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Abstract

This thesis is focused on techniques for finite automata and their use in prac-
tice, with the main emphasis on nondeterministic tree automata. This concerns
namely techniques for size reduction and language inclusion testing, which are
two problems that are crucial for many applications of tree automata. For size
reduction of tree automata, we adapt the simulation quotient technique that is
well established for finite word automata. We give efficient algorithms for com-
puting tree automata simulations and we also introduce a new type of relation
that arises from a combination of tree automata downward and upward simu-
lation and that is very well suited for quotienting. The combination principle
is relevant also for word automata. We then generalise the so called antichain
universality and language inclusion checking technique developed originally for
finite word automata for tree automata. Subsequently, we improve the antichain
technique for both word and tree automata by combining it with the simulation-
based inclusion checking techniques, significantly improving efficiency of the
antichain method. We then show how the developed reduction and inclusion
checking methods improve the method of abstract regular tree model checking,
the method that was the original motivation for starting the work on tree au-
tomata. Both the reduction and the language inclusion methods are based on
relatively simple and general principles that can be further extended for other
types of automata and related formalisms. An example is our adaptation of the
reduction methods for alternating Biichi automata, which results in an efficient
alternating automata size reduction technique.
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Abstrakt

Cilem této préce je vyvoj technik umoznujicich praktické vyuziti nedetermini-
stickych kone¢nych automati, zejména nedeterministickych stromovych auto-
mati. Jde zvlasté o techniky pro redukci velikosti a testovani jazykové inkluze,
jez hraji zasadni roli v mnoha oblastech aplikace kone¢nych automatt. V oblasti
redukce velikosti vychézime z dobife znamych metod pro slovni automaty které
jsou zaloZeny na relacich simulace. Navrhli jsme efektivni algoritmy pro vypocet
stromovych variant simula¢nich relaci a identifikovali jsme novy typ relace za-
loZzeny na kombinaci takzvanych hornich a dolnich simulaci nad stromovymi
automaty. Tyto kombinované relace jsou zvlasté vhodné pro redukci velikosti
automatt slucovanim stavi. Navrzeny princip kombinace relaci simulace je re-
levantni i pro slovni automaty. N&S piinos v oblasti testovani jazykové inkluze
je dvoji. Nejprve jsme zobecnili na stromové automaty takzvané protifetézcové
algoritmy, které byly ptivodné navrzeny pro slovnimi automaty. Dale se ndm po-
darilo pouzitim simula¢nich relaci vyrazné zefektivnit protifetézcové algoritmy
pro testovani jazykové inkluze jak pro slovni, tak pro stromové automaty. Re-
levanci na8ich technik pro praxi jsme demonstrovali jejich nasazenim v ramci
reguldrniho stromového model checkingu, coZ je verifika¢ni metoda zaloZena
na stromovych automatech. Pouzit{ naSich algoritmu zde vedlo k vyraznému
zrychleni a zvétSeni Skalovatelnosti celé metody. Zékladni mysSlenky naSich al-
goritmil pro redukci velikosti automati a testovani jazykové inkluze jsou apli-
kovatelné i na jiné typy automati. Pfikladem jsou naSe redukéni techniky pro
alternujici Biichiho automaty prezentované v posledni Gésti prace.
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1 Introduction

Finite automata on finite words (FA) are one of the basic concepts of computer
science. Besides classical applications of FA such as compiler construction or
text searching, FA are widely used in modelling and verification, which are the
application domains of our interest. Tree automata (TA) are a natural gener-
alisation of FA that accepts ordered trees/terms. TA share most of the good
properties of FA, from closure to decidability and complexity (even though com-
plexities of many tree automata problems are higher, they are still comparable
with the complexities of the corresponding FA ones). This makes tree automata
a convenient tool for modelling and reasoning about various kinds of structured
objects such as syntactical trees, structured documents, configurations of com-
plex systems, algebraic term representations of data or computations, etc. (see,
e.g., [CDGT07]). One of the main motivations for this work is in particular the
use of tree automata in verification, mainly in the method of regular tree model
checking [Sha01, BT02, ALdR05, BHRV06a], an infinite-state system verifica-
tion method where tree automata are used for representing sets of reachable
states of a system.

In the above context, checking language equivalence/inclusion and reducing
size of automata while preserving the language are fundamental issues, and
performing these operations efficiently is crucial in practice. The language in-
clusion problem and the minimisation problem for (nondeterministic) automata
are PSPACE-complete for FA and even EXPTIME-complete for TA. A classical
approach to cope with these problems is determinisation. Both FA as well as
TA can be determinised and minimised in a canonical way. Testing language
inclusion of deterministic minimal automata is then easy. However, since even
the canonical minimal deterministic automaton can still be exponentially larger
than the original nondeterministic one, its computation easily becomes a major
bottleneck of any automata-based method.

A reasonable and pragmatic approach to the size reduction and language in-
clusion problem is to consider some relation on states of an automaton that
respects language inclusion on states, but which can be checked efficiently, us-
ing a polynomial algorithm. Such a relation can then be used for approximating
language inclusion between two automata by checking whether each initial state
of one automaton is related to an initial state of other automaton. This method
is sound but incomplete in the case when the relation is a proper subset the
language inclusion on states. Such a relation can be also used for reducing the
size of an automaton by collapsing equivalent states. Here, a natural trade-off
between the strength of the considered relation and the cost of its computation
arises. In the case of word automata, a relation which is widely considered as
a good trade-off in this sense is simulation preorder. It can be checked in poly-
nomial time, and efficient algorithms have been designed for this purpose (see,
e.g., [GPP03, HHK95, RT07, CRT09]). These algorithms make the computa-



tion of simulation preorder quite affordable even in comparison with the one of
bisimulation equivalence, which is cheaper [Hop71, PT87, Val09], but which is
also stronger, and therefore leads to less significant reductions of automata and
also its capability of approximating language inclusion is limited.

As for what concerns language inclusion and universality problem, apart from
the classical determinisation-based methods and simulation-based approxima-
tion technique, there has recently been proposed the so called antichain uni-
versality and inclusion testing method for FA [WDHRO06]. It is essentially an
optimisation of the classical method based on subset construction (i.e., on de-
terminisation), it is still of an exponential worst case complexity, but it behaves
very well in practice.

In the case of tree automata, the only methods for size reduction that were
previously studied (apart from deterministic minimisation) are based on bisim-
ulation relations [AHKO07, HMMO07a] and concerning language inclusion testing,
the only methods formerly available are the classical ones based on explicit de-
terminisation. However, these methods are not efficient enough. The former
ones are rather weak since bisimulation relations are usually relatively sparse
and the latter ones suffer from the problem of state space explosion too often.

1.1 Goals of the Thesis

The lack of efficient methods for reducing size and testing language inclusion of
nondeterministic tree automata described above has significantly limited their
practical usability. Therefore, this thesis is aimed at adapting techniques that
work well for word automata to tree automata, which in particular concerns
the size reduction methods based on simulations and the language inclusion
testing algorithms based on the antichain principle. Then, apart from gener-
alising existing methods from word automata to tree automata, we also focus
on improving the existing methods themselves. This concerns introduction of
new types of relations suitable for reducing the size of word as well as tree
automata and interconnecting the antichain principle with the simulation tech-
niques into new language inclusion testing algorithms. Additionally, we show
that the proposed methods are applicable to other kinds of automata too by
designing a simulation-based reduction method for alternating Biichi automata
that is similar to the one we proposed for tree automata.

1.2 An Overview of Achieved Results

Here we summarise the contributions that we have achieved within the particular
areas marked out by the goals of this work.

Tree Automata Reduction Methods. Our tree automata reduction methods
are build on the notions of downward and upward tree automata simulations
(proposed first in [ALdRO5]) that are the tree automata counterparts the for-
ward and backward FA simulations.



We design efficient algorithms for computing tree automata simulations. A
deep examination of the structure of the TA simulations reveals that both up-
ward and downward TA simulations can be computed by the same algorithmic
pattern. More specifically, the problems of computing a TA simulation can be
reduced to a problem of computing a common FA simulation (a tree automaton
is translated into an FA and then a common FA simulation algorithm is used).
Moreover, tree automata bisimulations can also be computed efficiently this way
using the same translations (instead of a simulation algorithm, an FA bisimu-
lation algorithm is run on the FA obtained by translating the input TA). The
resulting tree automata bisimulation algorithms are simple and competitive with
the previously known algorithms from [HMMO7a|. This results in a uniform and
elegant framework for computing tree automata simulations and bisimulations
that can utilise the best FA simulation and bisimulation algorithms.

We have identified a principle of combining upward and downward TA sim-
ulations and forward and backward FA simulations that yields an equivalence,
called mediated equivalence, suitable for reducing automata by collapsing their
states while preserving the language. Mediated equivalence is coarser than
downward resp. forward simulation equivalence and thus gives a better re-
duction. The principle of mediated minimisation of FA generalises the principle
of forward simulation minimisation. Two forward simulation equivalent states
can be safely collapsed since they have the same forward languages (symmetri-
cally for backward simulation). In contrary, the property that allow collapsing
two mediated equivalent states p and ¢ is the following. Whenever there is a
computation under a word u starting in an initial state that ends in a state p,
and another computation under a word v starting in a state ¢ and ending in
a final state, then there is a computation under wv from an initial to a final
state. Therefore, collapsing the two states p, ¢ does not introduce any new be-
haviour since every word accepted via the new state was accepted also before
collapsing. The case of TA mediated equivalence can be explained analogically.
It may be seen from the above that unlike simulations, mediated equivalences
approximate neither forward nor backward language equivalence on states, and
similarly the tree automata mediated equivalence is not compatible with any
notion of language of a state of a tree automaton. The combination principle
allows to build a mediated equivalence from any downward /backward relation
(simulation, bisimulation or identity relation) and any upward/forward relation
(simulation, bisimulation, identity). This yields a scale of mediated equiva-
lences offering a fine choice between the computation cost and reduction power,
as confirmed by our experimental results.

Language Inclusion Checking for TA and FA. Our universality and language
inclusion algorithms for tree and word automata build on the antichain based
method for FA proposed first in [WDHRO06]. It is a complete method that
optimises the classical subset construction based algorithms. We first briefly
review its main idea.

Consider a nondeterministic FA A. In the simpler case of universality check-
ing, the method is based on a search for a nonaccepting state of the determinised



version A’ of A reachable from an initial state of A’. Such a state is a counterex-
ample to universality of A. When a counterexample is reached, the algorithm
may terminate even before all states of A’ are constructed. The states of A’,
called macro-states, have the form of subsets of the set of states of A. The key
idea is that some macro-states have a better chance of finding a counterexample
than other ones since they have provably smaller languages (in our terminology,
we say that they subsume the states with larger languages). Therefore, one can
safely continue searching only from the generated macro-states that have mini-
mal languages, and simply discard any generated macro-state that is subsumed
by another one. In [WDHRO06|, the subsumption relation is just set inclusion,
and already this simple solution gives a fundamental speedup.

We first adapt the FA antichain technique for tree automata. The adaptation
is quite straightforward, and similarly as in the case of FA, it has a major impact
on efficiency of the TA language inclusion and universality tests. We then
improve the antichain technique for both FA and TA by interconnecting it with
the simulation approximation technique. Simply speaking, we improve accuracy
of the subsumption relation on macro-states by employing simulations on states
of the original automaton. In the case of universality checking, a macro-state
p subsumes a macro state ¢ if all states in p are simulated by some state in
q. Moreover, even the internal structure of macro-states can be simplified by
keeping only simulation maximal states of A inside the macro-states. In the
case of testing inclusion between two automata A4 and B, macro-states have a
more complicated structure, and it is possible to utilise simulation on states of
A, on states of BB, and also use simulation between states of A and B. It can be
said that this method combines advantages of both simulation approximation
of language inclusion and the original antichain technique. It also behaves very
well on our experimental data.

Simulations and Antichains in Abstract Regular Tree Model Checking. We
have shown practical applicability of our tree automata reduction and inclu-
sion testing methods in the framework of abstract regular tree model checking
(ARTMC), an infinite state verification method where the two problems play
a crucial role. In regular model checking (RMC), we start with an FA Aj
representing a set of initial configurations I of a system and iteratively apply
transition relation 7 (symbolically, on the structure of the automaton) until
a fixpoint is reached, thus computing an FA representing the set 7%(A;) of
all configurations reachable from the initial configurations. Then, it is checked
whether this set satisfies the verified properties. In abstract regular model check-
ing [BHV04], abstraction (together with a counterexample guided refinement)
is used to accelerate the computation. Checking the fixpoint condition means
to decide whether 7¢(A;) C 7°t1(Af), which requires an efficient language in-
clusion algorithm. During the computation, the intermediate automata typi-
cally grow quickly, therefore it is needed to reduce their size. Tree automata
are used instead of FA when configurations of the system being verified are
better represented by trees than by words, e.g., certain parametrised commu-
nication protocols, pointer programs manipulating tree-like data structures etc.



In that case, we speak about abstract regular tree model checking (ARTMC)
[BT02, AJMd02, BHRV06a, BHRV06b|. This method was originally based on
deterministic tree automata, involving implicit determinisation after each step.
Our reduction and inclusion testing methods allowed us to redesign the method
on top of nondeterministic tree automata, which led to a major increase of
scalability and efficiency.

Simulations and Antichains for Other Types of Automata. The principles of
our simulation-based reduction methods are relatively simple and general which
allows extensions of the methods also for other types of automata. We have
done this for alternating Biichi automata (ABA), for which we have designed
simulation-based reduction method analogical to the one proposed for tree au-
tomata. ABA are acceptors of infinite words with the same expressive power
as Biichi automata, but may be exponentially more succinct. Their applica-
tions can be found for instance in automata-based LTL model checking within a
Biichi automata complementation procedure (e.g., [KV01]). Alternating Biichi
automata are similar to tree automata in the sense that runs of both types of
automata have a form of trees (ordered trees for TA and unordered trees for
ABA). Therefore, the definitions of simulations look similar for the two types
of automata. Forward simulation over alternating Biichi automata have been
already studied (see [FW02, FWO05]). It may bee seen as an analogy of the
tree automata downward simulation. We have introduced the notion of ABA
backward simulation, which is an analogy of TA upward simulation. We also
show that it is possible to combine the ABA simulations in the same way as the
TA simulation into a mediated equivalence suitable for collapsing states while
preserving language. This equivalence gives better reductions than sole forward
simulation, which we confirm also by experiments.

Generalisations of our universality and language inclusion algorithms are also
possible. We are currently exploring ways of applying these techniques at de-
ciding Biichi automata universality and language inclusion. Our first result has
been published as [ACC*10a] where we use the simulation subsumption tech-
nique to improve the so called Ramsey-based Biichi universality and inclusion
test (see, e.g., [SVW85, FV09]). However, this work is already beyond the scope
of this thesis.

1.3 Plan of the Thesis

Chapter 2 contains preliminaries on automata, simulations, and regular tree
model checking. Chapter 3 presents an algorithm for computing simulations
over labelled transition systems used within most of the algorithms presented
further. In Chapter 4, we describe our simulation and bisimulation-based frame-
work for reducing tree automata and the algorithms for computing the TA sim-
ulations and bisimulations. Chapter 5 deals with the language inclusion and
universality problems for FA and TA. Alternating Biichi automata simulation-
based reduction methods are discussed in Chapter 6 and Chapter 7 concludes
the thesis.



2 Preliminaries

Here we give preliminaries on relations, labelled transition systems, finite au-
tomata, simulations, tree automata, and regular tree model checking that we
build on in this work.

2.1 Relations

Given a binary relation R C X x X on a set X, we often use the infix notation
xRy to denote that (z,y) € R. R(z) stands for the the set {y € X | xRy},
the upper closure of x with respect to R. Given a subset Y of X, the relation
RNY XY is the restriction of R to Y. For an equivalence relation = on X,
we use X/= to denote the partitioning of X according to =, and we call an
equivalence class of = a block. For two relations R and S, we denote Ro .S their
composition where x(Ro S)y <= 3Jz:xRzSy.

2.2 Labelled Transition Systems and Finite Automata

A (finite) labelled transition system (LTS) is a tuple T = (X, Q, ) where Q is a
finite set of states, X is a finite set of labels, and § C Q) x ¥ x @ is a transition
relation. Given two states ¢, € @, we denote by ¢ = r that (g, a,r) € 4.

A Nondeterministic Finite Automaton (FA) Ais a tuple (X, Q,d, I, F,) where
(2,Q,0) is a labelled transition system, I C @ is a non-empty set of initial
states, and F' C (@ is a set of final states.

A word u = wuq...u, is accepted by A from the state g if there exists a
sequence ¢ou1qiusz . .. Unqy such that g, € F and gj_1 4, gj for all 0 < 5 < n.
The language of a state q in A is defined as L(A)(q) := {u | u is accepted by A
from the state ¢} and the language of the automaton Ais L(A) := U, L(A)(q).
We say that A is universal if L(A) = ¥*.

2.3 Forward and Backward Simulations

A (forward) simulation over an LTS T = (X,Q,d) is a binary relation R on @
such that for any states g, 7, ¢, if gRr and ¢ = ¢/, then there is a state r’ with
r 2 and ¢ Rr'.

Any given simulation on an LTS can be closed under reflexivity, transitivity
and union, and so there is a unique maximal simulation on the given LTS, called
the simulation preorder, which we denote by <. It also holds that, for any given
initial preorder I C @) x @, the set of simulations over 7T included in [ is closed
under union, reflexive and transitive closure, and thus there is a unique maximal
simulation included in I on 7, which we call the simulation preorder included in



I and denote <! in the sequel. We use = to denote the simulation equivalence
< N <! on Q and, consequently, = to denote the simulation equivalence
<I'n(xH)~1 included in I.

A (forward) simulation on an FA A = (£,Q,9,I,F) is a simulation on the
LTS (X,Q,9) such that if a state r simulates a state ¢, then g € F — r € F
(a simulation included in (@ x Q)\ (F' x (Q\ F))). The following is a well-known

lemma.

Lemma 2.1. Given a forward simulation < on an FA A = (3,Q,4,1,F),
p=r = L(A)(p) C L(A)(r).

Backward simulation is a dual notion to forward simulation. A backward
simulation over an LTS T = (X,Q,0) is a forward simulation over the LTS
T-! = (%,Q,671) where ' = {(p,a,q) | (g,a,p) € 6}, and a backward
simulation on an FA A = (3,Q,9,1,F) is a forward simulation on the FA
A1 =(2,Q,071, F,I). The notions of backward simulation preorder and back-
ward simulation equivalence can be defined in the same way as for forward
simulation and an equivalent of Lemma 2.1 holds for backward simulation and
“backward languages” of states of A.

2.4 Trees and Tree Automata

A ranked alphabet Y is a set of symbols together with a function # : ¥ — N.
For a € ¥, the value #(a) is called the rank of a. For any n > 0, we denote by
Y, the set of all symbols of rank n from X. Let € denote the empty sequence.
A tree t over a ranked alphabet ¥ is a partial mapping t : N* — X that satisfies
the following conditions:

e dom(t) is a finite, prefix-closed subset of N*, and
e for each p € dom(t), #(t(p)) =n > 0iff {i | pi € dom(t)} ={1,...,n}.

Each sequence v € dom(t) is called a node of t. For a node v, we define the i‘"
child of p to be the node pi, and the i*" subtree of v to be the tree ¢’ such that
t'(v") = t(viv') for all p’ € N*. A leaf of t is a node v which does not have any
children, i.e., there is no i € N with vi € dom(t). We denote by T'(X) the set of
all trees over the alphabet 3.

A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA
in the following) is a quadruple A = (3,Q,A, F) where @ is a finite set of
states, F' C @ is a set of final states, ¥ is a ranked alphabet, and A is a set of
transition rules. Each transition rule is a triple of the form ((¢1,...,qn),a,q)
where q1,...,qn,q € Q,a € ¥, and #(a) = n. Weuse (q1,...,qn) — ¢ to denote
that that ((q1,...,qn),a,q) € A. When using this notation, states q1, ..., qn,q €
@ and symbol a € X are often considered to be implicitly existentially quantified.
In the special case where n = 0, we speak about the so-called leaf rules, which
we abbreviate as — ¢. Finally, the rank of A denoted by 7 is defined as the
greatest n € N such that (¢1,...,q,) — q.

A run of A over a tree t € T(X) is a mapping 7 : dom(t) — @ such that,
for each node p € dom(t) where ¢ = w(p), if ¢; = 7(pi) for 1 < i < n, then A



t
contains a rule (q1,...,qn) ﬂ q. We write t = g to denote that 7 is a run

of A over t such that 7(e) = q. We use t => ¢ to denote that t == ¢ for some
run 7. The language accepted at a state q is defined by L(q) = {t | t = q},
while the language of A is defined by L(A) = U cp L(q).

2.5 Regular Tree Model Checking

Regular tree model checking (RTMC) [Sha01, BT02, ALdR05, BHRV06a]| is a
general and uniform framework for verifying infinite-state systems. In RTMC,
configurations of a system being verified are encoded by trees, sets of the con-
figurations by tree automata, and transitions of the verified system by a term
rewriting system (usually given as a tree transducer or a set of tree transduc-
ers). Then, verification problems based on performing reachability analysis
correspond to computing closures of regular languages under rewriting systems,
i.e., given a term rewriting system 7 and a regular tree language I, one needs
to compute 7*(I) where 7* is the reflexive-transitive closure of 7. This compu-
tation is impossible in general. Therefore, the main issue in RTMC is to find
accurate and powerful fixpoint acceleration techniques helping the convergence
of computing language closures. One of the most successful acceleration tech-
niques used in RTMC is abstraction whose use leads to the so-called abstract
reqular tree model checking (ARTMC) [BHRV06a|, on which we concentrate in
this work.

Abstract Regular Tree Model Checking. We briefly recall the basic principles
of ARTMC in the way they were introduced in [BHRV06a]. Let ¥ be a ranked
alphabet and My, the set of all tree automata over . Let Z € My be a tree
automaton describing a set of initial configurations, 7 a term rewriting system
describing the behaviour of a system, and B € My, a tree automaton describing a
set of bad configurations. The safety verification problem can now be formulated
as checking whether the following holds:

(L) N LB) =0 (2.1)

In ARTMC, the precise set of reachable configurations 7*(£(Z)) is not computed
to solve Problem (2.1). Instead, its overapproximation is computed by interleav-
ing the application of 7 and the union in £(Z)U7(L(Z))U7(7(L(Z)))U... with
an application of an abstraction function «. The abstraction is applied on the
tree automata encoding the so-far computed sets of reachable configurations.

An abstraction function is defined as a mapping « : My, — Ay, where Ay, C
My and VA € My, : L(A) C L(a(A)). An abstraction ' is called a refinement
of the abstraction « if V.A € My, : £L(a/(A)) C L(«(A)). Given a term rewriting
system 7 and an abstraction «, a mapping 7, : My — My, is defined as VA €
My, : 70(A) = 7(a(A)) where 7(A) is the minimal deterministic automaton
describing the language 7(L£(.A)). An abstraction « is finitary, if the set Ay is
finite.

For a given abstraction function «, one can compute iteratively the sequence
of automata (75(Z));>0. If the abstraction « is finitary, then there exists k > 0



such that 7#+1(Z) = 7%(Z). The definition of the abstraction function a implies
that £(75(Z)) D 7*(L(T)).

If £(7%(Z)) N L£(B) = ), then Problem (2.1) has a positive answer. If the
intersection is non-empty, one must check whether a real or a spurious coun-
terexample has been encountered. The spurious counterexample may be caused
by the used abstraction (the counterexample is not reachable from the set of
initial configurations). Assume that £(7%(Z)) N £(B) # 0, which means that
there is a symbolic path:

T, 7o(T), 2

«

(@),..., 7" NT), T(T) (2.2)

such that £(72(Z)) N L(B) # 0.

Let X, = L(7(T)) N L(B). Now, for each I, 0 < I < n, X; = L(t,,(T)) N
771(X;41) is computed. Two possibilities may occur: (a) Xo # (), which means
that Problem (2.1) has a negative answer, and Xo C £(Z) is a set of dangerous
initial configurations. (b) Im,0 < m < n, X411 # 0 A X,,, = () meaning
that the abstraction function is too rough—one needs to refine it and start the
verification process again.

In [BHRV06al, two general-purpose kinds of abstractions are proposed. Both
are based on automata state equivalences. Tree automata states are split into
several equivalence classes, and all states from one class are collapsed into one
state. An abstraction becomes finitary if the number of equivalence classes
is finite. The refinement is done by refining the equivalence classes. Both of
the proposed abstractions allow for an automatic refinement to exclude the
encountered spurious counterexample.

The first proposed abstraction is an abstraction based on languages of trees of
a finite height. It defines two states equivalent if their languages up to the give
height n are equivalent. There is just a finite number of languages of height
n, therefore this abstraction is finitary. A refinement is done by an increase
of the height n. The second proposed abstraction is an abstraction based on
predicate languages. Let P = {P, P, ..., P,} be a set of predicates. Each
predicate P € P is a tree language represented by a tree automaton. Let A =
(Q, %, F,qo,0) be a tree automaton. Then, two states g1, g2 € @ are equivalent
if the languages L(Ag, ) and L(Ay,) have a nonempty intersection with exactly
the same subset of predicates from the set P provided that A, = (Q, %, F, q1,9)
and Ay, = (Q, %, F,q2,06). Since there is just a finite number of subsets of P,
the abstraction is finitary. A refinement is done by adding new predicates, i.e.
tree automata corresponding to the languages of all the states in the automaton
of Xy,41 from the analysis of spurious counterexample (X, = 0).



3 Computing Simulations over Labelled
Transition Systems

This chapter is devoted to an algorithm for computing simulations onlabelled
transition systems. As discussed in the previous chapter, simulation is a good
candidate for reducing transition systems by collapsing equivalent states and
also for approximating language/trace inclusion. It strongly preserves logics like
ACTL*, ECTL*, and LTL [DGG93, GL94, HHK95], and with respect to its re-
duction power and computation cost, it offers a desirable compromise among the
other common candidates, such as bisimulation equivalence [PT87, SJ05| and
language equivalence. Our main motivation for presenting the algorithm here is
that computing simulation over an LTS is a crucial step of almost all algorithms
presented later in this thesis, namely algorithms for computing simulations over
tree automata, alternating Biichi automata, and for checking language inclusion
and universality of finite word and tree automata.

