
Simu la t ions and An t i cha ins for
Eff ic ient Hand l i ng of F in i te

A u t o m a t a

Lukáš Holík

March 8, 2011

Abs t rac t

This thesis is focused on techniques for finite automata and their use in prac­
tice, with the main emphasis on nondeterministic tree automata. This concerns
namely techniques for size reduction and language inclusion testing, which are
two problems that are crucial for many applications of tree automata. For size
reduction of tree automata, we adapt the simulation quotient technique that is
well established for finite word automata. We give efficient algorithms for com­
puting tree automata simulations and we also introduce a new type of relation
that arises from a combination of tree automata downward and upward simu­
lation and that is very well suited for quotienting. The combination principle
is relevant also for word automata. We then generalise the so called antichain
universality and language inclusion checking technique developed originally for
finite word automata for tree automata. Subsequently, we improve the antichain
technique for both word and tree automata by combining it with the simulation-
based inclusion checking techniques, significantly improving efficiency of the
antichain method. We then show how the developed reduction and inclusion
checking methods improve the method of abstract regular tree model checking,
the method that was the original motivation for starting the work on tree au­
tomata. Both the reduction and the language inclusion methods are based on
relatively simple and general principles that can be further extended for other
types of automata and related formalisms. A n example is our adaptation of the
reduction methods for alternating Biichi automata, which results in an efficient
alternating automata size reduction technique.

Keywords

Finite automata, finite tree automata, alternating Biichi automata, nondeter-
minism, simulation, bisimulation, universality, language inclusion, antichain,
quotienting, regular tree model checking.

i

Abs t ra kt

Cílem této práce je vývoj technik umožňujících praktické využití nedetermini­

stických konečných automatů, zejména nedeterministických stromových auto­

matů. Jde zvláště o techniky pro redukci velikosti a testování jazykové inkluze.
jež hrají zásadní roli v mnoha oblastech aplikace konečných automatů. V oblasti
redukce velikosti vycházíme z dobře známých metod pro slovní automaty které
jsou založeny na relacích simulace. Navrhli jsme efektivní algoritmy pro výpočet
stromových variant simulačních relací a identifikovali jsme nový typ relace za­

ložený na kombinaci takzvaných horních a dolních simulací nad stromovými
automaty. Tyto kombinované relace jsou zvláště vhodné pro redukci velikosti
automatů slučováním stavů. Navržený princip kombinace relací simulace je re­

levantní i pro slovní automaty. Náš přínos v oblasti testování jazykové inkluze
je dvojí. Nejprve jsme zobecnili na stromové automaty takzvané protiřetězcové
algoritmy, které byly původně navrženy pro slovními automaty. Dále se nám po­

dařilo použitím simulačních relací výrazně zefektivnit protiřetězcové algoritmy
pro testování jazykové inkluze jak pro slovní, tak pro stromové automaty. Re­

levanci našich technik pro praxi jsme demonstrovali jejich nasazením v rámci
regulárního stromového model checkingu, což je verifikační metoda založená
na stromových automatech. Použití našich algoritmů zde vedlo k výraznému
zrychlení a zvětšení škálovatelnosti celé metody. Základní myšlenky našich al­

goritmů pro redukci velikosti automatů a testování jazykové inkluze jsou apli­

kovatelné i na jiné typy automatů. Příkladem jsou naše redukční techniky pro
alternující Bůchiho automaty prezentované v poslední části práce.

Klíčová slova

Konečný automat, konečný stromový automat, alternující Bůchiho automat,
nedeterminismus, univerzalita, jazyková inkluze, protiřetězec, simulace, bisimu­

lace, redukce velikosti, regulární stromový model checking.

Ci tace

Lukáš Holík, Simulations and Antichains for Efficient Handling of Finite Au­

tomata, disertační práce, Brno, FIT V U T v Brně, 2010

ii

Simula t ions and Ant i cha ins for Eff icient
Hand l ing of Fin i te A u t o m a t a

Prohlášení

Prohlašuji, že jsem tuto disertační práci vypracoval samostatně pod vedením
doc. Tomáše Vojnara. Uvedl jsem všechny literární prameny a publikace, ze
kterých jsem čerpal.

Lukáš Holík
26. října 2010

©Lukáš Holík, 2010.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě
informačních technologií. Práce je chráněna autorským zákonem a její užití
bez udělení oprávnění autorem je nezákonné, s výjimkou zákonem definovaných
případů.

m

Acknowledgements

I am most grateful to my advisor Tomáš Vojnar for his thoughtful approach and
the enormous effort he spent when teaching me what it means to do research in
computer science. I appreciate his trust that this investment would eventually
pay off, which was a great source of motivation for me. I must also thank him for
the opportunity to meet great people from our field, especially prof. Bouajjani,
prof. Abdulla, doc. Habermehl, doc. Mayr. and also younger colleagues Dr.
Kaati (the queen of tree automata), Dr. Chan., and Dr. Rogalewicz. I was
continuously learning from them during our discussions, especially about the
importance of talking and carefully listening to others. They deserve my thanks
for always patiently listening to me (it was not always easy). I wish to express
my gratitude to prof. Češka for his support and for his contribution towards
creating an environment where a work such as mine is possible. I also thank
my family for standing by me and for believing that the things I do make sense.
I thank Marie for offering me a refuge and for teaching me the most essential
things.

The work presented in this thesis was supported by the Czech Science Foun­

dation (projects 102/07/0322, 102/09/H042, 103/10/0306), the Czech institu­

tional project MSM 0021630528, the Barrande projects MEB 020840 and 2­06­

27, the Czech COST project OC10009 associated with the ESF COST action
IC0901, the internal BUT FIT grant FIT­S­10­1, and the ESF project Games
for Design and Verification.

iv

Contents

1 Introduction 1
1.1 Goals of the Thesis 2
1.2 A n Overview of Achieved Results 2
1.3 Plan of the Thesis 5

2 Preliminaries 6
2.1 Relations 6
2.2 Labelled Transition Systems and Finite Automata 6
2.3 Forward and Backward Simulations 6
2.4 Trees and Tree Automata 7
2.5 Regular Tree Model Checking 8

3 Computing Simulations over Labelled Transition Systems 10
3.1 Preliminaries 11
3.2 The LTS Simulation Algorithm 12

3.2.1 Correctness of the Algorithm 13
3.2.2 Implementation and Complexity of the Algorithm 18

3.3 Conclusions and Future Work 21

4 Simulation-based Reduction of Tree Automata 22
4.1 Tree Automata Simulations and Bisimulations 25

4.1.1 Downward and Upward Simulation 25
4.1.2 Downward and Upward Bisimulation 26

4.2 Combined Relations for Quotienting 28
4.2.1 Runs and Simulations 28
4.2.2 Mediated Preorder 30
4.2.3 Quotienting with Mediated Equivalence 32

4.3 Variants of the Combined Relation 34
4.4 Computing the Proposed Relations 40

4.4.1 Computing Downward Simulation 40
4.4.2 Complexity of Computing Downward Simulation 42
4.4.3 Computing Upward Simulation 44
4.4.4 Complexity of Computing Upward Simulation 46
4.4.5 Computing Downward Bisimulation Equivalences 51
4.4.6 Computing Upward Bisimulation Equivalences 52
4.4.7 Computing the Combined Relations 53

4.5 Experiments 54
4.6 Conclusions and Future Work 55

5 Language Inclusion and Universality of Finite (Tree) Automata 57
5.1 Universality and Language Inclusion of FA 60

v

5.1.1 Universality of FA 60
5.1.2 Correctness of the Optimised Universality Checking . . . 62
5.1.3 The FA Language Inclusion Problem 64

5.2 Universality and Language Inclusion of Tree Automata 67
5.2.1 The Role of Upward Simulation 68
5.2.2 Tree Automata Universality Checking 68
5.2.3 Correctness of the T A Universality Checking 69
5.2.4 Downward Universality Checking with Antichains 71
5.2.5 Tree Automata Language Inclusion Checking 72

5.3 Experiments with Classical versus Pure Antichain Algorithms for
Tree Automata 74
5.3.1 Experiments with Antichain-based Universality Checking 74
5.3.2 Experiments with Antichain-based Inclusion Checking . . 75
5.3.3 Experiments with Regular Tree Model Checking 77

5.4 Experiments with Pure versus Simulation Enhanced Antichain
Algorithms 80
5.4.1 Experiments on FA 80
5.4.2 Experiments on T A 84

5.5 Conclusions and Future Work 84

6 Simulation-based Reduction of Alternating Biichi Automata 86
6.1 Basic Definitions 87
6.2 Simulation Relations 88

6.2.1 Runs and Simulations 90
6.3 Mediated Equivalence and Quotienting 92

6.3.1 The Notion and Intuition of Mediated Equivalence 92
6.3.2 Quotienting Automata According to Mediated Equiva­

lence Preserves Language 95
6.4 Computing the Relations 105

6.4.1 Computing Backward Simulation 106
6.4.2 Complexity of Computing Backward Simulation 108

6.5 Experimental Results 109
6.6 Conclusion and Future Work I l l

7 Conclusions and Future Directions 113
7.1 A Summary of the Contributions 113
7.2 Further Directions 114
7.3 Publications Related to this Thesis 115

vi

1 Introduct ion

Finite automata on finite words (FA) are one of the basic concepts of computer
science. Besides classical applications of FA such as compiler construction or
text searching, FA are widely used in modelling and verification, which are the
application domains of our interest. Tree automata (TA) are a natural gener­
alisation of FA that accepts ordered trees/terms. T A share most of the good
properties of FA, from closure to decidability and complexity (even though com­
plexities of many tree automata problems are higher, they are still comparable
with the complexities of the corresponding FA ones). This makes tree automata
a convenient tool for modelling and reasoning about various kinds of structured
objects such as syntactical trees, structured documents, configurations of com­
plex systems, algebraic term representations of data or computations, etc. (see,
e.g., [CDG + 07]). One of the main motivations for this work is in particular the
use of tree automata in verification, mainly in the method of regular tree model
checking [ShaOl, BT02, ALdR05, BHRV06a], an infinite-state system verifica­
tion method where tree automata are used for representing sets of reachable
states of a system.

In the above context, checking language equivalence/inclusion and reducing
size of automata while preserving the language are fundamental issues, and
performing these operations efficiently is crucial in practice. The language in­
clusion problem and the minimisation problem for (nondeterministic) automata
are PSPACE-complete for FA and even EXPTIME-complete for TA. A classical
approach to cope with these problems is determinisation. Both FA as well as
T A can be determinised and minimised in a canonical way. Testing language
inclusion of deterministic minimal automata is then easy. However, since even
the canonical minimal deterministic automaton can still be exponentially larger
than the original nondeterministic one, its computation easily becomes a major
bottleneck of any automata-based method.

A reasonable and pragmatic approach to the size reduction and language in­
clusion problem is to consider some relation on states of an automaton that
respects language inclusion on states, but which can be checked efficiently, us­
ing a polynomial algorithm. Such a relation can then be used for approximating
language inclusion between two automata by checking whether each initial state
of one automaton is related to an initial state of other automaton. This method
is sound but incomplete in the case when the relation is a proper subset the
language inclusion on states. Such a relation can be also used for reducing the
size of an automaton by collapsing equivalent states. Here, a natural trade-off
between the strength of the considered relation and the cost of its computation
arises. In the case of word automata, a relation which is widely considered as
a good trade-off in this sense is simulation preorder. It can be checked in poly­
nomial time, and efficient algorithms have been designed for this purpose (see,
e.g., [GPP03, HHK95, RT07, CRT09]). These algorithms make the computa-

1

tion of simulation preorder quite affordable even in comparison with the one of
bisimulation equivalence, which is cheaper [Hop71, PT87, Val09], but which is
also stronger, and therefore leads to less significant reductions of automata and
also its capability of approximating language inclusion is limited.

As for what concerns language inclusion and universality problem, apart from
the classical determinisation-based methods and simulation-based approxima­
tion technique, there has recently been proposed the so called antichain uni­
versality and inclusion testing method for FA [WDHR06]. It is essentially an
optimisation of the classical method based on subset construction (i.e., on de-
terminisation), it is still of an exponential worst case complexity, but it behaves
very well in practice.

In the case of tree automata, the only methods for size reduction that were
previously studied (apart from deterministic minimisation) are based on bisim­
ulation relations [AHK07, HMM07a] and concerning language inclusion testing,
the only methods formerly available are the classical ones based on explicit de-
terminisation. However, these methods are not efficient enough. The former
ones are rather weak since bisimulation relations are usually relatively sparse
and the latter ones suffer from the problem of state space explosion too often.

1.1 Goals of the Thesis

The lack of efficient methods for reducing size and testing language inclusion of
nondeterministic tree automata described above has significantly limited their
practical usability. Therefore, this thesis is aimed at adapting techniques that
work well for word automata to tree automata, which in particular concerns
the size reduction methods based on simulations and the language inclusion
testing algorithms based on the antichain principle. Then, apart from gener­
alising existing methods from word automata to tree automata, we also focus
on improving the existing methods themselves. This concerns introduction of
new types of relations suitable for reducing the size of word as well as tree
automata and interconnecting the antichain principle with the simulation tech­
niques into new language inclusion testing algorithms. Additionally, we show
that the proposed methods are applicable to other kinds of automata too by
designing a simulation-based reduction method for alternating Biichi automata
that is similar to the one we proposed for tree automata.

1.2 A n Overview of Achieved Results

Here we summarise the contributions that we have achieved within the particular
areas marked out by the goals of this work.

Tree Automata Reduction Methods. Our tree automata reduction methods
are build on the notions of downward and upward tree automata simulations
(proposed first in [ALdR05]) that are the tree automata counterparts the for­
ward and backward FA simulations.

2

We design efficient algorithms for computing tree automata simulations. A
deep examination of the structure of the T A simulations reveals that both up­
ward and downward T A simulations can be computed by the same algorithmic
pattern. More specifically, the problems of computing a T A simulation can be
reduced to a problem of computing a common FA simulation (a tree automaton
is translated into an FA and then a common FA simulation algorithm is used).
Moreover, tree automata bisimulations can also be computed efficiently this way
using the same translations (instead of a simulation algorithm, an FA bisimu-
lation algorithm is run on the FA obtained by translating the input TA) . The
resulting tree automata bisimulation algorithms are simple and competitive with
the previously known algorithms from [HMM07a]. This results in a uniform and
elegant framework for computing tree automata simulations and bisimulations
that can utilise the best FA simulation and bisimulation algorithms.

We have identified a principle of combining upward and downward T A sim­
ulations and forward and backward FA simulations that yields an equivalence,
called mediated equivalence, suitable for reducing automata by collapsing their
states while preserving the language. Mediated equivalence is coarser than
downward resp. forward simulation equivalence and thus gives a better re­
duction. The principle of mediated minimisation of FA generalises the principle
of forward simulation minimisation. Two forward simulation equivalent states
can be safely collapsed since they have the same forward languages (symmetri­
cally for backward simulation). In contrary, the property that allow collapsing
two mediated equivalent states p and q is the following. Whenever there is a
computation under a word u starting in an initial state that ends in a state p.
and another computation under a word v starting in a state q and ending in
a final state, then there is a computation under uv from an initial to a final
state. Therefore, collapsing the two states p, q does not introduce any new be­
haviour since every word accepted via the new state was accepted also before
collapsing. The case of TA mediated equivalence can be explained analogically.
It may be seen from the above that unlike simulations, mediated equivalences
approximate neither forward nor backward language equivalence on states, and
similarly the tree automata mediated equivalence is not compatible with any
notion of language of a state of a tree automaton. The combination principle
allows to build a mediated equivalence from any downward/backward relation
(simulation, bisimulation or identity relation) and any upward/forward relation
(simulation, bisimulation, identity). This yields a scale of mediated equiva­
lences offering a fine choice between the computation cost and reduction power,
as confirmed by our experimental results.

Language Inclusion Checking for T A and FA. Our universality and language
inclusion algorithms for tree and word automata build on the antichain based
method for FA proposed first in [WDHR06]. It is a complete method that
optimises the classical subset construction based algorithms. We first briefly
review its main idea.

Consider a nondeterministic FA A. In the simpler case of universality check­
ing, the method is based on a search for a nonaccepting state of the determinised

3

version A' of A reachable from an initial state of A'. Such a state is a counterex­
ample to universality of A. When a counterexample is reached, the algorithm
may terminate even before all states of A' are constructed. The states of A'•
called macro-states, have the form of subsets of the set of states of A. The key
idea is that some macro-states have a better chance of finding a counterexample
than other ones since they have provably smaller languages (in our terminology,
we say that they subsume the states with larger languages). Therefore, one can
safely continue searching only from the generated macro-states that have mini­
mal languages, and simply discard any generated macro-state that is subsumed
by another one. In [WDHR06], the subsumption relation is just set inclusion,
and already this simple solution gives a fundamental speedup.

We first adapt the FA antichain technique for tree automata. The adaptation
is quite straightforward, and similarly as in the case of FA, it has a major impact
on efficiency of the T A language inclusion and universality tests. We then
improve the antichain technique for both FA and T A by interconnecting it with
the simulation approximation technique. Simply speaking, we improve accuracy
of the subsumption relation on macro-states by employing simulations on states
of the original automaton. In the case of universality checking, a macro-state
p subsumes a macro state q if all states in p are simulated by some state in
q. Moreover, even the internal structure of macro-states can be simplified by
keeping only simulation maximal states of A inside the macro-states. In the
case of testing inclusion between two automata A and B, macro-states have a
more complicated structure, and it is possible to utilise simulation on states of
A, on states of B, and also use simulation between states of A and B. It can be
said that this method combines advantages of both simulation approximation
of language inclusion and the original antichain technique. It also behaves very
well on our experimental data.

Simulations and Antichains in Abstract Regular Tree Model Checking. We
have shown practical applicability of our tree automata reduction and inclu­
sion testing methods in the framework of abstract regular tree model checking
(A R T M C) , an infinite state verification method where the two problems play
a crucial role. In regular model checking (RMC), we start with an FA Ai
representing a set of initial configurations / of a system and iteratively apply
transition relation r (symbolically, on the structure of the automaton) until
a fixpoint is reached, thus computing an FA representing the set T*(AI) of
all configurations reachable from the initial configurations. Then, it is checked
whether this set satisfies the verified properties. In abstract regular model check­
ing [BHV04], abstraction (together with a counterexample guided refinement)
is used to accelerate the computation. Checking the fixpoint condition means
to decide whether T1(AJ) C T1+1(AI), which requires an efficient language in­
clusion algorithm. During the computation, the intermediate automata typi­
cally grow quickly, therefore it is needed to reduce their size. Tree automata
are used instead of FA when configurations of the system being verified are
better represented by trees than by words, e.g., certain parametrised commu­
nication protocols, pointer programs manipulating tree-like data structures etc.

4

In that case, we speak about abstract regular tree model checking (ART MC)
[BT02, AJMd02, BHRV06a, BHRV06b]. This method was originally based on
deterministic tree automata, involving implicit determinisation after each step.
Our reduction and inclusion testing methods allowed us to redesign the method
on top of nondeterministic tree automata, which led to a major increase of
scalability and efficiency

Simulations and Antichains for Other Types of Automata. The principles of
our simulation-based reduction methods are relatively simple and general which
allows extensions of the methods also for other types of automata. We have
done this for alternating Biichi automata (A B A) , for which we have designed
simulation-based reduction method analogical to the one proposed for tree au­
tomata. A B A are acceptors of infinite words with the same expressive power
as Biichi automata, but may be exponentially more succinct. Their applica­
tions can be found for instance in automata-based L T L model checking within a
Biichi automata complementation procedure (e.g., [KV01]). Alternating Biichi
automata are similar to tree automata in the sense that runs of both types of
automata have a form of trees (ordered trees for T A and unordered trees for
A B A) . Therefore, the definitions of simulations look similar for the two types
of automata. Forward simulation over alternating Biichi automata have been
already studied (see [FW02, FW05]). It may bee seen as an analogy of the
tree automata downward simulation. We have introduced the notion of A B A
backward simulation, which is an analogy of T A upward simulation. We also
show that it is possible to combine the A B A simulations in the same way as the
T A simulation into a mediated equivalence suitable for collapsing states while
preserving language. This equivalence gives better reductions than sole forward
simulation, which we confirm also by experiments.

Generalisations of our universality and language inclusion algorithms are also
possible. We are currently exploring ways of applying these techniques at de­
ciding Biichi automata universality and language inclusion. Our first result has
been published as [ACC +10a] where we use the simulation subsumption tech­
nique to improve the so called Ramsey-based Biichi universality and inclusion
test (see, e.g., [SVW85, FV09]). However, this work is already beyond the scope
of this thesis.

1.3 Plan of the Thesis

Chapter 2 contains preliminaries on automata, simulations, and regular tree
model checking. Chapter 3 presents an algorithm for computing simulations
over labelled transition systems used within most of the algorithms presented
further. In Chapter 4, we describe our simulation and bisimulation-based frame­
work for reducing tree automata and the algorithms for computing the TA sim­
ulations and bisimulations. Chapter 5 deals with the language inclusion and
universality problems for FA and TA. Alternating Biichi automata simulation-
based reduction methods are discussed in Chapter 6 and Chapter 7 concludes
the thesis.

5

2 Prel iminar ies

Here we give preliminaries on relations, labelled transition systems, finite au­
tomata, simulations, tree automata, and regular tree model checking that we
build on in this work.

2.1 Relations

Given a binary relation R C X x X on a set X, we often use the infix notation
xRy to denote that (x,y) G R. R(x) stands for the the set {y G X \ xRy},
the upper closure of x with respect to R. Given a subset Y of X, the relation
R n Y x Y is the restriction of i? to Y. For an equivalence relation = on X.
we use X/= to denote the partitioning of X according to =, and we call an
equivalence class of = a block. For two relations R and S, we denote R o S their
composition where x(R o S)y -4=>- 3z : xRzSy.

2.2 Labelled Transit ion Systems and Finite Automata

A (finite) labelled transition system (LTS) is a tuple T = (E, Q, 5) where Q is a
finite set of states, E is a finite set of labels, and i 5 C Q x S x Q i s a transition
relation. Given two states q,r <E Q, we denote by q —> r that (q, a, r) G 5.

A Nondeterministic Finite Automaton (FA) A is a tuple (E, Q, <5, / , F,) where
(T,,Q,5) is a labelled transition system, / C Q is a non-empty set of initial
states, and F C Q is a set of final states.

A word u = u\... un is accepted by A from the state qo if there exists a
sequence qoUiq\U2 • • • unqn such that qn G F and qj-\ —> qj for all 0 < j < n.
The language of a state q in A is defined as L(A)(q) := {u \ u is accepted by A
from the state q} and the language of the automaton A is L(A) := U<jef L(A)(q).
We say that .4 is universal if L(^4) = E*.

2.3 Forward and Backward Simulat ions

A (forward) simulation over an LTS T = (E, Q, 5) is a binary relation R on Q
such that for any states g, r, if gi?r and q A then there is a state r ' with
r A r ' and q'Rr'.

Any given simulation on an LTS can be closed under reflexivity, transitivity
and union, and so there is a unique maximal simulation on the given LTS, called
the simulation preorder, which we denote by ^ . It also holds that, for any given
initial preorder I C Q x Q, the set of simulations over T included in / is closed
under union, reflexive and transitive closure, and thus there is a unique maximal
simulation included in / on T, which we call the simulation preorder included in

G

/ and denote ^ in the sequel. We use = to denote the simulation equivalence
=4 n =^_ 1 on Q and, consequently, = J to denote the simulation equivalence
^ n included in I.

A (forward) simulation on an FA A = (T,,Q,5,1, F) is a simulation on the
LTS (E, Q, 5) such that if a state r simulates a state q, then q G F =>• r £ F
(a simulation included in (Q x Q) \ (F x (Q \ F))) . The following is a well-known
lemma.

L e m m a 2.1. Given a forward simulation ^ on an FA A = (T,,Q,5,I,F),
p<r L(.A)(p) C L(-4)(r).

Backward simulation is a dual notion to forward simulation. A backward
simulation over an LTS T = (E, Q, 5) is a forward simulation over the LTS
T _ 1 = (E,(5,o~ _ 1) where <5_1 = {{p, a,q) \ (q,a,p) G 5}, and a backward
simulation on an FA A = (T,,Q,5,I,F) is a forward simulation on the FA
A - 1 = (E, Q, <5_1, .F, I) . The notions of backward simulation preorder and back­
ward simulation equivalence can be defined in the same way as for forward
simulation and an equivalent of Lemma 2.1 holds for backward simulation and
"backward languages" of states of A.

2.4 Trees and Tree Automata

A ranked alphabet E is a set of symbols together with a function # : E —> N .
For o € E , the value #(a) is called the rank of a. For any n > 0, we denote by
E n the set of all symbols of rank n from E . Let e denote the empty sequence.
A tree t over a ranked alphabet E is a partial mapping t : N* —> E that satisfies
the following conditions:

• dom(t) is a finite, prefix-closed subset of N* , and

• for each p € dom(t), = n > 0 iff { i | pi G dom(i)} = { 1 , . . . , n}.

Each sequence w G dom(t) is called a node of t. For a node v, we define the
child of p to be the node pi, and the ith subtree of w to be the tree t' such that
t'(v') = t(viv') for all p' £ N * . A leaf of t is a node v which does not have any
children, i.e., there is no i G N with vi G dom(t). We denote by T(E) the set of
all trees over the alphabet E .

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as T A
in the following) is a quadruple A = (E , Q , A , F) where Q is a finite set of
states, F C Q is a set of final states, E is a ranked alphabet, and A is a set of
transition rules. Each transition rule is a triple of the form ((qi, • • •, qn), a, q)
where qi,..., qn, q G Q, a G E , and #(a) = n. We use (qi,..., g n) A a_ to denote
that that ((g i , . . . , qn), a, q) G A . When using this notation, states qi,..., qn, q G
Q and symbol a G E are often considered to be implicitly existentially quantified.
In the special case where n = 0, we speak about the so-called leaf rules, which
we abbreviate as A g. Finally, the rank of A denoted by f is defined as the
greatest n G N such that (qi,..., q>n) A g.

A run of A over a tree t G T(E) is a mapping TT : dom(t) —>• Q such that,
for each node p G dom(t) where g = 7r(p), if % = 7r{pi) for 1 < i < n, then A

7

contains a rule {q\,..., qn) > q. We write t =>• q to denote that TT is a run
of „4, over t such that 7r(e) = q. We use t =>• q to denote that t =>• g for some
run 7r. The language accepted at a state q is defined by L(g) = {£ | t => q},
while the language of „4, is defined by L(A) = \Jqep L(q).

2.5 Regular Tree Model Checking

Regular tree model checking (RTMC) [ShaOl, BT02, ALdR05, BHRV06a] is a
general and uniform framework for verifying infinite-state systems. In R T M C .
configurations of a system being verified are encoded by trees, sets of the con­
figurations by tree automata, and transitions of the verified system by a term
rewriting system (usually given as a tree transducer or a set of tree transduc­
ers). Then, verification problems based on performing reachability analysis
correspond to computing closures of regular languages under rewriting systems,
i.e., given a term rewriting system r and a regular tree language / , one needs
to compute T*(I) where r* is the reflexive-transitive closure of r. This compu­
tation is impossible in general. Therefore, the main issue in R T M C is to find
accurate and powerful fixpoint acceleration techniques helping the convergence
of computing language closures. One of the most successful acceleration tech­
niques used in R T M C is abstraction whose use leads to the so-called abstract
regular tree model checking (ARTMC) [BHRV06a], on which we concentrate in
this work.

Abstract Regular Tree Model Checking. We briefly recall the basic principles
of A R T M C in the way they were introduced in [BHRV06a]. Let S be a ranked
alphabet and M s the set of all tree automata over S. Let X £ M s be a tree
automaton describing a set of initial configurations, r a term rewriting system
describing the behaviour of a system, and B £ M s a tree automaton describing a
set of bad configurations. The safety verification problem can now be formulated
as checking whether the following holds:

T*{£{!)) n £{B) = $ (2.1)

In A R T M C , the precise set of reachable configurations r*(£(X)) is not computed
to solve Problem (2.1). Instead, its overapproximation is computed by interleav­
ing the application of r and the union in CiX) U r (£ (l)) Ur (r (£ (X))) U . . . with
an application of an abstraction function a. The abstraction is applied on the
tree automata encoding the so-far computed sets of reachable configurations.

A n abstraction function is defined as a mapping a : M s —> A s where A s C
M s and \/A £ M s : £>(A) C C{a(A)). A n abstraction a' is called a refinement
of the abstraction a if VA £ M s : C(a'(A)) C C(a(A)). Given a term rewriting
system r and an abstraction a, a mapping ra : M s —> M s is defined as MA €
M s : TA{A) = f(a(A)) where f{A) is the minimal deterministic automaton
describing the language T(C(A)). A n abstraction a is finitary, if the set A s is
finite.

For a given abstraction function a, one can compute iteratively the sequence
of automata (r^(Z))j>o. If the abstraction a is finitary, then there exists k > 0

8

such that T ^ + 1 (Z) = T^(I). The definition of the abstraction function a implies
that £ (T * (Z)) D T*(£(X)) .

If £ (TQ(I)) n = 0, then Problem (2.1) has a positive answer. If the
intersection is non-empty, one must check whether a real or a spurious coun­
terexample has been encountered. The spurious counterexample may be caused
by the used abstraction (the counterexample is not reachable from the set of
initial configurations). Assume that JO(T^(I)) n C(B) / 0, which means that
there is a symbolic path:

X, r a (I) , TI{T),...,T--\T), T O T (2.2)

such that £ (T"(X)) n C(B) + 0.

Let XN = £ (T"(X)) n C[B). Now, for each I, 0 < I < n, XT = £ (T£(X)) n
r _ 1(A;_)_ 1) is computed. Two possibilities may occur: (a) Xo 7̂ 0, which means
that Problem (2.1) has a negative answer, and Xq C £ (X) is a set of dangerous
initial configurations, (b) 3m, 0 < m < n, Xm+i 7̂ 0 A XM = 0 meaning
that the abstraction function is too rough—one needs to refine it and start the
verification process again.

In [BHRV06a], two general-purpose kinds of abstractions are proposed. Both
are based on automata state equivalences. Tree automata states are split into
several equivalence classes, and all states from one class are collapsed into one
state. A n abstraction becomes finitary if the number of equivalence classes
is finite. The refinement is done by refining the equivalence classes. Both of
the proposed abstractions allow for an automatic refinement to exclude the
encountered spurious counterexample.

The first proposed abstraction is an abstraction based on languages of trees of
a finite height. It defines two states equivalent if their languages up to the give
height n are equivalent. There is just a finite number of languages of height
n, therefore this abstraction is finitary. A refinement is done by an increase
of the height n. The second proposed abstraction is an abstraction based on
predicate languages. Let V = {Pi, P2, • • •, Pn} be a set of predicates. Each
predicate P G V is a tree language represented by a tree automaton. Let A =
(Q, E , F, qo, 5) be a tree automaton. Then, two states q\, q2 € Q are equivalent
if the languages jC(Aqi) and C(Aq2) have a nonempty intersection with exactly
the same subset of predicates from the set V provided that Aqi = (Q, E , F, q\, 8)
and Aq2 = (Q, E , F, q2, 5). Since there is just a finite number of subsets of V,
the abstraction is finitary. A refinement is done by adding new predicates, i.e.
tree automata corresponding to the languages of all the states in the automaton
of Xm+i from the analysis of spurious counterexample [XM = 0).

9

3 C o m p u t i n g S imula t ions over Label led
Trans i t ion Systems

This chapter is devoted to an algorithm for computing simulations onlabelled
transition systems. As discussed in the previous chapter, simulation is a good
candidate for reducing transition systems by collapsing equivalent states and
also for approximating language/trace inclusion. It strongly preserves logics like
ACTL*, ECTL*, and LTL [DGG93, GL94, HHK95], and with respect to its re­
duction power and computation cost, it offers a desirable compromise among the
other common candidates, such as bisimulation equivalence [PT87, SJ05] and
language equivalence. Our main motivation for presenting the algorithm here is
that computing simulation over an LTS is a crucial step of almost all algorithms
presented later in this thesis, namely algorithms for computing simulations over
tree automata, alternating Biichi automata, and for checking language inclusion
and universality of finite word and tree automata.

Our LTS simulation algorithm is a relatively straightforward modification of
the algorithm by Ranzato and Tapparo from [RT07] (referred to as RT in the
following) for computing simulations over Kripke structures (a Kripke structure
associate labels with states while an LTS attaches labels to transitions). Given
a Kripke structure K, with a set of states Q and a transition relation 5 such
that Psim is the partition of Q according to simulation equivalence, RT runs in
time 0(\Psim\|<5|) and space 0(|-Psjm||(5|)- This algorithm refines the algorithm
[HHK95] by Henzinger, Henzinger, and Kopke (referred to as H H K) with run­
ning time 0(|<2||<5|) and space C(|(5|2). The main difference between H H K and
RT is that instead of manipulating individual states, RT works on the level of
iteratively refined equivalence classes of a relation that finally converges to sim­
ulation equivalence. We have chosen RT since it is the fastest known simulation
algorithm. However, there are other algorithms that are slower but more space
efficient. The algorithm with the lowest space complexity among all known sim­
ulation algorithms is the one by Gentiliny, Piazza, and Policriti [GPP03]. It
runs in time 0(|P sjm| 2|<5|) and space 0(\Psim\2 + \Q\ log | P S i m |) . Then, there is
a recent algorithm [CRT09] by Crafa, Ranzato, and Tapparo, which improves
on space complexity of RT, reducing it to 0(\Psim\\Prei\), which is very close to
the space complexity of the algorithm by Gentiliny et al., however, the price of
this is a worse time complexity O(|Pa{m \ \d\ +1P aim \2 \5rei |). Here, Prei is a certain
partition of the set of states of K. such that \Psim\ < \Prei\ < \Q\ and 5rei is a
partition of the set of transitions where \5rei\ <\5\.

In fact, any algorithm computing simulation over Kripke structures can be
used for computing simulations on labelled transition systems. Every LTS T
with n states and m transitions can be easily translated into a Kripke structure
K-j- with m + n states and 2m transitions (we turn every transition q A- r of
T into the two transitions q —>• (q, a, r) —>• r where (q, a, r) is a new state with

10

label a) such that the simulation on states of JCf directly gives simulation on T•
However, observe that this increase in the number of states significantly affects
complexity of the overall procedure. In the case of RT, the time and space
complexity of computing simulation on T this way (running RT on /C7-) would
be almost the square of m, which is much worse than for Kripke structures.

We design our version of RT that runs directly on an LTS to eliminate this
increase of complexity. This basically requires augmenting most of the data
structures of RT by alphabet symbols and iterating certain subprocedures for
all incoming/outgoing symbols of a state or a set of states. We obtain an
algorithm that runs in time 0(\Psim\ |Q| + |E | \Psim\ and space 0(|E | |P s j m | | (5 |)
where E is the alphabet. The modifications of RT are rather easy, nevertheless,
notice that the dominating factor |Psjm||<5| of the time complexity formula is
not multiplied by the size of the alphabet, which requires a sensitive approach
when manipulating certain data structures. Apart from that, we provide a
more straightforward (and abstract interpretation free) proof of correctness of
the algorithm than the one in [RT07].

We also note that in [HS09a], we present an improved version of our LTS sim­
ulation algorithm where we to a large degree eliminate the multiplicative effect
of the size of the alphabet in the complexity formulas. This algorithm can even
turn nonuniformity of input and output symbols of states into an advantage.
However, since the improvements described in [HS09a] are not essential for the
rest of this work and are rather technical, we present only the original simpler
version of the algorithm here.

3.1 Preliminaries

We first introduce some additional notation used within the chapter and the
notion of partition-relation pair.

Given an LTS T = (E, Q, 5), we define the set of a-predecessors of a state r as
prea(r) = {q G Q \ q A r}. Given X, Y C Q, we use prea(X) to denote the set
U<jex Prea(Q)i w e write q A X iff q G prea(X), and Y A X iff YDprea(X) / 0.

Partition-Relation Pairs. A partition-relation pair over a set X is a pair
(P,Rel) where (1) P C 2X is a partition of X (i.e., X = {JB&PB, and for
all B,C G P, if B / C, then B n C = 0), and (2) Rel C P x P. We say
that a partition-relation pair {P, Rel) over X induces (or defines) the relation
R{P,Rel)= U(B,C)£Rel B X C.

A partition-relation pair {P, Rel) over X inducing a relation R is the coarsest
iff there is no other partition-relation pair inducing R with the partition coarser
than P. This means that P = {{y G X | R(x) = R(y) A R~1(x) = R~1(y)} |
x G X}—two elements of X are in the same block of P iff they are related by
R with elements of X in the same way. Notice that in the case when R is a
preorder, P is the set of equivalence classes of R D and Rel is a partial
order.

11

3.2 The LTS Simulat ion Algor i thm

We now describe an algorithm to compute simulation over LTS. For the rest of
this chapter, we assume that we are given an LTS T = (E, Q, 5) and the coarsest
partition-relation pair (Pj,Reli) inducing an initial preorder I C Q x Q. Our
algorithm takes T and {Pi, Relj) as the input and outputs the coarsest partition-
relation pair (Psimi Relsira) inducing the simulation preorder on T included
in / . Algorithm 1 describes the algorithm in pseudocode. Before we discuss it
in detail and analyse its correctness and complexity, we give a brief outline.

The algorithm propagates the negative information about which pair of states
are not related by simulation. It iteratively refines a partition-relation pair
(P, Rel) (strengthening the induced relation) initialised as {Pi, Reli). The in­
duced relation is always superset of the target simulation, the states belonging
to a block B G P are those which are currently assumed as being possibly simu­
lated by states from | J Rel(B). When the algorithm terminates, {P, Rel) equals

The pair {P, Rel) is refined by splitting the blocks of the partition in P and
pruning the relation Rel. For this purpose, the algorithm maintains a set
Removea(B) for each a G E and B € P. Removea(B) contains states that
was recently identified as not having an a-transition leading into \jRel(B).
Clearly, a state in Removea(B) cannot simulate states that have an a-transition
going into B. Therefore, for a set Removea{B) ^ 0 chosen at the beginning of
an iteration, the algorithm splits each block C G P to C n Removea(B) and
C \ Removea(B) (states not capable and states possibly capable of simulating
states from prea{B)). This is done using the function Split on line 6.

After performing the Split operation, we update the relation Rel and the
Remove sets. This is carried out in two steps. First, the algorithm refines the
values of Rel and Remove to be consistent with the new value of the partition
P refined by the Split. A l l Rel relations between the original "parent" blocks
of states are inherited to their "children" blocks into which the parents were
split (line 8)—the notation parentp p r e v (C) refers to the parent block of which C
was a part before the Split. On line 10, the Remove sets are inherited from
parent blocks to their children. In the second step, the algorithm performs the
actual refinement of the relation induced by {P, Rel). On line 14, Rel is being
pruned to reflect that states that have an a-transition going into B cannot be
simulated by states which do not have an a-transition going into | J Rel(B). This
is done by removing the relation between blocks included in Removea{B) and
blocks with states leading to B via a. Refinement of Rel is then propagated
further to Remove sets. Removing a pair of blocks (C, D) from Rel may cause
that a state that has a 6-transition into D (therefore, it had a 6-transition
into | J Rel{C) before removing (C, D) from Rel) now does not have any 6-
transition into | J Rel{C). Such a state is freshly identified as not being capable
of simulating states from prea(C). We add it into Removeb(C) on line 17, which
ensures propagation of the negative information.

12

A l g o r i t h m 1: Computing simulation on an LTS
I n p u t : A n LTS T = (Q,T,,5), the coarsest partition-relation pair

(Pi, Reli) on Q inducing a preorder I C Q x Q.
D a t a : A partition-relation pair (P, Rel} on Q, and for each B G P and

a G E, a set Removea(B) C Q.
O u t p u t : The coarsest partition-relation pair (Psim, Relsim) inducing ^ .

/* i n i t i a l i s a t i o n */
1 (P,Rel) <- (Pi, Reli);
2 f o r a l l a G E , B G P d o Removea(B) <-Q\ prea(\J Rel(B)):

/* computation */
3 w h i l e 3o G E . 3 5 G P. Removea(B) / 0 d o

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Remove
Pprev ^ P'? Pprev ^ P? R^-lprev

Removea(P); Removea(B) <— 0;
PeZ;

P <— Split(P, Remove);
f o r a l l C G P d o

PeZ(C) <- {I? G P | D C U^e / p r ev (paren t P p r e v (C)) } ;
f o r a l l 6 G E d o

Removeb(C)

f o r a l l C G P. C A P,

Pemoi>ef,(parentppr

d o prev
f o r a l l P G P. P C Remove d o

i f (C, P) G Pel t h e n

P d <- Rel\{(C,D)};
f o r a l l 6 G E d o

f o r a l l r G prej,(D) s u c h t h a t r G" preft(|J Rel(C)) d o

Removeb(C) <— Removeb(C) U {r}

18 r e t u r n (P,Rel):

3.2.1 Correctness of the Algori thm

The correctness of the algorithm is formalised in Theorem 1. A similar correct­
ness result is proved in [RT07] for the algorithm on Kripke structures, using
notions from the theory of abstract interpretation. We provide here an alterna­
tive, more direct proof.

