VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

NÍZKOŠUMOVÁ PŘEPÍNATELNÁ HORNÍ PROPUST PRO MĚŘICÍ MIKROFON

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE AUTHOR VIKTOR DOKTOR

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV TELEKOMUNIKACÍ

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF TELECOMMUNICATIONS

NÍZKOŠUMOVÁ PŘEPÍNATELNÁ HORNÍ PROPUST PRO MĚŘICÍ MIKROFON

LOW-NOISE SWITCHABLE HIGH-PASS FILTER FOR CALIBRATED MICROPHONE

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

VIKTOR DOKTOR

VEDOUCÍ PRÁCE SUPERVISOR Ing. PAVEL HANÁK, Ph.D.

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

Fakulta elektrotechniky a komunikačních technologií

Ústav telekomunikací

Bakalářská práce

bakalářský studijní obor Teleinformatika

Student:Viktor DoktorRočník:3

ID: 146806 *Akademický rok:* 2013/2014

NÁZEV TÉMATU:

Nízkošumová přepínatelná horní propust pro měřicí mikrofon

POKYNY PRO VYPRACOVÁNÍ:

Navrhněte diferenciální nízkošumovou horní propust, kterou bude možné zapojit mezi audio analyzátor XL2 a měřicí mikrofon M2010 od firmy NTI Audio. Propust musí být přepínatelná, s mezními kmitočty na 20, 60 a 120 Hz. Propust současně musí být transparentní pro fantomové stejnosměrné napájecí napětí 48 V z analyzátoru XL2 do mikrofonu. Správnost návrhu ověřte pomocí vhodného simulačního nástroje a sestavte funkční vzorek. Pokud filtr bude aktivní, optimalizujte jej na co nejnižší šum a zkreslení. Pokud to bude možné, takový aktivní filtr napájejte přímo z fantomového napětí z analyzátoru XL2. Filtr následně realizujte (včetně případného plošného spoje) a zabudujte do kovové stínicí krabičky. Jako vstup a výstup použijte XLR konektory. Parametry filtru dokumentujte měřením na přístroji Audio Precision APx525.

DOPORUČENÁ LITERATURA:

John Eargle, The Microphone Book, 2nd. ed. Focal Press, 2004. ISBN 978-0-240-51961-6.
 Douglas Self, Small Signal Audio Design. Focal Press, 2010. ISBN 978-0-240-52177-0.
 G. Randy Slone, The Audiophile's Project Sourcebook. McGraw-Hill, 2002. ISBN 0-07-137929-0.
 K. B. Benson, Audio Engineering Handbook. McGraw-Hill, 1988. 1040 p. ISBN 0-07-004777-4.

Termín zadání: 10.2.2014

Termín odevzdání: 4.6.2014

Vedoucí práce:Ing. Pavel Hanák, Ph.D.Konzultanti bakalářské práce:Ing. Jiří Schimmel, Ph.D.

doc. Ing. Jiří Mišurec, CSc.

UPOZORNĚNÍ:

Předseda oborové rady

Autor bakalářské práce nesmí při vytváření bakalářské práce porušit autorská práva třetích osob, zejména nesmí zasahovat nedovoleným způsobem do cizích autorských práv osobnostních a musí si být plně vědom následků porušení ustanovení § 11 a následujících autorského zákona č. 121/2000 Sb., včetně možných trestněprávních důsledků vyplývajících z ustanovení části druhé, hlavy VI. díl 4 Trestního zákoníku č.40/2009 Sb.

ABSTRAKT

V mojej bakalárskej práci som sa zameral na princíp frekvenčných filtrov, delenie filtrov a typy aproximácií. V prvej časti sa zameriavam na teóriu filtrov a návrh pasívneho filtra typu horná priepusť. V druhej časti sa zameriavam na samotný návrh aktívnej hornej priepuste a meniča napätia.

KĽÚČOVÉ SLOVÁ

Nízkošumová horná priepusť, frekvenčné filtre, RLC, DC-DC menič napätia.

ABSTRACT

In my bachelor project I focused on the principle of the frequency filters, dividing of filters and types of approximations. In the first part I focus on the theory of filters and design of passive High-Pass Filter. In the second part I focus on the specific design of the active high-pass filter and boost converter.

KEYWORDS

Low-noise high-pass filter, frequency filters, RLC, DC-DC converter

DOKTOR, Viktor *Nízkošumová prepínateľná horná priepusť pre merací mikrofon*: bakalárska práca. Brno: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav telekomunikací, 2014. 55 s. Vedúci práce bol Ing. Pavel Hanák, Ph.D.

PREHLÁSENIE

Prehlasujem, že som svoju bakalársku prácu na tému "Nízkošumová prepínateľná horná priepusť pre merací mikrofon" vypracoval samostatne pod vedením vedúceho bakalárskej práce, využitím odbornej literatúry a ďalších informačných zdrojov, ktoré sú všetky citované v práci a uvedené v zozname literatúry na konci práce.

Ako autor uvedenej bakalárskej práce ďalej prehlasujem, že v súvislosti s vytvorením tejto bakalárskej práce som neporušil autorské práva tretích osôb, najmä som nezasiahol nedovoleným spôsobom do cudzích autorských práv osobnostných a/nebo majetkových a som si plne vedomý následkov porušenia ustanovenia §11 a nasledujúcich autorského zákona č. 121/2000 Sb., o právu autorském, o právoch súvisejúcich s právom autorským a o zmeně niektorých zákonov (autorský zákon), vo znení neskorších predpisov, vrátane možných trestnoprávnych dôsledkov vyplývajúcich z ustanovenia časti druhé, hlavy VI. diel 4 Trestného zákoníka č. 40/2009 Sb.

Brno

·····

(podpis autora)

POĎAKOVANIE

Rád bych poděkoval vedoucímu diplomové práce panu Ing. Pavlovi Hanákovi, Ph.D. za odborné vedení, konzultace, trpělivost a podnětné návrhy k práci.

Brno

(podpis autora)

Faculty of Electrical Engineering and Communication Brno University of Technology Purkynova 118, CZ-61200 Brno Czech Republic http://www.six.feec.vutbr.cz

POĎAKOVANIE

Výzkum popsaný v této bakalářské práci byl realizován v laboratořích podpořených z projektu SIX; registrační číslo CZ.1.05/2.1.00/03.0072, operační program Výzkum a vývoj pro inovace.

Brno

(podpis autora)

