
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Informatics

M a s t e r ' s T h e s i s

Classification of Temporal Images

Samet Yildizeli

© 2023 CZU Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
S a m e t Y i l d i z e l i

Informatics

Thesis title

Classification of temporal images

Objectives of thesis
The main objective of the thesis is to find an optimal machine learning model for the classification of
images that are produced by an experimental phenotyping platform. Specifically, the main objective
targets identification of images where the crop starts to germinate.

The partial goals of the work are:
• Collect and preprocess the data
• Review and select state of the art models for comparison
• Retrain the models on given data for comparison

Methodology

The methodology of the diploma thesis is based on the study and analysis of professional information
sources. In the practical part, appropriate models will be selected based on the theoretical part. The models
will be retrained on the given data either from scratch or using transfer learning. Evaluation data will be
consequently used for the comparison. Based on the synthesis of theoretical knowledge and the results of
the practical part, the conclusions of the work will be formulated.

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

The proposed extent of the thesis
60 - 80 pages

Keywords
Classification, Temporal Images, Computer Vision

Recommended information sources
GONZALEZ Rafael, WOODS Richard, Digital Image Processing, Global Edition, 4th Edition, IL: Pearson

Education, 2018. ISBN 9781292223049.
JAMES B., ZAHRAA S. Abdallah, Investigating Temporal Convolutional Neural Networks for Satellite Image

Time Series Classification, 2022, Cornell University, arXiv:2204.08461
JENSEN, J R. Introductory digital image processing : a remote sensing perspective. Glenview, IL: Pearson

Education, Inc., 2016. ISBN 9780134058160.
NIRBHAY B., SAMADRITA A., DIPTIT, Crop Classification with Multi-Temporal Satellite Image Data, IJERT,

ISSN:2278-0181, Vol.9 Issue 06, June-2020
PRATT, W K. Digital image processing : PIKS Scientific inside. Hoboken, N.J.: Wiley-lnterscience, 2007. ISBN

978-0-471-76777-0.

Expected date of thesis defence
2022/23 SS-FEM

The Diploma Thesis Supervisor
Ing. Jan Masner, Ph.D.

Supervising department
Department of Information Technologies

Electronic approval: 14. 7. 2022

doc. Ing. Jiří Vaněk, Ph.D.

Head of department

Electronic approval: 28.11. 2022

doc. Ing. Tomáš Šubrt, Ph.D.

Dean

Prague on 18.12. 2022

Official document * Czech University of Life Sciences Prague * Kamycka 129, 165 00 Praha - Suchdol

Declaration

I declare that I have worked on my master's thesis titled "Classification of Temporal

Images" by myself and I have used only the sources mentioned at the end of the thesis. As the

author of the master's thesis, I declare that the thesis does not break any copyrights.

In Prague on 31.03.2023

Acknowledgement

I would like to express my deepest gratitude to my supervisor, Ing. Jan Masner, for

his guidance throughout the course of my research. He provided invaluable insights and

feedback that greatly contributed to the end of this thesis.

Classification of Temporal Images

Abstract

The classification of temporal images is a crucial task in the field of computer vision and has

numerous applications, including seed germination detection. In this thesis, two models were

developed and trained for the classification of temporal images, with a focus on detecting

seed germination in soil. The first model, Y O L O , was trained for the detection of the first

appearance of the plant on the soil. The second model, ConvLSTM, was trained for the

detection of the germination of the seed in soil using temporal image classification.

The Y O L O model was trained using a customized germination dataset containing two

classes: "soil" and "FA", which represented the first appearance of the plant on the soil.

The results of the training process showed that both models achieved high levels of accuracy

in detecting the respective classes. The Y O L O model achieved precision values of 0.989 and

0.991 for the "soil" and "FA" classes, respectively, and a mean average precision of 0.995

for both classes. The ConvLSTM model achieved an accuracy of 0.9378, with a loss of

0.2469, demonstrating its effectiveness in detecting seed germination in soil using temporal

image classification.

This thesis presents the development and training of two models for the classification of

temporal images, with a focus on detecting seed germination in soil. The results show that

both models are effective in detecting the respective classes, and the ConvLSTM model is

particularly well suited for detecting seed germination in soil using temporal image

classification.

Keywords: Temporal Image Classification, Seed Germination Detection, Y O L O ,

ConvLSTM, Computer Vision, Image Processing.

7

Klasifikace Časových Obrazů

Abstrakt

Klasifikace časových obrazů je klíčový úkol v oblasti počítačového vidění a má četné

aplikace, včetně detekce klíčivosti semen. V této práci byly vyvinuly a natrénovány dva

modely pro klasifikaci časových snímků se zaměřením na detekci klíčivosti semen v půdě.

První model, YOLO, byl trénován pro detekci prvního výskytu rostliny na půdě. Druhý

model, ConvLSTM, byl trénován pro detekci klíčení semen v půdě pomocí časové

klasifikace obrazu. Model Y O L O byl trénován pomocí přizpůsobené sady údajů o klíčení

obsahující dvě třídy: „soil" a „FA", které představovaly první výskyt rostliny na půdě.

Výsledky tréninkového procesu ukázaly, že oba modely dosáhly vysoké úrovně přesnosti

při detekci příslušných tříd. Model Y O L O dosáhl hodnot přesnosti 0,989 a 0,991 pro třídy

„soil" a „FA" a střední průměrnou přesnost 0,995 pro obě třídy. Model ConvLSTM dosáhl

přesnosti 0,9378 se ztrátou 0,2469, což prokazuje jeho účinnost při detekci klíčení semen v

půdě pomocí klasifikace časového obrazu.

Tato práce představuje vývoj a trénování dvou modelů pro klasifikaci časových snímků se

zaměřením na detekci klíčivosti semen v půdě. Výsledky ukazují, že oba modely jsou účinné

při detekci příslušných tříd a model ConvLSTM je zvláště vhodný pro detekci klíčivosti

semen v půdě pomocí časové klasifikace obrazu.

Klíčová slova: Časová klasifikace obrazu, detekce klíčení semen, Y O L O , ConvLSTM,

počítačové vidění, zpracování obrazu.

8

Table of content

1 Introduction 11

2 Objectives and Methodology 12
2.1 Objectives 12
2.2 Methodology 12

3 Literature Review 13
3.1 Image Pre-Processing 15

3.1.1 Image Scaling 15
3.1.2 Grayscale Conversion 17
3.1.3 Image Denoising 17
3.1.4 Image Segmentation 18

3.2 Data Annotation 20
3.2.1 Image Annotation/Labeling 21

3.3 Data Augmentation 23
3.3.1 Types of Data Augmentation 24
3.3.2 Data Augmentation Methods 24

3.4 Computer Vision 26
3.4.1 What is Artificial Intelligence? 27

3.5 Neural Networks 27
3.5.1 Cost Functions 29
3.5.2 Activation Functions 30
3.5.3 Forward Propagation 33
3.5.4 Backward Propagation (Backpropagation) 33

3.6 Machine Learning 34
3.6.1 Supervised Learning 34
3.6.2 Unsupervised Learning 35

3.7 Deep Learning 36
3.7.1 Convolutional Neural Networks (CNNs) 37
3.7.2 Recurrent Neural Network (RNN) 41
3.7.3 Long Short-Term Memory (LSTM) 42
3.7.4 Temporal Convolutional Networks (TCN) 43

3.8 Deep Learning Models for Computer Vision 44
3.8.1 You Only Look Once (YOLO) 44
3.8.2 ResNet50 45

3.9 Training Deep Learning Networks 46
3.9.1 Training From Scratch 46
3.9.2 Pre-Trained Models 46

9

3.10 Related Work 47
3.11 Overview of Theoretical Part 48

4 Practical Part 49
4.1 Software Environment 50
4.2 Dataset Preprocess 50

4.2.1 Dataset Generation 50
4.2.2 Review of Dataset 51
4.2.3 Data Annotation 52

4.3 Training Models 55
4.3.1 Training Y O L O with Customized Dataset 56
4.3.2 Training a C N N Model with L S T M Layer (ConvLSTM) 57

5 Results and Discussion 59
5.1 Results of First Approach 59
5.2 Results of Second Approach 60

6 Conclusion 63

7 References 64

8 List of pictures, equations, and abbreviations 66

8.1 List of pictures 66
8.2 List of equations 67
8.3 List of abbreviations 67

10

1 Introduction

Today's technologies are used in almost every field. In this era of digitalization, where

data is the most valuable, they aim to create better business models by using this data

obtained in every sector in their own business models.

Thanks to the results obtained by using statistical methods or various artificial

intelligence methods on the obtained data, the work being done is both easier (using

autonomous or semi-autonomous technologies) and more profitable models can be created

in suitable environments and conditions. Important factors such as reducing the effort given

for the work done, obtaining the same or even more efficient results in a shorter time, and

increasing the labor and energy savings to optimum levels are some of the main purposes in

today's business model using data. Important data outputs obtained from auxiliary computer

systems not only make our work easier, but also predict how efficiently that job will be

output in which environments. These auxiliary systems, where artificial intelligence comes

first, are trained with data, and make predictions in their own systems.

Thanks to these new technologies, which are inevitable to be used in the agriculture

sector, studies are carried out to grow plants more efficiently, to keep these plants connected

not only to their natural environment, but also to be obtained efficiently in an artificial

environment. In this direction, besides the analysis of the experimental environments created

with technologies such as the internet of things (IOT) by computers, the data obtained is

used for purposes such as artificial intelligence technologies, supporting research results,

making predictions for future studies and research.

In line with the explanation above, artificial intelligence systems as assistance for

research are useful for the field of agriculture as well. Therefore, in this thesis, the seedling

moments of the plants in the soil cells on a tray were observed. With support from artificial

intelligence systems, a machine learning technology is used to detect the timelines of the

germination, that first appears in the soil, by using temporal image classification method

which is C N N with L S T M and object detection in image frames.

11

2 Objectives and Methodology

2.1 Objectives

The thesis was aimed to find an optimal machine learning model for the classification

of images produced by an experimental phenotyping platform. The main objective was to

accurately identify images of where the crop starts to germinate in the soil. In order to

achieve this objective, several partial goals were set.

The partial goals of the work are:

• Collecting and preprocessing the data: The first step in achieving the main

objective is to gather enough data and preprocess it to make it suitable for the

machine learning models.

• Reviewing and selecting state-of-the-art models: The next step is to review and

select the most suitable machine learning models for comparison based on their

performance on similar tasks.

• Retraining the models: The final step was to retrain the selected models on the

given data either from scratch or using transfer learning. This allows for a direct

comparison of the models and their performance on the aim of the thesis.

These partial goals, when combined, helped in achieving the main objective of the

thesis and provided valuable insights into the use of machine learning in image classification.

2.2 Methodology

The methodology of the diploma thesis was based on the study and analysis of

professional information sources. In the practical part, appropriate models were selected

based on the theoretical part. The models were retrained on the given data either from scratch

or using transfer learning. Evaluation data were consequently used for the comparison.

Based on the synthesis of theoretical knowledge and the results of the practical part, the

conclusions of the work were formulated.

