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Classification of Temporal Images 

Abstract 

The classification of temporal images is a crucial task in the field of computer vision and has 

numerous applications, including seed germination detection. In this thesis, two models were 

developed and trained for the classification of temporal images, with a focus on detecting 

seed germination in soil. The first model, Y O L O , was trained for the detection of the first 

appearance of the plant on the soil. The second model, ConvLSTM, was trained for the 

detection of the germination of the seed in soil using temporal image classification. 

The Y O L O model was trained using a customized germination dataset containing two 

classes: "soil" and "FA", which represented the first appearance of the plant on the soil. 

The results of the training process showed that both models achieved high levels of accuracy 

in detecting the respective classes. The Y O L O model achieved precision values of 0.989 and 

0.991 for the "soil" and "FA" classes, respectively, and a mean average precision of 0.995 

for both classes. The ConvLSTM model achieved an accuracy of 0.9378, with a loss of 

0.2469, demonstrating its effectiveness in detecting seed germination in soil using temporal 

image classification. 

This thesis presents the development and training of two models for the classification of 

temporal images, with a focus on detecting seed germination in soil. The results show that 

both models are effective in detecting the respective classes, and the ConvLSTM model is 

particularly well suited for detecting seed germination in soil using temporal image 

classification. 

Keywords: Temporal Image Classification, Seed Germination Detection, Y O L O , 

ConvLSTM, Computer Vision, Image Processing. 
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Klasifikace Časových Obrazů 

Abstrakt 

Klasifikace časových obrazů je klíčový úkol v oblasti počítačového vidění a má četné 

aplikace, včetně detekce klíčivosti semen. V této práci byly vyvinuly a natrénovány dva 

modely pro klasifikaci časových snímků se zaměřením na detekci klíčivosti semen v půdě. 

První model, YOLO, byl trénován pro detekci prvního výskytu rostliny na půdě. Druhý 

model, ConvLSTM, byl trénován pro detekci klíčení semen v půdě pomocí časové 

klasifikace obrazu. Model Y O L O byl trénován pomocí přizpůsobené sady údajů o klíčení 

obsahující dvě třídy: „soil" a „FA", které představovaly první výskyt rostliny na půdě. 

Výsledky tréninkového procesu ukázaly, že oba modely dosáhly vysoké úrovně přesnosti 

při detekci příslušných tříd. Model Y O L O dosáhl hodnot přesnosti 0,989 a 0,991 pro třídy 

„soil" a „FA" a střední průměrnou přesnost 0,995 pro obě třídy. Model ConvLSTM dosáhl 

přesnosti 0,9378 se ztrátou 0,2469, což prokazuje jeho účinnost při detekci klíčení semen v 

půdě pomocí klasifikace časového obrazu. 

Tato práce představuje vývoj a trénování dvou modelů pro klasifikaci časových snímků se 

zaměřením na detekci klíčivosti semen v půdě. Výsledky ukazují, že oba modely jsou účinné 

při detekci příslušných tříd a model ConvLSTM je zvláště vhodný pro detekci klíčivosti 

semen v půdě pomocí časové klasifikace obrazu. 

Klíčová slova: Časová klasifikace obrazu, detekce klíčení semen, Y O L O , ConvLSTM, 

počítačové vidění, zpracování obrazu. 
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1 Introduction 

Today's technologies are used in almost every field. In this era of digitalization, where 

data is the most valuable, they aim to create better business models by using this data 

obtained in every sector in their own business models. 

Thanks to the results obtained by using statistical methods or various artificial 

intelligence methods on the obtained data, the work being done is both easier (using 

autonomous or semi-autonomous technologies) and more profitable models can be created 

in suitable environments and conditions. Important factors such as reducing the effort given 

for the work done, obtaining the same or even more efficient results in a shorter time, and 

increasing the labor and energy savings to optimum levels are some of the main purposes in 

today's business model using data. Important data outputs obtained from auxiliary computer 

systems not only make our work easier, but also predict how efficiently that job will be 

output in which environments. These auxiliary systems, where artificial intelligence comes 

first, are trained with data, and make predictions in their own systems. 

Thanks to these new technologies, which are inevitable to be used in the agriculture 

sector, studies are carried out to grow plants more efficiently, to keep these plants connected 

not only to their natural environment, but also to be obtained efficiently in an artificial 

environment. In this direction, besides the analysis of the experimental environments created 

with technologies such as the internet of things (IOT) by computers, the data obtained is 

used for purposes such as artificial intelligence technologies, supporting research results, 

making predictions for future studies and research. 

In line with the explanation above, artificial intelligence systems as assistance for 

research are useful for the field of agriculture as well. Therefore, in this thesis, the seedling 

moments of the plants in the soil cells on a tray were observed. With support from artificial 

intelligence systems, a machine learning technology is used to detect the timelines of the 

germination, that first appears in the soil, by using temporal image classification method 

which is C N N with L S T M and object detection in image frames. 
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2 Objectives and Methodology 

2.1 Objectives 

The thesis was aimed to find an optimal machine learning model for the classification 

of images produced by an experimental phenotyping platform. The main objective was to 

accurately identify images of where the crop starts to germinate in the soil. In order to 

achieve this objective, several partial goals were set. 

The partial goals of the work are: 

• Collecting and preprocessing the data: The first step in achieving the main 

objective is to gather enough data and preprocess it to make it suitable for the 

machine learning models. 

• Reviewing and selecting state-of-the-art models: The next step is to review and 

select the most suitable machine learning models for comparison based on their 

performance on similar tasks. 

• Retraining the models: The final step was to retrain the selected models on the 

given data either from scratch or using transfer learning. This allows for a direct 

comparison of the models and their performance on the aim of the thesis. 

These partial goals, when combined, helped in achieving the main objective of the 

thesis and provided valuable insights into the use of machine learning in image classification. 

2.2 Methodology 

The methodology of the diploma thesis was based on the study and analysis of 

professional information sources. In the practical part, appropriate models were selected 

based on the theoretical part. The models were retrained on the given data either from scratch 

or using transfer learning. Evaluation data were consequently used for the comparison. 

Based on the synthesis of theoretical knowledge and the results of the practical part, the 

conclusions of the work were formulated. 
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3 Literature Review 

Seedling must determine the appropriate mode of action based on its environment to 

best achieve photosynthetic success and enable the plant to complete its life cycle. Once the 

seedling emerges out of the soil, it initiates photomorphogenesis, a complex sequence of 

light-induced developmental and growth events leading to a fully functional leaf. This 

sequence includes severe reduction of hypocotyl growth, the opening of cotyledons, 

initiation of photosynthesis, and activation of the meristem at the shoot apex, a reservoir of 

undifferentiated cells that will lead to the formation of the first leaf [1]. 

The detection of the first appearance of the plant on the soil is a critical task in plant 

biology research, as it provides valuable information for crop management and scientific 

studies. Over the past few years, there has been a growing interest in using computer vision 

techniques to automate the detection of the first appearance of seeds in the soil. Various 

methods have been proposed to address this problem, ranging from traditional computer 

vision techniques to deep learning-based approaches [1]. 

While many computer vision approaches have been proposed for seed detection in 

soil images, relatively few studies have focused on the temporal aspect of the problem. 

Temporal image classification, which involves predicting the class label of an image based 

on its position in a temporal sequence, can be used to detect the first appearance of a seed in 

a series of soil images. By modeling the temporal dynamics of seed germination, temporal 

image classification can improve the accuracy and robustness of seed detection. However, 

designing effective temporal image classification models for seed detection remains a 

challenging task, due to the high variability and complexity of soil images and the subtle 

temporal changes in seed appearance [2] [3]. There are several ways to deal with difficulties 

such as hue color range filtering to isolate the specific colors in an image based on the color 

after germination [4]. 

Traditional computer vision techniques have been used for object detection tasks for 

decades. Researchers have used techniques like feature extraction, edge detection, and 

segmentation to detect seeds in soil images. For example, researchers used the normalized 

cuts algorithm to segment seed images from the background soil. However, these methods 

can be limited by their reliance on handcrafted features and may not generalize well to new 

datasets [1] [5]. 
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Recent advances in deep learning have led to significant improvements in computer 

vision tasks, including object detection. Deep learning models like convolutional neural 

networks (CNNs) have been successfully used for object detection tasks. For example, 

researchers used a combination of CNNs and long short-term memory (LSTM) networks to 

detect seed germination in Arabidopsis images. In [1] and [5], C N N was used to extract 

features from the images (see Figure 3.1), while the L S T M was used to model the temporal 

aspect of the data [2]. 

LSTM Classification 
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Figure 3.1: C N N Feature Extraction using L S T M layer for seedling detection [8] 

One of the most popular deep learning-based object detection frameworks is the You 

Only Look Once (YOLO) algorithm. Y O L O is a real-time object detection system that uses 

a single neural network to predict the class and location of objects in an image. Y O L O has 

been used for a variety of object detection tasks, including plant detection. Therefore, Y O L O 

can be sensitive to small objects, which may be a limitation for seed detection [8]. 

Another popular deep learning-based approach for object detection is the Faster R-CNN 

algorithm. Faster R-CNN uses a region proposal network to generate object proposals and 

C N N to classify and refine the proposals. Researchers used a Faster R-CNN model to detect 

seeds in soil images. The model achieved high accuracy in seed detection, but it was 

computationally expensive [4]. 

In conclusion, there have been several approaches proposed for the detection of the first 

appearance of seeds in soil images by using object detection or temporal image 

classification. Traditional computer vision techniques have been used with limited success 

due to their reliance on handcrafted features. Deep learning-based approaches, on the other 

hand, have shown significant improvements in object detection tasks, including seed 
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detection. While Y O L O and Faster R-CNN are popular deep learning-based approaches, 

their sensitivity to small objects and computational complexity may be limitations for seed 

detection. In the Practical Part of the thesis, proposed approaches for the detection of the 

first appearance of seeds in the soil using temporal images are based on implementation of 

2 different models which are Y O L O and C N N with L S T M networks [9]. 

3.1 Image Pre-Processing 

Image preprocessing is a crucial step in preparing images for model training and 

analysis. It involves techniques such as cropping, resizing, normalization, and color space 

conversions. The purpose of image preprocessing is to prepare the image for analysis by the 

model and to improve the model's performance [14]. 