EVROPSKÁ UNIE EVROPSKÝ FOND PRO REGIONÁLNÍ ROZVOJ INVESTICE DO VAŠÍ BUDOUCNOSTI

OBSAH

vod		12
Frel	cvenčné filtre	13
1.1	Teória filtrov	13
1.2	Realizácia a použitie frekvenčných filtrov	13
1.3	Postup pri návrhu	14
1.4	Pasívne filtre	14
1.5	Typy filtrov	15
	1.5.1 Dolná priepusť	15
	1.5.2 Horná priepust \ldots	16
	1.5.3 Pásmová priepusť	17
	1.5.4 Pásmová zádrž	18
1.6	Typy aproximácií	18
	1.6.1 Butterworthova aproximácia	19
	1.6.2 Čebyševova aproximácia	20
	1.6.3 Inverzná Čebyševova aproximácia	20
	1.6.4 Cauerova aproximácia	21
1.7	Prenosové vlastnosti filtrov	21
1.8	Frekvenčná transformácia filtrov	21
1.9	Vplyv reálnych vlastností prvkov na filtre	23
1.10	Aktívne filtre	23
	1.10.1 Gyrátor	24
	1.10.2 Impedančný konvertor (GIC) \hdots	24
Mik	rofón M2010 a akustický analyzér XL2	26
Pas	ívna horná priepusť	27
3.1	Výpočty pre medznú frekvenciu 20 Hz	27
Akt	ívna horná priepusť	29
4.1	Horná priepust	29
4.2	Meranie a simulácia	30
DC	-DC menič napätia	33
Kor	nštrukcia a zapojenie	36
Par	ametre	38
	vod Frek 1.1 1.2 1.3 1.4 1.5 1.6 1.6 1.7 1.8 1.9 1.10 Mik Pas 3.1 Akt 4.1 4.2 DC Kor Par	vod 1.1 Teória filtrov 1.2 Realizácia a použitie frekvenčných filtrov 1.3 Postup pri návrhu 1.4 Pasívne filtre 1.5 Typy filtrov 1.5.1 Dolná priepust 1.5.2 Horná priepust 1.5.3 Pásmová priepust 1.5.4 Pásmová zádrž 1.6 Typy aproximácií 1.6.1 Butterworthova aproximácia 1.6.2 Čebýševova aproximácia 1.6.3 Inverzná Čebýševova aproximácia 1.6.4 Cauerova aproximácia 1.6.5 Trekvenčná transformácia filtrov 1.8 Frekvenčná transformácia filtrov 1.9 Vplyv reálnych vlastností prvkov na filtre 1.10.1 Gyrátor 1.10.2 Impedančný konvertor (GIC) Mikrofón M2010 a akustický analyzér XL2 Pasívna horná priepusť 3.1 Výpočty pre medznú frekvenciu 20 Hz Aktívna horná priepusť 3.1 Výpočty pre medznú frekvenciu 20 Hz Meranie a simulácia 4.2 Meranie a simulácia 5.3 Výpočty pre medznú frekvenciu 20 Hz 5.4 Konštrukcia a zapojenie Parametre

8	Záver	39
Li	teratúra	40
Zo	znam symbolov, veličín a skratiek	41
Zo	oznam príloh	43
A	Butterworthova aproximácia	44
	A.1 Tabuľka Butterworthovej aproximácie	44
в	Technické parametre mikrofónu a meracieho prístroja	45
	B.1 Charakteristika meracieho mikrofónu M2010	45
	B.2 Špecifikácia meracieho mikrofónu M2010	46
	B.3 Špecifikácia meracieho prístroja XL 2	47
	B.4 Špecifikácia meracieho prístroja XL 2	48
\mathbf{C}	Schéma pasívneho filtra	49
D	Prehľad možností použitia gyrátora	50
\mathbf{E}	Výrobná dokumentácia	51
	E.1 Doska plošných spojov	51
\mathbf{F}	Konštrukcia	55

ZOZNAM OBRÁZKOV

1.1 Znázornenie pásiem v prenosovej charakteristike filtra dolná priepu	ısť	13
1.2 Diagram postupu pri návrhu		15
1.3 Filter 2. rádu typu dolná priepusť		16
1.4 Filter 2. rádu typu horná priepusť		16
1.5 Filter 2. rádu typu pásmová priepusť, a) paralelný rezonančný obv	bd	
b) sériový rezonančný obvod		17
1.6 Filter 2. rádu typu pásmová zádrž		18
1.7 Modulová charakteristika pre n-tý rád filtra		19
1.8 a) Modulová charakteristika pre n -tý rád filtra, b) Časové oneskorer	ie	
pre <i>n</i> -tý rád filtra		20
1.9 Transformácia dolnej priepuste na hornú priepusť		22
1.10 Model reálneho gyrátora		24
1.11 Impedančný konvertor simulujúci indukčnosť		25
2.1 Blokové zapojenie mikrofónu a meracieho prístroja		26
3.1 Bloková schéma zapojenia filtra medzi merací prístroj a mikrofón		27
3.2 Schéma zjednodušenej hornej priepuste		28
3.3 Prenosová charakteristika LC článku		28
4.1 Schéma aktívnej hornej priepuste		29
4.2 Simulačná schéma v programe OrCAD/PSpice		30
4.3 Blokové zapojenie pracoviska počas merania		31
4.4 Prenosová charakteristika aktívnej hornej priepuste - simulácia		31
4.5 Prenosová charakteristika aktívnej hornej priepuste - merané		32
5.1 Schéma DC-DC meniča napätia		33
6.1 Blokové zapojenie zariadenia		36
6.2 Detail zariadenia - pohľad z vrchu		37
6.3 Rozobrané zariadenie		37
7.1 Predný a zadný panel zariadenia		38
B.1 Mikrofón M2010		45
B.2 Technické parametre meracieho mikrofónu M2010		46
B.3 Technické parametre meracieho prístroja, str.1		47
B.4 Technické parametre meracieho prístroja, str.2		48
C.1 Schéma prepínateľnej hornej priepuste		49
D.1 Využitie gyrátora k simulácii obvodu		50
E.1 Kompletná schéma zariadenia		51
E.2 Obrazec plošných spojov - strana spojov		52
E.3 Doska plosnych spojov prepinaca		52

E.5	Osadzovací plán - spodná vrstva	53
E.6	Zoznam súčiastok	54
F.1	Výrobné výkresy panelov $\hfill\hfi$	55

ZOZNAM TABULIEK

ÚVOD

Frekvenčné filtre sa v súčasnej elektronike používajú veľmi často. Vývoj filtrov bol zaznamenaný hlavne v oblasti telekomunikácií. V dnešnej dobe sa často využívajú v úprave zvukových signálov, napríklad frekvenčné výhybky v reproduktoroch na rozdelenie na pásmo nízkych, stredných a vysokých frekvencií. Pasívne analógové frekvenčné filtre využívajú základné súčiastky, rezistory, kondenzátory a cievky. Tieto filtre sa dajú popísať pomocou diferenciálnych lineárnych rovníc. Využívajú sa v jednoduchších aplikáciách nenáročných na vysokú strmosť a presnosť, hoci sa dajú navrhnúť pasívne filtre s vysokou strmosťou, ale ich návrh je značne náročný. Pri týchto zložitejších návrhoch môžu vychádzať hodnoty súčiastok príliš vysoké a nezrealizovateľné, ako som sa presvedčil v mojej práci. V takýchto prípadoch je vhodné navrhnúť aktívny filter s použitím operačného zosilňovača, tranzistora alebo konvejora.

Našou úlohou bolo navrhnúť hornú priepusť s rôznymi medznými frekvenciami. Úlohu sme sa na začiatku snažil navrhnúť pasívne, ale kvôli veľkým indukčnostiam by sa tento filter nedal zrealizovať. Následne sme začali pracovať na návrhu aktívneho filtra. Aby tento filter bol skutočne nízkošumový, rozhodoli sme sa pre návrh s využitím tranzistora.