We will prove termination and partial correctness, this is, that (1) the final
partition-relation pair that we denote (Pfin, Relfin) induces =^J; and (2) that
(Pfin, Rel fin) is also the coarsest. The two points together give (Pfin, Relfin) =
Psimj Relsim}-

T h e o r e m 1. Algorithm 1 terminates and returns the partition-relation pair
Psimj Relsim}-

Let us first introduce some notation that will be needed within the proof of
the theorem. By an iteration, we will mean a single iteration of the while loop

13

of the algorithm. For an iteration, the block B chosen on line 3 (also referred
to as -Bprev) will be denoted as the pivot of the iteration. A n ancestor of a block
C is any block D which appears during the computation and for which CCD,
and on the contrary, C is a descendant of D. Moreover, if D is the immediate
ancestor of C such that C was created while splitting D, then D is the parent
of C and C is a child of D. We will denote by q -2> r the fact that A r).
Moreover, for any B,C C Q, q ^ C and B —> C are defined analogously, i.e.
provided that q G" prea{C) and i? n prea{C) = 0. We will use R^p^Rei) to denote
the relation induced by the partition-relation pair {P, Rel) in a particular state
of a run of the algorithm.

L e m m a 3.1. On line 3 of Algorithm 1, the pair {P, Rel) is always a partition-
relation pair. The partition P can only be refined during the computation. More­
over, the relation R(ptRei) is monotonically getting smaller during the computa-

Proof. The initial value of {P, Rel) is clearly a partition-relation pair. After
Split on line 6, (P, Rel) is temporarily not a partition-relation pair as Rel is a
relation on P p r e v , not on P. However, after inheriting all Rel links of parent
blocks by their children on lines 7-10, {P, Rel) is a partition-relation pair again.
The other two claims of the lemma are also immediate as the algorithm can only
split the classes of P (but never unites them), and can only remove elements
from Rel. •

L e m m a 3.2. The following claims are invariants of the while loop (of line 3)
of Algorithm 1:

MB, C eP. (B, C) G Rel

(Va G E . MD G P. B A D C C prea(\J Rel(D)) U Removea(D)) (3.3)

Proof. After the initialisation, all the invariants hold. It is immediate for In­
variants 3.1 and 3.2. It is also fairly obvious for Invariant 3.3, as after the
algorithm passes line 2, for all q G Q, a G E , D G P, it holds that either q has
an a transition leading to \J Rel(D) or q is in Removea(D).

• Invariant (3.1) can never be broken. After the initialisation it holds. From
there on, it holds because only such a state r can be moved into the
Remove\y{C) which is not in pre^(\J Rel{C)) (the test on line 16). More­
over, if r is once not in pre^iXJ Rel(C)), then it will never be there from
that moment on (by Lemma 3.1).

• Invariant (3.2) can never be broken as violating reflexivity of Rel requires
choosing a pair (C, D) on line 14 such that C = D. The (C, D) pair can
be chosen on line 14 only if C A- B and D C Removea(B) where B is the
pivot block. Thanks to Invariant (3.1), this is not possible for C = D.

tion.

V£ G P.Mae E . Removea(B) -%[JRel(B)

MB G P. Be Rel(B)

(3.1)

(3.2)

14

• Invariant (3.3) can be temporarily broken on three places of the algorithm:

lines 6-10: Let C be a block of P on line 7 and let C G P p r e v be its
parent. Then it is easy to see that after finishing the for loop on
line 7, it holds that (J Rel{C) = \J Relprev(C) and for all a G S.
Removea{C) = Removea{C). Thus, after finishing the for loop on
line 7, Invariant (3.3) can be broken only for those (B, C) pairs such
that it was broken even for their parents on line 6. Therefore, if the
invariant holds on line 3, then it also holds after returning from the
for loop on line 7.

line 4: Assume the invariant holds at the beginning of some iteration and
is then violated by emptying the Removea{B) set on line 4. Then,
there are C, D G P which break the invariant and for which it holds
that (C, D) G Rel, C A S , I) C prea(\J Rel(B)) U Removea(B), and
D prea(\J Rel(B)). The Split operation on line 6 divides D into
D\ C prea(\J Rel(B)) and Z?2 C Remove. After that, Rel and the
Remove sets are inherited on lines 7-10. Now only those (C,L>2)
pairs break the invariant where C is a child of C such that it leads
via a into a child of B. But exactly these pairs will be chosen on
line 13 within this iteration for pruning Rel. Hence, after finishing
the iteration, the invariant will not be violated from the reason of
emptying Removea(B).

line 16: Pruning Rel on line 14 lead to breaking the invariant as there
may states r such that r A- D and thus before the update of Rel,
r —> | J Rel(C), but after the removal of D from Rel(C), it can happen

that r -5» \ \Rel(C). However, exactly these r states are moved into
Removeb(C), and so Invariant (3.3) is restored after finishing the for
loop on line 13.

•
L e m m a 3.3. If all the Remove sets are empty when evaluating the condition
on line 3, then R(p^Rei) is a simulation on T included in I.

Proof. By Lemma 3.1, it is clear that R(p,Rei) 1S always a subset of / . We
have to show that R^Rei) is also a simulation on T. Let q RmRei\ r for some
q G B,r G C where B,C G P. From the definition of RmRei\, (B,C) G Rel.
Let q A s for some s G D, D G P. Then B A- D. Therefore, by Invariant
(3.3) and since all the Remove sets are empty, we get C C prea(\J Rel(D)).
This means that there is u G | J Rel(D) such that r A- u. By the definition of
R(P,Rei) j w e have s RmRei) u. Therefore, RmRei\ is a simulation on T and the
lemma holds. •

During the computation, the relation Rel is not necessarily always transi­
tive. We can prove only the following property of Rel that roughly resembles
transitivity, and which is crucial for our correctness proof.

L e m m a 3.4. Under the assumption that ^ C RmRei\, the following invariant
always holds on line 3 of Algorithm 1: For any q,r G Q with q ^ r and

15

B, C,D G P such that q G C, r G D and (B,C) G Rel, it holds that also
(B, D) G Rel.

Proof. Let us recall the relationship between a partition-relation pair {P, Rel)
and its induced relation RmRei\ which is: For any B,C G P and q G B,r G C,
it holds that q RmRel) r iff (-^>C) £ Therefore, if R(ptRei) Q "41, then
q ^ r implies (B,C) G i?eL We prove the lemma by induction on the number
of iterations of the while loop.

The base case: After the initialisation, the claim holds as Reli is transitive
(the relation / is a preorder). We prove the induction step by contradiction.

Let the lemma be broken for the first time at the beginning of the i-th iteration
of the while loop. We use Starts to denote the state of the algorithm at this
moment. At Starti, we have that ^ C Rmg^\ and there are some B, C, D G P.
q G C, and r G D such that q 41 r, (B,C) G Rel, and (B,D) g" Rel. From
q =<!J r and ^ C RmRei\, we have (C,D) G i?eL Because the induced relation
is shrinking only (Lemma 3.1), we have that at each moment of the computation
preceding Starti, the relation =<!J was a subset of the relation induced by the
current partition-relation pair, the ancestor C' of C was above the ancestor B'
of B wrt. the current Rel, and also the ancestor of D was above the ancestor of
C. Because of this and as the lemma is broken for the first time at Starti, we
know that at the beginning of any iteration prior to the i-th one, the ancestor
of D was above the ancestor of B wrt. the current state of Rel.

Let us analyse the moment before Starti when {B,D) is going to be removed
from relation this is, we are within the i — 1-th, just before entering the for
loop on line 11). Let (P, Rel') be the current partition-relation pair (the current
partition P at that moment is the same as at Starti, since no splitting will
be done until Starti). The situation is such that (B,C) G Rel', (C,D) G Rel',
(B, D) G Rel', and we are going to remove {B, D) from Rel' on line 14. However,
we keep (B,C) and (C,D) in Rel' during this iteration as these two pairs will
be in Rel at Starti. Removing (B,D) from Rel' is caused by processing the
Removea(E) set where E G P p r e v is the pivot of the i — 1-th iteration. Thus, we
have that B A E, D C Removea(E) and C n Removea(E) = 0.

Let us examine the state of the algorithm at the beginning of the i — 1-
th iteration, the moment referred to as S t a r t T h e current partition re­
lation pair at Starti-i is (Pprev, Rel'prev). It holds that ^ C -R(p p r e v i i j e ; ' r e v) .
Let B',C',D' G Pprev be the ancestors of B,C,D (therefore B C B',C C
C',L> C £>'). We have that q G C C C, C n Removea(E) = 0, £ ' 4 £ ,
and (B',D') G i?e£p r e v, and therefore, from Invariant (3.3), we have that C" C
F e a (U ^ (- ^)) U Removea(E). This implies that C C pre a(URel(E)). Thus,
there is F G Rel'prev(E) and q' £ F with g A Since g ^ r , there is r' G Q

with r A r ' and </ ^ r ' . Because ^ C R(ppKV,ReipKV), the block G G -Pprev
containing r ' must be in Rel'prev(F). Finally, because r <E D C Remove^E),
from Invariant (3.1), we get (E,G) g" Rel'prey.

To conclude the proof, observe that the states q', r', the blocks E, F,G G -Pprev;

and the partition-relation pair (P p r e v, Rel'prev) form a situation that violates the
lemma at Starti-i (to recap, we have that ^ C R(ppKvjRei's), G F, r ' G

16

G,q' 41 r', and (E, F) G Rel'prev, but (E, G) 0 Rel'prev). This is a contradiction
since Starti was supposed to be the first such a moment. •

L e m m a 3 .5 . At any point of a run of Algorithm 1, ^ C i ^ p ^ n .

Proof. The lemma apparently holds after initialisation. We will prove that it
always holds by contradiction—we will show that violating this lemma in a run
of Algorithm 1 has to be preceded by breaking Lemma 3.4.

Let us choose the moment just before the lemma is violated for the first time.
This is, some (B, C) is going to be removed from Rel on line 14 such that there
are q G B and r G C with q ^ r. This update of Rel is caused by processing
the set Removea(D) where D G P p r e v is the pivot of the current iteration of
the while loop, B A- D, B n Remove = 0 (Remove is the recorder value of
Removea(D) which was emptied on line 4 in this iteration), and C C Remove.
Let B',C G Pprev be the ancestors of B, C. From Invariant (3.2), we have that
(B',B') G Relprev.

Let us examine the state at the beginning of this iteration. We have that B' A
D because of B A D, which by Invariant (3.3) gives B' C prea([J Relprev(D)) U
Removea(D). Since q G B, q G" Removea(D), and therefore there are E G
Relprev(D) and q' £ E with q A q'. From q =<!J r and from the fact that =4J is a
subset of the current induced relation (the lemma is going to be broken for the
first time, it holds so far), we have that there are F G Relprev(E) and r' G F
with r A r'. However, as r G Removea(D) and because of Invariant (3.1), we
have (D,F) G" Relprev. Hence the states q',r' and the blocks D,E,F violates
Lemma 3.4 at the beginning of this iteration. •

L e m m a 3 .6. At any point of a run of Algorithm 1, any two states q,r G Q with
q =2 r are in the same block of P.

Proof. By contradiction. We will show that breaking this lemma in a run of
Algorithm 1 has to be preceded by breaking Lemma 3.4.

After the initialisation the lemma holds. Let us choose the first moment
when it is broken. At that moment, states q,r with q =2 r are separated from
each other by the Split operation during processing of some pivot block B.
Without loss of generality, we assume that at the beginning of this iteration
r G Removea(B) and q G" Removea(B).

Consider now the moment within some of the preceding iterations, just before
entering the for loop on line 11 during which r will be added into Removea{B')
where B' is an ancestor of B. Let the current partition-relation pair be {P, Rel).
and let q,r G C,C G P. There is some block D G Rel(B') with r A D such that
(B', D) will be removed from Rel and r will be added to Removea(B') because
of that within this iteration.

Since sine r A D, there is r' G D with r A r'. From r ^ q, there is
q' G Q with q —> q' and r' ^7 q', and since ^ C (P, Rel) (Lemma 3.5), there is
E G Rel(D) with q' G E. Moreover, from Lemma 3.4 (whose claim holds also
just before entering the for loop on line 11 because lines 4-10 do not influence
the induced relation), E G Rel(B').

17

We have shown that when entering the for loop on line 11, q A | J Rel(B').
Recall that q will not be added into Removea{B') during this iteration. There­
fore, it has to hold that q —> | J Rel(B') also after finishing the for loop on
line 11 (otherwise q would be added into Removea{B')). This is, after finish­
ing the for loop on line 11, there is still some E' G Rel(B') and q" G E' with
q A q". Because q =4J r, there is some r" G Q with q" ^ r" and r A r".
Since 41 C (P,Rel), there is some F G Rel(E') with r" G F . But at the end
of the for loop on line 11 (i.e. the beginning of the next iteration of the while
loop), (B',F) g" Rel as r was be added into Removea(B') within the for loop
(Invariant (3.1)). To conclude the proof, observe now that at the beginning of
the next iteration of the while loop, states q",r" and blocks B',E',F form a
situation contradicting Lemma 3.4. •

Lemma 3 .7. Let B,B' be two blocks appearing during a run of Algorithm 1
such that B' is an ancestor of B. Let Remove a{B) and Removea(B') be two
Remove sets at the (different) moments when B, resp. B', is chosen as the
pivot. Then, Removea(B) n Removea(B') = 0.

Proof. If a state q is in Removea(B) after the initialisation, then q -% | J Reli(B).
If q is added into Removea(B) later on line 17, then it means that the test on
line 13 passed, so q A- | J Rel(B) was true at that moment1. Subsequently,
after the update of Rel on line 14, q [jRel(B). From Lemma 3.1, if once
q -5> [jRel(B), then from that moment on it can never happen that q A
U Rel(B') where B' is a descendant of B. It means that q will never be added
to any Removea{B') where B' is a descendant of B. To summarise: when
a pivot B with nonempty Removea(B) is chosen to be processed on line 3,
Removea(B) is always emptied and none of the states from Removea(B) can
be added to any Removea(B') where B' is a descendant of B again. Thus
whenever later some descendant B' of B with Removea{B') is being processed,
Removea{B) n Removea{B') = 0. •

We are now ready to prove Theorem 1.

Proof of Theorem 1. Due to Lemma 3.7, for any block B which can arise during
the computation, B can be chosen as a pivot only finitely many times as for any
a G E , all the Removea{B) sets encountered on line 3 are disjoint. There are
finitely many possible blocks and hence the algorithm terminates.

Lemma 3.3 implies that the relation R(pfin,Reifin) induced by the final partition-
relation pair (Pfin, Relfin) is a simulation included in / . Lemma 3.5 implies that
this simulation is the maximal one. Finally, Lemma 3.6 implies that the resulting
partition Pfin equals Q/=J and thus {Pfin, Relfin) = {Psim, Rdsim). •

3.2.2 Implementation and Complexity of the Algori thm

The complexity of the algorithm is equal to that of the original algorithm from
[RT07], up to the new factor E that is not present in [RT07] (or, equivalently,
|E| = 1 in [RT07]). The complexity analysis is based on the similar reasoning

1 N o t e that at that time, B is referred to via C in the algorithm.

18

as the one in [RT07]. Time complexity strongly depends on use of certain data
structures and on some particular implementation techniques that we describe
below along the analysis within the proof of Theorem 2.

Theorem 2. Algorithm 1 runs in time 0{\Y,\\Psim\\Q\ + |P S j m | |5 |) and space
0(\Z\\Pstm\\Q\).

Proof.

Basic Data Structures. We use resizable arrays (and matrices) which double
(or quadruple) their size whenever needed. The insertion operation over these
structures takes amortised constant (linear) time.

The input LTS is represented as a list of records about its states—we call this
representation as the state-list representation of the LTS. The record about each
state q G Q contains a list of nonempty prea{q) sets, each of them encoded as a
list of its members (we use a list rather than an array having an entry for each
a G E in order to avoid a need to iterate over alphabet symbols for which there
is no transition). The partition P is encoded as a doubly-linked list (DLL) of
blocks. Each block is represented as a D L L of (pointers to) states of the block.
The relation Rel is encoded as a Boolean matrix P x P.

Each block B contains for each a G E a list of (pointers on) states from
Removea{B). Each time when any set Removea{B) becomes nonempty, block
B is moved to the beginning of the list of blocks. Choosing the pivot block on
line 3 then means just scanning the head of the list of blocks.

For each a G E , a state q G Q and a block B G P, we maintain a counter
Counta(q, B). Its value within a run of the algorithm records cardinality of
the set { r G Q \ r G y]Rela{B) A q A r } . This counters allow us to test
whether r is in pre\,(\\] Rel{C)) on line 16 in constant time—we just ask whether
Counter, C) = 0. The counters are stored as an P x Q integer matrix per each
a G E . The way of updating the counters during a computation will be described
later.

We attach to each q G Q an array indexed by symbols of E . A cell of the
array indexed by a G E contains a reference the prea{q) list. Using the arrays,
we can access the prea{q) list for given o and q in constant time (it would be
C(|E |) time without the arrays).

Space Complexity. The arrays of pointers on the prea lists take C(|E||(5|)
space, the matrix encoding of Rel takes 0{\Psim |) space, and the Remove sets
as well as the counters take C(|E | \P s i m \ \Q\) space. Thus the overall asymptotic
space complexity is C(|E | \P s i m \ \Q\) -

Time Complexity. We first introduce some auxiliary notation. For B C Q
and a G E , we denote by ina(B) the set {(r,a,q) G 5 \ q G B}, and by in(B)
the set Uaes ^na(B). Note that \prea{B)\ < \ina(B)\. We also denote by 8a the
set of all a-edges of 5. We use Anc(B) to denote the set of all ancestors of B,
including also B itself.

We first analyse the initialisation phase of the algorithm preceding the main
while loop. The initialisation of the arrays of pointers to the prea lists takes

19

0(|E||<5|) time. The Count counters are initialised by (1) setting all Count to
0, and then (2) for all B G P, for all q G B, for all r G prea(q), and for all C
such that (C,B) G Rel, incrementing Counta{r, C). This takes 0(|Pj||<5|) time.
The Remove sets are initialised by iterating through all a G S,g G Q , B G P
and checking whether Counta(q, B) = 0. If so, then we add (append) q to
Removea{B). This takes 0(|E||Pj||<2|) time. Overall, the initialisation can be
done in time C?(|P/ | | i | + | £ | | P / | | Q |) .

The time complexity analysis of the while loop builds on Lemma 3.7 and
Lemma 3.1 proved within the proof of correctness of Algorithm 1. The two
lemmas allow us to make the following observations:

Observation 1. For any a G £ and B G Psim, the sum of the cardinalities of
the Removea(B') sets for all B' G Anc(B) that are chosen as the pivot is
below \Q\.

Observation 2. If a pair (C,D) once appears on line 15, then no pair (C',D')
such that C G Anc{C) and D G Anc(D') can appear on line 15 again.

The Split(P, Remove) operation can be implemented in the following way:
Iterate through all q G Remove. If q G B G P , add q into a block B^ud
(if Bchud does not exist yet, create it and add it into P) and remove q from
B. If B becomes empty, discard it. This can be done in time 0{\Remove\).
From Observation 1, we have that for a fixed block B G Psim and a G E , the
sum of cardinalities of all Removea{B') sets with B' G Anc(B) according to
which Split is being done is below \Q\. Therefore, summed over all symbols of
E and all blocks of Psim, the overall time complexity of all Split operations is
0 (| E | | P S i m | | Q |) .

The time complexity analysis of lines 7-10 is based on the fact that it can
happen at most |P / | — | P s j m | times that any block B is split. Moreover, the
presented code can be optimised by not having the lines 7-10 as a separate loop
(this was chosen just for clarity of the presentation), but the inheritance of Rel,
Remove, and the counters can be done within the Split function, and only for
those blocks that were really split (not for all the blocks every time). Whenever
a new blocks is generated by Split, we have to do the following: (1) For each
a G E , copy the Removea set of the parent block and attach the copy to the
child block. As for all a G E , B G P , Removea{B) C Q, and a new block
will be generated at most |P / | — | P s j m | times, the overall time of this copying
is in C (| E | I Psim I\Q\)- (2) Add a row and a column to the Rel matrix and
copy the entries from those of the parent. This operation takes 0(\Psim\) time
for one added block as the size of the rows and columns of the ižeí-matrix is
bounded by | P s j m | . Thus, for all newly generated blocks, we achieve the overall
time complexity of 0(\Psim\2). (3) Add and copy the Count counters. For one
newly generated block, this operation takes an 0 (|E | |Q |) time and thus for all
generated blocks, it gives time C(|E | |P s j m | | (5 |) .

Lines 13 and 14 are 0(l)-t ime {Rel is a Boolean matrix). Before we enter the
for loop on line 11 with B being the pivot, we compute a list RemoveLista{B) =
{D G P I D C Remove}. This is an 0(\Remove\) operation and by al­
most the same argument as in the case of the overall time complexity of Split,

20

we get also exactly the same overall time complexity for computing all the
RemoveLista(B) lists. On line 11, for each q G B, we find the prea(q) list
(in 0(1) time using the array of pointers to the prea(q) lists), and we it­
erate through all elements of prea(q) and choose every C,C A {q}. This
takes 0(\ina(B)\) time. For any B G Psim, let RLa(B) be the set of blocks
Us'e^nc(B) RemoveLista(B'). Then the overall time complexity of lines 11-14
is at most C(X^aes X^seP |P-^a(-B)||^a(-B)|)- From the initial observations,
we can see that \RLa(B)\ < \Psim\, and thus we have the overall time complex-
ity of lines 11-14 in 0 (£ a e S £ B e P s i m \Psim\\ina(B)\) = 0 (£ a e S \Psim\\Sa\) =
0(\Psm\\5\).

Lines 15-17 are implemented as follows. For a single pair (C, D) appearing
on line 14, we iterate through all q G D and through all nonempty lists prea(q).
and for each r G prea(q), we decrement Counta(r, C). If Counta(r, C) = 0 after
the decrement, we append r to the Removea(C) list. It follows from the initial
observations that if any pair of blocks (C, D) once appears on line 14, then
there will never appear any pair of their descendants on line 14. Thus, if we fix
a block C G Psim and a state q, then it can happen at most once that a pair
(C',D) such that q G D and C G Anc{C) is being removed from Rel. on line
14. Thus, the contribution of the pair C, q to the time complexity of lines 15-17
is 0 (£ a g S \prea(q)\). Therefore, the contribution of the C,r pairs for all r G Q
is 0(|<5|), and hence the overall time complexity of lines 15-17 is 0(\Psim\\5\).

From the above analysis, it follows that the overall time complexity of the
algorithm is 0(\Psim\\5\ + \E\\Psim\\Q\). •

3.3 Conclusions and Future Work

We have presented a modification of the currently fastest algorithm RT [RT07]
for computing simulations over Kripke structures, which was at the time of
its publication the fastest algorithm for computing simulations over LTS (the
currently fastest algorithm is its optimised version from [HS09a]). The algorithm
has the time complexity 0 (| E | \Psim\ \Q\ + |-Psím11<51) and the space complexity
0 (IE11 Psim 11QI), which is slightly worse than O (| Psim \ \ 61) time and 0(\Psim \\Q\)
space of RT. However, this complexity increase can be to a large degree lowered
as we show in [HS09a]. We have also presented a proof of correctness that is
more straightforward than the one presented in [RT07].

We plan to continue the research by the authors of [RT07] and [CRT09]. We
have noticed that the algorithm from [CRT09] that refines RT goes in some
sense against the spirit of the original algorithm from [HHK95], which is the
main reason of its worse time complexity. We believe that this problem can
be circumvented and that it is possible to design an algorithm that matches
both the time complexity of the fastest simulation algorithm [RT07] and space
complexity of the most space efficient algorithm [CRT09].

21

4 S imula t ion-based Reduct ion of Tree
A u t o m a t a

Tree automata (TA) appear in many areas of computer science such as ver­
ification, structured documents processing, natural language processing, and
decision procedures of various logics, where they are used for modelling and
reasoning about structured objects such as configurations of complex systems,
algebraic term representations of data, computations, syntactical trees, X M L
documents, etc.—see, e.g., [CDG+07].

In many applications of tree automata, it is highly desirable to deal with
automata which are as small as possible in order to save memory as well as
time. In theory, one can always determinise and minimise any given (bottom-up)
tree automaton. However, the determinisation step may lead to an exponential
blow-up in the size of the T A and even if the minimal deterministic T A is small,
it might not be feasible to compute it in practice because of the expensive
determinisation step. Moreover, the minimal deterministic T A may still be
bigger than the original non-deterministic TA.

To avoid determinisation, a T A can be reduced (while preserving its language)
by identifying and collapsing states that are equal wrt. a suitable equivalence
relation. In the case of finite word automata, this method works well with re­
lations that respect language inclusion on states of an automaton (relations ^
such that q •< r implies that the language accepted at the state q is a subset of
the language accepted at the state r) . The well-known candidates are language
inclusion itself, simulation, and bisimulation. Here, a natural trade-off between
the computational cost and reduction power arises. Computing language inclu­
sion is PSPACE-complete for FA and even EXPTIME-complete for TA, which
is too costly. Bisimulation can be computed very efficiently in time 0{m\og{n))
(see [Hop71, PT87, Val09]) where n is the number of states and m the num­
ber of transition of the automaton. However, bisimulation relations are usually
quite sparse and thus only of a limited reduction capability. Simulation seems
to be a good compromise between the above two. It can be efficiently checked
in polynomial time 0(mn) (see [GPP03, HHK95, RT07, CRT09]) and often ap­
proximates language inclusion relatively well which gives it a good reduction
power.

In this chapter, we start by considering a basic notion of tree simulation,
called downward simulation [ALdR05], corresponding to a natural extension of
the usual notion of simulation defined on word automata to automata on ordered
trees. This relation can be shown to be compatible with the tree language
equivalence.

The second notion of simulation that we consider, called upward simulation
[ALdR05], corresponds intuitively to a generalisation of the notion of back­
ward simulation to tree automata. The definition of an upward simulation is

22

parametrised by a downward simulation: Roughly speaking, two states q and
q' are upward similar if whenever one of them, say q, considered within some
vector (qi,..., qn) at position i, has an upward transition to some state s, then
q' appears at position i of some vector (q[,... ,q'n) that has also an upward
transition to a state s' which is upward similar to s, and moreover, for each
position j / i, qj is downward similar to q'y

Upward simulation is not compatible with the tree language equivalence. It
is rather compatible with the so-called context language equivalence, where a
context of a state q is a tree with a hole on the leaf level such that if we plug a
tree in the tree language of q into this hole, we obtain a tree recognised by the
automaton. However, we show an interesting fact that when we restrict our­
selves to upward relations compatible with the set of final states of automata,
the downward and upward simulation equivalences can be combined in such a
way that they give rise to a new equivalence relation, the so called mediated
equivalence, which is compatible with the tree language equivalence. This com­
bination is not trivial. It is based on the idea that two states q\ and q2 may
have different tree languages and different context languages, but for every t in
the tree language of one of them, say q\, and every C in the context language
of the other, here q2, the tree C[t] (where t is plugged into C) is recognised by
the automaton. Mediated equivalence is coarser than (or, in the worst case, as
coarse as) the downward simulation equivalence and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain three candidates for simulation-based equivalences for
use in automata reduction: mediated equivalence, downward simulation, and up­
ward simulation (Upward simulation may be used alone only when parametrised
by the identity. If the inducing relation is nontrivial, it may be used only to form
a mediated equivalence.). Then, we consider the issue of designing efficient algo­
rithms for computing these relations. A deep examination of downward and up­
ward simulation equivalences shows that they can be computed using essentially
the same algorithmic pattern. Actually, we prove that, surprisingly, computing
downward and upward tree simulations can be reduced in each case to computing
simulations on standard labelled transition systems. These reductions provide
a simple and elegant way of solving in a uniform way the problem of comput­
ing tree simulations by reduction to computing simulations in the word case.
The best known algorithm for solving the latter problem, published recently in
[RT07], considers simulation relations defined on Kripke structures. The use of
this algorithm requires its adaptation to labelled transition systems, which we
provided in Chapter 3. The combination of our reductions with the labelled
transition systems-based simulation algorithm leads to efficient algorithms for
our equivalence relations on tree automata, whose precise complexities are also
analysed in this chapter.

We continue the study by looking also at tree automata bisimulations that
are in fact special cases of tree automata simulations. Tree automata bisimu­
lations were studied in [HMM07a, AHK07]. They are computationally cheaper
than simulations, but they are usually quite sparse and thus have only a lim­
ited reduction power. However, it is possible to construct a mediated equiva­
lence by combining any downward relation (simulation, bisimulation, or iden-

23

tity) with any upward relation (simulation, bisimulation, identity). This results
in a scale of mediated equivalences suitable for reducing automata that offers a
fine choice between reduction power and computation cost. Moreover, the tree
automata bisimulation can be computed using the same LTS translations as we
have defined for tree automata simulations. The only difference is that after
translating a tree automaton into an LTS, we run on it an LTS bisimulation
algorithm instead of a simulation one. The algorithms for computing T A bisim­
ulation obtained this way are competitive with the specialised ones presented
at [HMM07a].

We have implemented our algorithms and performed experiments on au­
tomata computed in the context of regular tree model checking (corresponding to
representations of the set of reachable configurations of parametrised systems).
The experiments show that, indeed, the (bi-)simulation reduction framework
presented in this chapter really offers a fine choice of relations suitable for re­
duction tree automata with different reduction powers and computation costs.
Especially the coarsest mediated equivalence that arise by combining down­
ward simulation with upward simulation gives much better reduction than the
bisimulation-based methods from [AHK07, HMM07a].

Related work. As far as we know, our work [ABH + 08c] is the first work which
addresses the issue of computing simulation relations for tree automata. The
downward and upward simulation relations considered in this work have been
introduced first in [ALdR06] where they have been used for proving soundness of
some acceleration techniques used in the context of regular tree model checking.
However, the problem of computing these relations has not been addressed in
that paper. A form of combining downward and upward relations has also
been defined in [ALdR06]. However, the combinations considered in that paper
require some restrictions which are computationally difficult to check and that
are not considered in this work. Bisimulations on tree automata have been
considered in [AHK07, HMM07a]. The notion of a backward bisimulation used
in [HMM07a] corresponds to what can be called a downward bisimulation in
our terminology, while backward simulation from [HMM07a] corresponds to the
most restrictive variant of our upward simulation when the inducing relation is
the identity. The specialised algorithms for computing the bisimulations from
[HMM07a] have comparable complexities to our ones.

Outline. In Section 4.1, we give definitions of tree automata downward and
upward simulations and state their basic properties. We then discuss tree au­
tomata bisimulations viewing them as certain special cases as the tree automata
simulations. In Section 4.2, we introduce the principle of combining downward
and upward simulations to relations suitable for quotienting tree automata.
Then, in Section 4.3, we discuss properties of variants of the combined rela­
tions. Section 4.4 presents algorithms for computing all the proposed relations,
Section 4.6 describes our experimental results, and Section 4.6 finally concludes
the chapter.

24

4.1 Tree Automata Simulat ions and Bisimulations

We now present definitions of downward simulation and upward simulation
parametrised or induced by a downward simulation. Subsequently, we present
downward and induced upward bisimulation that are important special cases of
the simulations. We fix a tree automaton A = (T,,Q,A,F) for the rest of this
section.

4.1.1 Downward and Upward Simulat ion

Downward Simulation. A downward simulation D on A is a binary relation
on Q such that if qDr and (qi,..., qn) A q, then (n , . . . , rn) A r with qiDri
for each i : 1 < i < n.

Lemma 4.1. The set of all downward simulations on A is closed under reflexive
and transitive closure and under union.

Proof. Union: Given two downward simulations D\ and D2, we want to prove
that D = D\ U D2 is also a downward simulation. Let qDr for some q,r G Q.
then either qD\r or qD^r. Assume without loss of generality that qD\r. Then,
from the definition of downward simulations, whenever (g i , . . . , qn) —> q, then
there is a rule (r\,..., rn) A r with q{D\ri for a lH : 1 < i < n. As D\ C Z) gives
qiDri for all the positions i , D fulfils the definition of a downward simulation.

Reflexive closure: It can be seen from the definition of downward simulations
that the identity is a downward simulation. Thus, the union of the identity and
any downward simulation is a downward simulation.

Transitive closure: Let D be a downward simulation and let DT be its tran­
sitive closure. Let qDxr and (g j , . . . , g^) —> q. From qDxr, we have that there
are states q = q1,..., qm = r such that q1Dq2D ... Dqm. Therefore, from the
definition of downward simulations, there are also rules (q\,... ,g*) A q1,...,
(q?, • • •, Qn) ^ qm with q1D... Dqm, and qJD ... Dq™ for all i : 1 < i < n.
Thus, as DT is the transitive closure of D, we obtain qjDxqf1 for all z : 1 < i < n.
We have proved that DT fulfils the definition of downward simulations. •

Upward Simulation. Given a preorder D on Q, an upward simulation U in­
duced by D is a binary relation on Q such that if qllr, then

1. if (q\,..., qn) A q' with qi = q, 1 < i < n, then (n , . . . , r n) A r ' with
rj = r , q'Ur', and qjDrj for each j : 1 < j / i < n;

2. g G F r G F .

Notice that for any two preorders D\ and Z?2 with Z?i C D 2 , an upward
simulation induced by D\ is also an upward simulation induced by D2.

Lemma 4.2. Given a preorder D on Q, the set of all upward simulations induced
by D is closed under reflexive and transitive closure and under union.

25

Proof. Union: Given two upward simulations U\ and U2 induced by D, we
want to prove that U = U\ U U2 is also an upward simulation induced by D.
Let qUr for some q,r G Q, then either qU\r or qU^v. Assume without loss of
generality that qU\r. Then, from the definition of upward simulations, whenever
(qi,..., qn) —> q' with qi = q, then there is a rule (n , . . . , rn) —>• r' with q'U\r',
q' G F =4> r ' G F , and qjDrj for all j : 1 < j 7̂ i < n. As J7i C U gives q'Ur',
U fulfils the definition of upward simulations induced by D.

Reflexive closure: It can be seen from the definition that the identity is an up­
ward simulation induced by D for any reflexive downward simulation D. There­
fore, from the closure under union, the union of the identity and any upward
simulation induced by D is an upward simulation induced by D.

Transitive closure: Let U be an upward simulation induced by D and let UT
be its transitive closure. Let q1UTqm and (q{,..., q^) A r 1 with q1 = qj. From
q1UTqm, we have that there are states ql,...,qm such that q1Uq2U.. .Uqm.
Therefore, there are also rules (q\,..., q^) A r 1 , . . . , (g™,. . . , q™) A- rm with

proved that UT fulfils the definition of an upward simulation induced by D. •

Notice that Lemma 4.1 implies that there is a unique maximal downward
simulation D on A which is a preorder. We call it the downward simulation
preorder on A and we call the equivalence D n D - 1 the downward simulation
equivalence on A. Analogically, Lemma 4.2 implies that for a preorder D on
Q, there is a unique maximal upward simulation U induced by D which is a
preorder. We call it the upward simulation preorder on A induced by D and we
call the equivalence U n U~X the upward simulation equivalence on A induced
byD.

4.1.2 Downward and Upward Bisimulation

We first recall the well-known notion of bisimulation on labelled transition sys­
tems. Given an LTS T = (£ , Q,S), a relation R C Q x Q is a bisimulation on
T if for any two states q,r G Q, qRr implies that q A q' for some state q' if
and only if r A- r' for some r' with q'Rr'. In other words, a bisimulation on T
is a simulation on T such that its inverse is also a simulation on T• Tree au­
tomata bisimulations are defined in the same spirit, based on the tree automata
simulations.

Downward Bisimulation. A downward bisimulation D on A is a binary rela­
tion on Q such that if qDr, then (qi,..., qn) —> q if and only if (n, . . . , r n) —> r
with qiDri for each i : 1 < i < n. In other words, a downward bisimulation on
A is any downward simulation on A such that its inverse is also a downward
simulation on A.

Lemma 4 . 3 . The set of all downward bisimulations on A is closed under sym­
metric, reflexive, and transitive closure and under union.

26

Proof. The closure properties easily follow from Lemma 4.1 and the fact that D
is a downward bisimulation on A if and only if both D and Z ? _ 1 are a downward
simulations on A . Union of two bisimulations D\ and Z?2 is a downward bisim­
ulation, because from Lemma 4.1, D\ U D2 is a downward simulation as well as
Z?1~1UZ?^"1 and because, obviously, (L q U Z ^) - 1 = -D 1" 1UZ?^" 1. Reflexive closure
.D U id of a downward bisimulation D is a downward bisimulation because the
identity id is apparently a downward bisimulation and downward bisimulations
are closed under union. Transitive closure of D is a downward bisimula­
tion since by Lemma 4.1, both DT and the transitive closure (D~1)T of D ~ L

are downward simulations and D ^ , 1 = (D~1)T (transitive closure of the inverse
equals inverse of the transitive closure). Finally, the symmetric closure DUD~L

is a downward bisimulation since both D and Z ? _ 1 are downward bisimulations
and downward bisimulations are closed under union. •

Upward Bisimulation. Let D be a preorder on Q. A n upward bisimulation U
on A induced by D is a binary relation on Q such that if qUr, then

1. (g i , . . . , qn) A q' with % = q, 1 < i < n, if and only if (n , . . . , r„) A r '
with rj = r, q'Ur', and OjZ? n D_1Vj for each j : 1 < j 7̂ i < n;

In other words, upward bisimulation on A induced by D is a relation U such
that both £/ and C / _ 1 are upward simulations on A induced by D n Z ? - 1 .

We note that the notion of an upward bisimulation induced by the identity
relation corresponds to the notion of a forward bisimulation from [HMM07a].

Lemma 4.4. Given a preorder D on Q, the set of all upward bisimulations
induced by D is closed under symmetric, reflexive, and transitive closure and
under union.

Proof. The lemma follows from Lemma 4.2 and from the fact that U is an
upward bisimulation on A induced by D if and only if both U and C / _ 1 are
upward simulations on A induced by D n Z ? - 1 . The reasoning is the same as in
the proof of Lemma 4.3. •

Lemma 4.3 implies that there is a unique maximal downward bisimulation on
A which is an equivalence. We call it the downward bisimulation equivalence on
A . Analogically, Lemma 4.4 implies that for a given preorder D on Q, there is
a unique maximal upward bisimulation induced by D which is an equivalence.
We call it the upward bisimulation equivalence on A induced by D.

The fact the tree automata bisimulations are tree automata simulations of
some type such that their inverses are also simulations of the type allows us
to simplify some further reasoning by handling bisimulations as special cases of
simulations.

27

4.2 Combined Relations for Quot ient ing

In this section, we will work towards quotienting tree automata using the tree
automata simulations. Quotienting a tree automaton according to an equiva­
lence relations means to collapse equivalent states, as formally defined below.

Quotient Tree Automata. Consider a tree automaton A = (E,Q, A, F) and
an equivalence relation = on Q. We denote [q] the equivalence class of = contain­
ing q. The quotient of A according to = is the T A A/= = (E, Q/=, A / = , {[q] \
q G F}) where A / = = {(([qi],..., [qn]), a, [q]) | ((qi,...,qn),a,q) G A } . In­
tuitively, we collapse all states which belong to the same block into one state
of the quotient automaton, there is a transition in the quotient automaton iff
there is a transition between states in the corresponding blocks in the original
TA, and a block is accepting iff it contains a state which is accepting.

Obviously, L(A) C L(A/=) and also for any two equivalences =1 and =2 on
Q such that =1 C = 2 , L(A/=i) C L(A/=2)-

Quotienting tree automata w.r.t. any downward simulation equivalence pre­
serves the language, but, surprisingly, this is not the case for upward simulations
(except the cases when the inducing preorder is the identity relation, as we show
later). However, an upward simulation U can be still used for quotienting in an
indirect manner. We can combine it with its inducing downward simulation D
into the so called mediated preorder, which is certain fragment of the relation
composition D o [7 _ 1 that include the inducing downward simulation D and a
part of the inverted upward simulation U (plus some additional elements). The
mediated preorder then yields an equivalence which is suitable for quotienting
tree automata while preserving the language.

4.2.1 Runs and Simulations

Before we present the mediated preorders, we will state the basic connections
between runs of tree automata and the tree automata simulations, which are in
our setting the most essential properties of the simulations. For this, we will
make use of the notion of context. For the rest of this section, let us fix a tree
automaton A = (E, Q, A, F).