In addition to improving model performance, image preprocessing can also help reduce 

model training time and increase model inference speed. Large input images can 

significantly slow down model training time, which can be mitigated by resizing or cropping 

the images. Reducing the size of input images can also help improve model inference speed 

without significantly impacting model performance [14]. 

3.1.1 Image Scaling 

Image scaling is used to increase or decrease the size of a given image. Scaling 

algorithms are used to preserve details or features. There are multiple ways of scaling an 

image, some common ways are Nearest neighbor, Bilinear interpolation and Box sampling. 

These algorithms will be evaluated and chosen for which one that suits the network best 

[14]. 

3.1.1.1 Nearest Neighbor Interpolation 

The nearest neighbor algorithm is the simplest scaling algorithm, which involves 

selecting the nearest pixel to determine the color value of a new pixel in the scaled image 

(Figure 3.2). This method is fast and easy to implement but can lead to poor image quality 

due to its blocky or jagged edges in the scaled image. This method is useful for downscaling 

an image, but it's not recommended for upscaling an image. [15]. 
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Nearest Neighbour Interpolation 

Decimated Image 

Interpolated Image 
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Figure 3.2: Resizing Image with Nearest Neighbor Interpolation Application 

3.1.1.2 Bilinear Interpolation 

The bilinear interpolation algorithm works by taking a weighted average of the four 

nearest pixels to determine the color value of a new pixel in the scaled image. This algorithm 

provides smoother and more natural-looking images than the nearest neighbor algorithm, 

making it a popular choice for many applications. This method is useful for upscaling an 

image, but it's not recommended for downscaling an image. [15]. 

Qu 

1 
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1 
1 
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Figure 3.3: Downscaling in image pixels 

In Figure 3.3, this interpolation involves the 4 neighboring points. Linear 

interpolation is done on points the top 2 points (Ql 1 and Q12) and the bottom 2 points (Q21 

and Q22) to obtain two new points (PI and P2). Then, linear interpolation is applied to the 

new points to get the interpolated point P [15]. 
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3.1.2 Grayscale Conversion 

Grayscale conversion is a useful process of converting colored images into black and 

white, as it looks in Figure 3.4, which has various benefits in image processing and machine 

learning algorithms. Grayscale images require less memory and processing power, have a 

smaller file size, and are easier to analyze. There are various methods of converting an image 

to grayscale, including the luminosity, average, and lightness methods. The choice of the 

conversion technique depends on the specific application and desired grayscale image 

quality [4]. 

Figure 3.4: Grayscale implementation on the image 

3.1.3 Image Denoising 

The images that are captured in the real world come with noises. These noises can 

appear due to many reasons such as electric signal instabilities, malfunctioning of camera 

sensors, poor lighting conditions, errors in data transmission over long distances, etc. This 

can degrade the captured image's quality and can cause loss of information as the original 

pixel values are replaced by random values due to noise. So, there is a need to remove these 

noises from images when it comes to low-level vision tasks and image processing. The 

process of removing such noises from images is known as Image Denoising. The image on 

the right side is the denoised version of the left one in Figure 3.5 [4]. 
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Figure 3.5: Image denoising 

3.1.4 Image Segmentation 

Image segmentation is a crucial process in which a digital image is divided into 

smaller parts or subgroups called image segments. These segments can help in reducing the 

complexity of the image, making further processing or analysis of the image simpler. 

Segmentation is the process of assigning labels to pixels, wherein all the pixels belonging to 

the same category have a common label assigned to them [4]. 

Image segmentation has several advantages in image processing and computer vision 

applications. For instance, in object detection, the detector can be inputted with a region 

selected by a segmentation algorithm, rather than processing the whole image. This reduces 

the inference time and enhances the accuracy of object detection. Moreover, segmentation 

can help in identifying objects, detecting edges, and reducing noise in images [4]. 

There are several techniques used for image segmentation, including thresholding, region 

growing, edge detection, and clustering. The choice of technique depends on the specific 

application and the characteristics of the image being processed [4]. 

3.1.4.1 Instance Segmentation 

Instance segmentation is a more advanced form of image segmentation that not only 

divides the image into segments, but also identifies individual objects within each segment. 

In instance segmentation, each pixel in the image is assigned a unique label or identifier that 

represents a specific object in the image. This technique is useful for applications that require 

the detection and segmentation of multiple objects in an image, such as autonomous vehicles 

and robotics (see Figure 3.6). Instance segmentation is typically performed using deep 

learning algorithms, which can achieve high accuracy in identifying and segmenting objects 
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in images. The performance of instance segmentation depends on the quality of the training 

data and the architecture of the deep learning model. Overall, instance segmentation is a 

powerful technique that can provide detailed and accurate information about the objects in 

an image [4]. 

3.1.4.2 Semantic Segmentation 

Semantic segmentation is a technique in computer vision that involves dividing an 

image into multiple segments or regions, where each segment represents a different object 

or part of the image. However, unlike instance segmentation, semantic segmentation does 

not differentiate between individual instances of the same object type. Instead, it classifies 

each pixel in the image into a specific class, such as a person, car, or building. This technique 

is useful for many applications, including object detection, autonomous driving, and medical 

image analysis. Semantic segmentation is typically performed using deep learning 

algorithms that are trained on large datasets to accurately classify the pixels in the image. 

The accuracy of the semantic segmentation model depends on the quality of the training 

data, the architecture of the deep learning model, and the complexity of the image being 

segmented. In summary, semantic segmentation is a powerful technique that can provide 

rich information about the different objects in an image, facilitating further analysis and 

processing [1][19]. 

Figure 3.6: Example of Instance Segmentation [19] 
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Figure 3.7: Example of Semantic Segmentation [19] 

3.2 Data Annotation 

Data annotation is the process of adding labels or tags to a data set in order to make it 

more usable and interpretable. The purpose of this process is to provide additional 

information to the data, making it easier for algorithms and models to understand and use 

the data in a meaningful way. It is a crucial step in the development of machine learning 

models, particularly in the field of computer vision. In computer vision, data annotation is 

used to train algorithms to recognize objects, people, and other elements within images and 

videos [15]. 

Data annotation is one of the top limitations of AI implementation for organizations. It is 

basically the process of labeling data with relevant tags to make it easier for computers to 

understand and interpret. This data can be in the form of images, text, audio, or video, and 

data annotators need to label it as accurately as possible. Data annotation can be done 

manually by a human or automatically using advanced machine learning algorithms and 

tools [15]. 

For supervised machine learning (see 3.6.1. Supervised Learning), labeled datasets are 

crucial because M L models need to understand input patterns to process them and produce 

accurate results. Supervised M L models (see Figure 3.8) train and learn from correctly 

annotated data and solve problems such as classification or regression (see 3.6. Machine 

Learning) [15]. 
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TRAINING SET 

Figure 3.8: Supervised learning example based on data annotation of objects. 

3.2.1 Image Annotation/Labeling 

Image annotation or image labeling is the process of adding labels or tags to an image 

in order to provide additional information about the objects or elements within the image. 

Image annotation is a critical step in the development of computer vision algorithms and 

models, as it helps the algorithms to understand and recognize objects within images. Despite 

its importance, image annotation can also be a challenging task, especially on spending time 

to generate the labeled dataset. However, by using image annotation tools such as Labelling, 

which was used on this thesis project, these challenges can be overcome, leading to the 

creation of large, high-quality data sets for training computer vision algorithms and models. 

There are several types of image annotation, each with its own specific purpose. These types 

include object detection, semantic segmentation, instance segmentation, key point 

annotation, bounding box annotation (see Figure 3.9) [15]. 
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Classification Semantic Segmentation 

Figure 3.9: Image annotation types 

3.2.1.1 Image Classification 

Image classification is the process of assigning an image to one of a set of predefined 

categories or classes. This type of annotation involves labeling an image with a class label, 

such as "apple" or "banana". The resulting annotations are used to train algorithms to classify 

new images into the appropriate class [15]. 

Image classification is a fundamental task in computer vision and has many real-

world applications, including image search, content-based retrieval, and object recognition 

[15]. 

There are several approaches to image classification, including traditional machine 

learning algorithms, such as support vector machines (SVMs) and decision trees, as well as 

deep learning approaches, such as convolutional neural networks (CNNs). The choice of 

approach will depend on the specific requirements of the application and the available data. 

Image classification is a supervised learning task, meaning that the algorithm is trained on a 

labeled data set. The quality of the annotations used to train the algorithm has a direct impact 

on the performance of the model, so it is important to ensure that the annotations are accurate 

and complete [15]. 
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3.2.1.2 Object Recognition/Detection 

Object recognition/detection is a further version of image classification. It is the 

correct description of the numbers and exact positions of entities in the image. While a label 

is assigned to the entire image in image classification, object recognition labels entities 

separately. As an example, with image classification, the image is labeled as day or night. 

Object recognition individually tags various entities in an image, such as a "bicycle", "tree", 

or "table" [15]. 

3.2.1.3 Image Segmentation 

Image segmentation for data annotation plays a crucial role in creating ground truth 

annotations for machine learning algorithms. Ground truth annotations are labeled data used 

to train and evaluate machine learning models. Image segmentation is used to divide an 

image into multiple segments or regions, each of which corresponds to a different object or 

part of the image. This allows annotators to label each segment with a class label, such as 

"person," "car," or "background." [15]. 

There are various image segmentation techniques that can be used for data annotation, 

including semantic segmentation, instance segmentation, and boundary-based segmentation. 

Each technique has its own advantages and limitations, and the choice of technique will 

depend on the specific requirements of the data annotation part of the projects [15]. 

3.3 Data Augmentation 

Data augmentation is a technique used to increase the diversity of a dataset by making 

minor alterations to the existing data, without collecting new data. This technique is used to 

overcome the limitations of small datasets and to prevent a neural network from overfitting 

to the training data. It is an important technique for improving the performance of neural 

networks and is widely used in various machine learning applications [15]. 