Our LTS simulation algorithm is a relatively straightforward modification of
the algorithm by Ranzato and Tapparo from [RT07] (referred to as RT in the
following) for computing simulations over Kripke structures (a Kripke structure
associate labels with states while an LTS attaches labels to transitions). Given
a Kripke structure K with a set of states ) and a transition relation § such
that Pk, is the partition of ) according to simulation equivalence, RT runs in
time O(|Psim||d]) and space O(|Psim||Q|). This algorithm refines the algorithm
[HHK95] by Henzinger, Henzinger, and Kopke (referred to as HHK) with run-
ning time O(|Q||6|) and space O(|Q|?). The main difference between HHK and
RT is that instead of manipulating individual states, RT works on the level of
iteratively refined equivalence classes of a relation that finally converges to sim-
ulation equivalence. We have chosen RT since it is the fastest known simulation
algorithm. However, there are other algorithms that are slower but more space
efficient. The algorithm with the lowest space complexity among all known sim-
ulation algorithms is the one by Gentiliny, Piazza, and Policriti [GPP03|. It
runs in time O(| Py |?|d]) and space O(|Psim|? + |Q|log | Psim|). Then, there is
a recent algorithm [CRT09] by Crafa, Ranzato, and Tapparo, which improves
on space complexity of RT, reducing it to O(|Psim || Pret]), which is very close to
the space complexity of the algorithm by Gentiliny et al., however, the price of
this is a worse time complexity O(|Pyip ||0] + | Psim|?|0re|). Here, Py is a certain
partition of the set of states of IC such that |Psim| < |Pre| < |Q] and d,¢ is a
partition of the set of transitions where [0,¢| < |4].

In fact, any algorithm computing simulation over Kripke structures can be
used for computing simulations on labelled transition systems. Every LTS T
with n states and m transitions can be easily translated into a Kripke structure
K7 with m + n states and 2m transitions (we turn every transition ¢ o of
T into the two transitions ¢ — (q,a,r) — r where (q,a,r) is a new state with
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label a) such that the simulation on states of 7 directly gives simulation on 7.
However, observe that this increase in the number of states significantly affects
complexity of the overall procedure. In the case of RT, the time and space
complexity of computing simulation on 7 this way (running RT on K7) would
be almost the square of m, which is much worse than for Kripke structures.

We design our version of RT that runs directly on an LTS to eliminate this
increase of complexity. This basically requires augmenting most of the data
structures of RT by alphabet symbols and iterating certain subprocedures for
all incoming/outgoing symbols of a state or a set of states. We obtain an
algorithm that runs in time O(| Py, ||Q|+|Z|| Psim||0]) and space O(|X|| Psim || Q)
where ¥ is the alphabet. The modifications of RT are rather easy, nevertheless,
notice that the dominating factor |Ps;y,||d| of the time complexity formula is
not multiplied by the size of the alphabet, which requires a sensitive approach
when manipulating certain data structures. Apart from that, we provide a
more straightforward (and abstract interpretation free) proof of correctness of
the algorithm than the one in [RT07].

We also note that in [HSO9a], we present an improved version of our LTS sim-
ulation algorithm where we to a large degree eliminate the multiplicative effect
of the size of the alphabet in the complexity formulas. This algorithm can even
turn nonuniformity of input and output symbols of states into an advantage.
However, since the improvements described in [HS09a] are not essential for the
rest of this work and are rather technical, we present only the original simpler
version of the algorithm here.

3.1 Preliminaries

We first introduce some additional notation used within the chapter and the
notion of partition-relation pair.

Given an LTS T = (X, Q, §), we define the set of a-predecessors of a state r as
prea(r) ={q € Q| ¢ r}. Given X,Y C Q, we use preq(X) to denote the set
Ugex prea(q), we write ¢ & X iff g € preg(X), and Y & X iff Y Npreqa(X) # 0.

Partition-Relation Pairs. A partition-relation pair over a set X is a pair
(P, Rel) where (1) P C 2% is a partition of X (i.e., X = Ugep B, and for
all B,C € P, if B # C, then BNC = {), and (2) Rel C P x P. We say
that a partition-relation pair (P, Rel) over X induces (or defines) the relation
Rp.rety=Us.cyera B % C-

A partition-relation pair (P, Rel) over X inducing a relation R is the coarsest
iff there is no other partition-relation pair inducing R with the partition coarser
than P. This means that P = {{y € X | R(z) = R(y) AR (z) = R™'(y)} |
x € X}—two elements of X are in the same block of P iff they are related by
R with elements of X in the same way. Notice that in the case when R is a
preorder, P is the set of equivalence classes of RN R~! and Rel is a partial
order.
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3.2 The LTS Simulation Algorithm

We now describe an algorithm to compute simulation over LTS. For the rest of
this chapter, we assume that we are given an LTS 7 = (X, @, ¢) and the coarsest
partition-relation pair (P, Rel;) inducing an initial preorder I C @ x Q. Our
algorithm takes 7 and (Py, Rely) as the input and outputs the coarsest partition-
relation pair (P, Relsim) inducing the simulation preorder <’ on T included
in I. Algorithm 1 describes the algorithm in pseudocode. Before we discuss it
in detail and analyse its correctness and complexity, we give a brief outline.

The algorithm propagates the negative information about which pair of states
are not related by simulation. It iteratively refines a partition-relation pair
(P, Rel) (strengthening the induced relation) initialised as (Pr, Relr). The in-
duced relation is always superset of the target simulation, the states belonging
to a block B € P are those which are currently assumed as being possibly simu-
lated by states from | J Rel(B). When the algorithm terminates, (P, Rel) equals
<Psima Relsim>-

The pair (P, Rel) is refined by splitting the blocks of the partition in P and
pruning the relation Rel. For this purpose, the algorithm maintains a set
Removey(B) for each a € ¥ and B € P. Removey(B) contains states that
was recently identified as not having an a-transition leading into |J Rel(B).
Clearly, a state in Remove,(B) cannot simulate states that have an a-transition
going into B. Therefore, for a set Remove,(B) # () chosen at the beginning of
an iteration, the algorithm splits each block C' € P to C' N Remove,(B) and
C'\ Removey(B) (states not capable and states possibly capable of simulating
states from pre,(B)). This is done using the function Split on line 6.

After performing the Split operation, we update the relation Rel and the
Remove sets. This is carried out in two steps. First, the algorithm refines the
values of Rel and Remowve to be consistent with the new value of the partition
P refined by the Split. All Rel relations between the original “parent” blocks
of states are inherited to their “children” blocks into which the parents were
split (line 8)—the notation parentp  (C) refers to the parent block of which C
was a part before the Split. On line 10, the Remove sets are inherited from
parent blocks to their children. In the second step, the algorithm performs the
actual refinement of the relation induced by (P, Rel). On line 14, Rel is being
pruned to reflect that states that have an a-transition going into B cannot be
simulated by states which do not have an a-transition going into | J Rel(B). This
is done by removing the relation between blocks included in Remove,(B) and
blocks with states leading to B via a. Refinement of Rel is then propagated
further to Remove sets. Removing a pair of blocks (C, D) from Rel may cause
that a state that has a b-transition into D (therefore, it had a b-transition
into |J Rel(C) before removing (C, D) from Rel) now does not have any b-
transition into |J Rel(C'). Such a state is freshly identified as not being capable
of simulating states from pre,(C'). We add it into Remove,(C') on line 17, which
ensures propagation of the negative information.
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Algorithm 1: Computing simulation on an LTS
Input: An LTS 7 = (Q, %, d), the coarsest partition-relation pair
(P, Rely) on @ inducing a preorder I C @ X Q.
Data: A partition-relation pair (P, Rel) on @, and for each B € P and
a € X, a set Removey(B) C Q.
Output: The coarsest partition-relation pair (P, Relgy,) inducing <.

/* initialisation x/
(P, Rel) < (Pr, Relp);
forall a € ¥, B € P do Remove,(B) + Q \ pre,(|J Rel(B));

/* computation x/

N =

3 while Ja € 3. 3B € P. Remove,(B) # () do

4 Remove < Remove,(B); Remove,(B) « (;

5 Pprev < P; Bprey < B; Relprey < Rel;

6 P «+ Split(P, Remove);

7 forall C' € P do

8 Rel(C) < {D € P | D C | Relprev(parentp  (C))};
9 forall b € ¥ do

10 L Removey(C') <= Removey(parentp . (C))

11 | forall C € P. C % Bpye, do

12 forall D € P. D C Remove do

13 if (C,D) € Rel then

14 Rel < Rel\ {(C,D)};

15 forall b € ¥ do

16 forall r € pre,(D) such that r & pre, (| Rel(C)) do
17 L |_ Remowey(C) < Removey(C) U {r}

18 return (P, Rel);

3.2.1 Correctness of the Algorithm

The correctness of the algorithm is formalised in Theorem 1. A similar correct-
ness result is proved in [RT07] for the algorithm on Kripke structures, using
notions from the theory of abstract interpretation. We provide here an alterna-
tive, more direct proof.

We will prove termination and partial correctness, this is, that (1) the final
partition-relation pair that we denote (Pjy, Rels,) induces <; and (2) that
(Pfin, Relfy,) is also the coarsest. The two points together give (Pg,, Relg,) =
<Psima Relsim>-

Theorem 1. Algorithm 1 terminates and returns the partition-relation pair
<Psima Relsim>~

Let us first introduce some notation that will be needed within the proof of
the theorem. By an iteration, we will mean a single iteration of the while loop
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of the algorithm. For an iteration, the block B chosen on line 3 (also referred
to as Bprev) Will be denoted as the pivot of the iteration. An ancestor of a block
C' is any block D which appears during the computation and for which C C D,
and on the contrary, C' is a descendant of D. Moreover, if D is the immediate
ancestor of C' such that C' was created while splitting D, then D is the parent
of C and C is a child of D. We will denote by ¢ + r the fact that ~(q¢ = r).
Moreover, for any B,C C Q, ¢ - C and B = C are defined analogously, i.e.
provided that ¢ ¢ pre,(C) and BN pre,(C) = 0. We will use R p gy to denote
the relation induced by the partition-relation pair (P, Rel) in a particular state
of a run of the algorithm.

Lemma 3.1. On line 3 of Algorithm 1, the pair (P, Rel) is always a partition-
relation pair. The partition P can only be refined during the computation. More-
over, the relation R p pery is monotonically getting smaller during the computa-
tion.

Proof. The initial value of (P, Rel) is clearly a partition-relation pair. After
Split on line 6, (P, Rel) is temporarily not a partition-relation pair as Rel is a
relation on Pprey, not on P. However, after inheriting all Rel links of parent
blocks by their children on lines 7-10, (P, Rel) is a partition-relation pair again.
The other two claims of the lemma are also immediate as the algorithm can only
split the classes of P (but never unites them), and can only remove elements
from Rel. U

Lemma 3.2. The following claims are invariants of the while loop (of line 3)
of Algorithm 1:

VB € P. Va € 5. Remove,(B) - | ] Rel(B) (3.1)
VB € P. B € Rel(B) (3.2)

VB,C € P. (B,C) € Rel =
<Va eX.VDeP. B4 D — CC pTea(U Rel(D)) U Removea(D)) (3.3)

Proof. After the initialisation, all the invariants hold. It is immediate for In-
variants 3.1 and 3.2. It is also fairly obvious for Invariant 3.3, as after the
algorithm passes line 2, for all ¢ € Q,a € ¥, D € P, it holds that either ¢ has
an a transition leading to |J Rel(D) or ¢ is in Removey (D).

e Invariant (3.1) can never be broken. After the initialisation it holds. From
there on, it holds because only such a state r can be moved into the
Remowe,(C) which is not in prey(|J Rel(C)) (the test on line 16). More-
over, if r is once not in prey(|J Rel(C)), then it will never be there from
that moment on (by Lemma 3.1).

e Invariant (3.2) can never be broken as violating reflexivity of Rel requires
choosing a pair (C, D) on line 14 such that C' = D. The (C, D) pair can
be chosen on line 14 only if C % B and D C Remove,(B) where B is the
pivot block. Thanks to Invariant (3.1), this is not possible for C' = D.
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e Invariant (3.3) can be temporarily broken on three places of the algorithm:

lines 6-10: Let C' be a block of P on line 7 and let C' € Pyey be its
parent. Then it is easy to see that after finishing the for loop on
line 7, it holds that |J Rel(C) = |J Relprev(C’) and for all a € X,
Removey(C) = Remove,(C’). Thus, after finishing the for loop on
line 7, Invariant (3.3) can be broken only for those (B, C') pairs such
that it was broken even for their parents on line 6. Therefore, if the
invariant holds on line 3, then it also holds after returning from the
for loop on line 7.

line 4: Assume the invariant holds at the beginning of some iteration and
is then violated by emptying the Remove,(B) set on line 4. Then,
there are C, D € P which break the invariant and for which it holds
that (C, D) € Rel, C % B, D C pre,(lJ Rel(B)) U Remove,(B), and
D & preq(|J Rel(B)). The Split operation on line 6 divides D into
Dy C pre,(lJ Rel(B)) and Dy C Remove. After that, Rel and the
Remove sets are inherited on lines 7-10. Now only those (C’, D2)
pairs break the invariant where C” is a child of C' such that it leads
via a into a child of B. But exactly these pairs will be chosen on
line 13 within this iteration for pruning Rel. Hence, after finishing
the iteration, the invariant will not be violated from the reason of
emptying Removey(B).

line 16: Pruning Rel on line 14 lead to breaking the invariant as there
may states r such that r 2 D and thus before the update of Rel,
r2 J Rel(C), but after the removal of D from Rel(C), it can happen
that r |J Rel(C). However, exactly these r states are moved into

Removey(C), and so Invariant (3.3) is restored after finishing the for

loop on line 13.
O

Lemma 3.3. If all the Remove sets are empty when evaluating the condition
on line 3, then R p peyy s a simulation on T included in I.

Proof. By Lemma 3.1, it is clear that R p gy is always a subset of I. We
have to show that R p gy is also a simulation on 7. Let ¢ R(p gy 7 for some
q € B,r € C where B,C € P. From the definition of Rp gey, (B,C) € Rel.
Let ¢ = s for some s € D,D € P. Then B % D. Therefore, by Invariant
(3.3) and since all the Remove sets are empty, we get C' C pre,(|J Rel(D)).
This means that there is u € |J Rel(D) such that 7 = u. By the definition of
R p rery, we have s R(p gejy u. Therefore, Rp gy is a simulation on 7 and the
lemma holds. O

During the computation, the relation Rel is not necessarily always transi-
tive. We can prove only the following property of Rel that roughly resembles
transitivity, and which is crucial for our correctness proof.

Lemma 3.4. Under the assumption that <! C R p rey, the following invariant
always holds on line 8 of Algorithm 1: For any q,r € Q with ¢ <! r and
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B,C,D € P such that ¢ € C, r € D and (B,C) € Rel, it holds that also
(B, D) € Rel.

Proof. Let us recall the relationship between a partition-relation pair (P, Rel)
and its induced relation Rp gy which is: For any B,C € P and q € B,r € C,
it holds that ¢ R(p ey 7 iff (B,C) € Rel. Therefore, if Rippey C <!, then
q <! r implies (B, C) € Rel. We prove the lemma by induction on the number
of iterations of the while loop.

The base case: After the initialisation, the claim holds as Rel; is transitive
(the relation [ is a preorder). We prove the induction step by contradiction.

Let the lemma be broken for the first time at the beginning of the i-th iteration
of the while loop. We use Start; to denote the state of the algorithm at this
moment. At Start;, we have that <! C R(p pery and there are some B,C, D € P,
q € C,and r € D such that ¢ <! r, (B,C) € Rel, and (B,D) ¢ Rel. From
g=<'rand g! C R(p,Rely, we have (C, D) € Rel. Because the induced relation
is shrinking only (Lemma 3.1), we have that at each moment of the computation
preceding Start;, the relation <! was a subset of the relation induced by the
current partition-relation pair, the ancestor C’ of C' was above the ancestor B’
of B wrt. the current Rel, and also the ancestor of D was above the ancestor of
C'. Because of this and as the lemma, is broken for the first time at Start;, we
know that at the beginning of any iteration prior to the i-th one, the ancestor
of D was above the ancestor of B wrt. the current state of Rel.

Let us analyse the moment before Start; when (B, D) is going to be removed
from relation this is, we are within the ¢ — 1-th, just before entering the for
loop on line 11). Let (P, Rel’) be the current partition-relation pair (the current
partition P at that moment is the same as at Start;, since no splitting will
be done until Start;). The situation is such that (B,C) € Rel’, (C, D) € Rel’,
(B, D) € Rel’, and we are going to remove (B, D) from Rel’ on line 14. However,
we keep (B,C) and (C, D) in Rel’ during this iteration as these two pairs will
be in Rel at Start;. Removing (B, D) from Rel’ is caused by processing the
Removey(E) set where E € Pye, is the pivot of the ¢ — 1-th iteration. Thus, we
have that B % E, D C Removey(E) and C' N Removey(E) = ().

Let us examine the state of the algorithm at the beginning of the ¢ — 1-
th iteration, the moment referred to as Start;_1. The current partition re-
lation pair at Start; 1 is (Ppev, Relye,). It holds that <! C R(p, o, Rel!

prev> :

Let B',C",D" € Pye, be the ancestors of B,C,D (therefore B C B',C C

a

C',D C D’). We have that ¢ € C C C', C N Remove,(E) = 0, B® — E,
and (B', D') € Rely,,, and therefore, from Invariant (3.3), we have that C" C
preq (| Rel(E)) U Remove,(E). This implies that C' C pre, (| Rel(E)). Thus,
there is F' € Rely,(E) and ¢’ € F with ¢ 2 ¢/, Since ¢ <! r, there is 7 € Q
with 7 % " and ¢’ <! /. Because <! C Rp,., Reiye)s the block G € Pyrey
containing r’ must be in Rel;rev(F). Finally, because r € D C Removey(E),
from Invariant (3.1), we get (E,G) € Relye, .-

To conclude the proof, observe that the states ¢/, 7/, the blocks E, F, G € Pyrey,
and the partition-relation pair (Pprey, Rel! .,) form a situation that violates the

prev
lemma at Start; 1 (to recap, we have that <! C Rip ke v 4 € For' €

prev; prev
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G,q¢ <'r' and (E,F) € Rel.,.,, but (E,G) & Rel,,). This is a contradiction

prev» prev
since Start; was supposed to be the first such a moment. O

Lemma 3.5. At any point of a run of Algorithm 1, < C R (p Rely-

Proof. The lemma apparently holds after initialisation. We will prove that it
always holds by contradiction—we will show that violating this lemma in a run
of Algorithm 1 has to be preceded by breaking Lemma 3.4.

Let us choose the moment just before the lemma is violated for the first time.
This is, some (B, C) is going to be removed from Rel on line 14 such that there
are ¢ € B and r € C with ¢ <! . This update of Rel is caused by processing
the set Remove,(D) where D € Py, is the pivot of the current iteration of
the while loop, B = D, B N Remove = 0 (Remowve is the recorder value of
Remove, (D) which was emptied on line 4 in this iteration), and C' C Remove.
Let B, C’ € Pyrey be the ancestors of B, C. From Invariant (3.2), we have that
(B',B') € Relprey-

Let us examine the state at the beginning of this iteration. We have that B’ %
D because of B % D, which by Invariant (3.3) gives B’ C pre,(|J Relprev(D)) U
Remove, (D). Since q € B, ¢ ¢ Removey(D), and therefore there are E €
Relprev(D) and ¢ € E with ¢ % ¢'. From ¢ <! r and from the fact that <! is a
subset of the current induced relation (the lemma is going to be broken for the
first time, it holds so far), we have that there are F' € Relpey(E) and 7’ € F
with 7 % /. However, as r € Remove,(D) and because of Invariant (3.1), we
have (D, F) ¢ Relpe,. Hence the states ¢/,7" and the blocks D, E, F violates
Lemma 3.4 at the beginning of this iteration. O

Lemma 3.6. At any point of a run of Algorithm 1, any two states q,r € @ with
q 2! r are in the same block of P.

Proof. By contradiction. We will show that breaking this lemma in a run of
Algorithm 1 has to be preceded by breaking Lemma 3.4.

After the initialisation the lemma holds. Let us choose the first moment
when it is broken. At that moment, states ¢, with ¢ =/ r are separated from
each other by the Split operation during processing of some pivot block B.
Without loss of generality, we assume that at the beginning of this iteration
r € Removey(B) and q € Removey(B).

Consider now the moment within some of the preceding iterations, just before
entering the for loop on line 11 during which r will be added into Removeq(B’)
where B’ is an ancestor of B. Let the current partition-relation pair be (P, Rel),
and let ¢, € C,C € P. There is some block D € Rel(B') with r = D such that
(B', D) will be removed from Rel and r will be added to Remove,(B’) because
of that within this iteration.

Since sine r = D, there is ' € D with r = . From r <! ¢, there is
¢ € Q with ¢ % ¢’ and ' <! ¢/, and since <! C (P, Rel) (Lemma 3.5), there is
E € Rel(D) with ¢’ € E. Moreover, from Lemma 3.4 (whose claim holds also
just before entering the for loop on line 11 because lines 4-10 do not influence
the induced relation), E € Rel(B’).
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We have shown that when entering the for loop on line 11, ¢ % |J Rel(B").
Recall that ¢ will not be added into Remove,(B’) during this iteration. There-
fore, it has to hold that ¢ < |J Rel(B’) also after finishing the for loop on
line 11 (otherwise ¢ would be added into Removeq(B’)). This is, after finish-
ing the for loop on line 11, there is still some E’ € Rel(B’) and ¢” € E’ with
g % ¢". Because ¢ <! r, there is some " € Q with ¢’ <! 7" and r % .
Since <! C (P, Rel), there is some F € Rel(E') with v’ € F. But at the end
of the for loop on line 11 (i.e. the beginning of the next iteration of the while
loop), (B',F) € Rel as r was be added into Remove,(B’) within the for loop
(Invariant (3.1)). To conclude the proof, observe now that at the beginning of
the next iteration of the while loop, states ¢”,r” and blocks B’, E', F form a
situation contradicting Lemma 3.4. O

Lemma 3.7. Let B, B’ be two blocks appearing during a run of Algorithm 1
such that B’ is an ancestor of B. Let Remove,(B) and Remove,(B') be two
Remove sets at the (different) moments when B, resp. B', is chosen as the
pivot. Then, Remove,(B) N Removey(B') = ().

Proof. If astate ¢ is in Remove,(B) after the initialisation, then ¢ + | J Rel;(B).
If ¢ is added into Remove,(B) later on line 17, then it means that the test on
line 13 passed, so ¢ — |J Rel(B) was true at that moment!. Subsequently,
after the update of Rel on line 14, ¢ + |J Rel(B). From Lemma 3.1, if once
q ~ |JRel(B), then from that moment on it can never happen that q -
J Rel(B') where B’ is a descendant of B. It means that ¢ will never be added
to any Removeq(B') where B’ is a descendant of B. To summarise: when
a pivot B with nonempty Remowve,(B) is chosen to be processed on line 3,
Remove,(B) is always emptied and none of the states from Remove,(B) can
be added to any Remove,(B') where B’ is a descendant of B again. Thus
whenever later some descendant B’ of B with Remove,(B') is being processed,
Removeq(B) N Removey(B') = 0. O

We are now ready to prove Theorem 1.

Proof of Theorem 1. Due to Lemma 3.7, for any block B which can arise during
the computation, B can be chosen as a pivot only finitely many times as for any
a € X, all the Remove,(B) sets encountered on line 3 are disjoint. There are
finitely many possible blocks and hence the algorithm terminates.

Lemma 3.3 implies that the relation R, Ppn,Relg,) induced by the final partition-
relation pair (Pfy,, Relg,) is a simulation included in /. Lemma 3.5 implies that
this simulation is the maximal one. Finally, Lemma 3.6 implies that the resulting
partition Pg, equals Q/=! and thus (Pfin, Relfin) = (Pgim, Relgim). O

3.2.2 Implementation and Complexity of the Algorithm

The complexity of the algorithm is equal to that of the original algorithm from
[RT07], up to the new factor ¥ that is not present in [RT07] (or, equivalently,
|X] = 1 in [RT07]). The complexity analysis is based on the similar reasoning

!Note that at that time, B is referred to via C in the algorithm.
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as the one in [RT07]. Time complexity strongly depends on use of certain data
structures and on some particular implementation techniques that we describe
below along the analysis within the proof of Theorem 2.

Theorem 2. Algorithm 1 runs in time O(|X||Psim||@] + |Psim||0]) and space
O(1Z| Psim Q1)

Proof.

Basic Data Structures. We use resizable arrays (and matrices) which double
(or quadruple) their size whenever needed. The insertion operation over these
structures takes amortised constant (linear) time.

The input LTS is represented as a list of records about its states—we call this
representation as the state-list representation of the LTS. The record about each
state ¢ € @ contains a list of nonempty pre,(q) sets, each of them encoded as a
list of its members (we use a list rather than an array having an entry for each
a € Y in order to avoid a need to iterate over alphabet symbols for which there
is no transition). The partition P is encoded as a doubly-linked list (DLL) of
blocks. Each block is represented as a DLL of (pointers to) states of the block.
The relation Rel is encoded as a Boolean matrix P x P.

Each block B contains for each a € ¥ a list of (pointers on) states from
Remove,(B). Each time when any set Remove,(B) becomes nonempty, block
B is moved to the beginning of the list of blocks. Choosing the pivot block on
line 3 then means just scanning the head of the list of blocks.

For each a € X, a state ¢ € @ and a block B € P, we maintain a counter
County(q, B). Its value within a run of the algorithm records cardinality of
the set {r € Q | r € JRel,(B) A ¢ r}. This counters allow us to test
whether 7 is in pre, (| Rel(C)) on line 16 in constant time—we just ask whether
County(r,C') = 0. The counters are stored as an P x @ integer matrix per each
a € 3. The way of updating the counters during a computation will be described
later.

We attach to each ¢ € @) an array indexed by symbols of 3. A cell of the
array indexed by a € ¥ contains a reference the pre,(q) list. Using the arrays,
we can access the pre,(q) list for given a and ¢ in constant time (it would be
O(|X]) time without the arrays).

Space Complexity. The arrays of pointers on the pre, lists take O(|Z||Q])
space, the matrix encoding of Rel takes O(|Pym|?) space, and the Remove sets
as well as the counters take O(|X|| P ||Q|) space. Thus the overall asymptotic
space complexity is O(|Z||Pgim||Q))-

Time Complexity. We first introduce some auxiliary notation. For B C @Q
and a € X, we denote by in,(B) the set {(r,a,q) € § | ¢ € B}, and by in(B)
the set J ey, 4(B). Note that |pre,(B)| < |ing(B)|. We also denote by J, the
set of all a-edges of 6. We use Anc(B) to denote the set of all ancestors of B,
including also B itself.

