L language - making the development more efficient. It makes management

easier as they do not have to understand the implementation but rather understand

the meaning of each part of the system. This way, they can make better time

assumptions and time planning more predictable. Software designers can specify

many diagrams to explain their ideas to developers to showcase the functionality.

Also, the diagrams are far more understandable than pure code or pseudo-code

implementation.

There are many different U M L diagrams. The basic division is to structural and

behavioral diagrams. For this work, we wi l l need three types of diagrams. From the

structural diagrams, we wi l l use Use Case Diagram and Class Diagram. From the

behavioral diagrams, we use Sequence diagram [32].

3.1.1 Use cases

A Use Case Diagram is an U M L diagram to form the system or software requirements

for a new software program. It is part of behavioral diagrams in the U M L language.

Use case diagrams show the user's point of view of the system, the way they wi l l

use the system, with its main functions and features. It consists of the following:

• Actors - interacting wi th software functions; a noun names them; the actor

triggers the use cases.

• Use case - the features and functions of the system; are specified by a phrase

describing the action.

34

Each of the use cases has to have an actor linked to itself. There are also special

relationships that extend and include that are not in the interest of this work but

are important in general for Use Case diagrams [32].

The task is to fulfill the usage requirements, as seen in the use case Figure 3.1.

Users need to see and view what is happening in their perimeter on their screen.

For this purpose, the best data visualization is a waterfall graph, similar to a spec­

trogram, displayed as the main element. It should have an editable color map to

adjust the sensitivity. The waterfall view should be an animated waterfall graph

and ideally display real-time data on the screen, similar to the OS6 system; see Sec­

tion 2.3. In addition, the user should perform selection and zoom on the waterfall

graph. The user should be able to edit properties of the graph, like changing the

data range and choosing the channels he or she wants to see. The user should be

able to export the data to a W A V file by clicking a button and then viewing and

playing the audio file. There should also be a waveform display available to show

the playing data.

O

User

Open data file

Start/stop data capture

Watch spectrogram

Zoom spectrogram

Set range for the data

Select channels

Change colormap

Export to WAV

Analyze audio signal

Play WAV file

Fig . 3.1: Appl icat ion use cases.

35

3.1.2 Application requirements

From the use cases in Section 3.1.1, it is understandable that the application should

have certain features. Apar t from the given use cases, there are other important

requirements:

• Mult iplatform - the application should run on any device and still support al l

features

• Data processing - subsampling data to save data throughput

• Plot editing and animation - changing plot properties

• Reading offline data - possibility to read local files or upload files into the

application

Read data Process data Display data

C \
Edit view

Fig . 3.2: Data flow in the application - reading the data, then processing it and

displaying it (optionally) edit the view.

It is necessary to choose the correct programming tools to satisfy all features.

The right way to find the right solution in programming is to divide and conquer.

This means finding all the pieces that wi l l make the application. First , there must

be an idea of what wi l l happen with the data. Firstly, it has to be read, processed,

and then displayed. The optional step is to edit the data or change the view; this

data flow can be seen in Figure 3.2.

From the data flow application, an overview can be made for a web application,

as seen in Figure 3.3. The overview illustrates what parts the application wi l l have.

The back-end or server application wi l l be responsible for reading H D F 5 files and

processing data. It wi l l provide some interface or A P I for the client application to

fetch 1 the data. O n the client side, the client has to be able to create visualizations

of the data and provide a user interface to change application properties.

xhttps://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

36

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

• B a c k e n d Network F r o n t e n d

commun ica t ion
r f

Backend server Client application Backend server
Da ta and reques ts

Client application

J J
; t

> <

(f
HDF5 file storage View

J)

Fig . 3.3: Appl icat ion overview. The server reads the data from the data storage and

sends it to the client application, where it is shown to the user.

3.2 Back-end

The purpose of the back-end part of the application is to read, process, and send

the data to the client part of the application, as shown in Figure 3.5. Reading the

H D F 5 data is done as explained in Section 4.2.1.

3.2.1 Existing REST based servers for HDF5 data access

Representational State Transfer (R E S T) is a software architecture. More specific is

a R E S T f u l A P I {Application Programming Interface (API)) , which transfers data

between systems on the internet. One of the most common usages is in web services.

R E S T uses stateless messages to get data from some resource. The data can be

delivered in many different formats. Very popular are JavaScript Object Notation

(JSON) , HyperText Markup Language (H T M L) . The communication is based on

Hypertext Transfer Protocol (H T T P) protocol activities:

• GET - request a record from the other side,

• POST - request to create a record,

• PUT - request to update a record,

• DELETE - request to delete a record [33]

There is a wide range of R E S T server implementations; the H D F Group provides

documentation for its R E S T f u l A P I 2 . They have prepared a few R E S T f u l server im­

plementations for their data format. Many more implementations of R E S T servers,

such as the Python Simple H T T P server. Here is a list of some possible implemen­

tations [23]:

2https://support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf

37

https://support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf

• h5serv - REST-based service to access H D F 5 data written in Py thon (H D F 5

Group).

• HSDS (Highly Scalable Data Service) 3 - Py thon implementation of the R E S T -

based service to access H D F 5 data stores. Data can be stored in the P O S I X

file system or object-based storage such as A W S S3. It can run in a Docker as

a single machine or on a Kubernetes cluster.

• hdf-rest-apiA - is H D F 5 R E S T A P I that provides C R U D support (create, read,

update, and delete) for all H D F 5 objects.

• h5grove - Back-end service written in Py thon providing access to H D F 5 file

content.

• http. server - Python implementation of a simple H T T P server. However, this

is better used only for testing when accessing local files.

3.2.2 WebSockets

WebSockets (or WebSocket A P I) enable two-way communication over Transmission

Control Protocol (T C P) . I E F T standardized it in R F C 6 4 5 5 5 . A l l modern browsers

support the WebSocket protocol.

The communication starts wi th an HTTP-compat ib le handshake, so only one

socket can communicate with the server. There are also other header types available

for different uses. The server responds wi th an H T T P Upgrade, the connection

is established, and bidirectional communication can begin. Communication closes

when either side closes the connection and starts completing the handshake. The

other side responds with a Close frame message, closing the connection.

The protocol is frame-based, as is H T T P protocol, but simultaneously, it tries

to be frame-based as little as possible. Just enough to make sure that it can use

the H T T P interface for communication; otherwise, it tries to be as minimalist. The

authors of the WebSocket protocol wanted it to be low-level, and as close to T C P

as possible [28]. WebSockets have an implementation in the Python programming

language called websockets 6.

3https://github.com/HDFGroup/hsds
4https: //github.com/HDFGroup/hdf-rest-api
5 https:/ /www. rfc-editor.org/rfc/rfc6455
6 https: / / pypi .org / proj ect / websockets/

38

https://github.com/HDFGroup/hsds
https://www
http://rfc-editor.org/rfc/rfc6455

r 's

Client Server

Handshake (HTTP Upgrade) •

Bidirectional communication •

^ Either station initializes closing handshake •

— The other side sends: "Close frame response" —

Connection Closed, no more data is send

Fig . 3.4: WebSocket handshake, communication, and connection close diagram.

3.2.3 Python asyncio library

Our application must receive and send messages simultaneously when dealing wi th

client-server communication. There are multiple ways of achieving this behavior.

Either use multi threading 7 or multiprocessing 8 as all of these solutions solve the

same problem - doing multiple things at the same time. There is also an alternative

way to receive and send messages asynchronously. Asynchronous programming in

Py thon uses an asynchronous library asyncio. A l l of them are a viable solution to

this problem.

It might be a better solution to use multithreading in the future. St i l l , it is

unnecessary, as it makes the code more complicated and creates an overhead when

sharing data between threads. The asynchronous approach is simple, effective, and

sufficient for our usage, so we have decided to use it.

There is not that much code involved, and it is relatively easy to program in,

although asynchronous programming is quite tricky to understand. In our testing,

this solution was working well; see Section 4.1 and Listings 4.1.

The asyncio library provides a set of high-level A P I s to run Py thon coroutines,

distribute tasks using queues, perform I / O operations, and synchronize tasks in

concurrent mode. It has a running loop, to which the developer can register many

different coroutines, functionalities, and tasks concurrently. It can manage these

by using queues, tasks, and events. The Py thon implementation of WebSockets

also uses the asyncio library. The event loop is usually run at the beginning of the

rhttps://docs. python, org/3/library/threading. html
8https://docs.python.org/3/library/multiprocessing.html

39

https://docs
https://docs.python.org/3/library/multiprocessing.html

application. There can be more the one event loop.

The event loop can register a Task classes to run multiple tasks. Al though it

may seem like the tasks are running in parallel, the reality is that the asyncio has

a scheduler - a logic that decides which task should be run at what time. This

way, the tasks seem to run in parallel, but in reality, they run in a single process

or thread, and the tasks are just switching from one to another. This enables one

thread to wait for a message from a client asynchronously and, at the same time,

send messages to the client side.

Asyncio also implements Event class, which can be used for awaiting certain

messages or conditions. B y calling an await event.wait() the coroutine can wait

for another coroutine to execute event.set(), which allows the waiting coroutine

to continue execution. To stop execution await event. clear () needs to be called,

and on the next await event.wait() the execution wi l l stop.

3.3 Frontend

This section provides an overview of visualization techniques and properties for

visualizing data from the D A S interrogator described in the previous chapter. It

introduces different technologies that can be used for this data visualization. Firs t ly

it describes the JavaScript framework Svelte which is the heart of the application.

We provide an assessment of real-time capabilities.