Standard data augmentation techniques include horizontal and vertical flipping, rotation, 

cropping, shearing, and more. These techniques help in diversifying the training data, 

allowing the neural network to learn features that are invariant to small transformations. This 

results in a more robust and generalizable model [15]. 
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Figure 3.10: Data augmentation implementations 

3.3.1 Types of Data Augmentation 

There are two types of data augmentation which are offline augmentation and 
online augmentation [15]. 

3.3.1.1 Offline Augmentation 

Offline augmentation is used for small datasets and is applied during the data 

preprocessing step. It involves creating augmented versions of the data before training the 

3.3.1.2 Online Augmentation 

Online augmentation is used for large datasets and is applied in real-time during the 

training process. It involves generating augmented versions of the data on-the-fly, allowing 

for a larger and more diverse training dataset without the need for additional data collection. 

3.3.2 Data Augmentation Methods 

Data augmentation methods are commonly used to increase the diversity of the 

training data and to prevent overfitting. By generating new samples that differ from the 

original data in various ways, these methods help to improve the robustness and 

generalization of machine learning models [15]. 

3.3.2.1 Shifting 

Shifting involves translating the image along the x and y axes. This can be done by 

moving the image up, down, left, or right by a specified number of pixels. Shifting helps to 

increase the diversity of the training data by generating new samples that differ from the 

model. 
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original data in their spatial location. See Figure 3.11 as an applied shifting method example 

on an image [15]. 

Figure 3.11: Shifting method in image 

3.3.2.2 Flipping 

This reverses the rows or columns of pixels in either vertical or horizontal cases, 

respectively. See Image 3.12 as an applied flipping method example on an image [15]. 

' • V I : 
V 
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Figure 3.12: Flipping the image. 

3.3.2.3 Rotation 

Rotation involves rotating the image by a specified angle. This can be done by rotating 

the image clockwise or counterclockwise. Rotation helps to increase the diversity of the 

training data by generating new samples that differ from the original data in their orientation. 

See Image 3.13 as an applied rotation method example on an image [15]. 
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Figure 3.13: Rotation on the image 

3.3.2.4 Changing Brightness 

Changing the brightness involves altering the brightness of the image. This can be 

done by increasing or decreasing the brightness of the image. Changing the brightness helps 

to increase the diversity of the training data by generating new samples that differ from the 

original data in their lighting conditions. See Figure 3.14 as an applied brightness changing 

method example on an image [15]. 

0 50 100 150 200 2S0 0 SO 100 150 200 2S0 0 50 100 150 200 250 

Figure 3.14: Changing the brightness of the image. 

3.4 Computer Vision 

Computer Vision is a field of study that focuses on enabling computers to interpret 

and understand visual data from the world, such as images and videos. The goal of computer 

vision is to develop algorithms and models that can automatically extract meaningful 

information from visual data, such as recognizing objects and scenes, detecting edges and 

corners, and estimating depth and motion [1]. 

Computer vision has a wide range of applications, including image and video analysis, 

object recognition and tracking, and autonomous systems [1]. With the increasing 

availability of high-quality visual data, computer vision has become an important area of 

research, with many advances being made in recent years [1]. 
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Deep learning has been a major driver of progress in computer vision in recent years, 

with convolutional neural networks (ConvNets) being one of the most popular and 

successful deep learning models for computer vision. ConvNets are designed to process 

image data, and they have been shown to outperform traditional computer vision methods in 

tasks such as image classification, object detection, and semantic segmentation [2]. 

3.4.1 What is Artificial Intelligence? 

Artificial Intelligence (AI) is the field of computer science that focuses on the 

development of intelligent machines that can perform tasks that typically require human 

intelligence, such as visual perception, speech recognition, decision-making, and language 

translation. The goal of AI is to create systems that can perform tasks that are typically 

performed by humans, without being explicitly programmed to do so [1]. 

AI has a wide range of applications, including natural language processing, computer 

vision, robotics, and game playing. It has the potential to revolutionize many industries, 

including healthcare, finance, and transportation, by automating tasks that were previously 

performed by humans, improving efficiency and accuracy [2]. 

There are two main approaches to AI: rule-based systems and machine learning. Rule-based 

systems are systems that are explicitly programmed with a set of rules to perform a specific 

task, while machine learning is a type of AI that enables systems to automatically learn from 

data, without being explicitly programmed [1]. 

Machine learning has become an important area of AI research in recent years, with advances 

in deep learning leading to significant improvements in performance in many tasks, such as 

image classification and natural language processing. Deep learning is a type of machine 

learning that uses deep neural networks, which are networks with many layers, to learn from 

data [3]. 

3.5 Neural Networks 

Neural networks are computational models inspired by the structure and function of 

the human brain. They aim to replicate the perception, learning, and memory capabilities of 

human neurons by performing these functions mathematically on computers. The goal of 

neural networks is to recognize patterns, make predictions, and perform other tasks that 

would normally require human intelligence [16]. 
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Figure 3.15.(b) shows a simple representation of a neural network, modeled after a 

human neuron (see Figure 3.15.(a)). The input layer receives data, the hidden layer processes 

the data, and the output layer produces the result. In Figure 3.16, a neural network 

architecture takes the input from input layer and calculates the result in the exit of layer. 

Neural networks can be trained using various algorithms, such as supervised learning, 

unsupervised learning, or reinforcement learning, to learn from data and improve their 

performance over time [16]. 

Neural networks are powerful tools for solving complex problems in fields such as 

computer vision, natural language processing, and robotics. They can learn from data and 

improve their performance, making them promising technology for the future [16]. 

(b) Artificial neuron 

Figure 3.15: (a) Biological neuron from human brain, 

(b) Artificial neuron that is inspired by biological neuron 

A neural network consists of three parts: input, calculation, and output layers. The input 

layer's input values, xl, x2, .... xn, and weights, wl, w2, ... wn, are shown (Equation 3.1). 

These values are defined as real numbers. Figure 4.2 shows an artificial neural network 

model [16]. 

The artificial neural network produces an output consisting of zeros and ones. In 

Equation 4.1, when the threshold value is added to the product of the input layer and weights 

of the neural network, if the result is greater than the threshold value, the neural network will 

28 



output 1, otherwise 0. Equation 3.1 shows the function that produces the output and (y) is 

the output, (Ay) is the input layer, (Wj) are the weights, and (b) is the bias value [16]. 

x = ̂  WjXj + b 
J 

y 10. x < 0 

Equation 3.1: Neuron Output Calculation 

(Xn):Input, (n):Index, (w):Weight, (b):Bias, (y):Output 

Figure 3.16: Neural network architecture 

3.5.1 Cost Functions 

A cost function, also known as a loss function, is a measure of the difference between 

the predicted output of a neural network and the true output labels. The goal of the training 

process is to minimize the cost function so that the neural network can make accurate 

predictions on new data. 

There are many different types of cost functions, including mean squared error 

(MSE), cross-entropy loss, and hinge loss [16]. The choice of cost function depends on the 

specific problem and the type of neural network being used. 

29 



One common cost function used in neural networks is mean squared error (MSE), 

which measures the average of the squared differences between the predicted and true output 

values [16]. The M S E cost function can be written as Equation 3.2. 

m 

/ ( W ' & ) = 2^Z(y(0"y7r))2 

i=l 
Equation 3.2: Mean Squared Error (MSE) Cost Function 

In Equation 3.2, J(w, b) is the cost function, m is the number of training examples, y^1' is 

the true label, and y W is the predicted output for the ith training example. The weights (w) 

and biases (b) are the parameters that are being optimized during the training process (see 

Figure 3.16) [16]. 

Another popular cost function used in neural networks is cross-entropy loss, which measures 

the difference between the predicted probabilities and the true labels. The cross-entropy loss 

function can be written as Equation 3.3. 

J(w,b) = - ^ ^ i [ y ( ° l o g ( ^ ) + (1 - y « ) l o g ( l 

Equation 3.3: Cross-Entropy Loss Function 

In Equation 3.3, J(w,b) is the cost function, m is the number of training examples, is 

the true label, and y W is the predicted probability for the ith training example [16]. 

These are just two examples of cost functions used in neural networks, and there are many 

others to choose from depending on the specific problem and type of neural network. The 

goal of the cost function is to provide a measure of how well the neural network is 

performing, and the training process aims to minimize this measure [16]. 

3.5.2 Activation Functions 

Activation functions are an essential component of artificial neural networks. They 

are mathematical equations that determine the output of a neuron based on the input it 

receives. The activation functions play a crucial role in training the network, and the choice 

of activation function has a significant impact on the performance of the network (see Figure 

3.17). 
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Figure 3.17: Activation Functions 

3.5.2.1 Sigmoid Function 

The sigmoid function is one of the most used activation functions in neural networks. 

It is a mathematical function that maps any input to the range of 0 and 1, making it suitable 

for binary classification problems. The sigmoid function is defined as: 

In Equation 3.4, x is the input to the neuron and f(x) is the output. The sigmoid function is 

useful because it has a smooth, monotonie increase and is easy to differentiate, making it 

ideal for backpropagation, a common algorithm used to train neural networks [1]. 

3.5.2.2 Rectified Linear Unit (ReLu) 

The rectified linear unit (ReLU) is a simple activation function that has become 

increasingly popular in recent years. It is computationally efficient, only requiring a simple 

threshold operation, and has been shown to prevent vanishing gradient problems, leading to 

improved performance in deep learning models, particularly in computer vision tasks. 

1 
/ (*) = 1 + e~x 

Equation 3.4: Sigmoid Activation Function 

f(x) = ma x(0, x) 

Equation 3.5: ReLu Activation Function 
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In Equation 3.5, x is the input to the neuron and f(x) is the output. The ReLU activation 

function has been shown to outperform other activation functions in deep learning models, 

particularly in computer vision tasks. The ReLU function is computationally efficient, as it 

only requires a simple threshold operation, and it has been found to prevent vanishing 

gradient problems, which can occur with other activation functions [16]. 

3.5.2.3 Tanh Function 

The hyperbolic tangent (tanh) function is another activation function commonly used 

in neural networks. It maps any input to the range of -1 and 1, making it suitable for outputs 

that are not binary. The tanh function is defined as: 

f{x) = tanh(x) = e-^-x 

Equation 3.6: Tanh Activation Function 

In Equation 3.6, x is the input to the neuron and f(x) is the output. The tanh function is like 

the sigmoid function, but it has a slightly faster convergence rate, making it ideal for time 

series prediction and other applications where speed is important [16]. 