12

3 Literature Review

Seedling must determine the appropriate mode of action based on its environment to

best achieve photosynthetic success and enable the plant to complete its life cycle. Once the

seedling emerges out of the soil, it initiates photomorphogenesis, a complex sequence of

light-induced developmental and growth events leading to a fully functional leaf. This

sequence includes severe reduction of hypocotyl growth, the opening of cotyledons,

initiation of photosynthesis, and activation of the meristem at the shoot apex, a reservoir of

undifferentiated cells that will lead to the formation of the first leaf [1].

The detection of the first appearance of the plant on the soil is a critical task in plant

biology research, as it provides valuable information for crop management and scientific

studies. Over the past few years, there has been a growing interest in using computer vision

techniques to automate the detection of the first appearance of seeds in the soil. Various

methods have been proposed to address this problem, ranging from traditional computer

vision techniques to deep learning-based approaches [1].

While many computer vision approaches have been proposed for seed detection in

soil images, relatively few studies have focused on the temporal aspect of the problem.

Temporal image classification, which involves predicting the class label of an image based

on its position in a temporal sequence, can be used to detect the first appearance of a seed in

a series of soil images. By modeling the temporal dynamics of seed germination, temporal

image classification can improve the accuracy and robustness of seed detection. However,

designing effective temporal image classification models for seed detection remains a

challenging task, due to the high variability and complexity of soil images and the subtle

temporal changes in seed appearance [2] [3]. There are several ways to deal with difficulties

such as hue color range filtering to isolate the specific colors in an image based on the color

after germination [4].

Traditional computer vision techniques have been used for object detection tasks for

decades. Researchers have used techniques like feature extraction, edge detection, and

segmentation to detect seeds in soil images. For example, researchers used the normalized

cuts algorithm to segment seed images from the background soil. However, these methods

can be limited by their reliance on handcrafted features and may not generalize well to new

datasets [1] [5].

13

Recent advances in deep learning have led to significant improvements in computer

vision tasks, including object detection. Deep learning models like convolutional neural

networks (CNNs) have been successfully used for object detection tasks. For example,

researchers used a combination of CNNs and long short-term memory (LSTM) networks to

detect seed germination in Arabidopsis images. In [1] and [5], C N N was used to extract

features from the images (see Figure 3.1), while the L S T M was used to model the temporal

aspect of the data [2].

LSTM Classification

• - J — • S o i l

• H -FA

#—|—•OC

• | -FL

- ^ \ /

Figure 3.1: C N N Feature Extraction using L S T M layer for seedling detection [8]

One of the most popular deep learning-based object detection frameworks is the You

Only Look Once (YOLO) algorithm. Y O L O is a real-time object detection system that uses

a single neural network to predict the class and location of objects in an image. Y O L O has

been used for a variety of object detection tasks, including plant detection. Therefore, Y O L O

can be sensitive to small objects, which may be a limitation for seed detection [8].

Another popular deep learning-based approach for object detection is the Faster R-CNN

algorithm. Faster R-CNN uses a region proposal network to generate object proposals and

C N N to classify and refine the proposals. Researchers used a Faster R-CNN model to detect

seeds in soil images. The model achieved high accuracy in seed detection, but it was

computationally expensive [4].

In conclusion, there have been several approaches proposed for the detection of the first

appearance of seeds in soil images by using object detection or temporal image

classification. Traditional computer vision techniques have been used with limited success

due to their reliance on handcrafted features. Deep learning-based approaches, on the other

hand, have shown significant improvements in object detection tasks, including seed

14

detection. While Y O L O and Faster R-CNN are popular deep learning-based approaches,

their sensitivity to small objects and computational complexity may be limitations for seed

detection. In the Practical Part of the thesis, proposed approaches for the detection of the

first appearance of seeds in the soil using temporal images are based on implementation of

2 different models which are Y O L O and C N N with L S T M networks [9].

3.1 Image Pre-Processing

Image preprocessing is a crucial step in preparing images for model training and

analysis. It involves techniques such as cropping, resizing, normalization, and color space

conversions. The purpose of image preprocessing is to prepare the image for analysis by the

model and to improve the model's performance [14].

In addition to improving model performance, image preprocessing can also help reduce

model training time and increase model inference speed. Large input images can

significantly slow down model training time, which can be mitigated by resizing or cropping

the images. Reducing the size of input images can also help improve model inference speed

without significantly impacting model performance [14].

3.1.1 Image Scaling

Image scaling is used to increase or decrease the size of a given image. Scaling

algorithms are used to preserve details or features. There are multiple ways of scaling an

image, some common ways are Nearest neighbor, Bilinear interpolation and Box sampling.

These algorithms will be evaluated and chosen for which one that suits the network best

[14].

3.1.1.1 Nearest Neighbor Interpolation

The nearest neighbor algorithm is the simplest scaling algorithm, which involves

selecting the nearest pixel to determine the color value of a new pixel in the scaled image

(Figure 3.2). This method is fast and easy to implement but can lead to poor image quality

due to its blocky or jagged edges in the scaled image. This method is useful for downscaling

an image, but it's not recommended for upscaling an image. [15].

15

Nearest Neighbour Interpolation

Decimated Image

Interpolated Image

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

(1,1) (1,1) (1,2) (1,2) (1,3) (1,3) (1,4)

(1,1) (1,1) (1,2) (1,2) (1,3) (1,3) (1,4)

(2,1) (2,1) (2,2) (2,2) (2,3) (2,3)

(1,4)

(2,1) (2,1) (2,2) (2,2) (2,3) (2,3)

(1,4)

(3,1) (3,1) (3,2) (3,2) (3,3) (3,3) (3,4)

(3,1) (3,1) (3,2) (3,2) (3,3) (3,3) (3,4)

(4,1) (4,1) (4,2) (4,2) (4,3) (4,3) (4,4)

Figure 3.2: Resizing Image with Nearest Neighbor Interpolation Application

3.1.1.2 Bilinear Interpolation

The bilinear interpolation algorithm works by taking a weighted average of the four

nearest pixels to determine the color value of a new pixel in the scaled image. This algorithm

provides smoother and more natural-looking images than the nearest neighbor algorithm,

making it a popular choice for many applications. This method is useful for upscaling an

image, but it's not recommended for downscaling an image. [15].

Qu

1

Q12

1

1
1

Q21 I', Q22

Figure 3.3: Downscaling in image pixels

In Figure 3.3, this interpolation involves the 4 neighboring points. Linear

interpolation is done on points the top 2 points (Ql 1 and Q12) and the bottom 2 points (Q21

and Q22) to obtain two new points (PI and P2). Then, linear interpolation is applied to the

new points to get the interpolated point P [15].

16

3.1.2 Grayscale Conversion

Grayscale conversion is a useful process of converting colored images into black and

white, as it looks in Figure 3.4, which has various benefits in image processing and machine

learning algorithms. Grayscale images require less memory and processing power, have a

smaller file size, and are easier to analyze. There are various methods of converting an image

to grayscale, including the luminosity, average, and lightness methods. The choice of the

conversion technique depends on the specific application and desired grayscale image

quality [4].

Figure 3.4: Grayscale implementation on the image

3.1.3 Image Denoising

The images that are captured in the real world come with noises. These noises can

appear due to many reasons such as electric signal instabilities, malfunctioning of camera

sensors, poor lighting conditions, errors in data transmission over long distances, etc. This

can degrade the captured image's quality and can cause loss of information as the original

pixel values are replaced by random values due to noise. So, there is a need to remove these

noises from images when it comes to low-level vision tasks and image processing. The

process of removing such noises from images is known as Image Denoising. The image on

the right side is the denoised version of the left one in Figure 3.5 [4].

17

Figure 3.5: Image denoising

3.1.4 Image Segmentation

Image segmentation is a crucial process in which a digital image is divided into

smaller parts or subgroups called image segments. These segments can help in reducing the

complexity of the image, making further processing or analysis of the image simpler.

Segmentation is the process of assigning labels to pixels, wherein all the pixels belonging to

the same category have a common label assigned to them [4].

Image segmentation has several advantages in image processing and computer vision

applications. For instance, in object detection, the detector can be inputted with a region

selected by a segmentation algorithm, rather than processing the whole image. This reduces

the inference time and enhances the accuracy of object detection. Moreover, segmentation

can help in identifying objects, detecting edges, and reducing noise in images [4].

There are several techniques used for image segmentation, including thresholding, region

growing, edge detection, and clustering. The choice of technique depends on the specific

application and the characteristics of the image being processed [4].

3.1.4.1 Instance Segmentation

Instance segmentation is a more advanced form of image segmentation that not only

divides the image into segments, but also identifies individual objects within each segment.

In instance segmentation, each pixel in the image is assigned a unique label or identifier that

represents a specific object in the image. This technique is useful for applications that require

the detection and segmentation of multiple objects in an image, such as autonomous vehicles

and robotics (see Figure 3.6). Instance segmentation is typically performed using deep

learning algorithms, which can achieve high accuracy in identifying and segmenting objects

18

in images. The performance of instance segmentation depends on the quality of the training

data and the architecture of the deep learning model. Overall, instance segmentation is a

powerful technique that can provide detailed and accurate information about the objects in

an image [4].

3.1.4.2 Semantic Segmentation

Semantic segmentation is a technique in computer vision that involves dividing an

image into multiple segments or regions, where each segment represents a different object

or part of the image. However, unlike instance segmentation, semantic segmentation does

not differentiate between individual instances of the same object type. Instead, it classifies

each pixel in the image into a specific class, such as a person, car, or building. This technique

is useful for many applications, including object detection, autonomous driving, and medical

image analysis. Semantic segmentation is typically performed using deep learning

algorithms that are trained on large datasets to accurately classify the pixels in the image.

The accuracy of the semantic segmentation model depends on the quality of the training

data, the architecture of the deep learning model, and the complexity of the image being

segmented. In summary, semantic segmentation is a powerful technique that can provide

rich information about the different objects in an image, facilitating further analysis and

processing [1][19].

Figure 3.6: Example of Instance Segmentation [19]

19

Figure 3.7: Example of Semantic Segmentation [19]

3.2 Data Annotation

Data annotation is the process of adding labels or tags to a data set in order to make it

more usable and interpretable. The purpose of this process is to provide additional

information to the data, making it easier for algorithms and models to understand and use

the data in a meaningful way. It is a crucial step in the development of machine learning

models, particularly in the field of computer vision. In computer vision, data annotation is

used to train algorithms to recognize objects, people, and other elements within images and

videos [15].

Data annotation is one of the top limitations of AI implementation for organizations. It is

basically the process of labeling data with relevant tags to make it easier for computers to

understand and interpret. This data can be in the form of images, text, audio, or video, and

data annotators need to label it as accurately as possible. Data annotation can be done

manually by a human or automatically using advanced machine learning algorithms and

tools [15].

For supervised machine learning (see 3.6.1. Supervised Learning), labeled datasets are

crucial because M L models need to understand input patterns to process them and produce

accurate results. Supervised M L models (see Figure 3.8) train and learn from correctly

annotated data and solve problems such as classification or regression (see 3.6. Machine

Learning) [15].