Contexts. Intuitively, a context is a tree with "holes" instead of leaves. For­
mally, we consider a special symbol • G" E with rank 0. A context over E is a
tree c over E U {•} such that for all leaves p G c, we have c(p) = • . We extend
the notion of runs to contexts. Let c be a context with leaves v\,..., vn (in the
usual lexicographic order). A run TT of A on c from (qi, • • • ,qn) is defined in a
similar manner to a run on a tree except that for each leaf Vi, we have ir(vi) = qi,
1 < i < n. In other words, each leaf Vi labelled with • is annotated by qi. We
use c [qi,..., qn] =4> q to denote that ir is a run of A on c from (qi,..., qn) such
that 7r(e) = q. The notation c[q\,... ,qn] q is explained in a similar manner
to runs on trees.

28

The following lemma intuitively says that backward simulation implies "down­
ward context language" inclusion. This is, the set of contexts accepted at a sim­
ulation bigger state is a superset of the set of contexts accepted at a downward
simulation smaller state. Moreover, runs ending at the simulation bigger state
in a sense downward simulate (on the level of leaves) corresponding runs ending
at the smaller state.

Lemma 4 . 5 . Let D be a downward simulation on A. If c[q\,..., qn] =>• q and
qDr, then there are states r\,..., rn such that for each i with 1 < i < n, qiDri,
and c [r i , . . . , rn] =>• r.

Proof. By induction on the height of c. The base case when c is just a single
hole is trivial. For the induction step we consider that c contains more than one
node. We know that c[q\,..., qn] =4> q for some ir. Let c(e) = a. Furthermore,
we know that there are q[,..., q'm such that (q[,..., q'm) A q, and 7r(i) = q\
for each i with 1 < i < m. In other words, the run labels the root with q,
and labels the children of the root with q[,... ,q'm, respectively. This means
that for all i : 1 < i < m, Ci[qni_1+\,..., qni] =^> q[where q is the ith subtree
of c, 7Tj is the restriction of TT to q , no = 0, and nm = n. Since qDr, we
know that there are r[,..., r'm such that (r[,..., r'm) A r and q\P>r\ for each
i,l < i < m. By the induction hypothesis, it follows that for each i, 1 < i < m,
there are states rni_1+\,... ,rni such that for each j,nj_i + 1 < j < tii, qjDrj
and Ci[rni_1+1,r„J = ^ r\. Hence c[ri, ...,rn] =4> r. •

The following lemma is an upward simulation counterpart of Lemma 4.5.
Intuitively, it says that upward simulation induced by downward simulations
imply "upward context language" inclusion. This is, that the set of contexts
accepted from an upward simulation bigger state is a superset of the set of
contexts accepted from an upward simulation smaller state. Moreover, runs
from the simulation bigger state in a sense simulate (downward on the level of
leaves and upward on the level of roots) corresponding runs from the simulation
smaller state.

Lemma 4 .6 . Let U be an upward simulation induced by a downward simulation
D. If c[qi,... ,qn] =í> q and qiUri for some 1 < i < n, then there are states
n , . . . , Ti-i, r j+i , . . . ,rn,r such that qjDrj for each j : 1 < j ^ i < n, qUr, and
c [r i , . . . ,r„] = ^ r.

Proof. We use induction on the structure of c. The base case is trivial since the
context c consists of a single hole. For the induction step, we assume that c
is not only a single hole. To simplify the notation, we assume (without loss of
generality) that i = 1. Suppose that c[q\,... ,qn] q for some run ir and that
qiUri. Let p be the parent of the leaf p\ labelled by q\ and let p\,... ,pm be its
children. Let cp be the subtree of c rooted at p. Notice that for all i, 2 < i < m,
Ci[qni_1+\,... ,qnj] =4> q[, where q is the subtree of c rooted at pi, n\ = 1
and nm = k for some k < n. Let q' = ir(v) and let c' be the context c with
the subtrees rooted at v\,..., vm deleted. In other words, dom(c') = dom(c) \
\JT=iiPiP' I P' e N*}, c'{v') = c(v') if v' G dom(c'), and c'{v) = • . Observe

29

Cl Cl

(a) T h e Mediator

Ci Ci
(b) Potential Problems

Figure 4.1: B a s i c Intuition B e h i n d M e d i a t e d P r e o r d e r

that c'[q', qk+i, • • • ,qn] =>• q and that (q\, q'2,..., q'm) A for some a. By the
definition of the upward simulation and the premise q\Uri, it follows that there
are r2,..., r'm, r' such that q'2Dr2,..., q'mDr'm, q'Ur', and (n,r2, ...,r'm)
Since d is smaller than c, by the induction hypothesis, there are rk+i, • • •
such that qk+iDrk+i, • qnDrn and c'[r', rk+i, • • ., rn] => r. For each
i < m, we have q'^Dr^, and thus by Lemma 4.5, there are states rni_l+i,.
such that for each j, m-\ + 1 < j < m, q'jDr'j and C j [r n i _ 1 + i , . . . , r „ J =
The claim follows immediately.

a

—> r .
,rn,r
i,2 <

• • i frit

r'.
•

4.2.2 Mediated Preorder

Collapsing states of an automaton wrt. some equivalence allows a run that
arrives to some state to jump to another equivalent state and continue from
there. The equivalence must have the property that the language is not increased
even when the jumps are allowed. This is what we aim at when introducing
the mediated equivalence =M, the largest symmetric fragment of a so called
mediated preorder M. The mediated preorder M will in particular be defined
as a suitable transitive fragment of D o [7 _ 1 in the following, where D is a
downward simulation and U an upward simulation induced by D.

The intuition behind allowing a run to jump from a state q to a state r such
that qD o U~1r is an existence of the so called mediator, i.e., a state s such that
qDslI~1r (cf. Figure 4.1(a)). By Lemma 4.5, any context ci accepted at q can
be accepted also at s, and by Lemma 4.6, any context C2 accepted from r can be
accepted from s too (with s appearing at the same position of C 2 as r). Hence,
intuitively, the newly allowed run based on the jump from r to q does not add
anything to the language because it can anyway be realised through s without
jumps.

The relation D o [7 _ 1 is not a preorder, therefore, to build an equivalence for
quotienting, we first take some of its transitive fragments. This is natural as if
the automaton can safely jump from q\ to q2 and from q2 to ^3, it should be
able to safely jump from q\ to q% too.

30

However, not all of the transitive fragments of D o U can be used for quo-
tienting due to some phenomena that arise when we allow runs to jump re­
peatedly (merging two states is equivalent to allowing arbitrary many jumps
between them). A sufficient property that guarantees that a preorder can be
used for quotienting is downward extensibility—a preorder M C D o [7 _ 1 is
downward extensible if for any three states, it holds that whenever qxMqiDiq^,
then qiMq%. The intuitive meaning of this requirement is the following. On
Figure 4.1(b), we denote IT a run on the joined contexts c\ and C2 that jumps
at some node v from a state q to a state r, and we denote IT' a run on the same
joined context that labels v by s. It may be the case that such a jump from q
to r is in 7r also done at some node w that appears (i) bellow v or (ii) in the
context of v (this my happen if r appears below r or in the context of itself,
cf. Figure 4.1(b)). In case (i), the mediated preorder assures that the run TT'
labels w by some state y that downward simulates r (by Lemma 4.5). Similarly,
in the case (ii), the run 7r' labels w by some state y that downward simulates
r (by Lemma 4.6). However, when allowing jumps, then in the case (i), s is
not guaranteed to downward simulate q and there may be contexts accepted at
q but not accepted at s; and in the case (ii), s is not guaranteed to upward
simulate r and there might be contexts accepted from r but not accepted from
s. In order to circumvent this problem, we require that if the computation is
allowed to jump from q to r, than for any state that can appear in the role of
y in our example, this is, for any state y with rDy, the computation is allowed
to jump from y to q too. In other words, we require that qMrDy implies qMy,
which is our downward extensibility condition.

Combination Operator. We now introduce a relation combination operator ©,
which we will use to combine downward and inverted upward simulations into
mediated preorders. For the sake of generality, we will define it on arbitrary
preorders as follows.

Given two preorders D and U over a set Q, for x, y G Q, x(D © U)y iff
(i) x(D o U)y and (ii) \/z G Q : yDz x(D o U)z.

The following lemma states properties of the combination operator that show
that when using it to combine a downward simulation and an inverted upward
simulation, it has all the properties (including downward extensibility) that
allow us to use the result as a mediate preorder.

Lemma 4.7. For any preorders D, U over a set Q, D ®U is a preorder and it
is a unique maximal preorder satisfying D C D © U C D oU.

Proof. Let M = D © U and C = D o U. To make the proof compact, we first
prove the following auxiliary claims. For any x,y,z G Q:

1. xCy =^ xDwlIy for some w G Q. This follows directly from the
definition of C.

2. xDyCz xCz. From yCz and (1), we have yDwl/z for some w G Q.
From xDyDw, we have xDw. From xDwUz and from the definition of
C, we have xCz.

31

3. xMyDz =4> xCz. This follows directly from the definition of M.

4. xCyUz =>• xCz. From xCy and (1), we have xDwl/y for some w G Q.
From wUyUz, we have wllz. From xDwlIz and (2), we have xCz.

5. xMyCz =4> i C z . From yCz and (1), we have yDwlIz for some u> G
Q. From xMyDw and (3), we have xCw, which together with (1) gives
xDvlIw for some v G Q. From vUwlIz, we have vJ7z and so vCz (as
U C. C), which together with xDv and (2) gives xCz.

To prove the claim of the lemma, we will first argue that D C M C C. The
second inclusion trivially follows from the definition of ffi. For the first inclusion,
we will show that for any x,y G Q with xDy, xMy holds. As D C C, we have
that xCy, which means that Condition (i) from the definition of © is fulfilled. To
satisfy Condition (ii), we have to show that for arbitrary z G Q such yDz, xCz
holds. From transitivity of D and from xDyDz, we have xDz, which together
with DCC implies that xCz. Thus, since even Condition (ii) is fulfilled, we
have xMy, and the first inclusion is proved.

We will now prove that M is a preorder. We first prove by contradiction
that M is transitive. Suppose that there exist x,y,z G Q such that xMyMz,
but not xMz. Recall that M C C. From (1), we have xDwUyDvlIz for some
v,w G Q. From xMyDv and (3), we have xCv. From xCvlIz and (4), we have
xCz. From the definition of ffi, xCz together with not xMz imply that there is
some q G Q such that xCzDq, but not xCq. From yMzDq and (3), we get yCq.
Then xMyCq and (5) gives xCq, which is a contradiction. We have proved that
the relation M is transitive. Showing that M is also reflexive is immediate as
we already know that D C M and that D is reflexive. Thus, we have proved
that M is a preorder.

Finally, we will show that M is a unique maximal preorder between D and C,
in other words, that any preorder R with D C R C C is a subset of M. For the
purpose of contradiction assume there are x,y G Q with xRy and ^xMy. Since
- •xMy, there is some z with yDz and —*xCz (Condition (ii) from the definition
of © is not satisfied). The inclusions D C R C C together with yD and —*xCz
give yRz and ^xRz. We have xRyRz and ^xRz, which contradicts transitivity
of R. •

4.2.3 Quot ient ing with Mediated Equivalence

Consider a tree automaton A = (T,,Q, A, F), a reflexive and transitive down­
ward simulation D on A, and a reflexive and transitive upward simulation U
induced by D. We call the relation M = D © C / _ 1 a mediated preorder induced
by D and U and = m = H M _ 1 a mediated equivalence induced by D and U.

We will show that quotienting A with respect to = m preserves the language.
For a state r E Q, & set B C Q of states, and a relation R C Q x Q, we write
.B-Rr to denote that there is g G .B with qRr.

Lemma 4.8. For B\,..., Bn, B G Q/=M and a context c, if c[B\,..., Bn] =>
.B, then there exist states r\,... ,rn,r G Q with BiDri,..., BnDrn, BUr, and
c [r i , . . . , rn] r . Moreover, if B n F 7̂ 0, t/ien r G F .

32

Proof. The claim is shown by induction on the structure of c. In the base case
when c consists of a single hole. We choose any q G B n F provided that
B n F 7̂ 0, and any q E B otherwise. The claim then holds obviously by
reflexivity of D and U.

For the induction step, we assume that c is not only a single hole. Suppose
that c[Bi,..., Bn] =4> B for some run ir. Let p by some non-leaf node with
children Vk, • • • ,vi,l < k < I < n that are all leaves (there has to be such a
node since the tree dom(c) is finite). Note that Bk = 7r(vk), • • •, B[= TT(VI). Let
B' = ir(v) and let d be the context c with the leaves vk, • • •, vi deleted. In other
words, dom(c') = dom(c) \ {vk, • • • ,vi}, c'(v') = c{v') provided v' G dom(c') \
{v,vk, • • -,vi}, and c'(v) = • . Note that c'[Bi,..., Bk-i, B', Bi+1, ...,Bn] =>
B. Since d is smaller than c, we can apply the induction hypothesis and con­
clude that there are states v, q', and q\ for each i G { 1 , . . . , k — 1,1 + 1,.. . , n}
with BjDq'i, B'Dv, and BUq' such that d[q[,..., q'k_1, v, q[+1, • • •, q'n] =^ q'
and, moreover, if B n F ^ 0, then q' G F. It follows that there are u G
B', q G B and for each i G { 1 , . . . , k — 1,1 + 1,..., n}, qi G Bi, such that
uDv, qUq', and q%F)q\. By the definition of A/=M, there are states % G
- B ; , . . . , qk G Bk, and z G B' such that (%, • • •, Ql) A z for some a. Since
D C M and uDv, we get uMv. Since m , z £ S ' , it follows that u =M Z
and hence zMu. From transitivity of M, we get zMv. From the definition
of M, there is a mediator w such that zDw and vllw. By the definition
of downward simulation and premises zDw and (qk,... ,qi) A z, there are
states rk, • • •, n with qkDrk, • • •, qiDri, and (r^,. . . , n) A iu. By Lemma 4.6
and premises v[/u> and c'fq^,. . . , u, • • •: l'n] 9'j there are states r
and rj for each i G { 1 , . . . , k — 1, Z + 1,.. . , n} such that q^Dri, q'Ur, and and
c ' [r i , . . . , rfc_i, to, n + i , . . . rn] r. By transitivity of D and U, we get giL'rj
and qUr. Finally, we know that if B n F 7̂ 0, then q' £ F which together with
g't/r gives r £ F. The claim thus holds. •

Lemma 4.9. For a tree t, if t B, then t =4> w for some w with BUw.
Moreover, if B D F 7̂ 0, £/ien afeo w <E F.

Proof. Suppose that t F for some ir. Let u i , . . . , vn be the leafs of t, and
let 7r(vi) = Bi for each i : 1 < i < n. Let c be the context that we get
from t by deleting the leaves v\,..., w„. Observe that c[Bi,..., F„] B.
It follows from Lemma 4.8 that there exist states r\,... ,rn,r G Q and q\ G
B1,...,qn G G F such that q1Dr1,... ,qnDrn,qlIr, c[ri,... ,rn] =^ r,
and if B n F 7̂ 0, then r G F . By the definition of A/=M, it follows that there
are ^ G B\,...,q'n G F „ , and a i , . . . ,an such that ^ for each i such that
1 < i < n. We show by induction on i that for each i : 1 < i < n, there are states
u\,..., u\,vl

i+l,... X , y;1 with q[Du\,q[Bu% qi+1Dv\+1,qnDvl

n,rUw\
and c[u\,... ,u\, ...,vn] wl. The base case where i = 0 is triv­
ial. We consider the induction step. Since D C M and qi+\Dvi+\, we get
qi+iMvi+i. Since G F-j+i, we have that q'i+1 =M <Zi+i a n d hence
q'i+iMqi+i. By transitivity of M , it follows that q'i+lMvi+\. By the definition of
M , there is Zj+i such that q'i+1Dzi+\ and Uj+if/^j+i. By Lemma 4.6, there are
zi,...,Zi,zi+2,...,zn,z with u\Dz\,... ,u\Dzi, v\+2Dzi+2, • • •, vl

nDzn, wlUz,

33

and c[zi,..., zn] =>• z. By transitivity of D and the premises QjDu) and U^DZJ.

we have q'jDzj for each j : 1 < j < i. By transitivity of D and the premises
qjDvj and v^Dzj, we have qjDzj for each j : i + 2 < j < n. Define tt*+1 = Zj
for j : 1 < j < i + 1, = for j : i + 2 < j < n, and u>*+1 = z.

The induction proof above implies that c[tt™,..., tt™] u>n. From the defini­
tion of the language inclusion preorder and the premises q[and q^Du^, it fol­
lows that tt™ for each i : 1 < i < n. It follows that t = c[a\,..., an] =^ wn.
By the definition of U and the fact that r £ F if it follows that for
all i : 1 < i < n, wl G F provided that B P\ F ^ ®. Thus, in the claim of the
lemma, it suffices to take w = wn. •

Theorem 3. L(A/=M) = L(A).

Proof. The inclusion L(A/=M) 2 L(A) is trivial. Let t G L(A/=M), i-e.,
t B for some block B where B n F ^ 0. Lemma 4.9 implies that t =^ w
such that w £ F. •

Note that the theorem also covers the case of reducing automata using down­
ward simulations (and bisimulations) alone. Indeed, given any downward sim­
ulation D, the identity is always an upward simulation induced by D. Then,
the combined preorder D(B id-1 equals D, which means that we can reduce the
automaton using =o- In particular, this covers as special cases the proofs of
correctness of reducing automata using downward bisimulations and simulation
equivalences stated in [ABH + 08c].

Corollary 1. L(A/=D) = L(A) for the downward simulation equivalence =D
on A.

4.3 Variants of the Combined Relation

Theorem 3 and Lemmas 4.3 and 4.4 allow us to consider a spectrum of relations
suitable for reducing tree automata. We now examine properties of the relations
from this spectrum that arise when we consider the identity, the downward
bisimulation equivalence, and the downward simulation preorder as the inducing
relation D for both the upward bisimulation equivalence and upward simulation
preorder.

In this section we use a special notation to systematically distinguish various
types of mediated preorders. The notation consists of two parts: a relation
symbol and an additional symbol above the relation symbol. The relation sym­
bol denotes the type of the inducing preorder. Namely, = denotes the identity,
~ denotes the downward bisimulation equivalence, and ^ the downward sim­
ulation preorder. The additional symbol then denotes the type of the upward
relation. We use • for the upward bisimulation equivalence and o for the upward
simulation preorder. No additional symbol corresponds to the maximum equiva­
lence embedded in the downward relation itself—the downward (bi-)simulations
can be viewed as mediated equivalences where the role of the upward relation
is played by the identity. For example, ^ denotes the mediated equivalence

34

(D @U 1)n(Z?®C7 1) 1 where D is the downward simulation preorder and U
is the upward simulation preorder induced by D.

Ordering the Mediated Preorders wrt. their Coarseness. From the definition
of a combined preorder, it clearly follows that, for a fixed inducing relation D.
if we are choosing the type of the upward relations U from the strongest one to
the coarsest one, i.e., starting from the identity and going through the upward
bisimulation induced by D to the upward simulation induced by D, we obtain
coarser and coarser combined preorders D © J7 _ 1 .

On the other hand, if the inducing preorder D is growing, the situation is
different. From the definition of the upward simulation and bisimulation, we can
see that the upward simulation preorder/bisimulation equivalence U induced by
D and thus also the relation D o [7 _ 1 are growing too. But, when computing
D © C / _ 1 by pruning D o C / _ 1 , the larger relation D means that more pairs are
to be pruned since they are violating Condition (ii) from the definition of ©.
In general, having two downward simulations D\ and D2 with D\ C D2, we
are guaranteed that the upward simulation preorder/bisimulation equivalence
U\ induced by D\ is included in the upward simulation preorder/bisimulation
equivalence U2 induced by D2. Therefore, we know that D\ o U^1 C D2 ° U^1,
but the combined preorders D\ © U^1 and D2 © U^1 can be in any relation
w.r.t. set inclusion or incomparable (although, in our experiments, the former
one usually is included in the latter one).

Based on these observations, we obtain the partial ordering of all the consid­
ered types of combined equivalences according to inclusion which is depicted in
Figure 4.2. For a tree automaton A , we denote by =(A) the combined equiv­
alence of type = on A . In the figure, the line from =1 up to =2 means that
for any automaton A , =i(.4) C =2 (.4). It is not hard to find an automaton
A showing that all these relationships are strict, i.e., such that for each of the
edges in the figure, =i(.4) C =2(A). We construct such an automaton in Ex­
ample 1. Most of our tree automata examples in this section use just leaf and
unary rules, therefore they may be drawn in the same way as is usual for word
automata.

o o

i l l

Figure 4.2: Coarseness of various types of combined equivalences

Example 1. Let Q = {q,r,s,t,u,v,w,x,y,z} be a set of states and let E
be a ranked alphabet such that Eo = {1} and E i = {a, 6, c}. The automaton
A = (E, Q, A i , {x}) proves strictness of the relations in Figure 4.2. For each

35

(a) A i

(b) A 2 (c) A 3

Figure 4.3: Transition relations of automata proving the non-inclusion relationships
from Figure 4.2, and of an automaton proving that it is not safe to use mediated
equivalences that arise from preorders included in the language inclusion preorder that
are not downward simulations.

two types of relations from Figure 4-2 such that =2 is above =\, =i(A) C =2{A)
holds. The transition relation A \ is depicted in Figure 4.3(a). In the table be­
low, there are listed the appropriate mediated equivalences for all the combina­
tions of the considered types of inducing and induced relations. For each type
of combination, we list nontrivial equivalence classes of the resulting mediated
equivalence:

=• U, r, s} ~: {t, u}, {q, r,s} 3 : {t, u, v}, {q, r, s}, {x, z}
=: {r, s} ~: {t, u}, {r, s} A : {t, u, v}, {r, s}
=: ~: {t, u} {t, u, v}

It is now easy to check that for the automaton A , all the inclusions from
Figure 4-2 are strict. •

To complete the picture, we need to show that the types of combined relations
that are not connected in Figure 4.2 are really incomparable. In Example 2, we
construct automata Ai, A2 such that for each pair =1, =2 of types of mediated
equivalences that are not connected in Figure 4.2, neither = i (A) C =2 (A) nor
= i (A) 2 = 2 (A) holds for some i G {1,2}.

Example 2. Let Q = {q,r, s,t,u,v} be a set of states and let E be a ranked
alphabet such that So = {1} and E i = {a, 6, c}. All the incomparability re­
sults show up taking automata Ai = (Q \ {v}, E , A 2 \ {v A q}, {u}) and A2 =

36

(E, Q, A 2 , {u}) where the transition relation A 2 is depicted in Figure 4-3(b).
One can easily check that =(Ai) and =(Ai) define just one nontrivial equiva­
lence class {r, s} and thus they are incomparable with ~(Ai), ^(Ai), ^i(Ai) that
define only one nontrivial equivalence class {g, r}. In the case of the automaton
A2, the added transition v A g distinguishes the downward simulation from the
downward bisimulation. Analogically as for Ai, we have that ~ (A) and ~(A2)
define just one nontrivial equivalence class {r, s} and thus they are incomparable
with •< (A2) and ^ (A) that define only one nontrivial equivalence class {q,r}.
This gives all the incomparability relationships. •

According to our experiments presented in Section 6.5, the reduction capabil­
ities are rising when we move in Figure 4.2 not only in the bottom-up direction,
but also in the left-right direction. As a trade-off, the computational complexity
of constructing the relations is rising in the same way from the bottom to the
top and from the left to the right.

Impossibility of Relaxing the Need of Downward Simulations. It is easy to
see that when not considering combined relations (and when not thinking of the
computational complexity), one can replace the use of downward simulations in
reducing the size of tree automata by a use of any preorder which is included in
the so called language inclusion preorder LP- ((g, r) G LP- <̂ =4> L(g) C L(r)).
A natural question comes forward: Is it also possible to induce (and combine
by ©) an upward simulation with any preorder included in LP—? Here, we
give a negative answer. Not all preorders included in LP- can be used within
the operator © for reducing automata. We prove this claim by the following
counterexample.

Example 3. Consider an automaton A = (E , Q , A 3 U {\ x | x G Q},F)
where Q = {g,r, s,t,u}, So = {I}, E i = {a}, A3 is depicted in Figure 4-3(c),
and F = Q. Let us choose the relation R = id LI {(g,r), (r,t), (q,t)}, which is
apparently contained in LP-, as the inducing preorder. Notice that since we deal
here only with unary and leaf symbols, upward simulation and bisimulation do
not depend on the inducing relation. We can choose the relation U = idU{(q,t)}
as an reflexive and transitive upward simulation induced by R. Then, we obtain
R o [7 _ 1 = R U U~x U {(r, g)}. The pair (r, g) is present in Ro U~x because of
rRt and qUt. Let M = R® U~x be the mediated preorder. R o [7 _ 1 itself is
already a preorder, and therefore M = Roll-1. We have obtained an equivalence
class {g, r} of M n M _ 1 . This means that the quotient automaton A/M n M~l

contains the rule {q,r} A {q,r}. This definitely changes the language, since
A does not contain loops (accepts only finitely many trees), but the language of
A/M n M _ 1 is infinite.

Observe that if we take a downward simulation as the inducing preorder, such
a situation does not arise. The problem above is caused by the presence of
(r, g) in R o U-1, which is enabled by rRt. If R was a downward simulation
containing (r,t), then R would have to contain even (q,s) from the definition
of a downward simulation. So, we would get r(R® U~1)qRs which according to
Condition (ii) of the definition of® enforces r(RolI~1)s. However, r(RolI~1)s

37

does not hold for any pair of an inducing downward simulation R and an induced
upward simulation U (not even when one considers the maximal ones), and so
the pair (r, q) is not present in any mediated preorder, and we are never allowed
to collapse q and r. •

Mediated Bisimulation contra Forward Followed by Backward. In [HMM07a],
the following straightforward approach to combining downward and upward
bisimulations is presented: Compute a quotient automaton w.r.t. downward
bisimulation equivalence and reduce it again using upward bisimulation equiva­
lence induced by identity, or alternatively, proceed the other way around (com­
pute quotient w.r.t. upward bisimulation equivalence induced by identity and
then compute quotient of the result w.r.t. downward bisimulation equivalence).
One could ask whether this approach gives different results from our mediated
bisimulation ~ (this question was in fact asked during the presentation of our
work [ABH+09] at CIAA'08). We give an answer in Example 4 where we show
that all the three techniques are in general incomparable.

Example 4. For each of the three reduction techniques, we now present an au­
tomaton such that reducing it by the particular reduction technique gives better
result (i.e., the resulting automaton has less states) than reducing it by the other
two techniques. The automata were automatically generated using a random au­
tomata generator thus they are perhaps not the smallest possible ones. We have
checked validity these of counterexamples using our implementation the three
methods. The automaton A\ = (Qi,£1, A i , Q \) can be reduced most when us­
ing composed bisimulation, in the case of the automaton A2 = (Q2, £2, A2, Q2),
using forward bisimulation reduction followed by forward (downward) bisimu­
lation reduction is the best, and the automaton A% = (Q3, £ 3 , A 3 , Q3) can be
reduced most using forward (downward) bisimulation reduction followed by for­
ward bisimulation reduction. The sets £1, £2, £ 3 , Qi, Q2, Q3, A i , A2, A 3 look as
follows:

Qi = fe,9o,9i,92,93,94,^,ro,ri,r2,r3,r4},£i = {x,a,b,c,d}

A ,

c

qo
c

d

d d x d d

qo -> qi, 92~>9i, rx->rx, r i - > r 0 , r1 -> r 2 ,

qo A qo, 92 A qo, r 4 A rx, r 0 A r 0 , r 0 A r 2 ,

qi A 94, 93 A q^, r 3 A rx, r 4 A n, r 4 A r 3 ,

q2 A 93, 93 A 92, r 3 A rx, r 3 A r2, r2 A r 3 ,

q2 A qi, q3 A q2, r 0 A- r 0 , r i A- r2, r2 A r3,

q2 A qo, q3 A qi, r 3 A r 0 , r 0 4 r 2 , n A r 3 ,

92 ̂ > 93, 93 ̂ > 9o, n A r 0 , r 3 A r2, r 0 -4 r 3 ,
d d d d d

92 -> 92, 94 -> 94, r 2 -> r 0 , r 2 -> r 2 , r 4 -> r 4

Q2 = Qz = {qo, 9i, 92}, £2 = £ 3 = {a, b, c, d}

38

A i :

A 92, q2 A qi, q2 4 qi,

A 9i, Qi >̂ q2, q2 -> 92,

-> 9i, qi >̂ 9i, 90 -> 90,

92, 9i ̂ > 90 , 90 >̂ 9i

9o ̂ > 9i,

A 2 :
a c
-> 91, 91 ->
a c
-> 92 , 90 ->
6 c

91, 92 ->
6

-> 92,

91 -> 92,
d

91 -> 91,
d

9i -> 90,
d

•
On the other hand, in all our test cases, backward bisimulation followed by

forward bisimulation behaved in a very similar way to composed bisimulation—a
more thorough experimental comparison is to be done in the future.

We also note that applying the forward and backward bisimulations in suc­
cession has the advantage that the second relation is computed on a smaller
input automaton, and that the algorithm for computing upward bisimulation
induced by identity from [HMM07a] is asymptotically slightly faster than our al­
gorithm for computing general upward bisimulation (induced by any preorder),
presented in Section 4.4.6. On the other hand, our algorithm is more generic
and can be very easily implemented within the general framework for computing
tree automata simulations and bisimulations presented in Section 4.4.

Upward Simulation Equivalences Cannot be Used For Quotienting. As we
have mentioned at the beginning of Section 4.2, induced upward simulation
equivalences cannot be always safely used for quotienting. This shows Example 5
where quotienting w.r.t. upward simulation equivalence induced by downward
bisimulation equivalence extends the language.

Example 5. Let A = (E,Q,A,F) be an automaton where Q = {q,r,s,t,/},
E = {a, b, c], F = {/} and A is given as follows:

A 9, (s,q) ^> /,
A s, (q,r) A /,

A r, (r, t) A /,

-> t

We have that q and s are downward bisimilar and r and t are downward bisim-
ilar. Therefore, q and r are upward simulation equivalent w.r.t. the upward
simulation equivalence =JJ induced by the downward bisimulation equivalence.
Observe that if we merge states q and r, the quotient automaton A/=u will ac­
cept the tree c(b,a), however, L(A) = {c(a,a),c(a,b),c(b,b)} does not contain
c(b,a). •

A note on word automata. We note that all the above results (except Exam­
ple 5) carry over to word automata. The inclusion properties from Figure 4.2
hold for word automata too since they can be seen as a special case of tree
automata. Moreover, our automata examples proving strictness of the relation­
ships and incomparability relationships are built using just leaf and unary rules,
and so they are valid for word automata as well.

39

4.4 Comput ing the Proposed Relations

In this section, we give algorithms for computing the tree automata simulation
preorders and bisimulation equivalences. The algorithms are based on trans­
lations of tree automata simulation and bisimulation problems into problems
of computing maximal simulation or bisimulation on labelled transition sys­
tems. This is, we translate tree automata into labelled transition systems and
(1) run an LTS simulation algorithm (we use Algorithm 1) in the case of tree
automata simulations; and (ii) run an LTS bisimulation algorithm in the case
of tree automata bisimulations (we use the algorithm from [Val09] by Valmari).
The simulation or bisimulation on the original tree automaton is then obtained
directly in the form of simulation or bisimulation on states of the LTS, respec­
tively. Finally, we give a simple procedure for computing mediated preorder
induced by a given downward simulation and upward simulation.

4.4.1 Comput ing Downward Simulat ion

As mentioned above, our approach to computing downward simulation consists
of two parts: (1) we translate the maximal downward simulation problem over
tree automata into a corresponding maximal simulation problem over LTS, and
(2) we compute the simulation preorder on the obtained LTS using Algorithm 1.
Below, we describe how the translation is carried out.

We will work with the set Lhs A of left-hand sides of rules of A, i.e., the set of
tuples of the form (qi,..., qn) where (qi,..., qn) -A q for some a and q. We will
drop the reference to A if no confusion may arise. The idea of the translation
comes from the following alternative definition of downward simulation.

Extended Downward Simulation. A n Extended downward simulation is a re­
lation D C Q x Q U Lhs x Lhs such that

1. for any q,r G Q, if qDr and (qi,..., qn) A q, then (n , . . . , r„) A r with
(qi,.. .,qn)D(n,... ,r„),

2. forany (q1,...,qn), (n , . . . , r n) G Lhs, if (q1,..., qn)D(n,...,rn), then
qiDri for all 1 < i < n.

The following proposition is an obvious consequence of this definition.

Proposition 4.1. A relation D C Q xQ is a downward simulation on A if and
only if there is an extended downward simulation on A such that its restriction
to Q is D.

The translation is based on the observation that when viewing Q and Lhs as
two kinds of nodes of an LTS such that for every transition (qi,..., qn) A q.
there is an a-labelled transition from q to (qi,..., qn) and for every i : 1 < i < n,
there is an i-labelled transition from (qi,..., qn) to qi, then the definition above
closely resembles the definition of normal LTS simulation. Formally, we translate
a tree automaton A to the LTS A' = (£*, Q*, A*) where:

40

a
1 1, • • • ,<In

1/ \ n

Figure 4.4: The part of A ' created for a rule (qi,..., qn) A q € A.

• The set Q' contains a state q' for each state q G Q, and it also contains
a state (q\,..., qn)' for each (qi,..., qn) G Lhs.

• The set E* contains each symbol a G E and each index i G { 1 , 2 , . . . , n}
where n is the maximal rank of any symbol in E .

• For each transition rule (q\,..., qn) A q of A , the set A * contains both
the transition q' A (q\,...,qn)' and transitions (qi,..., qn)' A for
each i : 1 < i < n.

• The sets Q*, E*, and A * do not contain any other elements.

The translation is illustrated on Figure 4.4. The following theorem shows cor­
rectness of the translation.

Theorem 4. A relation D is an extended downward simulation on A if and
only if the relation D' = {(x',y*) \ xDy} is a simulation on A * .

Proof, (if) Assume that D' is a simulation on A * . We show that D is an
extended downward simulation on A . Suppose that there are q, r G Q with qDr
and (q\,..., qn) A q. Since qDr we know that q'D'r'; and since (q\,..., qn) A
q we know by definition of A* that q' A (qi,..., qn)''. Since D' is a simulation,
there are n,... , r „ G Q with r* A (n,... , r„)* and (q i , . . . , g n)*L>*(ri,... ,rn)'
and thus (q1,qn)D(n,... , r „) .

Suppose now that there are left-hand sides (qi,..., qn), (n,..., r„) G Lhs with
(g i , . . . ,qn)D(n,... ,rn). By the definition of £>*, (q1,..., qn)*D*(n,...,r„)V
By definition of 4,* we know that (g i , . . . , qn)' —> q' for each i : 1 < i < n, and
that (qi,..., qn)' does not have any other outgoing edges. We observe that ri is
the only state such that (r\,..., rn)' A r', and hence it must be the case that
q'D'r*. This means that qiDri for each i : 1 < i < n.

(only if) Suppose that D is an extended downward simulation on A . We
prove that D' is a simulation on A . Suppose that for some q,r G Q, q'D'r'
and q' A (q\,..., qn)°• Since q'D'r', we know that qDr, and since q' A
(qi,..., qn)', we know by definition of A ' that (q\,..., qn) A q. Since L> is an
extended downward simulation, there are r\,...,rn G Q with (n,...,rn) A r
and (g i , . . . , q n) D { r \ , . . . , r n) . By definitions of D' and A ' , we obtain that
(qi,.. .,qn)'D'(n,.. .,rn)' and r* A (n,... , r„)V

Finally, suppose that (5 1 , . . . , qn)'D'{r\,..., rn)' for some left-hand sides
(g i , . . . ,qn),(n,... ,rn) G L/is. By definition of A ' , we have (g i , . . . , qn)' A q£

41

and (r i , . . . , rn)' —> r* for each i : 1 < i < n and we know that there
are no other outgoing arcs of (r\,..., rn)' and (q\,..., qn)° • Therefore, since
(qi,..., qn)'D'{r\,..., rn)', it follows that q'D'r^ and hence (/j-Drj by the def­
inition of D*. Therefore, (q\,..., qn)D{r\,..., rn) by the definition of D. •

Due to Theorem 4, the maximal extended downward simulation <D on A
corresponds to the simulation preorder on A' which can be computed by con­
structing the LTS A* and running Algorithm 1 on it with the initial partition-
relation pair being simply (P*, Rel*) = ({Q*}, {(Q*, Q*)}) (this is, we initially
consider all states of the LTS A* equal, and hence they form a single class of P*,
which is related to itself in Rel*). By Proposition 4.1, the downward simulation
preorder on A is then obtained simply by restricting •<£> to Q.

4.4.2 Complexity of Comput ing Downward Simulat ion

The complexity of computing the downward simulation preorder on A naturally
consists of the price of compiling the tree automaton A into its corresponding
LTS A', the price of building the initial partition-relation pair (Pm, Rel'), and
the price of running Algorithm 1 on A' and {P*, Rel').

We assume the automata not to have unreachable states and to have at most
one (final) state that is not used in the left-hand side of any transition rule—
general automata can be easily pre-processed to satisfy this requirement. Under
this assumption, we can use the inequalities \Q \ — 1 < \Lhs\ < | A | when deriving
complexity of our algorithms. Further, we expect the input automaton A to be
encoded as a list of states q G Q and a list of the left-hand sides I = (q\,..., qn) G
Lhs. Each left-hand side I is encoded by an array of (pointers to) the states
qi,... ,qn, plus a list containing a pointer to the so-called a-list for each a G £
such that there is an a transition from I in A . Each a-list is then a list of
(pointers to) all the states q G Q such that I A q. We call this representation
the Ihs-list automata encoding. Then, the complexity of preparing the input
for computing the downward simulation on A via Algorithm 1 is given by the
following lemma.

Lemma 4.10. The LTS A* and the partition-relation pair (P*, Rel') can be
derived in time and space 0(f\Q\ + | A | + (f + |£ |) |L/is |) .

Proof. The state-list encoding of the LTS A' that Algorithm 1 takes as its input
(c.f. Chapter 3) can be obtained from the lhs-list encoding of A in the following
steps:

1. For all q G Q, add q' into the state-list encoding of A' (and also create
an additional pointer from q to q*, which we will need later on).

2. For each I = (g i , . . . , qn) G Lhs,

a) add I' into the state-list encoding of A',

b) for each o G £ and each right-hand side r in the a-list of I, add r*
into prea(l'), i.e. add the r* A- I' edges, and

42

c) for each 1 < i < n, add I' into prei(q'), i.e. add the I' —> q* edges
(we use the pointers from q to q' introduced within step 1.).

In order to have constant time access to a particular prea-lists for some a £ E '
in the state-list encoding of A' being built by the above construction, we may
temporarily replace the state-lists by arrays. This means that for each q' G Q'
where q G Q, we first construct a temporary array indexed b y i G E * , l < i < f ,
of pointers to the prei(q') lists (initialised with null values), and, for each
I' G Q' where I G Lhs, a similar temporary array of pointers to the prea(l)-lists
for a G E . The time and space needed for creating these temporary arrays is
0(r\Q\ + \E\\Lhs\).

After creating the temporary arrays, we traverse the lhs-list representation
of A in time 0(|(5| + |A| + f\Lhs\) while building the state-list representation
(with arrays used instead of state-lists) of A' with each step done in constant
time (due to the use of the temporary arrays and the auxiliary pointers from q
to q'). In the complexity, \Q\ corresponds to traversing the list of states, |A|
to traversing the transitions of A while creating the a-labelled transitions of
A' for a G E , and r\Lhs\ to traversing the left-hand sides while creating the
i-labelled transitions of A* for 1 < i < r. The remaining step is then to convert
the auxiliary arrays into state-lists which can be done with the same complexity
as initialising the arrays (we do not traverse the contents of the state-lists,
we just leave out the state lists that are empty). Thus, using suitable linked
data structures, the creation of the state-list encoding of A' is done in time
0(r\Q\ + \A\ + (r + \X\)\Lhs\).

The space complexity corresponds to the size of the temporary arrays and the
size of the resulting LTS A', which is C(|(5| + |A| + r\Lhs\). Indeed, we need
space 0(|Q|) to represent states, 0(|A|) to represent the a-labelled transitions
of A* for symbols a G E , and 0(f\Lhs\) to represent the i-labelled transitions
of A' for symbols 1 < i < r. In total, we obtain the same formula as in the case
of the time complexity, i.e. 0 (f |Q| + |A| + (|E| + |f |) |L/is|).