We first analyse the initialisation phase of the algorithm preceding the main
while loop. The initialisation of the arrays of pointers to the pre, lists takes

19



O(|2]]Q|) time. The Count counters are initialised by (1) setting all Count to
0, and then (2) for all B € P, for all ¢ € B, for all r € pre,(q), and for all C
such that (C, B) € Rel, incrementing County(r,C). This takes O(|Pr||d|) time.
The Remowve sets are initialised by iterating through all ¢ € ¥,q € Q,B € P
and checking whether Count,(q, B) = 0. If so, then we add (append) ¢ to
Removey(B). This takes O(|X||Pr||Q|) time. Overall, the initialisation can be
done in time O(|P;||0]| + |Z||P;]|Q))-

The time complexity analysis of the while loop builds on Lemma 3.7 and
Lemma 3.1 proved within the proof of correctness of Algorithm 1. The two
lemmas allow us to make the following observations:

Observation 1. For any a € ¥ and B € Py, the sum of the cardinalities of
the Remove,(B') sets for all B’ € Anc(B) that are chosen as the pivot is
below |Q)].

Observation 2. If a pair (C, D) once appears on line 15, then no pair (C’, D')
such that C € Anc(C’) and D € Anc(D’) can appear on line 15 again.

The Split(P, Remove) operation can be implemented in the following way:
Iterate through all ¢ € Remove. If ¢ € B € P, add ¢ into a block Bgp4
(if Bepilg does not exist yet, create it and add it into P) and remove ¢ from
B. If B becomes empty, discard it. This can be done in time O(|Remove|).
From Observation 1, we have that for a fixed block B € Py, and a € X, the
sum of cardinalities of all Remove,(B’) sets with B’ € Anc(B) according to
which Split is being done is below |@|. Therefore, summed over all symbols of
> and all blocks of P, the overall time complexity of all Split operations is
O | Pam1Q)).

The time complexity analysis of lines 7-10 is based on the fact that it can
happen at most |P;| — |Ps;ny| times that any block B is split. Moreover, the
presented code can be optimised by not having the lines 7-10 as a separate loop
(this was chosen just for clarity of the presentation), but the inheritance of Rel,
Remove, and the counters can be done within the Split function, and only for
those blocks that were really split (not for all the blocks every time). Whenever
a new blocks is generated by Split, we have to do the following: (1) For each
a € X, copy the Remove, set of the parent block and attach the copy to the
child block. As for all a € X, B € P, Remove,(B) C @, and a new block
will be generated at most |P;| — |Pgin| times, the overall time of this copying
is in O(|Z||Psim||Q|).- (2) Add a row and a column to the Rel matrix and
copy the entries from those of the parent. This operation takes O(|Ps;p,|) time
for one added block as the size of the rows and columns of the Rel-matrix is
bounded by |Pg;y,|. Thus. for all newly generated blocks, we achieve the overall
time complexity of O(|Pyim|?). (3) Add and copy the Count counters. For one
newly generated block, this operation takes an O(|X||Q]) time and thus for all
generated blocks, it gives time O(|X|| Psim||Q)])-

Lines 13 and 14 are O(1)-time (Rel is a Boolean matrix). Before we enter the
for loop on line 11 with B being the pivot, we compute a list RemoveList,(B) =
{D € P | D C Remove}. This is an O(|Remove|) operation and by al-
most the same argument as in the case of the overall time complexity of Split,
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we get also exactly the same overall time complexity for computing all the
RemoveListy,(B) lists. On line 11, for each ¢ € B, we find the pre,(q) list
(in O(1) time using the array of pointers to the pre,(q) lists), and we it-
erate through all elements of pre,(q) and choose every C,C % {q}. This
takes O(|ing(B)|) time. For any B € Pgy,, let RL,(B) be the set of blocks
Uprc anc(i) RemoveListo(B'). Then the overall time complexity of lines 11-14
is at most O(Y_,cx D pep,.,. [RLa(B)|[in4(B)]). From the initial observations,
we can see that |RLy(B)| < |Psim|, and thus we have the overall time complex-
ity of lines 11-14 in O(}_ ,¢x ZBePsm |Psim||ina(B)]) = O aes [Psim|ldal) =
O(|Pyim61):

Lines 15-17 are implemented as follows. For a single pair (C, D) appearing
on line 14, we iterate through all ¢ € D and through all nonempty lists pre,(q),
and for each r € pre,(q), we decrement Countq(r,C). If Count,(r,C) = 0 after
the decrement, we append r to the Remove,(C) list. It follows from the initial
observations that if any pair of blocks (C, D) once appears on line 14, then
there will never appear any pair of their descendants on line 14. Thus, if we fix
a block C € Py, and a state ¢, then it can happen at most once that a pair
(C', D) such that ¢ € D and C’" € Anc(C) is being removed from Rel. on line
14. Thus, the contribution of the pair C, ¢ to the time complexity of lines 15-17
is O _,ex [Prea(q)]). Therefore, the contribution of the C,r pairs for all r € Q
is O(]d]), and hence the overall time complexity of lines 15-17 is O(|Pyim||9])-

From the above analysis, it follows that the overall time complexity of the
algorithm is O(| Psim||0] + ||| Psim ||Q])- O

3.3 Conclusions and Future Work

We have presented a modification of the currently fastest algorithm RT [RT07]
for computing simulations over Kripke structures, which was at the time of
its publication the fastest algorithm for computing simulations over LTS (the
currently fastest algorithm is its optimised version from [HS09a]). The algorithm
has the time complexity O(|X||Psim||@Q] + |Psim||d]) and the space complexity
O(|Z|| Psim||Q|), which is slightly worse than O(| Pgir,||9]) time and O(| Psim || Q)
space of RT. However, this complexity increase can be to a large degree lowered
as we show in [HS09a]. We have also presented a proof of correctness that is
more straightforward than the one presented in [RT07].

We plan to continue the research by the authors of [RT07] and [CRT09]. We
have noticed that the algorithm from [CRT09] that refines RT goes in some
sense against the spirit of the original algorithm from [HHKO95|, which is the
main reason of its worse time complexity. We believe that this problem can
be circumvented and that it is possible to design an algorithm that matches
both the time complexity of the fastest simulation algorithm [RT07] and space
complexity of the most space efficient algorithm [CRT09].
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4 Simulation-based Reduction of Tree
Automata

Tree automata (TA) appear in many areas of computer science such as ver-
ification, structured documents processing, natural language processing, and
decision procedures of various logics, where they are used for modelling and
reasoning about structured objects such as configurations of complex systems,
algebraic term representations of data, computations, syntactical trees, XML
documents, etc.—see, e.g., [CDGT07].

In many applications of tree automata, it is highly desirable to deal with
automata which are as small as possible in order to save memory as well as
time. In theory, one can always determinise and minimise any given (bottom-up)
tree automaton. However, the determinisation step may lead to an exponential
blow-up in the size of the TA and even if the minimal deterministic TA is small,
it might not be feasible to compute it in practice because of the expensive
determinisation step. Moreover, the minimal deterministic TA may still be
bigger than the original non-deterministic TA.

To avoid determinisation, a TA can be reduced (while preserving its language)
by identifying and collapsing states that are equal wrt. a suitable equivalence
relation. In the case of finite word automata, this method works well with re-
lations that respect language inclusion on states of an automaton (relations <
such that ¢ < r implies that the language accepted at the state ¢ is a subset of
the language accepted at the state r). The well-known candidates are language
inclusion itself, simulation, and bisimulation. Here, a natural trade-off between
the computational cost and reduction power arises. Computing language inclu-
sion is PSPACE-complete for FA and even EXPTIME-complete for TA, which
is too costly. Bisimulation can be computed very efficiently in time O(mlog(n))
(see [Hop7l, PT87, Val09]) where n is the number of states and m the num-
ber of transition of the automaton. However, bisimulation relations are usually
quite sparse and thus only of a limited reduction capability. Simulation seems
to be a good compromise between the above two. It can be efficiently checked
in polynomial time O(mn) (see [GPP03, HHK95, RT07, CRT09]) and often ap-
proximates language inclusion relatively well which gives it a good reduction
power.

In this chapter, we start by considering a basic notion of tree simulation,
called downward simulation [ALARO5|, corresponding to a natural extension of
the usual notion of simulation defined on word automata to automata on ordered
trees. This relation can be shown to be compatible with the tree language
equivalence.

The second notion of simulation that we consider, called upward simulation
[ALdRO5], corresponds intuitively to a generalisation of the notion of back-
ward simulation to tree automata. The definition of an upward simulation is
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parametrised by a downward simulation: Roughly speaking, two states ¢ and
q' are upward similar if whenever one of them, say ¢, considered within some
vector (q1,-..,qn) at position 4, has an upward transition to some state s, then
q appears at position i of some vector (qf,...,q,) that has also an upward
transition to a state s’ which is upward similar to s, and moreover, for each
position j # i, g; is downward similar to g;.

Upward simulation is not compatible with the tree language equivalence. It
is rather compatible with the so-called context language equivalence, where a
context of a state ¢ is a tree with a hole on the leaf level such that if we plug a
tree in the tree language of ¢ into this hole, we obtain a tree recognised by the
automaton. However, we show an interesting fact that when we restrict our-
selves to upward relations compatible with the set of final states of automata,
the downward and upward simulation equivalences can be combined in such a
way that they give rise to a new equivalence relation, the so called mediated
equivalence, which is compatible with the tree language equivalence. This com-
bination is not trivial. It is based on the idea that two states ¢; and g may
have different tree languages and different context languages, but for every ¢ in
the tree language of one of them, say ¢i1, and every C in the context language
of the other, here ¢y, the tree C[t] (where ¢ is plugged into C') is recognised by
the automaton. Mediated equivalence is coarser than (or, in the worst case, as
coarse as) the downward simulation equivalence and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain three candidates for simulation-based equivalences for
use in automata reduction: mediated equivalence, downward simulation, and up-
ward simulation (Upward simulation may be used alone only when parametrised
by the identity. If the inducing relation is nontrivial, it may be used only to form
a mediated equivalence.). Then, we consider the issue of designing efficient algo-
rithms for computing these relations. A deep examination of downward and up-
ward simulation equivalences shows that they can be computed using essentially
the same algorithmic pattern. Actually, we prove that, surprisingly, computing
downward and upward tree simulations can be reduced in each case to computing
simulations on standard labelled transition systems. These reductions provide
a simple and elegant way of solving in a uniform way the problem of comput-
ing tree simulations by reduction to computing simulations in the word case.
The best known algorithm for solving the latter problem, published recently in
[RT07], considers simulation relations defined on Kripke structures. The use of
this algorithm requires its adaptation to labelled transition systems, which we
provided in Chapter 3. The combination of our reductions with the labelled
transition systems-based simulation algorithm leads to efficient algorithms for
our equivalence relations on tree automata, whose precise complexities are also
analysed in this chapter.

We continue the study by looking also at tree automata bisimulations that
are in fact special cases of tree automata simulations. Tree automata bisimu-
lations were studied in [HMMO07a, AHKO7]|. They are computationally cheaper
than simulations, but they are usually quite sparse and thus have only a lim-
ited reduction power. However, it is possible to construct a mediated equiva-
lence by combining any downward relation (simulation, bisimulation, or iden-
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tity) with any upward relation (simulation, bisimulation, identity). This results
in a scale of mediated equivalences suitable for reducing automata that offers a
fine choice between reduction power and computation cost. Moreover, the tree
automata bisimulation can be computed using the same LTS translations as we
have defined for tree automata simulations. The only difference is that after
translating a tree automaton into an LTS, we run on it an LTS bisimulation
algorithm instead of a simulation one. The algorithms for computing TA bisim-
ulation obtained this way are competitive with the specialised ones presented
at [HMMO7a).

We have implemented our algorithms and performed experiments on au-
tomata computed in the context of regular tree model checking (corresponding to
representations of the set of reachable configurations of parametrised systems).
The experiments show that, indeed, the (bi-)simulation reduction framework
presented in this chapter really offers a fine choice of relations suitable for re-
duction tree automata with different reduction powers and computation costs.
Especially the coarsest mediated equivalence that arise by combining down-
ward simulation with upward simulation gives much better reduction than the
bisimulation-based methods from [AHK07, HMMO07a].

Related work. As far as we know, our work [ABH"08¢] is the first work which
addresses the issue of computing simulation relations for tree automata. The
downward and upward simulation relations considered in this work have been
introduced first in [ALdRO6| where they have been used for proving soundness of
some acceleration techniques used in the context of regular tree model checking.
However, the problem of computing these relations has not been addressed in
that paper. A form of combining downward and upward relations has also
been defined in [ALdRO06]. However, the combinations considered in that paper
require some restrictions which are computationally difficult to check and that
are not considered in this work. Bisimulations on tree automata have been
considered in [AHK07, HMMO07a|. The notion of a backward bisimulation used
in [HMMO07a] corresponds to what can be called a downward bisimulation in
our terminology, while backward simulation from [HMMO07a| corresponds to the
most restrictive variant of our upward simulation when the inducing relation is
the identity. The specialised algorithms for computing the bisimulations from
[HMMO7a| have comparable complexities to our ones.

Outline. In Section 4.1, we give definitions of tree automata downward and
upward simulations and state their basic properties. We then discuss tree au-
tomata bisimulations viewing them as certain special cases as the tree automata
simulations. In Section 4.2, we introduce the principle of combining downward
and upward simulations to relations suitable for quotienting tree automata.
Then, in Section 4.3, we discuss properties of variants of the combined rela-
tions. Section 4.4 presents algorithms for computing all the proposed relations,
Section 4.6 describes our experimental results, and Section 4.6 finally concludes
the chapter.
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4.1 Tree Automata Simulations and Bisimulations

We now present definitions of downward simulation and upward simulation
parametrised or induced by a downward simulation. Subsequently, we present
downward and induced upward bisimulation that are important special cases of
the simulations. We fix a tree automaton A = (3, Q, A, F') for the rest of this
section.

4.1.1 Downward and Upward Simulation

Downward Simulation. A downward simulation D on A is a binary relation
on @ such that if ¢Dr and (qi,...,q,) — q, then (r1,...,r,) % r with ¢;Dr;
foreachi:1 <3 <n.

Lemma 4.1. The set of all downward simulations on A is closed under reflexive
and transitive closure and under union.

Proof. Union: Given two downward simulations D1 and Dy, we want to prove
that D = D1 U D» is also a downward simulation. Let gDr for some ¢,r € @,
then either ¢D1r or ¢Dor. Assume without loss of generality that ¢Dir. Then,
from the definition of downward simulations, whenever (q1,...,qg,) 2 ¢, then
there is a rule (r1,...,ry,) 2 rwith ¢;Dyriforalli: 1 <4 <n. As D; C D gives
q; Dr; for all the positions ¢, D fulfils the definition of a downward simulation.

Reflexive closure: It can be seen from the definition of downward simulations
that the identity is a downward simulation. Thus, the union of the identity and
any downward simulation is a downward simulation.

Transitive closure: Let D be a downward simulation and let D7 be its tran-

sitive closure. Let ¢D7r and (qi,...,q}) 2 ¢. From ¢gDpr, we have that there
are states ¢ = ¢!,...,¢™ = r such that ¢'D¢?D ... Dg™. Therefore, from the
definition of downward simulations, there are also rules (¢,...,¢) = ¢',...,

@, ...,q" % ¢™ with ¢'D ... Dg™, and @G D...Dg™ foralli: 1 <i<n.
Thus, as Dy is the transitive closure of D, we obtain ¢} Dpg™ for alli : 1 < i < n.
We have proved that Dy fulfils the definition of downward simulations. O

Upward Simulation. Given a preorder D on ), an upward simulation U in-
duced by D is a binary relation on ) such that if ¢qUr, then

L if (g, ..., qn) = ¢ with ¢ = ¢, 1 < i < n, then (r,...,7,) = / with
ri =1, ¢Ur’, and ¢;Dr; for each j : 1 < j # 1 <n;

2.gqeF = rekF.

Notice that for any two preorders D; and Dy with Di C Dy, an upward
simulation induced by D is also an upward simulation induced by Ds.

Lemma 4.2. Given a preorder D on Q, the set of all upward simulations induced
by D is closed under reflexive and transitive closure and under union.
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Proof. Union: Given two upward simulations U; and Us induced by D, we
want to prove that U = Uy U Uy is also an upward simulation induced by D.
Let qUr for some g, € @, then either qUyir or qUsr. Assume without loss of
generality that qUyr. Then, from the definition of upward simulations, whenever
(q1,---,qn) = ¢’ with ¢; = ¢, then there is a rule (r1,...,7,) — 7/ with ¢'Uyr,
¢ €F — 1" €F,and gjDrjforall j:1<j#i<n.AsU; CU gives ¢'Ur’,
U fulfils the definition of upward simulations induced by D.

Reflexive closure: It can be seen from the definition that the identity is an up-
ward simulation induced by D for any reflexive downward simulation D. There-
fore, from the closure under union, the union of the identity and any upward
simulation induced by D is an upward simulation induced by D.

Transitive closure: Let U be an upward simulation induced by D and let Up

be its transitive closure. Let ¢'Urqg™ and (qf,...,ql) = r! with ¢* = ¢}. From
q'Urq™, we have that there are states ¢',...,¢™ such that ¢'U¢?U...Uq™.
Therefore, there are also rules (qf,...,q¢t) % vl ... (¢ ..., ¢") = r™ with
qi1 = qil,...,qlm =g, r'u..Urm r ¢ F = ... = ¢ € F, and

qjl»D ... Dqj* for all j: 1 < j #4 < n. Thus, from the definition of Ur, we have
r*Upr™, from the transitivity of = , we have r! € F = ™ € F, and from
the transitivity of D, we have qjl.Dqu for all j: 1 < j # 4 <mn. We have thus
proved that Up fulfils the definition of an upward simulation induced by D. [

Notice that Lemma 4.1 implies that there is a unique maximal downward
simulation D on A which is a preorder. We call it the downward simulation
preorder on A and we call the equivalence D N D~ the downward simulation
equivalence on A. Analogically, Lemma 4.2 implies that for a preorder D on
Q, there is a unique maximal upward simulation U induced by D which is a
preorder. We call it the upward simulation preorder on A induced by D and we
call the equivalence U N U~ the upward simulation equivalence on A induced
by D.

4.1.2 Downward and Upward Bisimulation

We first recall the well-known notion of bisimulation on labelled transition sys-
tems. Given an LTS T = (X,Q, 0), a relation R C @ x Q is a bisimulation on
T if for any two states ¢,r € Q, ¢Rr implies that ¢ = ¢ for some state ¢’ if
and only if » = 7 for some 7’ with ¢’Rr’. In other words, a bisimulation on T
is a simulation on 7 such that its inverse is also a simulation on 7. Tree au-
tomata bisimulations are defined in the same spirit, based on the tree automata
simulations.

Downward Bisimulation. A downward bisimulation D on A is a binary rela-
tion on Q such that if ¢Dr, then (qu,...,¢,) — ¢ if and only if (rq,...,7,) = r
with ¢; Dr; for each ¢ : 1 < i < n. In other words, a downward bisimulation on
A is any downward simulation on A such that its inverse is also a downward
simulation on A.

Lemma 4.3. The set of all downward bisimulations on A is closed under sym-
melric, reflexive, and transitive closure and under union.
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Proof. The closure properties easily follow from Lemma 4.1 and the fact that D
is a downward bisimulation on A if and only if both D and D! are a downward
simulations on A. Union of two bisimulations D; and D5 is a downward bisim-
ulation, because from Lemma 4.1, D1 U D> is a downward simulation as well as
D'uD; ! and because, obviously, (DyUDy)~! = Dy *UD; . Reflexive closure
D U id of a downward bisimulation D is a downward bisimulation because the
identity id is apparently a downward bisimulation and downward bisimulations
are closed under union. Transitive closure Dy of D is a downward bisimula-
tion since by Lemma 4.1, both Dy and the transitive closure (D~!)p of D!
are downward simulations and D;l = (D71)7 (transitive closure of the inverse
equals inverse of the transitive closure). Finally, the symmetric closure DUD™!
is a downward bisimulation since both D and D~! are downward bisimulations
and downward bisimulations are closed under union. ]

Upward Bisimulation. Let D be a preorder on (). An upward bisimulation U
on A induced by D is a binary relation on ) such that if gUr, then

a /

L (g1, qn) = ¢ with ¢; = ¢,1 < i < n, if and only if (r1,...,7,) = 7
with r; = r, ¢Ur’, and ¢;D N D~ r; for each j : 1 < j #1i < n;

2.qeF <= rekF.

In other words, upward bisimulation on A induced by D is a relation U such
that both U and U~! are upward simulations on A induced by D N D!,

We note that the notion of an upward bisimulation induced by the identity
relation corresponds to the notion of a forward bisimulation from [HMMO07a].

Lemma 4.4. Given a preorder D on Q, the set of all upward bisimulations
induced by D is closed under symmetric, reflexive, and transitive closure and
under union.

Proof. The lemma follows from Lemma 4.2 and from the fact that U is an
upward bisimulation on A induced by D if and only if both U and U~! are
upward simulations on A induced by D N D~!. The reasoning is the same as in
the proof of Lemma 4.3. O

Lemma 4.3 implies that there is a unique maximal downward bisimulation on
A which is an equivalence. We call it the downward bisimulation equivalence on
A. Analogically, Lemma 4.4 implies that for a given preorder D on (@, there is
a unique maximal upward bisimulation induced by D which is an equivalence.
We call it the upward bisimulation equivalence on A induced by D.

The fact the tree automata bisimulations are tree automata simulations of
some type such that their inverses are also simulations of the type allows us
to simplify some further reasoning by handling bisimulations as special cases of
simulations.
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4.2 Combined Relations for Quotienting

In this section, we will work towards quotienting tree automata using the tree
automata simulations. Quotienting a tree automaton according to an equiva-
lence relations means to collapse equivalent states, as formally defined below.

Quotient Tree Automata. Consider a tree automaton A = (X,Q, A, F) and
an equivalence relation = on ). We denote [g] the equivalence class of = contain-
ing q. The quotient of A according to = is the TA A/== (%, Q/=,A/=,{][q] |
g € F}) where A/= = {(ai],- -, lgal)s 0, a]) | (a1, a0),0,0) € A}, Tn-
tuitively, we collapse all states which belong to the same block into one state
of the quotient automaton, there is a transition in the quotient automaton iff
there is a transition between states in the corresponding blocks in the original
TA, and a block is accepting iff it contains a state which is accepting.

Obviously, L(A) C L(A/=) and also for any two equivalences =; and =5 on
Q such that = C =9, L(.A/El) - L(.A/Eg)

Quotienting tree automata w.r.t. any downward simulation equivalence pre-
serves the language, but, surprisingly, this is not the case for upward simulations
(except the cases when the inducing preorder is the identity relation, as we show
later). However, an upward simulation U can be still used for quotienting in an
indirect manner. We can combine it with its inducing downward simulation D
into the so called mediated preorder, which is certain fragment of the relation
composition D o U1 that include the inducing downward simulation D and a
part of the inverted upward simulation U (plus some additional elements). The
mediated preorder then yields an equivalence which is suitable for quotienting
tree automata while preserving the language.

4.2.1 Runs and Simulations

Before we present the mediated preorders, we will state the basic connections
between runs of tree automata and the tree automata simulations, which are in
our setting the most essential properties of the simulations. For this, we will
make use of the notion of context. For the rest of this section, let us fix a tree
automaton A = (X,Q,A, F).

Contexts. Intuitively, a context is a tree with “holes” instead of leaves. For-
mally, we consider a special symbol [1 ¢ ¥ with rank 0. A context over X is a
tree ¢ over ¥ U {0} such that for all leaves p € ¢, we have ¢(p) = 0. We extend
the notion of runs to contexts. Let ¢ be a context with leaves vy, ..., v, (in the
usual lexicographic order). A run 7 of A on ¢ from (qi,...,q,) is defined in a
similar manner to a run on a tree except that for each leaf v;, we have 7(v;) = ¢;,
1 < i < n. In other words, each leaf v; labelled with [J is annotated by ¢;. We
use ¢[q1,. .., qn] = ¢ to denote that 7 is a run of A on ¢ from (g1, ..., gn) such
that 7(€) = ¢q. The notation c|qy,...,q,] = ¢ is explained in a similar manner
to runs on trees.
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The following lemma intuitively says that backward simulation implies “down-
ward context language” inclusion. This is, the set of contexts accepted at a sim-
ulation bigger state is a superset of the set of contexts accepted at a downward
simulation smaller state. Moreover, runs ending at the simulation bigger state
in a sense downward simulate (on the level of leaves) corresponding runs ending
at the smaller state.

Lemma 4.5. Let D be a downward simulation on A. If ¢|q1, ..., q,) = q and
qDr, then there are states r1,...,ry such that for each i with 1 <i <n, ¢;Dr;,
and c[r,...,rp] = .

Proof. By induction on the height of ¢. The base case when c is just a single
hole is trivial. For the induction step we consider that ¢ contains more than one
node. We know that c[qi, ..., ¢,] = ¢ for some 7. Let ¢(¢) = a. Furthermore,
we know that there are ¢},...,q,, such that (¢},...,q,) = ¢, and 7(i) = ¢,
for each ¢ with 1 < 4 < m. In other words, the run labels the root with ¢,
and labels the children of the root with ¢i,...,q),, respectively. This means
that for all i : 1 <@ < m, ¢qn,_,+1s---qn,;] UL ¢, where ¢; is the ith subtree
of ¢, m; is the restriction of 7 to ¢;, ng = 0, and n,, = n. Since gDr, we
know that there are r},..., 7, such that (r},...,7,) % r and ¢/Dr} for each
1,1 < i < m. By the induction hypothesis, it follows that for each 7,1 < i < m,
there are states 7y, ,41,...,7y, such that for each j,n,_1 +1 < j < ny, ¢;Dr;
and ¢;[rn, ,41,-..,"n;] = 1. Hence c[ry,... 1] = 7. O

The following lemma is an upward simulation counterpart of Lemma 4.5.
Intuitively, it says that upward simulation induced by downward simulations
imply “upward context language” inclusion. This is, that the set of contexts
accepted from an upward simulation bigger state is a superset of the set of
contexts accepted from an upward simulation smaller state. Moreover, runs
from the simulation bigger state in a sense simulate (downward on the level of
leaves and upward on the level of roots) corresponding runs from the simulation
smaller state.