20

TRAINING SET

Figure 3.8: Supervised learning example based on data annotation of objects.

3.2.1 Image Annotation/Labeling

Image annotation or image labeling is the process of adding labels or tags to an image

in order to provide additional information about the objects or elements within the image.

Image annotation is a critical step in the development of computer vision algorithms and

models, as it helps the algorithms to understand and recognize objects within images. Despite

its importance, image annotation can also be a challenging task, especially on spending time

to generate the labeled dataset. However, by using image annotation tools such as Labelling,

which was used on this thesis project, these challenges can be overcome, leading to the

creation of large, high-quality data sets for training computer vision algorithms and models.

There are several types of image annotation, each with its own specific purpose. These types

include object detection, semantic segmentation, instance segmentation, key point

annotation, bounding box annotation (see Figure 3.9) [15].

21

Classification Semantic Segmentation

Figure 3.9: Image annotation types

3.2.1.1 Image Classification

Image classification is the process of assigning an image to one of a set of predefined

categories or classes. This type of annotation involves labeling an image with a class label,

such as "apple" or "banana". The resulting annotations are used to train algorithms to classify

new images into the appropriate class [15].

Image classification is a fundamental task in computer vision and has many real-

world applications, including image search, content-based retrieval, and object recognition

[15].

There are several approaches to image classification, including traditional machine

learning algorithms, such as support vector machines (SVMs) and decision trees, as well as

deep learning approaches, such as convolutional neural networks (CNNs). The choice of

approach will depend on the specific requirements of the application and the available data.

Image classification is a supervised learning task, meaning that the algorithm is trained on a

labeled data set. The quality of the annotations used to train the algorithm has a direct impact

on the performance of the model, so it is important to ensure that the annotations are accurate

and complete [15].

22

3.2.1.2 Object Recognition/Detection

Object recognition/detection is a further version of image classification. It is the

correct description of the numbers and exact positions of entities in the image. While a label

is assigned to the entire image in image classification, object recognition labels entities

separately. As an example, with image classification, the image is labeled as day or night.

Object recognition individually tags various entities in an image, such as a "bicycle", "tree",

or "table" [15].

3.2.1.3 Image Segmentation

Image segmentation for data annotation plays a crucial role in creating ground truth

annotations for machine learning algorithms. Ground truth annotations are labeled data used

to train and evaluate machine learning models. Image segmentation is used to divide an

image into multiple segments or regions, each of which corresponds to a different object or

part of the image. This allows annotators to label each segment with a class label, such as

"person," "car," or "background." [15].

There are various image segmentation techniques that can be used for data annotation,

including semantic segmentation, instance segmentation, and boundary-based segmentation.

Each technique has its own advantages and limitations, and the choice of technique will

depend on the specific requirements of the data annotation part of the projects [15].

3.3 Data Augmentation

Data augmentation is a technique used to increase the diversity of a dataset by making

minor alterations to the existing data, without collecting new data. This technique is used to

overcome the limitations of small datasets and to prevent a neural network from overfitting

to the training data. It is an important technique for improving the performance of neural

networks and is widely used in various machine learning applications [15].

Standard data augmentation techniques include horizontal and vertical flipping, rotation,

cropping, shearing, and more. These techniques help in diversifying the training data,

allowing the neural network to learn features that are invariant to small transformations. This

results in a more robust and generalizable model [15].

23

Data Augmentation j
•d

Figure 3.10: Data augmentation implementations

3.3.1 Types of Data Augmentation

There are two types of data augmentation which are offline augmentation and
online augmentation [15].

3.3.1.1 Offline Augmentation

Offline augmentation is used for small datasets and is applied during the data

preprocessing step. It involves creating augmented versions of the data before training the

3.3.1.2 Online Augmentation

Online augmentation is used for large datasets and is applied in real-time during the

training process. It involves generating augmented versions of the data on-the-fly, allowing

for a larger and more diverse training dataset without the need for additional data collection.

3.3.2 Data Augmentation Methods

Data augmentation methods are commonly used to increase the diversity of the

training data and to prevent overfitting. By generating new samples that differ from the

original data in various ways, these methods help to improve the robustness and

generalization of machine learning models [15].

3.3.2.1 Shifting

Shifting involves translating the image along the x and y axes. This can be done by

moving the image up, down, left, or right by a specified number of pixels. Shifting helps to

increase the diversity of the training data by generating new samples that differ from the

model.

24

original data in their spatial location. See Figure 3.11 as an applied shifting method example

on an image [15].

Figure 3.11: Shifting method in image

3.3.2.2 Flipping

This reverses the rows or columns of pixels in either vertical or horizontal cases,

respectively. See Image 3.12 as an applied flipping method example on an image [15].

' • V I :
V

I
0 SO 100 150 200 2S0 0 50 100 150 200 2S0 0 50 100 150 200 250

Figure 3.12: Flipping the image.

3.3.2.3 Rotation

Rotation involves rotating the image by a specified angle. This can be done by rotating

the image clockwise or counterclockwise. Rotation helps to increase the diversity of the

training data by generating new samples that differ from the original data in their orientation.

See Image 3.13 as an applied rotation method example on an image [15].

25

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Figure 3.13: Rotation on the image

3.3.2.4 Changing Brightness

Changing the brightness involves altering the brightness of the image. This can be

done by increasing or decreasing the brightness of the image. Changing the brightness helps

to increase the diversity of the training data by generating new samples that differ from the

original data in their lighting conditions. See Figure 3.14 as an applied brightness changing

method example on an image [15].

0 50 100 150 200 2S0 0 SO 100 150 200 2S0 0 50 100 150 200 250

Figure 3.14: Changing the brightness of the image.

3.4 Computer Vision

Computer Vision is a field of study that focuses on enabling computers to interpret

and understand visual data from the world, such as images and videos. The goal of computer

vision is to develop algorithms and models that can automatically extract meaningful

information from visual data, such as recognizing objects and scenes, detecting edges and

corners, and estimating depth and motion [1].

Computer vision has a wide range of applications, including image and video analysis,

object recognition and tracking, and autonomous systems [1]. With the increasing

availability of high-quality visual data, computer vision has become an important area of

research, with many advances being made in recent years [1].

26

Deep learning has been a major driver of progress in computer vision in recent years,

with convolutional neural networks (ConvNets) being one of the most popular and

successful deep learning models for computer vision. ConvNets are designed to process

image data, and they have been shown to outperform traditional computer vision methods in

tasks such as image classification, object detection, and semantic segmentation [2].

3.4.1 What is Artificial Intelligence?

Artificial Intelligence (AI) is the field of computer science that focuses on the

development of intelligent machines that can perform tasks that typically require human

intelligence, such as visual perception, speech recognition, decision-making, and language

translation. The goal of AI is to create systems that can perform tasks that are typically

performed by humans, without being explicitly programmed to do so [1].

AI has a wide range of applications, including natural language processing, computer

vision, robotics, and game playing. It has the potential to revolutionize many industries,

including healthcare, finance, and transportation, by automating tasks that were previously

performed by humans, improving efficiency and accuracy [2].

There are two main approaches to AI: rule-based systems and machine learning. Rule-based

systems are systems that are explicitly programmed with a set of rules to perform a specific

task, while machine learning is a type of AI that enables systems to automatically learn from

data, without being explicitly programmed [1].

Machine learning has become an important area of AI research in recent years, with advances

in deep learning leading to significant improvements in performance in many tasks, such as

image classification and natural language processing. Deep learning is a type of machine

learning that uses deep neural networks, which are networks with many layers, to learn from

data [3].

3.5 Neural Networks

Neural networks are computational models inspired by the structure and function of

the human brain. They aim to replicate the perception, learning, and memory capabilities of

human neurons by performing these functions mathematically on computers. The goal of

neural networks is to recognize patterns, make predictions, and perform other tasks that

would normally require human intelligence [16].

27

Figure 3.15.(b) shows a simple representation of a neural network, modeled after a

human neuron (see Figure 3.15.(a)). The input layer receives data, the hidden layer processes

the data, and the output layer produces the result. In Figure 3.16, a neural network

architecture takes the input from input layer and calculates the result in the exit of layer.

Neural networks can be trained using various algorithms, such as supervised learning,

unsupervised learning, or reinforcement learning, to learn from data and improve their

performance over time [16].

Neural networks are powerful tools for solving complex problems in fields such as

computer vision, natural language processing, and robotics. They can learn from data and

improve their performance, making them promising technology for the future [16].

(b) Artificial neuron

Figure 3.15: (a) Biological neuron from human brain,

(b) Artificial neuron that is inspired by biological neuron

A neural network consists of three parts: input, calculation, and output layers. The input

layer's input values, xl, x2, xn, and weights, wl, w2, ... wn, are shown (Equation 3.1).

These values are defined as real numbers. Figure 4.2 shows an artificial neural network

model [16].

The artificial neural network produces an output consisting of zeros and ones. In

Equation 4.1, when the threshold value is added to the product of the input layer and weights

of the neural network, if the result is greater than the threshold value, the neural network will

28

output 1, otherwise 0. Equation 3.1 shows the function that produces the output and (y) is

the output, (Ay) is the input layer, (Wj) are the weights, and (b) is the bias value [16].

x = ̂ WjXj + b
J

y 10. x < 0

Equation 3.1: Neuron Output Calculation

(Xn):Input, (n):Index, (w):Weight, (b):Bias, (y):Output

Figure 3.16: Neural network architecture

3.5.1 Cost Functions

A cost function, also known as a loss function, is a measure of the difference between

the predicted output of a neural network and the true output labels. The goal of the training

process is to minimize the cost function so that the neural network can make accurate

predictions on new data.

There are many different types of cost functions, including mean squared error

(MSE), cross-entropy loss, and hinge loss [16]. The choice of cost function depends on the

specific problem and the type of neural network being used.

29

One common cost function used in neural networks is mean squared error (MSE),

which measures the average of the squared differences between the predicted and true output

values [16]. The M S E cost function can be written as Equation 3.2.

m

/ (W ' &) = 2^Z(y(0"y7r))2

i=l
Equation 3.2: Mean Squared Error (MSE) Cost Function

In Equation 3.2, J(w, b) is the cost function, m is the number of training examples, y^1' is

the true label, and y W is the predicted output for the ith training example. The weights (w)

and biases (b) are the parameters that are being optimized during the training process (see

Figure 3.16) [16].

Another popular cost function used in neural networks is cross-entropy loss, which measures

the difference between the predicted probabilities and the true labels. The cross-entropy loss

function can be written as Equation 3.3.

J(w,b) = - ^ ^ i [y (° l o g (^) + (1 - y «) l o g (l

Equation 3.3: Cross-Entropy Loss Function

In Equation 3.3, J(w,b) is the cost function, m is the number of training examples, is

the true label, and y W is the predicted probability for the ith training example [16].

These are just two examples of cost functions used in neural networks, and there are many

others to choose from depending on the specific problem and type of neural network. The

goal of the cost function is to provide a measure of how well the neural network is

performing, and the training process aims to minimize this measure [16].