Finally, the creation of (P*, Rel') is trivial, and its complexity is apparently
covered by the complexity of creating A*. •

In order to instantiate the complexity of running Algorithm 1 for A', let us de­
note =D the maximal equivalence included in the maximal extended downward
simulation on A.

Lemma 4.11. Algorithm 1 computes the simulation preorder on A* for the
initial partition-relation pair (P*, Rel') in the time C ((| E | -\-r)\Lhs\\Lhs/=D\ +
\A\\Lhs/=D\) and the space C ((| E | + r)\Lhs\\Lhs/=D\).

Proof. We get the complexity of running Algorithm 1 on A' and (P*, Rel') by
instantiating the parameters of A' in the formula of Theorem 2. More precisely,
from the construction of A', it follows that (1) |E* | = |E | + f, (2) \Q'\ =
\Q\ + \Lhs\, and (3) |A*| < |A| -\-f\Lhs\. Then the running time of Algorithm 1
with input A' and (P', Rel') is:

0 ((|E | + r)(\Q\ + \Lhs\){\Q/=D\ + \Lhs/=D\)

+ ((|A| + rLhs)(\Q/=D\ + \Lhs/=D\))).

43

file://-/-f/Lhs/

Recall that \Q\ — 1 < \Lhs\ < | A | since we assume the automata not to
have unreachable states and to have at most one state that is not used in any
left-hand side. Therefore, the time complexity amounts to

0 ((| E | + f)\Lhs\\Lhs/=D\ + \A\\Lhs/=D\)

and as the space complexity formula from Theorem 2 equals the first summand
of the time complexity formula, we are getting the space complexity

0((\E\+r)\Lhs\\Lhs/=D\).

•
The complexity of computing the downward simulation for the tree automaton

A via the LTS A* can now be obtained by simply summing the complexities of
computing A' and (P*, Rel°) and of running Algorithm 1 on them.

Theorem 5. The downward simulation preorder on A can be computed in time
0((\E\+r)\Lhs\\Lhs/=D\ + \A\\Lhs/=D\) and space 0((\E\+r)\Lhs\\Lhs/=D\ +
| A |) .

Note that in the special case of f = 1 (corresponding to a word automaton
viewed as a tree automaton), we have \Lhs\ = \Q\, which leads to the same
complexity as Algorithm 1 has when applied directly on word automata.

4.4.3 Comput ing Upward Simulat ion

Given a preorder D on Q, we want to compute the upward simulation pre­
order induced by D. We will need the notion of environment, which is a
tuple of the form ((qi, • • •, qi-i, • , qi+i, • • •, qn), a, q) obtained by removing a
state qi, 1 < i < n, from the ith position of the left hand side of a rule
((qi,..., qi-i,qi, qi+i,... ,qn),a,q), and by replacing it by a special symbol • 0
Q (called a hole below). Like for transition rules, we write [(q\,..., ..., qn) A
q] provided ((qi,qi-\,qi, ..., qn), a, q) G A for some qi G Q. We denote
the set of all environments of A by Envjy and we will drop the reference to A if
no confusion may arise.

We proceed in a similar manner as in Section 4.4.1 with downward simulation.
First, we extend the definition of upward simulation to the set of environments.

Extended Upward Simulation. Given a preorder D on Q, an extended upward
simulation U induced by D is a binary relation on Q U Env such that if qUr,
then

1. if (q\,..., qn) A q' with qi = q, 1 < i < n, then (n,..., rn) A r' with
ri = r and [(q1, qn) A q]U[{ri, rn) A r\;

2. if [(ql,..., \Ji,..., qn) A q]U[(n,... r n) A r] for two elements of
Env, then qUr and for each 1 < j ^ i < n, qjDry,

3. q G F r G F.

44

a® A
1i [(gi, . . . , D i , . . . , 9 B) A g] 0

a

Figure 4.5: The part of A® created for a rule (qi,. • •, qn) A q € A .

The following proposition follows directly from this definition.

Proposition 4.2. A relation U is an upward simulation on A induced by D if
and only if there is an extended upward simulation on A induced by D such that
its restriction to Q is U.

Analogically as in Section 4.4.1, we notice that we can view the extended
upward simulation as a simulation on a labelled transition system with two
types of nodes, one corresponding to states and the other corresponding to
environments of A . Formally, we define the LTS A® = (E®, Q®, A®) as follows:

• The set Q® contains a state g® for each q G Q, and it also contains a state
[(qi,..., ..., qn) A g]® for each environment [(gi,... ,gn) A
q] G Env.

• The set £® contains each symbol a G E and also a special symbol A 0 E .

• For each transition rule (qi,...,qn) A q of A and for each i : 1 < i < n,
the set A® contains the transition [(q\,..., . . . , gn) A g]® A g® and
the transition qf A [(gi,..., . . . , qn) A g]®.

• The sets Q®, E®, and A® do not contain any other elements.

The translation is illustrated on Figure 4.5. We also have to take into ac­
count the inducing preorder D. Therefore, we define the initial relation ID
to be the smallest binary relation on Q® containing all pairs of states of A .
i.e., all pairs (qf,qf) for each qi,q2 G Q and also all pairs of environments
([(gi,..., g„) A g]®, [(n,... . . . ,r„) A r]®) such that qjDrj for
each j : 1 < j ^ i < n. The following theorem shows correctness of the transla­
tion.

Theorem 6. A relation U is an extended upward simulation on A induced by
D if and only if the relation U® = {(x®,y®) | xUy} is a simulation on A®
included in ID-

Proof. Assume that [7® is a simulation on „4® included in ID• We will show that
U is an extended upward simulation induced by D. Let qUr and (g i , . . . , qn) —>
q' where qi = q. We know that g®C/®r®, and since (g i , . . . , qn) A g', qf A
[(gi,..., Oi, • • •, qn) A g']® by definition of A®. Since U® is a simulation, there
are n,... ,ri-i,ri+i, ...,rn,r'eQ with r® A [(n,..., . . . , rn) A r']® and
[(gi, . . . ,Oi,. . . ,qn) A g']®C7®[(n, ,rn) A r']®. Therefore, by the
definition off/®, we have [(gi,..., . . . , qn) A q']U[(n,..., Di}..., rn) A r '] ,
and by the definition of .A®, (r i , . . . , rn) —>• r.

45

Assume that there are two elements of Env such that [(qi,... ,<7n) —>
q]U[(ri,... , E L , . . . ,r„) A r]. By the definition of Ue, [(gi, gn) A
g]®l7®[(r i , . . . ,n i , . . . , r n) a A- r] 0 . Since C7© C J D , . . . , E L , . . . , qn) A
g]0/i)[(?*i) • • • j Elj , • • • j r n) —>• r] 0 and hence for each j such that 1 < j / i < n.
qjDrj. By definition of . A 0 , the only transitions from [{qi,..., ..., qn) A q]Q

resp. [(n , . . . , E L , . . . , r„) A r] 0 are [(gi, g n) A g] 0 A g 0 resp.
[(r i , . . . , E L , . . . , r„) —> r] 0 —> r 0 . Consequently, it must be the case that
q®U®r®. This means that qUr.

(only if) Assume that U is an extended upward simulation induced by D.
We will show that U® is a simulation on A® included in ID- Suppose that
q&U&ro a n d g& A . . . , E l j , . . . , qn) A q']&. Since q&U&r&, we know that

gC/r; and since g 0 A [(51 , . . . , E L , . . . , qn) A g '] 0 we know by definition of A &

that (q\,..., qn) A where q = q%. Since [7 is an extended upward simu­
lation induced by D, there are r\,... ,rn,r' G Q with (r i , . . . , r n) A r with
n = r and [(q1, g n) A g']C7[(ri, r„) A r']. Therefore,
[((Zi, ,qn) A g '] 0 ^ 0 [(n , a- • , r„) A r '] 0 -

Now, suppose that [(q1,..., E L , . . . , qn) A g] 0 C/ 0 [(r i , rn) A r] 0 .
By definition of A , [(qi, g n) A q]Q A g 0 and [(n , . . . , E L , . . . , rn) A

r]0 ^ ro^ Moreover, ,gn) A g]C/[(ri,..., E L , . . . , r „) A r] by
definition of C / 0 . Since U is an extended upward simulation included in D, we
have (i) qUr; and (ii) qjDrj for all j : 1 < j 7̂ i < j. This implies that g 0 C / 0 r 0

and [(gi, . . . , E L , . . . , qn) A q]ID[(n,..., Di}..., rn) A r], respectively. Hence
U® is a simulation on A® included in ID. •

The relation ID is clearly a preorder. Due to Theorem 6, the maximal ex­
tended upward simulation -<u on. A induced by D corresponds to the simulation
preorder on A® included in ID which can be computed by running Algorithm 1
on the LTS A® with the initial partition-relation pair (PQ,Rele) inducing ID,
i.e., P 0 = Qe/IDnI^1 and Rel° = {{B,C) G P 0 x P 0 | B x C C / D } . By
Proposition 4.2, the upward simulation preorder on A induced by D is then
obtained as the restriction of <u to Q.

AAA Complexity of Comput ing Upward Simulat ion

Once the inducing preorder D on a A is computed, the complexity of computing
the upward simulation preorder induced by D naturally consists of the price of
compiling A into its corresponding LTS A®, the price of building the initial
partition-relation pair (P 0 , Rel®), and the price of running Algorithm 1 on A &

and (P 0 , Rel®}. We use =u to denote the maximal equivalence included in the
maximal extended upward simulation induced by D.

We assume the automaton A to be encoded in the format of lhs-list, this
is, in the same way as in the case of computing the downward simulation (c.f.
Section 4.4.2). Compared to preparing the input for computing the downward
simulation, the main obstacle in the case of the upward simulation is the need
to compute the partition P 0 of the set of environments Env wrt. ID, which is
a subset of the partition P 0 (formally, P 0 = P 0 n2Env). If the computation of
P 0 is done naively (i.e., based on comparing each environment with every other

40

environment), it can introduce a factor of \Env\2 into the overall complexity of
the procedure. This would dominate the complexity of computing the simulation
on A® where, as we will see, \Env\ is only multiplied by \Env/=u\.

Fortunately, this complexity blowup can be to a large degree avoided by ex­
ploiting the partition Lhs/=rj- Notice that in the case when D is the downward
simulation preorder, Lhs/=rj was anyway computed when computing D. We
first give the basic ideas, the detailed algorithm for computing P® is rather
technical and is presented within the proof of Lemma 4.12.

For each i : 1 < i < r, we define an i-weakened version Di of D on left-hand
sides of A that does not take into account states on the i-th position. Formally,

relations ~j = D j f l D~ . Now, a crucial observation is that there exists a
simple correspondence between blocks of P® and blocks of L / i s / ~ j . Namely,
we have that L G Lhs/^i iff for each a G £ , there is a block ELA G P®,
such that ELta = {[(qi, qn) A q] \ 3qi, q G Q. (qi,..., qi,..., qn) G

L A (g i , . . . ,qh ... ,qn) 4 q}.
The idea of computing P® is now to first compute blocks of Lhs/~i and

then to derive from them the blocks of P®. The key advantage here is that
the computation of the RSj-blocks can be done on blocks of Lhs/=o instead of
directly on elements of Lhs.1 This is because, for each i, blocks of Lhs/=D are
sub-blocks of blocks of L / i s / ~ j . Moreover, for any blocks K, L of Lhs/=rj, the
test on K x L C Di can simply be done by choosing any two representatives
k G K and I G L and testing whether (k,l) G Di. Therefore, all RSj-blocks
can be computed in time 0{f\Lhs/=rj\2), as we will show within the proof of
Lemma 4.12.

From each block L G Lhs/^i, one block ELA of P® is generated for each
symbol o G E . The E^^ blocks are obtained in such a way that for each left-hand
side I G L, we generate all the environments which arise by replacing the ith state
of I by • , adding a, and adding a right-hand side state q G Q which together
with I form a transition I A- q of A. This can be done efficiently using the lhs-list
encoding of A. A n additional factor |A| log \Env\ is, however, introduced due
to a need of not having duplicates among the computed environments, which
could result from transitions that differ just in the states that are replaced by
• when constructing an environment. The factor log \Env\ comes from testing
a set membership over the computed environments to check whether we have
already computed them before or not.

Moreover, it can be shown that Rel® can be computed in time |P® | 2 . The
complexity of constructing 4̂® and (P®, Rel&) is then summarised in the below
lemma.

Lemma 4.12. Given the partition Lhs/=o, the LTS A® and the partition-
relation pair (P®, RelQ) can be derived in time 0(\Yl\\Q\+r(\Lhs\ + \Lhs/=D\2) +
f 2 | A | log\Env\ + |P®| 2) and in space 0 (| E | | Q | + \Env\ + r\Lhs\ + \Lhs/=D\2 +
| P® | 2) .

x If D is the downward simulation preorder, Lhs/=o was anyway computed within compu­

tation of D.

47

Proof. We assume to start with the lhs-list representation of A. We need
to derive the LTS A® in the state-list format and the partition-relation pair
(P®, Rele). Algorithm 2 is a simplified encoding of the procedure. We know
that P® = {{g® | q G Q}} UP®. Algorithm 2 computes P® using the partition
Lhs/=D- In the case when D is the downward simulation preorder, Lhs/=n
is constructed within the computation of the downward simulation on A. The
state-list representation of LTS A® is created within this computation with­
out increasing the overall asymptotic time complexity. The last step is then
computing of Rel®.

We denote two sets of environments i-compatible iff all their elements have
the same symbol and the hole on the ith position. For an i-compatible subset
E of Env, we define the set of their left-hand side generators as {(qi, • • •, qn) £
Lhs | [(qi,...,Ui,... ,qn) A q] G E}.

Algorithm 2: Upward Initialisation
Input: a tree automaton A = (£, Q, A , F) and a partition Lhs/=D
Data: for each 1 < i < r, a relation Reli C Lhs/=D x Lhs/=n
Output: the partition-relation pair (P®, RelQ) and the LTS

A& = (£©,Q0,A©)
l forall K,L G Lhs/=n do

forall 1 < i < r do
if K x L C Di then Reli <- -Re!; U {(K, L)}

4 Q® <- {g© | g G Q}; S© f - S U {A}; A© <- 0;

5 forall 1 < i < f do
6 foreach equivalence class {L\,... ,Lm} G (Lhs/=D)/'(Reli H Rel~x) do
7 merge L^s into a new block of Lhs/^i, the block P = Ui<j< m

8 generate all maximal i-compatible sets E such that gen(E) = B,
update «4® within this procedure. Then add E into P®;

9 forall 1 < i < r and all i-compatible blocks E, E' G P® do
10 |_ if (gen(E),gen(E')) G Reli then Rele <- Rele U {(E, E')}

11 (P®, it!d®) f - (P® U {{g® | g G Q}}, iiel® U ({g® | g G Q}, {g® | g G Q}));

Lines 1—3. At the first step (lines 1-3) we compute for each 1 < i < r a
binary relations Reli on blocks of Lhs/=r> such that the partition-relation pair
(Lhs/=D, Reli) induces Di. Here we exploit several properties of the structures
we work with in order to decrease computational complexity:

1. For blocks K, L of Lhs/=rj, the test on K x L C Di can be done simply
by testing any two representatives k G K,l G L on (k,l) G Di. (it holds
that K x L C Di or K x L n Di = 0)

2. For any left-hand sides there are three possibilities with respect to
membership of (k, I) in Df.

48

a) (k, I) G Di for all i, i.e. k is simulated by I on all the positions
((M) € = d)

b) (A;, Z) G Z?j for just one i, i.e. /c is simulated by I on all positions
except the ith one

c) (k, I) G" Di for all i , i.e. k is not simulated by I on more than one
position.

From item 1. we see that analogical relationships holds for any K,L G
Lhs/=D with respect the K x L C Dj inclusions.

From these properties follows that given two blocks K,L G Lhs/=o, the tests
K x L C Di can be done for all i in time 0 (f) and, moreover, all the relations
Reli can be stored in one common matrix with cells containing three types of
values: a l l , one-i, none. This corresponds to the possibilities (a), (b), (c) from
the above enumeration.

Therefore, line 3 can be done in (amortised) constant time and thus the for
loop on lines 1-3 can be finished in time 0(r\Lhs/=D\2)• Furthermore, encoding
of all the Reli relations takes only 0(\Lhs/=D\2) space.

Lines 5—8. On lines 5-8, we construct partition P® together with LTS «4®.
On line 6, we need to list all equivalence classes of (Lhs/=D)/'{Reli H Rel~).
With the above matrix encoding of the Reli relations, this operation can be
implemented in such a way that it takes 0(r\Lhs/=r>\2) time overall.

Merging the class {L\,..., Lm} on line 7 can be done in linear time to the car­
dinality of Ui<j<r and therefore the overall time of the merging is rO(\Lhs\)
(the class { L i , . . . , Lm} can be encoded as a list of the L-blocks and each L-block
can be encoded as a list of its states).

On line 8 we generate all the environments of E and update «4®. We encode
an environment e as a quadruple consisting of a pointer to any of I G gen(e).
a symbol, a position of hole and a pointer to its right hand side state. We
remind that we use the lhs-list encoding of A , i.e. each I is connected to an
array indexed by symbols from £ where the a-indexed element contains the list
of all states q such that I A q. Thus for each I G B, we can effectively iterate
through all rules of the form I —> q and for each of them we: (1.) create a new
environment; and (2.) update «4® in the following way:

(1.) We create a representation of environment e consisting of a pointer on I.
symbol a, hole-index i and a pointer on q. A problem is that there can be more
than one I G B such that I G gen(E). Thus we can obtain the same environment
more than once while creating a block E from a block B. In order to avoid
these duplicities, after having e created, we test whether e has or has not been
created before. This can by done by testing each newly created environment on
membership in the set S of the so-far created environments (and adding it there
if the membership test returns false).

We attempt to create a new environment (and add it to the set S of already
known environments) r|A| times. In the end (when S = Env), we get \Env\
different environments. We can assume that testing equality of two environ­
ments takes 0(f) time and that we use a set representation with a logarithmic

49

membership test and addition. Thus, in total, the time C (f 2 | A | log |Pni>|) is
spent by testing membership of environments in S and by extending S by the
new environments.

(2.) Having a representation of an environment e = [(qi,..., ..., qn) A q]
created, if e G" S (a representation of e was created for the first time), we add
the state e® into Q® and also a pointer on e® into prea(q). Then, regardless
on the result of the e £ S test, we add the pointer on qf into pre\(e0) (This
requires finding the pre\(eQ) set in the state-set representation of .4®. We
can use a similar searching structure as in the case of solving duplicities and
then the complexity of this searching will be covered the complexity of solving
duplicities.) Since creating a state e® and adding an element into a pre set
are constant time, the overall complexity of these updates of 4 ® is covered by
the complexity of the above procedure for creating the environments in the E
blocks.

Lines 9—10. On lines 9-10 we compute the main part of relation Rel®. We
exploit the fact that for any i-compatible blocks E, E' G P®, (E,E') G Rel&

iff gen(E) x gen(E') C Di and, moreover, that any (B, C) G ~j iff for any two
L,K G Lhs/=D such that K C B,L C C, it holds that K C L G A - As
K x L C Di means that (K,L) G Reli, we can implement the test on line 10
this way:

When creating block E on line 7, we connect it with its representative block
repre(E) = Lj (any of L\... ,Lm). Then the test on line 10 can be done in
constant time via testing if (repre(E), repre(E')) G Reli, because we know that
(repre(E),repre(E')) G Reli (E,E') G P®. Therefore, lines 9-10 can be
done in time C (| P ® | 2) .

Finishing the construction of (P®, Rel®} on line 11 is already easy. •

We instantiate the complexity of running Algorithm 1 for 4 ® and (P®, Rel®)
within the following theorem.

Lemma 4.13. Algorithm 1 with input 4 ® and (P®, Rel®) terminates in time
0(r\A\\Env/=u\ + \T,\\Env\\Env/=u\) and space 0(\T,\\Env\\Env/=u\).

Proof. We get the complexity of running Algorithm 1 on 4 ® and (P&,Rel®)
by instantiating the parameters of 4 ® in the formula of Theorem 2. More
precisely, from the construction of 4 ® , it follows that (1) |S®| = |S | + 1, (2)
Q®| = \Q\ + |Pni>|, and (3) |A®| = f | A | + \Env\ < 2 f | A | . Then, the running

time of Algorithm 1 with the input 4 ® and (P®, Rel®) is:

0 (|S | (|Q | + \Env\)(\Q/=u\ + \Env/=u\) + r | A | (| Q / = ^ | + \Env/=u\)).

Observe that, as we suppose the automata not to have unreachable states, \Q\ <
\Env\. Therefore, the time complexity amounts to

0(\T,\\Env\\Env/=u\ +r\A\\Env/=u\)

and, as the space complexity in Theorem 2 equals the first summand of the time
complexity formula, we get the space complexity 0{\Yj\\Env\\Env/=u\). •

50

The complexity of computing upward simulation preorder on A induced by D
can now be obtained by simply summing the price of computing D and Lhs/=u,
the price of computing A® and (P®, Rel®), and the price of running Algorithm 1
on A® and (P 0 , Rel°).

Theorem 7. Let TD{A) and SD(A) denote the time and space needed for com­
puting the preorder D and on A and Lhs/=o- Then, the upward simulation
preorder on A induced by D can be computed in time

0((\H\\Env\ + r\A\)\Env/=u\ + r2\A\ log \Env\ + Tu{A))

and in space 0(\Yl\\Env\\Env/=u\ + SD(A)).

Note that in the special case of f = 1 (corresponding to a word automaton
viewed as a tree automaton), we have \Env\ < |E | |Q | , which leads to almost the
same complexity (up to the logarithmic component) as Algorithm 1 has when
applied directly on word automata.

4.4.5 Comput ing Downward Bisimulation Equivalences

In [HMM07a], Hogberg, Maletti, and May propose an algorithm for comput­
ing downward bisimulation with running time C (f 2 | A | log(|Q|)) (in [HMM07a],
downward bisimulation is called backward bisimulation). Our approach based
on translating tree automata to LTS that we use for simulations can be also used
and yields an algorithm with the same asymptotic complexity. In particular,
we use the same LTS A* as for downward simulation. Downward bisimula­
tion equivalence is then obtained in the form of the standard LTS bisimulation
equivalence on states of A*. This can easily be proved using the results of
Section 4.4.1 and the fact that downward bisimulations are exactly downward
simulations such that their inverses are also downward simulations. For this we
need to extend the definition of downward bisimulation to left-hand sides of A
analogically as we have extended the definition of downward simulation.

Extended downward bisimulation. A n Extended downward bisimulation on
A is any extended downward simulation on A such that its inverse is also an
extended downward simulation on A.

Proposition 4.3. A relation D is a downward bisimulation if and only if there
is an extended downward bisimulation D such that its restriction to Q is D.

Proof. Let D be the restriction of an extended downward bisimulation D to Q.
We know that both D and are extended downward simulations, therefore
both D and Z ? - 1 are downward simulations by Proposition 4.1, and thus D is
a downward bisimulation by definition.

Let D be a downward bisimulation on A and let us define D as the relation
D U {((qi, • • • ,qn), (ri, • • • ,rn)) G Lhs x Lhs \ VI < i < n : qiDri}. Since D is
a simulation, D is apparently an extended downward simulation. Then, define
analogically D' = D~x U {((qi, • • • ,qn), (fi,... , r n)) G Lhs x Lhs \ VI < i <
n : qiD~1ri}. Again, since L > _ 1 is a downward simulation, D' is and extended

51

downward simulation. Now, it is not hard to see that P _ 1 = D' and therefore,
as both D and P - 1 are extended downward simulations, D is an extended
downward bisimulation on A . •

Theorem 8. A relation D is an extended downward bisimulation on A if and
only if D* = {(x',y*) \ xDy} is a bisimulation on A * .

Proof. D is an extended downward bisimulation on A iff both D and P _ 1 are
extended downward simulations on A which holds (by Theorem 4) iff both D*
and (P *) _ 1 are simulations on A ' , and by the definition of bisimulation, this
holds iff D* is a bisimulation on A * . •

To compute the bisimulation equivalence on A ' , we can use the algorithm
recently proposed by Valmari in [Val09] that on A ' runs in time 0 (| A * | log(Q')).
The sizes of the parameters of A * can be bounded as follows: \Q'\ G 0(Lhs) C
C(|(5| r) , and | A * | < | A | + f\Lhs\ < f\A\. Therefore, the time complexity of
running the Valmari's algorithm on A ' is C (f | A | log(\Qf)) = C (f 2 | A | log(|Q|)).
which is indeed the same complexity as the one of the algorithm from [HMM07a].

4.4.6 Comput ing Upward Bisimulation Equivalences

Let us fix a preorder D on Q. Our algorithm for computing the upward bisim­
ulation equivalence induced by D is again based on translating tree automata
into labelled transition systems. The same transition system A® as for upward
simulations can be used. To prove this easily using the results of Section 4.4.3,
we first extend upward bisimulation to environments of A .

Extended Upward Bisimulation. A n extended upward bisimulation U on A
induced by D is an extended upward simulation induced by D n P _ 1 such that
its inverse is also an extended upward simulation on A induced by D n D - 1 .

Proposition 4.4. A relation U is an upward bisimulation induced by D iff there
is an extended upward bisimulation on A induced by D such that its restriction
to Q is U.

Proof. Let U be the restriction of an extended upward bisimulation U induced
by D to Q. We know that both U and P _ 1 are extended upward simulations
induced by P n P - 1 , therefore both U and P _ 1 are upward simulations induced
by D by Proposition 4.2, and hence, by definition, U is an upward bisimulation
induced by D.

Let U be an upward bisimulation on A induced by D. Define U = U U
{([(q1,...,\Ji,...,qn) A q], [(n,..., . . . ,r„) A r]) G Env x Env \ Vj : 1 ^
j / i < n. qjDC\D~1rj}. Since U is an upward simulation induced by P n P - 1 , U
is apparently an extended upward simulation induced by D n D - 1 . Then, define
analogically U = C/ _ 1 U{([(gi , . . . , ...,qn) A q], [(n, rn) A r]) G
Env x Env \ Vj : 1 < j ^ i < n. qjD n D~1rj}. Again, since C / _ 1 is an upward
simulation induced by D n D - 1 , U' is an extended upward simulation induced by
D n P - 1 . Now, it is not hard to see that C / _ 1 = U' and therefore, as both U and
U-1 are extended upward simulations induced by D n P _ 1 , U is an extended
upward bisimulation on A induced by P . •

52

We define I=D = ID H ID, this is, I=D is the smallest binary relation on
QQ containing all pairs of states of the automaton A, i.e., all pairs (gf ,g Q)
for each gi , 02 € Q, as well as all pairs of environments ([(qi,..., ..., qn) —>
g] 0 , [(r i , . . . , D j , . . . , rn) A r] 0) such that qjD n D~XVJ for each j : 1 < j 7̂ i <
n.

Theorem 9. yl relation U is an extended upward bisimulation on A induced by
D if and only if U® = { (x 0 , y 0) | xUy} is a bisimulation on A® included in

Proof. U is an extended upward bisimulation on A iff both U and C / _ 1 are
extended upward simulations on A induced by D n Z ? - 1 which holds (by Theo­
rem 9) iff both U0 and (C / 0) - 1 are simulations on A& included in I=D, and by
definition of bisimulation, this holds iff U® is a bisimulation on A® included in

w •

The Valmaris algorithm [Val09] computes the bisimulation equivalence in­
cluded in I=D on A in time C(|A©| log(|Q®|)). Since \Q&\ G 0(\Q\+r\A\) =
0(r\A\) and | A 0 | G C (f | A |) , the running time of Valmaris algorithm on ^ l 0

amounts to C (f | A | log (f |A |)) C C (f | A | log (r |Q | f |E |)) = 0(r2\A\log\Q\ +
f | A | l o g | E |) .

We note that in [HMM07a] is presented a specialised algorithm for computing
upward bisimulation equivalence induced by identity (called forward bisimula­
tion in [H M M 07a]). The algorithm runs in time C (f | A | log(|Q|)), which is better
than the complexity of our algorithm (however, the algorithm from [HMM07a]
is not designed for computing bisimulations induced by nontrivial preorders).
Still, it suggests that there might be a space for improving our method.

4.4.7 Comput ing the Combined Relations

Given an inducing downward simulation D and an upward simulation U in­
duced by D, the combined preorder M = D © C / _ 1 can be easily computed
by simply following its definition. It is sufficient to start by computing the
relation C = D o [7 _ 1 and then just erase all the elements of C that break
Condition (ii) from the definition of ©. Using suitable data structures, this
computation starting from the relations U and D can be implemented to run in
time 0(min{ |D | |Q | , \U\\Q\}) as follows.

We encode a relation p on Q as an array indexed by elements of Q of lists
of elements of Q. A state q is present in a list with index r iff (r, q) G p. Note
that given a Boolean matrix representation of the relation, the "array of lists"-
representation can be derived in time C (| (5 | 2) . Note also that as U and D are
reflexive, we have that \U\,\D\ > \Q\ and thus \Q\2 < min{ |D| |Q| , |P | |Q |} . Let
arrays of lists D, U _ 1 encode relations D, U-1.

The relation C = Doll-1 represented by a Boolean matrix C can be computed
in the following way: (1) Initialise all entries of C to false. (2) For each q G Q.
pass through all elements of the list D[q], and for each r G D[q], pass through
all elements s of U _ 1 [r] , and set C[q, s] to true. This procedure takes time
0(\{(q,r,s) I (q,r) G D A (r,s) G C/" 1 } !) C 0(min{|£>| |Q|, \U\\Q\}).

53

Then we compute a Boolean matrix representation M of the relation M =
D © as follows: (3) We initialise M as a copy of the matrix C (representing
D o C / _ 1) , and in the subsequent Step (4), we erase from M all the pairs of
elements of Q that break Condition (ii) from the definition of ®. In Step (4).
we proceed in the following way: For all q G Q, for all r G D[q], for all s G U _ 1 [r] ,
if not C[q, s] (i.e., (q, s) 0 D o C / _ 1) , then M[q, s] = false. This gives us the set
D © U~x represented by the matrix M . The complexity of Steps (3), (4) is in
0(\{(q,r,s) | (q,r) G D/\(r,s) G U~l}\ + \{(q,r, s) \ (q,r) G C / " 1 A(r ,a) G D}\),
which is again in 0(min{ |£) | |Q | , |C/ | |Q|}).

4.5 Experiments

We have implemented our algorithms in a prototype tool written in Java. We
have used the tool on a number of tree automata from the frameworks of
regular tree model checking (RTMC) and abstract regular tree model check­
ing (A R T M C) [BT02, AJMd02, BHRV06a, BHRV06a]. These techniques were
shortly discussed in Chapter 1 and we will explain them in a more detail in Chap­
ter 5. Most of the algorithms in the frameworks of both R T M C and A R T M C rely
crucially on efficient automata reduction methods since the size of the generated
automata often explodes, making computations infeasible without a reduction.

Our experimental evaluation was carried out on an A M D Athlon 64 X2
2.19GHz P C with 2.0 G B R A M . We have compared the size of tree automata
after reducing them with all the different reduction techniques considered in this
thesis. Table 4.1 shows the computation time and the reduction (in percent)
for the different relations within the considered framework and illustrates that
we have really obtained a wide spectrum of relations differing in their reduction
capabilities and computational complexity. As can be seen from the results, ^
gives the best reduction in all experiments, but it also suffers from a high com­
putation time. Combining simulations and bisimulations does not give the same
amount of reduction as the combined simulation, but the computation time is
lower and the reduction is better than ~ . Note that no attempt to optimise the
implementation of any of the relations was done, and therefore the computation
times could probably be much lower with an optimised implementation for all
of them.

Another set of experiments proving significance of the mediated equivalence
;<! in practice was done in [BHH + 08b]. We have implemented our reduction
methods within an ARTMC-based verification tool which was tested on var­
ious benchmarks, mostly short but complex pointer manipulating programs.
Together with a new method for testing language inclusion of nondeterminis-
tic tree automata presented in [BHH +08b], quotienting allowed us to greatly
improve performance of the A R T M C tool. We comment more on this set of
experiments in Chapter 5.

54

Table 4.1: The obtained reduction in percent and the computation time in seconds
for the various considered relations applied for reducing TA obtained from RTMC and
ARTMC case studies. The size of the TA is the number of their states plus the number
of their transition rules.

T A o O 3
origin size red. time red. time red. time red. time
A R T M C 195 18% 0.5s 2% 0.5s 23% 0.5s 61% 1.0s
R T M C 613 27% 3.5s 19% 2.0s 19% 2.5s 88% 5.1s
R T M C 909 52% 3.6s 72% 3.1s 82% 3.4s 89% 35.1s
A R T M C 2029 10% 27.0s 37% 26.0s 33% 29.0s 93% 39.0s
R T M C 2403 26% 31.0s 0% 25.0s 0% 34.0s 82% 37.1s

T A • • •
origin size red. time red. time red. time red. time
A R T M C 195 18% 0.1s 2% 0.5s 23% 0.2s 23% 0.6s
R T M C 613 0% 0.3s 0% 0.4s 0% 0.8s 27% 3.7s
R T M C 909 14% 0.6s 72% 0.4s 82% 0.8s 83% 4.1s
A R T M C 2029 10% 1.7s 14% 1.4s 19% 3.1s 44% 29.0s
R T M C 2403 0% 0.3s 0% 0.6s 0% 0.7s 27% 31.0s

4.6 Conclusions and Future Work

We have presented methods for reducing tree automata under language equiv­
alence. For this purpose, we have considered two kinds of simulation rela­
tions on the states of tree automata, namely downward and upward simulation.
We give procedures for an efficient translation of both kinds of relations into
simulations defined on labelled transition systems. Furthermore, we define a
new, language-preserving equivalence on tree automata, the so called mediated
equivalence, derived from compositions of downward and upward simulation.
Mediated equivalences according to our experiments usually give a much better
reduction of the size of automata than downward or upward simulations alone.

We have also considered upward and downward bisimulations on tree au­
tomata, that may be seen as special cases of tree automata simulations. Bisim­
ulations are much stronger relations than simulations, therefore, quotienting
using bisimulations reduces automata less. On the other hand, bisimulations
are considerably computationally cheaper. We show that our approach for com­
puting tree automata simulations via translations to labelled transition systems
can be easily used also for computing tree automata bisimulations. Particu­
larly, we translate downward or upward bisimulation problems in the same way
as downward or upward simulation problems, respectively, and then run a stan­
dard LTS bisimulation algorithm on the resulting LTS. This uniform framework
yields tree automata simulation and bisimulation algorithms that are efficient
and can be implemented with a relatively small effort.

Moreover, our combination operator can be used to combine any downward
simulation or bisimulation with any induced upward simulation or bisimulation,

55

which yields a spectrum of mediated equivalences. We have established a partial
ordering of the obtained mediated equivalences according to their reduction
capabilities and showed that some of them are also incomparable. Moreover,
we have performed a number of experiments with automata from the area of
(abstract) regular tree model checking that show a practical applicability of the
obtained relations and allow us to conclude that the considered relations really
offer a fine choice of balance in the trade-off between reduction capabilities and
computational requirements.

There are several possible directions of future work. Since the proposed frame­
work is built on quite general principles, we believe that it can be extended to
more advanced types of automata such as guided tree automata, nested word
automata, or hedge automata that find their use in many applications in formal
verification, decision procedures of various logics, structured document process­
ing, or natural language processing. Reduction of automata from some of such
classes has already been considered in the literature (e.g., in [Buc08], the au­
thor proposes a bisimulation-based minimisation of weighted word automata,
and a use of bisimulations for reducing weighted tree automata is considered in
[HMM07b]). In Chapter 6, we present a nontrivial extension of our framework
to alternating Biichi automata. From the practical point of view, it is also inter­
esting to investigate more efficient techniques of computing the (bi-)simulation
relations, e.g., by computing them in a symbolic way (for symbolically encoded
automata). Furthermore, it can be interesting to explore more deeply the prin­
ciples of the proposed combination of downward and upward (bi-)simulation
relations. One can, for instance, think of defining still weaker types of rela­
tions preserving the language of tree automata by using the combined relations
repeatedly as inducing relations.

56

5 Language Inclusion and Universal i ty of
Fin i te (Tree) A u t o m a t a

The language inclusion problem for regular languages is important in many
application domains, e.g., formal verification. Many verification problems can
be formulated as a language inclusion problem. For example, one may describe
the actual behaviours of an implementation in an automaton A and all of the
behaviours permitted by the specification in another automaton B. Then, the
problem of whether the implementation meets the specification is equivalent
to the problem L{A) C L{B). Other applications include checking whether
a fixpoint of a symbolic automata-based incremental reachability computation
was reached or checking implication in automata-based decision procedures.
The universality problem is a simpler variant of the language inclusion problem.
Even though it is less useful in practice, it is important from the theoretical
point of view. A good solution for the universality problem often leads to a
good solution for language inclusion problem while the simpler setting of the
former problem makes the principles of the method easier to master.

Methods for proving language inclusion can be categorised into two types:
those based on simulation (e.g., [DHWT91]) and those based on the subset
construction (e.g., [Brz62, Hop71, MS72, M01O4]). Simulation-based approaches
first compute a simulation relation on the states of two automata A and B and
then check whether all initial states of A can be simulated by some initial
state of B. Since simulation can be computed in polynomial time, simulation-
based methods are usually very efficient. Their main drawback is that they are
incomplete since simulation implies language inclusion, but not vice-versa.

On the other hand, methods based on the subset construction are complete
but inefficient because in many cases they will cause an exponential blow up
in the number of states. Recently, De Wulf et al. in [WDHR06] proposed the
antichain-based approach for nondeterministic finite word automata. To the
best of our knowledge, it was the most efficient one among all of the meth­
ods based on the subset construction. Although the antichain-based method
significantly outperforms the classical subset construction, in many cases, it
(unavoidably) still sometimes suffers from the exponential blow up problem.

This chapter presents result that were published in two works, [BHH +08b] and
[ACH+10a]. In [BHH+08b], we generalise the results on FA from [WDHR06] also
for tree automata and we show how a combination of the antichain-based tree au­
tomata inclusion checking with the reduction techniques from Chapter 4 allows
to greatly improve efficiency of abstract regular tree model checking method.
In [ACH + 10a], we present a new approach for both word and tree automata
universality and inclusion checking that nicely combines the simulation-based
and the antichain-based approaches. A computed simulation relation is used
for pruning out unnecessary search paths of the antichain-based method and

57

also to efficiently encode the stored state-space. To distinguish the approaches
from [WDHR06, BHH+08b] from the one of [ACH+lOa], we will refer to the
former ones as to the pure antichain approach and to the latter ones as to the
simulation-enhanced antichain approach. In this chapter, we describe mostly
the results from [ACH+lOa], this is, the simulation enhanced antichain algo­
rithms for FA and T A since the pure antichain T A algorithms that we present
in [BHH +08b] can be seen as they simpler instances. As for experimental results,
we present both the results from [BHH +08b] and from [ACH + 10a].

To simplify the presentation, we first consider the problem of checking uni­
versality for a word automaton A. In a similar manner to the classical subset
construction, we start from the set of initial states and search for sets of states
(here referred to as macro-states) which are not accepting (i.e., we search for
a counterexample of universality). The key idea is to define an "easy-to-check''
ordering ^ on the states of A which implies language inclusion (i.e., p ^ q im­
plies that the language of the state p is included in the language of the state
g). From ^ , we derive an ordering on macro-states which we use in two ways
to optimise the subset construction: (1) searching from a macro-state needs not
continue in case a smaller macro-state has already been analysed; and (2) a
given macro-state is represented by (the subset of) its maximal elements. In
this work, we take the ordering ^ to be the simulation preorder on the automa­
ton A. In fact, the antichain algorithms of [WDHR06] coincide with the special
case where the ordering ^ is the identity relation. Subsequently, we describe
how to generalise the above approach to the case of checking language inclusion
between two automata A and B, by extending the ordering to pairs consisting
of a state of A and a macro-state of B.

We then generalise our algorithms to the case of tree automata. We first
formally define a notion of a language accepted from tuples of states of the tree
automaton as a set of contexts. We identify here a new application of the upward
simulation relation from Chapter 4. We show that it implies (context) language
inclusion, and we describe how we can use it to optimise existing algorithms for
checking the universality and language inclusion properties.

We have implemented our algorithms and carried out an extensive experimen­
tation. Particularly, in [BHH +08b], we compare performance of the classical
tree automata subset construction based algorithms with the pure antichain-
based algorithms (so far not using simulation optimisations) developed in the
spirit of [WDHR06]. We have tested the algorithms on tree automata generated
with a scale of different settings of a random automata generator designed ac­
cording to framework by Tabakov and Vardi [TV05]. We have also considered
tree-automata derived from intermediate steps of abstract regular tree model
checking. The obtained results are consistent with the ones from [WDHR06]
on FA and lead to a definite conclusion that the antichain tree automata algo­
rithms vastly outperform the classical ones. Our inclusion checking algorithms
together with the reduction techniques from Chapter 4 also greatly improve the
overall performance of the abstract regular tree model checking method.