Lemma 4.6. Let U be an upward simulation induced by a downward simulation

D. If c]q1,-..,q,] = q and q;Ur; for some 1 < i < n, then there are states
Tlyee s Tie1, Tigly ..., Tn, T such that ¢;Drj for each j:1 < j#1i<mn, qUr, and
criy ..., rn]) = 1.

Proof. We use induction on the structure of ¢. The base case is trivial since the
context ¢ consists of a single hole. For the induction step, we assume that ¢
is not only a single hole. To simplify the notation, we assume (without loss of
generality) that i = 1. Suppose that c[q1, ..., ¢,] == ¢ for some run 7 and that
q1Ur1. Let p be the parent of the leaf p; labelled by ¢; and let pq,...,ps, be its
children. Let ¢, be the subtree of c rooted at p. Notice that for all 7,2 < i < m,

CilGn; 1415 - -+ qn;] = q¢;, where ¢; is the subtree of ¢ rooted at p;, ny = 1
and n,, = k for some k < n. Let ¢ = 7(v) and let ¢ be the context ¢ with
the subtrees rooted at vy, ..., v, deleted. In other words, dom(c’) = dom(c) \

Ui {pp | P € N*}, (V) = ¢(v)) if v/ € dom(¢), and ¢(v) = 0. Observe
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Figure 4.1: Basic Intuition Behind Mediated Preorder

that [¢, Grg1,-- - qn] = ¢ and that (g1, 45, ...,qd,) — ¢ for some a. By the
definition of the upward simulation and the premise ¢1Ur1, it follows that there
are rh,...,rl 1’ such that ¢yDrh, ..., q.,Drl ' Ur, and (r,7,...,70) % .
Since ¢ is smaller than ¢, by the induction hypothesis, there are rg 1,...,7r,,r
such that qxi1 D71, ..., qnDry and 1, rgiq,..., 1] = 7. For each i,2 <
i < m, we have ¢/Dr], and thus by Lemma 4.5, there are states rp, ,4+1,...,7n,
such that for each j,n;—1+1 < j < ny, ¢;Dr} and ¢;frn, 41, .., 7n,] == 7i.
The claim follows immediately. O

4.2.2 Mediated Preorder

Collapsing states of an automaton wrt. some equivalence allows a run that
arrives to some state to jump to another equivalent state and continue from
there. The equivalence must have the property that the language is not increased
even when the jumps are allowed. This is what we aim at when introducing
the mediated equivalence =, the largest symmetric fragment of a so called
mediated preorder M. The mediated preorder M will in particular be defined
as a suitable transitive fragment of D o U~! in the following, where D is a
downward simulation and U an upward simulation induced by D.

The intuition behind allowing a run to jump from a state g to a state r such
that gD oU~1r is an existence of the so called mediator, i.e., a state s such that
qDsU~'r (cf. Figure 4.1(a)). By Lemma 4.5, any context c¢; accepted at ¢ can
be accepted also at s, and by Lemma 4.6, any context co accepted from r can be
accepted from s too (with s appearing at the same position of ¢ as r). Hence,
intuitively, the newly allowed run based on the jump from r to ¢ does not add
anything to the language because it can anyway be realised through s without
jumps.

The relation D o U™ is not a preorder, therefore, to build an equivalence for
quotienting, we first take some of its transitive fragments. This is natural as if
the automaton can safely jump from ¢; to g9 and from ¢o to g3, it should be
able to safely jump from ¢; to g3 too.
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However, not all of the transitive fragments of D o U~! can be used for quo-
tienting due to some phenomena that arise when we allow runs to jump re-
peatedly (merging two states is equivalent to allowing arbitrary many jumps
between them). A sufficient property that guarantees that a preorder can be
used for quotienting is downward extensibility—a preorder M C Do U~ is
downward extensible if for any three states, it holds that whenever ¢1 M g2 Dgqs,
then g1 Mqs. The intuitive meaning of this requirement is the following. On
Figure 4.1(b), we denote 7 a run on the joined contexts ¢; and ¢y that jumps
at some node v from a state g to a state r, and we denote 7’ a run on the same
joined context that labels v by s. It may be the case that such a jump from ¢
to r is in 7 also done at some node w that appears (i) bellow v or (ii) in the
context of v (this my happen if r appears below r or in the context of itself,
cf. Figure 4.1(b)). In case (i), the mediated preorder assures that the run 7’
labels w by some state y that downward simulates r (by Lemma 4.5). Similarly,
in the case (ii), the run 7’ labels w by some state y that downward simulates
r (by Lemma 4.6). However, when allowing jumps, then in the case (i), s is
not guaranteed to downward simulate ¢ and there may be contexts accepted at
g but not accepted at s; and in the case (ii), s is not guaranteed to upward
simulate r and there might be contexts accepted from r but not accepted from
s. In order to circumvent this problem, we require that if the computation is
allowed to jump from ¢ to r, than for any state that can appear in the role of
y in our example, this is, for any state y with rDy, the computation is allowed
to jump from y to g too. In other words, we require that ¢Mr Dy implies ¢My,
which is our downward extensibility condition.

Combination Operator. We now introduce a relation combination operator &,
which we will use to combine downward and inverted upward simulations into
mediated preorders. For the sake of generality, we will define it on arbitrary
preorders as follows.

Given two preorders D and U over a set @, for z,y € Q, (D & U)y iff
(i) z(DoU)y and (ii) Vz € Q : yDz = x(DoU)z.

The following lemma states properties of the combination operator that show
that when using it to combine a downward simulation and an inverted upward
simulation, it has all the properties (including downward extensibility) that
allow us to use the result as a mediate preorder.

Lemma 4.7. For any preorders D,U over a set Q, D ® U 1is a preorder and it
s a unique mazximal preorder satisfying D C D@ U C Do U.

Proof. Let M = D@ U and C = D o U. To make the proof compact, we first
prove the following auxiliary claims. For any z,y,z € Q:

1. zCy = zDwUy for some w € Q. This follows directly from the
definition of C.

2. £DyCz = xCz. From yCz and (1), we have yDwUz for some w € Q.
From xDyDw, we have xDw. From xDwUz and from the definition of
C, we have zC'z.
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3. tMyDz = xCz. This follows directly from the definition of M.

4. xCyUz = x2Cz. From zCy and (1), we have zDwUy for some w € Q.
From wUyU z, we have wUz. From zDwUz and (2), we have zCz.

5. eMyCz = xCz. From yCz and (1), we have yDwUz for some w €
Q. From xMyDw and (3), we have xCw, which together with (1) gives
xDvUw for some v € Q. From vUwUz, we have vUz and so vCz (as
U C C), which together with zDv and (2) gives zC'z.

To prove the claim of the lemma, we will first argue that D C M C C. The
second inclusion trivially follows from the definition of @. For the first inclusion,
we will show that for any x,y € @ with Dy, My holds. As D C C, we have
that xCy, which means that Condition (i) from the definition of & is fulfilled. To
satisfy Condition (ii), we have to show that for arbitrary z € @ such yDz, zCz
holds. From transitivity of D and from zDyDz, we have Dz, which together
with D C C implies that xCz. Thus, since even Condition (ii) is fulfilled, we
have My, and the first inclusion is proved.

We will now prove that M is a preorder. We first prove by contradiction
that M is transitive. Suppose that there exist x,y,z € @ such that xMyM z,
but not M z. Recall that M C C. From (1), we have x DwUyDvU z for some
v,w € Q. From xMyDv and (3), we have zCv. From xCvUz and (4), we have
xC'z. From the definition of @&, xCz together with not M z imply that there is
some g € @ such that zCzDgq, but not xCq. From yMzDgq and (3), we get yCq.
Then xMyCq and (5) gives xCq, which is a contradiction. We have proved that
the relation M is transitive. Showing that M is also reflexive is immediate as
we already know that D C M and that D is reflexive. Thus, we have proved
that M is a preorder.

Finally, we will show that M is a unique maximal preorder between D and C,
in other words, that any preorder R with D C R C C'is a subset of M. For the
purpose of contradiction assume there are z,y € @@ with xRy and —xMy. Since
-z My, there is some z with yDz and —zCz (Condition (ii) from the definition
of @ is not satisfied). The inclusions D C R C C together with yD and —zC'z
give yRz and —xRz. We have x RyRz and —x Rz, which contradicts transitivity
of R. O

4.2.3 Quotienting with Mediated Equivalence

Consider a tree automaton A4 = (X,Q, A, F), a reflexive and transitive down-
ward simulation D on A, and a reflexive and transitive upward simulation U
induced by D. We call the relation M = D @ U~! a mediated preorder induced
by D and U and == M N M~ a mediated equivalence induced by D and U.

We will show that quotienting A with respect to =j; preserves the language.
For a state r € @, a set B C @ of states, and a relation R C @ x (), we write
BRr to denote that there is ¢ € B with ¢qRr.

Lemma 4.8. For By,...,B,, B € Q/= and a context ¢, if ¢[By, ..., B, =
B, then there exist states ri,...,rp, 7 € Q with B1Dry,...,B,Dr,, BUr, and
c[ri, ... ,rn] = r. Moreover, if BN F # (), thenr € F.
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Proof. The claim is shown by induction on the structure of ¢. In the base case
when ¢ consists of a single hole. We choose any ¢ € B N F provided that
BNF # (, and any ¢ € B otherwise. The claim then holds obviously by
reflexivity of D and U.

For the induction step, we assume that c is not only a single hole. Suppose
that ¢[Bi,..., By = B for some run 7. Let p by some non-leaf node with
children vg,...,v;,1 < k <1 < n that are all leaves (there has to be such a
node since the tree dom(c) is finite). Note that By = m(vg),..., B; = m(v;). Let
B’ = 7(v) and let ¢ be the context ¢ with the leaves vy, ..., v; deleted. In other
words, dom(c’) = dom(c) \ {vg,...,v}, d(v') = c¢(v') provided v' € dom(c)\
{v,vk,..., v}, and ¢/(v) = O. Note that /[Bi,...,Bk_1,B',Bi11,..., By =
B. Since ¢ is smaller than ¢, we can apply the induction hypothesis and con-
clude that there are states v, ¢’, and ¢} for each i € {1,...,k—1,1+1,...,n}
with B;Dg;, B'Dv, and BUq' such that ¢[q,...,q,_1,v,q 15 4] = ¢
and, moreover, if BN F # (), then ¢ € F. It follows that there are u €
B, q € B and for each i € {1,...,k — 1,1+ 1,...,n}, ¢; € B;, such that
uDv, qUq', and ¢;Dq}. By the definition of A/=)s, there are states ¢ €
B,....qr € B, and z € B’ such that (gx,...,q) — z for some a. Since
D C M and uDv, we get uMwv. Since u,z € B, it follows that u =), z
and hence zMwu. From transitivity of M, we get zMwv. From the definition
of M, there is a mediator w such that zDw and vUw. By the definition
of downward simulation and premises zDw and (gg,...,q) 2 2, there are
states ry,...,7 with quDr,...,qDr, and (rg,...,r) < w. By Lemma 4.6
and premises vUw and ¢'[q], ..., q}_1,V, 1 ;- Q] = ¢, there are states r
and r; for each i € {1,...,k— 1,1+ 1,...,n} such that ¢/Dr;, ¢Ur, and and
dlr, .. re_1,w,r41, ... Ty] = r. By transitivity of D and U, we get ¢;Dr;
and qUr. Finally, we know that if BN F # (), then ¢’ € F which together with
q'Ur gives r € F. The claim thus holds. O

Lemma 4.9. For a tree t, if t = B, then t = w for some w with BUw.
Moreover, if BN F # (), then also w € F.

Proof. Suppose that t == B for some 7. Let v1,...,v, be the leafs of ¢, and
let w(v;) = B; for each ¢ : 1 < i < n. Let ¢ be the context that we get
from t by deleting the leaves v1,...,v,. Observe that ¢[Bi,...,B,] = B.
It follows from Lemma 4.8 that there exist states r1,...,r,,7 € @ and g1 €
Bi,...,qn € By,q € B such that ¢1Drq,...,q,Drp,qUr, c[r1,...,m,] = 7,
and if BN F # (), then r € F. By the definition of A/=), it follows that there
are ¢j € By,...,q, € By, and ay,...,a, such that 2% ¢} for each i such that
1 < i < n. We show by induction on ¢ that for each ¢ : 1 < i < n, there are states
ul,. .. ,yﬁ, U§+1’,‘ .. ,'vfl, w' with qiDui', o g, Dul, i DV, . . . g DV, rU W
and cluy,...,uj, vi,q,...,v,] = w'. The base case where i = 0 is triv-
ial. We consider the induction step. Since D C M and g¢j+1Dv;y1, we get
¢it1Mviy1. Since git1,q, 41 € Bit1, we have that ¢ 41 =M ¢i+1 and hence
¢; 1 Mgiy1. By transitivity of M, it follows that ¢;, | Mwv; 1. By the definition of
M, there is z;11 such that qg_HDzHl and v;11Uz4+1. By Lemma 4.6, there are
21y vy Ziy Zid2y - - o5 20y 2 With wy D21, .. uiDzi, v 9Dzita, ..., v;Dzn, w'Uz,
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and ¢|z1, ..., 2] = z. By transitivity of D and the premises q;» Du;'» and u;'»Dzj,
we have q;.Dzj for each j : 1 < j < 4. By transitivity of D and the premises
quin» and v;'»Dzj, we have ¢;Dz; for each j : 7+ 2 < j < n. Define u§+1 = zj
for j:1<j<i+1, v§+1:zj for j:i4+2<j<n,and wt! = 2.

The induction proof above implies that c[u?, ..., un] = w". From the defini-
tion of the language inclusion preorder and the premises — ¢; and ¢/ Du?, it fol-
lows that 2 ul' for each ¢ : 1 <4 < n. It follows that ¢ = c[ay, ..., an] = w".
By the definition of U and the fact that r € F'if BN F # (), it follows that for
alli:1 <4< n, w' € F provided that BN F # (). Thus, in the claim of the
lemma, it suffices to take w = w". O

Theorem 3. L(A/=)) = L(A).

Proof. The inclusion L(A/=p;) O L(A) is trivial. Let ¢t € L(A/=u), ie.,
t = B for some block B where BN F # (). Lemma 4.9 implies that t = w
such that w € F. O

Note that the theorem also covers the case of reducing automata using down-
ward simulations (and bisimulations) alone. Indeed, given any downward sim-
ulation D, the identity is always an upward simulation induced by D. Then,
the combined preorder D & id ! equals D, which means that we can reduce the
automaton using =p. In particular, this covers as special cases the proofs of
correctness of reducing automata using downward bisimulations and simulation
equivalences stated in [ABH™08c].

Corollary 1. L(A/=p) = L(A) for the downward simulation equivalence =p
on A.

4.3 Variants of the Combined Relation

Theorem 3 and Lemmas 4.3 and 4.4 allow us to consider a spectrum of relations
suitable for reducing tree automata. We now examine properties of the relations
from this spectrum that arise when we consider the identity, the downward
bisimulation equivalence, and the downward simulation preorder as the inducing
relation D for both the upward bisimulation equivalence and upward simulation
preorder.

In this section we use a special notation to systematically distinguish various
types of mediated preorders. The notation consists of two parts: a relation
symbol and an additional symbol above the relation symbol. The relation sym-
bol denotes the type of the inducing preorder. Namely, = denotes the identity,
~ denotes the downward bisimulation equivalence, and < the downward sim-
ulation preorder. The additional symbol then denotes the type of the upward
relation. We use e for the upward bisimulation equivalence and o for the upward
simulation preorder. No additional symbol corresponds to the maximum equiva-
lence embedded in the downward relation itself—the downward (bi-)simulations
can be viewed as mediated equivalences where the role of the upward relation

is played by the identity. For example, = denotes the mediated equivalence
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(DeUYHN(DaU 1)~ where D is the downward simulation preorder and U
is the upward simulation preorder induced by D.

Ordering the Mediated Preorders wrt. their Coarseness. From the definition
of a combined preorder, it clearly follows that, for a fixed inducing relation D,
if we are choosing the type of the upward relations U from the strongest one to
the coarsest one, i.e., starting from the identity and going through the upward
bisimulation induced by D to the upward simulation induced by D, we obtain
coarser and coarser combined preorders D @ U 1.

On the other hand, if the inducing preorder D is growing, the situation is
different. From the definition of the upward simulation and bisimulation, we can
see that the upward simulation preorder /bisimulation equivalence U induced by
D and thus also the relation D o U~! are growing too. But, when computing
D @ U~! by pruning D o U™!, the larger relation D means that more pairs are
to be pruned since they are violating Condition (ii) from the definition of &.
In general, having two downward simulations D7 and Do with D1 C Dy, we
are guaranteed that the upward simulation preorder/bisimulation equivalence
Uy induced by Dj is included in the upward simulation preorder /bisimulation
equivalence U induced by D,. Therefore, we know that D o U LC Dyo Uy L
but the combined preorders Di & U I and Dy & Uy I can be in any relation
w.r.t. set inclusion or incomparable (although, in our experiments, the former
one usually ¢s included in the latter one).

Based on these observations, we obtain the partial ordering of all the consid-
ered types of combined equivalences according to inclusion which is depicted in
Figure 4.2. For a tree automaton A, we denote by =(A) the combined equiv-
alence of type = on A. In the figure, the line from =; up to =5 means that
for any automaton A, =1(A) C =5(A). It is not hard to find an automaton
A showing that all these relationships are strict, i.e., such that for each of the
edges in the figure, =1(A) C =2(A). We construct such an automaton in Ex-
ample 1. Most of our tree automata examples in this section use just leaf and
unary rules, therefore they may be drawn in the same way as is usual for word
automata.

o
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Figure 4.2: Coarseness of various types of combined equivalences

Example 1. Let Q = {q,r,s,t,u,v,w,x,y,2z} be a set of states and let X
be a ranked alphabet such that 39 = {l} and 31 = {a,b,c}. The automaton
A = (2,Q,A1,{z}) proves strictness of the relations in Figure 4.2. For each
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Figure 4.3: Transition relations of automata proving the non-inclusion relationships
from Figure 4.2, and of an automaton proving that it is not safe to use mediated
equivalences that arise from preorders included in the language inclusion preorder that
are not downward simulations.

two types of relations from Figure 4.2 such that =9 is above =1, =1(A) C =2(A)
holds. The transition relation Ay is depicted in Figure 4.3(a). In the table be-
low, there are listed the appropriate mediated equivalences for all the combina-
tions of the considered types of inducing and induced relations. For each type
of combination, we list nontrivial equivalence classes of the resulting mediated
equivalence:

H{tuy {gr st 2 {tu,v) {g,r s} {w, 2}
: {t7 u}?{”’? S} %: {t7 u7 U}?{”’? S}
: {tvu} =: {t,u,’U}

It is now easy to check that for the automaton A, all the inclusions from
Figure 4.2 are strict. l

o
[ ]

:{q,r s}
]

r,s}

[ 12 2o

To complete the picture, we need to show that the types of combined relations
that are not connected in Figure 4.2 are really incomparable. In Example 2, we
construct automata A1, As such that for each pair =1, =2 of types of mediated
equivalences that are not connected in Figure 4.2, neither =;(A4;) C =2(A;) nor
=1(A;) D =2(A;) holds for some i € {1,2}.

Example 2. Let Q = {q,r,s,t,u,v} be a set of states and let > be a ranked
alphabet such that Yo = {l} and X1 = {a,b,c}. All the incomparability re-
sults show up taking automata Ay = (Q \ {v}, %, A0\ {v % ¢}, {u}) and Ay =
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(2,Q, Ag, {u}) where the transition relation As is depicted in Figure 4.3(b).
One can easily check that =(Ay) and =(Ay) define just one nontrivial equiva-
lence class {r,s} and thus they are incomparable with ~(Ay), <(Ay), <(A;) that
define only one nontrivial equivalence class {q,r}. In the case of the automaton
Ao, the added transition v % q distinguishes the downward simulation from the
downward bisimulation. Analogically as for Ay, we have that &(.Ag) and &(.Ag)
define just one nontrivial equivalence class {r, s} and thus they are incomparable
with =X (As) and X(Az) that define only one nontrivial equivalence class {q,r}.
This gives all the incomparability relationships. O

According to our experiments presented in Section 6.5, the reduction capabil-
ities are rising when we move in Figure 4.2 not only in the bottom-up direction,
but also in the left-right direction. As a trade-off, the computational complexity
of constructing the relations is rising in the same way from the bottom to the
top and from the left to the right.

Impossibility of Relaxing the Need of Downward Simulations. It is easy to
see that when not considering combined relations (and when not thinking of the
computational complexity), one can replace the use of downward simulations in
reducing the size of tree automata by a use of any preorder which is included in
the so called language inclusion preorder LPS ((¢,7) € LPS <= L(q) C L(r)).
A natural question comes forward: Is it also possible to induce (and combine
by @) an upward simulation with any preorder included in LPS? Here, we
give a negative answer. Not all preorders included in LPS can be used within
the operator @ for reducing automata. We prove this claim by the following
counterexample.

Example 3. Consider an automaton A = (X,Q,As U {L> x|z € Q}F)
where Q = {q,r, s, t,u}, Xo = {l}, X1 = {a}, As is depicted in Figure 4.3(c),
and F' = Q. Let us choose the relation R = id U {(q,r), (r,t),(q,t)}, which is
apparently contained in LP<, as the inducing preorder. Notice that since we deal
here only with unary and leaf symbols, upward simulation and bisimulation do
not depend on the inducing relation. We can choose the relation U = idU{(q,t)}
as an reflexive and transitive upward simulation induced by R. Then, we obtain
RoU™'=RuUUU{(r,q)}. The pair (r,q) is present in R o U™! because of
rRt and qUt. Let M = R® U~ be the mediated preorder. R o U~ itself is
already a preorder, and therefore M = RoU ™. We have obtained an equivalence
class {q,r} of MNM~'. This means that the quotient automaton A/M N M~1
contains the rule {q,r} = {q,7}. This definitely changes the language, since
A does not contain loops (accepts only finitely many trees), but the language of
A/M N M~ is infinite.

Observe that if we take a downward simulation as the inducing preorder, such
a situation does not arise. The problem above is caused by the presence of
(r,q) in Ro U™, which is enabled by rRt. If R was a downward simulation
containing (r,t), then R would have to contain even (q,s) from the definition
of a downward simulation. So, we would get r(R@ U~1)qRs which according to
Condition (i) of the definition of @ enforces r(RoU~1)s. However, r(RoU™!)s
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does not hold for any pair of an inducing downward simulation R and an induced
upward simulation U (not even when one considers the maximal ones), and so
the pair (r,q) is not present in any mediated preorder, and we are never allowed
to collapse q and r. O

Mediated Bisimulation contra Forward Followed by Backward. In [HMMO07a),
the following straightforward approach to combining downward and upward
bisimulations is presented: Compute a quotient automaton w.r.t. downward
bisimulation equivalence and reduce it again using upward bisimulation equiva-
lence induced by identity, or alternatively, proceed the other way around (com-
pute quotient w.r.t. upward bisimulation equivalence induced by identity and
then compute quotient of the result w.r.t. downward bisimulation equivalence).
One could ask whether this approach gives different results from our mediated
bisimulation ~ (this question was in fact asked during the presentation of our
work [ABH'09] at CTAA’08). We give an answer in Example 4 where we show
that all the three techniques are in general incomparable.

Example 4. For each of the three reduction techniques, we now present an au-
tomaton such that reducing it by the particular reduction technique gives better
result (i.e., the resulting automaton has less states) than reducing it by the other
two techniques. The automata were automatically generated using a random au-
tomata generator thus they are perhaps not the smallest possible ones. We have
checked wvalidity these of counterexamples using our implementation the three
methods. The automaton Ay = (Q1,%1,A1,Q1) can be reduced most when us-
ing composed bisimulation, in the case of the automaton Ay = (Q2, X2, Ag, Q2),
using forward bisimulation reduction followed by forward (downward) bisimu-
lation reduction is the best, and the automaton As = (Qs, X3, As,Q3) can be
reduced most using forward (downward) bisimulation reduction followed by for-
ward bisimulation reduction. The sets X1, X9, X3, Q1, Q2, Q3, A1, Ao, Ag look as
follows:

Ql = {qraq07q17q27q37 Q4,TI,T0,T1,T2,T3,T4}, E1 = {$,(I, b7 ¢, d}

Ag:

G5 an 0Sa, @da, S, S, r S,
qz < q4, qo i> q0, 42 i> qo, T4 % Tz, T0 i> o, T0 i> T2,
GBS aDSan aSa S, ra S, S,
G 2@ S S q, DT, T3S, TS,
q0 5 qo, g2 5 q1, 43 i> q2, To 5 To, T1 5 T2, T2 i> T3,
W0 a @S aSa, S, oS, S,
q0 5 q1, 42 i> 43, 43 i> qo, T1 = To, T3 i> T2, To i> T3,
q0 i> q2, g2 i> q2, qa i> q4, T2 i> To, T2 i> T2, T4 i> T4

QQ = Q?) = {q07q17q2}7 E2 = E3 = {(I, ba ¢, d}
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Ali Ag:
a c d a c d
—7q2, 92—~ q1, 92 —q1, | —7q1, @1 —qo, q1 — q2,
d d
iﬂh, CJ1£>Q2, q2 — q2, iﬂlz, CJoiﬂlo, q1 — q1,
b d b d
Sq, @, o= | =@, @, -,
b d b d
— q2, (.71£>QO7 g — q1 — 42, qo — qo-
C
q0 — 1,

O

On the other hand, in all our test cases, backward bisimulation followed by
forward bisimulation behaved in a very similar way to composed bisimulation—a
more thorough experimental comparison is to be done in the future.

We also note that applying the forward and backward bisimulations in suc-
cession has the advantage that the second relation is computed on a smaller
input automaton, and that the algorithm for computing upward bisimulation
induced by identity from [HMMO07a] is asymptotically slightly faster than our al-
gorithm for computing general upward bisimulation (induced by any preorder),
presented in Section 4.4.6. On the other hand, our algorithm is more generic
and can be very easily implemented within the general framework for computing
tree automata simulations and bisimulations presented in Section 4.4.

Upward Simulation Equivalences Cannot be Used For Quotienting. As we
have mentioned at the beginning of Section 4.2, induced upward simulation
equivalences cannot be always safely used for quotienting. This shows Example 5
where quotienting w.r.t. upward simulation equivalence induced by downward
bisimulation equivalence extends the language.