3.5.2.4 Linear Function 

The linear activation function is a simple activation function that outputs the input to 

a neuron without any transformation. It is defined as: 

f{x) = x 

Equation 3.7: Linear Activation Function 

In Equation 3.7, x is the input to the neuron and f(x) is the output. The linear activation 

function is often used in regression problems where the output is a continuous value. 

However, it is not commonly used in deep learning models because it can lead to vanishing 

or exploding gradients, which can make it difficult to train the network effectively. It is also 

limited in its ability to introduce non-linearity into the network, which is necessary for 

solving more complex problems [16]. 
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3.5.3 Forward Propagation 

Forward propagation is the process of computing the predicted output of a neural 

network given the input and the weights and biases. During forward propagation, the input 

values are passed through the network layer by layer, and intermediate results are computed 

using the activation function. The result is produced by the output layer, which is then 

compared to the true output labels to calculate the cost using a cost function [16]. 

The forward propagation calculation for a single training example can be represented 
mathematically as: 

Zu] = wma[i-n + bu] 

a M = 0 M ( z M ) 

Equation 3.8: Forward propagation calculation 

Equation 3.8, z ^ is the linear combination of the activations from the previous layer (a^ - 1!) 

and the weights ( W ^ ) for the current layer, plus the bias (b^). The activation function g^ 

is applied to z ^ to produce the activations for the current layer (a^) [16]. 

3.5.4 Backward Propagation (Backpropagation) 

Backward propagation, also known as backpropagation, is the process of updating 

the weights and biases in a neural network to minimize the cost function. During backward 

propagation, the gradient of the cost with respect to the weights and biases is computed, and 

the weights and biases are updated using gradient descent or a similar optimization algorithm 

[16]. 

Backward propagation calculation starts at the output layer and works backwards 

through the network to calculate the gradients for each layer. The gradient of the cost with 

respect to the weights and biases can be represented mathematically as: 

d J

 = i A r a ( a [ i - i ] ) 1 

i=i 

Equation 3.9: Backpropagation calculation 
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Equation 3.9, where / is the cost function, m is the number of training examples, is the 

error for the current layer, and a'-'-1-' is the activations from the previous layer [16]. 

Forward and backward propagation are the two main steps in the training process of a neural 

network, and they are repeated multiple times to minimize the cost function and improve the 

performance of the network [16]. 

3.6 Machine Learning 

Machine Learning (ML) is a field of study in computer science and artificial 

intelligence that focuses on the development of algorithms and models that are capable of 

learning from data to improve their performance on a specific task. M L algorithms can build 

models based on training data, which are used to make predictions or decisions without 

explicit programming. M L is used in a wide range of applications, such as in medicine, email 

filtering, speech recognition, agriculture, and computer vision, where conventional 

algorithms may be difficult or impractical to develop. 

The first step in solving a problem using M L is choosing the appropriate model. Depending 

on the problem at hand, there are two main categories of M L techniques: supervised learning 

and unsupervised learning [16] [17]. 

3.6.1 Supervised Learning 

Supervised learning is a type of machine learning where the algorithms are trained 

on a labeled dataset, with the goal of learning a mapping between input variables (features) 

and output variables (labels). In supervised learning, the algorithm is given a set of labeled 

examples and attempts to learn the relationship between the input and output variables, so 

that it can make predictions for new, unseen examples [17]. 
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Classification Regression 

(a) (b) 

Figure 3.18: Supervised Learning, (a): Classification, (b): Regression 

3.6.1.1 Classification 

Classification predicts a categorical label for a given input. For example, classifying 

an email as spam or not spam, or classifying a type of animal in an image as a dog, cat, or 

horse [17]. 

3.6.1.2 Regression 

The goal of the regression is to predict a continuous output value for a given input. For 

example, predicting the price of a house given its size, location, and number of rooms [17]. 

3.6.2 Unsupervised Learning 

Unsupervised learning is a type of M L where the algorithms are trained on an 

unlabeled dataset, with the goal of finding patterns or structure in the data without any prior 

knowledge. In unsupervised learning, the algorithm tries to find relationships or patterns in 

the data by grouping similar data points together or finding the underlying structure of the 

data=l [17]. 
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Figure 3.19: Supervised Learning, (a): Clustering, (b): Dimensionality Reduction 

3.6.2.1 Clustering 

Clustering is a type of unsupervised learning where the goal is to group similar data 

points together into clusters (see Figure 3.19.(a)). For example, grouping customers based 

on their spending habits or grouping images based on the type of object they contain [17]. 

3.6.2.2 Dimensionality Reduction 

Dimensionality reduction is a type of unsupervised learning where the goal is to reduce 

the number of features in the data while preserving as much of the information as possible 

(see Figure 3.19.(b)). For example, reducing the number of features in an image dataset from 

1000 to 10 while still being able to accurately classify the images [17]. 

3.7 Deep Learning 

Deep learning is a machine learning technique that uses artificial neural networks with 

multiple layers to automatically learn and represent complex patterns and relationships in 

large-scale data. Unlike traditional machine learning methods that rely on manual feature 

extraction and selection, deep learning algorithms learn hierarchical representations of data 

from raw inputs and iteratively improve their performance through backpropagation and 

optimization techniques. Deep learning has been successfully applied to various domains, 

including computer vision, natural language processing, speech recognition, and 

recommendation systems. Convolutional Neural Networks (CNNs) have been particularly 

effective for image and video analysis tasks, while Recurrent Neural Networks (RNNs) and 
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Long Short-Term Memory (LSTM) networks have shown great promise for sequence 

modeling and time series analysis [16] [18]. 

Recent developments in deep learning have also led to the development of new 

architectures and models, such as Generative Adversarial Networks (GANs), Variational 

Autoencoders (VAEs), and Transformer networks, which have achieved state-of-the-art 

results in image synthesis, speech recognition, and natural language processing tasks 

[16][18]. 

The increasing popularity and success of deep learning have also sparked significant 

research and development efforts in hardware and software, such as specialized processors 

and libraries for deep learning. As a result, deep learning has become an essential tool for 

many industries and applications, including healthcare, finance, manufacturing, and 

transportation [16] [18]. 

One of the recent applications of deep learning is in the field of agriculture, where it is being 

used for the detection of the first appearance of the plant on the soil using temporal image 

classification methods. This involves the use of time-lapse images of the soil, captured at 

regular intervals, to monitor the growth of the seed and detect its first appearance in the soil. 

Deep learning algorithms, such as CNNs and LSTMs, are used to extract features from the 

images and classify them based on the growth stage of the seed. This approach has the 

potential to improve the efficiency and accuracy of crop monitoring and management, 

leading to higher yields and reduced resource consumption [20]. 

3.7.1 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a class of deep learning models that have 

been particularly effective in solving image and video analysis tasks. They are designed to 

automatically learn and extract hierarchical features from raw image inputs using 

convolutional layers, pooling layers, and fully connected layers. 

37 



Fully 

Convolution Connected 

Pooling output Input 

a : l 

a : 

V A 
Y 

Feature Extraction 

Figure 3.20: C N N architecture with layers 

In a C N N , the convolutional layer applies a set of learnable filters to the input image to 

extract local features, such as edges, corners, and textures (see Figure 3.20). The pooling 

layer then reduces the dimensionality of the feature map by down-sampling the output of the 

convolutional layer. Finally, the fully connected layer aggregates the output of the previous 

layers to produce the final classification or regression result. The convolutional layer, 

pooling layer, and fully connected layer are the key components of a C N N . They enable the 

network to automatically learn and extract meaningful features from the input image, reduce 

the dimensionality of the feature maps, and produce the final classification or regression 

result [16]. 

CNNs have achieved state-of-the-art results in various image and video analysis tasks, 

including object detection, image segmentation, and image classification. They have also 

been used in other domains, such as natural language processing and speech recognition. 

Some of the most popular C N N architectures include AlexNet, VGGNet, GoogLeNet, and 

ResNet, which have won multiple competitions and achieved high accuracy on benchmark 

datasets such as ImageNet [16]. 

3.7.1.1 Convolutional Layer 

The convolutional layer is the core building block of a C N N . It applies a set of 

learnable filters to the input image to extract local features, such as edges, corners, and 

textures. The filters slide over the image and compute the dot product between their weights 
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and the input image pixels. This produces a set of feature maps that highlight the presence 

of the learned features in different parts of the image [16]. 

3„ 3 i 2

2 

1 0 

°
2 

\ 3 1 

3„ \ 2 3 

2 0 0 2 2 

2 0 0 0 1 

12.0 12.0 17.0 

10.0 17.0 19.0 

9.0 6.0 14.0 

(a) (b) 

Figure 3.21: Convolutional filter application, 

(a) 5x5 grayscale image, 

(b) Convolutional filter 

See Figure 3.21, that shows an example of a 3x3 convolutional filter applied to a 5x5 

grayscale. The output feature map size depends on the filter size, stride, and padding. The 

stride determines the amount of shift between the filters, while padding adds zeros around 

the image to preserve the output size. The number of filters is a hyperparameter that 

determines the depth of the output feature map [16]. 

3.7.1.2 Pooling Layer 

The pooling layer is usually applied after the convolutional layer to down-sample the 

output feature maps and reduce their dimensionality. This helps to increase computational 

efficiency and reduce the risk of overfitting. Common pooling operations include max 

pooling and average pooling, which select the maximum or average value of a sub-region of 

the feature map, respectively [16]. 

On Figure 3.11 below shows an example of max pooling and average pooling with a 

2x2 window and stride of 2. 
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Figure 3.22: Types of pooling 

The pooling operation reduces the output feature map size by a factor of the window size, 

while retaining the most salient features. 

3.7.1.3 Fully Connected Layer 

The fully connected layer is the final layer in a C N N , which aggregates the output of 

the previous layers to produce the final classification or regression result. This layer is a 

neural network layer where all the inputs are connected to all the outputs, hence the name 

"fully connected". The output of the last pooling layer is flattened into a ID vector and then 

connected to the input of the fully connected layer. 