In [ACH+lOa], we have carried out experiments comparing the pure antichain-
based algorithms for both FA and T A with their simulation-improved variants.
In the case of FA, we obtained our experimental data from several different

58

sources. The experiments show that simulation enhanced antichain approach
significantly outperforms the pure antichain-based approach in almost all of the
considered cases.

We note that simultaneously with [ACH + 10a], Doyen and Raskin published
their recent work [DR10] where they present basically the same main idea as
is the one of [ACH +10a] (this is, using simulation to improve the antichain
algorithms). However, even though the two works have significant overlaps,
both of them contain original unique contributions. We will briefly compare the
two works in the following two paragraphs.

Doyen and Raskin in [DR10] study more systematically theoretical aspects
of simulation optimisations of antichain algorithms. They present a framework
where they consider also the backward algorithms for FA that were presented
in [WDHR06] and show how they can be optimised with backward simulation.
These backward algorithms are dual to the forward ones and they utilise back­
ward simulation instead of forward simulation. They also consider a conceptu­
ally different approach where one utilises forward simulation within backward
algorithms and backward simulation within forward algorithms. Apart from
that, Doyen and Raskin also show other applications of their framework to
problems such as emptiness of alternating automata.

On the other hand, our paper [ACH +10a] comes with the following. Contrary
to [DR10], we provide extensive experimental results showing practical applica­
bility of the algorithms. We also design algorithms that are carefully optimised
not to explore unnecessary search paths which also notably improves their effi­
ciency Then, except using simulations to prune unpromising macro-states, we
use them also to reduce the internal representations of reached macro-states. We
study in detail both universality and language inclusion problem (while Raskin
and Doyen concentrate mostly only on universality) where not all the optimisa­
tions that we propose are covered by the framework from [DR10] (in particular,
in the case of inclusion checking, we utilise also simulation between states of the
two automata). Finally, we also present an extension of the technique to tree
automata.

Outline. The remainder of the chapter is organised as follows. We begin Sec­
tion 5.1 by applying our idea to solve the universality problem for FA. The
problem is simpler than the language inclusion problem and thus we believe
that presenting our universality checking algorithm first makes it easier for the
reader to grasp the idea. We continue the section by discussing our language in­
clusion checking algorithm for FA. In Section 5.2, we present the algorithms for
checking universality and language inclusion for tree automata that are exten­
sions of the FA algorithms from Section 5.1. Section 5.3 describes experimental
results on comparing pure antichain-based algorithms for T A with the classical
subset construction-based algorithms, and also experiments on testing impact
of applying our algorithms in abstract regular tree model checking. In Sec­
tion 5.4, we present experiments on comparing pure antichain-based algorithms
for both FA and T A with their versions improved with simulations. Finally, in
Section 5.5, we conclude the chapter and discuss further research directions.

59

5.1 Universality and Language Inclusion of FA

In this section, we describe our simulation improvements of the antichain algo­
rithms for testing language inclusion and universality of FA from [WDHR06].
Basically, we will show how to utilise simulation on states of an automaton (that
is computed in advance) within a language inclusion/universality checking al­
gorithm.

Let A = (E, Q, 5,1, F,) be a finite automaton. For convenience, we call a set
of states in A a macro-state, i.e., a macro-state is a subset of Q. A macro-state
is accepting if it contains at least one accepting state, otherwise it is rejecting.
For a macro-state P, define L(A)(P) := {Jp&P L(A)(p). We say that a macro-
state P is universal if L{A){P) = E*. For two macro-states P and R, we write
P ^ R as a shorthand for Vp G P3r G R : p ^ r. We define the post-image of
a macro-state Post(P) := {P1 | 3a G E : P' = {p1 \ 3p G P : (p, a,p') G o}}. We
use A- to denote the set of relations over the states of A that imply language
inclusion, i.e., if ^ G A-, then we have p •< r =>• L(A)(p) C L(.A)(r).

Let .4 = (E, Q_4,5_4, i_4, F 4) and B = (E, Qg, <5g, i g , Fg) be two FA. Define
their union automaton AU B := (E, Q_4 U Qg, U fe, ^4 U -Js> F 4 U Fg).

5.1.1 Universality of FA

The universality problem for an FA „4, = (E, Q, 5,1, F) is to decide whether
L{A) = E*. The problem is PSPACE-complete. The classical algorithm for the
problem first determinises A with the subset construction and then checks if
every reachable macro-state is accepting. The algorithm is inefficient since in
many cases the determinisation will cause a very fast growth in the number of
states. Note that for universality checking, we can stop the subset construction
immediately and conclude that A is not universal whenever a rejecting macro-
state is encountered. A n example of a run of this algorithm is given in Fig. 5.1.
The automaton A used in Fig. 5.1 is universal because all reachable macro-states
are accepting.

In this section, we propose a more efficient approach to universality checking.
In a similar manner to the classical algorithm, we run the subset construction
procedure and check if any rejecting macro-state is reachable. However, our
algorithm augments the subset construction with two optimisations, henceforth
referred to as Optimisation 1 and Optimisation 2, respectively.

Optimisation 1 is based on the fact that if the algorithm encounters a macro-
state R whose language is a superset of the language of a visited macro-state P,
then there is no need to continue the search from R. The intuition behind this
is that if a word is not accepted from R, then it is also not accepted from P.
For instance, in Fig. 5.1(b), the search needs not continue from the macro-state
{s2,S3} since its language is a superset of the language of the initial macro-
state {s i , S 2 } . However, in general it is difficult to check if L(A)(P) C L(A)(R)
before the resulting deterministic FA is completely built. Therefore, we suggest
to use an easy-to-compute alternative based on the following lemma.

Lemma 5.1. Let P, R be two macro-states, A be an FA, and -< be a relation
in AQ. Then, P R implies L(A)(P) C L(A)(R).

60

Classical

Antichain
Optimisation 1
—J~ii7«2~|

/a \

1 ' J 81, «3 J «2, S3 £ 8 2 , 8 3 J 8 1 , 8 2 , 8 3 , 8 4 J

51,52 51,53 J S1,S2,S3 I SI,S2,S3,84

Sl,S2,S3 Si,S2,S3,S4

(a) Source FA A
(b) A run of the algorithms. The areas la­
belled "Optimisation 1", "Antichain", "Classical"
are the macro-states generated by our simula­
tion enhanced antichain approach with the maxi­
mal simulation and Optimisation 1, the antichain-
based approach, and the classical approach, re-

(c) Optimisation 1 and 2 spectively.

Figure 5.1: Universality Checking Algorithms

V / \ V
Si S i

Note that in Lemma 5.1, ^ can be any relation on the states of A that implies
language inclusion. This includes any simulation relation (Lemma 2.1). When -<
is the maximal simulation or the identity relation, it can be efficiently obtained
from A before the subset construction algorithm is triggered and used to prune
out unnecessary search paths.

A n example of how the described optimisation can help is given in Fig. 5.1(b).
If -< is the identity, the universality checking algorithm will not continue the
search from the macro-state { s i , S 2 , S 4 } because it is a superset of the initial
macro-state. In fact, the pure antichain-based approach [WDHR06] can be
viewed as a special case of our simulation enhanced antichain approach when
-< is the identity. Notice that, in this case, only 7 macro-states are generated
(the classical algorithm generates 13 macro-states). When -< is the maximal
simulation, we do not need to continue from the macro-state { 5 2 , 5 3 } either
because s\ •< S 3 and hence { s i , S 2 J { - S 2 , - S 3 } . In this case, only 3 macro-
states are generated. As we can see from the example, a better reduction of the
number of generated states can be achieved when a weaker relation (e.g., the
maximal simulation) is used.

Optimisation 2 is based on the observation that C(A)(P) = £(A)(P \ {pi})
if there is some P2 € P with p\ •< p2- This fact is a simple consequence of
Lemma 5.1 (note that P P \ {pi})- Since the two macro-states P and
P \ {Pi} have the same language, if a word is not accepted from P, it is not
accepted from P \ {pi} either. On the other hand, if all words in £* can be
accepted from P, then they can also be accepted from P \ {pi}- Therefore, it is
safe to replace the macro-state P with P \ {pi}-

Consider the example in Fig. 5.1. If ^ is the maximal simulation relation, we
can remove the state S2 from the initial macro-state { s i , S 2 } without changing
its language, because S2 ^ s i- This change will propagate to all the searching

61

Algorithm 3: Universality Checking

Input: A n FA A = (£, Q, 5,I, F) and a relation <e A-.
Output: TRUE if A is universal. Otherwise, FALSE.

1 if / is rejecting then return FALSE;
2 Processed:—0;
3 Next:—{Minimize(I)};
4 while Next / 0 do
5 Pick and remove a macro-state R from Next and move it to Processed]
6 foreach P G {Minimize(R1) \ R' G Posi(F)} do
7 if P is rejecting then return FALSE;
8 else if -.35 G Processed U TVexi s.i. 5 P then
9 Remove all S from Processed U A^exi s.t. P S1;

10 Add P to A/ea±

n return TRUE

paths. With this optimisation, our approach will only generates 3 macro-states,
all of which are singletons. The result after apply the two optimisations are
applied is shown in Fig. 5.1(c).

Algorithm 3 describes our approach in pseudocode. In this algorithm, the
function Minimize(R) implements Optimisation 2. The function does the fol­
lowing: it chooses a new state r\ from R, removes r\ from R if there exists
a state r 2 in R such that r\ -< r 2 , and then repeats the procedure until all
of the states in R are processed. Lines 8-10 of the algorithm implement Op­
timisation 1. Overall, the algorithm works as follows. T i l l the set Next of
macro-states waiting to be processed is non-empty (or a rejecting macro-state is
found), the algorithm chooses one macro-state from Next, and moves it to the
Processed set. Moreover, it generates all successors of the chosen macro-state,
minimises them, and adds them to Next unless there is already some ^ V 3-smaller
macro-state in Next or in Processed. If a new macro-state is added to Next,
the algorithm at the same time removes all ^ V 3-bigger macro-states from both
Next and Processed. Note that the pruning of the Next and Processed sets
together with checking whether a new macro-state should be added into Next
can be done within a single iteration through Next and Processed. We discuss
correctness of the algorithm in the next section.

5.1.2 Correctness of the Opt imised Universality Check ing

In this section, we prove correctness of Algorithm 3. We first introduce some
definitions and notations that will be used in the proof. For a macro-state P ,
define Dist(P) G N U {oo} as the length of the shortest word in £* that is
not in L(A)(P) (if L(A)(P) = E*, Dist(P) = oo). For a set of macro-states
MStates, the function Dist(MStates) G NU{oo} returns the length of the short­
est word in £* that is not in the language of some macro-state in MStates. More
precisely, if MStates = 0, Dist(MStates) = oo, otherwise, Dist(MStates) =
mmp^MStates Dist(P). The predicate Univ(MStates) is true if and only if all

62

the macro-states in MStates are universal, i.e., V P G MStates : L(A)(P) = E*.
The lemma bellow follows from the fact that if L(A)(P) C L(A)(R), then the

shortest word rejected by R is also rejected by P .

Lemma 5.2. Let P and R be two macro-states such that L(A)(P) C L(„4)(P)-
We W e P i s i (P) < Dist(R).

Lemma 5.3 describes the invariants used to prove the partial correctness of
Algorithm 3.

Lemma 5.3. The below two loop invariants hold in Algorithm 3:

1. ^Univ(Processed LI Next) =4> ->Univ({I}).

2. ^Univ({I}) => Dist(Processed) > Dist(Next).

Proof. It is trivial to see that the invariants hold at the entry of the loop,
taking into account Lemma 5.1 covering the effect of the Minimize function.
We show that the invariants continue to hold when the loop body is executed
from a configuration of the algorithm in which the invariants hold. We use
Processed01^ and Nextold to denote the values of Processed and Next when the
control is on line 4 before executing the loop body and we use Processednew

and Nextnew to denote their values when the control gets back to line 4 after
executing the loop body once. We assume that Nextold ^ 0.

Let us start with Invariant 1. Assume first that Univ(Processedold U Next°ld)
holds. Then, the macro-state R picked on line 5 must be universal, which holds
also for all of its successors and, due to Lemma 5.1, also for their minimised
versions, which may be added to Next on line 10. Hence, Univ(Processednew U
Nextnew) holds after executing the loop body, and thus Invariant 1 holds too.
Now assume that ^Univ(ProcessedoldLlNextold) holds. Then, -.Univ({I}) holds,
and hence Invariant 1 must hold for Processednew and Nextnew too.

We proceed to Invariant 2 and we assume that —>Univ({I}) holds (the other
case being trivial). Hence, Dist(Processedold) > Dist(Nextold) holds. We dis­
tinguish two cases:

1. Dist(R) = oo or 3Q G Processed014 : Dist(Q) < Dist(R). In this case,
Dist(Processed) will not decrease on line 5. From Dist(Processedold) >
Dist(Nextold), there exists some macro-state R' in Nextold s.t. Dist(R') =
Dist(Nextold) < Dist(Processedold) < Dist(Q) < Dist(R). Therefore,
Dist (Next) will not change on line 5 either. Moreover, for any macro-
state P , removing Q s.t. P Q from Next and Processed on line 9 and
then adding P to Next on line 10 cannot invalidate Dist(Processednew) >
Dist(Nextnew) since Dist(P) < Dist(Q) due to Lemmas 5.1 and 5.2.
Hence, Invariant 2 must hold for Processednew and Nextnew too.

2. Dist(R) / oo and ^3Q G Processedold : Dist(Q) < Dist(R). In this
case, the value of Dist(Processed) decreases to Dist(R) on line 5. Clearly,
Dist(R) 7̂ 0 or else we would have terminated before. Then there must
be some successor R' of R which is either rejecting (and the loop stops
without getting back to line 4) or one step closer to rejection, meaning

63

that Dist(R') < Dist(R). Moreover, R' either appears in Nextnew or
there already exists some R" G Nextold such that R" R', meaning
that Dist(Processednew) > Dist(Nextnew). It is impossible that 3R" G
Processed016 : R" ^ 3 R', because Vi?" G Processed01* : Dist(R") >
Dist(R) > Dist(R') and from Lemmas 5.1 and 5.2, i?" i?' implies
Dist(R") < Dist(R'). Furthermore, if some macro-state is removed from
Processed on line 9, Dist(Processed) can only grow, and hence we are
done.

•
Due to the finite number of macro-states, we can show that Algorithm 3

eventually terminates.

Lemma 5.4 (Termination). Algorithm 3 eventually terminates.

Proof. For the algorithm not to terminate, it would have to be the case that some
macro-state is repeatedly added into Next. However, once some macro-state R
is added into Next, there will always be some macro-state Q G Processed U Next
such that Q R. This holds since R either stays in Next, moves to Processed,
or is replaced by some Q such that Q R in each iteration of the loop. Hence,
R cannot be added to Next for the second time since a macro-state is added to
Next on line 10 only if there is no Q G Processed U Next such that Q R. •

We can now easily prove the main theorem.

Theorem 10. Algorithm 3 always terminates, and returns TRUE iff the input
automaton A is universal.

Proof. From Lemma 5.4, the algorithm eventually terminates. It returns FALSE
only if either the set of initial states is rejecting, or the minimised version R1

of some successor S of a macro-state R chosen from Next on line 5 is found
rejecting. In the latter case, due to Lemma 5.1, S is also rejecting. Then R
is non-universal, and hence Univ(Processed U Next) is false. By Lemma 5.3
(Invariant 1), we have A is not universal. The algorithm returns TRUE only
when Next becomes empty. When Next is empty, Dist(Processed) > Dist(Next)
is not true. Therefore, by Lemma 5.3 (Invariant 2), A is universal. •

5.1.3 T h e F A Language Inclusion Problem

The technique described in Section 5.1.1 can be generalised to solve the language-
inclusion problem. Let A and B be two FA. The language inclusion problem for
A and B is to decide whether L(A) C L(B). This problem is also P S P A C E -
complete. The classical algorithm for solving this problem builds on-the-fly the
product automaton A x B of A and the complement of B and searches for an
accepting state. A state in the product automaton A x B is a pair (p, P) where p
is a state in A and P is a macro-state in B. For convenience, we call such a pair
(p, P) a product-state. A product-state is accepting iff p is an accepting state in
A and P is a rejecting macro-state in B. We use L(A,B)(p,P) to denote the
language of the product-state (p, P) in AxB. The language of A is not contained

(34

Classical

^ - - -_ — - _ Antichain

[~ Optimisation 1(b) ^

1 — » | P i . fa} | J
jsS^tt "S S s\^)ptimisation 1(a)

P2,{92}

fa ^

/ J P l , f e } J
y 4 - - o ^ ,

P i . {91.92} P2,{91.92} I I P i . {91.92} I |p2,{9l.92} I P i , {91} ', i \

Pi,{91,92} P2,{91,92} Pi,{91,92} P2,{91,92} Pi,{91}

(b) FA B (c) A run of the algorithms while checking L{A) C L{B).

Figure 5.2: Language Inclusion Checking Algorithms

in the language of B iff there exists some accepting product-state (p, P) reachable
from some initial product-state. Indeed, L(A,B)(p,P) = L(A)(p) \ L(B)(P),
and the language of A x B consists of words which can be used as witnesses of
the fact that L{A) C L{B) does not hold. In a similar manner to universality
checking, the algorithm can stop the search immediately and conclude that
the language inclusion does not hold whenever an accepting product-state is
encountered. A n example of a run of the classical algorithm is given in Fig. 5.2.
We find that L(A) C L(B) is true and the algorithm generates 13 product-states
(Fig. 5.2(c), the area labelled "Classical").

Optimisation 1 that we use for universality checking can be generalised for
language inclusion checking as follows. Let A = (£ , QA, 5A, I A. PA) a n d B =
(S, QB, 5b, IB, FB) be two FA such that QA D QB = 0. We denote by A U B the
FA (S, QA U QB, 5A U 5b, I A U IB, FA U FB). Let < be a relation in (A U B)-.
During the process of constructing the product automaton and searching for an
accepting product-state, we can stop the search from a product-state (p, P) if
(a) there exists some visited product-state (r, R) such that p <r and R P.
or (b) 3p' G P : p ^ p'. Optimisation 1(a) is justified by Lemma 5.5, which is
very similar to Lemma 5.1 for universality checking.

Lemma 5.5. Let A, B be two FA, (p,P), (r,R) be two product-states where
p, r are states in A and P, R are macro-states in B, and -< be a relation in
[A U B)-. Then, p < r and R P implies L(A,B)(p,P) C L(A, B)(r, R).

By the above lemma, if a word takes the product-state (p, P) to an accepting
product-state, it will also take (r, R) to an accepting product-state. Therefore,
we do not need to continue the search from (p, P).

Let us use Fig. 5.2(c) to illustrate Optimisation 1(a). As we mentioned, the
pure antichain-based approach can be viewed as a special case of our simulation
enhanced antichain approach when ^ is the identity. When ^ is the identity,
we do not need to continue the search from the product-state (p2, {qi, 0/2}) be­
cause {c/2} C {c/i,c/2}. In this case, the algorithm generates 8 product-states
(Fig. 5.2(c), the area labelled "Antichain"). In the case that ^ is the maximal
simulation, we do not need to continue the search from product-states (pi, {52}):
(pi, {qi, #2}), a n d 0?2, {#1, 0/2}) because q\ •< 02 and the algorithm already vis-

65

ited the product-states {pi, {gi}) and {p2, { g 2 }) - Hence, the algorithm generates
only 6 product-states (Fig. 5.2(c), the area labelled "Optimisation 1(a)").

If the condition of Optimisation 1(b) holds, we have that the language of p
(w.r.t. A) is a subset of the language of P (w.r.t. B). In this case, for any word
that takes p to an accepting state in A, it also takes P to an accepting macro-
state in B. Hence, we do not need to continue the search from the product-state
(p, P) because all of its successor states are rejecting product-states. Consider
again the example in Fig. 5.2(c). With Optimisation 1(b), if ^ is the maximal
simulation on the states of AL)B, we do not need to continue the search from the
first product-state 0?i,{gi}) because p\ -< q\. In this case, the algorithm can
conclude that the language inclusion holds immediately after the first product-
state is generated (Fig. 5.2(c), the area labelled "Optimisation 1(b)").

Observe that from Lemma 5.5, it holds that for any product-state {p, P) such
that p\ < P2 for some pi,P2 G P, L(A,B)(p,P) = L(A,B)(p, P \ {pi}) (as
P P \ {pi}). Optimisation 2 that we used for universality checking can
therefore be generalised for language inclusion checking too.

We give the pseudocode of our optimised inclusion checking in Algorithm 4,
which is a straightforward extension of Algorithm 3. In the algorithm, the
definition of the Minimize(R) function is the same as what we have defined in
Section 5.1.1. The function Initialize^'States) applies Optimisation 1 on the
set of product-states PStates to avoid unnecessary searching. More precisely, it
returns a maximal subset of PStates such that (1) for any two elements (p,P),
(q, Q) in the subset, p ^ gVQ 2^V 3 P and (2) for any element (p, P) in the subset,
Vp' G P : p i± p'. We define the post-image of a product-state Post{{p, P)) :=
{(p',P') | 3a G S : (p,a,p') €S,P' = {p" | 3p G P : (p,a,p") G 6}}.

Algorithm 4: Language Inclusion Checking
Input: FA A = (£, QA, SA, IA, FA), B = (£, QB, 5B, IB, FB). A relation

r< G (AuB)^.
Output: TRUE if L(A) C L(B). Otherwise, FALSE.

1 if there is an accepting product-state in {{i,IB) \ i G IA} then return
FALSE;

2 Processed:—
3 Next:— Initialize({(i, Minimize(1B)) \ i G IA}):
4 while Next / 0 do

Pick and remove a product-state (r, R) from Next and move it to
Processed:

6 foreach (p, P) G { (/ , Minimize(R')) \ (/, R') G Poster, R))} do
7 if {p, P) is an accepting product-state then return FALSE;
8 else if Sp' G P s.t. p <p' then
9 if -.3(s, S) G Processed U Next s.t. p ^ s A S P then

10 Remove all (s, S) from Processed U Next s.t. s < p/\P S:
11 Add (p,P) to Next;

12 return TRUE

GO

Correctness: Define Dist(P) G N U {00} as the length of the shortest word in
the language of the product-state P or 00 if the language of P is empty. The
value Dist(PStates) G N U { o o } is the length of the shortest word in the language
of some product-state in PStates or 00 if PStates is empty. The predicate
Incl(PStates) is true iff for all product-states (p,P) in PStates, L(A)(p) C
L{B){P). The correctness of Algorithm 4 can now be proved in a very similar
way to Algorithm 3, using the invariants below:

1. ^Incl(Processed U Next) =>• ->Incl({(i, IQ) \ i G IA})-

2. ->Incl({(i,lB) I i G IA}) => Dist(Processed) > Dist(Next).

Theorem 11. Algorithm 4 terminates, and returns TRUE iff £(A) C C{B).

5.2 Universality and Language Inclusion of Tree
Automata

To optimise universality and inclusion checking on word automata, we used re­
lations that imply language inclusion. For the case of universality and inclusion
checking on tree automata, we now propose to use relations that imply inclusion
of languages of contexts (context is the notion of a tree with "holes" instead of
(all) leaves defined in Chapter 4) that are accepted from tuples of tree automata
states. As we will see, a relation that fits here best is upward simulation induced
by identity introduced in Chapter 4. Notice that in contrast to the notion of a
language accepted from a state of a word automaton, which refers to possible
"futures" of the state, the notion of a language accepted at a state of a TA refers
to possible "pasts" of the state. Our notion of languages of contexts accepted
from tuples of tree automata states speaks again about the future of states,
which turns out useful when trying to optimise the (antichain-based) subset
construction for TA. Below, we state formal definitions of the notions needed
within this chapter.

The language of A accepted from a tuple (qi,..., qn) of states is the set
of contexts Cn(A)(qi,..., qn) = {t G T D | t(q\,..., qn) =>• q for some q G F}.
We define the language accepted from a tuple of macro-states (P i , . . . , Pn) C Qn

as the set £ n (- 4) (P i , . . . ,Pn) = U{£ D (-4)(9i, • • •, Qn) \ (qi, • • •,Qn) G P i x . . . x
Pn}. We define Posta(qi, ...,qn) •= {q | (<?i, •••,qn) ^ <?}• For a tuple of
macro-states, we let Posta(Pi, Pn) •= \J{Posta(qi, • • •, qn) \ (qi, • • • ,Qn) G
P i x ••• x P„} .

Let us use tn to denote the context that arises from a tree t G T(E) by
replacing all the leaf symbols of t by • and let for every leaf symbol a G E ,

= {q I —> q} is the so called a-initial macro-state. Languages accepted at
final states of A correspond to the languages accepted from tuples of initial
macro-states of A as stated in Lemma 5.6.

Lemma 5.6. Let t be a tree over E with leaves labelled by a\,... ,an. Then
t G C(A) if and only if tn G Cn(A)(Iai,... , 4 J -

67

5.2.1 T h e Role of Upward Simulat ion

We now work towards denning suitable relations on states of T A allowing us to
optimise the universality and inclusion checking. We extend relations ^ G QxQ
on states to tuples of states such that (qi,..., qn) •< (r\,..., rn) iff qi •< ri for
each 1 < i < n. We define the set A- of relations that imply inclusion of
languages of tuples of states such that ^ G A- iff (q\,..., qn) < (r\,..., rn)
implies Cn(A)(qi,qn) C Cn(A)(n,... , r „) .

A relation that satisfies the above property is the upward simulation induced
by identity defined in Chapter 4. For convenience, in this chapter, we will call it
simply upward simulation. We note that it can be equivalently defined in a non-
parametric way as follows: A n upward simulation on A is a relation ^ C Q x Q
such that if q •< r, then (1) q G F =4> r G F and (2) if (q\,..., qn) A q' where
q = qi, then (qi,... , r, qi+1, . . . , f e) A r ' where q' ^ r'. 1

Lemma 5.7. F o r t/ie maximal upward simulation ^ on A, we have ^ G A-.

Proof. We first show that the maximal upward simulation ^ has the following
property: If (qi,..., qn) A q' in A, then for every (n,..., r„) with (# i , . . . ,qn) <
(r i , . . . , r n) , there is r' G Q such that g' ^ r ' and {r\,...,rn) —>• r ' . From
((/ i , . . . , g n) A g' and q\ ^ r\, we have that there is some rule (n, q^, • • •, qn) A
s i such that q' ^ s i . From the existence of (r\, q^, • • •, qn) A s\ and from
q2 ^ T2, we then get that there is some rule (n,r2,qs, • • • ,qn) A S2 such that
si ^ «2, etc. Since the maximal upward simulation is transitive [ABH + 08c], we
obtain the property mentioned above. This in turn implies Lemma 5.7. •

5.2.2 Tree A u t o m a t a Universality Checking

We now show how upward simulations can be used for optimised universality
checking on tree automata. Let A = (£ , Q, A , F) be a tree automaton. We
define Z ^ E) as the set of all contexts over S with n leaves. We say that an n-
tuple (qi,..., qn) of states of A is universal if £P(A)(q\,..., qn) = T^(S) , this is,
all contexts with n leaves constructable over S can be accepted from (qi,..., qn).
A set of macro-states MStates is universal if all tuples in MStates* are universal.
From Lemma 5.6, we can deduce that A is universal (i.e., C(A) = T(T,)) if and
only if {Ia | a G So} is universal.

The following Lemma allows us to design a new T A universality checking
algorithm in a similar manner to Algorithm 3 using Optimisations 1 and 2
from Section 5.1.1.

Lemma 5.8. For a given ^ G A- and two tuples of macro-states of A, if
(i? i , . . . , i ?„) (P1,...,Pn), then£n(A)(R1,...,Rn)CCn(A)(P1,...,Pn).

Algorithm 5 describes our simulation enhanced antichain approach to checking
universality of tree automata in pseudocode. It resembles closely Algorithm 3.
There are two main differences: (1) The initial value of the Next set is the

1 U p w a r d s i m u l a t i o n s p a r a m e t r i s e d b y a d o w n w a r d s i m u l a t i o n greater t h a n the i d e n t i t y can­
not be used i n our f r amework since t hey do not genera l ly i m p l y i n c l u s i o n of languages of
tup les of states.

68

Algorithm 5: Tree Automata Universality Checking
Input: A tree automaton A = (S, Q, A, F) and a relation ^ G A-.
Output: TRUE if A is universal. Otherwise, FALSE.

1 if 3a G So such that Ia is rejecting then return FALSE;
2 Processed:—%:
3 Next:— Initialize{Minimize{Ia) \ a G So};
4 while Next / 0 do
5 Pick and remove a macro-state R from Next and move it to Processed:
6 foreach P G {Minimize(R') \ R' G Post(Processed)(R)} do
7 if P is a rejecting macro-state then return FALSE;
8 else if -i3Q G Processed U Afect s.t. Q zf>V3 P then
9 Remove all Q from Processed U A^est s.t. P Q;

10 _ Add P to Next;

11 return TRUE

result of applying the function Initialize to the set {Minimize(Ia) \ a G So}.
Initialize returns the set of all macro-states in {Minimize(Ia) \ a G So}, which
are minimal w.r.t. (i.e., those macro states with the best chance of finding a
counterexample to universality). (2) The computation of the Post-image of a set
of macro-states is a bit more complicated. More precisely, for each symbol a G
S „ , n G N , we have to compute the post image of each n-tuple of macro-states
from the set. We design the algorithm such that we avoid computing the Post-
image of a tuple more than once. We define the Post-image Post{MStates){R)
of a set of macro-states MStates w.r.t. a macro-states R G MStates. It is the set
of all macro-states P = Posta(P\,... ,Pn) where a G S„ , n G N and R occurs at
least once in the tuple (P i , . . . , P n) G MStates*. Formally, Post(MStates) (R) =
U a e S { P o s t a (P i , . . . , P„) | n = #(a), P i , . . . , Pn G MStates, Re {Pi,..., P„}}.

5.2.3 Correctness of the T A Universality Checking

In this section, we prove correctness of Algorithm 5 in a very similar way to
Algorithm 3, using suitably modified notions of distances and ranks. Let A =
(Q, S, A, F) be a TA. For n > 0 and an n-tuple of macro-states (Qi, • • •, Qn)
where Qi C Q for 1 < i < n, we let D i s t (Q i , . . . , Qn) = 0 iff QiP\F = 0 for some
i G {1 , . . . , n } . We define D i s t (Q i , . . . , Qn) = k G N+ U {oo} iff Qi C F for
all i G {1 , . . . , n} and k = min({|t| | t G T ° (S) A t 0 Cu{A){Qi,... ,Qn)}).
Here, |t| is the number of nodes of t and we assume min(0) = oo. For a
set MStates of macro-states over Q, we define the measure Rank(M5'tates) =
min({Dist((5i,..., Qn) \ n > 1 A V I < i < n : Qi G MStates}) and the predicate
Univ(MStates) < ^ Rank (MStates) = oo.

Lemma 5.9. The below two loop invariants hold in Algorithm 5:

1. -iTJniv(Processed U Next) =4> -iUniv({/ a | a G So}).

69

2. -iUniv({/ a | a G ^o}) =>• Hank(Processed) > Hank(Processed U
Next).

Proof. It is trivial to see that the invariants hold at the entry of the loop,
taking into account Lemma 5.8. We show that the invariants continue to hold
when the loop body is executed from a configuration of the algorithm in which
the invariants hold. We use Processed016 and Nextold to denote the values of
Processed and Next when the control is on line 4 before executing the loop
body and we use Processednew and Nextnew to denote their values when the
control gets back to line 4 after executing the loop body once. We assume that
Nextold ± 0.

Let us start with Invariant 1. Assume first that XJniv(Processedold U Next°ld)
holds. Then, the macro-state R can appear within tuples constructed over
Processed016- U Nextold which are universal only. In such a case, all macro-states
Q reachable from all tuples T built over Processedold U Nextold are such that
when we add them to Processedold U Nextold, the resulting set will still allow
building universal tuples only. Otherwise, one could take a non-universal tuple
containing some of the newly added macro-states Q, replace Q by the tuple T
from which it arose, and obtain a non-universal tuple over Processed016 D Next016,
which is impossible. Hence, the possibility of adding the new macro-states to
Next on line 10 cannot cause non-universality of Processednew U Nextnew, which
due to Lemma 5.8 holds when adding the minimised macro-states too. Moreover,
removing elements from Next or Processed cannot cause non-universality either.
Hence, Invariant 1 holds over Processednew and Nextnew in this case. Next, let us
assume that -iVnW(ProcessedoldUNextold) holds. Then, -nUniv({/a | a G S 0 })
holds, and hence Invariant 1 must hold for Processednew and Nextnew too.

We proceed to Invariant 2 assuming that -iUniv({/ a | a G So}) holds (the
other case is trivial). Hence, Hank(Processedold) > Rank(Processedold U
Nextold) holds. We distinguish two cases:

1. In order to build a tuple T over Processed016- and Nextold that is of Dist
equal to Hank(Processedold U Nextold), one needs to use a macro-state Q
in Nextold \ {R}. The macro-state Q stays in Nextnew or is replaced by a
^ V 3 -smaller macro-state added to Next on line 10 that, due to Lemma 5.8,
can only allow to build tuples of the same or even smaller Dist. Likewise,
the macro-states accompanying Q in T stay in Nextnew or Processednew or
are replaced by ^ V 3 -smaller macro-states added to Next on line 10 allowing
to build tuples of the same or smaller Dist, due to Lemma 5.8. Hence,
moving R to Processed on line 5 cannot cause the invariant to break.
Moreover, adding some further macro-states to Next on line 10 can only
cause Rank {Processed U Next) to decrease while removing macro-states
from Processed on line 9 can only cause Hank(Processed) to grow. Finally,
replacing a macro-state in Next by a ^ V 3-smaller one as a combined effect
of lines 9 and 10 can again just decrease Rank(Processed U Next), due to
Lemma 5.8. Hence, in this case, Invariant 2 must hold over Processednew

and Nextnew.

2. One can build some tuple T over Processed016- and Next016 that is of Dist

70

equal to Rank (Process eaT01 U Nextold) using Processed016 U {R} only. In
this case, there must be tuples constructable over Processed"16 U {R} and
containing R that are not universal. We can distinguish the following
subcases:

a) From some of the tuples built over Processed016 U {R} and containing
R, a non-accepting macro-state is reached via a single transition of
A, and the algorithm stops without getting back to line 4.

b) Otherwise, some macro-states that appear in Post(Processed, R) and
that will be added in the minimised form to Next must allow one
to construct tuples which are of Dist smaller than those based on
R. This holds since if a macro-state Q is reached from some tuple
T containing R by a single transition, we can replace T in larger
tuples leading to non-acceptation by Q, and hence decrease the size
of the context needed to reach non-acceptation. Taking into account
Lemma 5.8 to cover the effect of the minimisation and using a similar
reasoning as above for covering the effect of lines 9 and 10, it is then
clear that Invariant 2 will remain to hold in this case.

•
We can now prove Lemma 5.10 and Theorem 12 below in a very similar way

as Lemma 5.4 and Theorem 10, respectively.

Lemma 5.10. Algorithm 5 eventually terminates.

Theorem 12. Algorithm 5 always terminates, and returns T R U E if and only if
the input tree automaton A is universal.

5.2.4 Downward Universality Checking with Ant ichains

The upward universality introduced above tree automata automata conceptu­
ally corresponds to the forward universality checking of finite word automata
of [WDHR06, DR10] where also a dual backward universality checking is intro­
duced. The backward universality algorithm from [WDHR06, DR10] is based on
computing the controllable predecessors of the set of non-final states. Control­
lable predecessors are the predecessors that can be forced by an input symbol to
continue into a given set of states. Then, the automaton is non-universal iff the
controllable predecessors of the non-final states cover the set of initial states.

Downward universality checking for tree automata as a dual approach to up­
ward universality checking is problematic since the controllable predecessors of
a set of states s C Q of an TA A = (Q, E , F, A) do not form a set of states, but
a set of tuples of states, i.e., for a G E , CPrea(s) = {(qi, • • •, qn) \ n £ N A \/q G
Q : (qi,..., qn) A q G s}. Note that if we flatten the set CPrea(s) to the set
FCPrea(s) of states that appear in some of the tuples of CPrea(s) and check
that starting from leaf rules the computation can be forced into some subset of
FCPrea(s), then this does not imply that the computation can be forced into
some state of s. That is because for any rule (qi,..., qn) -A q, q G s, not all of
the states qi, • • • ,qn may be reached. Moreover, it is too strong to require that

71

starting from leaf rules, it must be possible to force the computation into all
states of FCPrea(s). Clearly, it is enough if the computation starting from leaf
rules can be forced into s via some of the vectors in CPrea(s), not necessarily all
of them. Also, if we keep CPrea{s) for s C Q as a set of vectors, we also have to
define the notion of controllable predecessors for sets of vectors of states, which
is a set of vectors of vectors of states, etc. Clearly, such an approach is not
practical and does not even terminate. Yet, we feel that some further research
on ways possibly circumventing this problems can be interesting as we discuss
in Section 5.5.

5.2.5 Tree A u t o m a t a Language Inclusion Checking

We are interested in testing language inclusion of two tree automata A =
(E, QA, A _ 4 , FX) and B = (E, QB, A S , Pg). From Lemma 5.6, we have that
C(A) C C(B) if and only if for every tuple a\,..., an of leaf symbols from So,
£n(A)(l£,... C JCP(B)(I*,. . . . I *) . In other words, for any a u ..., an G
So, every context that can be accepted from a tuple of states from l£ x . . . x l£n

can also be accepted from a tuple of states from I~ x . . . x I~ . This justifies
a similar use of the notion of product-states as in Section 5.1.3. We define
the language of a tuple of product-states as J0P(A, B)((qi, Pi),..., (qn, Pn)) :=
Cn(A)(qi, ...,qn)\ J0P(B)(Pi,Pn). Observe that we obtain that C(A) C
C(B) iff the language of every n-tuple (for any n G N) of product-states from
the set {(i,I®) \ a G S o , i G l£} is empty.

Our algorithm for testing language inclusion of tree automata will check
whether it is possible to reach a product-state of the form (q, P) with q G P 4
and P fl FQ = 0 (that we call accepting) from a tuple of product-states from
{(i,I®) J a G S o , i G The following lemma allows us to use Optimisation
1(a) and Optimisation 2 from Section 5.1.3.

Lemma 5.11. Given •< G (AuB)-, two tuples of states and two tuples of pro­
duct-states with (pi,... ,pn) rf: (ri,... ,rn) and (Ri,..., Rn) (P i , . . . , Pn), it
holds that Cn(A, B)((pu Pi),..., (Pn, Pn)) C Cn(A, B)((n,Rx),(rn, Rn)).

It is also possible to use Optimisation 1(b) where we stop searching from
product-states of the form (q, P) such that q ^ r for some r G P . However, note
that this optimisation is of limited use for tree automata. Under the assumption
that the automata A and B do not contain useless states, the reason is that for
any q G Q_A arid r G QB, if q appears at a left-hand side of some rule of arity
more than 1, then no reflexive relation from •< G (AU B)- allows q ^ r?

Algorithm 6 describes our method for checking language inclusion of T A in
pseudocode. It closely follows Algorithm 4. It differs in two main points. First,
the initial value of the Next set is the result of applying the function Initialize
on the set {(i, Minimize(I®)) \ a G S o , i G l£} where Initialize is the same
function as in Algorithm 4. Second, the computation of the Post image of a set

2 T o see th i s , assume t ha t a con tex t tree t is accep ted f rom (qi,... ,qn) G QA,Q = <7»j 1 ^
i < n. I f q -< r, t h en b y the de f in i t i on of ^ , t € £P(A U B)(qi,..., qt-i,r, qi+i,..., qn).
However , t ha t canno t h a p p e n , as A U B does not c o n t a i n any rules w i t h left h a n d sides
c o n t a i n i n g b o t h states f rom A a n d states f rom B.

72

Algorithm 6: Tree Automata Language Inclusion Checking

Input: T A A and B over an alphabet £ . A relation < G (AuB)-.
Output: TRUE if L(A) C Otherwise, FALSE.