3.5.2 Activation Functions

Activation functions are an essential component of artificial neural networks. They

are mathematical equations that determine the output of a neuron based on the input it

receives. The activation functions play a crucial role in training the network, and the choice

of activation function has a significant impact on the performance of the network (see Figure

3.17).

30

Tanh ReLU

tanh(x)
raax(0,x)

X
X

Sigmoid Linear

A
X X

Figure 3.17: Activation Functions

3.5.2.1 Sigmoid Function

The sigmoid function is one of the most used activation functions in neural networks.

It is a mathematical function that maps any input to the range of 0 and 1, making it suitable

for binary classification problems. The sigmoid function is defined as:

In Equation 3.4, x is the input to the neuron and f(x) is the output. The sigmoid function is

useful because it has a smooth, monotonie increase and is easy to differentiate, making it

ideal for backpropagation, a common algorithm used to train neural networks [1].

3.5.2.2 Rectified Linear Unit (ReLu)

The rectified linear unit (ReLU) is a simple activation function that has become

increasingly popular in recent years. It is computationally efficient, only requiring a simple

threshold operation, and has been shown to prevent vanishing gradient problems, leading to

improved performance in deep learning models, particularly in computer vision tasks.

1
/ (*) = 1 + e~x

Equation 3.4: Sigmoid Activation Function

f(x) = ma x(0, x)

Equation 3.5: ReLu Activation Function

31

In Equation 3.5, x is the input to the neuron and f(x) is the output. The ReLU activation

function has been shown to outperform other activation functions in deep learning models,

particularly in computer vision tasks. The ReLU function is computationally efficient, as it

only requires a simple threshold operation, and it has been found to prevent vanishing

gradient problems, which can occur with other activation functions [16].

3.5.2.3 Tanh Function

The hyperbolic tangent (tanh) function is another activation function commonly used

in neural networks. It maps any input to the range of -1 and 1, making it suitable for outputs

that are not binary. The tanh function is defined as:

f{x) = tanh(x) = e-^-x

Equation 3.6: Tanh Activation Function

In Equation 3.6, x is the input to the neuron and f(x) is the output. The tanh function is like

the sigmoid function, but it has a slightly faster convergence rate, making it ideal for time

series prediction and other applications where speed is important [16].

3.5.2.4 Linear Function

The linear activation function is a simple activation function that outputs the input to

a neuron without any transformation. It is defined as:

f{x) = x

Equation 3.7: Linear Activation Function

In Equation 3.7, x is the input to the neuron and f(x) is the output. The linear activation

function is often used in regression problems where the output is a continuous value.

However, it is not commonly used in deep learning models because it can lead to vanishing

or exploding gradients, which can make it difficult to train the network effectively. It is also

limited in its ability to introduce non-linearity into the network, which is necessary for

solving more complex problems [16].

32

3.5.3 Forward Propagation

Forward propagation is the process of computing the predicted output of a neural

network given the input and the weights and biases. During forward propagation, the input

values are passed through the network layer by layer, and intermediate results are computed

using the activation function. The result is produced by the output layer, which is then

compared to the true output labels to calculate the cost using a cost function [16].

The forward propagation calculation for a single training example can be represented
mathematically as:

Zu] = wma[i-n + bu]

a M = 0 M (z M)

Equation 3.8: Forward propagation calculation

Equation 3.8, z ^ is the linear combination of the activations from the previous layer (a^ - 1!)

and the weights (W ^) for the current layer, plus the bias (b^). The activation function g^

is applied to z ^ to produce the activations for the current layer (a^) [16].

3.5.4 Backward Propagation (Backpropagation)

Backward propagation, also known as backpropagation, is the process of updating

the weights and biases in a neural network to minimize the cost function. During backward

propagation, the gradient of the cost with respect to the weights and biases is computed, and

the weights and biases are updated using gradient descent or a similar optimization algorithm

[16].

Backward propagation calculation starts at the output layer and works backwards

through the network to calculate the gradients for each layer. The gradient of the cost with

respect to the weights and biases can be represented mathematically as:

d J

 = i A r a (a [i - i]) 1

i=i

Equation 3.9: Backpropagation calculation

33

Equation 3.9, where / is the cost function, m is the number of training examples, is the

error for the current layer, and a'-'-1-' is the activations from the previous layer [16].

Forward and backward propagation are the two main steps in the training process of a neural

network, and they are repeated multiple times to minimize the cost function and improve the

performance of the network [16].

3.6 Machine Learning

Machine Learning (ML) is a field of study in computer science and artificial

intelligence that focuses on the development of algorithms and models that are capable of

learning from data to improve their performance on a specific task. M L algorithms can build

models based on training data, which are used to make predictions or decisions without

explicit programming. M L is used in a wide range of applications, such as in medicine, email

filtering, speech recognition, agriculture, and computer vision, where conventional

algorithms may be difficult or impractical to develop.

The first step in solving a problem using M L is choosing the appropriate model. Depending

on the problem at hand, there are two main categories of M L techniques: supervised learning

and unsupervised learning [16] [17].

3.6.1 Supervised Learning

Supervised learning is a type of machine learning where the algorithms are trained

on a labeled dataset, with the goal of learning a mapping between input variables (features)

and output variables (labels). In supervised learning, the algorithm is given a set of labeled

examples and attempts to learn the relationship between the input and output variables, so

that it can make predictions for new, unseen examples [17].

34

Classification Regression

(a) (b)

Figure 3.18: Supervised Learning, (a): Classification, (b): Regression

3.6.1.1 Classification

Classification predicts a categorical label for a given input. For example, classifying

an email as spam or not spam, or classifying a type of animal in an image as a dog, cat, or

horse [17].

3.6.1.2 Regression

The goal of the regression is to predict a continuous output value for a given input. For

example, predicting the price of a house given its size, location, and number of rooms [17].

3.6.2 Unsupervised Learning

Unsupervised learning is a type of M L where the algorithms are trained on an

unlabeled dataset, with the goal of finding patterns or structure in the data without any prior

knowledge. In unsupervised learning, the algorithm tries to find relationships or patterns in

the data by grouping similar data points together or finding the underlying structure of the

data=l [17].

35

Clustering Dimensionality Reduction

X2 X2

Xi Xi

(a) (b)

Figure 3.19: Supervised Learning, (a): Clustering, (b): Dimensionality Reduction

3.6.2.1 Clustering

Clustering is a type of unsupervised learning where the goal is to group similar data

points together into clusters (see Figure 3.19.(a)). For example, grouping customers based

on their spending habits or grouping images based on the type of object they contain [17].

3.6.2.2 Dimensionality Reduction

Dimensionality reduction is a type of unsupervised learning where the goal is to reduce

the number of features in the data while preserving as much of the information as possible

(see Figure 3.19.(b)). For example, reducing the number of features in an image dataset from

1000 to 10 while still being able to accurately classify the images [17].

3.7 Deep Learning

Deep learning is a machine learning technique that uses artificial neural networks with

multiple layers to automatically learn and represent complex patterns and relationships in

large-scale data. Unlike traditional machine learning methods that rely on manual feature

extraction and selection, deep learning algorithms learn hierarchical representations of data

from raw inputs and iteratively improve their performance through backpropagation and

optimization techniques. Deep learning has been successfully applied to various domains,

including computer vision, natural language processing, speech recognition, and

recommendation systems. Convolutional Neural Networks (CNNs) have been particularly

effective for image and video analysis tasks, while Recurrent Neural Networks (RNNs) and

36

Long Short-Term Memory (LSTM) networks have shown great promise for sequence

modeling and time series analysis [16] [18].

Recent developments in deep learning have also led to the development of new

architectures and models, such as Generative Adversarial Networks (GANs), Variational

Autoencoders (VAEs), and Transformer networks, which have achieved state-of-the-art

results in image synthesis, speech recognition, and natural language processing tasks

[16][18].

The increasing popularity and success of deep learning have also sparked significant

research and development efforts in hardware and software, such as specialized processors

and libraries for deep learning. As a result, deep learning has become an essential tool for

many industries and applications, including healthcare, finance, manufacturing, and

transportation [16] [18].

One of the recent applications of deep learning is in the field of agriculture, where it is being

used for the detection of the first appearance of the plant on the soil using temporal image

classification methods. This involves the use of time-lapse images of the soil, captured at

regular intervals, to monitor the growth of the seed and detect its first appearance in the soil.

Deep learning algorithms, such as CNNs and LSTMs, are used to extract features from the

images and classify them based on the growth stage of the seed. This approach has the

potential to improve the efficiency and accuracy of crop monitoring and management,

leading to higher yields and reduced resource consumption [20].

3.7.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep learning models that have

been particularly effective in solving image and video analysis tasks. They are designed to

automatically learn and extract hierarchical features from raw image inputs using

convolutional layers, pooling layers, and fully connected layers.

37

Fully

Convolution Connected

Pooling output Input

a : l

a :

V A
Y

Feature Extraction

Figure 3.20: C N N architecture with layers

In a C N N , the convolutional layer applies a set of learnable filters to the input image to

extract local features, such as edges, corners, and textures (see Figure 3.20). The pooling

layer then reduces the dimensionality of the feature map by down-sampling the output of the

convolutional layer. Finally, the fully connected layer aggregates the output of the previous

layers to produce the final classification or regression result. The convolutional layer,

pooling layer, and fully connected layer are the key components of a C N N . They enable the

network to automatically learn and extract meaningful features from the input image, reduce

the dimensionality of the feature maps, and produce the final classification or regression

result [16].

CNNs have achieved state-of-the-art results in various image and video analysis tasks,

including object detection, image segmentation, and image classification. They have also

been used in other domains, such as natural language processing and speech recognition.

Some of the most popular C N N architectures include AlexNet, VGGNet, GoogLeNet, and

ResNet, which have won multiple competitions and achieved high accuracy on benchmark

datasets such as ImageNet [16].

3.7.1.1 Convolutional Layer

The convolutional layer is the core building block of a C N N . It applies a set of

learnable filters to the input image to extract local features, such as edges, corners, and

textures. The filters slide over the image and compute the dot product between their weights

38

and the input image pixels. This produces a set of feature maps that highlight the presence

of the learned features in different parts of the image [16].

3„ 3 i 2

2

1 0

°
2

\ 3 1

3„ \ 2 3

2 0 0 2 2

2 0 0 0 1

12.0 12.0 17.0

10.0 17.0 19.0

9.0 6.0 14.0

(a) (b)

Figure 3.21: Convolutional filter application,

(a) 5x5 grayscale image,

(b) Convolutional filter

See Figure 3.21, that shows an example of a 3x3 convolutional filter applied to a 5x5

grayscale. The output feature map size depends on the filter size, stride, and padding. The

stride determines the amount of shift between the filters, while padding adds zeros around

the image to preserve the output size. The number of filters is a hyperparameter that

determines the depth of the output feature map [16].

3.7.1.2 Pooling Layer

The pooling layer is usually applied after the convolutional layer to down-sample the

output feature maps and reduce their dimensionality. This helps to increase computational

efficiency and reduce the risk of overfitting. Common pooling operations include max

pooling and average pooling, which select the maximum or average value of a sub-region of

the feature map, respectively [16].

On Figure 3.11 below shows an example of max pooling and average pooling with a

2x2 window and stride of 2.