Example 5. Let A = (X,Q,A, F) be an automaton where Q = {q,r,s,t, [},
Y ={a,b,c}, F={f} and A is given as follows:

= 4q, (s,q) = f,

S s, (gr) =

LN r, (rt) > f,

Lt
We have that q and s are downward bisimilar and r and t are downward bisim-
ilar. Therefore, q and r are upward simulation equivalent w.r.t. the upward
simulation equivalence =y induced by the downward bisimulation equivalence.
Observe that if we merge states q and r, the quotient automaton A/=y will ac-
cept the tree c(b,a), however, L(A) = {c(a,a), c(a,b),c(b,b)} does not contain
c(b,a). O

A note on word automata. We note that all the above results (except Exam-
ple 5) carry over to word automata. The inclusion properties from Figure 4.2
hold for word automata too since they can be seen as a special case of tree
automata. Moreover, our automata examples proving strictness of the relation-
ships and incomparability relationships are built using just leaf and unary rules,
and so they are valid for word automata as well.

39



4.4 Computing the Proposed Relations

In this section, we give algorithms for computing the tree automata simulation
preorders and bisimulation equivalences. The algorithms are based on trans-
lations of tree automata simulation and bisimulation problems into problems
of computing maximal simulation or bisimulation on labelled transition sys-
tems. This is, we translate tree automata into labelled transition systems and
(i) run an LTS simulation algorithm (we use Algorithm 1) in the case of tree
automata simulations; and (ii) run an LTS bisimulation algorithm in the case
of tree automata bisimulations (we use the algorithm from [Val09] by Valmari).
The simulation or bisimulation on the original tree automaton is then obtained
directly in the form of simulation or bisimulation on states of the LTS, respec-
tively. Finally, we give a simple procedure for computing mediated preorder
induced by a given downward simulation and upward simulation.

4.4.1 Computing Downward Simulation

As mentioned above, our approach to computing downward simulation consists
of two parts: (1) we translate the maximal downward simulation problem over
tree automata into a corresponding maximal simulation problem over LTS, and
(2) we compute the simulation preorder on the obtained LTS using Algorithm 1.
Below, we describe how the translation is carried out.

We will work with the set Lhs 4 of left-hand sides of rules of A, i.e., the set of
tuples of the form (g1, ..., ¢n) where (qi,...,qn) — ¢ for some a and ¢. We will
drop the reference to A if no confusion may arise. The idea of the translation
comes from the following alternative definition of downward simulation.

Extended Downward Simulation. An Ezxtended downward simulation is a re-
lation D C Q x Q U Lhs x Lhs such that

1. for any q,r € Q, if ¢Dr and (q1,...,qn) — ¢, then (ry,...,7,) = 7 with

(qla .. '7qn)D(r17 ce ,’f’n),

2. for any (qi,...,qn),(r1,...,7) € Lhs, if (q1,...,q.)D(r1,...,7,), then
q;Dr; forall 1 <i < n.

The following proposition is an obvious consequence of this definition.

Proposition 4.1. A relation D C Q x Q is a downward simulation on A if and
only if there is an extended downward simulation on A such that its restriction
to Q is D.

The translation is based on the observation that when viewing ) and Lhs as

two kinds of nodes of an LTS such that for every transition (qi,...,q,) — g,
there is an a-labelled transition from ¢ to (q1,...,q,) and for everyi: 1 <i < n,
there is an i-labelled transition from (qi, ..., ¢n) to ¢;, then the definition above

closely resembles the definition of normal LTS simulation. Formally, we translate
a tree automaton A to the LTS A®* = (X°,Q*, A®) where:
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Figure 4.4: The part of A® created for a rule (q1,...,¢,) — q € A.

e The set (Q°® contains a state ¢® for each state ¢ € @, and it also contains
a state (q1,...,qn)® for each (q1,...,qn) € Lhs.

e The set 3* contains each symbol a € ¥ and each index i € {1,2,...,n}
where n is the maximal rank of any symbol in 3.

e For each transition rule (qi,...,q,) — ¢ of A, the set A® contains both

the transition ¢* % (q1,...,¢n)® and transitions (qi,...,qn)* — ¢ for
eachi:1<i<n.

e The sets Q°, ¥°, and A® do not contain any other elements.

The translation is illustrated on Figure 4.4. The following theorem shows cor-
rectness of the translation.

Theorem 4. A relation D is an extended downward simulation on A if and
only if the relation D® = {(z®,y®) | xDy} is a simulation on A°.

Proof. (if) Assume that D® is a simulation on A®. We show that D is an
extended downward simulation on A. Suppose that there are ¢,r € Q with ¢Dr

and (q1,...,qn) — q. Since ¢Dr we know that ¢*D*r*; and since (q1, ..., qn) —
q we know by definition of A® that ¢®* = (¢1,...,¢n)®. Since D* is a simulation,
there are 71,...,7, € Q with 7®* = (rq,...,7,)* and (q1,...,qn)*D*(r1, ..., m0)°

and thus (q1,...,¢,)D(r1,...,7m0).
Suppose now that there are left-hand sides (q1, ..., qn), (r1,...,r) € Lhs with

(q1y---,Gn)D(r1,...,7ry). By the definition of D®, (q1,...,qn)*D*(r1,...,7r,)°.

By definition of A® we know that (g1, ...,q,)* — ¢¢ for each i : 1 < i < n, and
that (q1,...,qn)® does not have any other outgoing edges. We observe that r; is

the only state such that (rq,...,r,)® N r?, and hence it must be the case that
g’ D*r?. This means that qiDr; for each i: 1 <1i < n.

(only if ) Suppose that D is an extended downward simulation on A. We
prove that D® is a simulation on A. Suppose that for some ¢q,7 € Q, ¢*D*r®
and ¢* % (q1,...,qn)°. Since ¢*D*r®, we know that ¢Dr, and since ¢*
(q1,---,qn)®, we know by definition of A® that (qi,...,q,) — ¢. Since D is an
extended downward simulation, there are rq,...,r, € Q with (r1,...,r,) = r
and (q1,...,q,)D(r1,...,7,). By definitions of D® and A®, we obtain that
(q1,---,q2)*D*(r1,...,rp)* and 7* 5 (r,..., 7).

Finally, suppose that (q1,...,¢,)*D®(r1,...,7r,)® for some left-hand sides

(q1,---,qn), (r1,...,m) € Lhs. By definition of A®, we have (q1,...,q,)* — q
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and (r1,...,m)° KN r? for each i : 1 < ¢ < n and we know that there
are no other outgoing arcs of (r1,...,r,)* and (q1,...,qn)®. Therefore, since
(q1,-..,qn)*D*(r1,...,1my)%, it follows that ¢F D®r;e and hence ¢; Dr; by the def-

inition of D*®. Therefore, (q1,...,q,)D(r1,...,7,) by the definition of D. O

Due to Theorem 4, the maximal extended downward simulation <p on A
corresponds to the simulation preorder on A® which can be computed by con-
structing the LTS A® and running Algorithm 1 on it with the initial partition-
relation pair being simply (P°®, Rel®) = ({Q°}, {(Q®,Q*)}) (this is, we initially
consider all states of the LTS A® equal, and hence they form a single class of P®,
which is related to itself in Rel®). By Proposition 4.1, the downward simulation
preorder on A is then obtained simply by restricting <p to Q.

4.4.2 Complexity of Computing Downward Simulation

The complexity of computing the downward simulation preorder on A naturally
consists of the price of compiling the tree automaton A into its corresponding
LTS A®, the price of building the initial partition-relation pair (P*®, Rel®), and
the price of running Algorithm 1 on A® and (P*, Rel®).

We assume the automata not to have unreachable states and to have at most
one (final) state that is not used in the left-hand side of any transition rule—
general automata can be easily pre-processed to satisfy this requirement. Under
this assumption, we can use the inequalities |Q|—1 < |Lhs| < |A| when deriving
complexity of our algorithms. Further, we expect the input automaton A to be
encoded as a list of states ¢ € @ and a list of the left-hand sides | = (¢1,...,¢,) €
Lhs. Each left-hand side [ is encoded by an array of (pointers to) the states
q1,---,qn, plus a list containing a pointer to the so-called a-list for each a € X
such that there is an « transition from [ in A. Each a-list is then a list of
(pointers to) all the states ¢ € @ such that [ 2 ¢g. We call this representation
the lhs-list automata encoding. Then, the complexity of preparing the input
for computing the downward simulation on A via Algorithm 1 is given by the
following lemma.

Lemma 4.10. The LTS A® and the partition-relation pair (P®, Rel®) can be
deriwed in time and space O(7|Q| + |A] + (7 + |X])| Lhs]).

Proof. The state-list encoding of the LTS A°® that Algorithm 1 takes as its input
(c.f. Chapter 3) can be obtained from the lhs-list encoding of A in the following
steps:

1. For all ¢ € @, add ¢® into the state-list encoding of A® (and also create
an additional pointer from ¢ to ¢®, which we will need later on).
2. For each I = (q1,...,qn) € Lhs,
a) add [® into the state-list encoding of A°®,

b) for each a € ¥ and each right-hand side r in the a-list of , add r*
into prey (1), i.e. add the r* % I* edges, and
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c) for each 1 <i < n, add [*® into pre;(¢?), i.e. add the [* AN g edges
(we use the pointers from ¢ to ¢* introduced within step 1.).

In order to have constant time access to a particular pre,-lists for some a € X°
in the state-list encoding of A® being built by the above construction, we may
temporarily replace the state-lists by arrays. This means that for each ¢® € Q°®
where g € (), we first construct a temporary array indexed by i € X*,1 <1¢ < 7,
of pointers to the pre;(¢®) lists (initialised with null values), and, for each
[* € Q® where [ € Lhs, a similar temporary array of pointers to the pre,(1)-lists
for a € ¥. The time and space needed for creating these temporary arrays is
O(#(Q] + ||| Lhs]).

After creating the temporary arrays, we traverse the lhs-list representation
of A in time O(|Q| + |A| + #|Lhs|) while building the state-list representation
(with arrays used instead of state-lists) of A® with each step done in constant
time (due to the use of the temporary arrays and the auxiliary pointers from ¢
to ¢*). In the complexity, |@Q| corresponds to traversing the list of states, |A|
to traversing the transitions of A while creating the a-labelled transitions of
A® for a € X, and 7|Lhs| to traversing the left-hand sides while creating the
i-labelled transitions of A® for 1 <1 < #. The remaining step is then to convert
the auxiliary arrays into state-lists which can be done with the same complexity
as initialising the arrays (we do not traverse the contents of the state-lists,
we just leave out the state lists that are empty). Thus, using suitable linked
data structures, the creation of the state-list encoding of A® is done in time
O(FIQ] + A + (7 + [SI) Lhs|).

The space complexity corresponds to the size of the temporary arrays and the
size of the resulting LTS A°®, which is O(|Q| + |A| + 7| Lhs|). Indeed, we need
space O(|Q]) to represent states, O(|A|) to represent the a-labelled transitions
of A® for symbols a € X, and O(7|Lhs|) to represent the i-labelled transitions
of A® for symbols 1 < ¢ < #. In total, we obtain the same formula as in the case
of the time complexity, i.e. O(?|Q|+ |A| + (|X] + |7])|Lhs|).

Finally, the creation of (P®, Rel®) is trivial, and its complexity is apparently
covered by the complexity of creating A°. O

In order to instantiate the complexity of running Algorithm 1 for A°, let us de-
note =p the maximal equivalence included in the maximal extended downward
simulation on A.

Lemma 4.11. Algorithm 1 computes the simulation preorder on A°® for the
initial partition-relation pair (P®, Rel®) in the time O((|X|+7)|Lhs||Lhs/=p|+
|A||Lhs/=p|) and the space O((|Z| + #)|Lhs||Lhs/=pl).

Proof. We get the complexity of running Algorithm 1 on A® and (P°*, Rel®) by
instantiating the parameters of A® in the formula of Theorem 2. More precisely,
from the construction of A®, it follows that (1) |X¢| = |X| 4+ 7, (2) |Q®] =
|Q| + |Lhs|, and (3) |A®| < |A|+#|Lhs|. Then the running time of Algorithm 1
with input A® and (P°®, Rel®) is:

O((1%] + M) (1Q| + | Lhs|)(|Q/=p| + |Lhs/=Dp])
+ ((|Al+ 7Lhs)(|Q/=pl| + [Lhs/=D])))-
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Recall that |Q] — 1 < |Lhs| < |A| since we assume the automata not to
have unreachable states and to have at most one state that is not used in any
left-hand side. Therefore, the time complexity amounts to

O((|Z| + #)|Lhs||Lhs/=p| + |A||Lhs/=p|)

and as the space complexity formula from Theorem 2 equals the first summand
of the time complexity formula, we are getting the space complexity

O((|Z| 4+ 7)|Lhs||Lhs /=p]).
O

The complexity of computing the downward simulation for the tree automaton
A via the LTS A°® can now be obtained by simply summing the complexities of
computing A® and (P°®, Rel®) and of running Algorithm 1 on them.

Theorem 5. The downward simulation preorder on A can be computed in time
O((|2|+7)|Lhs||Lhs /=p|+|Al||Lhs /=p|) and space O((|X|+7)|Lhs||Lhs/=p|+
|A]).

Note that in the special case of # = 1 (corresponding to a word automaton
viewed as a tree automaton), we have |Lhs| = |@Q|, which leads to the same
complexity as Algorithm 1 has when applied directly on word automata.

4.4.3 Computing Upward Simulation

Given a preorder D on (), we want to compute the upward simulation pre-
order induced by D. We will need the notion of environment, which is a
tuple of the form ((q1,...,¢i—1,0,Gi+1,---,4n),a,q) obtained by removing a
state ¢;, 1 < i < n, from the i*" position of the left hand side of a rule
((q1y--+,Gi—1,4i,Git1,---,Gn),a,q), and by replacing it by a special symbol OJ &
Q (called a hole below). Like for transition rules, we write [(q1,...,0;, . .., qn) —
q] provided ((q1, .-+, Gi—1,4i> Git1s---+4n), a,q) € A for some g; € Q. We denote
the set of all environments of A by Env 4 and we will drop the reference to A if
no confusion may arise.

We proceed in a similar manner as in Section 4.4.1 with downward simulation.
First, we extend the definition of upward simulation to the set of environments.

Extended Upward Simulation. Given a preorder D on (), an extended upward
simulation U induced by D is a binary relation on (Q U Env such that if qUr,
then

Loif (g1, .. .sqn) = ¢ with g =¢, 1 <i<n then (ri,...,m) = ' with
a T a
ri =rand [(q1,..., 0, ... qn) = q)U[(r1, Oiyeooyrn) = 71

2. if [(qry -, Oiy ooy qn) = qlU[(r1, ..., 0, ..., 7) = 7] for two elements of
Env, then qUr and for each 1 < j #i < n, q; Drj;

3.geF = rekF.
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q; [(q17"'7Di7"'7qn)i>Q]® q

Figure 4.5: The part of A® created for a rule (q1,...,¢,) — q € A.

The following proposition follows directly from this definition.

Proposition 4.2. A relation U is an upward simulation on A induced by D if
and only if there is an extended upward simulation on A induced by D such that
its restriction to Q is U.

Analogically as in Section 4.4.1, we notice that we can view the extended
upward simulation as a simulation on a labelled transition system with two
types of nodes, one corresponding to states and the other corresponding to
environments of A. Formally, we define the LTS A® = (X©,Q%, A®) as follows:

e The set Q® contains a state ¢© for each ¢ € @, and it also contains a state
(g1, 0o iqn) = ¢]® for each environment [(q1,...,0;, ..., qn) —
q] € Env.

e The set ©® contains each symbol a € ¥ and also a special symbol A & 2.

e For each transition rule (qi,...,¢,) — g of A and for each i :1 < i < n,
the set A® contains the transition [(¢1,...,0s ..., qn) — ¢© % ¢© and
the transition ¢’ 2, (g1, Oiseensgn) = q]®.

e The sets Q%, X®, and A® do not contain any other elements.

The translation is illustrated on Figure 4.5. We also have to take into ac-
count the inducing preorder D. Therefore, we define the initial relation Ip
to be the smallest binary relation on Q® containing all pairs of states of A,
i.e., all pairs (¢f,¢5) for each q1,q2 € @ and also all pairs of environments
((q1s-- -, Oiyeeyqn) = @ [(r1y -, 0iyevvym) = 7]9) such that g;Dr; for
each j: 1 < j# i <mn. The following theorem shows correctness of the transla-
tion.

Theorem 6. A relation U is an extended upward simulation on A induced by
D if and only if the relation U® = {(z®,y®) | xUy} is a simulation on A®
included in Ip.

Proof. Assume that U © is a simulation on A® included in Ip. We will show that
U is an extended upward simulation induced by D. Let qUr and (¢, ..., qn) 4

¢’ where ¢; = ¢. We know that ¢®U®r®, and since (q1,...,q) — ¢/ q LN
(g1, 0, ... qn) = ¢']° by definition of A®. Since U® is a simulation, there
AT€ T, ..y Ti 1, Tid1y -+, Tn,” € Q with r® N [(r1, .., 04 yrn) 2 7']© and
(g1, ., 0. iqn) = ¢1°U°(r1, ..., 04y ..y m) = /]9, Therefore, by the

definition of U®, we have [(q1,...,0;,...,qn) = ¢1U[(r1, ..., 0, ... rn) = 7],
and by the definition of A®, (r1,...,7,) % 7.
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Assume that there are two elements of Env such that (g1, 0o enan)
qU[(r1,...,0;,...,mp) = r]. By the definition of U®, [(q1,...,0i, ..., qn)

q]QUQ[(Tla"'a‘:‘ia"'arn) i> T]Q' Since U® - IDa [(qla"'a‘:‘ia"'aqn)

\L@ \L@ \L@

q®Ipl(r1,...,0;, ..., ) = r]© and hence for each j such that 1 < j # i < n,
qjDr;. By definition of A®, the only transitions from [(g1,...,0;,. .., qn) L q©
resp. [(r1,...,0;,.. g ) 5 r]® are (g1, Oiseeviqn) — q]© = ¢© resp.
(1, ..., 04y evyrn) 2 1]© 5 r©. Consequently, it must be the case that

q®U®r®. This means that_qu.
(only if) Assume that U is an extended upward simulation induced by D.
We will show that U® is a simulation on A® included in Ip. Suppose that

q®U®r® and ¢® LN [(q1, - 0ir oo qn) = ¢'19. Since ¢?U®r®, we know that
qUr; and since ¢® 2, (g1, - 0is ..y qn) = ¢']° we know by definition of A®
that (q1,...,qn) — ¢ where ¢ = ¢;. Since U is an extended upward simu-
lation induced by D, there are ri,...,rn,r € Q with (r1,...,7,) — 7 with
i =rand [(q,.... 04 oyqn) = ¢10[(r1, ..., 0iy .. oymn) 2 7). Therefore,
(g, 0 eeqn) = ¢1°U°(r1, .., Oy e rn) = 179,

Now, suppose that [(q1,...,0is....qn) = U [(r1,...,0i ... yrn) = 7).
By definition of A, [(q1,...,0is. .., qn) = q]® 5 ¢® and [(r1, ..., 0y 10) =
r® & r©. Moreover, [(q1,...,0;, ..., qn) — qlU[(r1,...,0iy...,7) = 7] by
definition of U®. Since U is an extended upward simulation included in D, we
have (i) qUr; and (ii) g;Drj for all j : 1 < j # i < j. This implies that ¢°U®r®
and [(q1,...,0;,...,qn) = q|Ip[(r1,...,0;, ..., 1) = 7], respectively. Hence
U is a simulation on A® included in Ip. O

The relation Ip is clearly a preorder. Due to Theorem 6, the maximal ex-
tended upward simulation <y on A induced by D corresponds to the simulation
preorder on A® included in Ip which can be computed by running Algorithm 1
on the LTS A® with the initial partition-relation pair (P®, Rel®) inducing Ip,
ie, P° =Q%/IpNIy' and Rel® = {(B,C) € P® x P° | Bx C C Ip}. By
Proposition 4.2, the upward simulation preorder on A induced by D is then
obtained as the restriction of <y to Q.

4.4.4 Complexity of Computing Upward Simulation

Once the inducing preorder D on a A is computed, the complexity of computing
the upward simulation preorder induced by D naturally consists of the price of
compiling A into its corresponding LTS A®, the price of building the initial
partition-relation pair (P®, Rel®), and the price of running Algorithm 1 on A®
and (P®, Rel®). We use =g to denote the maximal equivalence included in the
maximal extended upward simulation induced by D.

We assume the automaton A to be encoded in the format of lhs-list, this
is, in the same way as in the case of computing the downward simulation (c.f.
Section 4.4.2). Compared to preparing the input for computing the downward
simulation, the main obstacle in the case of the upward simulation is the need
to compute the partition P® of the set of environments Fnv wrt. Ip, which is
a subset of the partition P® (formally, P® = P®N2™). If the computation of
P% is done naively (i.e., based on comparing each environment with every other
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environment), it can introduce a factor of |Env|? into the overall complexity of
the procedure. This would dominate the complexity of computing the simulation
on A® where, as we will see, |Env| is only multiplied by |Env/=y]|.

Fortunately, this complexity blowup can be to a large degree avoided by ex-
ploiting the partition Lhs/=p. Notice that in the case when D is the downward
simulation preorder, Lhs/=p was anyway computed when computing D. We
first give the basic ideas, the detailed algorithm for computing P® is rather
technical and is presented within the proof of Lemma 4.12.

For each 7 : 1 < i < 7, we define an i-weakened version D; of D on left-hand
sides of A that does not take into account states on the i-th position. Formally,
Di = ((q1y---yqn),(T1,...,mm)) € Di <= n=m>iANN <j<n j#
i = ¢;Dr;j). Clearly, each D; is a preorder, and we can define the equivalence
relations ~; = D;ND; L Now, a crucial observation is that there exists a
simple correspondence between blocks of P® and blocks of Lhs/~;. Namely,

e

we have that L € Lhs/~; iff for each a € X, there is a block Ep, € P,
such that Er, = {[(q1,--, i, an) = ¢ | 3¢, € Q- (q1,---+Gis---,qn) €
LA Qs G- n) > q}.

The idea of computing P is now to first compute blocks of Lhs/~s; and
then to derive from them the blocks of P®. The key advantage here is that
the computation of the =~;-blocks can be done on blocks of Lhs/=p instead of
directly on elements of Lhs.! This is because, for each i, blocks of Lhs/=p are
sub-blocks of blocks of Lhs/=z;. Moreover, for any blocks K, L of Lhs/=p, the
test on K x L C D; can simply be done by choosing any two representatives
k € K and | € L and testing whether (k,1) € D;. Therefore, all ~;-blocks
can be computed in time O(#|Lhs/=p|?), as we will show within the proof of
Lemma 4.12.

From each block L € Lhs/~;, one block Ep , of P? is generated for each
symbol a € ¥. The Ey, , blocks are obtained in such a way that for each left-hand
side | € L, we generate all the environments which arise by replacing the i*" state
of [ by O, adding a, and adding a right-hand side state ¢ € Q which together
with { form a transition [ = ¢ of A. This can be done efficiently using the lhs-list
encoding of A. An additional factor |A|log|Env| is, however, introduced due
to a need of not having duplicates among the computed environments, which
could result from transitions that differ just in the states that are replaced by
O when constructing an environment. The factor log | Env| comes from testing
a set membership over the computed environments to check whether we have
already computed them before or not.

Moreover, it can be shown that Rel® can be computed in time |P®|%. The
complexity of constructing A® and (P®, Rel®) is then summarised in the below
lemma.

Lemma 4.12. Given the partition Lhs/=p, the LTS A® and the partition-
relation pair (P®, Rel®) can be derived in time O(|3||Q|+7(|Lhs|+|Lhs/=p|*)+
72|A|log | Env| + |P®|?) and in space O(|X||Q| + |Env| + #|Lhs| + |Lhs/=p|? +
POP),

f D is the downward simulation preorder, Lhs/=p was anyway computed within compu-
tation of D.
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Proof. We assume to start with the lhs-list representation of A. We need
to derive the LTS A® in the state-list format and the partition-relation pair
(P9, Rel®). Algorithm 2 is a simplified encoding of the procedure. We know
that P® = {{¢® | ¢ € Q}} UP®. Algorithm 2 computes P> using the partition
Lhs/=p. In the case when D is the downward simulation preorder, Lhs/=p
is constructed within the computation of the downward simulation on A. The
state-list representation of LTS A® is created within this computation with-
out increasing the overall asymptotic time complexity. The last step is then
computing of Rel®.

We denote two sets of environments i-compatible iff all their elements have
the same symbol and the hole on the i** position. For an i-compatible subset
E of Env, we define the set of their left-hand side generators as {(q1,...,q,) €
Lhs | [(ql,...,Di,...,qn) i>q] € E}

Algorithm 2: Upward Initialisation
Input: a tree automaton A = (X,Q, A, F) and a partition Lhs/=p
Data: for each 1 <i < 7, a relation Rel; C Lhs/=p x Lhs/=p
Output: the partition-relation pair (P®, Rel®) and the LTS
A® = (29,09, A®)
forall K,L € Lhs/=p do
forall1 <i <7 do
L | if K x L C D; then Rel; < Rel; U{(K,L)}

w N =

QY+ {¢° | ¢ € QX% <« DU {N}AY «
forall1 <i¢ <7 do
foreach equivalence class {L1,..., Ly} € (Lhs/=p)/(Rel; N Rel; ') do
merge L;s into a new block of Lhs/~;, the block B = UlSjS Lj;
generate all maximal i-compatible sets E such that gen(E) = B,
update A® within this procedure. Then add F into P®;

m

o N O ok

9 forall 1 <i <+ and all i-compatible blocks E,E' € P® do
L if (gen(E), gen(E")) € Rel; then Rel® < Rel® U {(E,E')}

11 (P9, Rel®) « (PP U{{¢” | ¢ € Q}}, Rel® U ({¢” | ¢ € Q},{¢” | g € Q}));

1

o

Lines 1-3. At the first step (lines 1-3) we compute for each 1 < i < 7 a
binary relations Rel; on blocks of Lhs/=p such that the partition-relation pair
(Lhs/=p, Rel;) induces D;. Here we exploit several properties of the structures
we work with in order to decrease computational complexity:

1. For blocks K, L of Lhs/=p, the test on K x L C D; can be done simply
by testing any two representatives k € K,l € L on (k,l) € D;. (it holds
that K x L C D; or K x LN D; =)

2. For any left-hand sides k, [, there are three possibilities with respect to
membership of (k,l) in D;:
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a) (k,l) € D; for all i, i.e. k is simulated by [ on all the positions
((k,1) € =p)

b) (k,l) € D; for just one i, i.e. k is simulated by [ on all positions

except the i*" one

c) (k,l) € D; for all 4, i.e. k is not simulated by [ on more than one
position.