1 if there exists an accepting product-state in \JaG^0{(i,Ia) I * ̂ ^} then
return FALSE;

2 Processed:^®;
3 Next:=Initialize({Ja£Ti0{(i, Minimize (I ®)) \ i G P /}) ;
4 while ./Vest / 0 do

Pick and remove a product-state (r, P) from Next and move it to
Processed:
foreach (p, P) G {(r', Minimize(R')) \ (r',R') G Post(Processed)(r, R)}
do

7 if (p, P) is an accepting product-state then return FALSE;
8 else if - i3p' £ P s . i . P ^ p' then
9 if -.3(g, Q) G Processed U TVexi s . i . p ^qAQ ^ V 3 P then

10 Remove all (q, Q) from Processed U iVexi s.t.
q<p /\P Q;

n Add (p,P) to Aforf;

12 return TRUE

of product-states means that for each symbol a G E n , n G N , we construct the
Post a-image of each n-tuple of product-states from the set. Like in Algorithm 5,
we design the algorithm such that we avoid computing the Post a-image of a
tuple more than once. We define the post image Post(PStates)(r, R) of a set of
product-states PStates w.r.t. a product-state (r, R) G PStates. It is the set of all
product-states (q, P) such that there is some a G E , #(a) = n and some n-tuple
{(qi, P i) , • • •, {qn, Pn)) of product-states from PStates that contains at least one
occurrence of (r, R) where q G Posta(qi, • • •, <?n) and P = Posta(Pi, • • •, Pn)-

Correctness of the T A Language Inclusion Checking. We prove correctness
of Algorithm 6 in a very similar way to Algorithm 4, using suitably modified
notions of distances and ranks.

Let A = (E , Q_4, A_4, P 4) and B = (E , Qg, A g , pg) be two tree automata.
Given n > 0 and an n-tuple of macro-states ((qi, P i) , . . . , (qn, Pn)), we de­
fine D i s t ((g 1 , P 1) , . . . , (g „ , P „)) = 0 iff e G Cn(A,B)((q1,P1),...,(qn,Pn)).
Otherwise we define Dist((gi, P i) , . . . , (qn, Pn)) = k G N + U {oo} iff k =
mm({\t\ | t G T ° (£) A t G £ n (A • • •, (g n , Pn))})- Here, we assume
min(0) = oo. For a set PStates of product-states, we let Rank (PStates) =
min({Dist((gi,Pi), . . . , (qn,Pn)) | n > l A V l < i < n : P) G PStates}).
The predicate Incl(PStates) is defined to be true iff Rank(PStates) = oo.

Lemma 5.12. The following two loop invariants hold in Algorithm 6:

1. ^Incl(Processed U Next) ^Incl(\Ja&Ti{{i,I®) \i e 1^}).

73

2. ^Incl({Ja£j]o{(i,I®) | i € =^ RaLnk(Processed) > Rank(7Vea;i U
Processed).

The proof is similar to that of Lemma 5.9. Wi th the invariants in hand, we
can now prove Lemma 5.13 and Theorem 13 below in a very similar way as
Lemma 5.4 and Theorem 10, respectively.

Lemma 5.13. Algorithm 6 eventually terminates.

Theorem 13. Algorithm 6 terminates, and returns TRUE iff C(A) C C{B).

5.3 Experiments with Classical versus Pure Ant ichain
Algori thms for Tree Automata

In this section, we describe the experimental results obtained in [BHH +08b]
where we compare classical subset construction based algorithms for tree au­
tomata with pure antichain based ones. The pure antichain algorithms may be
seen as special cases of Algorithms 4 and 6, where the role of simulation relation
is played by the identity relation.

We have implemented the above pure antichain approach for testing univer­
sality and inclusion of tree automata in a prototype based on the Timbuk tree
automata library [GVT03]. We give the results of our experiments run on an
Intel Xeon processor at with 2.7GHz and 16GB of memory in Fig. 5.3. We
ran our tests on randomly generated automata and on automata obtained from
abstract regular tree model checking applied in verification of several pointer-
manipulating programs.

In the random tests, we use an approach for systematic generating random au­
tomata with different parameters inspired by the approach proposed by Tabakov
and Vardi in [TV05] (which was also used in [WDHR06]). The parameters of
the generated automata are number of states, density of their transitions (the
average number of different right-hand side states for a given left-hand side of
a transition rule, i.e., | A | / | { a (g i , . . . , qn) |€ £, q € Q : (qi,..., qn) A q}\) and
the density of their final states (i.e., |F|/|<5|).

5.3.1 Experiments with Ant ichain-based Universality Checking

For experiments with the pure antichain tree automata universality algorithm,
we used automata with 20 states and varied transition density and density of
final states. Fig. 5.3(a) shows the probability of such tree automata being uni­
versal, and Fig. 5.3(b) the average times needed for checking their universality
using our antichain-based approach. The difficult instances are those where
the probability of being universal is about one half. In Fig. 5.3(c), we show
how the running times change for some selected instances of the problem (in
terms of some chosen densities of transitions and final states, including those
for which the problem is the most difficult) when the number of states of the
automata grows. We also show the time needed when universality is checked
using determinisation, complement, and emptiness checking. We see that the

74

(a) P r o b a b i l i t y tha t a tree a u t o m a t o n
(T A) w i t h 20 states a n d some dens i t y of
t r ans i t i ons a n d final s tates is un ive r sa l

(b) Average t imes of an t i cha in -based un ive r ­
sa l i t y c h e c k i n g o n T A w i t h 20 states a n d
some dens i ty of t r ans i t i ons a n d final states

50

S 40

Density of transitions, final states: f .5, 0.9
2.0, 0.5 -
2.5, 0.3 -

(checking v ia determinisation) 2.5, 0.3

number of states

(c) U n i v e r s a l i t y check ing v i a d e t e r m i n i s a t i o n a n d an t icha ins
on T A w i t h selected densi t ies of t r ans i t i ons a n d final states

antichain-based
determinisation-based

number of states

(d) D e t e r m i n i s a t i o n - b a s e d a n d an t i cha in -based u n i v e r s a l i t y
check ing o n T A f rom abs t rac t regu la r tree m o d e l check ing

Figure 5.3: Experiments with universality checking on tree automata

antichain-based approach behaves in a significantly better way. The same con­
clusion can also be drawn from the results of Fig. 5.3(d) obtained on automata
from experimenting with abstract regular tree model checking applied for veri­
fying various procedures manipulating trees presented in Section 5.3.3.

5.3.2 Experiments with Ant ichain-based Inclusion Checking

Below, in Fig. 5.4 and Fig. 5.5, we present the results that we have obtained from
experimenting with pure antichain-based inclusion checking for tree automata.
We first ran our tests on pairs of randomly generated automata having 10 states
and different possible densities of transitions and final states. The probability
that C(A) C C(B) holds for randomly generated tree automata A and B (both
having the same densities of transitions and final states) is shown in Fig. 5.4(a).
Fig. 5.4(b) then shows how the antichain-based inclusion checking behaves on

75

such automata. We see that its time consumption is naturally growing for
automata where the probability of whether C(A) C C(B) holds is neither too
low nor too high.

tinier;

(a) P r o b a b i l i t y o f C(A) C C(B) for tree
a u t o m a t a (T A) w i t h 10 states a n d some
dens i ty of t r ans i t i ons a n d final states

(b) Average t imes of an t i cha in -based i n c l u s i o n
check ing o n T A w i t h some dens i t y of t r ans i ­
t ions a n d final states

•.mas:

(c) A n t i c h a i n - b a s e d i n c l u s i o n c h e c k i n g o n T A .
A r a n d o m , B w i t h some dens i ty of t r ans i t ions
a n d final states

(d) A n t i c h a i n - b a s e d i n c l u s i o n c h e c k i n g o n
T A , B r a n d o m , A w i t h some dens i ty of t r an ­
s i t ions a n d final states

Figure 5.4: Experiments with inclusion checking on tree automata

Fig. 5.4(c) and Fig. 5.4(d) show what happens if either A or B is left com­
pletely random, and only B or A, respectively, follows a given density of transi­
tions and final states. The fact that the results in Fig. 5.4(c) follow Fig. 5.4(b),
whereas the time consumption in Fig. 5.4(d) is roughly implied by the size of
A (in terms of transitions), implies that the time consumption of the antichain-
based inclusion checking is—as expected—influenced much more by the automa­
ton B.

Finally, in Fig. 5.5(a), we show how the running times change for some selected
instances of the problem (in terms of some selected densities of transitions and
final states, including those for which the problem is the most difficult) when
the number of states of the automata starts growing. The figure also shows the
time needed when the inclusion checking is based on determinising and comple­
menting B and checking emptiness of the language C(A)r\C(B). We see that the
antichain-based approach really behaves in a very significantly better way. The
same conclusion can then be drawn also from the results shown in Fig. 5.5(b)

76

that we obtained on automata saved from experimenting with abstract regular
tree model checking applied for verifying various real-life procedures manipu­
lating trees (cf. Section 5.3.3). In fact, the antichain-based inclusion checking
allowed us to implement an abstract regular tree model checking framework
entirely based on nondeterministic tree automata which is significantly more
efficient than the framework based on deterministic automata.

Inclusion - automata from A R T M C
400

350

300

250

200

150

100

50

0

,' Density of transitions, final states: 1.5,0.9/
2.0, 0.5
2.5,0:3
3.5/0.3

(checking via determinisation) 4 A 0.3

15 20
number of states

(a) D e t e r m i n i s a t i o n - b a s e d a n d an t i cha in -based i n c l u s i o n c h e c k i n g o n T A
w i t h selected densi t ies of t r ans i t i ons a n d final states

30 —
25 -

•» 20 -
^ 15 -

I 10 - ;
5 - /
0 t = =

0 20 40 60 80 100 120 140

number of states

(b) D e t e r m i n i s a t i o n - b a s e d a n d an t i cha in -based i n c l u s i o n c h e c k i n g o n
T A f rom abs t rac t regular tree m o d e l check ing

Figure 5.5: Further experiments with inclusion checking on tree automata

ant ichainbased
determinisation-based

5.3.3 Experiments with Regular Tree Mode l Checking

We now present our experiments with regular tree model checking that illus­
trate practical applicability of the language inclusion testing algorithms and the
tree automata reduction algorithms from Chapter 4. We will show how the
two techniques allow us to build the (abstract) regular tree model checking on
nondeterministic tree automata instead of on deterministic ones which greatly
improves efficiency of the method.

Nondeterministic Abstract Regular Tree Model Checking. As is clear from
the definition of f in Section 2.5, A R T M C was originally defined for and tested
on minimal deterministic tree automata (DTA). However, the various experi­
ments done showed that the determinisation step is a significant bottleneck. To
avoid it and to implement A R T M C using nondeterministic tree automata (TA),
we need the following operations over TA: (1) application of the transition re­
lation r , (2) union, (3) abstraction and its refinement, (4) intersection with the

77

set of bad configurations, (5) emptiness, and (6) inclusion checking (needed for
testing if the abstract reachability computation has reached a fixpoint). Finally,
(7) a method to reduce the size of the computed T A is also desirable—f(A) is
then redefined to be the reduced version of the T A obtained from an applica­
tion of r on an T A A. We note that the method would in theory work without
reduction methods too. However, often hundreds of the steps (1) to (6) are
performed within a single verification run, and most of them increases the size
of automata 3. Therefore, good reduction techniques are in fact crucial since the
size of automata tends to explode which reduces scalability of the method.

A n implementation of Points (1), (2), (4), and (5) is easy. Moreover, con­
cerning Point (3), the abstraction mechanisms of [BHRV06a] can be lifted to
work on T A in a straightforward way while preserving their guarantees to be
finitary, overapproximating, and the ability to exclude spurious counterexam­
ples. Furthermore, Chapter 4 gives efficient algorithms for reducing T A based on
computing suitable simulation equivalences on their states, which covers Point
(7). Hence, the last obstacle for implementing nondeterministic A R T M C was
Point (6), i.e., the need to efficiently check inclusion on TA. We have solved
this problem by Algorithm 6, which allowed us to implement a nondetermin­
istic A R T M C framework in a prototype tool and test it on suitable examples.
Below, we present the first very encouraging results that we have achieved. We
note that we were so far considering only the pure antichains where the role of
simulation within Algorithm 6 is played only by the identity relation 4.

Experiments with Nondeterministic A R T M C . We have implemented the ver­
sion of A R T M C framework based on nondeterministic tree automata using the
Timbuk tree automata library [GVT03] and compared it with an A R T M C im­
plementation based on the same library, but using D T A . In particular, the
deterministic A R T M C framework uses determinisation and minimisation after
computing the effect of each forward or backward step to try to keep the au­
tomata as small as possible and to allow for easy fixpoint checking: The fixpoint
checking on D T A is not based on inclusion, but identity checking on the obtained
automata (due to the fact that the computed sets are only growing and minimal
D T A are canonical). For TA, the tree automata reduction from Chapter 4 that
we use does not yield canonical automata, and so the antichain-based inclusion
checking is really needed.

We have applied the framework to verify several procedures manipulating
dynamic tree-shaped data structures linked by pointers. The trees being ma­
nipulated are encoded directly as the trees handled in A R T M C , each node is
labelled by the data stored in it and the pointer variables currently pointing to
it. A l l program statements are encoded as (possibly non-structure preserving)

3 S o m e a b s t r a c t i o n m e t h o d s reduce the size of a u t o m a t a too , however , no t suff ic ient ly enough
t o ou twe igh the increase of size caused b y the o ther steps.

4 W e have not yet m a n a g e d to i nco rpo ra t e s i m u l a t i o n enhanced a n t i c h a i n a l g o r i t h m s in to
the f r amework of A R T M C . W e p l a n to use t h e m i n the fur ther p r o t o t y p e too ls tha t we
m e n t i o n i n S e c t i o n 5.5. W e bel ieve tha t the ove ra l l i m p a c t of the s i m u l a t i o n s u b s u m p t i o n
t echn ique w i l l be pos i t ive , j u d g i n g f rom the exper ience t ha t we have ga thered a n d tha t is
presented i n S e c t i o n 5.4.

78

Table 5.1: Running times (in sec.) of det. and nondet. ARTMC applied for verifica­
tion of various tree manipulating programs (x denotes a too long run or a failure due
to a lack of memory)

D F T
RB-delete RB-insert

D F T
(null,undef) (null,undef)

det. nondet. det. nondet. det. nondet.
full abstr. 5.2 2.7 X X 33 15

restricted abstr. 40 3.5 X 60 145 5.4
RB-delete RB-insert RB-insert

(RB preservation) (RB preservation) (gen., test.)
det. nondet. det. nondet. det. nondet.

full abstr. X X X X X X
restricted abstr. X 57 X 89 X 978

tree transducers. The encoding is fully automated. The only allowed destruc­
tive pointer updates (i.e., pointer manipulating statements changing the shape
of the tree) are tree rotations [CLR89] and addition of new leaf nodes.

We have in particular considered verification of the depth-first tree traversal
and the standard procedures for rebalancing red-black trees after insertion or
deletion of a leaf node [CLR89]. We have verified that the programs do not
manipulate undefined and null pointers in a faulty way. For the procedures on
red-black trees, we have also verified that their result is a red-black tree (without
taking into account the non-regular balancedness condition). In general, the set
of possible input trees for the verified procedures as well as the set of correct
output trees were given as tree automata. In the case of the procedure for
rebalancing red-black trees after an insertion, we have also used a generator
program preceding the tested procedure which generates random red-black trees
and a tester program which tests the output trees being correct. Here, the set
of input trees contained just an empty tree, and the verification was reduced
to checking that a predefined error location is unreachable. The size of the
programs ranges from 10 to about 100 lines of pure pointer manipulations.

The results of our experiments on an Intel Xeon processor at 2.7GHz with
16GB of available memory (as in Section 5.3) are summarised in Table 5.1.
The predicate abstraction proved to give much better results (therefore we do
not consider the finite-height abstraction here). The abstraction was either
applied after firing each statement of the program ("full abstraction") or just
when reaching a loop point in the program ("restricted abstraction"). The results
we have obtained are very encouraging and show a significant improvement in
the efficiency of A R T M C based on nondeterministic tree automata. Indeed,
the A R T M C framework based on deterministic tree automata has either been
significantly slower in the experiments (up to 25-times) or has completely failed
(a too long running time or a lack of memory)—the latter case being quite
frequent.

79

5.4 Experiments with Pure versus Simulat ion
Enhanced Ant ichain Algori thms.

In this section, we describe the experimental result obtained in [ACH +10a]
where we compare pure antichain algorithms for FA and TA with simulation
enhanced antichain algorithms. Recall that by pure antichain algorithms we
mean algorithms published in [WDHR06] for F A and in [BHH +08b] for T A
that may be seen as special cases of Algorithms 3, 4, 5, and 6 where the role
of simulation relation is played by the identity relation. Notice that in this
case, only Optimisation 1 comes to play within Algorithms 3 and 5 for checking
universality, and only Optimisation 1(a) applies within Algorithms 4 and 6 for
checking language inclusion. Since ^ is the identity relation, Checking the
relation on sets of states is then replaced be checking subset inclusion.

We concentrated on experiments with inclusion checking, since it is more
common than universality checking in various symbolic verification procedures,
decision procedures, etc. We compared our approach, parametrised by maximal
simulation (or, for tree automata, maximal upward simulation), with the previ­
ous pure antichain-based approach of [WDHR06, BHH + 08b] , and with classical
subset-construction-based approach. We implemented all the above in OCaml.
We used the algorithm in [HS09a] for computing maximal simulations. In or­
der to make the figures easier to read, we often do not show the results of the
classical algorithm. The reason is that in all of the experiments, the classi­
cal algorithm performed much worse than the other two approaches that these
experiments are primarily directed to compare.

We note that we have also done some preliminary experiments with random
automata generated according to the framework by Vardi and Tabakov in the
same way as in the previous section. Sadly, for this type of automata, the sim­
ulation optimisation give almost no speedup. It seems that for the hard areas
of the space of settings of parameters of the generator, simulation is very sparse
and the speedup that it gives hardly compensates the time needed for computing
the simulation itself. On the other hand, for the easy settings, pure antichain
algorithms finish too fast and the time needed for computing simulation domi­
nates. Therefore, we decided to perform more experiments with automata that
have more structure such as those from the sources described above and which
are also closer too real life applications than the random ones. As we will see,
for these automata the simulation optimisations really help.

5.4.1 Experiments on FA

For language inclusion checking of FA, we compared the simulation enhanced
approach that corresponds to Algorithm 4 against the former pure antichain ap­
proach that corresponds to the same algorithm but with the simulation relation
being identity. We tested the two on examples generated from the intermediate
steps of a tool for abstract regular model checking [BHV04]. In total, we have
1069 pairs of FA generated from different verification tasks, which included ver­
ifying a version of the bakery algorithm, a system with a parametrised number
of producers and consumers communicating through a double-ended queue, the

80

40000

0 1000 2000 3000 4000 5000 6000

(a) D e t a i l e d resul ts

Size Antichain Simulation
0 1000 0.059 0.099
1000 - 2000 1.0 0.7
2000 - 3000 3.6 1.69
3000 - 4000 11.2 3.2
4000 - 5000 20.1 4.79
5000 - 33.7 6.3

(b) Average execu t ion t i m e for different F A pa i r sizes
(in seconds)

Figure 5.6: Language inclusion checking on FA generated from a regular model checker

bubble sort algorithm, an algorithm that reverses a circular list, and a Petri
net model of the readers/writers protocol (cf. [BHV04, BHMV05] for a detailed
description of the verification problems). In Fig. 5.6 (a), the horizontal axis
is the sum of the sizes of the pairs of automata 5 whose language inclusion we
check, and the vertical axis is the execution time (the time for computing the
maximal simulation is included). Each point denotes a result from inclusion
testing for a pair of FA. Fig. 5.6 (b) shows the average results for different FA
sizes. From the figure, one can see that our approach has a much better perfor­
mance than the antichain-based one. Also, the difference between our approach
and the antichain-based approach becomes larger when the size of the FA pairs
increases. If we compare the average results on the smallest 1000 FA pairs,
our approach is 60% slower than the the antichain-based approach. For the
largest FA pairs (those with size larger than 5000), our approach is 5.32 times
faster than the the antichain-based approach. We note that the time needed
for computing simulation is always included in the overall running time of the
simulation enhanced algorithm.

We also tested our approach using FA generated from random regular ex-

5 W e measure the size of the a u t o m a t a as the n u m b e r of the i r states.

81

1000000

100000 -

10000

1000

• Simulation

- Antichain
A

• Simulation

- Antichain
A A

A

A A

. 4 > A * . A . t « A " ' * J • i l i #

500 1000 1500 2000

(a) L a n g u a g e i n c l u s i o n does not a lways h o l d

100 200 300 400 500 600 700 800 900

•Simulation •Antichain • Classical

(b) L a n g u a g e i n c l u s i o n a lways holds

Figure 5.7: L a n g u a g e i n c l u s i o n c h e c k i n g o n FA g e n e r a t e d f r o m r e g u l a r e x p r e s s i o n s

82

25000

o I O O O 2000 3 0 0 0 4000 5°oo 6ooo

Figure 5.8: Compare the performance of our approach with minimise + antichain

pressions. We have two different tests: (1) language inclusion does not always
hold and (2) language inclusion always holds 6. The result of the first test is in
Fig. 5.7(a). In the figure, the horizontal axis is the sum of the sizes of the pairs
of automata whose language inclusion we check, and the vertical axis is the
execution time (the time for computing the maximal simulation is included).
From Fig. 5.7(a), we can see that the performance of our approach is much
more stable. It seldom produces extreme results. In all of the cases we tested, it
always terminates within 10 seconds. In contrast, the antichain-based approach
needs more than 100 seconds in the worst case. The result of the second test is
in Fig. 5.7(b) where the horizontal axis is the length of the regular expression
and the vertical axis is the average execution time of 30 cases in milliseconds.
From Fig. 5.7(b), we observe that our approach has a much better performance
than the antichain-based approach if the language inclusion holds. When the
length of the regular expression is 900, our approach is almost 20 times faster
than the antichain-based approach.

When the maximal simulation relation ^ is given, a natural way to accelerate
the language inclusion checking is to use ^ to minimise the size of the two
input automata by merging ^-equivalent states. In this case, the simulation
relation becomes sparser. A question arises whether our approach has still a
better performance than the antichain-based approach in this case. Therefore,
we also evaluated our approach under this setting. Here again, we used the
FA pairs generated from abstract regular model checking [BHV04]. The results
presented at Figure 5.8 show that although the antichain-based approach gains
some speed-up (compare with Figure 5.6) when combined with minimisation,
it is still slower than our approach. The main reason is that in many cases,
simulation holds only in one direction, but not in the other. Our approach can
also utilise this type of relation. In contrast, the minimisation algorithm merges
only simulation equivalent states.

6 T o get a sufficient n u m b e r of tests for the second case, we generate two F A A a n d B f r om
r a n d o m regular expressions, b u i l d the i r u n i o n a u t o m a t o n C = AUB, a n d test L(A) C L(C).

83

Size
Antichain

(sec.)
Simulation

(sec.)
Din". # of Pairs

0 200 1.05 0.75 140% 29
200 400 11.7 4.7 246% 15
400 600 65.2 19.9 328% 14
600 800 3019.3 568.7 531% 13
800 1000 4481.9 840.4 533% 5

1000 1200 11761.7 1720.9 683% 10

Table 5.2: Language inclusion checking on TA

5.4.2 Experiments on T A

For language inclusion checking of TA, we tested our approach on 86 tree au­
tomata pairs generated from the intermediate steps of a regular tree model
checker from Section 5.3.3 while verifying the algorithm of rebalancing red-
black trees after insertion or deletion of a leaf node. We were again comparing
simulation enhanced antichain approach that corresponds to Algorithm 6 with
the pure antichain approach that corresponds to the same algorithm but with
the simulation relation being the identity. The results are given in Table 5.2.
Our approach has a much better performance when the size of a T A pair is large.
For T A pairs of size smaller than 200, our approach is on average 1.39 times
faster than the antichain-based approach. However, for those of size above 1000,
our approach is on average 6.8 times faster than the antichain-based approach.

5.5 Conclusions and Future Work

We presented algorithms for finite word and tree automata universality and lan­
guage inclusion checking that combine the antichain principle from [WDHR06]
with a use of simulation relations (forward simulation in the case of FA and
upward simulation parametrised by identity in the case of TA) . The algorithms
have been thoroughly tested both on randomly generated automata and on au­
tomata obtained from various verification runs of the A R T M C framework. The
new algorithms are significantly more efficient than the pure antichain algo­
rithms from [WDHR06] and [BHH+08b].

In the case of TA, we also presented experimental results from our previ­
ous work [BHH +08b] on pure antichain tree automata versions of the algo­
rithms from [WDHR06] which preceded the work on their versions improved
with simulation presented here. We compare these algorithms with the clas­
sical subset construction-based algorithm and we conclude that similarly as
shown in [WDHR06] for FA, the antichain technique fundamentally improves
performance of universality and language inclusion checking over tree automata.
Moreover, using the proposed pure antichain-based inclusion checking algorithm
together with our simulation based reduction methods from Chapter 4, we have
implemented a complete A R T M C framework based on nondeterministic tree
automata and tested it on verification of several real-life pointer-intensive pro-

84

cedures. The results show a very encouraging improvement in the capabilities
of the framework.

We are considering several directions of future work. First, our simulation
based improvements of antichain algorithms is based on relatively simple and
natural principles and we believe that these techniques can be developed for
other classes of automata. We have already done the first attempt in [ACC +10a]
where we have successfully combined the Ramsey based approach to universality
and inclusion checking for Biichi automata with simulations.

Next, we have already proven first results showing that it is possible to design
downward tree automata antichain algorithms. These could be then combined
with downward tree automata simulation. We believe that in practice, down­
ward algorithms could outperform the upward ones. The upward algorithms
suffer from a need of exploring relatively high nondeterministic choice of an up­
ward tree automata run. One dimension of this nondeterminism could be elim­
inated by a downward algorithm. Moreover, downward simulation is cheaper
and often richer than upward simulation parametrised by identity, which could
be another advantage of downward algorithms.

Another interesting idea is to try to combine relations in the spirit of our me­
diated preorder from Chapter 4 with the antichain methods. Mediated preorders
are richer than simulations, but imply different yet still interesting properties of
runs of automata.

We would like to perform even more experiments, including, e.g., experi­
ments where our most recent techniques will be incorporated into the entire
framework of abstract regular (tree) model checking or into some automata-
based decision procedures. A work on a B D D based tree automata library (in
the style of M O N A tree automata library [KM01]) that could make the recent
tree automata techniques widely available even for more practical purposes has
already started. We hope that this will yield another significant improvement
in the tree automata technology allowing for a new generation of tools using
tree automata. Finally, we are working on an ARTMC-based tool for verifying
pointer manipulating programs that will also use all the recent tree automata
techniques. We also expect that the tools will generate meaningful experimental
data that will be helpful for further research on finite automata.

85

6 S imula t ion-based Reduct ion of A l te rna t ing
B i i ch i A u t o m a t a

In this chapter, we present the results from our first attempt to adapt our tech­
niques beyond the scope of finite word/tree automata, which was first published
in [ACHV09a]. Namely, we focus on simulation-based reduction of alternating
Biichi automata inspired by the technique described in Chapter 4.

Alternating Biichi automata (ABA) are succinct state-machine representa­
tions of w-regular languages (regular sets of infinite sequences). They are widely
used in the area of formal specification and verification of non-terminating sys­
tems. One of the most prominent examples of the use of A B A is the comple­
mentation of nondeterministic Biichi automata [KV01]. It is an essential step
of the automata-theoretic approach to model checking when the specification
is given as a positive Biichi automaton [Var07] and also learning based model
checking for liveness properties [FCC + 08]. The other important usage of A B A is
as the intermediate data structure for translating a linear temporal logic (LTL)
specification to an automaton [GO01].

However, because of the compactness of A B A 1 , the algorithms that work
on them are usually of high complexity. For example, both the complemen­
tation and the L T L translation algorithms transform an intermediate A B A to
an equivalent N B A . The transformation is exponential in the size of the input
A B A . Hence, one may prefer to reduce the size of the A B A (with some relatively
cheaper algorithm) before giving it to the exponential procedure.

In the study of Fritz and Wilke, simulation-based minimisation is proven
as a very effective tool for reducing the size of A B A [FW05]. However, they
considered only forward simulation relations. Inspired by our work on tree au­
tomata reduction methods, we introduce also a notion of backward simulation
(parametrised by forward simulation) that can be used for reducing the size of
A B A as well. As will be explained in Section 6.2, similarly as for tree automata
upward simulation, quotienting wrt. backward simulation (i.e., simplifying the
automaton by collapsing backward simulation equivalent states) does not pre­
serve the language, however, backward simulation can be used for quotienting
in combination with forward simulation. In fact, we will arrive to an alternating
automata equivalent of the tree automata notion of mediated equivalence from
Chapter 4.

We evaluate the performance of minimising A B A with mediated equivalence
is evaluated on a large set of experiments. In the experiments, we apply differ­
ent simulation-based minimisation approaches to improve the complementation
algorithm of nondeterministic Biichi automata. The experimental results show
that the minimisation using mediated preorder significantly outperforms the

1 A B A ' s are e x p o n e n t i a l l y more succ inc t t h a n n o n d e t e r m i n i s t i c B i i c h i a u t o m a t a .

86

minimisation using forward simulation. To be more specific, on average, me­
diated minimisation results in a 30% better reduction in the number of states
and 50% better reduction in the number of transitions than forward minimisa­
tion on the intermediate A B A . Moreover, in the complemented nondeterministic
Biichi automata, mediated minimisation results in a 100% better reduction in
the number of states and 300% better reduction in the number of transitions
than forward minimisation.

6.1 Basic Definit ions

Given a finite set X, we use X* to denote the set of all finite words over X
and X^ for the set of all infinite words over X. The empty word is denoted e
and X+ = X* \ {e}. The concatenation of a finite word u G X* and a finite or
infinite word v G X* U X^ is denoted by uv. For a word w G X* U X^, \w\ is
the length of tt>(|u>| = oo if u>G X^), Wi is the i th letter of w and wl the i th
prefix of w (the word u with w = uv and \u\ = i) . w° = e. The concatenation
of a finite word u and a set S C X* U Xw is defined as uS = {uv \ v G S}.

A n alternating Biichi automaton is a tuple A = (T,,Q, t,5,a) where E is a
finite alphabet, Q is a finite set of states, t G Q is an initial state, a C Q is a
set of accepting states, and 5 : Q x E —>• 22Q is a total transition function. A
transition of A is of the form p -A P where P G <5((/, a).

A tree T over Q is a subset of Q+ that contains all nonempty prefixes of
each one of its elements (i.e., T U {e} is prefix-closed). Furthermore, we require
that T contains exactly one r G Q, the root ofT, denoted root(T). We call the
elements of Q+ paths. For a path irq, we use leaf(irq) to denote its last element
q. Define the set branches (T) C Q+ U Q1^ such that TT G branches (T) iff T
contains all prefixes of 7r and 7r is not a proper prefix of any path in T. In other
words, a branch of T is either a maximal path of T, or it is a word from
such that T contains all its nonempty prefixes. We use SUCCT(TT) = {r \ irr G T}
to denote the set of successors of a path TT in T, and height (T) to denote the
length of the longest branch of T. A tree U over Q is a prefix of T iff P C T
and for every 7r G U, SUCCU(TT) = SUCCT(TT) or SUCCU(TT) = 0. The sw/^x of T
defined by a path irq is the tree T^q) = {qtp \ irqtp G T}.

Given a word u> G a tree T over Q is a run of A on w, if for every
W\ I

7r G T, leaf(7r) — ^ SUCCT^) is a transition of .4. Finite prefixes of T are
called partial runs on w. A run T of A over u> is accepting iff every infinite
branch of T contains infinitely many accepting states. A word w is accepted
by A from a state g G Q iff there exists an accepting run T of A over u> with
root(T) = q. The language of a state q G Q in A, denoted £A(Q)I 1 S t n e set
of all words accepted by A from q. Then C(A) = JCA(L) 1 S the language of A.

For simplicity of presentation, we assume in the rest of the paper that 5 never
allows a transition of the form p A 0. This means that no run can contain a
finite branch. Any automaton can be easily transformed into one without such
transitions by adding a new accepting state q with 5(q,a) = {{q}} for every
a G E and replacing every transition p A 0 by p A {(/}.

We note that for technical reasons, we use a simpler definition of a tree and a

87

run of an alternating automaton than the usual one (e.g., [KV01] or Chapter 4).
A tree is usually defined as a prefix closed subset of N* and a run is then a map
r that assigns a state to every element (node) of a tree. This definition allows
existence of nodes with more than one immediate successor labelled by the same
state and successors of a node are ordered. However, order as well as number of
occurrences of a state in the role of a successor of a parent state has no relevance
for semantics of an A B A . From this point of view, it is more convenient to define
runs simply as unordered trees.

6.2 Simulat ion Relations

In this section, we give the definitions of forward and backward simulation over
A B A and discuss some of their properties. The notion of backward simulation
is inspired by a similar tree automata notion studied in Chapter 4—namely,
the upward simulation parametrised by a downward simulation (the connection
between tree automata and A B A follows from the fact that the runs of A B A
are in fact trees).

For the rest of the section, we fix an A B A A = (£,Q,t ,S,a) . We define
relations < a and < L on Q s.t. q <a r iff q G a =4> r G a and q -<L r iff
q = L =4> r = i. For a binary relation < on a set X, the relation on
subsets of X is defined as Y Z iff \/z G Z. 3y G Y. y ^ z, i.e., iff the upward
closure of Z wrt. ^ is a subset of the upward closure of Y wrt. ;<

Forward Simulation. A forward simulation on A is a relation <p Q Q x Q
such that p -<F T implies that (i) p -<a r and (ii) for all p A P , there exists a
r A i ? such that P ^ F

3 R.
For the basic properties of forward simulation, we rely on the work [GKSV03]

by Gurumurthy et al. In particular, (i) there exists a unique maximal forward
simulation -<p on A called forward simulation preorder which is reflexive and
transitive, (ii) for any q,r G Q such that q <F r, it holds that CA{q) C CA{r),
and (iii) quotienting wrt. -<F H ^p1 preserves the language of A-

Backward Simulation. Let -<F be a forward simulation on A. A backward
simulation on A parametrised by <F is a relation -<B Q QXQ such that p -<B T
implies that (i) p <t r, (ii) p -<a r, and (iii) for all q A P U {p},p G" P, there
exists a s A- R U {r}, r G" R such that q s a n d P di^p R- The lemma below
describes basic properties of backward simulation.

Lemma 6.1. For any reflexive and transitive forward simulation -<p on A,
there exists a unique maximal backward simulation <B on A parametrised by
<F that is reflexive and transitive.

Proof. The proof is an analogy of the proof of Lemma 4.2.
Union: Given two backward simulations -<B and -<B induced by -<F, we want

to prove that = ^B^—E. 1 S a ^ s o a backward simulation induced by -<F- Let
p T for some p , r £ Q, then either p <B r or p <B r. Assume without loss
of generality that p -<B r. Then, from the definition of backward simulation,

88

whenever p' A- P U { p } , p g" P, then there is a rule r' A- P U { r } , r g" P , p' r',
and P ^ F

3 R. As ^ C ^ B gives p' r', fulfils the definition of backward
simulation induced by

Reflexive closure: It can be seen from the definition that the identity is a
backward simulation induced by -<p for any forward simulation -<p. There­
fore, from the closure under union, the union of the identity and any backward
simulation induced by is a backward simulation induced by

Transitive closure: Let if:s be a backward simulation induced by -<p and
let ^"e be ^s transitive closure. Let p1 pm and r 1 A- P 1 U { p 1 } , ^ 1 0 P 1 .
Apparently, p 1 <a pm since < a is a transitive subset of <B- From p 1 pm,
we have that there are states p 1 , . . . ,pm such that p 1 P 2 Z ^ B • • • zf:B P m -
Therefore, there are also rules r 2 A- P 2 U { p 2 } , . . . ,rm A- P m U {p m } with
p 2 0 P 2 , . . . , p m 0 Pm, r1 <B ••• <B rm, and P 1 ^ 3 P 2 ^ ••• ^ F

3 Pm.
Thus, by definition of we have r 1 -<g r m , and by transitivity of
P 1 z ĵp3 P m - Therefore, fulfils the definition of a backward simulation
induced by <p- D

By Lemma 6.1, for a reflexive and transitive forward simulation -<p, there is
a unique maximal upward simulation parametrised by -<p and it is a preorder.
We call it the backward simulation preorder on A parametrised by Our
backward simulation is a close analogy of tree automata upward simulation.
Similarly as upward simulation, backward simulation cannot be directly used for
quotienting (below we give an example of an automaton where quotienting using
backward simulation does not preserve language). However, in Section 6.3.1, we
show that backward simulation can be combined with forward simulation into
a mediated equivalence (in the same way as tree automata upward simulation
can be combined with downward simulation) that can be used for quotienting.

Example 6 (backward simulation cannot be used for quotienting). Consider the
ABA A = ({a, b}, {so, s i , s2, s3, s4, s5, s 6}, s0, 5, {s 0, s i , s2, s3, s4, s5, s6}) where

SO ^ {S4}, S! \ {s2, S 5 } , S2 A- {s 2, S3}, S 5 \ {s0},
S O - > {Sl\, Si->{Si,S3}, S3 - > | S 0 } , SQ ->• |s 0}

SO - > {So}, S 4 - > {S4,S6},

are transitions of A. The maximal forward simulation relation -<p in A is

{(so, so), (si, s0), (si, si), (si,s5), (s2, so), (s2, si), (s2, s2), (s2, s4),
(s2, s5), (s3, s3), (s3, s6), (S 4 , SO), (S 4 , S I) , (S 4 , S 2) , (« 4 , « 4) , (S 4 , s5),
(s5, so), (s5, s5), (s6, s3), (s6, S 6) } .

The maximal backward simulation relation <B parametrised with is

{(so, so), (si, si), (si, s4), (s2, s2), (s3, s3), (s4, si), (s4, s4), (s5, s2),
(S5, S3), (S5, S5), (S5, SG), (s6, S2), (s6, S 3) , (s6, S 5) , (s6, S 6) } .

//we collapse states of A wrt. -<M (i-e., the two sets of states {si, s4}, {S5, s@}
are collapsed), we will get the following alternating Buchi automaton A' =

89

(a) L e m m a 6.2 (b) T h e n o t a t i o n T 0 i 7r

(c) L e m m a 6.3

Figure 6.1: I l l u s t r a t i o n o f t h e l e m m a s

({a, b}, {s0, si,s2, s3, Si}, s0, 5, {s0, s i , s2, s3, s4}) where

so A {si}, si A {s 2, s 4}, s 2 {s 2, s3}, s 4 A {s0},
S O {^o}, S l A { s i , S 4 } , S 3 A {s0}, S 4 A> {s0}

Si -> { S l , S 3 | ,

are transitions of A'. Note that A' accepts the word ab^, but A does not. •

6.2.1 Runs and Simulations

We now formulate connections between simulations and runs of A B A that are
fundamental for our further reasoning. Let -<p and be forward and back­
ward simulations on A, which are both reflexive and transitive. For every
x G {B, F, a}, we extend the relation < x to Q+ x Q+ such that for TT, tp G Q+,
n <x tp iff \TT\ = \tp\ and for all 1 < i < \TT\, 7TJ <x tpi. We say that tp
forward simulates IT, tp backward simulates IT, or tp is more accepting than ir
when 7r -<F tp, tp, or IT -<a tp, respectively. This notation is further ex­
tended to trees. For trees T, U over Q and for x G {a, F}, we write, T <x U if
branches(T) branches(U). Similarly, we say that U forward simulates T, or
U is more accepting than T when T -<p U, or T -<a U, respectively. Note that
-<x is reflexive and transitive for all the variants of x G {F,B,a} defined over
states, paths, or trees (this follows from the assumption that the original rela­
tions <F and -<B on states are reflexive and transitive). Moreover, <B ^ <A,

C <L, and <F C < a .

Lemma 6.2. For any p,r G Q with p -<F f and a partial run T of A on w G
with the root p, there is a partial run U of A on w with the root r such that
T ^ F U.

90

Proof. We prove the lemma by induction on height(T). In the base case when
T = {p}, it is sufficient to take U = {r}. Suppose now that the lemma holds
for every word u and for every partial run V of A on u such that height(V) <
height(T). From p -<p T, there is a transition r —k- R of A where SUCCT(P) ^p3

R. Observe that T = {p} U \Jpi^SUCCTfp\pT(p') where for each p' G SUCCT(P),

T{p') is a partial run of A with the root p' on the word v such that w = w\v.
Notice that height(T(p')) < height(T). The induction hypothesis now can be
applied to every triple p' G succT(p),r' G R,T(p') with p' <p f'. It gives us
a partial run Ur/ of A on v with root(Uri) = r' such that T(p') -<p Urr. The
run U with the required properties is then constructed by plugging the runs
Ur',r' G R, to r , i.e., U = {r} U Ur ' eB r C 7 r ' - •

We will need to inspect the connection between runs and backward simulation
in a relatively detailed way. For this, we introduce to following notation. Given
a tree T over Q , TT G T, and 1 < i < \TT\, the set T ©j TT is the union of
branches of suffix trees T(-Klq),q G SUCCT(TT1), with the branches of the suffix
tree T(7r*+ 1) excluded. Formally, let Q L = SUCCT(K1) \ be the set of all
successors of TT1 in T without the successor continuing in TT. Then T ©j TT =
{JqGQi branches(T(ir1 q)) (notice that if i = 0, then T ©j TT = 0).