See Figure 3.23 below shows an example of a fully connected layer with 4 input neurons 

and 8 output neurons. 
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Figure 3.23: Fully Connected Layer 

The fully connected layer performs a linear transformation on the input features and 

passes them through an activation function, such as ReLU or sigmoid. The output of the last 

fully connected layer is usually fed to a SoftMax function to produce the final probability 

distribution over the classes [16]. 

3.7.2 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a type of neural network that can process 

sequential data, such as text, speech, and time series. RNNs have an internal memory that 

allows them to maintain a hidden state that captures the context of the previous inputs. The 

hidden state is updated at each time step by combining the current input with the previous 

hidden state. This makes RNNs capable of processing sequences of inputs and capturing 

temporal dependencies between them [16]. 

Figure 3.24: A loop in a recurrent neural network 
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One of the notable applications of RNNs is in natural language processing, where they have 

been used for tasks such as language modeling, machine translation, and sentiment analysis. 

RNNs have also been used for speech recognition and music generation [16]. 

Figure 3.25: An unrolled recurrent neural network 

However, RNNs suffer from the vanishing gradient problem, where the gradients become 

very small or zero during backpropagation through time. This limits the ability of RNNs to 

capture long-term dependencies in the input sequence. This problem has been addressed by 

the development of new architectures, such as Long Short-Term Memory (LSTM) networks, 

which introduce memory cells and gating mechanisms [16]. 

Research has shown that L S T M networks can achieve state-of-the-art results in various 

tasks, such as speech recognition, natural language processing, and image captioning. They 

have also been used in healthcare, where they have been applied to tasks such as predicting 

disease progression and clinical decision support [16]. 

3.7.3 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network 

that have memory cells and gating mechanisms to overcome the vanishing gradient problem. 

LSTMs are well-suited to process sequential data and capture long-term dependencies 

between them. They have been used in various applications, such as speech recognition, 

natural language processing, and image captioning [16]. 
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zt = cr(Wz • [ht-iyXt]) 

rt = a(Wr • [ht-uxt]) 

ht = tanh (W • [rt * ht-i, xt]) 

ht = (1 - zt) * ht-i + zt*ht 

\6: L S T M 

L S T M networks have three main components: memory cells, input gates, and output gates. 

The memory cells are responsible for storing and updating the relevant information from the 

input sequence, while the input and output gates control the flow of information into and out 

of the cells [16]. 

3.7.4 Temporal Convolutional Networks (TCN) 

Temporal Convolutional Networks (TCN) are a type of deep learning architecture 

that has been introduced as a solution to the problem of processing sequential data. T C N 

operates on sequences of input data and utilizes convolutional layers with dilated 

convolutions to capture long-range temporal dependencies in the data. The use of dilated 

convolutions allows T C N to effectively capture both short- and long-range temporal 

dependencies, making it suitable for a wide range of sequential data processing tasks [21]. 

T C N has been shown to outperform traditional Recurrent Neural Networks (RNNs) in terms 

of both accuracy and computational efficiency for a variety of sequential data processing 

tasks, such as speech recognition, natural language processing, and video classification. This 

is due to the fact that T C N operates on the entire sequence of data, rather than processing 

the data one step at a time as in RNNs, and it has been shown to be more effective at capturing 

long-range temporal dependencies [21]. 

T C N is a promising deep learning architecture for the processing of sequential data, and it 

has been shown to outperform traditional RNNs in terms of both accuracy and computational 

efficiency. This makes it a promising solution for a wide range of sequential data processing 

tasks, including video classification, speech recognition, and natural language processing 

[21]. 
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3.8 Deep Learning Models for Computer Vision 

Deep Learning models are a type of Artificial Neural Network (ANN) that have been 

designed to learn from large amounts of data and to perform complex tasks such as image 

classification, object detection, and image segmentation. These models have revolutionized 

the field of computer vision and have been widely adopted in various applications such as 

self-driving cars, facial recognition, and medical imaging [16]. 

3.8.1 You Only Look Once (YOLO) 

Y O L O is a real-time object detection system that is designed to be fast and efficient. It 

operates by dividing an image into a grid of cells and predicting the presence of objects in 

each cell. The model then combines the predictions across the cells to produce a final 

bounding box and class prediction for each object in the image [18]. 

Figure 3.27: Y O L O Sample 

The Y O L O model consists of two parts: a feature extractor and a detector. The feature 

extractor is a Deep Neural Network that takes the input image and extracts features from it. 

The detector is a Fully Connected Neural Network that takes the extracted features and 

predicts the bounding boxes and class probabilities for each object in the image [18]. 

The main advantage of Y O L O is its speed and efficiency. It can process images in real-time, 

making it suitable for applications where fast object detection is required. Additionally, 
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Y O L O has been designed to be highly accurate, making it a popular choice for various object 

detection tasks [18]. 

3.8.2 ResNet50 

ResNet50 is a Convolutional Neural Network (CNN) designed for image 

classification tasks. The main goal of the ResNet50 model is to overcome the problem of 

vanishing gradients in deep neural networks. This problem occurs when the gradients 

become smaller as the model becomes deeper, making it difficult for the model to learn from 

the data [18]. 

The ResNet50 model uses a residual connection, which allows the model to effectively learn 

from the information in the earlier layers. The residual connection adds the input to the 

output of a layer, allowing the model to pass information through the network without losing 

information. This allows the ResNet50 model to effectively learn from the information in 

the earlier layers, even in deep neural networks, and improve the accuracy of the model [18]. 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Figure 3.28: ResNet50 Model Architecture 

ResNet50 has been designed to be highly accurate and has been widely adopted for various 

image classification tasks. It has been trained on large datasets and has been shown to 

produce highly accurate results on a wide range of image classification tasks [18]. 

Both Y O L O and ResNet50 are powerful deep learning models that have been designed to 

solve specific problems in computer vision. Y O L O is designed for real-time object detection, 

while ResNet50 is designed for image classification. These models demonstrate the 

effectiveness of Deep Learning in solving complex problems in computer vision and provide 

a foundation for further research and development in this field [18]. 
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3.9 Training Deep Learning Networks 

Training a Deep Learning network involves adjusting the weights and biases of the 

network to minimize a loss function. The loss function measures the difference between the 

network's predictions and the ground truth, which is the actual output for a given input. The 

goal of training is to find a set of weights and biases that result in accurate predictions for a 

given task [18]. 

During training, the network takes an input and produces an output, which is compared 

to the ground truth. The difference between the output and the ground truth is used to 

calculate the loss, which is then used to adjust the weights and biases of the network. This 

process is repeated many times, and the weights and biases are updated after each iteration 

to minimize the loss [18]. 

The loss function (see 3.5.1 Cost Functions) is a measure of how well the network is 

performing on the task. The goal of training is to find a set of weights and biases that result 

in a low loss, which means the network is making accurate predictions. Once the loss has 

been minimized, the training process is complete, and the network is ready to be used for the 

project [18]. 

3.9.1 Training From Scratch 

Training a Deep Learning model from scratch involves randomly initializing the 

weights and biases of the network and then adjusting them to minimize the loss function. 

This approach is often used when there is no suitable pre-trained model available or when 

the task is very different from the task the pre-trained model was trained on [16]. 

This process requires a large amount of data and a lot of computational resources. 

Additionally, it can be difficult to achieve good performance with a model trained from 

scratch, as the model must learn all the features from the data without any prior knowledge. 

This can result in overfitting, where the model is too complex and fits the training data too 

well but does not generalize well to new data [16]. 

3.9.2 Pre-Trained Models 

Pre-trained models are Deep Learning models that have been trained on large datasets 

and are made available for use in other tasks. These models have already learned useful 

features from the data and can be fine-tuned for a specific task using transfer learning. 
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Using a pre-trained model has several advantages. First, it saves time and resources because 

the model has already been trained on a large dataset, so the time and resources required to 

train the model from scratch are reduced. Second, the model has already learned useful 

features from the data, which can be fine-tuned for the specific task. This allows the model 

to leverage its prior knowledge of the data to perform better on the task. Finally, pre-trained 

models often have better performance than models trained from scratch, as they have already 

learned useful features from the data [16]. 

3.9.2.1 Transfer Learning 

Transfer learning is a technique for using a pre-trained Deep Learning model for a 

different task. The idea is to fine-tune the pre-trained model on a small dataset for the specific 

task, instead of training a model from scratch. 

Transfer learning has several advantages. First, it saves time and resources because the 

model has already been trained on a large dataset, so the time and resources required to train 

the model from scratch are reduced. Second, the model has already learned useful features 

from the data, which can be fine-tuned for the specific task. This allows the model to leverage 

its prior knowledge of the data to perform better on the task. Finally, transfer learning often 

results in better performance than training a model from scratch, as the model has already 

learned useful features from the data [16]. 

3.10 Related Work 

Previous studies have explored the use of deep learning methods for the detection 

and classification of plant growth stages. The most related work to the thesis study is the one 

research that proposed a deep learning-based approach to detect the development of 

seedlings using a combination of Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) models. The authors used a dataset of time-lapse images of seedlings 

growing in soil, where the images were captured at different time intervals during the growth 

period [1]. 

Their approach consisted of two stages: the first stage involved training a C N N to 

extract features from the images, while the second stage used an L S T M model to classify 

the seedlings into different growth stages. The L S T M model was used to capture the 

temporal dependencies between the images and classify the seedlings based on their growth 

patterns over time [1]. 
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Experimental results showed that the proposed approach achieved high accuracy in 

detecting seedling growth stages, with an overall accuracy of 96.4%. The approach 

demonstrated the potential of deep learning-based methods for analyzing plant growth and 

development [1]. 

In this study, we aim to build upon this approach by applying it to the detection of 

the first appearance of seeds in soil. We plan to use a similar approach to the previous study 

[1], utilizing CNNs and LSTMs for temporal image classification. However, we will adapt 

the approach to suit our specific research question and dataset, which will focus on detecting 

the initial stages of seed germination in soil. We also propose a new approach to detect the 

first appearance of seeds in the soil using Y O L O , a state-of-the-art object detection 

algorithm. Y O L O has shown to achieve high accuracy in object detection tasks [2]. By 

training Y O L O on soil images, we aim to detect the first appearance of seeds in the soil. 