1 FREKVENČNÉ FILTRE

1.1 Teória filtrov

Frekvenčné filtre sú dvojbrány, lineárne závislé obvody, využívané v širokom okruhu elektroniky. Ich hlavnou úlohou je úprava signálu v závislosti na frekvencii. Filtre niektoré frekvencie prepúšťajú, tz. signál je bez útlmu, prípadne s veľmi malým útlmom, vtedy hovoríme o priepustnom pásme, ale iné frekvencie sa snažia čo najviac potlačiť, vtedy hovoríme o nepriepustnom pásme. Existuje ešte pásmo prechodu. Toto pásmo je medzi priepustným a nepriepustným pásmom a jeho veľkosť je závislá na strmosti filtra. Tieto vlastnosti môžeme vidieť v modulovej charakteristike, ktorá vyjadruje závislosť modulu na frekvencii. Filtre sa taktiež vyznačujú časovým oneskorením, tzv. fázovými posunmi. Tieto vplyvy zobrazujeme fázovou charakteristikou. Fázové posunutia pôsobia nežiadúco, spôsobujú prekmity či zvlnenia signálu. Naopak niektoré aplikácie, fázové a oneskorovacie obvody, využívajú tieto vplyvy vo svoj prospech.[1]

Obr. 1.1: Znázornenie pásiem v prenosovej charakteristike filtra dolná priepusť

1.2 Realizácia a použitie frekvenčných filtrov

Filtre môžeme realizovať rôznymi spôsobmi, ktoré určujú vlastnosti a účel použitia filtra. Ako prvé môžeme použiť diskrétne súčiastky, pomocou ktorých si každý, pri správnom návrhu môže vytvoriť filter presne na mieru podľa svojich požiadaviek. Ako druhú voľbu môžeme využiť integrované bloky, ktoré sú výrobcami vhodne navrhnuté, avšak častokrát si takýto filter nemôžeme upraviť a nie vždy vyhovuje našim požiadavkám. Ako tretiu možnosť môžeme realizovať číslicové filtre. Princíp spočíva v tom, že signál spracovávame pomocou matematických algoritmov a následne prevádzame na analógový signál. Výhodou takéhoto spracovávania je realizácia niektorých funkcií, ktoré bežný analógový filter nedokáže. Nevýhodu môže byť obmedzenie rýchlosťou výpočtu počítača, vzorkovanie a frekvenčné pásmo filtra. Z tohto vyplýva, že návrhár si musí správne vybrať typ realizácie podľa požiadaviek a použitia filtra.

Filtre majú nespočetne veľa využitia v rôznych aplikáciách. V rádiotechnike sa najčastejšie využívajú filtre typu pásmová priepusť, kde sa využívajú na výber úzkeho pásma na ktorom sa vysiela. Ďalej sa pásmové zádrže používajú na potlačenie určitého signálu a dolné priepuste na rôzne demodulátory. V elektrotechnike sa najčastejšie využívajú v reproduktorových výhybkách, dolné a horné priepuste na selekciu nízkych a vysokých tónov a pásmové priepuste na selekciu stredných tónov. A v neposlednom rade sa dolné priepuste využívajú na realizáciu zvukových efektov. Prevzaté z [1] a [2].

1.3 Postup pri návrhu

Pri návrhu filtrov neexistuje jednotný a všeobecný postup pre návrh konkrétneho filtra. Častokrát sa stáva, že sa návrhár musí vrátiť o krok, prípadne niekoľko krokov späť, pretože dospel do bodu, v ktorom sa filter nedá zrealizovať, prípadne nevyhovuje na začiatku stanoveným požiadavkám. Bežné kroky pri návrhu sú zobrazené na obrázku (1.2).

Prvý krok uvedeného diagramu je veľmi dôležitý. V tomto kroku je nutné poznať modulové frekvenčné spektrum vstupného signálu a požiadavky na jeho úpravu. Tieto požiadavky stanovujeme podľa tolerančného poľa (obr. 1.1). Ako druhé kritérium sú fázové vlastnosti filtra. Obvykle je to zachovanie tvaru vstupného signálu, v tomto prípade je fázová charakteristika veľmi dôležitá. Fázovú charakteristiku neriešime v prípade, keď nás zaujíma prednostne veľkosť signálu.

1.4 Pasívne filtre

Pasívne filtre sú založené na kombinácií RLC (rezistor, cievka, kondenzátor) prvkov. Tieto filtre nevyužívajú externé napájanie a taktiež prvky ako operačný zosilňovač, tranzistor, atď. Cievky vo filtroch blokujú signál s vysokou frekvenciou a prepúšťajú signál s nízkou frekvenciou, zatiaľ čo sa kondenzátor správa presne naopak. Výhodou pasívneho filtra je jeho stabilita a jednoduchý návrh pre nižšie rády filtra. Pre vyššie rády filtra sa návrh stáva zložitým.

Obr. 1.2: Diagram postupu pri návrhu

1.5 Typy filtrov

Filtre delíme podľa rôznych hľadísk. Rozdelenie podľa použitých súčiastok:

- Aktívne
- Pasívne

Rozdelenie podľa frekvenčného spektra:

- Dolná priepusť
- Horná priepusť
- Pásmová priepusť
- Pásmová zádrž

1.5.1 Dolná priepusť

Filtre prvého rádu obvykle využívajú, kvôli jednoduchosti a cene, prvky RC (odpor a kondenzátor). Filtre druhého rádu už využívajú prvky RLC (odpor, cievka, kondenzátor), tým dosahujú väčšiu strmosť. Filter typu dolná priepusť prepúšťa frekvencie v intervale od nula po medznú frekvenciu $f_{\rm m}$. Vhodným zapojením RLC prvkov dostávame filtre typu dolná a horná priepusť a ich kombináciou pásmovú priepusť a zádrž.

Obr. 1.3: Filter 2. rádu typu dolná priepusť

Prenosová funkcia má tvar

$$K(s) = \frac{1/(LC)}{s^2 + sR/L + 1/(LC)} = \frac{\Omega_{\rm m}^2}{s^2 + s\Omega_{\rm m}/Q + \Omega^2},$$
(1.1)

kde platí vzťah pre medznú frekvenciu

$$\Omega_{\rm m} = \frac{1}{\sqrt{LC}} \text{ alebo } f_{\rm m} = \frac{1}{2\pi\sqrt{LC}}, \qquad (1.2)$$

a činiteľ akosti

$$Q = \frac{\Omega_{\rm m}L}{R}.\tag{1.3}$$

1.5.2 Horná priepusť

Filter prepúšťa signály v pásme frekvencií f, pre ktoré platí $f > f_{\rm m}$, teda všetky signály väčšie ako medzná frekvencia. Prenosová funkcia má tvar

Obr. 1.4: Filter 2. rádu typu horná priepusť

$$K(s) = \frac{s^2}{s^2 + sR/L + 1/(LC)} = \frac{s^2}{s^2 + s\Omega_{\rm m}/Q + \Omega_s^2}.$$
 (1.4)

kde platia rovnaké vzťahy (1.2) a (1.3). Výslednú modulovú charakteristiku má symetrickú podľa $f_{\rm m}$ (zrkadlovo otočenú), fázové charakteristiky sú rovnaké, ale posunuté o 180°.

1.5.3 Pásmová priepusť

Kombináciou dolnej a hornej priepuste vznikne pásmová priepusť, ktorá prepúšta frekvencie f, pre ktoré platí $f_{m1} < f < f_{m2}$, teda frekvencie medzi prvou a druhou medznou frekvenciou. Existujú dve možnosti zapojenia – s paralelným (obr. 1.5.a) a sériovým rezonančným obvodom (obr. 1.5.b). Prenosová funkcia paralelného rezonančného obvodu má tvar

Obr. 1.5: Filter 2. rádu typu pásmová priepusť, a) paralelný rezonančný obvod b) sériový rezonančný obvod

$$K(s) = \frac{s/(R_{\rm P}C)}{s^2 + s/(R_{\rm P}C) + 1/(LC)} = \frac{s\Omega_{\rm m}/Q}{s^2 + s\Omega_{\rm m}/Q + \Omega_{\rm m}^2},$$
(1.5)

kde platí vzťah (1.2) a činiteľ akosti

$$Q = \frac{R_{\rm P}}{\Omega_{\rm m}L},\tag{1.6}$$

v prípade sériového rezonančného obvodu by platil vzťah (1.3). Šírka priepustného pásma (-3 dB) je daná vzťahom

$$B = \frac{f_{\rm m}}{Q} \,[{\rm Hz}]. \tag{1.7}$$

V modulovej charakteristike, pásmová priepusť vykazuje strmosť (20 dB/dekádu), polovičnú oproti dolnej alebo hornej priepusti. Fázová charakteristika vykazuje pri rezonančnej frekvencii nulový fázový posun. Skupinové oneskorenie je rovnaké ako pri dolnej a hornej priepusti.