3.3.1 Svelte

Svelte is a component framework written in JavaScript, using a new approach to

building web applications. Instead of looking for differences in vir tual D O M s as

React does, which is done in the browser and consumes quite a lot of resources, Svelte

does everything at the compilation stage. The compilation output is a JavaScript

file bundle.js, which contains all the necessary code to run the web application

or, better said, it manipulates the D O M directly. The result is a fast and reactive

web page, it also saves resources, and the code can be run on small devices like

handheld devices. Web development is also very enjoyable because compilation

does not take long, and the changes can be visible immediately. The structure of

a Svelte component consists of three parts - JavaScript code tag <script> a style

tag <style> and other H T M L elements.

Svelte does not provide more advanced features like page routing. For this pur­

pose, the Svelte team created SvelteKit, which is a framework for building web

applications and allows page routing. Rout ing is folder-based - the developer cre­

ates a folder and file structure.

40

src/routes/about/+page.svelte <=> /about
src/routes/about.svelte <=> /about

Svelte has been changing and has become a Vi te 9 plugin. Vi te provides fast

development experience by running a development server, in the case of Svelte - Hot

Module Replacement (H M R) 1 0 . This way, every change made during development

can be immediately seen in the browser without reloading the page, which makes

development much faster and more enjoyable. It is necessary to say that Svelte is

still in development, and although it is now at version 3, it may change in the future.

When fetching the data from the server, it is good practice to move this func­

tionality to a Svelte Store. From a programming point of view, a store is an object

wi th a subscribe(), set() function. A n example of a WebSocket implementation

in Svelte can be the Svelte component library svelte-websocket-store11.

3.3.2 Real-time capabilities

The data bandwidth (the amount of data necessary to be sent from the server side to

the client side) of the application is the biggest factor. The OptaSense Interrogator

can produce quite a lot of data, but if it is saved in an H D F 5 file, as it is compressed,

it is quite small. A s discussed in Section 4.2.1, a 10 s file produces around 52 M B of

data. When this data is transformed into text form, it has only 420 M B , and when

transformed into J S O N , it has 946 M B as the data are read at l O k S P S 1 2 . Da ta wi l l

be displayed on display with standard resolution and cannot display 10 000SPS on

a small part of the display. Data processing is necessary for this purpose.

3.3.3 Data processing

Sending data in the form of R E S T requests and responses is possible, but it is really

useful only when sending a small H D F 5 file as a whole, not as a stream of data. The

h5grove 1 3 back-end provides the ability to read sections of the data. The raw data

file is unfortunately not suitable for display as it needs to be processed before the

visualization. A s the files are quite large, it is far better to run some data processing

algorithm, see Section 4.1.2. So the data need to be smaller, in a suitable format,

and ideally subsampled as it is not viable to display thousands of samples per second

on a small visualization screen.
9 h t t p s : / / v i t e j s.dev

1 0 h t t p s : / / v i t e j s.dev/guide/features.html#hot-module-replacement
uhttps://github.com/arlac77/svelte-websocket-store
12Samples Per Second (SPS)
1 3https://pypi.org/project/h5grove/

41

https://vitej
https://vitej
https://github.com/arlac77/svelte-websocket-store
https://pypi.org/project/h5grove/

Data processing can be done on the server or in the browser. A s the browser

wi l l be busy redrawing waterfall visualization, it is better to process data on the

server side. Server-side preprocessing wi l l also save bandwidth as the data wi l l be

significantly filtered and in easier to send type. There is no need to send float64

values as a text using J S O N and WebSockets or with R E S T A P I .

3.3.4 Software design frontend for DAS data visualization

A s we discussed in Section 2.6.2, it is possible to create such software to display the

data in real-time. The proprietary application from Optasense is a native Windows

application. The requirement for this application was to be able to run on multiple

platforms. The chosen platform is the Python back-end for opening files, processing

the data, and sending the data to the client application using Svelte. The back-end

wi l l process the data as explained in Section 4.1.2. The waterfall graph wi l l be an

H T M L Canvas element that displays the data in real-time, redrawing itself as the

data arrive at the browser. For ease of displaying the data in Canvas, D3.js wi l l

be used. D3 wi l l , for example, apply a color map to the correct scale according to

the data. The user interface written in Svelte wi l l also have inputs to change the

properties of the visualization so that the user can select specific channels from the

data, choose subsampling effect properties, cutting the frequency range. The ability

to export the data to a W A V file wi l l also be implemented the same way as done in

Section 4.2.

Backend

Python

Data
stream

Data file

WebSocket

Data (JSON)

View, Actions

Frontend

Svelte

<canvas>

Fig . 3.5: Appl icat ion overview.

42

3.4 HTML chart rendering

For in-browser rendering, two main options exist using H T M L canvas rendering or

using Scalable Vector Graphics (SVG) elements. In this section, we wi l l discuss

both their advantages over each other and their drawbacks. In general, Canvas

rendering performs better than S V G rendering. This is because S V G is based on

a Document Object Model (D O M) structure 1 4 . It is more suitable for large datasets

and graphics-heavy games and animations 1 5 .

3.4.1 HTML SVG graphics

S V G is an X M L - b a s e d markup language developed by W 3 C 1 6 . It describes 2D vector

graphics in X M L text files. S V G supports three types of graphic objects: vector

shapes, bitmap images, and text. The main advantage compared to bitmap graphics

is that all the elements can be rendered at any size without losing quality.

The description of graphics elements is the same way as the web page description

written in H T M L to the final web page. There are tags for different geometrical ob­

jects, for example, rectangles, ellipses, lines, and animations. Everything is defined

in an X M L text file which can be edited, searched, or compressed 1 7 .

Data visualization using S V G graphics results in smooth and sharp visualiza­

tions. It also enables interactivity wi th each displayed object - selecting, hovering,

or zooming. Libraries for S V G manipulation manipulate text based on the data

given. Data-Driven Documents, a JavaScript framework (D3.js) is a JavaScript l i ­

brary using H T M L , S V G , and CSS to visualize data. It can bind data to the H T M L

D O M and then apply data-driven transformations. D3.js allows developers to create

custom visualizations as it is not a charting library but a set of data visualization

tools. It is also the base for other charting libraries that bui ld on the D3.js 'f frame­

work. They include Plot ly 's JavaScript implementation, C3 . j s 1 8 or Bri techarts 1 9 .

3.4.2 Canvas graphics

JavaScript makes drawing to the H T M L <canvas> element possible with the use

of Canvas API or WebGL API. It can render data visualizations, game graphics,

real-time video processing, and animation. W e b G L can draw 2D and 3D graphics

1 4text-based structure defining objects displayed on the web page.
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction

1 5https://www.chartjs.org/docs/latest/#canvas-rendering
1 6 W o r l d Wide Web Consortium www.w3.org
1 7https: / / developer.mozilla.org/en-US / docs /Web / S V G
1 8https://c3js.org/
1 9https: //britecharts.github.io/britecharts/

43

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://www.chartjs.org/docs/latest/%23canvas-rendering
http://www.w3.org
http://developer.mozilla.org/
https://c3js.org/

to the canvas element, but we wi l l not be covering W e b G L further. Canvas A P I

focuses on 2D graphics. Libraries using Canvas A P I that make rendering to canvas

easier differ on the use case - EaselJS (web game development), Konva.js (desktop

and mobile applications), Chart.js, and many more. Canvas rendering depends on

the resolution of the screen.

The <canvas> tag is used for drawing graphics. Y o u can imagine the canvas as

a rectangular area wi th the starting point at the top left corner with coordinates

(0,0) and defined width and height. B y default, this area is transparent. When we

want to draw to it, we need to call functions from the Canvas A P I . They define

basic shapes and primitives that can be drawn on the canvas. Rectangles and paths

are the only primitive shapes that can be drawn to <canvas> element, and more

complex shapes can be drawn by combining these pr imit ives 2 0 . Basic example of

drawing to canvas can be seen in the Lis t ing 3.1. Usually, the functions define certain

shapes filled wi th color and added to the canvas. Then "clearing" functions remove

what is displayed or create transparent areas. Lastly, there are "stroke" functions

that create lines.

Lis t ing 3.1: D3js x-axis implementation.

1 f u n c t i o n draw() {
2 / / F i r s t , we need a - r e f e r e n c e t o canvas element
3 c o n s t canvas = d o c u m e n t . g e t E l e m e n t B y l d (" c a n v a s ") ;
4
5 / / N e x t , we need c o n t e x t t o draw t o
6 c o n s t c t x = c a n v a s . g e t C o n t e x t (" 2 d ") ;
7
8 /##** Drawing ****/
9
10 // d r a w i n g a ~ r e c t a n g l e t o canvas
11 c t x . f i l l R e c t (1 0 , 10, 100, 1 0 0) ;
12 }

The biggest drawback of displaying data wi th <canvas> is its lack of interactivity

wi th displayed elements and poor text rendering capabili t ies 2 1 . The interactions are

achievable but usually require "hacky" solutions like hidden canvas or invisible layers.

Having more than 1000 objects rendered on screen that can be selected can also cause

performance issues.

Drawing to canvas and animation in canvas

Creating animations on canvas elements is done in two ways. Cal l ing function

s e t l n t e r v a l O in which a callback function is given wi th a time delay value in
2 0https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes
2 1 https: / /www. w3schools.com/html/html5 svg.asp

44

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Drawing_shapes
https://www
http://w3schools.com/html/html5

milliseconds. This was a preferred way to create animations unti l the implementation

of the request AnimationFrameO method. It also takes a callback but without

a time value. This is because it just tells the browser to perform an animation,

so the developer doe not need to worry about managing the number of frames per

second. It can perform a redraw up to the frame rate of the screen. So if the user has

a 60 Hz screen, it redraws every 16.6 ms and respectively, if 120 Hz screen, it redraws

every 8.3 ms. For updating at a lower F P S than the screen refresh rate, the callback

is passed wi th a time stamp value of the request. This value can be compared wi th

the time of the previous update, and if the delta is smaller than desired, it wi l l not

update the canvas. If the delta is bigger, it wi l l allow the redraw.