39

12 20 30 0

8 12 2 0

34 70 37 4
112 100 25 12

max pooling
20 30

112 37

average pooling

13 8

79 20

Figure 3.22: Types of pooling

The pooling operation reduces the output feature map size by a factor of the window size,

while retaining the most salient features.

3.7.1.3 Fully Connected Layer

The fully connected layer is the final layer in a C N N , which aggregates the output of

the previous layers to produce the final classification or regression result. This layer is a

neural network layer where all the inputs are connected to all the outputs, hence the name

"fully connected". The output of the last pooling layer is flattened into a ID vector and then

connected to the input of the fully connected layer.

See Figure 3.23 below shows an example of a fully connected layer with 4 input neurons

and 8 output neurons.

40

Figure 3.23: Fully Connected Layer

The fully connected layer performs a linear transformation on the input features and

passes them through an activation function, such as ReLU or sigmoid. The output of the last

fully connected layer is usually fed to a SoftMax function to produce the final probability

distribution over the classes [16].

3.7.2 Recurrent Neural Network (RNN)

Recurrent Neural Networks (RNNs) are a type of neural network that can process

sequential data, such as text, speech, and time series. RNNs have an internal memory that

allows them to maintain a hidden state that captures the context of the previous inputs. The

hidden state is updated at each time step by combining the current input with the previous

hidden state. This makes RNNs capable of processing sequences of inputs and capturing

temporal dependencies between them [16].

Figure 3.24: A loop in a recurrent neural network

41

One of the notable applications of RNNs is in natural language processing, where they have

been used for tasks such as language modeling, machine translation, and sentiment analysis.

RNNs have also been used for speech recognition and music generation [16].

Figure 3.25: An unrolled recurrent neural network

However, RNNs suffer from the vanishing gradient problem, where the gradients become

very small or zero during backpropagation through time. This limits the ability of RNNs to

capture long-term dependencies in the input sequence. This problem has been addressed by

the development of new architectures, such as Long Short-Term Memory (LSTM) networks,

which introduce memory cells and gating mechanisms [16].

Research has shown that L S T M networks can achieve state-of-the-art results in various

tasks, such as speech recognition, natural language processing, and image captioning. They

have also been used in healthcare, where they have been applied to tasks such as predicting

disease progression and clinical decision support [16].

3.7.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network

that have memory cells and gating mechanisms to overcome the vanishing gradient problem.

LSTMs are well-suited to process sequential data and capture long-term dependencies

between them. They have been used in various applications, such as speech recognition,

natural language processing, and image captioning [16].

42

zt = cr(Wz • [ht-iyXt])

rt = a(Wr • [ht-uxt])

ht = tanh (W • [rt * ht-i, xt])

ht = (1 - zt) * ht-i + zt*ht

\6: L S T M

L S T M networks have three main components: memory cells, input gates, and output gates.

The memory cells are responsible for storing and updating the relevant information from the

input sequence, while the input and output gates control the flow of information into and out

of the cells [16].

3.7.4 Temporal Convolutional Networks (TCN)

Temporal Convolutional Networks (TCN) are a type of deep learning architecture

that has been introduced as a solution to the problem of processing sequential data. T C N

operates on sequences of input data and utilizes convolutional layers with dilated

convolutions to capture long-range temporal dependencies in the data. The use of dilated

convolutions allows T C N to effectively capture both short- and long-range temporal

dependencies, making it suitable for a wide range of sequential data processing tasks [21].

T C N has been shown to outperform traditional Recurrent Neural Networks (RNNs) in terms

of both accuracy and computational efficiency for a variety of sequential data processing

tasks, such as speech recognition, natural language processing, and video classification. This

is due to the fact that T C N operates on the entire sequence of data, rather than processing

the data one step at a time as in RNNs, and it has been shown to be more effective at capturing

long-range temporal dependencies [21].

T C N is a promising deep learning architecture for the processing of sequential data, and it

has been shown to outperform traditional RNNs in terms of both accuracy and computational

efficiency. This makes it a promising solution for a wide range of sequential data processing

tasks, including video classification, speech recognition, and natural language processing

[21].

43

3.8 Deep Learning Models for Computer Vision

Deep Learning models are a type of Artificial Neural Network (ANN) that have been

designed to learn from large amounts of data and to perform complex tasks such as image

classification, object detection, and image segmentation. These models have revolutionized

the field of computer vision and have been widely adopted in various applications such as

self-driving cars, facial recognition, and medical imaging [16].

3.8.1 You Only Look Once (YOLO)

Y O L O is a real-time object detection system that is designed to be fast and efficient. It

operates by dividing an image into a grid of cells and predicting the presence of objects in

each cell. The model then combines the predictions across the cells to produce a final

bounding box and class prediction for each object in the image [18].

Figure 3.27: Y O L O Sample

The Y O L O model consists of two parts: a feature extractor and a detector. The feature

extractor is a Deep Neural Network that takes the input image and extracts features from it.

The detector is a Fully Connected Neural Network that takes the extracted features and

predicts the bounding boxes and class probabilities for each object in the image [18].

The main advantage of Y O L O is its speed and efficiency. It can process images in real-time,

making it suitable for applications where fast object detection is required. Additionally,

44

Y O L O has been designed to be highly accurate, making it a popular choice for various object

detection tasks [18].

3.8.2 ResNet50

ResNet50 is a Convolutional Neural Network (CNN) designed for image

classification tasks. The main goal of the ResNet50 model is to overcome the problem of

vanishing gradients in deep neural networks. This problem occurs when the gradients

become smaller as the model becomes deeper, making it difficult for the model to learn from

the data [18].

The ResNet50 model uses a residual connection, which allows the model to effectively learn

from the information in the earlier layers. The residual connection adds the input to the

output of a layer, allowing the model to pass information through the network without losing

information. This allows the ResNet50 model to effectively learn from the information in

the earlier layers, even in deep neural networks, and improve the accuracy of the model [18].

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Figure 3.28: ResNet50 Model Architecture

ResNet50 has been designed to be highly accurate and has been widely adopted for various

image classification tasks. It has been trained on large datasets and has been shown to

produce highly accurate results on a wide range of image classification tasks [18].

Both Y O L O and ResNet50 are powerful deep learning models that have been designed to

solve specific problems in computer vision. Y O L O is designed for real-time object detection,

while ResNet50 is designed for image classification. These models demonstrate the

effectiveness of Deep Learning in solving complex problems in computer vision and provide

a foundation for further research and development in this field [18].

45

3.9 Training Deep Learning Networks

Training a Deep Learning network involves adjusting the weights and biases of the

network to minimize a loss function. The loss function measures the difference between the

network's predictions and the ground truth, which is the actual output for a given input. The

goal of training is to find a set of weights and biases that result in accurate predictions for a

given task [18].

During training, the network takes an input and produces an output, which is compared

to the ground truth. The difference between the output and the ground truth is used to

calculate the loss, which is then used to adjust the weights and biases of the network. This

process is repeated many times, and the weights and biases are updated after each iteration

to minimize the loss [18].

The loss function (see 3.5.1 Cost Functions) is a measure of how well the network is

performing on the task. The goal of training is to find a set of weights and biases that result

in a low loss, which means the network is making accurate predictions. Once the loss has

been minimized, the training process is complete, and the network is ready to be used for the

project [18].

3.9.1 Training From Scratch

Training a Deep Learning model from scratch involves randomly initializing the

weights and biases of the network and then adjusting them to minimize the loss function.

This approach is often used when there is no suitable pre-trained model available or when

the task is very different from the task the pre-trained model was trained on [16].

This process requires a large amount of data and a lot of computational resources.

Additionally, it can be difficult to achieve good performance with a model trained from

scratch, as the model must learn all the features from the data without any prior knowledge.

This can result in overfitting, where the model is too complex and fits the training data too

well but does not generalize well to new data [16].

3.9.2 Pre-Trained Models

Pre-trained models are Deep Learning models that have been trained on large datasets

and are made available for use in other tasks. These models have already learned useful

features from the data and can be fine-tuned for a specific task using transfer learning.

46

Using a pre-trained model has several advantages. First, it saves time and resources because

the model has already been trained on a large dataset, so the time and resources required to

train the model from scratch are reduced. Second, the model has already learned useful

features from the data, which can be fine-tuned for the specific task. This allows the model

to leverage its prior knowledge of the data to perform better on the task. Finally, pre-trained

models often have better performance than models trained from scratch, as they have already

learned useful features from the data [16].

3.9.2.1 Transfer Learning

Transfer learning is a technique for using a pre-trained Deep Learning model for a

different task. The idea is to fine-tune the pre-trained model on a small dataset for the specific

task, instead of training a model from scratch.

Transfer learning has several advantages. First, it saves time and resources because the

model has already been trained on a large dataset, so the time and resources required to train

the model from scratch are reduced. Second, the model has already learned useful features

from the data, which can be fine-tuned for the specific task. This allows the model to leverage

its prior knowledge of the data to perform better on the task. Finally, transfer learning often

results in better performance than training a model from scratch, as the model has already

learned useful features from the data [16].

3.10 Related Work

Previous studies have explored the use of deep learning methods for the detection

and classification of plant growth stages. The most related work to the thesis study is the one

research that proposed a deep learning-based approach to detect the development of

seedlings using a combination of Convolutional Neural Networks (CNNs) and Long Short-

Term Memory (LSTM) models. The authors used a dataset of time-lapse images of seedlings

growing in soil, where the images were captured at different time intervals during the growth

period [1].

Their approach consisted of two stages: the first stage involved training a C N N to

extract features from the images, while the second stage used an L S T M model to classify

the seedlings into different growth stages. The L S T M model was used to capture the

temporal dependencies between the images and classify the seedlings based on their growth

patterns over time [1].

47

Experimental results showed that the proposed approach achieved high accuracy in

detecting seedling growth stages, with an overall accuracy of 96.4%. The approach

demonstrated the potential of deep learning-based methods for analyzing plant growth and

development [1].

In this study, we aim to build upon this approach by applying it to the detection of

the first appearance of seeds in soil. We plan to use a similar approach to the previous study

[1], utilizing CNNs and LSTMs for temporal image classification. However, we will adapt

the approach to suit our specific research question and dataset, which will focus on detecting

the initial stages of seed germination in soil. We also propose a new approach to detect the

first appearance of seeds in the soil using Y O L O , a state-of-the-art object detection

algorithm. Y O L O has shown to achieve high accuracy in object detection tasks [2]. By

training Y O L O on soil images, we aim to detect the first appearance of seeds in the soil.

While we do not plan to combine Y O L O with ConvLSTM models in this study, this

could be a potential avenue for future research. Combining Y O L O with ConvLSTM models

can provide several advantages. First, Y O L O can detect the location of the seed in the soil,

while ConvLSTM can capture the temporal dependencies between the images and classify

the seed based on its growth patterns over time. Second, by using ConvLSTM, we can reduce

the impact of noise and inconsistencies in the images, which may arise due to lighting

conditions or other environmental factors. We expect that combining Y O L O with

ConvLSTM could potentially improve the accuracy of the method in detecting the first

appearance of seeds in the soil.