1.5.4 Pásmová zádrž

Pásmová zádrž je paralelný rezonančný obvod, ktorý prepúšťa frekvencie od nuly po prvú medznú frekvenciu a od druhej medznej frekvencie teoreticky po nekonečno. Keď je obvod v rezonancii, vykazuje nekonečne veľký odpor a prenos je nulový. Keď sa frekvencia blíži k nule alebo k nekonečnu, prenos je jednotkový. Prenosová funkcia má tvar

Obr. 1.6: Filter 2. rádu typu pásmová zádrž

$$K(s) = \frac{s^2 + 1/(LC)}{s^2 + s/(R_{\rm P}C) + 1/(LC)} = \frac{s^2 + \Omega_{\rm m}^2}{s^2 + s\Omega_{\rm m}/Q + \Omega_{\rm m}^2} = \frac{s^2 + \Omega_{\rm N}^2}{s^2 + s\Omega_{\rm m}/Q + \Omega_{\rm m}^2},$$
(1.8)

kde platia vzťahy (1.2) a (1.6), ďalej je tu zavedený nový parameter, frekvencia nulového prenosu $\Omega_{\rm N}$. Doplnok šírky priepustného pásma *B* je zhodný so vzťahom (1.7). Fázové charakteristiky sú zhodné s predošlými filtrami, s výnimkou 180°, kedy sa menia charakteristiky z dolnej priepuste na hornú priepusť. Charakteristiky skupinového oneskorenia sú zhodné s predošlými filtrami.

1.6 Typy aproximácií

Ide o matematickú úpravu, ktorá poskytne najvhodnejší priebeh prenosovej funkcie vzhľadom na tolerančné pole. Pri výbere typu aproximácie je nutné prihliadnuť na požiadavky filtra z hľadiska skupinového oneskorenia. V praxi používame niekoľko základných typov aproximácií.

Základné typy aproximácií

- Butterworthova
- Čebyševova
- Inverzná Čebyševova
- Cauerova

1.6.1 Butterworthova aproximácia

Ide o aproximáciu s maximálne plochou charakteristikou, s monotónnym priebehom v priepustnom aj nepriepustnom pásme, ale s menšou strmosťou. Butterworthova aproximácia je najpoužívanejšia, pretože je to kompromis medzi strmosťou a fázovou linearitou. Rád filtru sa dá celkom ľahko zistiť z modulovej charakteristiky na obrázku (1.7). Táto aproximácia je najvhodnejšia pre audio aplikácie, kvôli jej plochosti v priepustnom pásme. Ostatné aproximácie majú pre audio aplikácie ne-žiadúce zvlnenie a preto sa v tomto odvetví nepoužívajú.

Obr. 1.7: Modulová charakteristika pre n-tý rád filtra

Charakteristickú funkciu filtra je možné vyjadriť v tvare polynomu

$$F(\Omega^2) = \beta_0 + \beta_1 \Omega^2 + \dots \beta_n \Omega^n.$$
(1.9)

Pri Butterworthových filtroch je táto funkcia nahradená jednoduchším vzťahom

$$F(\Omega^2) = 1 + \epsilon^2 \Omega^n, \tag{1.10}$$

kde ϵ je parameter zodpovedajúci šírke kanálu v priepustnom pásme

$$\epsilon = \sqrt{10^{0,1A_{\max}} - 1},\tag{1.11}$$

bežne pre

$$A_{\max} = A(f_{\max}) = 3,01 \,\mathrm{dB}.$$
 (1.12)

Prenosová funkcia má potom pre rôzny rád menovateľa

$$D_1(s) = 1 + s$$
 $D_2(s) = 1 + \sqrt{2} + s^2$ $D_3(s) = 1 + 2s + 2s^2 + s^3$. (1.13)

Modulová charakteristika

$$K(\Omega) = \frac{K_0}{\sqrt{1 + \epsilon^2 \Omega^{2n}}}.$$
(1.14)

Obr. 1.8: a) Modulová charakteristika pr
en-tý rád filtra, b) Časové oneskorenie pr
en-tý rád filtra

1.6.2 Čebyševova aproximácia

Je to aproximácia s izoextremálnym zvlnením v priepustnom pásme a s monotónnym priebehom v nepriepustnom pásme. Má o niečo strmšiu charakteristiku ako Butterworthová aproximácia, ale horšie vlastnosti z hľadiska fázovej charakteristiky a skupinového oneskorenia. V prípade voľby malého zvlnenia v priepustnom pásme dôjde k zníženiu strmosti, ale k zlepšeniu fázovej charakteristiky a odozvy na jednotkový skok. Pre ľubovoľné zvlenenie a potlačenie je možné vypočítať rád filtru nasledovne

$$n \ge \frac{\arccos h \sqrt{(10^{K_{\rm P}/10} - 1)/(10^{K_{\rm ZVL}/10)} - 1)}}{\arccos h(f_{\rm P})}.$$
(1.15)

1.6.3 Inverzná Čebyševova aproximácia

Aproximácia má totožnú strmosť a frekvenciu potlačenia $f_{\rm P}$ ako Čebyševova aproximácia, ale má zvlnenie v nepriepustnom pásme a výrazne lepšie fázové vlastnosti a odozvu na jednotkový skok. Aproximácia je založená na Butterworthovej aproximacií s pridaním núl prenosu. Pre výpočet rádu filtra je možné použiť vzorec (1.15).

1.6.4 Cauerova aproximácia

Aproximácia s najstrmšou modulovou charakteristikou. Fázová charakteristika je najmenej lineárna zo všetkých uvedených aproximácií. Zmena hodnoty K_{ZVL} mení strmosť a skupinové oneskorenie podobne ako u Čebyševovej aproximácii. Vplyv hodnoty K_{P} má podobný dopad ako u inverznej Čebyševovej aproximácii. Návrh filtra s touto aproximáciou je značne náročný a je nutné využiť k návrhu počítač. Prevzaté z [1], [2], [6].

1.7 Prenosové vlastnosti filtrov

Harmonický signál s amplitúdou U_1 , frekvenciou ω_1 a fázou φ_1 , ktorý prechádza cez filter má na jeho výstupe signál s rovnakou frekvenciou, ale zmenenou amplitúdou U_2 a fázou φ_2 . Prenos napätia K_U môžeme pomocou modulu a argumentu vyjadriť nasledujúcim vzťahom

$$K_{\rm U} = \frac{U_2}{U_1}, \varphi = \varphi_2 - \varphi_1. \tag{1.16}$$

Modul prenosu $K_{\rm U}$ je bezrozmerné číslo, ale častejšie sa uvádza v decibeloch

$$K_{\rm U}[{\rm dB}] = 20 \log{(K_{\rm U})}.$$
 (1.17)

Pomocou vyjadrenia (1.16) dokážeme vypočítať prenos len pre konkrétnu frekvenciu ω . Preto sa zaviedla prenosová funkcia v tvare racionálnej lomenej funkcie, pomocou ktorej vypočítame pre každú frekvenciu zodpovedajúci prenos

$$K_{(s)} = \frac{a_m(s)^m + a_{m-1}(s)^{m-1} + \ldots + a_1s + a_0}{b_n(s)^n + b_{n-1}(s)^{n-1} + \ldots + b_1s + b_0}, (m \ge n).$$
(1.18)

Túto funkciu môžeme taktiež rozdeliť na modulovú a argumentovú časť. Veľkosť výslednej amplitúdy získame vynásobením vstupnej amplitúdy a modulu prenosu danej frekvencie

$$U_2(f) = U_1 K(f). (1.19)$$

Veľkosť fázy získame súčtom fázového posunu a fázy vstupnej zložky.

$$\varphi_2(f) = \varphi_1(f) + \varphi(f). \tag{1.20}$$

Prevzaté z [1].