3.4.3 Heatmap visualization

A heatmap is a graph depicting data values in cells in a two dimension grid. Usually,

the cell shape is made of simple rectangles or squares, but any shape is possible. For

example, population data can be visualized on a map or a globe. The color of each

cell is a representation of the value. Choosing the right color palette; otherwise,

the data can be hard to understand. We discuss color palettes in Section 3.4.4.

The colors used in the heatmap indicate the relative values of the data. Depending

on the color palette chosen, the result can be a visualization wi th darker colors

representing higher values and lighter colors representing lower values. Showing

a color scale legend near the graph is good practice for more straightforward data

interpretation.

Heatmaps are used in different scenarios as they can make data more interesting

or easily understandable. They can show the relationship between two variables on

two axes or display data the same way as in tables, but thanks to colors making

the table more understandable. They can help to find patterns in the data or locate

interest points on maps 2 2 .

Heatmaps are implemented in different programming languages and frameworks.

Some interesting heatmap implementations are D3js 2 3 , M a t l a b 2 4 , P l o t l y 2 5 .

A heatmap visualization using the Svelte framework and canvas element can

be done in a few different ways. A s the Svelte store updates, the framework also

updates everything that this store is used in or connected to. The easiest way is

to create a reactive statement $: command; see an example in Lis t ing 3.2. When

the data store updates its value every time the client sends a new message wi th the

data, the reactive command executes. This way, we do not need any algorithms to

2 2https://chartio.com/learn/charts/heatmap-complete-guide/
2 3https: //d3-graph-gallery.com/heatmap
2 4 https: / /www. mathworks.com/help/matlab/ref/heatmap. html
2 5https: / / plotly.com/python/heatmaps /

45

https://chartio.com/learn/charts/heatmap-complete-guide/
https://www
http://mathworks.com/help/matlab/ref/heatmap
http://plotly.com/

update the data. It is as simple as data arrives and redraws the canvas, as shown in

Lis t ing 3.2. Al though this solution is simple, it lacks the possibility to control the

speed in any way.

Lis t ing 3.2: Svelte reactive statement for redrawing canvas element.

$: {

$ d a t a _ s t o r e ;

d raw ()

}

The second way of drawing to a canvas is to call r eques tAnimat ionFrameO

every time there is new data and then close the animation. This is, however, too

much overhead, so we abandoned this idea. A better approach would be to have

the animation loop started by calling reques t An ima t ionFrameO, and each time

new data arrives, the chart redraws. The redraw function needs logic placed at the

beginning of it to set conditions for when to redraw the canvas according to speed.

Another solution is to redraw the canvas at a set interval a few times per second.

We use a s e t l n t e r v a l O function to call an increment () function that would be

triggered by a set amount of time determined by a speed value; see Lis t ing 4.4. It

needs to be noted that the use of s e t l n t e r v a l O function is discouraged since the

arrival of reques t Animat ionFrameO and should not be preferred.

Lis t ing 3.3: Svelte reactive statement for redrawing canvas element using

s e t l n t e r v a l O . The reactive statement updates on every $last_row_number store

update.

$: {
$ l a s t _ r o w _ n u m b e r ;

d raw ()

}

For ease of programming and control over the speed of the animation, we have

chosen the solution using the s e t l n t e r v a l O function.

3.4.4 Colormaps for a heatmap chart

Choosing a suitable colormap is crucial when displaying data to users. The purpose

of a colormap is to understandably represent the data so that it is easy for users to

understand what is shown in front of them. A colormap wi th equal steps between

colors and steps in data is best perceived - called perceptually uniform colormap. It

was found that perception of color change is best understood by the human brain

rather than changes in hue.

46

There are four basic colormap classes based on their function:

• Sequential - is used for ordering. Incremental changes in lightness and satu­

ration of the single color, often with a single hue, for example, vidris, plasma,

inferno, binary.

• Diverging - is used when values deviate around a median value. It uses changes

in lightness and saturation of two different colors that meet in the middle, for

example, spectral, PiYG, BrBG, seismic.

• Cycl ic - should be used for values that wrap around at endpoints. It uses

two different colors that meet in the middle, beginning, and end, for example,

twilight, hsv.

• Qualitative - used for displaying information without order or relationships.

Miscellanneous colours, for example accent, paired, pastell.

This section was based on [29]. The data from the D A S system is sequential,

so the best type for this application is one of the sequential colormaps. D3.js has

a plugin library for generating colormaps d3-scale-chromatic26.

viridis I
plasma |
inferno |

magma |
cividis I

Fig . 3.6: Sequential colormap [29].

twilight
twilight_shifted |

hsv I

F ig . 3.7: Examples of cyclic colormaps [29].

F ig . 3.8: Examples of diverging colormaps [29].

26 https: / / github.com/d3 / d3-scale-chromatic

47

http://github.com/

Fig . 3.9: Examples of qualitative colormaps [29].

3.5 Prototype

To pitch ideas and show the design, a prototype was made. This prototype was

not a final working application. The prototype was built wi th the Svelte framework

for its high performance and fast development; see Section 3.3.1. The prototype

used Flowbite components 2 7 as they make it easy to create stylized web pages. The

web page is divided into Svelte components. The main component is the waterfall

graph on the left side of the screen and the control panel on the right side. Layout

was done wi th svelte-layouts 2 8 package. Moving forward, the svelte-layouts package

wi l l be dropped as it is clunky in this version. Al though it provides basic usage,

customization is challenging because of the lack of documentation.

Uploading files into the browser using R E S T A P I was also tested. Python's

http. server was used as the back-end. When fetching files into a browser from local

storage using H T T P , it is necessary to allow Cross-Origin Resource Sharing (CORS)

because browsers restrict this feature for security reasons. Some resources like CSS,

Web Fonts, and W e b G L textures have enabled C O R S . For sending H D F 5 files to the

browser, a special H T T P header has to be added on the server side. Without this

feature, the browser would throw an error into the JavaScript console. C O R S is not

used for the later stages and implementation because we are not uploading whole

H D F 5 files. It is much more efficient to process the files in the back-end (server)

side of the application.

https://flowbite-svelte.com/
https://www.npmjs.com/package/svelte-layouts

48

https://flowbite-svelte.com/
https://www.npmjs.com/package/svelte-layouts

DAS data visualization vO.O
4— Channels —*

Speed 50%

Subsampling 1

Upper frequency range 90 •
Lower frequency range 0

•

: '• • : channels to display

all; 1-5,17-94

Select a channel to export to
W A V

3.10: Prototype of D A S visualization application.

49

4 Implementation of DAS visualization ap­
plication

This chapter provides an implementation overview of the D A S visualization appli­

cation. Based on the previous chapters, we put everything together and created an

application for data processing and visualization. The whole application consists of

two main parts a Python back-end and a JavaScript front-end.

4.1 Python back-end application implementation

The back-end is written in the programming language PythonS. lO 1 was chosen.

Py thon is a great language for scientific use, data visualization, and graph plotting,

which is the goal of this work. The most significant advantage comes from the

availability of scientific libraries.

To run the application, creating a vir tual environment and installing a l l the

dependencies in that environment is advisable. Installation steps can be found in

Attachments A . The application consists of multiple files, as seen in the Directory

tree 4.1.

Python back-end file structure:
optasense_visualizer

app. py Python script to run the application
requirements.txt Dependencies .2 src/ Folder with source files

f ile_reader .py Opens and reads HDF5 files
message_classes.py Data classes for incoming messages
optasense_server .py Back-end part of application
range_parser .py Functions for parsing channels
spectral_analysis.py Functions for processing data
streaming.py Managing data streaming

4.1.1 Client-server communication from the server side

The application is started by calling python3 app.py — p o r t 8001. Everything

runs inside wi th the use of asyncio library. The app.py file parses arguments wi th

the use of argparse library. The only argument is the optional port argument. The

default value is 8001, which is later used by websocket.

The application has a Server class object created that encapsulates the behavior

of the backend side of the application. It has a WebSocket instance for sending

xhttps://www.python.org/

50

https://www.python.org/

messages when needed. It also has an instance of Stream class created to send

loaded data to the client. It also saves the "state", which is the latest message

received from the client. It also saves the name of the opened file and the dataset

name handed to DASHDF5FileReader class.

Websocket uses async for waiting for messages from the client side. Incoming

messages are in J S O N format. Every message has a type which determines the

incoming message. Messages are parsed using MessageParser class, which imple­

ments a factory object. Factory object is one of the most used object-oriented design

patterns. It creates objects without revealing the logic to the client. The only imple­

mented method is parse () , which reads the type and then creates one of the message

classes and returns it. Each message corresponds to its message class. For ease of

programming, dataclasses module was used 2 . It provides functions and a decora­

tor for the automatic generation of special methods (i n i t () or repr ()).
There are five message dataclasses FindFiles, OpenFile, Streaming, Properties
and ChannelSelection, see Figure 4.2. When the message parsing fails, it raises

an UnknownMessageException. The exception is thrown away as we do not want

to terminate execution whenever an incorrect message is received.

Message classes, the factory object MessageFactory and an Exception class

UnknownMessageException are located in the message_classes.py file.

A n example of an incoming message from the client received by the server:

{

'type': 'path',
'path': '/Users/user/Documents/',
' s u f f i x ' : '.h5'

}

Next, the MessageFactory checks the message type - "path" corresponds to

FindFiles class and returns it. The message class is then saved as a server state.

Each message class has its own if statement wi th its behavior. Not to be confused,

the behavior is defined outside of the class. It is not implemented in the data class

itself.