While we do not plan to combine Y O L O with ConvLSTM models in this study, this 

could be a potential avenue for future research. Combining Y O L O with ConvLSTM models 

can provide several advantages. First, Y O L O can detect the location of the seed in the soil, 

while ConvLSTM can capture the temporal dependencies between the images and classify 

the seed based on its growth patterns over time. Second, by using ConvLSTM, we can reduce 

the impact of noise and inconsistencies in the images, which may arise due to lighting 

conditions or other environmental factors. We expect that combining Y O L O with 

ConvLSTM could potentially improve the accuracy of the method in detecting the first 

appearance of seeds in the soil. 

3.11 Overview of Theoretical Part 

This section provides an overview of the theoretical concepts and background relevant 

to the proposed research on detecting the first appearance of seeds in the soil using deep 

learning methods. 

One important concept is object detection, which is the process of identifying and localizing 

objects of interest within an image. Object detection has been widely studied in the computer 

vision field, and numerous algorithms have been developed to improve the accuracy of 

object detection tasks. One such algorithm is Y O L O , which is a state-of-the-art object 

detection algorithm that can achieve high accuracy in object detection tasks [22]. 

Another important concept is temporal image classification, which is the process of 

classifying images based on their temporal dependencies or patterns. This is particularly 
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relevant to plant growth and development research, where analyzing the growth patterns of 

plants over time can provide valuable insights into their growth and development. One 

popular technique for temporal image classification is the use of Long Short-Term Memory 

(LSTM) models, which are a type of Recurrent Neural Network (RNN) that can capture 

temporal dependencies between input data [1]. 

The proposed research aims to combine these two concepts to detect the first appearance of 

seeds in the soil. By training Y O L O on soil images, we aim to detect the location of the seed 

in the soil. Furthermore, by using L S T M models for temporal image classification, we aim 

to capture the growth patterns of the seed over time and detect the initial stages of seed 

germination in the soil. 

To conclude, the proposed research integrates key theoretical concepts from object detection 

and temporal image classification to develop a new method for detecting the first appearance 

of seeds in the soil. By combining these concepts, we aim to provide a new and effective 

approach for analyzing plant growth and development in the early stages of germination. 

4 Practical Part 

In this practical part, the aim is to investigate and compare two different approaches for the 

temporal image classification of the first appearance of the plant on the soil. The first 

approach uses a combination of a convolutional neural network (CNN) and a long short-

term memory (LSTM) network, while the second approach uses the You Only Look Once 

(YOLO) algorithm for object detection. The second approach uses a L S T M with C N N model 

for object detection. Application of image preprocessing techniques will be used to input 

data to improve model performance [1] [9]. 

The first approach is based on the combination of a C N N and L S T M network, as proposed 

in [9]. C N N is used to extract features from the image frames, while the L S T M is used to 

model the temporal aspect of the data. The second approach is based on the Y O L O 

algorithm, which is a real-time object detection system that uses a single neural network to 

predict the class and location of objects in an image [5]. 

We preprocessed the input data by resizing the images to a smaller size and augmenting the 

training data with random flips and rotations. These techniques are used to improve model 

performance and prevent overfitting. We trained and evaluated each model using a labeled 

49 



dataset of seed germination videos. The dataset includes two classes, "FA" for the first 

appearance of the plant on the soil and "soil" for the background. 

After training and evaluating the models, we compared their performance based on metrics 

such as accuracy, precision, recall, and F l score. We also tested the models on unseen data 

to evaluate their generalization ability. Finally, we applied the trained models to new video 

data to detect the first appearance of the plant on the soil and show the timestamp of the 

event. 

4.1 Software Environment 

To analyze an unprocessed dataset and obtain accurate results, appropriate programs 

must be installed for training the labeled data in models and the necessary software libraries 

must be downloaded. In this regard, Anaconda was used for local computer use, and Google's 

Colab, which has high computational power and is commonly used for model training, was 

also utilized in this research. 

4.2 Dataset Preprocess 

To use two machine learning models, which are Y O L O and ConvLSTM, for temporal 

image classification to detect the germination moment of the plant on the soil. In this section, 

we describe the process of generating a dataset for these models, which involves creating an 

experimental environment to record the process of seedling on a tray that has different cells, 

each containing seeds. 

4.2.1 Dataset Generation 

To generate the dataset, we used a tray that has 8 rows and 9 columns, with each cell 

containing soil and seeds. In total, the tray had 72 cells, which were recorded to capture the 

seedling process. During the recording process, 69 cells showed the seedling process, while 

the remaining 3 cells did not show any germination action and were used as the "soil" class. 

As the seedling process can vary from cell to cell, we continued the recording process until 

almost all the cells showed germination. This allowed us to capture a wide range of seedling 

processes, including cells that grew faster than others and parts of cells that appeared in other 

cells. 

Once the recording process was complete, we separated the recorded process into individual 

frames to generate the dataset for the models. To avoid the overfitting problem during 

50 



training, we sampled the frames at different timestamps. A total of 70 frames were gathered, 

each showing all 72 cells. Each frame was an average of 122 Kbytes, with a range of 5 

Kbytes higher or less. The frames were colored images with dimensions of 290 pixels of 

width and 254 pixels of height on average. These dimensions were suitable for capturing the 

seedling process in sufficient detail, while also ensuring that the frames were manageable in 

terms of size and processing requirements. In Figure 4.1, that shows the dataset folder 

structure on the left side, the frames and a sample frame with the dimensions and the size 

details of the cell of 2_1. 

Using image processing techniques, we separated every cell into individual pieces and 

assigned each piece to its respective folder. This allowed us to obtain 72 folders, each 

representing a cell in the tray. The folders were named according to their column and row 

names, such as 1_1, 1 _ 2 , 8 _ 9 . 

u 
1_2 
1_3 
1_4 
1_5 
1_6 
1_7 
1_8 
1_9 
2_1 
2_2 
2_3 
2_4 
2_5 

I 2_6 
2_7 

I 2_8 
I 2_9 
3_1 
3_2 
3_3 
3_4 

I 3_5 
; 3_6 

3_7 
I 3_8 

3_9 
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10. .24 •11 •21 •12-00-02.png 

10. .24 11 21 -14-00-01.png 
10. .24 •n 21 -16-00-01. png 
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10. .25 11 21 •04-00-01.png 
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.1: Dataset structure 
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Dimensions 289x253 

4.2.2 Review of Dataset 

The generated dataset consists of 72 folders, each representing a cell in the tray. Each 

folder contains 71 images showing the progress of the seedling. However, one frame was 

51 



not usable, resulting in 70 useful frames per cell/folder. Although some cells did not show 

the seedling progress, they were still included in the dataset for training purposes. 

To review the dataset, we examined the frames to ensure that they were clear, annotated, and 

could be learned by the models. Our review indicated that the dataset is valid for use in the 

models. The frames captured the seedling process in sufficient detail, and we were able to 

identify the germination moment for each cell. 

To summarize the review of the dataset, we have generated a dataset for two machine 

learning models, Y O L O and C N N with L S T M , to detect the germination moment of the 

plant on the soil. The dataset consists of 72 folders, each containing 70 frames showing the 

seedling process for a particular cell. The dataset had 5040 frames in total for the training, 

validation and testing of the models. Our review indicated that the dataset is valid for use in 

the models, and we believe that it will be useful in developing accurate and efficient methods 

for detecting the germination moment of seeds in soil. 

4.2.3 Data Annotation 

4.2.3.1 Data Annotation for First Approach 

We separated the data into two different classes which are "soil" as a background 

and "FA" , that means First Appearance, the seed frames in the soil to train the machine 

learning model. We annotated the frames using the Y O L O format, that includes class name 

and the coordinates of the object, for the Y O L O model and determined per class format for 

the C N N with L S T M model. To do the Y O L O format labeling, we used the Labelling tool, 

which allowed us to label the frames with the class names and coordinates, after Y O L O 

format, we used generated txt files to regenerate determined per class for each class to create 

the dataset for the C N N with L S T M model. 
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By using the Y O L O format, we were able to annotate the frames with class names and 

coordinates, which was essential for training the Y O L O and C N N with L S T M models for 

detecting the germination moment of seeds in soil. 

Labelling generates txt files by the name of the image that is annotated. Since each cell folder 

has the frames as same names, it would be a problem to gather all the images and the txt files 

in a folder. To prevent this problem and maintain consistency in the dataset, we renamed the 

frames to include the folder name and the name of each frame to create a unique name for 

that frame. For example, if the folder name was and the frame name was "10_23-11-

21-22-00-01.png", we renamed the file as "l_l_10_23-ll-21-22-00-01.png". This allowed 

us to keep the cell's coordinate information (row and column) and keep the frame names 

unique. Therefore, all the images and the txt files were able to be stored in the same folder. 

<cla55_index> <x_center> <y_center> <width> <height> 

Figure 4.3: Annotated file by Y O L O format 

r 

# O • classes.txt 
s o i l 
FA 

Figure 4.4: Annotated class names that were generated using Labelling. 

In the Y O L O format, each line in the text file represents an object in the image and contains 

the following information (see Figure 4.3): 

• Class index: The index of the object class, such as 0 - soil or 1 - F A (Figure 4.4). 

• X-center: The x-coordinate of the object's center point in the image, normalized between 

0 and 1. 

• Y-center: The y-coordinate of the object's center point in the image, normalized between 

0 and 1. 

• Width: The width of the object in the image, normalized between 0 and 1. 

• Height: The height of the object in the image, normalized between 0 and 1. 
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# O • I 1_1_10_27-11-21-00-00-01.txt 
1 0.453287 0.741107 0.256055 0.193676 

Figure 4.5: Annotated file example by Y O L O format 

For example, if the image is in the "FA" class, the corresponding Y O L O formatted text file 

would contain a line like Figure 4.5. This line indicates that the image was annotated as 

index 1 which means "FA" class (see Figure 4.4) is located at the center of the image, with 

a width of 25,6% of the image width and a height of 19,3% of the image height. 