1.8 Frekvenčná transformácia filtrov

Filtre rôznych typov sa dajú transformovať z dolnej priepuste. Transformáciou budeme ovplyvňovať nasledujúce body: rozsah charakteristiky, prenosovú funkciu, póly a nulové body a prvky obvodu. Frekvenčná transformácia preskupuje množstvo bodov, aby sme dosiahli rozdielne prenosové charakteristiky. Preto je nutné pozrieť sa na celú os, kladnú aj zápornú polovicu. Môžeme použiť komplexne premennú $s = \sigma + j\omega$ pre normalizovanú funkciu dolnej priepuste. Transformovaná prenosová funkcia bude funkcia premennej $S = \sum + j\Omega$.

Ako ukážku použijeme prevod na hornú priepusť z priepuste dolnej, ktorej priepustné pásmo je $0 < \omega < \omega_p$ a $\omega_p = 1$ s prenosovou funkciou $H_{\rm DP}(s)$. Využívame transformácie

$$s = \frac{\Omega_0}{S},\tag{1.21}$$

pozdĺž imaginárnej osi

$$\omega = \frac{\Omega_0}{\Omega},\tag{1.22}$$

s použitím rovnice (1.21), dostaneme prenosovú funkciu hornej priepuste

$$H_{\rm HP}(S) = H_{\rm DP} \frac{\Omega_0}{S}.$$
 (1.23)

Ukážka, čo táto transformácia vykonáva, je zobrazená na obrázku (1.9).

Obr. 1.9: Transformácia dolnej priepuste na hornú priepust

Bod $\omega = 1$ je umiestnený do bodu $\Omega = -\Omega_0$ a bod $\omega = \omega_s$ do bodu $\Omega = -\Omega_0/\omega_s$. Teda nielen, že sme transformovali dolnú priepusť na hornú priepusť, ale aj prevrátili na zápornú polovicu prenosovej charakteristiky. Pretože prenosová charakteristika je symetrická, tento detail nás nemusí zaujímať. Výsledne pásmo prenosu je $\Omega_0 < \Omega < \infty$ a nepriepustné pásmo je na intervale $0 < \Omega < \Omega_0/\omega_s$. Filter typu dolná priepusť môžeme jednoducho upraviť nasledujúcimi krokmi. Všetky odpory zostávajú nezmenené, pretože nie sú frekvenčne závislé. Cievky dolnej priepuste majú impedanciu induktívneho charakteru a táto impedancia korešponduje s impedanciou kapacitného charakteru hornej priepuste a naopak. Prakticky to znamená, že v zapojení zameníme cievky za kondenzátory a naopak.[5]

1.9 Vplyv reálnych vlastností prvkov na filtre

Pri návrhu a následných simulácií filtra počítame s ideálnymi prvkami, teda bez parazitných vlastností. Navyše počítame s presnými hodnotami, obvykle na niekoľko desatinných miest, ale pri zostavovaní filtra používame prvky s určitými toleranciami, prípadne ani nenájdeme danú hodnotu vo výrobnej rade. Tým dochádza k odlišnostiam medzi simulovanými a reálnymi prenosovými vlastnostami. Vo všeobecnosti platí, že s rastom rádu filtra narastajú aj spomínané odchýlky. Taktiež musíme uvažovať aj s linearitou kondenzátorov a cievok, pretože nelinearita týchto súčiastok môže byť zdrojom rušivých signálov. Najväčší vplyv na vlastnosti filtra má činitel akosti Q cievky. Vplyv parazitných vlastností sa neprejavuje vo všetkých oblastiach prenosovej charakteristiky rovnako. K najväčším zmenám dochádza v oblasti prechodu medzi priepustným a nepriepustným pásmom.[1]

1.10 Aktívne filtre

Aktívne filtre vyžívajú prvky ako operačný zosilňovač, tranzistor, atď. Ich úlohou je nahradiť pasívne filtre v oblasti nízkych frekvencií, pretože tieto filtre obsahujú indukčnosti s veľmi veľkými hodnotami. To má za následok vyššiu cenu a veľké rozmery filtra. V niektorých prípadoch dospejeme k nerealizovateľným hodnotám a z toho dôvodu vytvárame syntetické cievky pomocou aktívneho prvku. Nahradiť cievku môžeme viacerými spôsobmi, napríklad vytvorenie dvojpólu, ktorý medzi svorkami vykazuje indukčnosť. Aktívne filtre ponúkajú presnosť, stabilitu a odolnosť proti elektromagnetickému rušeniu. Ponúkajú možnosť rozdielnej vstupnej a výstupnej impedancie, kaskádne radenie filtrov bez vzájomného ovplyvnenia. Tak, ako pasívne filtre tak, aj aktívne, vyžadujú minimum prvkov pre realizáciu filtra prvého a druhého rádu. Prevzaté z [1], [3], [4].

1.10.1 Gyrátor

Gyrátor je pozitívny imitačný invertor, ktorý sa využíva k náhrade cievok. Vykonáva inverziu hodnoty zaťažovacej impedancie a násobí ju tzv. gyračnou konštantou k_g. Keď gyrátor zaťažíme impedanciou kapacitného charakteru, gyrátor nám ju prevráti na opačnú, tz. impedanciu induktívneho charakteru. Gyrátor, z hľadiska vstupov a výstupov, je symetrický, tz. $g_1 = g_2 = g$. Pri reálnom gyrátore (obr. 1.10) sú gyračné vodivosti frekvenčne závislé

$$g(\omega) = \frac{g}{1+p\tau}, \tau = \frac{1}{\omega_{\rm m}}.$$
(1.24)

Obr. 1.10: Model reálneho gyrátora

Model doplníme o parazitné stratové vodivosti G_1 a G_2 a následne zavedieme činiteľ akosti gyrátoru

$$Q = \frac{1}{2} \sqrt{\frac{g_1 g_2}{G_1 G_2}}.$$
 (1.25)

Realizácia gyrátoru s využitím operačných zosilňovačov, je pomerne náročná a v dnešnej dobe využívajú obvody typu impedančný konvertor, v starších literatúrach označovaný ako mutátor. Uzemnenie gyrátora zabraňuje jeho použitie v dolných priepustiach a pásmových priepustiach. Avšak existuje spojenie dvoch gyrátorov, ktoré tento problém odstraňuje a vytvára sa tzv. plávajúca cievka. Pri návrhu musíme vo výpočte počítať s polovičnými hodnotami gyrátorov, pretože sériové zapojenie indukčností sa sčítava. Príklady využitia gyrátora nájdeme v tabuľke (D.1).

1.10.2 Impedančný konvertor (GIC)

Impedančné konvertory sú aktívne RC obvody, navrhnuté na simuláciu frekvenčne závislých prvkov ako sú cievky a kapacitory. Z hľadiska vstupov a výstupov sú GIC nesymetrické, pretože z jednej strany násobia a z druhej strany delia frekvenciou a konštantou. Filtre s použitím impedančného konvertora majú extrémne nízke

skreslenie a šum. Impedančný konvertor môžeme realizovať pomocou dvoch operačných zosilňovačov a RC prvkov (obr. 1.11). Hodnotu impedancie simulovanej cievky vypočítame podľa vzťahu (1.26). Prevzaté z [1], [3], [4].