FindFiles is the first message sent from the client at the start of the application,

right after the WebSocket client opens the connection. The FileReader returns a list

of files found locally on the machine and sends the list to the client. Found files

are wi th the given suffix ".h5". Setting user-defined suffix features can be added

to the application if needed. The user then chooses the file they want to open,

and the openfile message is sent but with datasetname field empty. The server

invokes Server. open_file() method which scans the .h5 file for datasets using

2https://docs. python, org/3/library/dataclasses. html

51

https://docs

Client Server FileReader Stream

path

choose files

openfile
{"filename": filename,

"datasetname":""

<
dataset_content

{"content": dataset_name_list)

openfile

stream {"value": "start"}

<-

find_filesO

<-
return file list

open_file()

return dataset name list

open_fileO
generator_initO

open_stream()

read_dataset()

Sending data

read_dataset()

Sending data

read_dataset()

Sending data

stream {"value": "stop"}

Fig . 4.1: U M L diagram of the back-end.

52

DASHDF5FileReader class. The list of dataset names is then sent to the client and

displayed for the user to choose. After the user chooses the dataset that interests

them, a new message is sent to the server wi th the same properties, except this time,

the datasetname value is filled with the chosen dataset name. Upon receiving the

message the server invokes the Server.open_file() , which this time invokes the

Stream.generator_init() and Stream.open_stream().
The Stream class is implemented in streaming.py file. It implements reading the

data using DASHDF5FileReader class; it sends the data to the client using WebSocket

communication. The data streaming is running in a separate task, as discussed later.

The Stream.generator_init() saves the name of the file, the dataset to the

Stream class and creates a local DASHDF5FileReader and invokes the preprocess ()
method, which looks for a preprocessed file, and if it does not find it runs prepro­

cessing on the HDF5 file. Preprocessing is further explained in the Subsection 4.1.2.
When the preparation is done, the Server. open_stream() method creates a stream

task.

Streaming the data from server to client is done asynchronously using asyncio

l ibrary 3 . A "private" method Stream._create_stream_task() initializes a prop­

erty streaming_task which is an asyncio .Task() object wi th a callback function

Stream. stream_data() . This registers a task that runs in a concurrent mode. This

way, we can await new messages from the client and send the data we read from the

file. This is done in a single thread by just using task switching.

When the Stream.stream_data() starts; it logs the fact that the stream is

opened and starts to listen to the chunks of the dataset. The read_dataset ()
method is a Py thon generator object. This means it uses a word yield instead of

return and passes values as needed. It also prepackages the data and encapsulates

it in J S O N format so the sending task is as short as possible so it does not block

other tasks. There is little data processing still in place, but it takes place before

sending the data, and as the data file is of acceptable size, it does not pose any risk

of overflowing the memory. The data values are interpolated to the range between

zero and one thousand, and the last step is to apply integer type to the data. These

last stages of processing could be moved to preprocessing, but at the moment, they

do not cause any performance penalty.

The async for loop gets the preprocessed data from the file reader class. To ensure

that the asyncio scheduler has enough time to check for any received messages before

sending any messages to the client, it puts itself to sleep by calling await sleep (0).

This way, incoming messages are not blocked.

The function then checks whether Play button was pressed on the client side of

3https://docs. python, org/3/library/asyncio. html

53

https://docs

the application await Stream. streaming_wait_event .wait() . A n instance of an

Event class defined in asyncio is he Stream.streaming_wait_event, which is used

to pause and play the data stream. Event, set () and Event. clear () are used for

setting and clearing a waiting event. The Event class can be awaited as is shown

on line 14 of the code snippet 4.1.

Lis t ing 4.1: Data streaming function implementation,

i async def s t r e a m _ d a t a () :
2 p r i n t (" S t r e a m opened")

async f o r msg i n D A S H D F 5 F i l e R e a d e r . r e a d _ d a t a s e t () :
4 # ensures that the scheduler has time to check

5 # received messages so that sending data

6 # does not block receiving messages

a w a i t s l e e p (0)
8

i f not s t r e a m i n g _ w a i t _ e v e n t . i s _ s e t () :
a w a i t w e b s o c k e t . s e n d (

dumps ({
12 " t y p e " : " r e a d y "
13 }))

p r i n t (" S t r e a m w a i t i n g f o r an e v e n t . . . ")
a w a i t s t r e a m i n g _ w a i t _ e v e n t . w a i t ()
p r i n t (, end="")
a w a i t w e b s o c k e t . s e n d (m s g)

4.1.2 Processing raw data from the DAS interrogator

The data generated by the OptaSense O D H - F Interrogator are saved in a H D F 5

file format. Depending on the machine's setup - sampling rate, gauge length, and

others. A s shown further in 4.2.1, the output of a 10-second measurement wi th

just 100 channels created a 52 M B file. It does not seem that much, but for longer

measurements, this can be an issue. For the testing of data recorded, a person was

running on the pavement near the school. The data is just under a minute long, and

the H D F 5 file is 2.7 G B big. This is not an amount that can be sent to the browser

and displayed because it would drain the computer's R A M .

For data processing, I have taken a function from an existing project 4.

also tried to process the data during sending phase, and when the editing is

simple enough, it is possible. St i l l , when more advanced processing is necessary, the

whole process slows down the frequency the server can send the information making

the whole application unusable.

4https://gitlab.com/optolab/das/data-viewer/-/blob/main/scripts/data-viewer.py

54

https://gitlab.com/optolab/das/data-viewer/-/blob/main/scripts/data-viewer.py

The function used for preprocessing the file is located in spectral_analysis.py.

The function has been taken from an existing project for visualizing the D A S

data using pure Python and the matplotlib l ibrary 5 . I have taken the function

spectral_analysis () and used it to preprocess the data so there is less data to be

displayed per second, and the data is more easily understandable.

Before preprocessing the data, it is good practice to retype it to a data type

easier for Python to handle, like numpy.float64- In our tests, without retyping, the

spectral_analysis algorithm takes ten times the time than wi th the retyping added.

The function takes the data from the file as a numpy. array() ; the other argument

is the pulse rate that we get from an attribute in the H D F 5 file, see Attachment

B.3 .

F i rs t ly the function does a setup. It creates a Hanning window of the size of two

to the power of n. Hanning window makes the data on the edges smaller. Next,

it creates a list of frequency bin centers in cycles per unit of the sample spacing,

starting from zero. From this list, it finds the minimum and maximum frequency.

The function gets the dimensions of the dataset and calculates the number of blocks

to go through from it blocks=(rows-fsize)//shift. The s h i f t property is a step

in the dataset for the for loop, and the f size property is the size of the Hanning

window.

After the setup, it loops through all the blocks in the dataset moved by the index

of s h i f t . The data is transposed, and Hanning window is applied to it and then

transposed again because of the nature of matrix multiplication. Then the function

calculates the spectrum coefficients for the data by computing a one-dimensional

discrete Fourier transformation. From these coefficients, the algorithm discards half

of it and leaves just one side of the spectrum and the zeroth coefficient. The power

spectral density is then calculated, and as half of the spectrum is thrown away, it

is applied back. Bo th sides are the same, so it was not needed before. Now as the

power needs to be calculated, the half is restored. The power is a sum of all powers

between the minimum and maximum frequency indexes calculated before. The last

step of the analysis is to take the values and apply the logarithm scale to them.

psd = — ^——— *\fft_coefficients\2 (4.1)
pulserate * jsize

The preprocessing ends by saving the data to a file by calling numpy .save ()
function. The file saves the variable contents returned by the spectral analysis

function in binary format.

A s an example, we took a one-minute-long measurement of a person running

near the wire. The output file from the D A S interrogator was 2.7 G B in size. The
5https: / /gitlab.com/optolab/das/data-viewer/-/blob/main/scripts/data-vie wer.py

55

function processed the file to just 7.5 M B file. Properties applied were: f s i z e was

set to 4096, and s h i f t was set to 4096.

4.2 Program implementation of HDF5 to WAV

This part of the project aims to create an application for reading data from the D A S

system and converting the data to the .wav audio file format.

The opening of .h5 files is done wi th h5py l ibrary 6 . For working with dataset

data types, numpy7 l ibrary is used. The function for interpolating arrays to a certain

range is also used interp. Lastly, to convert the signal data to .wav audio format

scipy library is used specifically i o module function wavf i l e . To read all options

and input arguments, the argparse library is used 8 .