Lemma 6.3. For any p,r <E Q with p <B T, a partial run T of A on w G S w

and 7T G branches(T) with leaf (IT) = p, there is a partial run U of A on w and
tp G branches(U) with leaf(tp) = r such that TT -<B ip> and for all 1 < i < \TT\,
TQiTT U Qii>.

Proof. By induction on the length of TT. In the base case, when TT = p and
T = {p}, it is sufficient to take U = {r} and tp = r. Suppose now that TT ̂ p
and that the lemma holds for every partial run T' of A on w, states p', r' G Q
such that p' -<B f \ and every TT' G branches(T') with leaf (IT1) = p' and \TT'\ < \TT\.

For the induction step, let TT = ir'p and let SUCCT(TT') = P U {p},p P.
W\ I

By the definition of ^ s , there is a transition s —^> i? U { r } , r 0 i? of A
such that W (T T ') ^ b a and P P . Let T' = T \ {TT} \ \JP/(,PTT'T(TT'P').

Then T" is a partial run of on to and TT' G branches(T'), \TT'\ < \TT\, and
therefore we can apply induction hypothesis to T', leaf (IT1), s, and TT'. This
gives us a partial run U' of . A on w with i / / G branches(U') such that leaf(ip') =
s, TT' <B and for each 1 < j < \TT'\, T' QJ TT' U' Qjip'. For every
p' G SUCCT(TT'), T(TT'P') is a partial run of A with the root p' on the suffix
v of w such that u> = uv, \u\ = \TT\ — 1. We can apply Lemma 6.2 to the
triples r' G P , p ' G P,T(TT'P') with p' r'. This gives us for each r' G R

a run ?7r/ of A on w with root(Ur/) = r' such that there is some p' G P with
T(TT'P') -<F Uri. Now we construct a run P and a path V with the required
properties by plugging r and runs Ur>,r' G R to the path i / / in P ' , i.e., i/> = tp'r
and U = U' U {tp} U U r ' e - R ^ ' ^ ' - s e e * n a * ^ really satisfies the required
properties, observe the following: (i) As U Q\wi\ tp = Ur'ei? branches(Uri) and
T Q\w'\ 7r = \Jp,eP branches(T(TT'P')), and because for each r' G P , there is
p' G P with T(TTV) ^ f Pr', we have that T 0^ , | vr P 0^ / | V- (ii) For all
1 < j < |vr'|, T GJ TT = T ' 0j- TT' ^v

f

3 U' GJ tp' = U Gj tp.). •

91

6.3 Mediated Equivalence and Quot ient ing

Here, we discuss the possibility of an indirect use of backward simulation for
simplifying A B A via quotienting. We will introduce an alternating Biichi au­
tomata variant of the mediated preorder from Chapter 4 that is a combination
of forward and backward simulation suitable for quotienting.

6.3.1 T h e Notion and Intuition of Mediated Equivalence

We again use the concept of "jumping runs" based on the observation that
quotienting an automaton wrt. some equivalence allows a run that arrives to
some state to jump to equivalent state and continue from there. Alternatively,
this can be viewed as extending the source state of the jump by the outgoing
transitions of the target state2. The equivalence must have the property that
the language is not increased even when the jumps (or, alternatively, transition
extensions) are allowed. It turns out that forward and backward simulation can
be combined into a suitable relation in the same way as downward and upward
simulation in Chapter 4. This is, we will define the mediated preorder -<M as
a suitable transitive fragment of -<p o and show that allowing jumping to
mediated smaller states does not affect the language. It follows that quotienting
wrt. mediated equivalence (the largest symmetric fragment of -<M) preserves
language too.

The intuition behind allowing a run to jump from a state r to a state q that
are related by a mediated preorder is very similar to the one given in Chapter 4.
The relation q -<p ° f guarantees the existence of the so called mediator.
which is a state s such that q -<p S i f !^ 1 r (see Figure 6.2(a)). The state s can
be reached in the same way and in the same context3 as r , and, at the same
time, the automaton can continue from s in the same way as from q. Hence,
intuitively, the newly allowed run based on the jump from r to q does not add
anything to the language because it can anyway be realised through s without
jumps.

Similarly as in the case of tree automata, jumping cannot be allowed between
all pairs of states from -<p ° ~^~B • We will have to restrict ourselves only to its
fragments -<M that are preorders and are also forward extensible, which means
that if q1 <M <?2 <?3, then q1 <M <?3-

The reason for this is that we were so far taking into account only one isolated
jump, however, nothing prevents another jumps from occurring in the context
or below the marked occurrence of r . This is problematic since the relations
q s r are guaranteed only when no further jumps are allowed. The
forward extensibility is required to ensure the mechanism to work with arbitrary
many jumps. We describe the potential problems when -<M is not forward
extensible (see Figure 6.2(b) for the illustration).

Problem (i): The first problem will arise if there is a branch <f> of U with

2 T h e first v i e w is be t te r w h e n e x p l a i n i n g the i n t u i t i o n whereas the o ther is easier to be used
i n proofs .

3 I f a s tate s is a leaf of a p a r t i a l r u n , t hen b y a context of s we m e a n a l l the o ther leaves of
the p a r t i a l r u n .

92

t I

(b) P o t e n t i a l P r o b l e m s

Figure 6.2: Basic Intuition Behind Mediated Equivalence

leaf ((f)) = r. Here, apart from interconnecting T and U, r can use its new
transitions also at the end of 7T0 and connect another copy of U to the end
of 7T(p. Suppose that all leaves of T except r accept vvw and that all leaves
of U except r accept vw. Then this enables a new accepting run on the word
uvvw. In this case, the existence of the mediator s is not a guarantee that some
accepting run on uvvw was possible before adding transitions to r .

Problem (ii): Another problem may arise if there are two (or more) branches
in T ending by r . Here we use the two branches IT and TT' in Figure 6.2(b) as
an example. To construct an accepting run on uvw from T, r has to use the
transitions of q at the end of TT as well as at the end of IT' to connect U to T
in the both places. But partial run V "covers" only one of the two occurrences
of r . There may be a leaf x of V different from s for which r is the only leaf
in T with r -<p X. Therefore, x needs not accept vw as there is no guaranteed
relation between q and x. In this case V is not a prefix of an accepting run on
uvw and uvw need not be in C(A).

We will show how the two problems can be solved by requiring <M to be a
forward extensible preorder.

In the case of Problem (i), if y uses transitions of q to accept vw, then W
becomes a prefix of an accepting run on vvw and thus V becomes a prefix of
a new accepting run on uvvw. We know that r -<F V- Thus, by forwards
extensibility, q ^ r -<p V gives q ^ y, which implies that there is a mediator
for q and y. Observe that y used transitions of q just once. Therefore, by an
analogical argument by which we derived that A accepts uvw in the first case
when r used the new transitions only once, we can here derive that there is an
accepting run of A on uvvw which does not involve new transitions.

93

In the case of Problem (h), if x uses the transitions of q to accept vw, V
becomes a prefix of a new accepting run on uvw. We know that r -<p X and
thus by forward extensibility q •< r -<p X gives q •< x, which means that there
is a mediator for q and x. Similarly as in the previous case, since x used the
transitions of q only once, we can derive that there exists an accepting run of
A on uvw that does not involve new transitions.

The argumentation from the two above paragraphs can be used inductively
for a run where r uses transitions of q arbitrarily many times.

Mediated Preorder and Equivalence. We formally define mediated preorder
for A B A analogically as we have defined it in Chapter 4 for tree automata.
Consider a reflexive and transitive forward simulation on A, and a reflexive
and transitive backward simulation <B induced by Recall the relation
combination operator © defined in Chapter 4. We call the relation -<M =
diF © a mediated preorder induced by -<F and <B and =M = diM H <~M a
mediated equivalence induced by <F and <B- By Lemma 4.7, -<M is a unique
maximal preorder satisfying -<p Q ^F © —B^ Q diF ° d±B~ •

Ambiguity. To make the mediated equivalence applicable, we must pose one
more requirement. Namely, we require that the transitions of the given A B A
are not ambiguous, meaning that no two states on the right hand side of
a transition are forward equivalent. Intuitively, allowing such transitions goes
against the spirit of the backward simulation. For a mediator p to backward
simulate a state r wrt. rules p\\p'^r PL){p},p 0 P, and p2 • r' A RL){r},r 0
R, it must be the case that each state x in the context P of p within p\ is less
restrictive (i.e., forward bigger) than some state y in the context R of r within
P2- The state r itself is not taken into account when looking for y because we
aim at extending its behaviour by collapsing (and it could then become less
restrictive than the appropriate x). In the case of ^i?-ambiguity, the spirit of
this restriction is in a sense broken since the forward behaviour of r may still be
taken into account when checking that the context of p is less restrictive than
that of r . This is because the behaviour of r appears in R as the behaviour
of some other forward equivalent state r" too. Consequently, r and r" may
back up each other in a circular way when checking the restrictiveness of the
contexts within the construction of the backward simulation. Both of them can
then seem extensible, but once their behaviour gets extended, the restriction
of their context based on their own original behaviour is lost, which may then
increase the language (an example of such a scenario is given below). However,
in Section 6.4, we show that ^i?-ambiguity can be efficiently removed.

Example 7 (mediated minimization cannot be used on an ambiguous A B A) .
Consider the following ABA A = ({a, 6}, {so, si, S2, S3, s^}, so, 5, {S4}) where

so >̂ {S1,S2,S3},
b r l
b r l

S2 -> {S4},

S3 ->• {Si},

53 >̂ {S1,S2,S3};

a r 1
5 4 - > {S4}

94

are transitions of A . The maximal forward simulation relation -<p in A is

{(s0, s0), (so, s3), (si, si), (s1,s2), (S ! , S 3) ,

(s2, Si), (s2, S2), (s2, S 3) , (S3, S 3) , (s4, S 4) } .

From s\ =F S2 and the transition SQ A { s i , s 2 , S 3 } we can find that A is -<p-
ambiguous. The maximal backward simulation relation <B parametrised with
<F is

{(so, so), (si, si), (si, s2), (si, s3), (s2, S i) ,

(s2, s2), (s2, s3), (s3, si), (s3, s2), (s3, s3), (s4, s4)}

and the mediated preorder <M is

{(s0, s0), (s0, si), (s0, s2), (s0, s3), (si, S i) , (si, s2), (si, S 3) ,

(S 2 , S i) , (S 2 , S2), (S 2 , S 3) , (S 3 , S i) , (S 3 , S2), (s3, S 3) , (s4, S 4) } .

// we collapse states wrt. -<M (i-e., merge the three states s\, s2, and S3), we
will get the following ABA A ' = ({a, b}, {so, si , s2}, so, 6, s2) where

so -> { S l } , S i - > { S i } , S i -> {s 2 },s 2 -> | s 2 j

are transitions of A ' . Note that A ' accepts the word aaba^, but A does not. •

6.3.2 Quot ient ing Automata According to Mediated Equivalence
Preserves Language

In this section, we give a formal proof that under the assumption that A is
^i?-unambiguous, quotienting with respect to mediated equivalence preserves
the language. The proof roughly follows the pattern of the proof in Chapter 4
that quotienting tree automata according to the mediated equivalence preserves
language. However, the fact that we are dealing with infinite tree runs with the
Biichi accepting condition and that two accepting runs on the same word need
not be isomorphic makes the argument significantly more complicated.

Quotient Automata versus Extended Automata. As already mentioned, quo­
tienting can be seen as a simpler operation of adding transitions and accepting
states which simplifies the forthcoming reasoning. Let A = (£ , Q, t, 5, a) be
an A B A and let = be an equivalence on Q such that = = ^ n for some
preorder •<. We will use A/= to denote the quotient of A wrt. = that arises by
merging =-equivalent states of A , and A ^ will stand for the automaton extended
according to •<, that is created as follows: for every two states q, r of A with
q •< r, (i) add all outgoing transitions of q to r, (ii) if q = r and q is final, make
r final.

Formally, the automata A/= and A ^ are defined as follows. Let Q/= de­
note the partitioning of Q w.r.t. =, and let [q] denote the equivalence class
of = containing q. Then A/= = (£ , Q/=, [1], S/=, {[q] | q G a}) and A ^ =

(£, Q, ojj, L, ajj) where ajj = {p \ 3q G a. q = p} and, for each a G S,
q G Q~S/=([q],a) = \Jp€[q]{{\p'] \ p' G P} \ Pe8(p,a)} and 8$(q,a) =

95

ext(ir) •-.

Figure 6.3: U strongly/weakly covers T w.r.t. ext

The following lemma implies that if adding transitions and accepting states
according to ^ preserves the language, then quotienting according to = preserves
the language too.

Lemma 6.4. C{A/=) C C(A$).

Proof. Let At = (E, Q, i, <5i, a i) be the automaton extended according to =.
Observe that states q and r with q = r are forward simulation equivalent in
»4=. (g and r are in .4= either both accepting or both nonaccepting, and for
all a G E , <5i(<7, a) = 5=(r,a)). Gurumurthy et al. in [GKSV03] prove that
quotienting with respect to forward simulation preserves language. Therefore,
C(A/=) = C(A=). It is also easy to see that C(A=) C £(„4,jj), as A% has a
richer transition function than A= and ajj = a i . Thus, C{A/=) = £(A=) C
£ (^) . " •

We now give the proof that extending automata according to the mediated
preorder preserves the language. For the rest of the section, we fix an A B A
A = (E, Q, i , 5, a), a reflexive and transitive forward simulation -<p on A such
that A is ^^-unambiguous, and a reflexive and transitive backward simulation
^B on A parametrised by <p. Let be the mediated preorder induced by -<p
and <B-> and let A+ = (E, Q, L, 5+, a +) be the automaton extended according to
-<M (we omit the subscript -<M for the ease of notation). Let =M = H i ^ 1 -

We want to prove that C(A+) = C(A). The nontrivial part is showing that
£(A+) C C(A)—the converse is obvious. To prove £(A+) C £(^4), we need to
show that, for every accepting run of A+ on a word w, there is an accepting run
of A on w. We first prove Lemma 6.5, which shows how partial runs of A with
an increased power of their leaves (wrt. ^ M) can be built incrementally from
other runs of A, bridging the gap between A and A+. Then we prove Lemma 6.8
saying that for every partial run on a word w of A+, there is a partial run of A
on w that is more accepting (recall that partial runs are finite). By carry this
result over to infinite runs we get the proof that extending automata according
to ^ M , and thus also quotienting wrt. =M, preserves language.

Extension Function and Covering. Consider a partial run T of A on a word
w, we choose for each leaf p of T an ^^-smaller state p'. Suppose that we allow

96

p to make one step using the transitions of p' or to become accepting if p' is
accepting and p' =M P- (Thus, we give the leaves of T a part of the power they
would have in „4, +). We will show that there exists a partial run U of A on w
such that (1) it is more accepting than T, and (2) the leaves of U can mimic the
next step of the leaves of T even if the leaves of T use their extended power.

The above is formalised in Lemma 6.5 using the following notation. For a
partial run T of A on w, we define ext as an extension function that assigns to
every branch TT of T a state ext(7r) such that ext(7r) -<M leaf (IT).

Let U be a partial run of A on w. For two branches TT G branches (T) and
tp G branches(U), we say that tp strongly covers TT wrt. ext, denoted TT -<ext tp,
iff 7r <a tp and ext(ir) <F leaf(ip). Similarly, we say that tp weakly covers ir
wrt. ext, denoted TT ̂ w.ext ip, iff TT -<a tp and ext(ir) -<M leaf(tp). We ex­
tend the concept of covering to partial runs as follows. We write T -<ext U (U
strongly covers T wrt. ext) iff branches(T) ^ g | t branches(U) and root(T) <B
root(U). Likewise, we write T ^w.ext U (U weakly covers T wrt. ext) iff
branches(T) rfjw-ez* branches(U) and root(T) <B root(U). See Figure 6.3 for
an illustration. Note that we have ~<ext C ^w-ext for branches as well for partial
runs because -<p C -<M—the strong covering implies the weak one.

Lemma 6.5. For any partial run T of A on a word w with an extension function
ext, there is a partial run U of A on w with T -<ext U.

Proving Lemma 6.5 is the most intricate part of the proof of Theorem 14. We
now introduce the concepts used within the proof, prove auxiliary Lemma 6.7,
and subsequently present the proof of Lemma 6.5 itself.

Observe that root(T) <B root(T), and every branch of T weakly covers itself,
which means that T ^ w -exi T. Within the proof of Lemma 6.5, we will show
how to reach U by a chain of partial runs derived from T. The partial runs
within the chain will all weakly cover T. Runs further from T will in some sense
cover T more strongly than the runs closer to T and the last partial run of the
chain will cover T strongly. In the following paragraph, we formulate what it
means that a partial run weakly covering T covers T more strongly than another
partial run.

The Relation of Covering T More Strongly. To define the relation of covering
T more strongly on partial runs that weakly cover T, we concentrate on those
branches of partial runs that cause that they do not cover T strongly. Let V be a
partial run of A on w with T ^w-ext V• We call a branch tp G branchesiV) strict
weakly covering if there is no IT G branches (T) with IT -<ext tp (there are only
some 7r G branches (T) with TT ^w-ext V0- Let SWT(V) denote the tree which is
the subset of V containing prefixes of strict weakly covering branches of V wrt.
T. Note that T ~<ext V iff V contains no strict weakly covering branches, which
is equivalent to SWT(V) = 0. Given a partial run W of A on w, we will define
which of V and W cover T more strongly by comparing S\NT(V) and S\NT(W).

For this, we need the following definitions.
Given a finite tree X over Q and r G Q+, we define the tree decomposition

of X according to r as the sequence of (finite) sets of paths (r, X) = X Q\

97

T, X 02 T, . . . , X 0 i T i r . We also let (e, X) = branches(X) (it is a sequence
of length 1). A substantial property of tree decompositions is that under the
condition that r G" branches(X), (T,X) = 0 . . . 0 implies that X = 0. Notice
that if r G branches(X), (T,X) = 0 . . . 0 does not imply X = 0 as r could be
the only branch of X. This is important as for a partial run Y and r ' G F , if
r ' G" branches(Y), the implications (r', s w y (y)) = 0 . . . 0 =^> s w y (y) = 0 =>
T dext Y hold. However, the first implication does not hold if r ' G branches (Y).

Let ry G FU{e} and TW G VFU{e} be such that ry G" branches(SWT(V)) and
TVK 0 6ranc/ies(swr(VF)). We say that W covers T more strongly than V wrt.
Ty and TM/, denoted F ~<TV,Tw W, iff rooi(F) root(W) and (ry , swy(F)) C
(rvy, S\NT(W)) where C is a binary relation on finite sequences of sets of paths
defined as follows:

For two sets of paths P and P', we use P ^ F

3 P' to denote that P <F

3 P'
but not P' dp3 P. In other words, the upward closure of P' wrt. ~<p is a proper
subset of the upward closure of P wrt. -<F- Then, for two finite sequences
5 ,5 ' G (2<2+)+ of sets of paths, 5 C 5' iff there is some k G N , k < min{|5|, \S'\},
such that Sk ^ F

3 S'k and for all 1 < j < k, Sj ^ F

3 S'r

Given c G N , we say that a sequence S of sets of paths is c-bounded if \S\ < c
and also the length of every path in every Si, 1 < i < \S\ is at most c. Lemma 6.6
below shows that every maximal increasing chain of c-bounded sequences related
by C eventually arrives to 0 . . . 0. This will allow us to show that every maximal
sequence of partial runs that cover T more and more strongly must terminate
by a partial run that covers T strongly.

Lemma 6.6. Given a constant c, every maximal increasing chain of c-bounded
sequences related by C eventually terminates by$...$.

Proof. First, observe that for every sequence S of sets of paths with S ^ 0 . . . 0,
it holds that S C 0 . . . 0. This is easy to see since 0 ^ F

3 0 and 0 -^F

3 X for any
nonempty X G . Therefore, to prove the lemma, it is sufficient to show that
C does not allow infinite increasing chains of c-bounded sequences.

Let S = 5(1) C 5(2) C 5(3) C • • • be such a chain of c-bounded sequences.
We will show that 5 must be finite. Observe that the domain of possible c-
bounded 5(i)s is finite since there is only finitely many of paths with the length
bounded by c (Q is finite). Therefore, if 5 is an infinite chain, there has to be i
and j with i < j such that S(i) = S(j). We will argue that this is not possible
by showing that C is irreflexive and transitive, which means that it does not
allow loops (if there was a loop X c • • • C X, then by transitivity, X C X
which contradicts irreflexifity).

Irreflexivity of C may be shown as follows. Let 5 C S for some c-bounded
sequence 5. By the definition of C, there is k G N such that Si ^ F

3 Si for all
i G N smaller than k, and Sk -^F

3 Sk- However, this is clearly not possible since
since the upward closure of Sk wrt. <F would have to be a proper subset of
itself.

Transitivity of C can be shown as follows. Let 5, 5', S" be three c-bounded
sequences with 5 IZ S' IZ S". By the definition of C, there is k G N such that
Si ~<F

3 S'i for all i G N smaller than k, and Sk -<F

3 S'k; and there is k' G N such
that SI dp3 S'I for a l i i G N smaller than k', and S'k, <F

3 5£,. Let I = minj/c, k'}.

98

By transitivity of dp, we have that Si dp S'/ for all i G N smaller than I. Then,
for the Ith position, we have that Si -<F

3 S[-<F

3 S'{ or Si dp3 S[-<F

3 S'/ or
Si ^ F

3 S't dp3 S'/. A l l these three possibilities give St ^ F

3 S'/, and thus S \Z S".
•

The last ingredient we need for the proof of Lemma 6.5 is to show that for
every maximal sequence of partial runs that cover T more and more strongly, the
underlying C-related sequence is also maximal. Particularly, we need to show
that for any partial run weakly (but not strongly) covering T, we are always
able to construct a partial run covering T more strongly. This is stated by the
following lemma.

Lemma 6.7. Given a partial run V of A on w s.t. T dw-ext V, T dext V, &nd
Ty G V U {e} with Ty 0 branches (SWT (V)), we can construct a partial run W
of A on w with T dw-ext W and a path TW G W with TW 0 branches(swp(W))
such that V ^ v ^ w

 w -

Proof. The proof relies on Lemma 6.3 and the definition of dM- We first choose
a suitable branch TT of swp(V) as follows. Let 1 < k < | ry | be some index
such that swp(V) Qk Ty is nonempty. If Ty = e, then k = 1. We choose
some 7r' G swp(V) Qk Ty which is minimal wrt. dF, meaning that there is no
tt" G s\Np(V) Qk TV different from TT' such that IT" dF 7r'. We put tt = TVTT'. We
note that this is the place where we use the ^i?-unambiguity assumption. If A
was ^-ambiguous, there need not be a A; such that swp(V) Qk Ty contains a
minimal element wrt. dF-

As T dw-ext V, there is a G branches(T) with cr dw-ext 7T- From ext(a) dM
leaf (IT), there is a mediator s with ext(a) dF s leaf (IT). We can apply
Lemma 6.3 to V , tt, leaf (IT) and s, which give us a partial run W and V £
branches (VF) with leaf(tp) = s such that TT dp tp, and for all 1 < i < \TT\,
V Qiir dp3 W Qi tp. Let TW = tp. The proof will be concluded by showing
that (i) T dw-ext W, (ii) TW 0 branches (swp(W)), and (iii) (Ty, s\Np(V)) C
(T W , S W T (W)) , which implies V -<TV,TW W".

(%) To show that T dw-ext W, we proceed as follows. Observe that for every
<p G branchesiW) \ {tp} there is a branch (p' G branches(V) \ {TT} such that
leaf(cf)') <F leaf((f>) and 0' ^ Q <f>. This holds because for all 1 < i < \TT\,
V QiTT dp3 W Qitp and because TT dp tp (To be more detailed, for every (f> G
branchesiW) \ {tp}, (p = tplp for some i and p G W Qiip. There must be
p' G V Qi TT with p' <F p. As TT dp <P, dp <pl which implies TT1 da <P'''•
Similarly, p' <p p implies p' da P and also leaf(p') dF leaf(p). Therefore,
we can construct the branch (p' = TT%p' G branches (V) \ {TT} with TT%p' da
ip%p = (p and leaf(iT%p') dF leaf (if)%p)). We also know that since T dw-ext V,
branches(T) dw

3

ext branches(V). Thus, by the definition of dw-ext, we have
that for every (p G branchesiW) \ {tp}, there are <p' G branchesiV) and <p" G
branches(T) with (p" da <P' da <P and ext(<p") du leaf((p') dF leaf ((f)). This by
transitivity of a and the definition of du gives <p" da <P and ext(<p") du leaf((p),
which means <p>" dw-ext <P- To see that also tp is weakly covering, observe that
since a dw-ext we have a da n dp tp and ext(a) dF s = leaf(tp), which by
dp C da and transitivity of da gives even a dext tp (immediately implying

99

tp). Finally, from root(T) <B root(V) (implied by T r^w-ext V), TT <B
tp, and transitivity of <B, root(T) <B root(W). We have shown that T -<w-ext
W.

(ii) Showing that tp G" branches(S\NT(W)) is easy. In the above paragraph we
have just shown that a ~iext tp, thus tp is not a strict weakly covering branch.

(Hi) To show that (TV,SWT(V)) C {ip,S\NT(W)), we will argue that (a) for
all 1 < i < k, it holds that swT(V) Qi Ty ~<F

3 swT(W) Qi tp and that (b)
SWT(V) Qk Ty -<F

3 S\NT(W) Qk tp. Notice first that for any partial run X of A
and r G X with r 0 branches(s\NT(X)), for all 1 < j < |r|, s w y (X) Qj r C
X Qj T. Recall that TV = TTK, that SVJT(V) Qk Ty is nonempty, and that for all
1 < i < H , F G i v r ^ F

3 W Qi tp.
We first show that for all 1 < i < \ir\, swT(V) Qi TT r<Vp swT(W) Qi tp. For

every <p G S\NT(W) Qi tp, there is at least one <fi' G V Qi TT with cp' <p <P (because
V Qi 7T W Qitp and sw T (VF) Qi tp C Qi tp). We will show by contradic­
tion that cp' G S\NT(V) Qi TT which will imply S\NT(V) ©j 7T SVJT(W) Qi tp.
Suppose that cp' G" S\NT(V) Qi TT. Then the branch TTl(p' of V is not strict weakly
covering, and as T ~<w-ext V, we have that there is some cp" G branches(T) with
<f>" z^ext TT%<P' • As ir ̂ B tp, we have that TT1 -<a tp1. As <p' -<F <t>, we have that
p' <a cp and leaf(cp') <F leaf ((f)). This together with (p" <EXT TTl(p' gives that
P" 7<a nl(p' -<a tp%4> and ext((p") -<F leaf(-K%(p') <F leaf'(tp1(p). By transitivity of
-<a and -<F and by the definition of ~<ext, we obtain <p" ~<ext tp%<p. This contra­
dicts with the fact that ip%<f> is strict weakly covering (as (p G S\NT(W) Qi tp) and
therefore it must be the case that (f>' G S\NT(V) Qi TT.

(a) The fact that for all 1 < i < k, swT(V) Qi Tv r<F

3 swT(W) Qi tp is implied
by the result of the previous paragraph, because Ty = irk (thus S\NT(V) Qi Ty =
swT(V) Qi TT).

(b) It remains to show that SVJT(V) Qk Ty -<F

3 SVJT(W) Qk tp. By the defini­
tions of Qk, 7r and Ty, it holds that S\NT(V) Qk Ty D S\NT(V) Qk TT. (TO see this,
recall that TT is strict weakly covering, but Ty is not. Therefore, S\NT(V) Qk TT =
SVJT(V) QkTy \ branches(SVJT(V)(irk+1))). Since D implies we have that
SVJT(V) Qk Ty -<F

3 S\NT(V) Qk TT. Moreover, since TT' G" S\NT(V) Qk TT and TT' is
a minimal element of S\NT(V) Qk Ty, S\NT(V) Qk TT ^ F

3 S\NT(V) Qk Ty cannot
hold (there is no TT" G S\NT(V) Qk TT with TT" <F TT'); and therefore we have
swT(V) Qk Ty -<V

F

3 swT(V) Qk TT. Finally, swT(V) Qk Ty -<V

F

3 swT(V) Qk TT ^ 3

SVJT(W) Qk tp gives SVJT(V) Qk Ty -^F

3 S\NT(W) Qk tp. This completes the part
(iii) of the proof and we can conclude that V -<^v ̂ W. •

With Lemma 6.7 in hand, we are finally ready to prove Lemma 6.5.

Proof of Lemma 6.5. If T ~iext T, we are done as in the statement of the lemma,
we can take T to be U. So, suppose that T ^ext T. Observe that root(T) -<B
root(T), and every branch of T weakly covers itself, which means that T ~^w-ext
T. We construct a run U strongly covering T as follows. Starting from T and
e, we can construct a chain T T\ -<T1T2 ^2 ^T2,T3 ^3 . . . of partial runs that
more and more strongly cover T by successively applying Lemma 6.7 for each i,
n G Ti, Ti G" branches(S\NT(TP)), and T ^ w-exi P%- Observe that by the definition

100

of stronger covering, we have that (e,swy(T)) C (TI, SWT(TI)) C (T2,S\NT(T2)} IZ
(r 3 , s w T (r 3))

Notice now that for each i , since T ^ w -exi FJ, heightiTi) < height(T). There­
fore, since length of Tj is bounded by height(T), the length of (TJ, swr(Tj))
is bounded by height(T) too. Since lengths of all paths in the sets within
(rj,swr(Tj)) are obviously bounded by heightiT) as well, (TJ, swr(Tj)) is a
/ieig/it(T)-bounded sequence. Therefore, by Lemma 6.6, the chain must eventu­
ally arrive to its last Tk and rk with (r^, swr(Tfc)) = 0 . . . 0. As (r^, sw^(Tfc)) =
0 . . . 0, sw^(Tfc) has to be empty, which implies that T -<ext We can put
U = Tk and Lemma 6.5 is proven. •

We use Lemma 6.5 to prove Lemma 6.8. Informally, it says that even despite
the poorer transition relation and smaller set of accepting states, A can answer
to any partial run of A+ by a more accepting partial run. To express this
formally, we need to define the following weaker version ^a+=^a of the relation
of being more accepting that takes into account a+ on the left and a on the
right. This is, for states q and r, q :̂ Q+= .̂Q r iff g G a+ r G a. For two paths
7T, tp G Q+, 7T ̂ a+=^a tp iff \TT\ = \tp\ and for all 1 < i < \TT\, 7TJ G a+ =4> tpi G a.
Last, for finite trees T and U over Q, we use T <a+^,a U to denote that
branches(T) branches(U).

Lemma 6.8. For any partial run T of A+ on w G t/iere exists a partial
run U of A on w such that root(T) -<B root(U) and T -<a+=^a U.

Proof. By induction to the structure of T, using Lemma 6.5 within the in­
duction step. To make the induction argument pass, we will prove a stronger
variant of the lemma. Particularly, we will replace the relation ^a+=^a within
the statement of the lemma by its stronger variant -<M+^ which is defined as
follows. Given paths TT and tp, TT ̂ ^+^a tp iff 7r •<a+^a tp and leaf(7r) <M
leaf(tp). For two partial runs V and W, we use V <™+^a W to denote that
branches(V) (^^H^>Q,)V3 branches(W). Apparently, ^a+=>a C <a+^a for paths
as well as for partial runs.

A stronger variant of the lemma: For any partial run T of A+ on u> G S w , there
exists a partial run U of A on w such that root(T) -<B root(U) and T ^^+^a U.

It is obvious that the above statement implies the statement of the lemma.
We will prove it by induction to the structure of T. In the base case, T = {q}
for some q G Q. If q a+, we can put U = {q} (-<M and <B are reflexive).
If q G a+, then by the definition of a+, there is p G a such that p =M <?•
This means that q -<M P and p -<M <?• By the definition of ^ M , there exists a
mediator s with p <p s <?• As C s £ a. Again by the definition of
^ M , q diM P s ^B q gives us q -<M s ^B q and we can put U = {s}.

Suppose now that T is not only a root and that the stronger variant of the
lemma holds for every partial run of A+ on w that is a proper subset of T.
We choose some TT G T such that succpij^) ^ 0 and for every p G SUCCT(TT),
succT(np) = 0- Notice that since T is a finite tree, such TT always exists. Denote
P = SUCCT(TT) and q = leaf(7r). Let T' = T \ {irp \ p G P}. T' is a partial

101

run of A+ on w which is a proper subset of T, therefore we can apply the
induction hypothesis on it. This gives us a partial run V of A on w such that
root(T') <B root(V) and T' <™+^a V -

Let Bady C branches(V) be the set such that tp G Bady iff there is no
<p G branches(T) such that <p d^+^,a tp, and let Goody = branches(V) \ Bady.
Intuitively, Bady contains the problematic branches because of which T d^+^a

V does not hold. If Bady it is empty, then the relation holds and we can
conclude the proof. We continue assuming that Bady ^ 0.

By the definition of 5+ and because q > P is a transition of A+, there
WI I

must be some s G Q, s <M Q where s —^> P is a transition of 5. We define
an extension function exty such that exty(<p) = s for every <p G Bady and
exty(tp) = leaf(tp) for every i/> G Goody. To see that exiy conforms the defi­
nition of extension function, one has to show that for every branch <p G Bady,
s <M leaf (<(>). We know that T' <™+^a V b u t n o t T ^a+^a V - Therefore,
there is some branch <p' G T" with <p' <™+^a <p such that <p' 0 branches (T) (if 0'
was a branch of T, <p would not be in Bady). Notice that TT is the only branch
of T' which is not a branch of T, which means that it must be the case that
<p' = TT. Therefore, since s <M Q du leaf(cp), s <M leaf((p) holds.

By applying Lemma 6.5 to V and exty, we get a partial run W of A on w
with V dextv W. Now, for each tp G branchesiW), there is <p G branchesiV)
with <p dextv tp. As T' d^+^a V •> P d^+^a <P for some p G branches(T'). There
are two cases of how p and tp may be related, depending on <f>:

1. If 0 G Goody, then ext((p) = leaf(cp). In this case, by the definitions of
^a+^a

 a n d ^ e x i v , we have p da+^a 4> da tp and leaf(p) du leaf(4>) <F
leaf(tp), which gives p da+^a tp and leaf(p) <M leaf (if)) (since du is
forward extensible), meaning that p d™+^a V'-

2. To analyse the case when <p G Bady, recall that TT is the only branch of
T' which is not a branch of T, and therefore TT is also the only branch
of T' with TT da+=^a §• Therefore, p = TT. According to the definition
of exty, exty(<p) = s. Since <p dextv tp, we have TT : ^ ^ + (p da tp
which gives TT da+^a V'- However, since (contrary to the previous case
1.) extv((p) 7̂ leaf (((>), we cannot guarantee any further relation between
leaf ((f)) and leaf(tp), and we cannot derive that leaf (IT) <M leaf (if)) and
7r _<A1^ tp need not hold.

We define the set Badw Q branches(W) such as tp G Badw iff there is no p G T
with p z f ^ ^ ^ V' a n d we let Goodw = branches(W) \ Bady. This is, Badw
contains the branches because of which T ~<M+^_ W does not hold. Note that
if tp G Bady, then all the 0 G branchesiV) with 0 ^ e x j v V a r e a s in the case
(2) above, i.e., TT is the only branch of T' with TT ^ ^ ^ ^ 0. By the definition of
dextvi s = exty(<p) <F leaf (if)). Therefore, by the definition of <F and since
s —^» P, there must be some transition leaf(tp) —^> of .4 where P dp^ R^.
We extend by firing these transitions for every tp G Badw, in which way we
obtain a run X = W U {tpR^p \ tp G -Bad^/} of „4, on u>.

Let us use Newx = {tpRxp \ tp G Badw} to denote the branches of X that
arose by firing the transitions. Observe that branches(X) = Goodw U Newx-

102

Recall that for all tp G Badw, tt ^a+=^a tp and that for every tp G Newx, there
is some p G P such that p -<F leaf(tp). We will define an extension function
extx of X as follows:

1. If tp G Goodw, extx(i>) = leaf(ip).

2. If V> G Newx and there is p G P with p <p leafty) and p ^q,+^q, leaf(tp),
we let extx(ip) = leaf(tp).

3. If tp & Newx and there is no p G P with p ^ leaf(tp) and p zf^+^Q
leaf(tp), we proceed as follows. By the definition of Newx, there is some
p' G P such that p' leaf{tp). Since C p' ^ leaf(tp), and
not p' :̂ Q+= .̂Q leaf(tp), it must be the case that p' G" a, leaf(tp) G" a, and
p' G a + . This by the definition of a+ means that there is some v G a with
p' =M v. We put extx(ip) = v.

We apply Lemma 6.5 to X and ex ix ; which gives us a partial run U of A
on u> with X ^extx U. We will check that U satisfies the statement of the
stronger variant of the lemma. We will first prove that T ^^+^a P . For each
r G branches(P), there is tp G branches(X) with V ^ e x i x

 r - We will derive
that there is some p G branches(T) with p r ^ ^ ^ ^ r . The argument depends on
properties of tp. Particularly, we have the following three cases.

1. If tp G Goodw, then there is some p G T with p ^^+^a tp. Recall that
extx(ip) = leaf(tp) in this case. Thus, by the definitions of ^ ^ + ^ a and
~<extx, we have p <a+^a tp <a r and leaf(p) <M leaf(tp) <F leaf(r),
which gives p ^a+^a r and leaf(p) <M leaf(r), i.e., p T-

2. If tp G Newx and there is some p G P with p leaf(tp) and p :^Q4^.Q

leaf(tp), then by the definition of extx, extx(i>) = leaf(tp). Recall that
as tpM-1 G Badw, IT dia+^-a tp^\ 1 . Therefore, also 7rp dia+^-a tp. By
the definition of -<extx^ we have that tp <a r and leaf{tp) <p leaf(r).
Finally, 7rp :̂ Q+= .̂Q tp <a r and p leaf{tp) <p leaf(r) together imply
that vrp ~4M+. T.

3. If tp G Newx and there is no p G P with p ^ leaf(tp) and p :̂ Q+= .̂Q

leaf(tp), then by the definition of extx, there are p' G P with p' leafty)
and w G a with w = M p' such that extx(ip) = v. By tp <extx r , we
have tp <A T and v <F leaf(r). Thus, since -<M is forward extensible,
p' =M v <F leaf(r) gives p' leaf{tp). As C we have that
leaf(r) G a and thus p' :^Q4^.Q leaf(r). As ^ l ^ l - 1 G Badw, we have
that 7r Together with tp <a r , this gives 7rp' dia+^-a r .
Therefore, 7rp' ^ ^ 1 ^ r .

Since the above three cases cover all possible variants of tp and thus all
branches of P , we have proven that T U- Finally, it is easy to show
that root(T) <B root(U) since is transitive and we know that root(T) =
root(T') <B root{V) <B root(W) = root(X) <B root(U). We have verified that
the constructed partial run U satisfies the statement of the stronger variant of
the lemma, which concludes the proof. •

103

With Lemma 6.8 in hand, we can prove that for each accepting run of A+ on
a word w, there is an accepting run of A on w. This requires to carry Lemma 6.8
from finite partial runs to full infinite runs.

Lemma 6.9. A run T of A with rootiT) = t is accepting if and only if for
every TT G T, there exists a constant fcT G N such that every tp with Trip G T and
\tp\ > k contains an accepting state.

Proof, (if) For every TT G branches(T), there is an infinite sequence of ko, k\...
such that:

• ko = 0 and

• for all i G N , ki = ki-\ + k^ where n = ki-\ + 1.

For all i G N , every segment of TT between ki-\ + 1 and ki contains an accepting
state, therefore IT contains infinitely many accepting states.

(only if) By contradiction. Suppose that there is IT G T for which there
is no kn. We will show that in this case, there must be tp G Qw such that
ntp G branches(T) and tp does not contain an accepting state (which contradicts
the assumption that T is accepting).

We will give a procedure which returns tp1 for each i G N (based on the
knowledge of tp1-1). For each i G N°, we will keep the invariant that for 7rtpl,
kn1pi does not exists and that tp1 does not contain an accepting state. Since
tp° = e, the invariant holds for i = 0.

Let the invariant hold for i — l,i G N , and suppose that we have already
constructed tp1-1. Denote P the subset of succT^tp1-1) containing nonaccepting
states. P must be nonempty, because if all the states from succx^tp1-1) were
accepting, k^i-i would equal 1, violating the invariant for i — 1. Then, there
must be a state q G P such that kn^i-iq does not exist, since otherwise we could
put kn1pi-i = max{kn1pi-ip \ p G P} + 1, which would also violate the invariant
for i — 1. We choose q as the continuation and put tp% = tpt~1q. Observe that
this choice satisfied the invariant for i.