(1.26)

Obr. 1.11: Impedančný konvertor simulujúci indukčnosť

2 MIKROFÓN M2010 A AKUSTICKÝ ANALY-ZÉR XL2

Mikrofón M2010 je všesmerový mikrofón používaný v profesionalných aplikáciách a na meracie účely. Obsahuje symetrický výstup (obr. 2.1), tz. na jeho výstupe sa objavujú dva signaly s rovnakou apmlitúdou, ale jeden je inverzný voči druhému. Po spracovaní signálov v meracom prítroji získame jeden výsledný signál s menším skreslením, než keby sme použili nesymetrické zapojenie (signál proti zemi).

Obr. 2.1: Blokové zapojenie mikrofónu a meracieho prístroja

Fantómové napájanie

Tento mikrofón je napájaný fantómovým napätím +48V. Toto jednosmerné napätie je vedené do oboch liniek, rovnomerne pomocou rezistorov R_P (v našom prípade $6, 8 \text{ k}\Omega$) k mikrofónu, kde sa sčíta so signálom vytvoreným v mikrofóne. Merací prístroj sleduje rozdiely v napätí a po filtrácii jednosmernej zložky spracováva signál z mikrofónu. Toto napätie využívajú hlavne kondenzátorové mikrofóny, ktoré sa skladajú z dvoch kovových doštičiek, na ktoré je privedené toto napätie. Jedna doštička je pevná a jedna pohyblivá, zmenou polohy pohyblivej doštičky dochádza k zmene kapacity, a tým aj k zmene napätia.

3 PASÍVNA HORNÁ PRIEPUSŤ

Našou úlohou bolo vytvoriť prepínateľnú hornú priepusť 3. rádu. Po naštudovaní danej problematiky návrhu pasívnych filtrov sme začali pracovať na návrhu II článku. Celý návrh sme chceli koncipovať tak, ako vidíme na obrázku v prílohe (C.1), tz. ako tri samostatné horné priepuste a otočnými prepínačmi by sme privádzali a odvádzali vstupný a výstupný signál vždy k priepusti, podľa požadovanej medznej frekvencie. Tieto tri filtre by boli umiestnené v kovovej krabičke, ktorá by bola spojená so zemou, kvôli minimalizovaniu rušenia z okolia. Pri návrhu sme použili Butterworthovu aproximáciu (kapitola 1.6.1). Fantómové napájanie komplikuje návrh pasívneho filtra, pretože kondenzátor neprepúšťa jednosmerné napájanie. Pri zapnutí fantómového napájania by kondenzátor, zapojený medzi cievky, blokoval toto napätie, ktoré by sa nedostalo k mikrofónu. Z toho dôvodu je paralelne ku kondenzátoru zapojený rezistor. Tento rezistor slúži aj ako prispôsobenie rozdielnych impedancií vstupu a výstupu. Nevýhoda tohto riešenia je priepusť signálu mimo frekvenčne závislé prvky, a tým aj nižšia strmosť filtra.

Obr. 3.1: Bloková schéma zapojenia filtra medzi merací prístroj a mikrofón

3.1 Výpočty pre medznú frekvenciu 20 Hz

Pre výpočet sme použili zjednodušné zapojenie (obr. 3.2). K výpočtu je potrebné poznať výstupnú impedanciu mikrofónu (príloha B.2), vstupnú impedanciu meracieho prístroja (príloha B.4). $R_1 = 50 \Omega$, $R_2 = 100 \text{ k}\Omega$.

$$R = \frac{R_3 R_2}{R_3 + R_2} = \frac{5.10^3 * 100.10^3}{5.10^3 + 100.10^3} = 4,76 \,\mathrm{k\Omega}.$$
(3.1)

Kapacita a indukčnosti boli počítané zo vzťahov (3.2) a (3.3).

$$K_{\rm L} = \frac{R}{2\pi f_{\rm m}} = \frac{4,76.10^3}{2*\pi*20} = 37,89\,{\rm H}$$
(3.2)

$$K_{\rm C} = \frac{1}{R2\pi f_{\rm m}} = \frac{1}{4,76.10^3 * 2 * \pi * 20} = 1,67\,\mu\text{F}.$$
(3.3)

Obr. 3.2: Schéma zjednodušenej hornej priepuste

Z tabuľky (A.1) pre Butterworthovu aproximáciu a filter 3. rádu bolo odčítané $l_1 = l_2 = 1,000$ a $c_1 = 2,000$ a následne aproximované hodnoty

$$L_{1X} = L_{2X} = K_{\rm L}/l_1 = 37,89\,{\rm H} \tag{3.4}$$

$$C_{1\rm X} = K_{\rm C}/c_1 = 835\,{\rm nF}.$$
 (3.5)

Obr. 3.3: Prenosová charakteristika LC článku

Z výslednej simulovanej charakteristiky (obr. 3.3) vyčítame, že pr
e $f=20\,{\rm Hz}$ je hodnota útlmu cca -6,33 dB.

Keďže filter je navrhnutý diferenčne, nemusíme hodnoty súčiastok zdvojnásobiť.

4 AKTÍVNA HORNÁ PRIEPUSŤ

Výsledná prenosová charakteristika (obr. 3.3) vychádzala sľubne a podľa očakávaní, ale pri týchto frekvenciách vychádzali indukčnosti príliš veľké a tento spôsob by sa nedal realizovať. Preto sme sa rozhodli priepusť riešiť pomocou aktívnych súčiastok, konkrétne s použitím tranzistora.

R10 250k T1 2SC2240 _**H**______ GND PHAN 100n ⊓ ^{S1} S1 آٻ R11 8 53k R12 ╣┠ 8 50n -**1** 31k ́-**H**-₈ Х +оит R<u>13</u> 10n × −оит R14 15k +INX X GND_OUT 10n -INX C16 R<u>23</u>]⁸884 R24 -**__** 15k GND IN 🗙 R22 50n 1000 5. 1018 5. 31k ò õ R<u>21</u> -**—** 53k 100n 2SC2240 T2 R20 250k

4.1 Horná priepusť

Obr. 4.1: Schéma aktívnej hornej priepuste

Po skúsenostiach s návrhom pasívnej priepuste, sme začali pracovať na návrhu pomocou aktívnych súčiastok. Použili sme NPN tranzistor pre jeho menší šum oproti operačným zosilňovačom. Filter je navrhnutý symetricky, každá časť spracováva jeden signál. Princíp fungovania aktívnej priepuste je v tom, že do spätnej väzby zaradíme CR článok, ktorý reaguje na frekvenciu a ovláda otváranie tranzistora. Pri vysokej frekvencii je tranzistor plne otvorený a pri frekvencii nizšej ako medzná frekvencia sa priviera.

Medzná frekvencia sa nastavuje pomocou jedného otočného prepínača, ktorým prepínam medzi rezistormi R11, R12, R13, respektíve R21, R22, R23 a kondenzátormi C6, C7, C8, respektíve C16, C17, C18. Tieto rezistory tvoria zápornú spätnú väzbu a tranzistory sú zapojene so spoločným kolektorom. Rezistormi R10, R14, respektíve R20, R24 nastavujem pracovný bod tranzistora. Rezistor R10, respektíve R20 slúži na nastavenie napätia na báze tranzistora a rezistor R14, respektíve R24 slúži na nastavenie prúdu cez tranzistor. Rezistory R8, R9 slúžia na privedenia fantómového napätia na vstup mikrofónu. Toto napätie je odoberané z DC-DC meniča (Kapitola 5). Samotný filter je napájaný priamo z analyzátora XL2. Týmto odpadá komplikácia pri návrhu filtra. Pri použití jedného zdroja by sa mohol signál zo vstupu dostať na výstup filtra a tým znehodnotiť parametre filtra.