4.2.1 Reading HDF5 files

The sample file recorded in the OptaSense O D H - F is in H D F 5 file format. A s H D F 5

files have a user-defined structure on the application layer and in the binary form,

it is hard to say what is actually in the file. To better understand the contents of

the .h5 file, h5dump was performed and a conversion to J S O N 9 was also performed

by the h5tojson program 1 0 . The J S O N file is quite large - the original H D F 5 file

is only 5 2 . 7 M B , and the J S O N file is 9 4 6 . 6 M B . The dump text file is half the size

and provides the same information, but the datasets are harder to understand, but

the whole file is only half the size of the J S O N file at "only" 420 M B . The J S O N

format is much easier to read. The structure of the file is divided into three parts:

• apiVersion - 1.1.1 version of A P I

• datasets - Contain all the datasets organized by their U U I D 1 1 that are de­

fined in the groups section. There is also an alias that is in the format of

a Unix-based system path, "/Acquisition/Raw [0]/Custom/SampleCount" is

an example. Other properties define the shape and type of stored data. In

this case, the properties are shown in the table B . l .
• groups - Groups are named by a U U I D . The group object has:

— alias - Unix-l ike name; the first is root " / " group

— attributes - define the type, name, and shape of the value of the attribute,

which is a string 979bb2ac-99bf-4cb5-b410-5cl6cd7872dc
6https://www.h5py.org/
7https://numpy.org/
8https://docs.python.org / 3/library/argparse.html
9https://www.j son.org/j son-en.html

1 0 h t t p s : / / h d f 5 - j son.readthedocs.io/en/latest/tools/h5j son.html
1 1 Universally unique identifier

56

https://www.h5py.org/
https://numpy.org/
https://docs.python.org/3/library/argparse.html
https://www.j
https://hdf5-j

InitApp

message: string

path: string

suffix: string

OpenFiles

filename: string

datasetname: string

selected_channels: string

Streaming

value: string

Properties

channel_count: int

subsampling: string

0..1

MessageFactory

parseQ: dataclass

state = mf.parse(message)

Server

websocket: object

local_files: list

state: dataclass

stream: Stream

file_reader: DASHDF5FileReader

dataset_path_list: list

dataset name: name

open_file()

find_files_backend()

find_h5_files()

change_properties()

DASHDF5FileReader

filename: string

opened_file_name: string

min: int

max: int

.get_dataset_path()

g et_d ata set_ pat hs 0

async read_datasetQ

0..1
-*—

Stream

websocket:object

state: boo I

streaming_wait_event: async Event()

streaming_task: async TaskQ

create_stream_task()

open_stream()

start_streamingO

stop_streaming()

pause_streamingO

set_streamingO

generator_initO

async stream_data()

0..1

— links - links to other groups that create a treelike structure. The link

object contains the class of a link (e.g., H 5 L T Y P E H A R D for hard

link), the collection property telling that it is a group, and the name of

the group. The group object also contains other important metadata,

such as measurement settings. A l l important details are given in the

There is a library for reading H D F 5 files written in Py thon called h5py. To read

the H D F 5 file's contents, a function was created called get_dataset_path() , which

recursively looks for a l l groups according to their name provided by the .keys()
method, in the dataset. The result of this function is propagated through recursion

and saved in Python set() buil t- in type. The user can then choose which one is

the suitable dataset to use because there is probably more than one dataset. When

calling the program, the user can save the string and use it as an argument. This

saves time in searching for the contents of the file.

This is the data structure of the D A S file from the OptaSense Interrogator:

D A S output file structure in H D F 5 format
/ root
L Acquisition Recorded data

Custom Empty

The type of explanation in 4.2.1 is i8, which is numberpy. int64. SampleCount
contains numbering of all samples, RawDataTime contains time, and RawData[0]
contains sensor data we need to read in the following steps; see 4.1.2. More details

are provided in Table B . l .

A l l important H D F 5 attributes are shown in the table B . l . It contains metadata

about the datasets, data dimensions, number of channels, kinds of filters used, time

information, length of pulses, laser wavelength, and more. Some properties can be

derived from those in the table. The capture duration can be calculated from the

start and end of the capture, which is 10.376 s.

4.2.2 Data processing for converting raw HDF5 data to WAV

The data have 100 channels with N samples, in this example 332 032 samples saved

in /Acquisition/Raw [0]/RawData [0], see the file structure in 4.2.1. The function

scipy. io.wavfile.write() saves samples to a file, and the data need more pro­

cessing before the function can be called. After the data are read from the file, it is

table B . l

Raw [0] ...
Custom

RawData [0] .
RawDataTime

L SampleCount

HDF5 group (3 members)
HDF5 group (1 members)

.... HDF5 dataset, shape (332032,), type "<i8">
HDF5 dataset, shape (100, 332032), type "<i2">
.... HDF5 dataset, shape (332032,), type "<i8">

58

Data type M i n i m u m value M a x i m u m value W A V format

fioat32 -1.0 + 1.0 32-bit floating-point

int32 -2147483648 +2147483647 32-bit P C M

in t l6 -32768 +32767 16-bit P C M

uint8 0 255 8-bit P C M

Tab. 4.1: W A V compatible types.

saved into samples variable of type numpy.array it is then processed in 4 steps as

preparation for saving into .wav file. The steps are:

1. Channel selection - only channel one can be selected.

2. Data interpolation - The original data have a terrible value range from -

24838 to -30758, triggering an exception when writ ing the data into a .wav

file. The numpy.interpO 1 2 function interpolates the data into the range of

the maximum and minimum values specified in this case by the 16 bit P C M 1 3 ,

which can be written to W A V file by wavf i l e module.

3. Resampling - as the data are recorded at a certain sampling frequency, in

this case, 10kHz, resampling by the function / sc ipy . s ignal .resampleO 1 4

is necessary. The right number of samples is calculated by the formula 4.2.

4. Retyping - the resampled data need to be in the correct format, and since

the interpolation was done in the range of i n t l 6 , the output type of choice is

the same samples . astype (np. i n t l 6) .

4 4 1 0 0 ,Ans
numbamples = ——;— ;—- (4.2)

fs.len(samples)

4.3 Frontend client application

A s discussed in Section 3.3.1, the frontend is written in the Svelte framework. The

application consists of three main parts - waterfall component, properties column,

and a footer. Waterfall component is the center of the application. It renders the

data and does the visualization. Properties column lets the user browse files, set

properties, adjust values, and start and stop the stream, as wi l l be discussed in the

following sections 4.4 and 4.4.1.

https://numpy.org/doc/stable/reference/generated/numpy.interp.html
1 3 Pulse Code Modulation
1 4https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample.

html

59

https://numpy.org/doc/stable/reference/generated/numpy.interp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample

Python back-end file structure:
optasense_visualization_app

jsconfig.json Application configuration
Dependencies with version

H T T P server
The root file

Build application output folder
Images and media

Source files and components
Main component

Dependencies
Application stores

D3.js x-axis definition.
Stylesheet document

A l l media and images
Svelte components

Stores and functions for canvas
Svelte components from the right panel

package.j son
server.py....
index.html..
d i s t /
public/
src/

App.svelte
main.j s ...
store.js ..
xAxis.j s..
app.ess....
assets/
l i b /

canvas_properties.js
properties/

4.4 Svelte components

A l l Svelte components and JavaScript source files are saved in src/ folder. The appli­

cation component App.svelte defines the basic layout of the application. The layout

itself is implemented using the Bootstrap l i b ra ry 1 5 in comparison to the svelte-layouts

package components used in the Prototype, see Section 3.5. The layout was inspired

by the h5web project; see Figure 2.4 and Section 2.6.3. The layout can be seen in

Figure 4.3. There are three main parts of the application - the Waterfall element

(defined in the file Waterfall.svelte), Properties column, and a Footer element.

4.4.1 Svelte stores

Svelte stores are JavaScript objects for storing values that must be shared between

all the components. They also save the application state in a way. To use a store

in a component and access its value developer needs a dollar notation, for example,

$store_name. This way, the value saved in the store is accessed. Svelte stores are

explained further in Section 3.3.1. There are two files defined with stores and func­

tions. The files are store.js and canvas-properties.js.

https://getbootstrap.com/

60

https://getbootstrap.com/

DAS data visualization vO.O B - Properties column 4-

y-axis

running_2023-04-17T122413+0100.h5/Acquisition
/Raw[0]/RawData

• running_2023-04-17T122413+0100.h5
/Acquisition/Raw[0]/RawDataTime

/Acquisition/Raw[0]/RawData
/Acquisition/Raw[0]/Custom/PpsOffset

/Acquisition/Raw[0]/Custom/GpBits
/Acquisition/Raw[0]/Custom/SampleCount

/Acquisition/Raw[0]/Custom/GpsStatus

Speed 100%

Cell height 10px

0 100 200 300 400 500 600 700 800 900 1,000 1.100 1.200 1.300 1.400 1.500 1.600 1.7(

A - chart area <r C h a n n e l s -> 2 x-axis

Select channels to displav

Select a channel to export to WAV

Export to WAV

The store.js file defines stores, functions, and variables for all components to use.

Most notable are:

• socket - a WebSocket object for communication wi th the server side. There

are also definitions for event listener for WebSocket communication "open" and

receiving messages.

• stream_state - Boolean value signals whether the heatmap is redrawing.

• data - store for saving incoming data for display.

• names of files and datasets.

• properties for sliders, text input, and buttons.

The second file canvas-properties.js defines stores and variables for the <canvas>
element. Most notable:

• width and height canvas dimensions.

• channel_number - number of channels, or number of rectangles on the x-axis.

• cellwidth - a derived store defined as $width/$channel_number.

• colormap - definition of active D3js colormap, default is Turbo, see Sec­

tion 3.4.4 regarding colormaps.

4.4.2 Stylesheet with dark and light mode

Modern browsers provide users wi th dark or light modes, so they can change the

mode according to surrounding light sources and brightness. To change the appli­

cation's style, variables were defined in the app.css file. The stylesheet checks for

the set color scheme and defines variables accordingly. It can be seen in the 4.4.2.

1 Qmedia (p r e f e r s - c o l o r - s c h e m e : l i g h t) {
2 : r o o t {
3 - - b a c k g r o u n d - c o l o r : # f f f f f f ;
4 - - c o l o r : #213547;
5 - - s e l e c t - t e x t - c o l o r : b l a c k ;
6 - - f o o t e r - b g - c o l o r : w h i t e ;
7 }
8 }
9 Qmedia (p r e f e r s - c o l o r - s c h e m e : d a r k) {

10 : r o o t {
11 - - b a c k g r o u n d - c o l o r : #213547;
12 - - c o l o r : w h i t e ;
13 - - s e l e c t - t e x t - c o l o r : b l a c k ;
14 - - f o o t e r - b g - c o l o r : r g b (3 4 , 38, 5 3) ;
15 }
16 }

62

4.4.3 Heatmap chart rendering to a canvas element

The heatmap chart rendering part of the application can be seen in Figure 4.3.

letter A - chart area, elements 1 to 5. The Svelte component is defined in the

Waterfall.svelte file. The Waterfall component consists of four main parts:

• Y-axis element - There is a "time" label and two buttons. One button is for

downloading the contents of the <canvas> element. To save canvas content,

a link is created using canvas . toDataURL(" image/png"). The second button

for clearing the canvas from the visualization.