From item 1. we see that analogical relationships holds for any K, L €
Lhs/=p with respect the K x L C D; inclusions.

From these properties follows that given two blocks K, L € Lhs/=p, the tests
K x L C D; can be done for all 7 in time O(#) and, moreover, all the relations
Rel; can be stored in one common matrix with cells containing three types of
values: all, one-i, none. This corresponds to the possibilities (a), (b), (¢) from
the above enumeration.

Therefore, line 3 can be done in (amortised) constant time and thus the for
loop on lines 1-3 can be finished in time O(#|Lhs/=p|?). Furthermore, encoding
of all the Rel; relations takes only O(|Lhs/=pl|?) space.

Lines 5-8. On lines 5-8, we construct partition P® together with LTS A®.
On line 6, we need to list all equivalence classes of (Lhs/=p)/(Rel; N Rel; ).
With the above matrix encoding of the Rel; relations, this operation can be
implemented in such a way that it takes O(7|Lhs/=pl|?) time overall.

Merging the class {L1, ..., L,,} on line 7 can be done in linear time to the car-
dinality of |J; << L; and therefore the overall time of the merging is #O(|Lhs|)
(the class {Lq, ..., Ly} can be encoded as a list of the L-blocks and each L-block
can be encoded as a list of its states).

On line 8 we generate all the environments of E and update A®. We encode
an environment e as a quadruple consisting of a pointer to any of | € gen(e),
a symbol, a position of hole and a pointer to its right hand side state. We
remind that we use the lhs-list encoding of A, i.e. each [ is connected to an
array indexed by symbols from 3. where the a-indexed element contains the list
of all states ¢ such that [ = ¢. Thus for each | € B, we can effectively iterate
through all rules of the form [ % ¢ and for each of them we: (1.) create a new
environment; and (2.) update A® in the following way:

(1.) We create a representation of environment e consisting of a pointer on I,
symbol a, hole-index 7 and a pointer on q. A problem is that there can be more
than one [ € B such that [ € gen(FE). Thus we can obtain the same environment
more than once while creating a block F from a block B. In order to avoid
these duplicities, after having e created, we test whether e has or has not been
created before. This can by done by testing each newly created environment on
membership in the set S of the so-far created environments (and adding it there
if the membership test returns false).

We attempt to create a new environment (and add it to the set S of already
known environments) 7|A| times. In the end (when S = Env), we get |Env|
different environments. We can assume that testing equality of two environ-
ments takes O(7) time and that we use a set representation with a logarithmic
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membership test and addition. Thus, in total, the time O(#2|A|log|Env|) is
spent by testing membership of environments in S and by extending S by the
new environments.

(2.) Having a representation of an environment e = [(q1,...,0i, ..., qn) — q]
created, if e € S (a representation of e was created for the first time), we add
the state e® into Q® and also a pointer on e® into pre,(q). Then, regardless
on the result of the e € S test, we add the pointer on ¢;’ into prey(e®) (This
requires finding the prey(e®) set in the state-set representation of A®. We
can use a similar searching structure as in the case of solving duplicities and
then the complexity of this searching will be covered the complexity of solving
duplicities.) Since creating a state e® and adding an element into a pre set
are constant time, the overall complexity of these updates of A® is covered by
the complexity of the above procedure for creating the environments in the F
blocks.

Lines 9-10. On lines 9-10 we compute the main part of relation Rel®. We
exploit the fact that for any i-compatible blocks E, E' € P®, (E, E') € Rel®
iff gen(E) x gen(E') C D; and, moreover, that any (B, C) € =; iff for any two
L,K € Lhs/=p such that K C B,L C C, it holds that K C L € D;. As
K x L C D; means that (K, L) € Rel;, we can implement the test on line 10
this way:

When creating block E on line 7, we connect it with its representative block
repre(E) = L; (any of Ly ..., Ly). Then the test on line 10 can be done in
constant time via testing if (repre(E), repre(E’)) € Rel;, because we know that
(repre(E), repre(E")) € Rel; <= (E,E') € P?. Therefore, lines 9-10 can be
done in time O(|P®|?).

Finishing the construction of (P®, Rel®) on line 11 is already easy. O

We instantiate the complexity of running Algorithm 1 for A® and (P®, Rel®)
within the following theorem.

Lemma 4.13. Algorithm 1 with input A® and (P®, Rel®) terminates in time
O(7|Al|Env/=y]| + |Z||Env||Env/=y|) and space O(|Z||Env||Env/=y]).

Proof. We get the complexity of running Algorithm 1 on A® and (P®, Rel®)
by instantiating the parameters of A® in the formula of Theorem 2. More
precisely, from the construction of A%, it follows that (1) |2®] = |Z| + 1, (2)
|Q®| = |Q| + |Env|, and (3) |A®| = #|A| + |Env| < 27|A]. Then, the running
time of Algorithm 1 with the input A® and (P®, Rel®) is:

O(ZI(1Ql + [Emv])(IQ/=u| + |Env/=vl) + #IA[(IQ/=u] + |Env/=u])).

Observe that, as we suppose the automata not to have unreachable states, |Q| <
|Env|. Therefore, the time complexity amounts to

O(|Z||Env||Env/=y| + #|Al| Env/=y|)

and, as the space complexity in Theorem 2 equals the first summand of the time
complexity formula, we get the space complexity O(|3||Env||Env/=y]). O
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The complexity of computing upward simulation preorder on A induced by D
can now be obtained by simply summing the price of computing D and Lhs/=p,
the price of computing A® and (P®, Rel®), and the price of running Algorithm 1
on A® and (P®, Rel®).

Theorem 7. Let Tp(A) and Sp(A) denote the time and space needed for com-
puting the preorder D and on A and Lhs/=p. Then, the upward simulation
preorder on A induced by D can be computed in time

O((|Z||Env| + 7| A]) | Env /=y | + 72| A|log | Env| + Tp(A))
and in space O(|Z||Env||Env/=y| + Sp(A)).

Note that in the special case of # = 1 (corresponding to a word automaton
viewed as a tree automaton), we have |Env| < |X||Q], which leads to almost the
same complexity (up to the logarithmic component) as Algorithm 1 has when
applied directly on word automata.

4.4.5 Computing Downward Bisimulation Equivalences

In [HMMO7a|, Hogberg, Maletti, and May propose an algorithm for comput-
ing downward bisimulation with running time O(72|A|log(|Q|)) (in [HMMO07a,
downward bisimulation is called backward bisimulation). Our approach based
on translating tree automata to LTS that we use for simulations can be also used
and yields an algorithm with the same asymptotic complexity. In particular,
we use the same LTS A°® as for downward simulation. Downward bisimula-
tion equivalence is then obtained in the form of the standard LTS bisimulation
equivalence on states of A®. This can easily be proved using the results of
Section 4.4.1 and the fact that downward bisimulations are exactly downward
simulations such that their inverses are also downward simulations. For this we
need to extend the definition of downward bisimulation to left-hand sides of A
analogically as we have extended the definition of downward simulation.

Extended downward bisimulation. An Eztended downward bisimulation on
A is any extended downward simulation on A such that its inverse is also an
extended downward simulation on A.

Proposition 4.3. A relation D is a downward bisimulation if and only if there
is an extended downward bisimulation D such that its restriction to Q is D.

Proof. Let D be the restriction of an extended downward bisimulation D to Q.
We know that both D and D~! are extended downward simulations, therefore
both D and D~! are downward simulations by Proposition 4.1, and thus D is
a downward bisimulation by definition.

Let D be a downward bisimulation on A and let us define D as the relation
DU{((q1,---,qn),(r1,...,m3)) € Lhs x Lhs | V1 < i < n : ¢Dr;}. Since D is
a simulation, D is apparently an extended downward simulation. Then, define
analogically D' = DY U {((q1,...,qn), (r1,...,7)) € Lhs x Lhs | V1 < i <
n: qiD_lri}. Again, since D~! is a downward simulation, D’ is and extended
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downward simulation. Now, it is not hard to see that D~! = D’ and therefore,
as both D and D! are extended downward simulations, D is an extended
downward bisimulation on A. O

Theorem 8. A relation D is an extended downward bisimulation on A if and
only if D* = {(z®,y*) | Dy} is a bisimulation on A®.

Proof. D is an extended downward bisimulation on A iff both D and D! are
extended downward simulations on A which holds (by Theorem 4) iff both D*®
and (D*)~! are simulations on A®, and by the definition of bisimulation, this
holds iff D* is a bisimulation on A°®. O

To compute the bisimulation equivalence on A®, we can use the algorithm
recently proposed by Valmari in [Val09] that on .4°® runs in time O(|A®|log(Q*®)).
The sizes of the parameters of A® can be bounded as follows: |Q°®| € O(Lhs) C
O(|Q|"), and |A®| < |A| + #|Lhs| < #|A|. Therefore, the time complexity of
running the Valmari’s algorithm on A® is O(#|A|log(|Q|")) = O(#%|A|log(|Q])),
which is indeed the same complexity as the one of the algorithm from [HMMO07a].

4.4.6 Computing Upward Bisimulation Equivalences

Let us fix a preorder D on (. Our algorithm for computing the upward bisim-
ulation equivalence induced by D is again based on translating tree automata
into labelled transition systems. The same transition system A® as for upward
simulations can be used. To prove this easily using the results of Section 4.4.3,
we first extend upward bisimulation to environments of A.

Extended Upward Bisimulation. An extended upward bisimulation U on A
induced by D is an extended upward simulation induced by D N D~! such that
its inverse is also an extended upward simulation on A induced by D N DL,

Proposition 4.4. A relation U is an upward bisimulation induced by D iff there
is an extended upward bisimulation on A induced by D such that its restriction
to Q is U.

Proof. Let U be the restriction of an extended upward bisimulation U induced
by D to Q. We know that both U and U~! are extended upward simulations
induced by DN D™, therefore both U and U~! are upward simulations induced
by D by Proposition 4.2, and hence, by definition, U is an upward bisimulation
induced by D.

Let U be an upward bisimulation on A induced by D. Define U = U U
{(q1s . 0o yqn) 2 gl [(r1y o 04y ooy m) S 7)) € Eno x Env | V5 : 1 <
j#i<n. quﬂD_lrj}. Since U is an upward simulation induced by DND~t, U
is apparently an extended upward simulation induced by DN D~!. Then, define
analogically U = U~ 'U{([(q1,---, 04, ..., qn) = ¢, [(r1,...,0s, ..., 1) = 7]) €
Env x Env |Vj:1<j+#i<n.q¢DND r;}. Again, since U~! is an upward
simulation induced by DND~!, U’ is an extended upward simulation induced by
DN D~ Now, it is not hard to see that U~! = U’ and therefore, as both U and
U~! are extended upward simulations induced by D N D~!, U is an extended
upward bisimulation on A induced by D. O
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We define I=, = Ip N Ip, this is, I=, is the smallest binary relation on
Q® containing all pairs of states of the automaton A, i.e., all pairs (¢¥,¢5)
for each q1,q2 € Q, as well as all pairs of environments ([(q1,...,0;, ..., qn) —
d®,[(r1, -, 0iy ..o, m0) = 7]©) such that ¢;D N D~ 'r; for each j:1 < j#i<
n.

Theorem 9. A relation U is an exten_ded upward bisimulation on A induced by
D if and only if U® = {(z®,y®) | zUy} is a bisimulation on A® included in
I=

D

Proof. U is an extended upward bisimulation on A iff both U and U~! are
extended upward simulations on A induced by D N D! which holds (by Theo-
rem 9) iff both U® and (U®)~! are simulations on .A® included in I—,, and by
definition of bisimulation, this holds iff U® is a bisimulation on A® included in
I=,. O

The Valmaris algorithm [Val09] computes the bisimulation equivalence in-
cluded in I=, on A in time O(|A®|log(|Q®])). Since |Q®| € O(|Q| + #|A|) =
O(7|Al]) and |A®] € O(F|A|), the running time of Valmaris algorithm on A®
amounts to O(7|A[log (F]A])) € O(F|Allog (7QI"[Z[)) = O(#*|A|log|Q +
7|A|log |]).

We note that in [HMMO07a] is presented a specialised algorithm for computing
upward bisimulation equivalence induced by identity (called forward bisimula-
tion in [HMMO07a|). The algorithm runs in time O(7|A| log(|Q)|)), which is better
than the complexity of our algorithm (however, the algorithm from [HMMO7a)
is not designed for computing bisimulations induced by nontrivial preorders).
Still, it suggests that there might be a space for improving our method.

4.4.7 Computing the Combined Relations

Given an inducing downward simulation D and an upward simulation U in-
duced by D, the combined preorder M = D @ U~! can be easily computed
by simply following its definition. It is sufficient to start by computing the
relation C' = D o U~! and then just erase all the elements of C that break
Condition (ii) from the definition of @. Using suitable data structures, this
computation starting from the relations U and D can be implemented to run in
time O(min{|D||Q|, |U||Q|}) as follows.

We encode a relation p on @) as an array indexed by elements of @) of lists
of elements of Q). A state g is present in a list with index r iff (r,q) € p. Note
that given a Boolean matrix representation of the relation, the “array of lists’-
representation can be derived in time O(|Q|?). Note also that as U and D are
reflexive, we have that |U|,|D| > |Q| and thus |Q|?> < min{|D||Q|, |U||Q|}. Let
arrays of lists D, U™ encode relations D, U~!.

The relation C' = DoU ! represented by a Boolean matrix C can be computed
in the following way: (1) Initialise all entries of C to false. (2) For each ¢ € Q,
pass through all elements of the list D[g], and for each r € Dl[qg|, pass through
all elements s of U7[r], and set C[g,s] to true. This procedure takes time

O({(g,5) [ (g;7) € DA (r,5) € UT}]) € O(min{|D[|Q], [U]IQ]}).

53



Then we compute a Boolean matrix representation M of the relation M =
D@ U! as follows: (3) We initialise M as a copy of the matrix C (representing
Do U™Y), and in the subsequent Step (4), we erase from M all the pairs of
elements of @ that break Condition (ii) from the definition of . In Step (4),
we proceed in the following way: For all ¢ € Q, for all 7 € DJ[q], for all s € U~1[r],
if not Clg, s] (i.e., (¢,5) € D oU™'), then Mlq, s] = false. This gives us the set
D @ U~! represented by the matrix M. The complexity of Steps (3), (4) is in
O({(q,r,5) | (¢,r) € DA(r,5) € U }H+{(q,7,5) | (¢,7) €U~ A (r,5) € D})),
which is again in O(min{|D||Q|,|U]|Q|}).

4.5 Experiments

We have implemented our algorithms in a prototype tool written in Java. We
have used the tool on a number of tree automata from the frameworks of
regular tree model checking (RTMC) and abstract regular tree model check-
ing (ARTMC) [BT02, AJMd02, BHRV06a, BHRV06a]|. These techniques were
shortly discussed in Chapter 1 and we will explain them in a more detail in Chap-
ter 5. Most of the algorithms in the frameworks of both RTMC and ARTMC rely
crucially on efficient automata reduction methods since the size of the generated
automata often explodes, making computations infeasible without a reduction.

Our experimental evaluation was carried out on an AMD Athlon 64 X2
2.19GHz PC with 2.0 GB RAM. We have compared the size of tree automata
after reducing them with all the different reduction techniques considered in this
thesis. Table 4.1 shows the computation time and the reduction (in percent)
for the different relations within the considered framework and illustrates that
we have really obtained a wide spectrum of relations differing in their reduction
capabilities and computational complexity. As can be seen from the results, <
gives the best reduction in all experiments, but it also suffers from a high com-
putation time. Combining simulations and bisimulations does not give the same
amount of reduction as the combined simulation, but the computation time is
lower and the reduction is better than ~. Note that no attempt to optimise the
implementation of any of the relations was done, and therefore the computation
times could probably be much lower with an optimised implementation for all
of them.

Another set of experiments proving significance of the mediated equivalence
< in practice was done in [BHH"08b]. We have implemented our reduction
methods within an ARTMC-based verification tool which was tested on var-
ious benchmarks, mostly short but complex pointer manipulating programs.
Together with a new method for testing language inclusion of nondeterminis-
tic tree automata presented in [BHHT08b|, quotienting allowed us to greatly
improve performance of the ARTMC tool. We comment more on this set of
experiments in Chapter 5.
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Table 4.1: The obtained reduction in percent and the computation time in seconds
for the various considered relations applied for reducing TA obtained from RTMC and
ARTMC case studies. The size of the TA is the number of their states plus the number

of their transition rules.

TA = = =
origin size red. time | red. time | red. time | red. time
ARTMC 195 18% 0.5s | 2%  0.5s | 23%  0.5s | 61% 1.0s
RTMC 613 27% 35s | 19% 20s | 19% 2.5s | 8% 5.1s
RTMC 909 52% 3.6s | 2% 3.1s | 82% 34s | 89% 35.1s
ARTMC 2029 || 10% 27.0s | 37% 26.0s | 33% 29.0s | 93% 39.0s
RTMC 2403 || 26% 31.0s | 0% 25.0s | 0%  34.0s | 82% 37.1s

TA ~ 2 X
origin size red. time | red. time | red. time | red. time
ARTMC 195 18% 0.1s | 2% 0.5s | 23% 0.2s | 23% 0.6s
RTMC 613 0% 0.3s | 0% 04s | 0% 0.8s | 27%  3.Ts
RTMC 909 14% 0.6s | 2% 0.4s | 82% 0.8s | 83% 4.1s
ARTMC 2029 || 10% 1.7s | 14% 1.4s | 19% 3.1s | 44% 29.0s
RTMC 2403 || 0% 0.3s | 0% 0.6s | 0% 0.7s | 27% 31.0s

4.6 Conclusions and Future Work

We have presented methods for reducing tree automata under language equiv-
alence. For this purpose, we have considered two kinds of simulation rela-
tions on the states of tree automata, namely downward and upward simulation.
We give procedures for an efficient translation of both kinds of relations into
simulations defined on labelled transition systems. Furthermore, we define a
new, language-preserving equivalence on tree automata, the so called mediated
equivalence, derived from compositions of downward and upward simulation.
Mediated equivalences according to our experiments usually give a much better
reduction of the size of automata than downward or upward simulations alone.

We have also considered upward and downward bisimulations on tree au-
tomata, that may be seen as special cases of tree automata simulations. Bisim-
ulations are much stronger relations than simulations, therefore, quotienting
using bisimulations reduces automata less. On the other hand, bisimulations
are considerably computationally cheaper. We show that our approach for com-
puting tree automata simulations via translations to labelled transition systems
can be easily used also for computing tree automata bisimulations. Particu-
larly, we translate downward or upward bisimulation problems in the same way
as downward or upward simulation problems, respectively, and then run a stan-
dard LTS bisimulation algorithm on the resulting L'TS. This uniform framework
yields tree automata simulation and bisimulation algorithms that are efficient
and can be implemented with a relatively small effort.

Moreover, our combination operator can be used to combine any downward
simulation or bisimulation with any induced upward simulation or bisimulation,
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which yields a spectrum of mediated equivalences. We have established a partial
ordering of the obtained mediated equivalences according to their reduction
capabilities and showed that some of them are also incomparable. Moreover,
we have performed a number of experiments with automata from the area of
(abstract) regular tree model checking that show a practical applicability of the
obtained relations and allow us to conclude that the considered relations really
offer a fine choice of balance in the trade-off between reduction capabilities and
computational requirements.

There are several possible directions of future work. Since the proposed frame-
work is built on quite general principles, we believe that it can be extended to
more advanced types of automata such as guided tree automata, nested word
automata, or hedge automata that find their use in many applications in formal
verification, decision procedures of various logics, structured document process-
ing, or natural language processing. Reduction of automata from some of such
classes has already been considered in the literature (e.g., in [Buc08§|, the au-
thor proposes a bisimulation-based minimisation of weighted word automata,
and a use of bisimulations for reducing weighted tree automata is considered in
[HMMO7b]). In Chapter 6, we present a nontrivial extension of our framework
to alternating Biichi automata. From the practical point of view, it is also inter-
esting to investigate more efficient techniques of computing the (bi-)simulation
relations, e.g., by computing them in a symbolic way (for symbolically encoded
automata). Furthermore, it can be interesting to explore more deeply the prin-
ciples of the proposed combination of downward and upward (bi-)simulation
relations. Ome can, for instance, think of defining still weaker types of rela-
tions preserving the language of tree automata by using the combined relations
repeatedly as inducing relations.
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5 Language Inclusion and Universality of
Finite (Tree) Automata

The language inclusion problem for regular languages is important in many
application domains, e.g., formal verification. Many verification problems can
be formulated as a language inclusion problem. For example, one may describe
the actual behaviours of an implementation in an automaton A and all of the
behaviours permitted by the specification in another automaton B. Then, the
problem of whether the implementation meets the specification is equivalent
to the problem L(A) C L(B). Other applications include checking whether
a fixpoint of a symbolic automata-based incremental reachability computation
was reached or checking implication in automata-based decision procedures.
The universality problem is a simpler variant of the language inclusion problem.
Even though it is less useful in practice, it is important from the theoretical
point of view. A good solution for the universality problem often leads to a
good solution for language inclusion problem while the simpler setting of the
former problem makes the principles of the method easier to master.

Methods for proving language inclusion can be categorised into two types:
those based on simulation (e.g., [DHWT91|) and those based on the subset
construction (e.g., [Brz62, Hop71, MS72, Mgl04]). Simulation-based approaches
first compute a simulation relation on the states of two automata A and B and
then check whether all initial states of A can be simulated by some initial
state of B. Since simulation can be computed in polynomial time, simulation-
based methods are usually very efficient. Their main drawback is that they are
incomplete since simulation implies language inclusion, but not vice-versa.

On the other hand, methods based on the subset construction are complete
but inefficient because in many cases they will cause an exponential blow up
in the number of states. Recently, De Wulf et al. in [WDHRO06| proposed the
antichain-based approach for nondeterministic finite word automata. To the
best of our knowledge, it was the most efficient one among all of the meth-
ods based on the subset construction. Although the antichain-based method
significantly outperforms the classical subset construction, in many cases, it
(unavoidably) still sometimes suffers from the exponential blow up problem.

This chapter presents result that were published in two works, [BHH™08b| and
[ACH"10a]. In [BHH08b], we generalise the results on FA from [WDHRO06] also
for tree automata and we show how a combination of the antichain-based tree au-
tomata inclusion checking with the reduction techniques from Chapter 4 allows
to greatly improve efficiency of abstract regular tree model checking method.
In [ACH"10a], we present a new approach for both word and tree automata
universality and inclusion checking that nicely combines the simulation-based
and the antichain-based approaches. A computed simulation relation is used
for pruning out unnecessary search paths of the antichain-based method and

57



also to efficiently encode the stored state-space. To distinguish the approaches
from [WDHRO06, BHH08b| from the one of [ACH"10a], we will refer to the
former ones as to the pure antichain approach and to the latter ones as to the
simulation-enhanced antichain approach. In this chapter, we describe mostly
the results from [ACHT10a], this is, the simulation enhanced antichain algo-
rithms for FA and TA since the pure antichain TA algorithms that we present
in [BHH'08b| can be seen as they simpler instances. As for experimental results,
we present both the results from [BHHT08b] and from [ACH"10a).

To simplify the presentation, we first consider the problem of checking uni-
versality for a word automaton A. In a similar manner to the classical subset
construction, we start from the set of initial states and search for sets of states
(here referred to as macro-states) which are not accepting (i.e., we search for
a counterexample of universality). The key idea is to define an “easy-to-check”
ordering < on the states of .4 which implies language inclusion (i.e., p < ¢ im-
plies that the language of the state p is included in the language of the state
q). From =<, we derive an ordering on macro-states which we use in two ways
to optimise the subset construction: (1) searching from a macro-state needs not
continue in case a smaller macro-state has already been analysed; and (2) a
given macro-state is represented by (the subset of) its maximal elements. In
this work, we take the ordering < to be the simulation preorder on the automa-
ton A. In fact, the antichain algorithms of [WDHRO06] coincide with the special
case where the ordering =< is the identity relation. Subsequently, we describe
how to generalise the above approach to the case of checking language inclusion
between two automata A and B, by extending the ordering to pairs consisting
of a state of A and a macro-state of B.

We then generalise our algorithms to the case of tree automata. We first
formally define a notion of a language accepted from tuples of states of the tree
automaton as a set of contexts. We identify here a new application of the upward
simulation relation from Chapter 4. We show that it implies (context) language
inclusion, and we describe how we can use it to optimise existing algorithms for
checking the universality and language inclusion properties.

We have implemented our algorithms and carried out an extensive experimen-
tation. Particularly, in [BHH"08b|, we compare performance of the classical
tree automata subset construction based algorithms with the pure antichain-
based algorithms (so far not using simulation optimisations) developed in the
spirit of [WDHRO06|. We have tested the algorithms on tree automata generated
with a scale of different settings of a random automata generator designed ac-
cording to framework by Tabakov and Vardi [TV05]. We have also considered
tree-automata derived from intermediate steps of abstract regular tree model
checking. The obtained results are consistent with the ones from [WDHROG]
on FA and lead to a definite conclusion that the antichain tree automata algo-
rithms vastly outperform the classical ones. Our inclusion checking algorithms
together with the reduction techniques from Chapter 4 also greatly improve the
overall performance of the abstract regular tree model checking method.

In [ACH™"10a], we have carried out experiments comparing the pure antichain-
based algorithms for both FA and TA with their simulation-improved variants.
In the case of FA, we obtained our experimental data from several different
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sources. The experiments show that simulation enhanced antichain approach
significantly outperforms the pure antichain-based approach in almost all of the
considered cases.

We note that simultaneously with [ACH"10a], Doyen and Raskin published
their recent work [DR10] where they present basically the same main idea as
is the one of [ACH"10a] (this is, using simulation to improve the antichain
algorithms). However, even though the two works have significant overlaps,
both of them contain original unique contributions. We will briefly compare the
two works in the following two paragraphs.

Doyen and Raskin in [DR10] study more systematically theoretical aspects
of simulation optimisations of antichain algorithms. They present a framework
where they consider also the backward algorithms for FA that were presented
in [WDHRO06] and show how they can be optimised with backward simulation.
These backward algorithms are dual to the forward ones and they utilise back-
ward simulation instead of forward simulation. They also consider a conceptu-
ally different approach where one utilises forward simulation within backward
algorithms and backward simulation within forward algorithms. Apart from
that, Doyen and Raskin also show other applications of their framework to
problems such as emptiness of alternating automata.