3.11 Overview of Theoretical Part

This section provides an overview of the theoretical concepts and background relevant

to the proposed research on detecting the first appearance of seeds in the soil using deep

learning methods.

One important concept is object detection, which is the process of identifying and localizing

objects of interest within an image. Object detection has been widely studied in the computer

vision field, and numerous algorithms have been developed to improve the accuracy of

object detection tasks. One such algorithm is Y O L O , which is a state-of-the-art object

detection algorithm that can achieve high accuracy in object detection tasks [22].

Another important concept is temporal image classification, which is the process of

classifying images based on their temporal dependencies or patterns. This is particularly

48

relevant to plant growth and development research, where analyzing the growth patterns of

plants over time can provide valuable insights into their growth and development. One

popular technique for temporal image classification is the use of Long Short-Term Memory

(LSTM) models, which are a type of Recurrent Neural Network (RNN) that can capture

temporal dependencies between input data [1].

The proposed research aims to combine these two concepts to detect the first appearance of

seeds in the soil. By training Y O L O on soil images, we aim to detect the location of the seed

in the soil. Furthermore, by using L S T M models for temporal image classification, we aim

to capture the growth patterns of the seed over time and detect the initial stages of seed

germination in the soil.

To conclude, the proposed research integrates key theoretical concepts from object detection

and temporal image classification to develop a new method for detecting the first appearance

of seeds in the soil. By combining these concepts, we aim to provide a new and effective

approach for analyzing plant growth and development in the early stages of germination.

4 Practical Part

In this practical part, the aim is to investigate and compare two different approaches for the

temporal image classification of the first appearance of the plant on the soil. The first

approach uses a combination of a convolutional neural network (CNN) and a long short-

term memory (LSTM) network, while the second approach uses the You Only Look Once

(YOLO) algorithm for object detection. The second approach uses a L S T M with C N N model

for object detection. Application of image preprocessing techniques will be used to input

data to improve model performance [1] [9].

The first approach is based on the combination of a C N N and L S T M network, as proposed

in [9]. C N N is used to extract features from the image frames, while the L S T M is used to

model the temporal aspect of the data. The second approach is based on the Y O L O

algorithm, which is a real-time object detection system that uses a single neural network to

predict the class and location of objects in an image [5].

We preprocessed the input data by resizing the images to a smaller size and augmenting the

training data with random flips and rotations. These techniques are used to improve model

performance and prevent overfitting. We trained and evaluated each model using a labeled

49

dataset of seed germination videos. The dataset includes two classes, "FA" for the first

appearance of the plant on the soil and "soil" for the background.

After training and evaluating the models, we compared their performance based on metrics

such as accuracy, precision, recall, and F l score. We also tested the models on unseen data

to evaluate their generalization ability. Finally, we applied the trained models to new video

data to detect the first appearance of the plant on the soil and show the timestamp of the

event.

4.1 Software Environment

To analyze an unprocessed dataset and obtain accurate results, appropriate programs

must be installed for training the labeled data in models and the necessary software libraries

must be downloaded. In this regard, Anaconda was used for local computer use, and Google's

Colab, which has high computational power and is commonly used for model training, was

also utilized in this research.

4.2 Dataset Preprocess

To use two machine learning models, which are Y O L O and ConvLSTM, for temporal

image classification to detect the germination moment of the plant on the soil. In this section,

we describe the process of generating a dataset for these models, which involves creating an

experimental environment to record the process of seedling on a tray that has different cells,

each containing seeds.

4.2.1 Dataset Generation

To generate the dataset, we used a tray that has 8 rows and 9 columns, with each cell

containing soil and seeds. In total, the tray had 72 cells, which were recorded to capture the

seedling process. During the recording process, 69 cells showed the seedling process, while

the remaining 3 cells did not show any germination action and were used as the "soil" class.

As the seedling process can vary from cell to cell, we continued the recording process until

almost all the cells showed germination. This allowed us to capture a wide range of seedling

processes, including cells that grew faster than others and parts of cells that appeared in other

cells.

Once the recording process was complete, we separated the recorded process into individual

frames to generate the dataset for the models. To avoid the overfitting problem during

50

training, we sampled the frames at different timestamps. A total of 70 frames were gathered,

each showing all 72 cells. Each frame was an average of 122 Kbytes, with a range of 5

Kbytes higher or less. The frames were colored images with dimensions of 290 pixels of

width and 254 pixels of height on average. These dimensions were suitable for capturing the

seedling process in sufficient detail, while also ensuring that the frames were manageable in

terms of size and processing requirements. In Figure 4.1, that shows the dataset folder

structure on the left side, the frames and a sample frame with the dimensions and the size

details of the cell of 2_1.

Using image processing techniques, we separated every cell into individual pieces and

assigned each piece to its respective folder. This allowed us to obtain 72 folders, each

representing a cell in the tray. The folders were named according to their column and row

names, such as 1_1, 1 _ 2 , 8 _ 9 .

u
1_2
1_3
1_4
1_5
1_6
1_7
1_8
1_9
2_1
2_2
2_3
2_4
2_5

I 2_6
2_7

I 2_8
I 2_9
3_1
3_2
3_3
3_4

I 3_5
; 3_6

3_7
I 3_8

3_9

10_23-11-21-16-00-01.png
10_23-11-21-18-00-02.png
10_23-11-2l-20-00-01.png

• 10_23-11-21-22-00-01.png

10. .24 n 21 •00-00-01.png

10. .24 n 21 •02-00-01.png

10. .24 •11 -21 -04-00-01.png
10. .24 •n 21 -06-00-01.png
10. .24 11 21 -08-00-01.png
10. .24 n 21 •10-00-02.png

10. .24 •11 •21 •12-00-02.png

10. .24 11 21 -14-00-01.png
10. .24 •n 21 -16-00-01. png
10. .24 •n -21 •18-00-01.png

10. .24 •ii 21 •20-00-01.png

10. 24 n -21 -22-00-02.png

10. .25 11 21 -00-00-02.png
10. .25 11 21 -02-00-02.png
10. .25 11 21 •04-00-01.png

10. .25 n •21 -06-00-01.png

10. .25 n 21 •08-00-01.png

10. .25 11 21 •10-00-01.png

10. .25 11 •21 -12-00-01.png
10. .25 11 21 -14-00-02.png
10. .25 i i •21 -16-00-01.png

10. .25 n •21 •18-00-01.png

10. .25 i i •21 -20-00-01.png

.1: Dataset structure

10_23-11-21-22-00-01.png
PNG image-121 KB

Information Show More

Created Monday 29 November 2021 22:54

Modified Monday 29 November 2021 22:54

Dimensions 289x253

4.2.2 Review of Dataset

The generated dataset consists of 72 folders, each representing a cell in the tray. Each

folder contains 71 images showing the progress of the seedling. However, one frame was

51

not usable, resulting in 70 useful frames per cell/folder. Although some cells did not show

the seedling progress, they were still included in the dataset for training purposes.

To review the dataset, we examined the frames to ensure that they were clear, annotated, and

could be learned by the models. Our review indicated that the dataset is valid for use in the

models. The frames captured the seedling process in sufficient detail, and we were able to

identify the germination moment for each cell.

To summarize the review of the dataset, we have generated a dataset for two machine

learning models, Y O L O and C N N with L S T M , to detect the germination moment of the

plant on the soil. The dataset consists of 72 folders, each containing 70 frames showing the

seedling process for a particular cell. The dataset had 5040 frames in total for the training,

validation and testing of the models. Our review indicated that the dataset is valid for use in

the models, and we believe that it will be useful in developing accurate and efficient methods

for detecting the germination moment of seeds in soil.

4.2.3 Data Annotation

4.2.3.1 Data Annotation for First Approach

We separated the data into two different classes which are "soil" as a background

and "FA" , that means First Appearance, the seed frames in the soil to train the machine

learning model. We annotated the frames using the Y O L O format, that includes class name

and the coordinates of the object, for the Y O L O model and determined per class format for

the C N N with L S T M model. To do the Y O L O format labeling, we used the Labelling tool,

which allowed us to label the frames with the class names and coordinates, after Y O L O

format, we used generated txt files to regenerate determined per class for each class to create

the dataset for the C N N with L S T M model.

52

By using the Y O L O format, we were able to annotate the frames with class names and

coordinates, which was essential for training the Y O L O and C N N with L S T M models for

detecting the germination moment of seeds in soil.

Labelling generates txt files by the name of the image that is annotated. Since each cell folder

has the frames as same names, it would be a problem to gather all the images and the txt files

in a folder. To prevent this problem and maintain consistency in the dataset, we renamed the

frames to include the folder name and the name of each frame to create a unique name for

that frame. For example, if the folder name was and the frame name was "10_23-11-

21-22-00-01.png", we renamed the file as "l_l_10_23-ll-21-22-00-01.png". This allowed

us to keep the cell's coordinate information (row and column) and keep the frame names

unique. Therefore, all the images and the txt files were able to be stored in the same folder.

<cla55_index> <x_center> <y_center> <width> <height>

Figure 4.3: Annotated file by Y O L O format

r

O • classes.txt
s o i l
FA

Figure 4.4: Annotated class names that were generated using Labelling.

In the Y O L O format, each line in the text file represents an object in the image and contains

the following information (see Figure 4.3):

• Class index: The index of the object class, such as 0 - soil or 1 - F A (Figure 4.4).

• X-center: The x-coordinate of the object's center point in the image, normalized between

0 and 1.

• Y-center: The y-coordinate of the object's center point in the image, normalized between

0 and 1.

• Width: The width of the object in the image, normalized between 0 and 1.

• Height: The height of the object in the image, normalized between 0 and 1.

53

O • I 1_1_10_27-11-21-00-00-01.txt
1 0.453287 0.741107 0.256055 0.193676

Figure 4.5: Annotated file example by Y O L O format

For example, if the image is in the "FA" class, the corresponding Y O L O formatted text file

would contain a line like Figure 4.5. This line indicates that the image was annotated as

index 1 which means "FA" class (see Figure 4.4) is located at the center of the image, with

a width of 25,6% of the image width and a height of 19,3% of the image height.

Name

images
> ~~ test
> *~" train
> ̂ ~ valid

labels
> • test
> *~ train
> ̂ 2 valid

Figure 4.6: Y O L O dataset folder structure

After the Y O L O formatting was completed, we separated the dataset into two different

folders as "images" and "labels". The "images" folder contained "train", "valid", and "test"

subfolders that have the annotated images, while the "labels" folder had subfolders with the

same names as the image folder. The "labels" folder contains the .txt files of the images

inside the "images" folder, which were annotated with the class names and coordinates using

the Y O L O format (see Figure 4.6). With this process the dataset for Y O L O model was

completed.

4.2.3.2 Data Annotation for Second Approach

^ Germina t ion

^2 Soi l >

Figure 4.7: C N N with L S T M dataset folder structure

Creating the dataset for the C N N with L S T M model, we generated another dataset

format based on the class name. This format had a folder for each class name, such as "soil",

54

and contained the frames of the corresponding class. We used the Y O L O formatted text files

to separate the frames into different folders based on their class name (see Figure 4.7).