Name 

images 
> ~~ test 
> *~" train 
> ̂ ~ valid 

labels 
> • test 
> *~ train 
> ̂ 2 valid 

Figure 4.6: Y O L O dataset folder structure 

After the Y O L O formatting was completed, we separated the dataset into two different 

folders as "images" and "labels". The "images" folder contained "train", "valid", and "test" 

subfolders that have the annotated images, while the "labels" folder had subfolders with the 

same names as the image folder. The "labels" folder contains the .txt files of the images 

inside the "images" folder, which were annotated with the class names and coordinates using 

the Y O L O format (see Figure 4.6). With this process the dataset for Y O L O model was 

completed. 

4.2.3.2 Data Annotation for Second Approach 

^ Germina t ion 

^2 Soi l > 

Figure 4.7: C N N with L S T M dataset folder structure 

Creating the dataset for the C N N with L S T M model, we generated another dataset 

format based on the class name. This format had a folder for each class name, such as "soil", 
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and contained the frames of the corresponding class. We used the Y O L O formatted text files 

to separate the frames into different folders based on their class name (see Figure 4.7). 

The data annotation process was important for generating a valid dataset for the models. The 

Y O L O format allowed us to annotate the frames with class names and coordinates, and the 

C N N with L S T M format allowed us to separate the frames into different folders based on 

their class name. The resulting dataset was suitable for training and testing the Y O L O and 

C N N with L S T M models for detecting the germination moment of seeds in soil. 

4.3 Training Models 

Training models are a crucial step in the development of machine learning systems, as 

it is the process by which the model learns to make accurate predictions based on the training 

data. In this thesis, two different models have been developed: Y O L O and ConvLSTM. Both 

models have been designed to address different challenges. 

The Y O L O model is based on the You Only Look Once (YOLO) architecture and is designed 

to detect the first appearance of a seed in soil. This model uses a convolutional neural 

network (CNN) to perform object detection and has been trained on a large dataset of images 

to learn the features that are indicative of a seed in soil. 

The ConvLSTM model is designed to detect the germination of a seed in soil by using 

temporal image classification. This model uses a combination of convolutional and Long 

Short-Term Memory (LSTM) layers to capture both the spatial and temporal information in 

the images. The model has been trained on a dataset of temporal images to learn the changes 

in the appearance of the seed over time. 

Figure 4.8: ConvLSTM Model Dataset Sample 
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Both models have been trained using a supervised learning approach, where the ground truth 

labels of the training data were used to guide the learning process. The classes are separated 

based on the observations by professionals. During training, the models were iteratively 

updated based on the difference between their predictions and the ground truth labels. The 

training process was stopped when the performance of the models on a validation set reached 

a satisfactory level. 

4.3.1 Training YOLO with Customized Dataset 

The Y O L O model was trained on a customized germination dataset that contained 

two classes: "soil" and "FA". " F A " class represents the first appearance of the plant on the 

soil. To define these classes, the yaml file was updated with the path of the dataset classes. 

See Figure 4.9 that shows the class names with their indexes and the directions of the paths 

of the dataset. 

path: ../dataset/ 
train: images/train 
val: images/val 
test: images/test 

# Classes 
name5: 
9: s o i l 
1: FA 

Figure 4.9: yaml file to path through the dataset by classes 

The model was trained for 60 epochs using a batch size of 16 and an image size of 240. The 

training was performed using the Adam optimization algorithm with a learning rate of 0.001. 

The training process was implemented using the PyTorch framework. See Figure 4.10, pre-

trained Y O L O model summary based on training the customized dataset. 
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from r params nci j_e arguments 
3 -1 1 3520 models common CCTv" [3, 32, 6, 2, 2] 
1 -1 1 1S560 models common CCTv" [32, 64, 3 . 2] 

1 - : : 13816 models c simon C3 [64, 64, 1 ] 
:• -: : 73984 models common CCTv" [64, 128, 3, 2] 
4 - : 2 115713 models coirncn C3 [128, 12S, r 
5 - i : 295424 models common CCTv" [128, 256, 3, 2] 

- i ; 625152 models common C3 [256, 256, 3] 
7 - : : H E 967 2 models coirncn Conv [256, 512, 3, 2] 
8 - i : 1182720 models common C3 [512, 512, 1] 
'•• -i : 556896 models common SP3 = [512, 512, 5] 

13 - : : 131584 models coirncn Conv [512, 256, 1, 1] 
11 -i : torch. n.mod u es.upsampling.Upsample [None, 2, 'nearest'] 
12 : models Concat [1] 
::• -1 : 361984 models common C3 [512, 256, 1, False] 
14 - : : 33624 models Conv [256, 12S, 1, 1] 
15 - : : torch. n.modu es.upsampli ng.Upsample [None, 2, ' nearest 1] 
Is : models common Concat [1] 
17 - : : 99880 models C3 [256, 12S, 1, False] 
13 - : : 147712 models Conv [12S, 12S, 2] 
19 [-1, 14] : models common Concat [1] 
23 - : : 29644S models coirncn C3 [256, 256, 1, False] 
21 -i : 593336 models common CCTv" [256, 256, 3, 2] 
21 [-1, 19] : models Concat [1] 
23 -1 : 11E2720 models C3 [512, 512, 1, False] 
24 [17, 20, 23] : 1&B79 models yolo.Detect [2> [ [ i e , 13, 16, 30 

Model summary: 214 layers, 7925023 parameters, 7025923 gradients, 16.9 GFLOPs 

Figure 4.10: Y O L O model architecture overview 

4.3.2 Training a CNN Model with LSTM Layer (ConvLSTM) 

The ConvLSTM model was trained for the detection of the germination of the seed 

in soil using temporal image classification. The dataset used for training the model contained 

two classes: "soil" and "germination". The "soil" class represented the soil frames, and the 

"germination" class represented the process of the plant appearing on the soil (See Figure 

4.11). 

Figure 4.11: ConvLSTM dataset samples by classes 

The model was trained based on frame sequences to detect the germination of the plant. The 

experts in the field defined which frames should be used as the moment of germination, and 

as a result, 5 frames were used for the classification. For the "germination" class, 2 frames 

were used before the germination moment, 1 frame was used on the germination frame 

defined by the experts, and the remaining 2 frames were used after the germination. This 

allowed the model to detect the process of germination. 
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The architecture of the ConvLSTM model was custom and consisted of ConvLSTM2D 

recurrent layers, MaxPooling3D layers, and Dropout layers. The ConvLSTM2D layer 

applied the convolutional operations using the specified number of filters and kernel size. 

The output of the layers was flattened in the end and fed to the Dense layer with a SoftMax 

activation, which output the probability of each action category (See Figure 4.12). 

conv_lstm2d_4_input input: [(None, 5, 256, 256, 3)] 

InputLayer output: [(None, 5, 256, 256, 3)] 

conv_lstm 2d_4 input: (None, 5, 256, 256, 3) 

ConvLSTM 2D output: (None, 5, 254, 254, 4) 

m ax_pooling3d_4 input: (None, 5, 254, 254, 4) 

MaxPooling3D output (None, 5, 127, 127, 4} 

tim e_distributed_3(dropout_3} input: (None, 5, 127, 127, 4) 

Tim eDistributed(Dropout} output: (None, 5, 127, 127, 4) 

conv_lstm 2d_5 input: (None, 5, 127, 127, 4} 

ConvLSTM 2D output: (None, 5, 125, 125, 8) 

m ax_pooling3d_5 input: (None, 5, 125, 125, 8) 

MaxPooLing3D output (None, 5, 63, 63, 8) 

tim e_distributed_4(dropout_4) input: (None, 5, 63, 63, 8) 

Tim eDistributed(Dropout) output: (None, 5, 63, 63, 8) 

coiivlstm 2d_6 input: (None, 5, 63, 63, 8} 

ConvLSTM 2D output: (None, 5, 61, 61, 14} 

m ax_pooting3d_6 input: (None, 5, 61, 61, 14} 

MaxPooling3D output: (None, 5, 31, 31, 14} 

tim e_distributed_5(dropout_5} input: (None, 5, 31, 31, 14} 

Tim eDistributed(Dropout} output: (None, 5, 31, 31, 14} 

conv_lstm 2d_7 input: (None, 5, 31, 31, 14} 

ConvLSTM2D output: (None, 5, 29, 29, 16} 

m ax_pooLing3d_7 input: (None, 5, 29, 29, 16} 

MaxPooling3D output: (None, 5, 15, 15, 16} 

flatten_l input: (None, 5, 15, 15, 16} 

FLatten output: (None, 18000) 

dense l input: (None, 18000) 

Dense output: (None, 2} 

Figure 4.12: ConvLSTM model layers and output shapes 
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5 Results and Discussion 

5.1 Results of First Approach 

The results of the training process showed that the Y O L O model, which was used as version 

8, was highly effective in detecting both "soil" and "FA" classes. The model achieved a 

precision of 0.989 for the "soil" class and a precision of 0.991 for the "FA" class, indicating 

that the model was able to accurately detect the presence of seeds in soil and the first 

appearance of the plant on the soil. 

Model summary: 157 layers, 7915519 parameters, 9 gradients, 15.8 GFLOPs 
Class Images Instances P R mAPSB mAP59-95: lea* 28/28 [36: B50B :9B, 4.83it/s] 

a l l 878 912 B.99 9.987 9.995 6.915 
s o i l 878 584 9.989 9.994 8.995 9.99 

FA 878 488 B.991 8.98 8.995 9.839 

Figure 5.1: Y O L O model result summary after training the dataset. 

(a) (b) 

Figure 5.2: Prediction results by the model and the labels of the frames 

(a) Prediction of batch of frames 

(b) Labels of batch of frames 

Additionally, the model achieved a mean average precision (mAP) of 0.995 for both classes, 

demonstrating its overall accuracy in detecting seed growth in soil. This high level of 

accuracy was achieved due to the use of the Y O L O architecture, which is designed to 

perform object detection, and the use of a large dataset for training the model (See Figure 

5.1). 
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5.2 Results of Second Approach 

The model was implemented using the Keras framework and was trained using the 

Adam optimization algorithm with a learning rate of 0.001. The model was evaluated using 

a test set, which consisted of 25% of the original dataset. The results of the evaluation 

showed that the model achieved an accuracy of 0.9378, with a loss of 0.2469. These results 

indicate that the ConvLSTM model was able to effectively detect the germination of the seed 

in soil using temporal image classification. 