• X-axis element - Consists of an x-axis element defined by D3js axisBottomO,
and it displays the number of channels the D A S system is watching over. The

definition is in the xAxis.js file.

• Canvas.svelte - See canvas rendering 3.4.3

The chart is a <canvas> element. Drawing to canvas uses the draw() function

defined in the Canvas.svelte file. The snippet from the implementation can be seen

in the Lis t ing 4.2. First , $ chart _row_num is set to the number of channels fitting

into the frame. It is derived from the formula ($height/$cel I Height) + 1. The plus

one is there to round the number up as the result of division is in float and would

be rounded down. This way, we round up without calling any function. Either the

number of rows is the length of the dataset when the number of rows is smaller than

the number of cells that fit the graph, or it is the maximum value of rows possible

to display. See Listings 4.2.

The rendering of a heatmap chart is done by drawing rectangles in a two-

dimensional plane on a canvas element. Rectangles are drawn by a f i l l R e c t O
function. It takes four arguments - coordinates of the top left corner and the bot­

tom right corner. To apply a style, in this color from a colormap saved in

the $colormap store, we call the function g e t F i l l O , wi th the value we want to

display. The returned value is the color of the rectangle.

63

List ing 4.2: Implementation of drawing to canvas.

1 f u n c t i o n g e t F i l l (v a l u e) {
2 // r e t u r n s colormap from the $ c o l o r m a p s t o r e
3 r e t u r n $ c o l o r m a p (c o l o r S c a l e (v a l u e)) ;
4 }
5
6 f u n c t i o n draw() {
7 $ c h a r t _ row_num = ($ h e i g h t / $ c e l l H e i g h t) + 1 ;
8 l e t row_number;
9 i f ($ d a t a _ s t o r e . l e n g t h < $chart_row_num) {

10 row_number = $ d a t a _ s t o r e . l e n g t h ;
11 } e l s e {
12 row_number = $ c h a r t _ r o w _ n u m - l ;
13 }
14 f o r (l e t y = 0; y < row_number; y++){
15 // get l a t e s t d a t a a v a i l a b l e
16 dataflow = $ d a t a _ s t o r e [y] ;
17
18 // p o s i t i o n of the r e c t a n g l e on the y - a x i s
19 posY = y * $ c e l l H e i g h t ;
20
21 // l o o p t h r o u g h a l l v a l u e s i n the row
22 f o r (l e t x = 0; x < d a t a R o w . l e n g t h ; x++){
23 // p o s i t i o n of the r e c t a n g l e on the x - a x i s
24 posX = x * $ c e l l W i d t h ;
25
26 // get c o l o r f o r a ~ r e c t a n g l e
27 c t x . f i l l S t y l e = g e t F i l l (d a t a R o w [x]) ;
28
29 // draw a ~ r e c t a n g l e
30 c t x . f i l l R e c t (
31 posX ,
32 posY,
33 posX + $ c e l l W i d t h ,
34 $ c e l l H e i g h t
35) ;
36 }
37 }
38 }

Under the data visualization is an x-axis. It is made using the D3js framework

for visualizing S V G graphics. When creating an object using D3.js, the first is to

call d3.select so the framework knows where to append the S V G object. We set

properties like width and height. The axis is created by calling d3. axisBottomO.
Then the scale is applied to set values from lowest to highest, and lastly, it is

important to set the number of t i c k s , which tells the graph how many points

64

should be displayed on the axis. To perfectly align the axis wi th the graph, the axis

is translated by five pixels to the right. The implementation is shown in Lis t ing 4.3.

Lis t ing 4.3: D3js x-axis implementation.

1 <script>
2 l e t c h a r t = d 3 . s e l e c t (" # x A x i s ")
3 .append("svg")
4 . a t t r (" w i d t h " , $ w i d t h + "px")
5 . s t y l e (" f o n t - s i z e " , " 5 0 p x ")
6 . a t t r (" h e i g h t " , 20) ;
7
8 s c a l e = d 3 . s c a l e L i n e a r ()
9 .domain([0, $ c h a n n e l _ n u m b e r])

10 . r a n g e ([0 , $ w i d t h]) ;
11 x _ a x i s = d 3 . a x i s B o t t o m ()
12 . s c a l e (s c a l e)
13 . t i c k s ($ c h a n n e l _ n u m b e r / 5)
14
15 c h a r t . a p p e n d (" g ")
16 . c a l l (x _ a x i s)
17 . a t t r (" t r a n s f o r m " , " t r a n s l a t e (" + 5 + " , 0) ") ;
18 < / s c r i p t >
19 <div i d = " x A x i s " > < / d i v >

4.4.4 Setting the speed property

To set the speed property, a component Speed_slider.svelte was created. It is a slider

wi th a command trigger on:mouseup which triggers a function handleMouseup. This

function sets a store variable $speed. It also (re)sets the update interval by clearing

the last interval and setting a new value; see 4.4. The s e t l n t e r v a l O function

takes two arguments, the first is a callback, in our case, it is an increment on

a value, and the second is a time value in milliseconds. The function countDelayO
was implemented in canvas_properties.js that takes the speed slider value, which

has values between zero and hundred, and applies a scale wi th new values from one

to one thousand milliseconds.

65

List ing 4.4: Svelte reactive statement for redrawing canvas element.

// Canvas . svelte component

$: {

$last_row_number;
draw ()

}

// canvas_properties.js
l e t idx = 0;

export function increment(){
idx++;
last_row_num.set(idx);

}

//Speed_slider.svelte
const handleMouseup = () = > {

$speed = s l i d e r _ v a l ;
i f ($stream_state) {

clearInterval($intervalID);
$intervalID = setlnterval(increment, countDelayO);

} else {
clearInterval($intervalID);

}

>;

4.4.5 Properties column items explained

The second part of the application is Properties column where the user can start and

stop the visualization animation, choose what files wi l l be opened, set visualization

properties like speed and cell height, choose a colormap for better understanding the

data, select what channels wi l l be displayed and which channel wi l l be exported to

W A V audio format. Each of these properties has its own Svelte component created

in src/properties folder, except for FileBrowser. svelte.

Starting wi th steam control buttons, see Figure 4.3. There are three buttons

to control the heatmap animation. Each button has its component file wi th its

implementation - Play, svelte, Stop, svelte and Restart.svelte. There is a handler

function associated with each button that handles input and sets the $stream_state
store, which starts and stops the animation by stopping the data from being sent

66

from the server. The Play button is disabled by default and enabled once a dataset

is ready to be sent from the server.

The OpenFiles.svelte defines a text input, which sets the $directory_store that

saves the path to the H D F 5 file on the device the server is running on. B y clicking

a button, the client sends a message requesting a list of all files wi th an .h5 suffix.

See Figure 4.3 item number 7.

The FileBrowser.svelte component creates a tree-like structure for opening and

closing the files and their datasets. There is a button on the top that can make the

component hide or appear. B y setting a path in the text input, item number 7 in

Figure 4.3, al l the files listed below the "Files" button. B y clicking a filename,

the client sends a WebSocket message to the server, which looks for the chosen

file's datasets. The server returns the list of datasets. The user then clicks on the

desired dataset, and a new message is sent to the server now opening the file and the

dataset and running the preprocessing stage, as explained in Section 4.2.2. During

the preprocessing, a loading wheel element is shown to tell the user to wait. After

loading the file, the Play button is automatically enabled.

Then there are two sliders - one sets the speed and one the height of each of the

rectangles in the heatmap; see Figure 4.3 item number 9.

The user can select a colormap from the element; see Figure 4.3 item number 10.

The definition is in Colormap.svelte. There are four to choose from Turbo, Inferno,

Rainbow, and Spectral.

Item number 11 enables the user to choose which channels should be displayed.

The values can be "a l l " , or numbers divided by a semicolon (";"). Setting value

ranges is also possible by putting a number followed by a dash ("-") and a second

number. Setting incorrect values results in applying either by selecting all channels.

Lastly, there is the element number 12, which lets the user select a channel,

which wi l l be converted to audio.

4.5 Testing the application

We tested the application on the data we acquired from the OptaSense O D H - F

Interrogator. The data is saved in H D F 5 file format. The machine setup can be

seen in the Attachment B .3 . We got the properties by running a Py thon script,

which is part of the backend attibutereader.py. A s the H D F 5 file structure depends

on the interrogator setup, we provide only a hardcoded version. It should serve an

example for acquiring attributes from H D F 5 files using h5py Py thon library.

The data recorded had a person running on a pavement near our school. Optical

fiber is buried around half a meter under the ground and about a meter from the

pavement. Our data visualization software can display the data and play them to

67

Fig . 4.4: The heatmap data visualization. Someone is running along the buried fiber

optic cable.

the user. Thanks to the spectral analysis function, the running is visible in the

visualization. The visualization is shown in Figure 4.4.

68

Conclusion
The main goal of this work was to study the D A S system and its output files

in the H D F 5 file format. A s for the implementation part, the goal was to create

a multi-platform application capable of displaying the data from the D A S interroga­

tor, processing it, and displaying it in a suitable form. The visualization should be

able to play and pause the animation of the flowing data, also wi th the ability to

convert the data into an audio file.