Pri návrhu filtra som sa inšpiroval vnútorným zapojením mikrofónu AKG C414EB. Miesto tranzistorov BC413C boli použité tranzistory 2SC2240 pre ich menší šum, lineárny priebeh h_{21e} a vyššiu hodnotu β . Priepusť využíva Butterwothovu aproximáciu. [7]

4.2 Meranie a simulácia

Obr. 4.2: Simulačná schéma v programe OrCAD/PSpice

Priepusť bola simulovaná pomocou počítačového programu a prenosové charakterisky sú zobrezené na obrázku (4.4). Následne bola priepusť zostavená na kontaktnom nepájivom poli, kde sme si overili funkčnosť hornej priepuste. Použité súčiastky sa od simulovaných líšili len veľmi málo. Výsledné prenosové charakteristiky sú zobrazené na obrázku (4.5). Charakteristiky CH1, CH1₂, CH1₃ sú prenosové charakteristiky na medzných frekvenciách 20 Hz, 60 Hz, 120 Hz a charakteristika CH1₄ je meraná vo vypnutom stave zariadenia. Počas merania som použil merací prístroj Audio Precision prepojený s počítačom. Miesto fantómového napájania z analyzátora som použil externý zdroj.

Pri meraní šumového napätia sme najskôr prepojili vstup a výstup meracieho prístroja, aby sme zistili vlastný šum prístroja. Toto napätie bolo $1 \,\mu$ V. Následne sme merali šum našeho zariadenia, ktorý bol maximálne $86 \,\mu$ V.

Obr. 4.3: Blokové zapojenie pracoviska počas merania

Obr. 4.4: Prenosová charakteristika aktívnej hornej priepuste - simulácia

Obr. 4.5: Prenosová charakteristika aktívnej hornej priepuste - merané

5 DC-DC MENIČ NAPÄTIA

Obr. 5.1: Schéma DC-DC meniča napätia

K návrhu meniča napätia nás viedli dve veci. Ako prvé, filter je napájaný zo zdroja fantómového napätia analyzátora XL2. Bohužiaľ, tento zdroj nie je dostatočný na napájanie filtra a mikrofónu zároveň. Druhá skutočnosť, ktorá nás viedla k meniču napätia, bolo splniť podmienku prenositeľnosti. Túto podmienku sme sa rozhodoli riešiť napájaním z batérii. Bolo treba navrhnúť DC-DC menič napätia zo štyroch AA batérií na 48 V pre fantómové napájanie mikrofónu. Rozhodoli sme sa použiť integrovaný obvod MAX1932. Tento obvod je určený pre nízkošumové aplikácie s malým prúdovým odberom. Pracovná frekvencia tohto meniča napätia je približne 300 kHz, takže rušenie z tohto meniča napätia by sa nemalo miešať do akustického pásma mojej priepuste.

Menič spadá do kategórie Step-up (boost) converters, teda zvyšujúci menič napätia. Funguje na princípe nabíjania a vybíjania cievky. Tento proces zabezpečuje tranzistor Q1 v spínacom režime. Tento tranzistor spína s frekvenciou, ktorú generuje MAX1932. Rezistor R1 slúži na prúdovú limitáciu meniča napätia, ak tečie z meniča veľký prúd, sám sa vypne, aby sa ochránil. Taktiež tento rezistor spolu s C4 tvorí filter typu dolná priepusť. Rezistor R3 slúži ako spätná väzba. Rezistory R4 a R5 slúžia ako odporový delič a spolu so spätnou väzbou kontrolujú napätie na výstupe meniča. Rezistor R2 a kondenzátor C2 slúžia na nastavenie zosilnenia vnútorného komparátora. Kondenzátor C3 a C1 slúžia na vyhladenie vstupného a výstupného napätia. Dióda D1 je použitá Schottkyho dióda pre jej kratšiu zotavovaciu dobu oproti klasickým usmerňovacím diódam.

Na výstupe meniča je zapojený filter typu horná priepusť, ktorý je zloženy z rezistora R7, cievky L2 a kondenzátora C5. Rezistor R7 môžeme nahradiť nulovým rezistorom ak použijeme cievku, ktorá ma odpor vynutia nad 15Ω .

Hodnoty súčiastok sú uvedené v datasheete integrovaného obvodu, ale rozhodoli sme sa ich dopočítať presne pre našu aplikáciu. [9]

$$L1_{MAX} = \frac{(V_{\rm IN-MIN}D_{\rm MAX})^2 \eta_{\rm MIN}}{2V_{\rm O-MAX}I_{\rm O-MAX}f_{\rm S-MAX}} = \frac{(4*0,85)^2*0,7}{2*48*6.10^{-3}*340.10^3} = 41,32\,\mu H, \quad (5.1)$$

kde D_{MAX} je maximálna strieda a η_{MIN} je minimálna účinnosť. Musíme počítať s toleranciou ±10%,

$$L1 = \frac{L_{MAX}}{1,1} = \frac{41,32.10^{-6}}{1,1} = 37,5\,\mu H$$
(5.2)

a volíme najbližšiu hodnotu z výrobnej rady, L= 39 µH a jej minimálna hodnota je L1=35,1 µH.

$$I_{\rm PK-MAX} = V_{\rm IN-MIN} D_{\rm MAX} \frac{\left(\frac{f_{\rm S-MIN}}{f_{\rm S-MIN}}\right)^{1/2}}{f_{\rm S-MIN} L1} = 4 * 0,85 \frac{\left(\frac{250.10^3}{340.10^3}\right)^{1/2}}{250.10^3 * 35,1.10^{-6}} = 332 \,\mathrm{mA},$$
(5.3)

$$I_{\rm PK-TMAX} = \frac{V_{\rm IN-MIN}D_{\rm MAX}}{f_{\rm S-MIN}L1} = \frac{4*0,85}{250.10^3*35,1.10^{-6}} = 533\,\rm{mA}.$$
 (5.4)

$$T_{\rm RUP} = I_{\rm PK-TMAX} \frac{L1}{V_{\rm IN-MIN}} = 332.10^{-3} \frac{35, 1.10^{-6}}{4} = 2.915 \,\mu\text{s}, \tag{5.5}$$

$$T_{\rm RDWN} = \frac{T_{\rm RUP}V_{\rm IN-MIN}}{V_{\rm O-MAX} - V_{\rm IN-MIN}} = \frac{2,915.10^{-6} * 4}{48 - 4} = 0,265\,\mu\text{s}.$$
 (5.6)

 $I_{\rm LI-AVG} = 0, 5I_{\rm PK-MAX}(T_{\rm RUP} + T_{\rm RDWN})f_{\rm S-MIN} =$

$$= 0,5 * 332.10^{-3} (2,915.10^{-6} + 0,265.10^{-6}) 250.10^{3} = 132 \,\mathrm{mA}.$$
 (5.7)

$$I_{\rm Q1-RMS} = I_{\rm PK-MAX} \left(T_{\rm RUP} \frac{f_{\rm S-MIN}}{3} \right)^{1/2} = 332.10^{-3} \left(2, 9.10^{-6} \frac{250.10^3}{3} \right)^{1/2} = 163 \,\mathrm{mA},$$
(5.8)