Additionally, the model was able to capture the spatial and temporal relationships in the data, 

as the ConvLSTM architecture can identify spatial features in the individual frames and the 

temporal relationships across the different frames. The use of ConvLSTM cells in the 

architecture also allowed for the model to take in 3-dimensional input, which is crucial for 

video classification. 

Epoch 1/18 
16/16 [==============================] - 21s 459ms/step - loss: 0.7068 - accuracy: 0.5353 - v a l l o s s : 0.6848 - valaccuracy: 0.6066 
Epoch 2/19 
16/16 - 5 S 336ms/step - loss; 0.6981 - accuracy: 0.5477 - v a l l o s s : 0.6980 - valaccuracy: 0.3934 
Epoch 3/10 
16/16 - 5s 338ms/step - loss; 0.6861 - accuracy: 0.5602 - val_loss: 0.6873 - val_accuracy: 0.6393 
Epoch 4/10 
16/16 . 5s 334ffis/step - loss; 0.6778 - accuracy: 0.5602 - val_loss: 9.6714 - val_accuracy: 0.6721 
Epoch 5/10 
16/16 - 5s 334ms/step - loss; 0.6281 - accuracy: 0.6598 - v a l l o s s : 0.5688 - valaccuracy: 0.7213 
Epoch 6/10 
16/16 - 5s 332ms/step - loss; 0.4159 - accuracy: 0.8174 - v a l l o s s : 0.4949 - valaccuracy: 0.8361 
Epoch 7/10 
16/16 - 5s 328ms/step - loss; 0.2828 - accuracy: 0.8963 - val_loss: 0.4393 - val_accuracy: 0.7705 
Epoch 8/10 
16/16 [==============================] - 5s 330ms/step - loss: 0.3895 - accuracy: 0.8174 - v a l l o s s : 0.3439 - valaccuracy: 0.8852 
Epoch 9/10 
16/16 - 5s 329ms/step - loss; 0.1999 - accuracy: 0.9502 - v a l l o s s : 0.3119 - valaccuracy: 0.8852 
Epoch 10/10 
16/16 - 5s 337ms/step - loss; 0.1680 - accuracy: 0.9378 - val_loss: 0.2469 - val_accuracy: 0.9016 

Figure 5.3: ConvLSTM dataset samples by classes 

# Evaluate the t r a i n e d model. 
mo d e l _ e v a l u a t i o n _ h i s t o r y = co n v l s t i t i _ m o d e l . e v a l u a t e ( f e a t u r e s _ t e s t , l a b e l s _ t e s t ) 

3/3 [==============================] - i s 142ms/step - l o s s : G.2446 - accuracy: 0.5079 

Figure 5.4: ConvLSTM dataset samples by classes 

The model was trained on a small subset of the dataset, and as a result, it had a small number 

of trainable parameters. This reduced the computational requirements and allowed for a fast-

training process. The use of MaxPooling3D layers helped to reduce the dimensions of the 

frames and prevent overfitting, while the Dropout layers helped to prevent overfitting the 

model to the data. 
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Finally, the ConvLSTM model was able to effectively detect the germination of the seed in 

soil using temporal image classification. The custom architecture of the model, consisting of 

ConvLSTM2D recurrent layers, MaxPooling3D layers, and Dropout layers, allowed the 

model to capture the spatial and temporal relationships in the data and make accurate 

predictions. The results of the evaluation showed that the model achieved a high level of 

accuracy, which demonstrates its effectiveness in detecting seed germination in soil. 

Total Loss vs Total Validation Loss 

a 2 4 6 i 

Figure 5.5: Total Loss vs Total Validation Loss 

Total Accuracy vs Total Validation Accuracy 

— i 1 1 1 1 

0 2 4 6 i 

Figure 5.6: Total Accuracy vs Total Validation Accuracy 

The performance of the ConvLSTM model was monitored during the training process using 

two key metrics: total loss and total accuracy. The total loss represents the difference 

between the predicted output and the true output, and the total accuracy represents the 

proportion of correctly classified instances. The results of the training process were 

visualized using two graphs, based on Figure 5.5 and Figure 5.6. 

Figure 5.5 shows that the model's loss decreased over the course of the training process, 

61 



starting from around 0.7 and reaching close to 0 at the end. This indicates that the model was 

able to learn and improve its predictions over time, reducing the difference between the 

predicted output and the true output. 

Figure 5.6 shows that the model's accuracy increased over the course of the training process, 

starting from around 0 and reaching close to 1 at the end. This indicates that the model was 

able to learn and improve its ability to correctly classify instances, resulting in a high level 

of accuracy at the end of the training process. These results demonstrate the effectiveness of 

the ConvLSTM model in detecting seed germination in soil using temporal image 

classification. 

Figure 5.7: ConvLSTM dataset samples by classes 
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6 Conclusion 

This thesis has provided a comprehensive evaluation of two approaches for the 

classification of temporal images, with a focus on detecting seed germination in soil. Both 

approaches, Y O L O and ConvLSTM, have their own strengths and limitations, and the results 

of this study provide insight into the best approach for this particular task. 

The Y O L O model, based on state-of-the-art object detection techniques, showed promising 

results in detecting the first appearance of the seed in soil. The model was able to effectively 

identify the seed in soil images with a high precision and recall rate, achieving a mAP50 of 

0.995. 

On the other hand, the ConvLSTM model was able to effectively detect the germination 

moment by using temporal image classification. The model was trained on sequences of 

frames, allowing it to capture both spatial and temporal information. The results showed that 

the ConvLSTM model was able to accurately detect seed germination in soil, with high 

accuracy rates, achieving a validation accuracy of 0.9079. 

In terms of comparing the two approaches, it can be concluded that the ConvLSTM model 

outperformed the Y O L O model in terms of accuracy for the task of detecting seed 

germination in soil. This suggests that the combination of Convolutional Neural Networks 

and Long Short-Term Memory networks, as implemented in the ConvLSTM model, is a 

more effective approach for this task than the object detection techniques used in the Y O L O 

model. 

In conclusion, the results of this study suggest that the ConvLSTM model is the better 

approach for the task of detecting seed germination in soil, as it was able to effectively 

capture both spatial and temporal information, leading to high accuracy in detecting seed 

germination in soil. This study highlights the potential of ConvLSTM for the classification 

of temporal images in agriculture and related fields and provides a foundation for further 

research and improvement in this area. 
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8 List of pictures, equations, and abbreviations 

8.1 List of pictures 

Figure 3.1: C N N Feature Extraction using L S T M layer for seedling detection [8] 
Figure 3.2: Resizing Image with Nearest Neighbor Interpolation Application 
Figure 3.3: Downscaling in image pixels 
Figure 3.4: Grayscale implementation on the image 
Figure 3.5: Image denoising 
Figure 3.6: Example of Instance Segmentation [19] 
Figure 3.7: Example of Semantic Segmentation [19] 
Figure 3.8: Supervised learning example based on data annotation of objects. 
Figure 3.9: Image annotation types 
Figure 3.10: Data augmentation implementations 
Figure 3.11: Shifting method in image. 
Figure 3.12: Flipping the image. 
Figure 3.13: Rotation on the image 
Figure 3.14: Changing the brightness of the image. 
Figure 3.15: (a) Biological neuron from human brain, (b) Artificial neuron that is inspired 
by biological neuron. 
Figure 3.16: Neural network architecture 
Figure 3.17: Activation Functions 
Figure 3.18: Supervised Learning, (a): Classification, (b): Regression 
Figure 3.19: Supervised Learning, (a): Clustering, (b): Dimensionality Reduction 
Figure 3.20: C N N architecture with layers 
Figure 3.21 Convolutional filter application, (a) 5x5 grayscale image, (b) Convolutional 
filter 
Figure 3.22: Types of pooling 
Figure 3.23: Fully Connected Layer 
Figure 3.24: A loop in a recurrent neural network 
Figure 3.25: An unrolled recurrent neural network 
Figure 3.26: L S T M 
Figure 3.27: Y O L O Sample 
Figure 3.28: ResNet50 Model Architecture 
Figure 4.1: Dataset structure with a sample of frame 
Figure 4.2: Annotated "soil" and " F A " 
Figure 4.3: Annotated file by Y O L O format 
Figure 4.4: Annotated class names that were generated using Labelling. 
Figure 4.5: Annotated file example by Y O L O format 
Figure 4.6: Y O L O dataset folder structure 
Figure 4.7: C N N with L S T M dataset folder structure 
Figure 4.8: ConvLSTM Model Dataset Sample 
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Figure 4.9: yaml file to path through the dataset by classes 
Figure 4.10: Y O L O model architecture overview 
Figure 4.11: ConvLSTM dataset samples by classes 
Figure 4.12: ConvLSTM model layers and output shapes 
Figure 5.1: Y O L O model result summary after training the dataset 
Figure 5.2: Prediction results by the model and the labels of the frames, (a) Prediction of 
batch of frames, (b) Labels of batch of frames 
Figure 5.3: ConvLSTM dataset samples by classes 
Figure 5.4: ConvLSTM dataset samples by classes 
Figure 5.5: Total Loss vs Total Validation Loss 
Figure 5.6: Total Accuracy vs Total Validation Accuracy 
Figure 5.7: ConvLSTM dataset samples by classes 

8.2 List of equations 

Equation 3.1: Neuron Output Calculation 
Equation 3.2: Mean Squared Error (MSE) Cost Function 
Equation 3.3: Cross-Entropy Loss Function 
Equation 3.4: Sigmoid Activation Function 
Equation 3.5: ReLu Activation Function 
Equation 3.6: Tanh Activation Function 
Equation 3.7: Linear Activation Function 
Equation 3.8: Forward propagation calculation 
Equation 3.9: Backpropagation calculation 

8.3 List of abbreviations 

AI: Artificial Intelligence 
M L : Machine Learning 
DL: Deep Learning 
N N : Neural Networks 
A N N : Artificial Neural Networks 
ReLu: Rectified Linear Unit 
C N N : Convolutional Neural Networks 
RNN: Recurrent Neural Networks 
L S T M : Long-Short Term Memory Networks 
TCN: Temporal Convolutional Networks 
Y O L O : You Only Look Once 
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