On the other hand, our paper [ACH" 10a| comes with the following. Contrary
to [DR10], we provide extensive experimental results showing practical applica-
bility of the algorithms. We also design algorithms that are carefully optimised
not to explore unnecessary search paths which also notably improves their effi-
ciency. Then, except using simulations to prune unpromising macro-states, we
use them also to reduce the internal representations of reached macro-states. We
study in detail both universality and language inclusion problem (while Raskin
and Doyen concentrate mostly only on universality) where not all the optimisa-
tions that we propose are covered by the framework from [DR10] (in particular,
in the case of inclusion checking, we utilise also simulation between states of the
two automata). Finally, we also present an extension of the technique to tree
automata.

Outline. The remainder of the chapter is organised as follows. We begin Sec-
tion 5.1 by applying our idea to solve the universality problem for FA. The
problem is simpler than the language inclusion problem and thus we believe
that presenting our universality checking algorithm first makes it easier for the
reader to grasp the idea. We continue the section by discussing our language in-
clusion checking algorithm for FA. In Section 5.2, we present the algorithms for
checking universality and language inclusion for tree automata that are exten-
sions of the FA algorithms from Section 5.1. Section 5.3 describes experimental
results on comparing pure antichain-based algorithms for TA with the classical
subset construction-based algorithms, and also experiments on testing impact
of applying our algorithms in abstract regular tree model checking. In Sec-
tion 5.4, we present experiments on comparing pure antichain-based algorithms
for both FA and TA with their versions improved with simulations. Finally, in
Section 5.5, we conclude the chapter and discuss further research directions.
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5.1 Universality and Language Inclusion of FA

In this section, we describe our simulation improvements of the antichain algo-
rithms for testing language inclusion and universality of FA from [WDHRO06].
Basically, we will show how to utilise simulation on states of an automaton (that
is computed in advance) within a language inclusion/universality checking al-
gorithm.

Let A= (%2,Q,9,1,F,) be a finite automaton. For convenience, we call a set
of states in A a macro-state, i.e., a macro-state is a subset of (). A macro-state
is accepting if it contains at least one accepting state, otherwise it is rejecting.
For a macro-state P, define L(A)(P) := U,ecp L(A)(p). We say that a macro-
state P is universal if L(A)(P) = X*. For two macro-states P and R, we write
P <"3 R as a shorthand for Vp € P.3r € R : p < r. We define the post-image of
a macro-state Post(P):={P'|JaeX:P' ={p'|Ip€ P: (p,a,p’) € 6}}. We
use AE to denote the set of relations over the states of A that imply language
inclusion, i.e., if < € AS, then we have p <r = L(A)(p) C L(A)(r).

Let A = (2,Q4,04,14,F4) and B = (X,Q3, 93, I3, Fg) be two FA. Define
their union automaton AUB := (X, Q4 UQB,d4 U g, [4U Iz, Fu U Fg).

5.1.1 Universality of FA

The universality problem for an FA A = (2,Q,4,1, F) is to decide whether
L(A) = ¥*. The problem is PSPACE-complete. The classical algorithm for the
problem first determinises A with the subset construction and then checks if
every reachable macro-state is accepting. The algorithm is inefficient since in
many cases the determinisation will cause a very fast growth in the number of
states. Note that for universality checking, we can stop the subset construction
immediately and conclude that A is not universal whenever a rejecting macro-
state is encountered. An example of a run of this algorithm is given in Fig. 5.1.
The automaton A used in Fig. 5.1 is universal because all reachable macro-states
are accepting.

In this section, we propose a more efficient approach to universality checking.
In a similar manner to the classical algorithm, we run the subset construction
procedure and check if any rejecting macro-state is reachable. However, our
algorithm augments the subset construction with two optimisations, henceforth
referred to as Optimisation 1 and Optimisation 2, respectively.

Optimisation 1 is based on the fact that if the algorithm encounters a macro-
state R whose language is a superset of the language of a visited macro-state P,
then there is no need to continue the search from R. The intuition behind this
is that if a word is not accepted from R, then it is also not accepted from P.
For instance, in Fig. 5.1(b), the search needs not continue from the macro-state
{s9, 83} since its language is a superset of the language of the initial macro-
state {s1,s2}. However, in general it is difficult to check if L(.A)(P) C L(A)(R)
before the resulting deterministic FA is completely built. Therefore, we suggest
to use an easy-to-compute alternative based on the following lemma.

Lemma 5.1. Let P, R be two macro-states, A be an FA, and < be a relation
in AS. Then, P <3 R implies L(A)(P) C L(A)(R).
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Figure 5.1: Universality Checking Algorithms

Note that in Lemma 5.1, < can be any relation on the states of A that implies
language inclusion. This includes any simulation relation (Lemma 2.1). When =<
is the maximal simulation or the identity relation, it can be efficiently obtained
from A before the subset construction algorithm is triggered and used to prune
out unnecessary search paths.

An example of how the described optimisation can help is given in Fig. 5.1(b).
If < is the identity, the universality checking algorithm will not continue the
search from the macro-state {s1,s2,s4} because it is a superset of the initial
macro-state. In fact, the pure antichain-based approach [WDHRO06| can be
viewed as a special case of our simulation enhanced antichain approach when
=< is the identity. Notice that, in this case, only 7 macro-states are generated
(the classical algorithm generates 13 macro-states). When < is the maximal
simulation, we do not need to continue from the macro-state {ss,s3} either
because s; < s3 and hence {si,s2} <v3 {s2,s3}. In this case, only 3 macro-
states are generated. As we can see from the example, a better reduction of the
number of generated states can be achieved when a weaker relation (e.g., the
maximal simulation) is used.

Optimisation 2 is based on the observation that L(A)(P) = L(A)(P \ {p1})
if there is some po € P with p; < po. This fact is a simple consequence of
Lemma 5.1 (note that P <"2 P\ {p1}). Since the two macro-states P and
P\ {p1} have the same language, if a word is not accepted from P, it is not
accepted from P\ {p1} either. On the other hand, if all words in ¥* can be
accepted from P, then they can also be accepted from P\ {p1}. Therefore, it is
safe to replace the macro-state P with P\ {p:}.

Consider the example in Fig. 5.1. If < is the maximal simulation relation, we
can remove the state so from the initial macro-state {s1, s2} without changing
its language, because so < s1. This change will propagate to all the searching
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Algorithm 3: Universality Checking
Input: An FA A= (%,Q,6,1,F) and a relation <€ A<.
Output: TRUE if A is universal. Otherwise, FALSE.
if I is rejecting then return FALSE;
Processed:=();
Next:={ Minimize(I)};
while Nezt # () do
Pick and remove a macro-state R from Next and move it to Processed;
foreach P € {Minimize(R') | R’ € Post(R)} do
if P is rejecting then return FALSE;
else if =35 € Processed U Next s.t. S <" P then
L Remove all S from Processed U Next s.t. P <73 S,

© W NS O WY

Add P to Next;

=
o

11 return TRUE

paths. With this optimisation, our approach will only generates 3 macro-states,
all of which are singletons. The result after apply the two optimisations are
applied is shown in Fig. 5.1(c).

Algorithm 3 describes our approach in pseudocode. In this algorithm, the
function Minimize(R) implements Optimisation 2. The function does the fol-
lowing: it chooses a new state r1 from R, removes ri from R if there exists
a state r9 in R such that r; =< ro, and then repeats the procedure until all
of the states in R are processed. Lines 8-10 of the algorithm implement Op-
timisation 1. Overall, the algorithm works as follows. Till the set Next of
macro-states waiting to be processed is non-empty (or a rejecting macro-state is
found), the algorithm chooses one macro-state from Nezt, and moves it to the
Processed set. Moreover, it generates all successors of the chosen macro-state,
minimises them, and adds them to Next unless there is already some <"7-smaller
macro-state in Next or in Processed. If a new macro-state is added to Next,
the algorithm at the same time removes all <¥3-bigger macro-states from both
Next and Processed. Note that the pruning of the Next and Processed sets
together with checking whether a new macro-state should be added into Next
can be done within a single iteration through Nexzt and Processed. We discuss
correctness of the algorithm in the next section.

5.1.2 Correctness of the Optimised Universality Checking

In this section, we prove correctness of Algorithm 3. We first introduce some
definitions and notations that will be used in the proof. For a macro-state P,
define Dist(P) € N U {oco} as the length of the shortest word in ¥* that is
not in L(A)(P) (if L(A)(P) = ¥*, Dist(P) = o0). For a set of macro-states
MStates, the function Dist(MStates) € NU{oo} returns the length of the short-
est word in X* that is not in the language of some macro-state in MStates. More
precisely, if MStates = (), Dist(MStates) = oo, otherwise, Dist(MStates) =
min pe prstates Dist(P). The predicate Univ(MStates) is true if and only if all
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the macro-states in MStates are universal, i.e., VP € MStates : L(A)(P) = X*.
The lemma bellow follows from the fact that if L(A)(P) C L(A)(R), then the
shortest word rejected by R is also rejected by P.

Lemma 5.2. Let P and R be two macro-states such that L(A)(P) C L(A)(R).
We have Dist(P) < Dist(R).

Lemma 5.3 describes the invariants used to prove the partial correctness of
Algorithm 3.

Lemma 5.3. The below two loop invariants hold in Algorithm 3:
1. =~ Univ(Processed U Next) —> —Univ({I}).
2. =Univ({l}) = Dist(Processed) > Dist(Next).

Proof. 1t is trivial to see that the invariants hold at the entry of the loop,
taking into account Lemma 5.1 covering the effect of the Minimize function.
We show that the invariants continue to hold when the loop body is executed
from a configuration of the algorithm in which the invariants hold. We use
Processed®® and Next°? to denote the values of Processed and Next when the
control is on line 4 before executing the loop body and we use Processed™"
and Next™" to denote their values when the control gets back to line 4 after
executing the loop body once. We assume that Next® £ (.

Let us start with Invariant 1. Assume first that Univ(Processed® U Next©d)
holds. Then, the macro-state R picked on line 5 must be universal, which holds
also for all of its successors and, due to Lemma 5.1, also for their minimised
versions, which may be added to Next on line 10. Hence, Univ(Processed™" U
Next™") holds after executing the loop body, and thus Invariant 1 holds too.
Now assume that — Univ( Processed®'®UNext°) holds. Then, - Univ({I}) holds,
and hence Invariant 1 must hold for Processed™*” and Next™®" too.

We proceed to Invariant 2 and we assume that — Univ({I}) holds (the other
case being trivial). Hence, Dist(Processed®?®) > Dist(Next®®) holds. We dis-
tinguish two cases:

ist(R) = oo or 3Q € Processed®® : Dist(Q) < Dist(R). In this case,
Dzst(PTocessed) will not decrease on line 5. From Dist(Processed®®) >
Dist(Next®?), there exists some macro-state R in Next®™ s.t. Dist(R') =
Dist(Next®?®) < Dist(Processed®®) < Dist(Q) < Dist(R). Therefore,
Dist(Next) will not change on line 5 either. Moreover, for any macro-
state P, removing @Q s.t. P <3 Q from Next and Processed on line 9 and
then adding P to Nezt on line 10 cannot invalidate Dist(Processed™") >
Dist(Next™") since Dist(P) < Dist(Q) due to Lemmas 5.1 and 5.2.
Hence, Invariant 2 must hold for Processed™®" and Next™*" too.

2. Dist(R) # oo and =3Q € Processed®® : Dist(Q) < Dist(R). In this
case, the value of Dist(Processed) decreases to Dist(R) on line 5. Clearly,
Dist(R) # 0 or else we would have terminated before. Then there must
be some successor R’ of R which is either rejecting (and the loop stops
without getting back to line 4) or one step closer to rejection, meaning
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that Dist(R') < Dist(R). Moreover, R’ either appears in Next™" or
there already exists some R” € Next®? such that R” <" R’, meaning
that Dist(Processed™") > Dist(Next™"). It is impossible that IR” €
Processed®® : R" <" R', because YR" € Processed®® : Dist(R") >
Dist(R) > Dist(R') and from Lemmas 5.1 and 5.2, R” <3 R’ implies
Dist(R") < Dist(R'). Furthermore, if some macro-state is removed from
Processed on line 9, Dist(Processed) can only grow, and hence we are
done.

O

Due to the finite number of macro-states, we can show that Algorithm 3
eventually terminates.

Lemma 5.4 (Termination). Algorithm 3 eventually terminates.

Proof. For the algorithm not to terminate, it would have to be the case that some
macro-state is repeatedly added into Next. However, once some macro-state R
is added into Next, there will always be some macro-state Q € Processed U Next
such that Q <" R. This holds since R either stays in Nezt, moves to Processed,
or is replaced by some Q such that Q <"2 R in each iteration of the loop. Hence,
R cannot be added to Next for the second time since a macro-state is added to
Nezt on line 10 only if there is no Q € Processed U Next such that Q <2 R. O

We can now easily prove the main theorem.

Theorem 10. Algorithm 8 always terminates, and returns TRUE iff the input
automaton A is universal.

Proof. From Lemma 5.4, the algorithm eventually terminates. It returns FALSE
only if either the set of initial states is rejecting, or the minimised version R’
of some successor S of a macro-state R chosen from Next on line 5 is found
rejecting. In the latter case, due to Lemma 5.1, S is also rejecting. Then R
is non-universal, and hence Univ(Processed U Next) is false. By Lemma 5.3
(Invariant 1), we have A is not universal. The algorithm returns TRUE only
when Nezt becomes empty. When Next is empty, Dist(Processed) > Dist(Next)
is not true. Therefore, by Lemma 5.3 (Invariant 2), A is universal. O

5.1.3 The FA Language Inclusion Problem

The technique described in Section 5.1.1 can be generalised to solve the language-
inclusion problem. Let A and B be two FA. The language inclusion problem for
A and B is to decide whether L(A) C L(B). This problem is also PSPACE-
complete. The classical algorithm for solving this problem builds on-the-fly the
product automaton A x B of A and the complement of B and searches for an
accepting state. A state in the product automaton A x B is a pair (p, P) where p
is a state in A and P is a macro-state in B. For convenience, we call such a pair
(p, P) a product-state. A product-state is accepting iff p is an accepting state in
A and P is a rejecting macro-state in B. We use L(A, B)(p, P) to denote the
language of the product-state (p, P) in AxB. The language of A is not contained
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Figure 5.2: Language Inclusion Checking Algorithms

in the language of B iff there exists some accepting product-state (p, P) reachable
from some initial product-state. Indeed, L(A,B)(p, P) = L(A)(p) \ L(B)(P),
and the language of A x B consists of words which can be used as witnesses of
the fact that L(A) C L(B) does not hold. In a similar manner to universality
checking, the algorithm can stop the search immediately and conclude that
the language inclusion does not hold whenever an accepting product-state is
encountered. An example of a run of the classical algorithm is given in Fig. 5.2.
We find that L(A) C L(B) is true and the algorithm generates 13 product-states
(Fig. 5.2(c), the area labelled “Classical”).

Optimisation 1 that we use for universality checking can be generalised for
language inclusion checking as follows. Let A = (X,Q.4,04,14,F4) and B =
(3, @, 08, I, Fg) be two FA such that Q 4N Qg = . We denote by AU B the
FA (2,Q4U Qp, 64U 65, 14U Iz F4UFg). Let < be a relation in (AU B)<.
During the process of constructing the product automaton and searching for an
accepting product-state, we can stop the search from a product-state (p, P) if
(a) there exists some visited product-state (r, R) such that p < 7 and R <"3 P,
or (b) 3p’ € P : p < p'. Optimisation 1(a) is justified by Lemma 5.5, which is
very similar to Lemma 5.1 for universality checking.

Lemma 5.5. Let A, B be two FA, (p, P), (r,R) be two product-states where
p, r are states in A and P, R are macro-states in B, and < be a relation in
(AUB)E. Then, p <r and R =<7 P implies L(A,B)(p, P) C L(A, B)(r, R).

By the above lemma, if a word takes the product-state (p, P) to an accepting
product-state, it will also take (r, R) to an accepting product-state. Therefore,
we do not need to continue the search from (p, P).

Let us use Fig. 5.2(c) to illustrate Optimisation 1(a). As we mentioned, the
pure antichain-based approach can be viewed as a special case of our simulation
enhanced antichain approach when = is the identity. When = is the identity,
we do not need to continue the search from the product-state (ps, {q1,¢2}) be-
cause {q2} C {q1,¢2}. In this case, the algorithm generates 8 product-states
(Fig. 5.2(c), the area labelled “Antichain”). In the case that < is the maximal
simulation, we do not need to continue the search from product-states (p1, {g2}),
(p1,{q1,q2}), and (p2,{q1,q2}) because ¢1 < g2 and the algorithm already vis-
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ited the product-states (p1, {q1}) and (p2, {g2}). Hence, the algorithm generates
only 6 product-states (Fig. 5.2(c), the area labelled “Optimisation 1(a)”).

If the condition of Optimisation 1(b) holds, we have that the language of p
(w.r.t. A) is a subset of the language of P (w.r.t. B). In this case, for any word
that takes p to an accepting state in A, it also takes P to an accepting macro-
state in B. Hence, we do not need to continue the search from the product-state
(p, P) because all of its successor states are rejecting product-states. Consider
again the example in Fig. 5.2(c). With Optimisation 1(b), if < is the maximal
simulation on the states of AUB, we do not need to continue the search from the
first product-state (p1, {q1}) because p; < ¢1. In this case, the algorithm can
conclude that the language inclusion holds immediately after the first product-
state is generated (Fig. 5.2(c), the area labelled “Optimisation 1(b)”).

Observe that from Lemma 5.5, it holds that for any product-state (p, P) such
that py = py for some p1,p2 € P, L(A,B)(p,P) = L(A,B)(p, P \ {p1}) (as
P <3 P\ {p1}). Optimisation 2 that we used for universality checking can
therefore be generalised for language inclusion checking too.

We give the pseudocode of our optimised inclusion checking in Algorithm 4,
which is a straightforward extension of Algorithm 3. In the algorithm, the
definition of the Minimize(R) function is the same as what we have defined in
Section 5.1.1. The function Initialize( PStates) applies Optimisation 1 on the
set of product-states PStates to avoid unnecessary searching. More precisely, it
returns a maximal subset of PStates such that (1) for any two elements (p, P),
(¢, Q) in the subset, p A ¢VQ £"2 P and (2) for any element (p, P) in the subset,
Vp' € P: p A p'. We define the post-image of a product-state Post((p, P)) :=
{0, P)[3aeX:(pap)ed P ={p"|IpeP:(pap")edt}

Algorithm 4: Language Inclusion Checking
Input: FA A= (2,Q4,04,14,F1), B=(%,0Q5,03,13,Fg). A relation
<€ (AUB)E.
Output: TRUE if L(A) C L(B). Otherwise, FALSE.
1 if there is an accepting product-state in {(i,1p) | i € I4} then return
FALSE:

2 Processed:=(;

3 Next:= Initialize({(i, Minimize(Ig)) | i € I4});

4 while Next # () do

5 Pick and remove a product-state (r, R) from Next and move it to
Processed,

6 foreach (p, P) € {(v', Minimize(R')) | (r',R") € Post((r,R))} do

7 if (p, P) is an accepting product-state then return FALSE;

8 else if —=3p’ € P s.t. p <p' then

9 if =3(s, S) € Processed U Next s.t. p < sAS <" P then

10 Remove all (s, S) from Processed U Next s.t. s < pAP <73 S;

11 L Add (p, P) to Next;

12 return TRUE
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Correctness: Define Dist(P) € NU {oc} as the length of the shortest word in
the language of the product-state P or oo if the language of P is empty. The
value Dist(PStates) € NU{oo} is the length of the shortest word in the language
of some product-state in PStates or oo if PStates is empty. The predicate
Incl(PStates) is true iff for all product-states (p, P) in PStates, L(A)(p) C
L(B)(P). The correctness of Algorithm 4 can now be proved in a very similar
way to Algorithm 3, using the invariants below:

1. = Incl(Processed U Next) —> —Incl({(i,Ip) | i € 14}).
2. =Incl({(i,Ig) | i € I4}) = Dist(Processed) > Dist(Next).

Theorem 11. Algorithm 4 terminates, and returns TRUE iff L(A) C L(B).

5.2 Universality and Language Inclusion of Tree
Automata

To optimise universality and inclusion checking on word automata, we used re-
lations that imply language inclusion. For the case of universality and inclusion
checking on tree automata, we now propose to use relations that imply inclusion
of languages of contexts (context is the notion of a tree with “holes” instead of
(all) leaves defined in Chapter 4) that are accepted from tuples of tree automata
states. As we will see, a relation that fits here best is upward simulation induced
by identity introduced in Chapter 4. Notice that in contrast to the notion of a
language accepted from a state of a word automaton, which refers to possible
“futures” of the state, the notion of a language accepted at a state of a TA refers
to possible “pasts” of the state. Our notion of languages of contexts accepted
from tuples of tree automata states speaks again about the future of states,
which turns out useful when trying to optimise the (antichain-based) subset
construction for TA. Below, we state formal definitions of the notions needed
within this chapter.

The language of A accepted from a tuple (qi,...,q,) of states is the set
of contexts L9(A)(q1,...,qn) = {t € T | t(q1,...,qn) = ¢ for some q € F}.
We define the language accepted from a tuple of macro-states (Py, ..., P,) C Q"
as the set L2(A)(Py, ..., Py) = U{LP(A) (g1, q0) | (g1, ,qn) € P X ... X
P,}. We define Posty(qy,...,qn) = {q | (q1,...,qn) = ¢}. For a tuple of
macro-states, we let Posty(Py,..., Py,) := J{Posta(q1,-.-,qn) | (q1,---,qn) €
Py x---x P}

Let us use t” to denote the context that arises from a tree t € T(X) by
replacing all the leaf symbols of ¢ by [ and let for every leaf symbol a € X,
I, = {qg | & ¢} is the so called a-initial macro-state. Languages accepted at
final states of A correspond to the languages accepted from tuples of initial
macro-states of A as stated in Lemma 5.6.

Lemma 5.6. Let t be a tree over ¥ with leaves labelled by a1,...,a,. Then
t € L(A) if and only if tY € LE(A)(Lay, - .., La,)-
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5.2.1 The Role of Upward Simulation

We now work towards defining suitable relations on states of TA allowing us to
optimise the universality and inclusion checking. We extend relations < € QxQ
on states to tuples of states such that (qi,...,qn) = (r1,...,m) iff ¢ < r; for
each 1 < i < n. We define the set AS of relations that imply inclusion of
languages of tuples of states such that < € AS iff (q1,...,q,) = (r1,...,70)
implies £9(A)(q1, ..., qn) € LO(A)(re, ..., 7r0).

A relation that satisfies the above property is the upward simulation induced
by identity defined in Chapter 4. For convenience, in this chapter, we will call it
simply upward simulation. We note that it can be equivalently defined in a non-
parametric way as follows: An upward simulation on A is a relation < C Q x Q
such that if ¢ < r, then (1) g € F = r € F and (2) if (q1,...,qn) — ¢’ where
q=q;, then (q1,...,Qi—1,7,Qix1s- -+ qn) — ' where ¢ < 7/. 1

Lemma 5.7. For the maximal upward simulation < on A, we have < € AS.

Proof. We first show that the maximal upward simulation < has the following
property: If (¢1,...,qn) = ¢ in A, then for every (r1,...,7,) with (q1,...,qn) =
(r1,...,7n), there is 7/ € @ such that ¢ < ' and (r1,...,7,) = /. From
(q1,---,qn) = ¢ and ¢ < r1, we have that there is some rule (71, qs, ..., qn) —
s1 such that ¢ < s;. From the existence of (r,qo,...,qn) — s1 and from
g2 = 12, we then get that there is some rule (r1,72,q3,...,qn) 2 s such that
51 < s9, etc. Since the maximal upward simulation is transitive [ABHT08¢|, we
obtain the property mentioned above. This in turn implies Lemma 5.7. O

5.2.2 Tree Automata Universality Checking

We now show how upward simulations can be used for optimised universality
checking on tree automata. Let A = (X,Q, A, F) be a tree automaton. We
define T (X) as the set of all contexts over ¥ with n leaves. We say that an n-
tuple (qi, . .., qy) of states of A is universal if L7(A)(q1, . . .,q,) = TP (), this is,
all contexts with n leaves constructable over 3 can be accepted from (q1, . .., qn).
A set of macro-states MStates is universal if all tuples in MStates™ are universal.
From Lemma 5.6, we can deduce that A is universal (i.e., £L(A) = T(X)) if and
only if {I, | a € ¥} is universal.

The following Lemma allows us to design a new TA universality checking
algorithm in a similar manner to Algorithm 3 using Optimisations 1 and 2
from Section 5.1.1.

Lemma 5.8. For a given = € AS and two tuples of macro-states of A, if
(Ri,...,Ry) 22 (P1,..., Py), then L2(A)(Ry,...,R,) C LE(A)(Py, ..., P,).

Algorithm 5 describes our simulation enhanced antichain approach to checking
universality of tree automata in pseudocode. It resembles closely Algorithm 3.
There are two main differences: (1) The initial value of the Nezt set is the

!'Upward simulations parametrised by a downward simulation greater than the identity can-
not be used in our framework since they do not generally imply inclusion of languages of
tuples of states.
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Algorithm 5: Tree Automata Universality Checking

Input: A tree automaton A = (X,Q, A, F) and a relation < € A&,
Output: TRUE if A is universal. Otherwise, FALSE.
if Jda € %o such that I, is rejecting then return FALSE;
Processed:=();
Next:= Initialize{ Minimize(1,) | a € ¥o};
while Nezt # () do
Pick and remove a macro-state R from Next and move it to Processed;
foreach P € {Minimize(R') | R’ € Post(Processed)(R)} do

if P is a rejecting macro-state then return FALSE;

else if —3Q € Processed U Next s.t. Q <3 P then

Remove all Q from Processed U Next s.t. P <73 Q;
L Add P to Next;

© W NS O WY

=
o

11 return TRUE

result of applying the function Initialize to the set {Minimize(l,) | a € Xo}.
Initialize returns the set of all macro-states in { Minimize(I,) | a € ¥o}, which
are minimal w.r.t. <"7 (i.e., those macro states with the best chance of finding a
counterexample to universality). (2) The computation of the Post-image of a set
of macro-states is a bit more complicated. More precisely, for each symbol a €
Yn,n € N, we have to compute the post image of each n-tuple of macro-states
from the set. We design the algorithm such that we avoid computing the Post-
image of a tuple more than once. We define the Post-image Post(MStates)(R)
of a set of macro-states MStates w.r.t. a macro-states R € MStates. It is the set
of all macro-states P = Post,(Py,...,P,) where a € ¥,,,n € N and R occurs at
least once in the tuple (Py,..., P,) € MStates*. Formally, Post(MStates)(R) =
Uses{Posta(Pr, ..., Py) | n=4#(a), P1,..., P, € MStates, R € {P\,...,P,}}.