We have shown that for every i G N , we can construct the i th prefix tp1 of tp
that does not contain an accepting state. Therefore, the whole infinite path tp
does not contain an accepting state, and the branch irtp of T does not contain
infinitely many accepting states. This contradicts the assumption that T is
accepting. •

Lemma 6.10. For every accepting run T of A+ a word w G there exists
an accepting run U of A on w.

Proof. For a tree X over Q, let X(i) = {ir G X \ \ir\ < i} be the i th prefix of
X (X(0) = 0). From Lemma 6.8, for each i G N , there is a partial run Ui of
A on w such that T(i) ^a+^,a Ui and root(T{i)) -<B root(Ui). As <B Q ^ i ,
root(Ui) = i. Note that for all TT G branches(Ui), \TT\ equals i , because only
paths of the same length can be related by ^ a +^, a . Denote U°° = {Ui, U2, • • •}•
U°° is an infinite set that for each k G N contains a partial run of A with all
the branches of the length k. We will use U°° to construct the infinite accepting
run U.

104

Observe that for any infinite set V°° of partial runs of A and for any i G N ,
there has to be at least one partial run W of A such that for infinitely many
V G V°°, W = V(i). The reason is that for any i G N , there is obviously only
finitely many of possible partial runs of the height i that A can generate.

We prove the existence of U by giving a procedure, which for every k G N
gives the kth prefix U(k) of U.

• Let U§° = U°° and let 17(0) = 0.

• For every k G N , ?7(&) is derived from U(k—1) as follows. Let U£° C U°° be
defined as the set such that for all i G N , Ut G U£° iff l7(/fe - 1) = Ui(k - 1).
In other words, is the subset of U°° of the partial runs with the i th
prefix equal to U(k — 1). Then, U(k) = Un{k) for some n > k such that
Un G and there is infinitely many m G N such that Um G and
Un{k) = Um{k). I other words, U{k) is a tree that appears as the kth.
prefix of infinitely many partial runs in U^°.

To see that this construction is well defined, observe that:

• U§° is infinite, and

• for all k G N , if is infinite, then U{k — 1) is defined and is infinite.

Thus, U(k) is well defined for every k G N and U is a run of A.
It remains prove that U is accepting. We will show that for every 7r G U, there

is kn G N such that every tp with irtp G T and > k contains an accepting
state. By Lemma 6.9, it will follow that U is accepting.

Let us choose arbitrary 7r G U. Let n = \ir\. By Lemma 6.9, for every
IT' G branches(Tn), there is £v G N such that every tp' with 7r'i// G T1 and
l ^ ' l — ^TT' contains an accepting state. Let A; = maxj/c,,-' | 7r' G 6ranc/ies(T(n))}.
By the construction of U, T{n + A:) ^a+^,a U(n + k). This implies that for
every TT" G branches (J7(n)), every V " with -zr"^" £ T" and > /c contains
an accepting state. As TT in branches(U(n)), we can put k^ = k and we are
done. •

Theorem 14. C(A+) = C{A).

Proof. The inclusion C(A) C £ (^ l +) is obvious as £ (^ l +) has riches both tran­
sition function and the set of accepting states. The inclusion C(A+) C £(^4)
follows immediately from Lemma 6.10. •

Corollary 2. Quotienting with mediated equivalence preserves the language.

6.4 Comput ing the Relations

In this section, we describe algorithms for computing A B A forward and back­
ward simulation, and mediated preorder. For forward simulation, we use an al­
gorithm from [FW02], for backward simulation, we present an algorithm based
on a translation to an LTS simulation problem similar to the one from Chapter 4
for computing upward T A simulation. Mediated preorder is then computed by

105

the algorithm presented in Chapter 4. For the mediated preorder to be useful
for quotienting, we also need to remove ambiguity before we start computing
the backward simulation. This can be done by a simple procedure presented in
this section too. For the rest of the section, we fix an A B A A = (£ , Q, L, 5, a).

Forward Simulation. The algorithm for computing maximal forward simula­
tion d.F ° n -4 can be found in Fritz and Wilke's work [FW02] (it is called direct
simulation in their paper). They reduce the problem of computing maximal for­
ward simulation to a simulation game. Although Fritz and Wilke use a slightly
different definition of A B A , it is easy to translate A to an A B A under their defi­
nition with 0(n-\-m) states and 0(nm) transitions and then use their algorithm
to compute -<F- The time complexity of the above procedure is 0{nm2).

Removing Ambiguity. As we have argued in Section 6.3.1, A needs to be <p-
unambiguous for mediated minimisation. Here, we describe how to modify A
to make it ^^-unambiguous. The modification does not change the language
of A and also the forward simulation relation -<F, therefore we do not need to
recompute forward simulation again for the modified automaton.

The procedure for removing ambiguity is simple. For every transition p A P
with P = {pi,... ,pk} and for each i G { 1 , . . . , k}, we check if there exists some
i < j < k such that pj -<F Pi- If there is one, remove pi from P. The time
complexity of this procedure is obviously in 0(n2m).

We note that an alternative way is quotienting the automaton w.r.t. forward
simulation equivalence.

6.4.1 Comput ing Backward Simulat ion

Our algorithm for computing backward simulation is inspired by the algorithms
for computing tree automata simulations—we translate the problem of comput­
ing maximal backward simulation on A to a problem of computing maximal
simulation on a labelled transition system.

The reduction is very similar to the reduction of the problem of computing tree
automata backward simulation from Chapter 4. We first define the notion of an
environment, which is a tuple of the form (p, a, P \ {p1}) obtained by removing
a state p' G P from the transition p A- P of A. Intuitively, an environment
records the neighbours of the removed state p' in the transition p A P. We
denote the set of all environments of A by Env(A). Formally, we define the
ITS A& = (£ , Q®, A®) as follows:

• Q& = {qQ | q G Q} U {(p, a, P)® | (p, a, P) G Env(A)}.

• A© = {(p,a,P\{p'})& A p&,p'& A (p,a,P\{p'})& | P G 5(p,a),p' G P } .

A n example of the reduction is given in Figure 6.4. The goal of this reduction
is to obtain a simulation relation on A® with the following property: p® is
simulated by q® in .4® iff p d.B Q in A. However, the maximal simulation on
A® is not sufficient to achieve this goal. Some essential conditions for backward

106

A transition in A Transitions in AQ

Pi (p,a,{P2,P3})e ~\,

P {Pl,P2,P3} P® G 9 ' 0 . { P l i ^ }) ® P®

P3 (P » « . { P l » P 2 }) 0 " o "

Figure 6.4: An example of the reduction from an A B A transition to LTS transitions

simulation (e.g., p Q =** P ^ « q) a r e missing in ^4®. This can be fixed by
defining a proper initial preorder I.

Formally, we l e t / = {(qf,qf) | qi <L q2Mi <a t72}U{((p, a, P)®, (r, a, P)®) \
P —F^ R}- Observe that / is a preorder. Recall that according to the definition
of the backward simulation, p <B T implies that (1) p <L r, (2) p <a r, and (3)
for all transitions q A PU{p}, p 0 P, there exists a transition s A RL){r},r g" R
such that q <B S and P ^ F

3 R. The set {(qf, qf) \ qi 92 Ac / i ^ a c/2} encodes
the conditions (1) and (2) required by the backward simulation, while the set
{((p, a, P)&, (r, a, R)&) \ P P} encodes the condition (3). A simulation
relation ^ can be computed using the aforementioned procedure with LTS «4®
and the initial preorder I. The following theorem shows the correctness of our
approach to computing backward simulation.

Theorem 15. For all q,r € Q, we have q -<B T iff q& di1 r&.

Proof, (if) We define d to be a binary relation on Q such that p d r iff p® d1 r®.
We show that ^ is a backward simulation on Q which immediately implies the
result.

Suppose that p ^ r and p' A {p} U P where p g" P is a transition of A.
Since p d r, we know that p® d1 r®; and since p' A {p} U P is a transition
of .A, we know by definition of .A® that p® A (p', a, P)® and (p', a, P)® A p'®
are transitions in A®. Since d1 is a simulation, we can find two transitions
r® A (/, a, P)® and (/ , a, P)® A r'® in A® with (p', a, P)® ^ 7 (/ , a, P)® and

p i Q ^1 r<&^ F r o m p i Q ^1 r / 0 j (p/j flj p)0 ^ / (r / ; flj a n d t ^ e definition of the
initial preorder / , we have p' d r' and P dF

3 P . It follows that d is in fact a
backward simulation parametrised by -<F-

(only if) Define ^0 as a binary relation on Q® such that p® ^0 r® iff p -<B r
and (p ,a ,P)® ^ 0 (r , a ,P)® iff P ^ 3 P and p ^ B r. By definition, ^ 0 C I.
We show that ^ 0 is a simulation on Q® which immediately implies the result.
In the proof, we consider two sorts of states in A®; namely those corresponding
to states and those corresponding to "environments".

Suppose that p® ^ 0 r® and the transition p® A (p',o, P)® is in A®. Since
p® ^0 r®, we know that p -<B f. From the transition p® A (p', a, P)® and by
definition of «4®, p' —> P U {p} is a transition in A. Since p ^ g r, there exists
a transition r ' A P U {r} in „4 such that p' f' and P P . It follows
that there exists a transition r® A (r', a, P)® in „4® such that (p',a, P)® ^ 0

/•'!•.
Suppose that (p, o, P)® ^ 0 (r, a, P)® and the transition (p, a, P)® —>• p® is

in A®. Since (p, a, P)® ^ 0 (r, a, P)®, we know that P ^ 3 P and p r. By

107

definition of «4®, the transition (r, a, R)® A- r® is in .4®. Since p -<B f, we have
p® ^0 r®. Together we have there exists a transition (r,a,R)® A r® in .4®
such that p® ^0 r®. It follows that ^ Q is a simulation on Q®. •

6.4.2 Complexity of Comput ing Backward Simulat ion

The complexity comes from three parts of the procedure: (1) compiling A into
its corresponding LTS «4®, (2) computing the initial preorder / , and (3) running
Algorithm 1 from Chapter 3 for computing the LTS simulation relation. Let
n and m be the number of states and transitions in A, respectively. The LTS
.4® has at most nm+n states and 2nm transitions. It follows that Part (3)
has both time complexity and space complexity 0(\T,\n2m2). As we will show,
among the three parts, Part (3) has the highest time and space complexity and
therefore computing backward simulation also has time and space complexity
0(\Yi\n2m2). Under our definition of A B A , every state has at least one outgoing
transition for each symbol in S. It follows that m > |E |n . Therefore, we can
also say that the procedure for computing maximal backward simulation has
time and space complexity 0(nm3).

Initial Preorder for Computing Backward Simulation. Recall that the pre­
order / is the union of two components: {(q®,q®) \ q\ <L q2 A q\ <a q2} and
{({p, a,P)®, (r,a,R)®) | VVj £ R3pi £ P : p% ~<F TJ}. It is trivial that the first
set can be computed by an algorithm with time complexity 0{n2). However, a
naive algorithm (pairwise comparison of all different environments in Env(A))
for computing the second set has time complexity 0 (n 4 m 2) . Here, we will de­
scribe a more efficient algorithm, which allows the computation of / in time
0{n2m2) and space 0{n).

The main idea of the algorithm is the following. For each pair of transitions of
A, it computes all the pairs of environments that arise from them (by deleting
a right-hand side state) and are to be added to / at once, reusing a lot of
information that a na'ive algorithm would compute repeatedly for each pair of
environments. For a fixed pair of transitions, this procedure has time complexity
C(n 2) and space complexity 0(n). Because A has at most m2 different pairs
of transitions and the 0{n) memory needed for the data structures for one pair
of transitions can then be reused for the other pairs, the second component of
/ can be this way computed in time 0(n2m2) and space 0(n).

We now explain how to efficiently compute all pairs of environments that arise
from a given pair of transitions and that are related by / . Let us fix transitions
p —> P and r —> R. We will maintain a function f3 : R —>• {T, F} U P such that:

{ T if at least two states in P are forward smaller than r'.
F if no state in P is forward smaller than r'.
p' if p' is the only state in P such that p' -<F f'.

The function f3 can be computed by lines 1-4 of Algorithm 7 in time 0(n2) and
space C(n).Let us consider a pair of states ((p, a, P \ {p'})®, (r, a, R \ {r'})®)
in .4®. This pair can be added to / if and only if the following two conditions
hold:

108

1. Vf G (R\{r'}).p(r) + F.

2. Vf G (i? \{r '}) .0(r) ^ p'.

The algorithm first pre-processes p A P and r Ai?, computing certain infor­
mation that will allow us to check the two conditions in constant time for every
pair of environments arising from the two transitions.

The pre-processing needed for efficient checking of Condition (1) is the fol­
lowing. We define f G R as the KeyState if f is the only one state in R such
that /3(f) = F. Given a function /3, the KeyState can be found efficiently (with
time complexity 0(n) and space complexity 0(1)) by scanning through R and

• if there exist two states r\,r<i G R such that j3{ri) = /?(r2) = F, the
algorithm terminates immediately because it follows that none of the pairs
of environments generated from the given pair of transitions satisfies the
requirement of I:

• if there exists only one state such that (5 maps it to F, let it be the
KeyState.

Then we have Condition (1) is satisfied if (1) there is no KeyState or (2) r' is
the KeyState.

For efficient checking of Condition (2), we maintain a function 7 : P —>
{T, F}L>R such that

(F if / ? " V) = 0

7 (p ') =) r' i f / 3 " V) = {r1}
\ T otherwise.

The function 7 can be found in time 0 (n 2) and space 0(n) by scanning once
through f3 for each element of P. With the function 7, Condition (2) can easily
be verified by checking if j(p') G {F, r'}, which means that for all the states f in
R\{r'}, there is some state p different from p' such that p -<F In Algorithm 7,
we first find out the KeyState if there is one and compute the function 7 from /3.
Then in the main loop, for each pair of states ({p, a, P\{p'})0, (r, a, R\{r'})Q),
we check if it belongs to I by verifying the Conditions (1) and (2). Since it is
easy to see that Algorithm 7 has time complexity 0 (n 2) and space complexity
0(n) (not taking into account the space needed for I itself), we can conclude
that the initial preorder / can be computed in time 0(n2m2) and space 0 (m 2)
(encoding of I). This leads to the following theorem that summarises complexity
of computing backward simulation.

Theorem 16. Maximal backward simulation parametrised by a given transi­
tive and reflexive forward simulation can be computed with both time and space
complexity 0 (| S | n 2 m 2) C 0 (n m 3) .

6.5 Experimental Results

In this section, we evaluate the performance of A B A mediated minimisation
by applying it to accelerate the algorithm proposed by Vardi and Kupfer-
man [KV01] for complementing nondeterministic Biichi automata (NBA). In

109

Algorithm 7: Add Pairs of States to I

Input: Two transitions p A P and r A R in A.
/ * Computing function ß */

1 forall r' G R do /3(r') := F;
2 forall p' e P,r' e R do
3 if p' r' then
4 if /3(r') = F then /3(r') := p'\
5 _ else /3(r') := T;

/ * Preprocessing for Condition (1) (computing KeyState) * /
6 forall r' £ R do if /3(r') = F then
7 if there is no KeyState then Let r' be the KeyState;
8 else Terminate the algorithm;

/ * Preprocessing for Condition (2) (computing function 7) */
9 forall J J ' G P do := F:

10 forall r' G R do if ß(r') £ {T, F} then
11 if 7(/3(r')) = i 7 then j(ß(r')) := r';
12 _ else 7(/3(r')) := T;

/ * main loop */
13 forall p' e P,r' e R do
14 if i/iere is no KeyState or r' is the KeyState then
15 |_ if 7 (p ') G {F, r '} then add ((p,a, P \ {p'})&, (r,a, R\ {r'})&) to I

this algorithm, A B A ' s are used as an intermediate notion for the complementa­
tion. To be more specific, the complementation algorithm has two steps: (1) it
translates an N B A to an A B A that recognises its complement language, and
(2) it translates the A B A back to an equivalent N B A . The second step is an
exponential procedure (exponential in the size of the A B A) , hence reducing the
size of the A B A before the second step usually pays off.

The experimentation is carried out as follows. Three sets of 100 random
NBA' s (of |S | = 2,4, and 8, respectively) are generated by the G O A L [TCT+07]
tool and then used as inputs of the complementation experiments. We compare
results of experiments performed according to the following different options:
(1) Original: keep the A B A as it is, (2) Mediated: minimising the A B A with
mediated equivalence, and (3) Forward: minimising the A B A with forward
equivalence.

For each input N B A , we first translate it to an A B A that recognises its com­
plement language. The A B A is (1) processed according to one of the options
described above and then (2) translated back to an equivalent N B A using an
exponential procedure 4 . The results are given in Table 6.1 and Table 6.2. Ta­
ble 6.1 is an overall comparison between the three different options and Table 6.2
is a more detailed comparison between Mediated and Forward minimisation.

4 F o r the o p t i o n " O r i g i n a l " , we also use the o p t i m i s a t i o n suggested i n [K V 0 1] t ha t o n l y takes
a consis tent subset .

110

Table 6.1: Combining minimisation with complementation.

|S |
N B A Complemented-NBA

Time (ms)
Timeout

|S |
St. Tr. St. Tr. Time (ms) (10 min)

Original
Mediated
Forward

2 2.5 3.3
13.9
6.68
9.45

52.75
34.02
55.25

5500.9
524.7
5443.7

0
0
1

Original
Mediated
Forward

4 3.3 6.0
46.4
20.42
26.88

348.5
235.5
325.6

9298.6
1985.4
1900.6

6
6
7

Original
Mediated
Forward

8 4.7 11.9
127.1.3
57.63
81.23

1723.4
1738.3
2349.2

33429.4
12930.6
22734.2

24
21
24

Table 6.2: Comparison: Mediated vs. Forward

|S |
Minimised-ABA Complemented-NBA

|S |
St. Tr. St. Tr.

Average
Difference

2 33.54% 51.62% 63.3% 235.56% Average
Difference 4 36.24% 51.44% 89.9% 298.99%
Average
Difference

8 27.94% 40.88% 152.3% 412.7%

In Table 6.1, the columns " N B A " and "Complemented-NBA" are the average
statistical data of the input N B A and the complemented N B A . The column
"Time(ms)" is the average execution time in milliseconds. "Timeout" is the
number of cases that cannot finish within the timeout period (10 min). Note that
in the table, the cases that cannot finish within the timeout period are excluded
from the average number. From this table, we can see that minimisation by
mediated equivalence can effectively speed up the complementation and also
reduce the size of the complemented NBA's .

In Table 6.2, we compare the performance between Mediated and Forward
minimisation in detail. The columns "Minimised-ABA" and "Complemented-
N B A " are the average difference in the sizes of the A B A after minimisation and
the complemented B A . From the table, we observe that mediated minimisation
results in a much better reduction than forward minimisation.

6.6 Conclusion and Future Work

We have introduced a novel notion of alternating automata backward simula­
tion. Inspired by our previous work on tree automata simulation reduction, we
combined forward and backward simulation to form a coarser relation called
mediated preorder and showed that quotienting wrt. mediated equivalence pre­
serves the language of A B A . Moreover, we developed an efficient algorithm for
computing backward simulation and mediated equivalence. Experimental re-

111

suits show that the mediated reduction of A B A significantly outperforms the
reduction based on forward simulation.

In the future, we would like to extend our experiments to other applications
such as L T L to N B A translation. Furthermore, we would like to extend the
mediated equivalence by building it on top of even coarser forward simulation
relations, e.g., delayed or fair forward simulation relations [FW05]. Also, we
would like to study the possibility of using mediated preorder to remove redun­
dant transitions (similar to the approaches described in [SBOO]). We believe
that the extensions described above can significantly improve the performance
of mediated reduction.

112

7 Conc lus ions and Future Di rect ions

Each of the main chapters contains detailed conclusions concernign the specific
topic. Here, we summarise once more the main points and discuss possible
further research directions.

7.1 A Summary of the Contr ibutions

The main focus of this thesis was on developing efficient methods for handling
nondeterministic tree automata. We have studied simulation based methods for
size reduction of tree automata and methods for universality and language in­
clusion testing. We have found efficient algorithms for computing tree automata
simulations that are based on translating problems of computing tree automata
simulations to problems of computing common simulation over LTS. For this,
we developed an efficient LTS simulation algorithm which is an extension of the
fastest Kripke structure simulation algorithm. The same T A to LTS translations
as for the T A simulations can be used also for computing tree automata bisim-
ulations. Thus, all tree automata (bi)simulations can be computed in a uniform
and elegant way, with possibility of using the most efficient LTS simulation and
bisimulation algorithms. We have discovered a new type of relations that we
call mediated equivalences that can be used for quotienting tree automata as
well as for word automata. Mediated equivalence arises from a combination of
upward and downward simulation, it includes downward simulation and thus
gives a better reduction, as we confirm also experimentally. Since the combi­
nation principle allows also combining simulations with bisimulations, we have
obtained a scale of T A mediated equivalences that offer a fine choice between
reduction power and computational cost.

To solve language inclusion problem for tree automata, we have adapted the so
called antichain universality and inclusion checking method for FA [DR10]. Ac­
cording to our experiments, this optimisation of the classical subset construction
method leads to a major speed-up of the T A language inclusion and universality
tests. We then improve the antichain method for both FA and T A by intercon­
necting it with the simulation based methods. This again significantly improves
efficiency of the algorithms.

We have shown practical applicability of the above TA reduction and inclu­
sion testing methods by applying them in the framework of abstract regular
tree model checking. These algorithms allowed us to build a version of A R T M C
method purely on nondeterministic tree automata, avoiding determinisation
completely. According to our experiments, this greatly improved efficiency and
scalability of the A R T M C method.

Since our tree automata reduction methods are based on quite simple and
general principles, applying them for other types of automata comes into con­
sideration. We have done this for alternating Biichi automata, for which we have

113

introduced a notion of backward simulation and denned the mediated equiva­
lence analogically as in the case of tree automata. As shown by our experiments,
mediated equivalence gives very good reduction even in the case of A B A .

7.2 Further Directions

There is a number of interesting directions of further work. We have already
started to work on an algorithm for computing simulation on Kripke structures
and LTS that would match the best time complexity of the algorithm [RT07] and
also the best space complexity of the algorithm [GPP03]. We are considering
extensions of our simulation reduction methods to other types of automata,
such as hedge automata, weighted tree automata, or nested word automata.
Also the mediation principle itself can be further elaborated. We already have
some preliminary results suggesting that it is possible to define a hierarchy of
coarser and coarser relations similar to the mediated equivalence (and suitable
for quotienting automata), where a mediated relation of level i is used to induce
a mediated relation of level i + 1. The finite automata minimisation/reduction
is an interesting problem itself and we are thinking about reduction techniques
based on other principles than simulation quotienting. For instance, an efficient
reduction heuristic based on the theory of universal automaton [ADN92, Pol05,
KW70, Car70] could possibly be designed.

Further, we are still working on the tree automata language inclusion problem.
We are developing a universality and language inclusion checking algorithm for
tree automata that proceeds downwards (wrt. tree automata transition relation)
and makes use of downward simulation, in contrary to the upward algorithm
from Chapter 5 that exploits only upward simulation. Similarly as our reduc­
tion techniques, our language inclusion and universality antichain/simulation
techniques can be extended for other types of automata. We have shown this
in [ACC +10a] for the Biichi automata language inclusion problem and we are
continuing the work on this topic. Further, we do not restrict ourselves to
simulation based techniques. One could think for instance about using some
abstraction techniques as in [GMR09], and it may also be interesting to look
for inspiration at the areas of decision procedures of logics or solving other hard
problems such as Q B F .

Our work on alternating Biichi automata simulation reduction can be con­
tinued in the way of looking at more advanced handling of Biichi acceptance
condition. More specifically, we would like to study possibilities of constructing
a mediated equivalence from delayed or fair simulation [FW05], which could
lead to even better reductions.

Last, we are working towards applying our methods in practice. We are
developing an efficient B D D based library that would provide procedures for
handling nondeterministic tree automata (in the style of [KM01]). This work
includes also a development of B D D versions of our algorithms, which is itself
an interesting problem. We are also working on an A R T M C based method
for verification of pointer manipulating programs that will make use of our T A
reduction and language inclusion checking techniques.

114

7.3 Publ icat ions Related to this Thesis

The algorithm for computing simulations over labelled transition systems ap­
peared in [ABH + 08c]. The tree automata reduction methods and algorithms for
computing simulations and bisimulations were published in [ABH + 08c, ABH+09.
AHKV09] . The generalisation of the antichain universality and language inclu­
sion method for T A appeared in [BHH + 08b, ACH + 10a] . The combination of
the antichain and simulation methods was published in [ACHV09a]. Finally
the results on A B A simulation reduction are from [ACC + 10a].

The following publications are also to a large degree outcomes of work on
this thesis. The work [HS09a] presents optimizations of the algorithm for com­
puting simulations on LTS from Chapter 3. In [HR07], we fix some problems
in counterexample guided refinement loop for complex systems that were dis­
covered within the work on the A R T M C tool presented in Section 5.3.3. The
work [ACC +10a] presents an application of our simulation based subsumption
principle in Biichi automata inclusion testing.

Full versions of the above mentioned papers were published as the techni­
cal reports [ABH+07, BHH+08a, AHKV08a , ACH+lOb, ABH+08a, ACC+lOb,
ACHV09b, HS09b]. The works [ABH+09] and [AHKV09] first appeared as
[ABH+08b] and [AHKV08b].

115

Bib l iography

[ABH+07] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati,
and Tomáš Vojnar. Computing Simulations over Tree Automata:
Efficient Techniques for Reducing Tree Automata. Technical Re­
port FIT-TR-2007-01, FIT B U T , Brno, Czech Republic, 2007.

[ABH +08a] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati,
and Tomáš Vojnar. Composed Bisimulation for Tree Automata.
Technical Report FIT-TR-2008-04, FIT B U T , Brno, Czech Re­
public, 2008.

[ABH + 08b] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati,
and Tomáš Vojnar. Composed Bisimulation for Tree Automata. In
CIAA'08, volume 5148 of LNCS. Springer, 2008.

[ABH +08c] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati,
and Tomáš Vojnar. Computing Simulations over Tree Automata:
Efficient Techniques for Reducing Tree Automata. In TACAS'08,
volume 4963 of LNCS, pages 93-108. Springer, 2008.

[ABH+09] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati,
and Tomáš Vojnar. Composed Bisimulation for Tree Automata.
Int. J. Found. Comput. Sci., 20(4):685-700, 2009.

[ACC +10a] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš
Holík, Chih-Duo Hong, Richard Mayr, and Tomáš Vojnar. Simula­
tion Subsumption in Ramsey-Based Biichi Automata Universality
and Inclusion Testing. In CAV'10, volume 6174 of LNCS, pages
132-147. Springer, 2010.

[ACC + 10b] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš
Holík, Chih-Duo Hong Hong, Richard Mayr, and Tomáš Vojnar.
Simulation Subsumption in Ramsey-based Biichi Automata Uni­
versality and Inclusion Testing. Technical Report FIT-TR-2010-02,
FIT B U T , Brno, Czech Republic, 2010.

[ACH +10a] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr,
and Tomáš Vojnar. When Simulation Meets Antichains (on Check­
ing Language Inclusion of NFAs). In TACAS'10, volume 6015 of
LNCS, pages 158-174. Springer, 2010.

[ACH+10b] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr,
and Tomáš Vojnar. When Simulation Meets Antichains (on Check­
ing Language Inclusion of NFAs). Technical Report FIT-TR-2010-
01, FIT B U T , Brno, Czech Republic, 2010.

116

[ACHV09a] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vo-
jnar. Mediating for Reduction (on Minimizing Alternating Biichi
Automata). In FSTTCS'09, volume 4 of LIPIcs, pages 1-12.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

[ACHV09b] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vo-
jnar. Mediating for Reduction (On Minimizing Alternating Biichi
Automata). Technical Report FIT-TR-2009-02, FIT B U T , Brno,
Czech Republic, 2009.

[ADN92] André Arnold, Anne Dicky, and Maurice Nivat. A note about min­
imal non-deterministic automata. Bulletin of the EATCS, 47:166-
169, 1992.

[AHK07] Parosh Aziz Abdulla, Johanna Hógberg, and Lisa Kaati. Bisim-
ulation Minimization of Tree Automata. Int. J. Found. Comput.
Sci., 18(4):699-713, 2007.

[AHKV08a] Parosh Aziz Abdulla, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar.
A Uniform (Bi-)Simulation-Based Framework for Reducing Tree
Automata. Technical Report FIT-TR-2008-05, FIT B U T , Brno,
Czech Republic, 2008.

[AHKV08b] Parosh Aziz Abdulla, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar.
A Uniform (Bi-)Simulation-Based Framework for Reducing Tree
Automata. In MEMICS'08, 2008.

[AHKV09] Parosh Aziz Abdulla, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar.
A Uniform (Bi-)Simulation-Based Framework for Reducing Tree
Automata. Electr. Notes Theor. Comput. Sci., 251:27-48, 2009.

[AJMd02] Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien
d'Orso. Regular Tree Model Checking. In CAV'02, volume 2404 of
LNCS, pages 555-568. Springer, 2002.

[ALdR05] Parosh Aziz Abdulla, Axel Legay, Julien d'Orso, and Ahmed
Rezine. Simulation-Based Iteration of Tree Transducers. In
TACAS, volume 3440 of LNCS, pages 30-44. Springer, 2005.

[ALdR06] Parosh Aziz Abdulla, Axel Legay, Julien d'Orso, and Ahmed
Rezine. Tree Regular Model Checking: A Simulation-Based Ap­
proach. J. Log. Algebr. Program., 69(l-2):93-121, 2006.

[BHH +08a] Ahmed Bouajjani, Peter Habermehl, Lukáš Holík, Tayisir Touili,
and Tomáš Vojnar. Antichain-based Universality and Inclusion
Testing over Nondeterministic Finite Tree Automata. Technical
Report FIT-TR-2008-01, FIT B U T , Brno, Czech Republic, 2008.

[BHH +08b] Ahmed Bouajjani, Peter Habermehl, Lukáš Holík, Tayssir Touili,
and Tomáš Vojnar. Antichain-Based Universality and Inclusion
Testing over Nondeterministic Finite Tree Automata. In CIAA '08,
volume 5148 of LNCS, pages 57-67. Springer, 2008.

117

[BHMV05] Ahmed Bouajjani, Peter Habermehl, Pierre Moro, and Tomáš Vo­

jnar. Verifying Programs with Dynamic 1­Selector­Linked Struc­

tures in Regular Model Checking. In TACAS'05, volume 3440 of
LNCS, pages 13­29. Springer, 2005.

[BHRV06a] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and
Tomáš Vojnar. Abstract Regular Tree Model Checking. Electr.
Notes Theor. Comput. Sci., 149(l):37­48, 2006.

[BHRV06b] Ahmed Bouajjani, Peter Habermehl, Adam Rogalewicz, and
Tomáš Vojnar. Abstract Regular Tree Model Checking of Com­

plex Dynamic Data Structures. In SAS'06, pages 52­70, 2006.

Ahmed Bouajjani, Peter Habermehl, and Tomáš Vojnar. Abstract
Regular Model Checking. In CAV'04, volume 3114 of LNCS, pages
372­386. Springer, 2004.

Janusz A . Brzozowski. Canonical Regular Expressions and Min­

imal State Graphs for Definite Events. In Mathematical Theory
of Automata, volume 12 of MRI Symposia Series, pages 529­561,
Polytechnic Institute of Brooklyn, N Y , 1962. Polytechnic Press.

Ahmed Bouajjani and Tayssir Touili. Extrapolating Tree Trans­

formations. In CAV'02, volume 2404 of LNCS, pages 539­554.
Springer, 2002.

Peter Buchholz. Bisimulation relations for weighted automata.
Theor. Comput. Sci., 393(1­3): 109­123, 2008.

Christian Carrez. On the minimalization of non­deterministic au­

tomaton. Laboratoire de Calcul de la Faculté des Sciences de
l'Universitě de Lille, 1970.

H. Comon, M . Dauchet, R. Gilleron, C. Lóding, F. Jacque­

mard, D. Lugiez, S. Tison, and M . Tommasi. Tree automata
techniques and applications. Available on: http://www.grappa.
u n i v ­ l i l l e 3 . f r / t a t a , 2007. release October, 12th 2007.

Thomas H . Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. MIT Press, 1989.

Silvia Crafa, Francesco Ranzato, and Francesco Tapparo. Sav­

ing Space in a Time Efficient Simulation Algorithm. In ACSD'09,
pages 60­69. IEEE, 2009.

Dennis Dams, Orna Grumberg, and Rob Gerth. Generation of Re­

duced Models for Checking Fragments of C T L . In CAV'93, volume
697 of LNCS, pages 479­490. Springer, 1993.

[DHWT91] David L. Dil l , Alan J . Hu, and Howard Wong­Toi. Checking for
Language Inclusion Using Simulation Preorders. In CAV'91, vol­

ume 575 of LNCS, pages 255­265. Springer, 1991.

[BHV04]

[Brz62]

[BT02]

[Buc08]

[Car70]

[CDG+07]

[CLR89]

[CRT09]

[DGG93]

118

http://www.grappa
http://univ-lille3.fr/tata

[DR10] Laurent Doyen and Jean-Francois Raskin. Antichain Algorithms
for Finite Automata. In TACAS'10, volume 6015 of LNCS, pages
2-22. Springer, 2010.

[FCC+08] Azadeh Farzan, Yu-Fang Chen, Edmund M . Clarke, Yih-Kuen
Tsay, and Bow-Yaw Wang. Extending Automated Compositional
Verification to the Full Class of Omega-Regular Languages. In
TACAS'08, volume 4963 of LNCS, pages 2-17. Springer, 2008.

[FV09] Seth Fogarty and Moshe Y . Vardi. Biichi Complementation and
Size-Change Termination. In TACAS'09, volume 5505 of LNCS,
pages 16-30. Springer, 2009.

[FW02] Carsten Fritz and Thomas Wilke. State Space Reductions for Alter­
nating Biichi Automata. In FSTTCS'02, pages 157-168, London,
U K , 2002. Springer.

[FW05] Carsten Fritz and Thomas Wilke. Simulation relations for alter­
nating Biichi automata. Theor. Comput. Set., 338(1-3):275-314,
2005.

[GKSV03] Sankar Gurumurthy, Orna Kupferman, Fabio Somenzi, and
Moshe Y . Vardi. On Complementing Nondeterministic Biichi Au­
tomata. In CHARME'03, volume 2860 of LNCS, pages 96-110.
Springer, 2003.

[GL94] Orna Grumberg and David E . Long. Model Checking and Modular
Verification. ACM Trans. Program. Lang. Syst., 16(3):843-871,
1994.

[GMR09] Pierre Ganty, Nicolas Maquet, and Jean-Francois Raskin. Fix-
point Guided Abstraction Refinement for Alternating Automata.
In CIAA '09, volume 5642 of LNCS, pages 155-164. Springer, 2009.

[GO01] Paul Gastin and Denis Oddoux. Fast L T L to Biichi Automata
Translation. In CAV'01, volume 2102 of LNCS, pages 53-65.
Springer, 2001.

[GPP03] Raffaella Gentilini, Carla Piazza, and Alberto Policriti. From
Bisimulation to Simulation: Coarsest Partition Problems. J. Au-
tom. Reasoning, 31(1):73-103, 2003.

[GVT03] Thomas Genet, Valerie Viet, and Triem Tong. Timbuk: A Tree
Automata Library, h t tp : / /www.i r i sa . f r / lande/genet / t imbuk,
2003.

[HHK95] Monika Rauch Henzinger, Thomas A . Henzinger, and Peter W.
Kopke. Computing Simulations on Finite and Infinite Graphs. In
FOCS'95, pages 453-462, Washington, DC, USA, 1995. IEEE.

119

http://www.irisa.fr/lande/genet/timbuk

[HMM07a] Johanna Hdgberg, Andreas Maletti, and Jonathan May. Back­

ward and Forward Bisimulation Minimisation of Tree Automata.
In CIAA'07, volume 4783 of LNCS, pages 109­121. Springer, 2007.

[HMM07b] Johanna Hógberg, Andreas Maletti, and Jonathan May. Bisim­

ulation Minimisation for Weighted Tree Automata. In DLT'08,
volume 4588 of LNCS, pages 229­241. Springer, 2007.

[Hop71] John E. Hopcroft. A n n logn algorithm for minimizing states in a
finite automaton. Technical report, Stanford University, Stanford,
C A , USA, 1971.

[HR07] Lukáš Holík and Adam Rogalewicz. Counterexample Analysis in
Abstract Regular Tree Model Checking of Complex Dynamic Data
Structures. In MEMICS'07, pages 59­66, 2007.

[HŠ09a] Lukáš Holík and Jiří Šimáček. Optimizing an LTS­Simulation A l ­

gorithm. In MEMICS'09, pages 93­101. Faculty of Informatics
M U , 2009. A n extended version accepted at Computing and Infor­

matics.

[HŠ09b] Lukáš Holík and Jiří Šimáček. Optimizing an LTS­Simulation Algo­

rithm. Technical Report FIT­TR­2009­03, FIT B U T , Brno, Czech
Republic, 2009.

[KM01] Nils Klarlund and Anders M0ller. M O N A Version 1.4 User Man­

ual, 2001. BRICS, Department of Computer Science, University of
Aarhus, Denmark.

[KV01] Orna Kupferman and Moshe Y . Vardi. Weak alternating automata
are not that weak. ACM Trans. Comput. Log., 2(3):408­429, 2001.

[KW70] T. Kameda and P. Weiner. On the State Minimization of Nondeter­

ministic Finite Automata. IEEE Trans. Comput., 19(7):617­627,
1970.

[M01O4] Anders M0ller. http://www.brics.dk/automaton, 2004.

[MS72] Albert R. Meyer and Larry J . Stockmeyer. The Equivalence Prob­

lem for Regular Expressions with Squaring Requires Exponential
Space. In FOCS'72, pages 125­129. IEEE, 1972.

[Pol05] Libor Polák. Minimalizations of N F A Using the Universal Automa­

ton. Int. J. Found. Comput. Sci, 16(5):999­1010, 2005.

[PT87] Robert Paige and Robert Endre Tarjan. Three Partition Refine­

ment Algorithms. SIAM J. Comput, 16(6):973­989, 1987.

[RT07] Francesco Ranzato and Francesco Tapparo. A new efficient sim­

ulation equivalence algorithm. In LICS'01, pages 171­180. IEEE,
2007.

120

http://www.brics.dk/automaton

[SBOO] Fabio Somenzi and Roderick Bloem. Efficient Biichi Automata
from L T L Formulae. In CAV'OO, volume 1855 of LNCS, pages
248-263. Springer, 2000.

[ShaOl] E. Shahar. Tools and Techniques for Verifying Parameterized Sys­
tems. PhD thesis, Faculty of Mathematics and Computer Science,
The Weizmann Inst, of Science, Rehovot, Israel, 2001.

[SJ05] Zdenek Sawa and Petr Jancar. Behavioural Equivalences on Finite-
State Systems are PTIME-hard. Computers and Artificial Intelli­
gence, 24(5), 2005.

[SVW85] A . Prasad Sistla, Moshe Y . Vardi, and Pierre Wolper. The Com­
plementation Problem for Biichi Automata with Applications to
Temporal Logic (Extended Abstract). In ICALP'85, volume 194
of LNCS, pages 465-474. Springer, 1985.

[TCT+07] Yih-Kuen Tsay, Yu-Fang Chen, Ming-Hsien Tsai, Kang-Nien Wu,
and Wen-Chin Chan. G O A L : A Graphical Tool for Manipulating
Biichi Automata and Temporal Formulae. In TACAS'07, volume
4424 of LNCS, pages 466-471. Springer, 2007.

[TV05] Deian Tabakov and Moshe Y . Vardi. Experimental Evaluation of
Classical Automata Constructions. In LPAR'05, volume 3835 of
LNCS, pages 396-411. Springer, 2005.

[Val09] Antt i Valmari. Bisimilarity Minimization in O(mlogn) Time. In
Petri Nets, volume 5606 of LNCS, pages 123-142. Springer, 2009.

[Var07] Moshe Y . Vardi. Automata-Theoretic Model Checking Revisited.
In VMCAP07, volume 4349 of LNCS, pages 137-150. Springer,
2007.

[WDHR06] Martin De Wulf, Laurent Doyen, Thomas A . Henzinger, and Jean-
Frangois Raskin. Antichains: A New Algorithm for Checking Uni­
versality of Finite Automata. In CAV'06, volume 4144 of LNCS,
pages 17-30. Springer, 2006.

121