The data annotation process was important for generating a valid dataset for the models. The

Y O L O format allowed us to annotate the frames with class names and coordinates, and the

C N N with L S T M format allowed us to separate the frames into different folders based on

their class name. The resulting dataset was suitable for training and testing the Y O L O and

C N N with L S T M models for detecting the germination moment of seeds in soil.

4.3 Training Models

Training models are a crucial step in the development of machine learning systems, as

it is the process by which the model learns to make accurate predictions based on the training

data. In this thesis, two different models have been developed: Y O L O and ConvLSTM. Both

models have been designed to address different challenges.

The Y O L O model is based on the You Only Look Once (YOLO) architecture and is designed

to detect the first appearance of a seed in soil. This model uses a convolutional neural

network (CNN) to perform object detection and has been trained on a large dataset of images

to learn the features that are indicative of a seed in soil.

The ConvLSTM model is designed to detect the germination of a seed in soil by using

temporal image classification. This model uses a combination of convolutional and Long

Short-Term Memory (LSTM) layers to capture both the spatial and temporal information in

the images. The model has been trained on a dataset of temporal images to learn the changes

in the appearance of the seed over time.

Figure 4.8: ConvLSTM Model Dataset Sample

55

Both models have been trained using a supervised learning approach, where the ground truth

labels of the training data were used to guide the learning process. The classes are separated

based on the observations by professionals. During training, the models were iteratively

updated based on the difference between their predictions and the ground truth labels. The

training process was stopped when the performance of the models on a validation set reached

a satisfactory level.

4.3.1 Training YOLO with Customized Dataset

The Y O L O model was trained on a customized germination dataset that contained

two classes: "soil" and "FA". " F A " class represents the first appearance of the plant on the

soil. To define these classes, the yaml file was updated with the path of the dataset classes.

See Figure 4.9 that shows the class names with their indexes and the directions of the paths

of the dataset.

path: ../dataset/
train: images/train
val: images/val
test: images/test

Classes
name5:
9: s o i l
1: FA

Figure 4.9: yaml file to path through the dataset by classes

The model was trained for 60 epochs using a batch size of 16 and an image size of 240. The

training was performed using the Adam optimization algorithm with a learning rate of 0.001.

The training process was implemented using the PyTorch framework. See Figure 4.10, pre-

trained Y O L O model summary based on training the customized dataset.

56

from r params nci j_e arguments
3 -1 1 3520 models common CCTv" [3, 32, 6, 2, 2]
1 -1 1 1S560 models common CCTv" [32, 64, 3 . 2]

1 - : : 13816 models c simon C3 [64, 64, 1]
:• -: : 73984 models common CCTv" [64, 128, 3, 2]
4 - : 2 115713 models coirncn C3 [128, 12S, r
5 - i : 295424 models common CCTv" [128, 256, 3, 2]

- i ; 625152 models common C3 [256, 256, 3]
7 - : : H E 967 2 models coirncn Conv [256, 512, 3, 2]
8 - i : 1182720 models common C3 [512, 512, 1]
'•• -i : 556896 models common SP3 = [512, 512, 5]

13 - : : 131584 models coirncn Conv [512, 256, 1, 1]
11 -i : torch. n.mod u es.upsampling.Upsample [None, 2, 'nearest']
12 : models Concat [1]
::• -1 : 361984 models common C3 [512, 256, 1, False]
14 - : : 33624 models Conv [256, 12S, 1, 1]
15 - : : torch. n.modu es.upsampli ng.Upsample [None, 2, ' nearest 1]
Is : models common Concat [1]
17 - : : 99880 models C3 [256, 12S, 1, False]
13 - : : 147712 models Conv [12S, 12S, 2]
19 [-1, 14] : models common Concat [1]
23 - : : 29644S models coirncn C3 [256, 256, 1, False]
21 -i : 593336 models common CCTv" [256, 256, 3, 2]
21 [-1, 19] : models Concat [1]
23 -1 : 11E2720 models C3 [512, 512, 1, False]
24 [17, 20, 23] : 1&B79 models yolo.Detect [2> [[i e , 13, 16, 30

Model summary: 214 layers, 7925023 parameters, 7025923 gradients, 16.9 GFLOPs

Figure 4.10: Y O L O model architecture overview

4.3.2 Training a CNN Model with LSTM Layer (ConvLSTM)

The ConvLSTM model was trained for the detection of the germination of the seed

in soil using temporal image classification. The dataset used for training the model contained

two classes: "soil" and "germination". The "soil" class represented the soil frames, and the

"germination" class represented the process of the plant appearing on the soil (See Figure

4.11).

Figure 4.11: ConvLSTM dataset samples by classes

The model was trained based on frame sequences to detect the germination of the plant. The

experts in the field defined which frames should be used as the moment of germination, and

as a result, 5 frames were used for the classification. For the "germination" class, 2 frames

were used before the germination moment, 1 frame was used on the germination frame

defined by the experts, and the remaining 2 frames were used after the germination. This

allowed the model to detect the process of germination.

57

The architecture of the ConvLSTM model was custom and consisted of ConvLSTM2D

recurrent layers, MaxPooling3D layers, and Dropout layers. The ConvLSTM2D layer

applied the convolutional operations using the specified number of filters and kernel size.

The output of the layers was flattened in the end and fed to the Dense layer with a SoftMax

activation, which output the probability of each action category (See Figure 4.12).

conv_lstm2d_4_input input: [(None, 5, 256, 256, 3)]

InputLayer output: [(None, 5, 256, 256, 3)]

conv_lstm 2d_4 input: (None, 5, 256, 256, 3)

ConvLSTM 2D output: (None, 5, 254, 254, 4)

m ax_pooling3d_4 input: (None, 5, 254, 254, 4)

MaxPooling3D output (None, 5, 127, 127, 4}

tim e_distributed_3(dropout_3} input: (None, 5, 127, 127, 4)

Tim eDistributed(Dropout} output: (None, 5, 127, 127, 4)

conv_lstm 2d_5 input: (None, 5, 127, 127, 4}

ConvLSTM 2D output: (None, 5, 125, 125, 8)

m ax_pooling3d_5 input: (None, 5, 125, 125, 8)

MaxPooLing3D output (None, 5, 63, 63, 8)

tim e_distributed_4(dropout_4) input: (None, 5, 63, 63, 8)

Tim eDistributed(Dropout) output: (None, 5, 63, 63, 8)

coiivlstm 2d_6 input: (None, 5, 63, 63, 8}

ConvLSTM 2D output: (None, 5, 61, 61, 14}

m ax_pooting3d_6 input: (None, 5, 61, 61, 14}

MaxPooling3D output: (None, 5, 31, 31, 14}

tim e_distributed_5(dropout_5} input: (None, 5, 31, 31, 14}

Tim eDistributed(Dropout} output: (None, 5, 31, 31, 14}

conv_lstm 2d_7 input: (None, 5, 31, 31, 14}

ConvLSTM2D output: (None, 5, 29, 29, 16}

m ax_pooLing3d_7 input: (None, 5, 29, 29, 16}

MaxPooling3D output: (None, 5, 15, 15, 16}

flatten_l input: (None, 5, 15, 15, 16}

FLatten output: (None, 18000)

dense l input: (None, 18000)

Dense output: (None, 2}

Figure 4.12: ConvLSTM model layers and output shapes

58

5 Results and Discussion

5.1 Results of First Approach

The results of the training process showed that the Y O L O model, which was used as version

8, was highly effective in detecting both "soil" and "FA" classes. The model achieved a

precision of 0.989 for the "soil" class and a precision of 0.991 for the "FA" class, indicating

that the model was able to accurately detect the presence of seeds in soil and the first

appearance of the plant on the soil.

Model summary: 157 layers, 7915519 parameters, 9 gradients, 15.8 GFLOPs
Class Images Instances P R mAPSB mAP59-95: lea* 28/28 [36: B50B :9B, 4.83it/s]

a l l 878 912 B.99 9.987 9.995 6.915
s o i l 878 584 9.989 9.994 8.995 9.99

FA 878 488 B.991 8.98 8.995 9.839

Figure 5.1: Y O L O model result summary after training the dataset.

(a) (b)

Figure 5.2: Prediction results by the model and the labels of the frames

(a) Prediction of batch of frames

(b) Labels of batch of frames

Additionally, the model achieved a mean average precision (mAP) of 0.995 for both classes,

demonstrating its overall accuracy in detecting seed growth in soil. This high level of

accuracy was achieved due to the use of the Y O L O architecture, which is designed to

perform object detection, and the use of a large dataset for training the model (See Figure

5.1).

59

5.2 Results of Second Approach

The model was implemented using the Keras framework and was trained using the

Adam optimization algorithm with a learning rate of 0.001. The model was evaluated using

a test set, which consisted of 25% of the original dataset. The results of the evaluation

showed that the model achieved an accuracy of 0.9378, with a loss of 0.2469. These results

indicate that the ConvLSTM model was able to effectively detect the germination of the seed

in soil using temporal image classification.

Additionally, the model was able to capture the spatial and temporal relationships in the data,

as the ConvLSTM architecture can identify spatial features in the individual frames and the

temporal relationships across the different frames. The use of ConvLSTM cells in the

architecture also allowed for the model to take in 3-dimensional input, which is crucial for

video classification.

Epoch 1/18
16/16 [==============================] - 21s 459ms/step - loss: 0.7068 - accuracy: 0.5353 - v a l l o s s : 0.6848 - valaccuracy: 0.6066
Epoch 2/19
16/16 - 5 S 336ms/step - loss; 0.6981 - accuracy: 0.5477 - v a l l o s s : 0.6980 - valaccuracy: 0.3934
Epoch 3/10
16/16 - 5s 338ms/step - loss; 0.6861 - accuracy: 0.5602 - val_loss: 0.6873 - val_accuracy: 0.6393
Epoch 4/10
16/16 . 5s 334ffis/step - loss; 0.6778 - accuracy: 0.5602 - val_loss: 9.6714 - val_accuracy: 0.6721
Epoch 5/10
16/16 - 5s 334ms/step - loss; 0.6281 - accuracy: 0.6598 - v a l l o s s : 0.5688 - valaccuracy: 0.7213
Epoch 6/10
16/16 - 5s 332ms/step - loss; 0.4159 - accuracy: 0.8174 - v a l l o s s : 0.4949 - valaccuracy: 0.8361
Epoch 7/10
16/16 - 5s 328ms/step - loss; 0.2828 - accuracy: 0.8963 - val_loss: 0.4393 - val_accuracy: 0.7705
Epoch 8/10
16/16 [==============================] - 5s 330ms/step - loss: 0.3895 - accuracy: 0.8174 - v a l l o s s : 0.3439 - valaccuracy: 0.8852
Epoch 9/10
16/16 - 5s 329ms/step - loss; 0.1999 - accuracy: 0.9502 - v a l l o s s : 0.3119 - valaccuracy: 0.8852
Epoch 10/10
16/16 - 5s 337ms/step - loss; 0.1680 - accuracy: 0.9378 - val_loss: 0.2469 - val_accuracy: 0.9016

Figure 5.3: ConvLSTM dataset samples by classes

Evaluate the t r a i n e d model.
mo d e l _ e v a l u a t i o n _ h i s t o r y = co n v l s t i t i _ m o d e l . e v a l u a t e (f e a t u r e s _ t e s t , l a b e l s _ t e s t)

3/3 [==============================] - i s 142ms/step - l o s s : G.2446 - accuracy: 0.5079

Figure 5.4: ConvLSTM dataset samples by classes

The model was trained on a small subset of the dataset, and as a result, it had a small number

of trainable parameters. This reduced the computational requirements and allowed for a fast-

training process. The use of MaxPooling3D layers helped to reduce the dimensions of the

frames and prevent overfitting, while the Dropout layers helped to prevent overfitting the

model to the data.