In the theoretical part, the principles of optical reflectometry were explained,

as well as different types of light scattering - Mie scattering, Rayleigh scattering,

Raman scattering, and Br i l louin scattering, the inner workings of the D A S system

and methods like O T D R and $ - O T D R were also studied. The output file format

H D F 5 was carefully examined wi th objects such as Datasets, Groups, Attributes,

and Links. The output file structure of the D A S system OptaSense O D H - F was

shown in a readable form. The existing technology was studied wi th available soft­

ware for the front-end and server side. Real-time capabilities were also discussed wi th

the data bandwidth requirements. A prototype was created and written in Svelte

to showcase the application's design wi th a waterfall graph and H T M L elements to

set properties for display.

In the design section, we discuss software requirements and the basic back-end

technologies used later in the implementation section, such as WebSockets and read­

ing H D F 5 files. The front-end technologies for data visualization based on Canvas

and S V G graphics were discussed. The basics of the Svelte framework were intro­

duced.

A web application was created wi th a server written in Python and a client

using the Svelte framework. The back end can read and process the data in H D F 5

file format. The back-end communicates wi th the client side using WebSockets.

A simple message system was created for this purpose. The client allows the user to

choose the file and the dataset, as well as properties like speed choosing a colormap

and channels to display. The visualization can be started, stopped, and replayed.

There is also a feature to download the image currently on display.

The application in this state is a one-page website; the next step would be to

incorporate it into the SvelteKit framework, allowing page routing. This should

be pretty straightforward. Future work can include further improving the visual­

ization, including zooming and data selection features, either by creating custom

<canvas> rendering, S V G rendering wi th D3js, or using existing libraries such as

Plotly. It might be useful to have multiple algorithms to choose from when process­

ing the raw D A S data. Al though we tried a few methods for data processing, we

have chosen one, and there is no selection possible at this stage.

69

Bibliography
[1] S H A N , Yuanyuan, J iayun D O N G , Jie Z E N G , Siyi F U , Yinsen C A I , Y i x i n

Z H A N G , and Xup ing Z H A N G . A Broadband Distributed Vibra t ion Sensing

System Assisted by a Distributed Feedback Interferometer. I E E E Photonics

Journal [online]. 2018, 10(1), 1-10 [cit. 2023-04-17]. ISSN 1943-0655. Accessible

at: doi:10.1109/JPHOT.2017.2776919

[2] Z Y C Z K O W S K I , Marek, Edward M . C A R A P E Z Z A , Mieczyslaw SZUS-

T A K O W S K I , Norbert P A L K A a Marc in K O N D R A T . Fiber optic perimeter

protection sensor with intruder localization [online]. In: . 2004-11-30, 71- [cit.

2023-04-18]. Accessible at: doi:10.1117/12.578186

[3] F I L K A , Miloslav. Optické přenosy informací pro integrovanou výuku V U T

a V Š B - T U O . Brno: electronic, 20114. I S B N 978-80-214-5064-6.

[4] R A O , Yunjiang, Zinan W A N G , Huijuan W U , Zengling R A N and Bing H A N .

Recent Advances in Phase-Sensitive Optical Time Domain Reflectometry

($ - O T D R) . Photonic sensors (Berlin) [online]. Singapore: Springer Singa­

pore, 2021, 11(1), 1-30 [cit. 2023-05-05]. ISSN 1674-9251. Accessible at:

doi:10.1007/sl3320-021-0619-4

[5] W O O D W A R D , B i l l , and Andrew O L I V I E R O . Cabl ing The Complete Guide to

Copper and Fiber-Optic Networking. 5th edition. Indianapolis, Indiana: John

Wiley, 2014. I S B N 978-1-118-80732-3.

[6] W E I K , Mar t i n H . Scattering center. In: W E I K , M a r t i n H . Computer Science

and Communications Dictionary [online]. Boston, M A : Springer U S , 2001, 2000-

11-30, s. 1522-1522 [cit. 2023-04-19]. I S B N 978-0-7923-8425-0. Accessible at:

doi:10.1007/l-4020-0613-6_16662

[7] Svelte documentation. Documentation [online]. 2023 [cit. 2023-04-20]. Accessi­

ble at: <https://svelte.dev/docs>

[8] P O S P Í Š I L O V Á , Marie, Gabriela K U N C O V Á , and Josef T R O G L . Fiber-

Optic Chemical Sensors and Fiber-Optic Bio-Sensors. Sensors [online].

2015, 15(10), 25208-25259 [cit. 2023-04-18]. ISSN 1424-8220. Accessible at:

doi:10.3390/sl51025208

[9] W A N G , Y u , Baoquan J I N , Yuncai W A N G , Dong W A N G , X i n L I U , Qing B A I :

Real-Time Distributed Vibration Monitoring System Using &-OTDR. I E E E sen­

sors journal [online]. P I S C A T A W A Y : I E E E , 2017, 17(5), 1333-1341 [cit. 2022-

11-22]. ISSN 1530-437X. Accessible at: doi:10.1109/JSEN.2016.2642221

70

http://svelte.dev/docs

[10] K I S L O V , K . V . , and V . V . G R A V I R O V : Distributed Acoustic Sensing: A New

Tool or a New Paradigm. Seismic instruments [online]. Moscow: Pleiades Pub­

lishing, 2022, 58(5), 485-508 [cit. 2022-11-22]. ISSN 0747-9239. Accessible at:

doi:10.3103/S0747923922050085

[11] M A T S U M O T O , Hiroyuki , Eiichiro A R A K I , Toshinori K I M U R A , et al. Detec­

tion of hydroacoustic signals on a fiber-optic submarine cable. Scientific reports

[online]. England: Nature Publishing Group, 2021, 11(1), 2797-2797 [cit. 2023-

04-22]. ISSN 2045-2322. Accessible at: doi:10.1038/s41598-021-82093-8

[12] P A R K E R , Tom, S H A T A L I N , Sergey, F A R H A D I R O U S A N Mahmoud: Dis­

tributed Acoustic Sensing - a new tool for seismic applications. Ear th-

doc [online], [cit. 2022-11-22]. Accessible at : https://doi.org/10.3997/1365-

2397.2013034

[13] M E R K L E I N , Mor i tz , Irina V . K A B A K O V A , At iyeh Z A R I F I , and Benjamin

J . E G G L E T O N . 100 years of Br i l louin scattering: Historical and future per­

spectives. Appl ied Physics Reviews [online]. 2022, 9(4), 41306 [cit. 2023-04-21].

ISSN 1931-9401. Accessible at: doi:10.1063/5.0095488

[14] P A L M I E R I , Luca and Luca S C H E N A T O . Distributed Optical Fiber Sensing

Based on Rayleigh Scattering. The Open Optics Journal. 2013, 7(1), 104-127.

Accessible at: doi:10.2174/1874328501307010104

[15] S H A N , Yuanyuan, J iayun D O N G , Jie Z E N G , Siyi F U , Yinsen C A I , Y i x i n

Z H A N G and Xup ing Z H A N G . A Broadband Distributed Vibra t ion Sensing

System Assisted by a Distributed Feedback Interferometer. I E E E Photonics

Journal [online]. 2018, 10(1), 1-10 [cit. 2023-05-04]. ISSN 1943-0655. Accessible

at: doi:10.1109/JPHOT.2017.2776919

[16] W A I T , P C , K D E S O U Z A and T . P N E W S O N . A theoretical compari­

son of spontaneous Raman and Br i l louin based fibre optic distributed tem­

perature sensors. Optics communications [online]. A M S T E R D A M : Elsevier

B . V , 1997, 144(1), 17-23 [cit. 2023-05-12]. ISSN 0030-4018. Accessible at:

doi:10.1016/S0030-4018(97)00482-3

[17] B O Y D , Robert W and Debbie P R A T O . Nonlinear Optics (3rd Edit ion). San

Diego: Elsevier, 2008. I S B N 0123694701. Accessible at: doi:10.1016/B978-0-12-

121682-5.X5000-7

71

https://doi.org/10.3997/1365-

[18] A Y A N A , Lamessa Abebe, Q i C H U , Y u l i n P E I , Liqiang Q I U , Dexin B A and

Yongkang D O N G . Distributed optical fiber sensing based on the combina­

tion of Br i l louin and Rayleigh scattering [online]. In: . S P I E , 2021, 118500D-

118500D-5 [cit. 2023-05-13]. I S B N 9781510645448. ISSN 0277-786X. Accessible

at: doi:10.1117/12.2599257

[19] G A B A I , Haniel, and A V I S H A Y Eya l : On the sensitivity of distributed acoustic

sensing. Optics letters vol. 41,24 (2016): 5648-5651. [online], [cit. 2022-11-22]

doi:10.1364/OL.41.005648

[20] W A N G Z, L U B , Y E Q, C A I H . : Recent Progress in Distributed Fiber Acous­

tic Sensing with &-OTDR. Sensors (Basel). 2020 Nov 18;20(22):6594. doi:

10.3390/s20226594. P M I D : 33218051; P M C I D : PMC7698859.

[21] K I S L O V , K . V . , and V . V . G R A V I R O V . : Distributed Acoustic Sensing: A

New Tool or a New Paradigm. Seismic instruments [online]. Moscow: Pleiades

Publishing, 2022, 58(5), 485-508 [cit. 2022-11-25]. ISSN 0747-9239. Accessible

at: doi:10.3103/S0747923922050085

[22] The HDF5 Data Model and File Structure H D F Group [cit. 2022-12-08].

Accessible at <https : //docs .hdf group. org/hdf 5/develop/_h5_d_m u_g.
html>.

[23] H E B E R G . : RESTful HDF5 The H D F Group [cit. 2022-12-08]. <https://
support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf >.