5.2.3 Correctness of the TA Universality Checking

In this section, we prove correctness of Algorithm 5 in a very similar way to
Algorithm 3, using suitably modified notions of distances and ranks. Let A =
(Q,2,A,F) be a TA. For n > 0 and an n-tuple of macro-states (Q1,...,Qn)
where Q; C Q for 1 <i < n, we let Dist(Q1,...,Q,) = 0iff Q;NF = () for some
i €{1,...,n}. We define Dist(Q1,...,Q,) = k € Nt U {oo} iff Q; C F for
alli € {1,...,n} and k = min({|¢t| | t € TS(Z) At & LO(A)(Q1,-..,Qn)}).
Here, |t| is the number of nodes of ¢ and we assume min(()) = oo. For a
set MStates of macro-states over @), we define the measure Rank(MStates) =
min({Dist(Q1,...,Qn) | n > 1AV1 <i < n:Q; € MStates}) and the predicate
Univ(MStates) <= Rank(MStates) = oo.

Lemma 5.9. The below two loop invariants hold in Algorithm 5:

1. =Univ(Processed U Next) = —Univ({l, | a € ¥p}).
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2. =Univ({l, | a € ¥9}) = Rank(Processed) > Rank(Processed U
Next).

Proof. 1t is trivial to see that the invariants hold at the entry of the loop,
taking into account Lemma 5.8. We show that the invariants continue to hold
when the loop body is executed from a configuration of the algorithm in which
the invariants hold. We use Processed®?® and Next®? to denote the values of
Processed and Next when the control is on line 4 before executing the loop
body and we use Processed™®” and Next™" to denote their values when the
control gets back to line 4 after executing the loop body once. We assume that
Next® £ 0.

Let us start with Invariant 1. Assume first that Univ(Processed®? U Next°d)
holds. Then, the macro-state R can appear within tuples constructed over
Processed®® U Next®® which are universal only. In such a case, all macro-states
Q reachable from all tuples T" built over Processed®® U Next®“ are such that
when we add them to Processed®® U Next®™®, the resulting set will still allow
building universal tuples only. Otherwise, one could take a non-universal tuple
containing some of the newly added macro-states @, replace @) by the tuple T’
from which it arose, and obtain a non-universal tuple over Processed®*UNext°,
which is impossible. Hence, the possibility of adding the new macro-states to
Nezt on line 10 cannot cause non-universality of Processed”™*” U Next™®" , which
due to Lemma 5.8 holds when adding the minimised macro-states too. Moreover,
removing elements from Next or Processed cannot cause non-universality either.
Hence, Invariant 1 holds over Processed™®" and Next™®" in this case. Next, let us
assume that ~Univ(Processed®® U Nezt®™) holds. Then, ~Univ({I, | a € o})
holds, and hence Invariant 1 must hold for Processed™" and Next™®" too.

We proceed to Invariant 2 assuming that =Univ({[, | a € ¥p}) holds (the
other case is trivial). Hence, Rank(Processed®®) > Rank(Processed®? U
Next') holds. We distinguish two cases:

1. In order to build a tuple T over Processed®® and Nezt® that is of Dist
equal to Rank(Processed®™® U Next®®), one needs to use a macro-state Q
in Nezt®?\ {R}. The macro-state Q stays in Nexzt™ or is replaced by a
<¥3_smaller macro-state added to Nezt on line 10 that, due to Lemma 5.8,
can only allow to build tuples of the same or even smaller Dist. Likewise,
the macro-states accompanying @) in T' stay in Next™®" or Processed™*" or
are replaced by <¥7-smaller macro-states added to Nezt on line 10 allowing
to build tuples of the same or smaller Dist, due to Lemma 5.8. Hence,
moving R to Processed on line 5 cannot cause the invariant to break.
Moreover, adding some further macro-states to Next on line 10 can only
cause Rank(Processed U Next) to decrease while removing macro-states
from Processed on line 9 can only cause Rank(Processed) to grow. Finally,
replacing a macro-state in Next by a <"3-smaller one as a combined effect
of lines 9 and 10 can again just decrease Rank(Processed U Next), due to
Lemma 5.8. Hence, in this case, Invariant 2 must hold over Processed™®"
and Next™".

2. One can build some tuple T over Processed®® and Next® that is of Dist
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equal to Rank(Processed®® U Next°d) using Processed®® U {R} only. In
this case, there must be tuples constructable over Processed®® U {R} and
containing R that are not universal. We can distinguish the following
subcases:

a) From some of the tuples built over Processed®® U{R} and containing

R, a non-accepting macro-state is reached via a single transition of
A, and the algorithm stops without getting back to line 4.

b) Otherwise, some macro-states that appear in Post(Processed, R) and
that will be added in the minimised form to Next must allow one
to construct tuples which are of Dist smaller than those based on
R. This holds since if a macro-state Q) is reached from some tuple
T containing R by a single transition, we can replace 1" in larger
tuples leading to non-acceptation by @), and hence decrease the size
of the context needed to reach non-acceptation. Taking into account
Lemma 5.8 to cover the effect of the minimisation and using a similar
reasoning as above for covering the effect of lines 9 and 10, it is then
clear that Invariant 2 will remain to hold in this case.

O

We can now prove Lemma 5.10 and Theorem 12 below in a very similar way
as Lemma 5.4 and Theorem 10, respectively.

Lemma 5.10. Algorithm 5 eventually terminates.

Theorem 12. Algorithm 5 always terminates, and returns TRUE if and only if
the input tree automaton A is universal.

5.2.4 Downward Universality Checking with Antichains

The upward universality introduced above tree automata automata conceptu-
ally corresponds to the forward universality checking of finite word automata
of [WDHRO06, DR10] where also a dual backward universality checking is intro-
duced. The backward universality algorithm from [WDHR06, DR10] is based on
computing the controllable predecessors of the set of non-final states. Control-
lable predecessors are the predecessors that can be forced by an input symbol to
continue into a given set of states. Then, the automaton is non-universal iff the
controllable predecessors of the non-final states cover the set of initial states.
Downward universality checking for tree automata as a dual approach to up-
ward universality checking is problematic since the controllable predecessors of
a set of states s C @ of an TA A= (Q, %, F, A) do not form a set of states, but
a set of tuples of states, i.e., for a € X3, CPrey(s) = {(q1,...,qn) | n € NAVg €
Q:(q1,-..,qn) = q € s}. Note that if we flatten the set CPrey(s) to the set
FCPrey(s) of states that appear in some of the tuples of CPre,(s) and check
that starting from leaf rules the computation can be forced into some subset of
FCPre,(s), then this does not imply that the computation can be forced into
some state of s. That is because for any rule (q1,...,q.) — ¢, ¢ € s, not all of
the states ¢1,...,q, may be reached. Moreover, it is too strong to require that
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starting from leaf rules, it must be possible to force the computation into all
states of FCPre,(s). Clearly, it is enough if the computation starting from leaf
rules can be forced into s via some of the vectors in CPre,(s), not necessarily all
of them. Also, if we keep CPre,(s) for s C @ as a set of vectors, we also have to
define the notion of controllable predecessors for sets of vectors of states, which
is a set of vectors of vectors of states, etc. Clearly, such an approach is not
practical and does not even terminate. Yet, we feel that some further research
on ways possibly circumventing this problems can be interesting as we discuss
in Section 5.5.

5.2.5 Tree Automata Language Inclusion Checking

We are interested in testing language inclusion of two tree automata A =
(3E,Qu,A4,F4) and B = (X,Qp,AR, Fg). From Lemma 5.6, we have that
L(A) C L(B) if and only if for every tuple aq,...,a, of leaf symbols from X,
LOA)VIA, I C LOBY)IE, ... 1B ). In other words, for any ay,...,an €
Y, every context that can be accepted from a tuple of states from I fl X..o.x1 gf}l
can also be accepted from a tuple of states from I fl X ...x1 fn. This justifies
a similar use of the notion of product-states as in Section 5.1.3. We define
the language of a tuple of product-states as L7(A, B)((q1, P1), - .., (qn, Pn)) :=
LO(A)(qr,....q0) \ L2B)(P1,...,P,). Observe that we obtain that £(A) C
L(B) iff the language of every n-tuple (for any n € N) of product-states from
the set {(7,15) | a € Xo,i € I} is empty.

Our algorithm for testing language inclusion of tree automata will check
whether it is possible to reach a product-state of the form (¢, P) with ¢ € F4
and PN Fp = () (that we call accepting) from a tuple of product-states from
{(i,IB) | a € Bg,i € I}. The following lemma allows us to use Optimisation
1(a) and Optimisation 2 from Section 5.1.3.

Lemma 5.11. Given < € (AUB)S, two tuples of states and two tuples of pro-
duct-states with (p1,...,pp) = (11, ...,rn) and (Ry,...,Ry) <72 (P1,..., Py,), it
holds that LE(A, B)((p1, P1), ..., (pn, Pn)) € LA, B)((r1, Ry1), ..., (rn, Ry)).

It is also possible to use Optimisation 1(b) where we stop searching from
product-states of the form (g, P) such that ¢ < r for some r € P. However, note
that this optimisation is of limited use for tree automata. Under the assumption
that the automata A and B do not contain useless states, the reason is that for
any ¢ € Q4 and r € Qp, if g appears at a left-hand side of some rule of arity
more than 1, then no reflexive relation from < € (AU B)S allows ¢ < r.2

Algorithm 6 describes our method for checking language inclusion of TA in
pseudocode. It closely follows Algorithm 4. It differs in two main points. First,
the initial value of the Next set is the result of applying the function Initialize
on the set {(i, Minimize(I%)) | a € $o,i € I} where Initialize is the same
function as in Algorithm 4. Second, the computation of the Post image of a set

2To see this, assume that a context tree t is accepted from (qi,...,qn) € Q%4 ¢ = gi,1 <
i < n. If ¢ < r, then by the definition of <, t € LE(AUB)(q1,...,Gi 1,7 qis1,s---,qn)-
However, that cannot happen, as A U B does not contain any rules with left hand sides
containing both states from A and states from B.
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Algorithm 6: Tree Automata Language Inclusion Checking

Input: TA A and B over an alphabet . A relation < € (AU B)<.
Output: TRUE if L(A) C L(B). Otherwise, FALSE.

1 if there exists an accepting product-state in Uaezo{(i,ff) | i € I} then
return FALSE;

2 Processed:=(;
3 Next:=Initialize(U,ex, { (7, Minimize(IB)) | i € IA});
4 while Next # () do
5 Pick and remove a product-state (r, R) from Next and move it to
Processed,
6 foreach (p, P) € {(r', Minimize(R')) | (r', R') € Post(Processed)(r, R)}
do
if (p, P) is an accepting product-state then return FALSE;
else if —=3p’ € P s.t. p <p' then
9 if —3(q, Q) € Processed U Next s.t. p < qA Q =<"7 P then
10 Remove all (¢, Q) from Processed U Next s.t.
q=XpAP =7 Q;
11 Add (p, P) to Next;

12 return TRUE

of product-states means that for each symbol a € ¥,,,n € N, we construct the
Post,-image of each n-tuple of product-states from the set. Like in Algorithm 5,
we design the algorithm such that we avoid computing the Post,-image of a
tuple more than once. We define the post image Post(PStates)(r, R) of a set of
product-states PStates w.r.t. a product-state (r, R) € PStates. It is the set of all
product-states (g, P) such that there is some a € 3, #(a) = n and some n-tuple
((q1,P1), .-, (qn, Pp)) of product-states from PStates that contains at least one
occurrence of (r, R) where ¢ € Posta(qi1,...,qn) and P = Postq(P1,...,Py,).

Correctness of the TA Language Inclusion Checking. We prove correctness
of Algorithm 6 in a very similar way to Algorithm 4, using suitably modified
notions of distances and ranks.

Let A = (3,Qu4, A4, Fy) and B = (X, Qp, A, F) be two tree automata.
Given n > 0 and an n-tuple of macro-states ((q1,P1),...,(qn, Pn)), we de-
fine Dist((q1, P1),...,(qn, Pn)) = 0 iff € € LY9(A,B)((q1, P1), ..., (qn, Pn)).
Otherwise we define Dist((q1, P1),...,(qn, Pn)) = k € Nt U {0} iff k =
min({|t| | t € TP(Z) At € LO9(A,B)((q1, P1), ..., (qn, Pn))}). Here, we assume
min(()) = oo. For a set PStates of product-states, we let Rank(PStates) =
min({Dist((q1, P1),...,(qn, Pn)) | n > 1 AV1 < i < n:(g,FP) € PStates}).
The predicate Incl(PStates) is defined to be true iff Rank(PStates) = oo.

Lemma 5.12. The following two loop invariants hold in Algorithm 6:

1. =Incl(Processed U Next) = —Incl(U,ex, {4 IB) i e IY).
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2. ﬁIncl(Uaezo{(i,IE) | i € IA}) = Rank(Processed) > Rank(Next U

Processed).

The proof is similar to that of Lemma 5.9. With the invariants in hand, we
can now prove Lemma 5.13 and Theorem 13 below in a very similar way as
Lemma 5.4 and Theorem 10, respectively.

Lemma 5.13. Algorithm 6 eventually terminates.

Theorem 13. Algorithm 6 terminates, and returns TRUE iff L(A) C L(B).

5.3 Experiments with Classical versus Pure Antichain
Algorithms for Tree Automata

In this section, we describe the experimental results obtained in [BHHT08Db]
where we compare classical subset construction based algorithms for tree au-
tomata with pure antichain based ones. The pure antichain algorithms may be
seen as special cases of Algorithms 4 and 6, where the role of simulation relation
is played by the identity relation.

We have implemented the above pure antichain approach for testing univer-
sality and inclusion of tree automata in a prototype based on the Timbuk tree
automata library [GVTO03]. We give the results of our experiments run on an
Intel Xeon processor at with 2.7GHz and 16GB of memory in Fig. 5.3. We
ran our tests on randomly generated automata and on automata obtained from
abstract regular tree model checking applied in verification of several pointer-
manipulating programs.

In the random tests, we use an approach for systematic generating random au-
tomata with different parameters inspired by the approach proposed by Tabakov
and Vardi in [TV05] (which was also used in [WDHRO06|). The parameters of
the generated automata are number of states, density of their transitions (the
average number of different right-hand side states for a given left-hand side of
a transition rule, i.e., |Al/[{a(q1,...,q) |€ 2,0 € Q : (q1,...,qn) = ¢}|) and
the density of their final states (i.e., |F|/|Q]).

5.3.1 Experiments with Antichain-based Universality Checking

For experiments with the pure antichain tree automata universality algorithm,
we used automata with 20 states and varied transition density and density of
final states. Fig. 5.3(a) shows the probability of such tree automata being uni-
versal, and Fig. 5.3(b) the average times needed for checking their universality
using our antichain-based approach. The difficult instances are those where
the probability of being universal is about one half. In Fig. 5.3(c), we show
how the running times change for some selected instances of the problem (in
terms of some chosen densities of transitions and final states, including those
for which the problem is the most difficult) when the number of states of the
automata grows. We also show the time needed when universality is checked
using determinisation, complement, and emptiness checking. We see that the
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Figure 5.3: Experiments with universality checking on tree automata

antichain-based approach behaves in a significantly better way. The same con-
clusion can also be drawn from the results of Fig. 5.3(d) obtained on automata
from experimenting with abstract regular tree model checking applied for veri-
fying various procedures manipulating trees presented in Section 5.3.3.

5.3.2 Experiments with Antichain-based Inclusion Checking

Below, in Fig. 5.4 and Fig. 5.5, we present the results that we have obtained from
experimenting with pure antichain-based inclusion checking for tree automata.
We first ran our tests on pairs of randomly generated automata having 10 states
and different possible densities of transitions and final states. The probability
that £(A) C £(B) holds for randomly generated tree automata A and B (both
having the same densities of transitions and final states) is shown in Fig. 5.4(a).
Fig. 5.4(b) then shows how the antichain-based inclusion checking behaves on
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such automata. We see that its time consumption is naturally growing for
automata where the probability of whether £(.A) C L£(B) holds is neither too
low nor too high.
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Figure 5.4: Experiments with inclusion checking on tree automata

Fig. 5.4(c) and Fig. 5.4(d) show what happens if either A or B is left com-
pletely random, and only B or A, respectively, follows a given density of transi-
tions and final states. The fact that the results in Fig. 5.4(c) follow Fig. 5.4(b),
whereas the time consumption in Fig. 5.4(d) is roughly implied by the size of
A (in terms of transitions), implies that the time consumption of the antichain-
based inclusion checking is—as expected—influenced much more by the automa-
ton B.

Finally, in Fig. 5.5(a), we show how the running times change for some selected
instances of the problem (in terms of some selected densities of transitions and
final states, including those for which the problem is the most difficult) when
the number of states of the automata starts growing. The figure also shows the
time needed when the inclusion checking is based on determinising and comple-
menting B and checking emptiness of the language £(.A)NL(B). We see that the
antichain-based approach really behaves in a very significantly better way. The
same conclusion can then be drawn also from the results shown in Fig. 5.5(b)
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that we obtained on automata saved from experimenting with abstract regular

tree model checking applied for verifying various real-life procedures manipu-
lating trees (cf. Section 5.3.3). In fact, the antichain-based inclusion checking

allowed us to implement an abstract regular tree model checking framework
entirely based on nondeterministic tree automata which is significantly more

efficient than the framework based on deterministic automata.
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Figure 5.5: Further experiments with inclusion checking on tree automata

5.3.3 Experiments with Regular Tree Model Checking

We now present our experiments with regular tree model checking that illus-
trate practical applicability of the language inclusion testing algorithms and the
tree automata reduction algorithms from Chapter 4. We will show how the
two techniques allow us to build the (abstract) regular tree model checking on
nondeterministic tree automata instead of on deterministic ones which greatly

improves efficiency of the method.

Nondeterministic Abstract Regular Tree Model Checking. As is clear from
the definition of 7 in Section 2.5, ARTMC was originally defined for and tested
on minimal deterministic tree automata (DTA). However, the various experi-
ments done showed that the determinisation step is a significant bottleneck. To
avoid it and to implement ARTMC using nondeterministic tree automata (TA),
we need the following operations over TA: (1) application of the transition re-
lation 7, (2) union, (3) abstraction and its refinement, (4) intersection with the
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set of bad configurations, (5) emptiness, and (6) inclusion checking (needed for
testing if the abstract reachability computation has reached a fixpoint). Finally,
(7) a method to reduce the size of the computed TA is also desirable—7(.A) is
then redefined to be the reduced version of the TA obtained from an applica-
tion of 7 on an TA A. We note that the method would in theory work without
reduction methods too. However, often hundreds of the steps (1) to (6) are
performed within a single verification run, and most of them increases the size
of automata3. Therefore, good reduction techniques are in fact crucial since the
size of automata tends to explode which reduces scalability of the method.

An implementation of Points (1), (2), (4), and (5) is easy. Moreover, con-
cerning Point (3), the abstraction mechanisms of [BHRVO06a| can be lifted to
work on TA in a straightforward way while preserving their guarantees to be
finitary, overapproximating, and the ability to exclude spurious counterexam-
ples. Furthermore, Chapter 4 gives efficient algorithms for reducing TA based on
computing suitable simulation equivalences on their states, which covers Point
(7). Hence, the last obstacle for implementing nondeterministic ARTMC was
Point (6), i.e., the need to efficiently check inclusion on TA. We have solved
this problem by Algorithm 6, which allowed us to implement a nondetermin-
istic ARTMC framework in a prototype tool and test it on suitable examples.
Below, we present the first very encouraging results that we have achieved. We
note that we were so far considering only the pure antichains where the role of
simulation within Algorithm 6 is played only by the identity relation?.

Experiments with Nondeterministic ARTMC. We have implemented the ver-
sion of ARTMC framework based on nondeterministic tree automata using the
Timbuk tree automata library [GVT03] and compared it with an ARTMC im-
plementation based on the same library, but using DTA. In particular, the
deterministic ARTMC framework uses determinisation and minimisation after
computing the effect of each forward or backward step to try to keep the au-
tomata as small as possible and to allow for easy fixpoint checking: The fixpoint
checking on DTA is not based on inclusion, but identity checking on the obtained
automata (due to the fact that the computed sets are only growing and minimal
DTA are canonical). For TA, the tree automata reduction from Chapter 4 that
we use does not yield canonical automata, and so the antichain-based inclusion
checking is really needed.

We have applied the framework to verify several procedures manipulating
dynamic tree-shaped data structures linked by pointers. The trees being ma-
nipulated are encoded directly as the trees handled in ARTMC, each node is
labelled by the data stored in it and the pointer variables currently pointing to
it. All program statements are encoded as (possibly non-structure preserving)

3Some abstraction methods reduce the size of automata too, however, not sufficiently enough
to outweigh the increase of size caused by the other steps.

4We have not yet managed to incorporate simulation enhanced antichain algorithms into
the framework of ARTMC. We plan to use them in the further prototype tools that we
mention in Section 5.5. We believe that the overall impact of the simulation subsumption
technique will be positive, judging from the experience that we have gathered and that is
presented in Section 5.4.
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Table 5.1: Running times (in sec.) of det. and nondet. ARTMC applied for verifica-
tion of various tree manipulating programs (x denotes a too long run or a failure due
to a lack of memory)

RB-delete RB-insert
bl (null,undef) (null,undef)
det. nondet. det. nondet. det. nondet.
full abstr. 5.2 2.7 X X 33 15
restricted abstr. 40 3.5 X 60 145 5.4
RB-delete RB-insert RB-insert

(RB preservation) || (RB preservation) (gen., test.)
det. nondet. det. nondet. det. nondet.
full abstr. X X X X X X
restricted abstr. X 57 X 89 X 978

tree transducers. The encoding is fully automated. The only allowed destruc-
tive pointer updates (i.e., pointer manipulating statements changing the shape
of the tree) are tree rotations [CLR89| and addition of new leaf nodes.

We have in particular considered verification of the depth-first tree traversal
and the standard procedures for rebalancing red-black trees after insertion or
deletion of a leaf node [CLR89]. We have verified that the programs do not
manipulate undefined and null pointers in a faulty way. For the procedures on
red-black trees, we have also verified that their result is a red-black tree (without
taking into account the non-regular balancedness condition). In general, the set
of possible input trees for the verified procedures as well as the set of correct
output trees were given as tree automata. In the case of the procedure for
rebalancing red-black trees after an insertion, we have also used a generator
program preceding the tested procedure which generates random red-black trees
and a tester program which tests the output trees being correct. Here, the set
of input trees contained just an empty tree, and the verification was reduced
to checking that a predefined error location is unreachable. The size of the
programs ranges from 10 to about 100 lines of pure pointer manipulations.

The results of our experiments on an Intel Xeon processor at 2.7GHz with
16GB of available memory (as in Section 5.3) are summarised in Table 5.1.
The predicate abstraction proved to give much better results (therefore we do
not consider the finite-height abstraction here). The abstraction was either
applied after firing each statement of the program (“full abstraction”) or just
when reaching a loop point in the program (“restricted abstraction”). The results
we have obtained are very encouraging and show a significant improvement in
the efficiency of ARTMC based on nondeterministic tree automata. Indeed,
the ARTMC framework based on deterministic tree automata has either been
significantly slower in the experiments (up to 25-times) or has completely failed
(a too long running time or a lack of memory)—the latter case being quite
frequent.
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5.4 Experiments with Pure versus Simulation
Enhanced Antichain Algorithms.

In this section, we describe the experimental result obtained in [ACH™10a]
where we compare pure antichain algorithms for FA and TA with simulation
enhanced antichain algorithms. Recall that by pure antichain algorithms we
mean algorithms published in [WDHRO06| for FA and in [BHH'08b] for TA
that may be seen as special cases of Algorithms 3, 4, 5, and 6 where the role
of simulation relation is played by the identity relation. Notice that in this
case, only Optimisation 1 comes to play within Algorithms 3 and 5 for checking
universality, and only Optimisation 1(a) applies within Algorithms 4 and 6 for
checking language inclusion. Since = is the identity relation, Checking the
relation <7 on sets of states is then replaced be checking subset inclusion.

We concentrated on experiments with inclusion checking, since it is more
common than universality checking in various symbolic verification procedures,
decision procedures, etc. We compared our approach, parametrised by maximal
simulation (or, for tree automata, maximal upward simulation), with the previ-
ous pure antichain-based approach of [WDHR06, BHH'08b|, and with classical
subset-construction-based approach. We implemented all the above in OCaml.
We used the algorithm in [HS09a| for computing maximal simulations. In or-
der to make the figures easier to read, we often do not show the results of the
classical algorithm. The reason is that in all of the experiments, the classi-
cal algorithm performed much worse than the other two approaches that these
experiments are primarily directed to compare.

We note that we have also done some preliminary experiments with random
automata generated according to the framework by Vardi and Tabakov in the
same way as in the previous section. Sadly, for this type of automata, the sim-
ulation optimisation give almost no speedup. It seems that for the hard areas
of the space of settings of parameters of the generator, simulation is very sparse
and the speedup that it gives hardly compensates the time needed for computing
the simulation itself. On the other hand, for the easy settings, pure antichain
algorithms finish too fast and the time needed for computing simulation domi-
nates. Therefore, we decided to perform more experiments with automata that
have more structure such as those from the sources described above and which
are also closer too real life applications than the random ones. As we will see,
for these automata the simulation optimisations really help.

5.4.1 Experiments on FA

For language inclusion checking of FA, we compared the simulation enhanced
approach that corresponds to Algorithm 4 against the former pure antichain ap-
proach that corresponds to the same algorithm but with the simulation relation
being identity. We tested the two on examples generated from the intermediate
steps of a tool for abstract regular model checking [BHV04|. In total, we have
1069 pairs of FA generated from different verification tasks, which included ver-
ifying a version of the bakery algorithm, a system with a parametrised number
of producers and consumers communicating through a double-ended queue, the
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