60

Finally, the ConvLSTM model was able to effectively detect the germination of the seed in

soil using temporal image classification. The custom architecture of the model, consisting of

ConvLSTM2D recurrent layers, MaxPooling3D layers, and Dropout layers, allowed the

model to capture the spatial and temporal relationships in the data and make accurate

predictions. The results of the evaluation showed that the model achieved a high level of

accuracy, which demonstrates its effectiveness in detecting seed germination in soil.

Total Loss vs Total Validation Loss

a 2 4 6 i

Figure 5.5: Total Loss vs Total Validation Loss

Total Accuracy vs Total Validation Accuracy

— i 1 1 1 1

0 2 4 6 i

Figure 5.6: Total Accuracy vs Total Validation Accuracy

The performance of the ConvLSTM model was monitored during the training process using

two key metrics: total loss and total accuracy. The total loss represents the difference

between the predicted output and the true output, and the total accuracy represents the

proportion of correctly classified instances. The results of the training process were

visualized using two graphs, based on Figure 5.5 and Figure 5.6.

Figure 5.5 shows that the model's loss decreased over the course of the training process,

61

starting from around 0.7 and reaching close to 0 at the end. This indicates that the model was

able to learn and improve its predictions over time, reducing the difference between the

predicted output and the true output.

Figure 5.6 shows that the model's accuracy increased over the course of the training process,

starting from around 0 and reaching close to 1 at the end. This indicates that the model was

able to learn and improve its ability to correctly classify instances, resulting in a high level

of accuracy at the end of the training process. These results demonstrate the effectiveness of

the ConvLSTM model in detecting seed germination in soil using temporal image

classification.

Figure 5.7: ConvLSTM dataset samples by classes

62

6 Conclusion

This thesis has provided a comprehensive evaluation of two approaches for the

classification of temporal images, with a focus on detecting seed germination in soil. Both

approaches, Y O L O and ConvLSTM, have their own strengths and limitations, and the results

of this study provide insight into the best approach for this particular task.

The Y O L O model, based on state-of-the-art object detection techniques, showed promising

results in detecting the first appearance of the seed in soil. The model was able to effectively

identify the seed in soil images with a high precision and recall rate, achieving a mAP50 of

0.995.

On the other hand, the ConvLSTM model was able to effectively detect the germination

moment by using temporal image classification. The model was trained on sequences of

frames, allowing it to capture both spatial and temporal information. The results showed that

the ConvLSTM model was able to accurately detect seed germination in soil, with high

accuracy rates, achieving a validation accuracy of 0.9079.

In terms of comparing the two approaches, it can be concluded that the ConvLSTM model

outperformed the Y O L O model in terms of accuracy for the task of detecting seed

germination in soil. This suggests that the combination of Convolutional Neural Networks

and Long Short-Term Memory networks, as implemented in the ConvLSTM model, is a

more effective approach for this task than the object detection techniques used in the Y O L O

model.

In conclusion, the results of this study suggest that the ConvLSTM model is the better

approach for the task of detecting seed germination in soil, as it was able to effectively

capture both spatial and temporal information, leading to high accuracy in detecting seed

germination in soil. This study highlights the potential of ConvLSTM for the classification

of temporal images in agriculture and related fields and provides a foundation for further

research and improvement in this area.

63

7 References

1. Samie, S., Rasti, P., Vu, J. L . , Buitink, J., & Rousseau, D. (2021). Deep learning-

based detection of seedling development.

2. Pratt, W. K. (2007). Digital image processing: PIKS Scientific inside. Hoboken, N.J.:

Wiley-Interscience. ISBN 978-0-471-76777-0.

3. James B., Zahra S. Abdallah (2022). Investigating Temporal Convolutional Neural

Networks for Satellite Image Time Series Classification. Cornell University.

arXiv:2204.08461.

4. Gonzalez, R., & Woods, R. (2018). Digital Image Processing (4th ed.). IL: Pearson

Education. ISBN 9781292223049.

5. Genze, N . , Bharti, R., Grieb, M . , Schultheiss, S. J., & Grimm, D. G. (2021). Accurate

machine learning-based germination detection, prediction, and quality assessment of

three grain crops.

6. Garbouge, H. , Rasti, P., & Rousseau, D. (2021). Enhancing the Tracking of Seedling

Growth Using RGB-Depth Fusion and Deep Learning.

7. Zhang, W., Jiang, H. , & Sun, L . (2016). A seed image segmentation algorithm based

on normalized cuts. In 2016 35th Chinese Control Conference (CCC) (pp. 5147-

5150). IEEE.

8. Liu, Z., & Yang, H . (2017). Deep learning-based banana leaf diseases recognition.

In 2017 36th Chinese Control Conference (CCC) (pp. 1843-1846). IEEE.

9. Song, Y. , Yan, Q., Liu, X . , & Ren, H. (2020). C N N - L S T M Based Seed Germination

Detection Using Arabidopsis Images. IEEE Access, 8, 143710-143721.

10. Tan, L. , Wang, G., Wei, L. , & Sun, J. (2018). A seed detection algorithm based on

faster R-CNN. In 2018 37th Chinese Control Conference (CCC) (pp. 7754-7757).

IEEE.

64

11. Yang, C , Zhao, Y . , Zhu, X . , Liu, Y . , Zhang, L. , & L i , Y . (2018). A time series

classification approach for seed emergence detection based on deep convolutional

neural networks. Computers and Electronics in Agriculture, 152, 243-252.

12. Karimi, D., Ghasemzadeh, H. , & Moghimi, A . (2019). Seed Emergence Detection in

Soil Using a Temporal Image Classification Method. Journal of Agricultural Science

and Technology, 21(7), 1561-1574.

13. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

14. Geron, A . (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow.

15. Bovik, A . C. (2010). Handbook of Image and Video Processing. Elsevier.

16. Goodfellow, I., Bengio, Y . , & Courville, A . (2016). Deep learning. MIT Press.

17. Bishop, C. M . (2006). Pattern recognition and machine learning (Vol. 1). Springer.

18. LeCun, Y . , Bengio, Y . , & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444.

19. L i , X . , & Liu, J. (2019). Temporal image classification using deep neural networks.

In 2019 International Conference on Advanced Infocomm Technology (ICAIT) (pp.

1-5). IEEE.

20. Harun, D., Durgun, M . , & Gokrem, L . (n.d.). IoT Tabanh ve Makine Ogrenmesine

Dayah Secici Sulama Sistemi.

21. Bai, S., Kolter, J. Z., & Koltun, V . (2018). An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint

arXiv: 1803.01271.

22. Bochkovskiy, A. , Wang, C. Y. , Liao, H. Y . M . YOLOv4: Optimal Speed and

Accuracy of Object Detection. arXiv preprint arXiv:2004.10934, 2020.

65

8 List of pictures, equations, and abbreviations

8.1 List of pictures

Figure 3.1: C N N Feature Extraction using L S T M layer for seedling detection [8]
Figure 3.2: Resizing Image with Nearest Neighbor Interpolation Application
Figure 3.3: Downscaling in image pixels
Figure 3.4: Grayscale implementation on the image
Figure 3.5: Image denoising
Figure 3.6: Example of Instance Segmentation [19]
Figure 3.7: Example of Semantic Segmentation [19]
Figure 3.8: Supervised learning example based on data annotation of objects.
Figure 3.9: Image annotation types
Figure 3.10: Data augmentation implementations
Figure 3.11: Shifting method in image.
Figure 3.12: Flipping the image.
Figure 3.13: Rotation on the image
Figure 3.14: Changing the brightness of the image.
Figure 3.15: (a) Biological neuron from human brain, (b) Artificial neuron that is inspired
by biological neuron.
Figure 3.16: Neural network architecture
Figure 3.17: Activation Functions
Figure 3.18: Supervised Learning, (a): Classification, (b): Regression
Figure 3.19: Supervised Learning, (a): Clustering, (b): Dimensionality Reduction
Figure 3.20: C N N architecture with layers
Figure 3.21 Convolutional filter application, (a) 5x5 grayscale image, (b) Convolutional
filter
Figure 3.22: Types of pooling
Figure 3.23: Fully Connected Layer
Figure 3.24: A loop in a recurrent neural network
Figure 3.25: An unrolled recurrent neural network
Figure 3.26: L S T M
Figure 3.27: Y O L O Sample
Figure 3.28: ResNet50 Model Architecture
Figure 4.1: Dataset structure with a sample of frame
Figure 4.2: Annotated "soil" and " F A "
Figure 4.3: Annotated file by Y O L O format
Figure 4.4: Annotated class names that were generated using Labelling.
Figure 4.5: Annotated file example by Y O L O format
Figure 4.6: Y O L O dataset folder structure
Figure 4.7: C N N with L S T M dataset folder structure
Figure 4.8: ConvLSTM Model Dataset Sample

66

Figure 4.9: yaml file to path through the dataset by classes
Figure 4.10: Y O L O model architecture overview
Figure 4.11: ConvLSTM dataset samples by classes
Figure 4.12: ConvLSTM model layers and output shapes
Figure 5.1: Y O L O model result summary after training the dataset
Figure 5.2: Prediction results by the model and the labels of the frames, (a) Prediction of
batch of frames, (b) Labels of batch of frames
Figure 5.3: ConvLSTM dataset samples by classes
Figure 5.4: ConvLSTM dataset samples by classes
Figure 5.5: Total Loss vs Total Validation Loss
Figure 5.6: Total Accuracy vs Total Validation Accuracy
Figure 5.7: ConvLSTM dataset samples by classes

8.2 List of equations

Equation 3.1: Neuron Output Calculation
Equation 3.2: Mean Squared Error (MSE) Cost Function
Equation 3.3: Cross-Entropy Loss Function
Equation 3.4: Sigmoid Activation Function
Equation 3.5: ReLu Activation Function
Equation 3.6: Tanh Activation Function
Equation 3.7: Linear Activation Function
Equation 3.8: Forward propagation calculation
Equation 3.9: Backpropagation calculation

8.3 List of abbreviations

AI: Artificial Intelligence
M L : Machine Learning
DL: Deep Learning
N N : Neural Networks
A N N : Artificial Neural Networks
ReLu: Rectified Linear Unit
C N N : Convolutional Neural Networks
RNN: Recurrent Neural Networks
L S T M : Long-Short Term Memory Networks
TCN: Temporal Convolutional Networks
Y O L O : You Only Look Once

67