[24] H O R N M A N , J .C . : Field trial of seismic recording using distributed acous­

tic sensing with broadside sensitive fibre-optic cables. Geophysical Prospecting

[online]. 2017, 65(1), 35-46 [cit. 2022-12-06]. ISSN 0016-8025. Accessible at:

doi:10.1111/1365-2478.12358

[25] B A O , Xiaoy i , and Liang C H E N . : Recent Progress in Distributed Fiber Optic

Sensors. Sensors (Basel, Switzerland) [online]. B A S E L : M d p i , 2012, 12(7), 8601-

8639 [cit. 2022-12-08]. ISSN 1424-8220. Accessible at: doi:10.3390/sl20708601

[26] P A L M I E R ! , Luca; S C H E N A T O , Luca. Distributed optical fiber sensing based

on Rayleigh scattering. The Open Optics Journal, 2013, 7.1.

[27] OptaSense OS6 Visualizat ion Software Demo. YouTube, uploaded

by OptaSense, 22 June 2021, <https: //www.youtube. com/watch?v=
6-hjlySERIA>.

[28] Melnikov, A . , Fette, I.: The WebSocket Protocol. R F C Editor, [online] [cit.

2022-08-12]. Accessible at: <https://doi.org/10.17487/RFC6455>.

72

https://?support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf
https://?support.hdfgroup.org/pubs/papers/RESTful_HDF5.pdf
http://www.youtube
http://doi.org/10.17487/RFC6455

[29] Choosing Colormaps in Matplot l ib . Choosing Colormaps in Matplot l ib [online].

The Matplot l ib development team, c2002-2012 [cit. 2023-04-29]. Accessible at:

<https://matplotlib.org/stable/tutorials/colors/colormaps.html>

[30] Os7500 Optical Accelerometer [online], [cit. 2023-05-05]. Accessible at:

<https://lunainc.com/product/os7500>

[31] The fiber-optic gyroscope: Herve Lefevre Artec House, 1993, I S B N 0-89006-537-

3, pp. 300, £ 6 5 . Optics and Laser Technology [online]. Elsevier, 1993, 25(6),

406-406 [cit. 2023-04-22]. ISSN 0030-3992. Accessible at: doi: 10.1016/0030-

3992(93)90010-D

[32] What is Use Case Diagram? [online]. 2022 [cit. 2023-05-

05]. Accessible at: <https: //www. visual-paradigm. com/guide/
uml-unified-modeling-language/what-is-use-case-diagram/>

[33] What is a R E S T A P I ? [online]. I B M , 2023 [cit. 2023-05-06]. Accessible at:

<https://www.ibm.com/topics/rest-apis>

[34] H U S A R , Alex . How to use R E S T A P I s [online]. Oakland, C A 94607: Free Code

Camp, 2023 [cit. 2023-05-06]. Accessible at: <https ://www.f reecodecamp.
org/news/how-to-use-rest-api/>

[35] Cross-Origin Resource Sharing (CORS) mozilla.org [cit. 2022-12-08]. Accessible

at: <https://developer.mozilla.org/en-US/docs/Web/HTTP/C0RS>.

[36] Illustrative spectra of light scattering in optic fibers. Springer L ink [on­

line]: Springer [cit. 2023-04-25]. Accessible at: <https://link.springer,
com/article/10.3103/S0747923922050085/figures/6>

73

https://matplotlib.org/stable/tutorials/colors/colormaps.html
https://lunainc.com/product/os7500
https://www.ibm.com/topics/rest-apis
http://www.f
http://mozilla.org
https://developer.mozilla.org/en-US/docs/Web/HTTP/C0RS
https://link.springer,?com/article/10.3103/S0747923922050085/figures/6
https://link.springer,?com/article/10.3103/S0747923922050085/figures/6

Symbols and abbreviations
A D M Abstract Data Model

A P I Appl icat ion Programming Interface

B O T D R Br i l lou in Optical Time Domain Reflectometry

B O T D A Br i l lou in Optical Time Domain Analysis

D3.js Data-Driven Documents, a JavaScript framework

C - O T D R Coherent $ - O T D R

D A S Distributed Acoustic Sensing

D O M Document Object Model

DSS Distributed Strain Sensing

D T S Distributed Temperature Sensing

D V S Distributed Vibra t ion Sensing

D W D M Dense Wavelength Division Multiplexer

E D F A Erbium-doped Fiber Amplifier

F F T Fast Fourier Transformation

H D F 5 Hierarchical Data Format v5

H T M L HyperText Markup Language

H T T P Hypertext Transfer Protocol

J S O N JavaScript Object Notation

M E M S Microelectromechanical Systems

O F D R Optical Frequency Domain Reflectometry

$ - O T D R Phase-Sensitive Optical Time Domain Reflectometry

O T D R Optical Time Domain Reflectometry

P C B Printed Circuit Board

P Z T Lead Zirconate Titanate

74

R E S T Representational State Transfer

SBS Stimulated Br i l louin Scattering

SPS Samples Per Second

S V G Scalable Vector Graphics

T C P Transmission Control Protocol

U M L Unified Modell ing Language

75

List of appendices

A Installing dependencies 77

A . l Optasense visualizer application usage 77

A.2 Svelte 77

B OptaSense D A S system measurement

properties 79

C Printing the H D F 5 data structure and metadata 82

70

A Installing dependencies
Using a vir tual environment is suggested and installing all dependencies in the en­

vironment.

python3 -m venv env
source env/bin/activate
pip3 i n s t a l l - r requirements

A. l Optasense visualizer application usage

To run the application it is necessary to have an environment set up and all depen­

dencies installed.

R u n the server part of the application:

python3 app.py

The application usage:

usage: app.py [-h] [—port PORT]

DAS f i l e v i s u a l i z a t i o n software. Server application,

options:
-h, — h e l p show t h i s help message and exit
— p o r t PORT Port number for websocket.

A.2 Svelte

To create a Svelte application from template:

npm create svelteOlatest myapp

R u n the client on the localhost:

npm run dev

To run a bui ld call:

npm run b u i l d

77

The output wi l l be saved in /dist folder. To run the application from there, run

Python script in the project's client folder:

python3 server.py

Server created this way is a simple Flask server.

78

OptaSense DAS system measurement
properties

Property Value

/ Acquisition

MaximumFrequency 16000

MinimumFrequency 0

NumberOfLoci 100

PulseRate 32

PulseWidth 20 ns

SpatialSamplinglnterval 1.020 95 m

StartLocusIndex 600

/ Acquis i t ion/Custom

Data W i d t h (Bits) 16 bits

F P G A infromation Type and settings

F P G A Drawing Number 4802701

F P G A Version 1.2

Fibre Refractive Index 1.468199968338

G P S Enabled True

Laser Wavelength (nm) 1550

N u m Output Channels 100

P ing Period (CSU) 3125

Pulse W i d t h (CSU) 2

Sequencer Clock (MHz) 100 M H z

Sequencer Mode 1

/Acquis i t ion/Raw [0]

OutputDataRate 32000

NumberOfLoci 100

RawDescription Single Pulse, SR: 1.5, O C P : 1

StartLocusIndex 600

Tab. B . l : H D F 5 groups and their attributes from the data file.

79

Property Value

/ Acquisit ion/Raw [0] / Custom / SampleCount

Filters shuffle and deflate

maximum dimensions 6451612

shape (number of samples) 332032

type 64-bit integer

/Acquis i t ion/Raw [0]/RawData

Count

number of all values
33203200

Start time 2021-08-31T16:22:39.739250Z

E n d time 2021-08-31T16:22:50.115218Z

Filters shuffle and deflate

type 64-bit integer

Shape
100 channels

332032 samples

/ Acquisit ion/Raw [0]/RawDataTime

Start time 2021-08-31T16:22:39.739250Z

E n d time 2021-08-31T16:22:50.115218Z

Filters shuffle and deflate

start index 0

shape 332032

type 64-bit integer

Tab. B.2: H D F 5 groups and their attributes from the data file.

80

Property Value

/ Acquisition

MaximumFrequency 10000.0

MinimumFrequency 0.0

NumberOfLoci 1700

PulseRate 20000.0

PulseWidth 20.0

PulseWidthUni t ns

SpatialSamplinglnterval 1.0209523

SpatialSamplinglntervalUnit m

StartLocusIndex 0

TriggeredMeasurement false

VendorCode
OptaSense I U Setup 1.8.6

C9c23ad2ab20eb82641984e0el205500228e9fba

schema Version 2.0

uuid bb 17e24c-0c96-44d0-b4b0-a25a72db 10e2

Filters shuffle and deflate

maximum dimensions 6451612

shape (number of samples) 332032

type 64-bit integer

/Acquis i t ion/Raw [0]

Count

number of all values
33203200

NumberOfLoci 1700

OutputDataRate 20000.0

RawDescription b'Single Pulse, SR: 1.5, O C P : 1'

StartLocusIndex 0

uuid b '34baal 9e-cdde-48d7-8430-fbc9eb2187e6'

/Acquis i t ion/Raw [0]/RawData

Count 1938000000

Dimensions array([time, locus], dtype='|S6')

Pa r tEndTime 2023-04-17Tll:25:10.456750Z

PartStar tTime 2023-04-17Tll:24:13.456800Z

Startlndex 0

Tab. B.3 : H D F 5 groups and their attributes from the running data file.

81

C Printing the HDF5 data structure and meta­
data

h5dump -n running_2023-04-17T122413+0100.h5

HDF5 "running_2023-04-17T122413+0100.h5" {
FILE CONTENTS {
group /
group /Acquisition
group /Acquisition/Custom
group /Acquisition/Raw[0]
group /Acquisition/Raw[0]/Custom
dataset /Acquisition/Raw[0]/Custom/GpBits
dataset /Acquisition/Raw[0]/Custom/GpsStatus
dataset /Acquisition/Raw[0]/Custom/PpsOffset
dataset /Acquisition/Raw[0]/Custom/SampleCount
dataset /Acquisition/Raw[0]/RawData
dataset /Acquisition/Raw[0]/RawDataTime

}

}

82