 $I_{\rm D1-AVG} = 0, 5I_{\rm PK-MAX}T_{\rm RDWN}f_{\rm S-MIN} = 0, 5*332.10^{-3}*0, 265.10^{-6}*250.10^{3} = 11 \,\mathrm{mA}.$ (5.9)

$$V_{\rm C3-RPL} = (I_{\rm PK-MAX} ESR) + (V_{\rm O-MAX} - V_{\rm IN-MIN})(\frac{ESL}{L1}) +$$

$$+I_{\rm O-MAX}\frac{\frac{1}{f_{\rm S-MIN}} - T_{\rm RDWN}}{C3} =$$

$$= (332.10^{-3} * 5.10^{-3}) + (48 - 4)(\frac{1.10^{-9}}{35, 1.10^{-6}}) +$$

$$+6.10^{-3} * \frac{\frac{1}{250.10^3} - 0,265.10^{-6}}{0.47.10^{-6}} = 50,6 \,\mathrm{mV}.$$
(5.10)

$$R1 = \frac{(1, 8 - 0, 5V_{\text{C3-RPL}}) + \sqrt{(1, 8 - 0, 5V_{\text{C3-RPL}})^2 + \frac{I_{\text{O}-\text{MAX}}V_{\text{C3-RPL}}}{\pi C4f_{\text{S}-\text{MIN}}}}{2I_{\text{O}-\text{MAX}}} = \frac{1}{2I_{\text{O}-\text{MAX}}} = \frac$$

$$=\frac{(1,8-0,5*50,6.10^{-3})+\sqrt{(1,8-0,5*50,6.10^{-3})^2+\frac{6.10^{-3}*50,6.10^{-3}}{\pi*0,1.10^{-3}*250.10^3}}}{2*6.10^{-3}}=295,8\,\mathrm{R}.$$
(5.11)

$$V_{\rm O-RPL} = \frac{V_{\rm C3-RPL}}{2\pi R 1 C 4 f_{\rm S-MIN}} = \frac{50, 6.10^{-3}}{2 * \pi * 298, 8 * 0, 1.10^{-3} * 250.10^3} = 124 \,\mu\text{V}.$$
 (5.12)

Presné nastavenie výstupného napätia vykonávame vhodnou voľbou rezistoru v spätnej väzbe,

$$R3 = R5\left(\frac{V_{\text{OUT}}}{1,25} - 1\right) = 27.10^3 \left(\frac{48}{1,25} - 1\right) = 1,01 \,\text{M}\Omega.$$
(5.13)

Pre redukciu zvlnenia na výstupe sa upravuje hodnota kondenzátorov C3 a C4. Napríklad keď zdvojnásobíme kapacitu kondenzátorov, klesne zvlnenie o polovicu.

Pre zníženie rušenia vznikajúceho v DC-DC meniči sme vykonali tieto opatrenia: použili sme cievky zaliate feritom na odtienenie magnetického rušenia spôsobeného nabíjaním a vybíjaním cievky, na DPS je tzv. rozliata zem a menič je na DPS umiestnený ďalej od priepuste, kde vznikol priestor na prípadnu tieniacu krabičku z pocínovaného plechu, ktorá sa po celej dĺžke pripájkuje k DPS.

6 KONŠTRUKCIA A ZAPOJENIE

Zariadenie je navrhnuté na jednostrannej doske plošných spojov vo veľkosti 75x103 mm. (príloha E.1). Filter je prevažne zapojený pomocou klasických súčiastok a DC-DC menič je zapojený kompletne pomocou SMD súčiastok. Otočný prepínač je umiestnený na samostatnej DPS v polohe kolmej na DPS s filtrom a meničom. Tieto dve DPS sa zasúvajú do seba pomocou dutiniek a kolíkov. Páčkový prepínač je upevnený na prednom paneli a drôtikmi prepojený s DPS filtra a výstupného konektoru XLR. Vstupný konektor XLR je pripojený pomocou tienenej dvojlinky s DPS filtra. Celé zapojenie káblov môžeme vidieť na obrázku (6.1). Na prednom paneli je umiestnená indikačná zelená LED dióda, ktorá signalizuje zapnutý stav zariadenia. DPS filtra sa zasúva do bočníc (druhý stupeň z dola) hliníkovej krabičky, ktorá slúži ako tienenie.

Proces výmeny batérií ma následovný postup. Odskrutkuje sa zadný panel, vysunie sa vrchná časť hliníkovej krabičky a pristúpi sa k výmene batérií a v opačnom postupe sa zariadenie zloží do pôvodného stavu.

Počas zostavovania zariadenia sa dostavili prehliadnuté nedostatky pri návrhu DPS. Cestičky a izolačné medzery, sú príliš úzké (príloha E.2 a E.3). Pri pájkovaní sa plôšky odlepovali od DPS a vznikali skraty, ktoré boli komplikáciou pri oživovaní zariadenia. Ale to bola daň za čo najmenšie rozmery zariadenia.

Obr. 6.1: Blokové zapojenie zariadenia

Obr. 6.2: Detail zariadenia - pohľad z vrchu

Obr. 6.3: Rozobrané zariadenie

7 PARAMETRE

- Napájanie priepuste: $48\,\mathrm{V}$ z analyzátor
a $\mathrm{XL2}$
- Napájanie mikrofónu: 46 V DC-DC menič
- Napájanie meniča: $4\,\mathrm{x}\,\mathrm{AA}$ batérie
- Pracovná frekvencia meniča:
- Medzná frekvencia 20 Hz:
 - Šírka pásma (-3 dB): 20,6 Hz 53 kHz
 - Útlm v priepustnom pásme: -0,008 dB
 - Strmost filtra: 44,27 dB/dek
 - Šum: max 36 μ V
- Medzná frekvencia 60 Hz:
 - Šírka pásma (-3 dB): 62,6 Hz 53 kHz
 - -Útl
m v priepustnom pásme: -0,000 dB
 - Strmosť filtra: 40,67 dB/dek
 - Šum: max $71\,\mu V$
- Medzná frekvencia 120 Hz:
 - -Šírka pásma (-3 dB): 123,1 Hz 53 kHz
 - Útlm v priepustnom pásme: $-0,005\,\mathrm{dB}$
 - Strmosť filtra: 39,70 dB/dek
 - Šum: max 86 μ V

Obr. 7.1: Predný a zadný panel zariadenia

8 ZÁVER

Na začiatku mojej práce sa venujeme teoretickým znalostiam o filtroch, rozdeleniu filtrov, vlastnostiam a návrhom filtrov. Ďalej sa v mojej práci venujeme samotnému návrhu pasívneho filtra, ktorý sa nám podarilo navrhnút podľa požiadaviek, ale kvôli vysokým hodnotám cievok by sa tento filter nedal realizovať.

V poslednej časti sa venujeme návrhu aktívneho filtra s využitím tranzistora. Podarilo sa nám navrhnúť hornú priepusť s optimálnymi vlastnosťami. Dosiahli sme maximálnu rovnosť prenosovej charakteristiky a strmosť cca 40 dB/dekádu. K prepínaniu medzných frekvencií slúži otočný prepínač, umiestnený na prednom paneli. Konektory XLR, umiestnené na zadnom paneli slúžia na vstup a výstup signálu. Podmienku prenositeľnosti zabezpečuje napájanie priepuste z analyzátora XL2 a fantómové napájanie mikrofónu zabezpečuje DC-DC menič napätia s využitím obvodu MAX1932. Menič napätia bol počítaný na 48 V na výstupe, ale kvôli použitej rade E24 a tolerancii použitých SMD súčiastiek v spätnej väzbe a deliči, menič dosahuje napätia 46 V.

Návrh zariadenia je funkčný, priepusť funguje podľa simulácií a predpokladov ale menič napätia momentálne nefunguje. Pri zostavovaní došlo pravdepodbne k skratu a obvod MAX1932 to pravdepodobne nevydržal. Poškodený obvod začal odoberať príliš veľký prúd, čo následne nevydržal tranzistor a spálil sa. Po výmene týchto súčiastok, by mal byť menič opät funkčný.

LITERATÚRA

- SEDLÁČEK, J., HÁJEK, K. *Kmitočtové filtry*. Praha: BEN, 2002. 535s. ISBN 80-7300-023-7.
- [2] DOSTÁL, T. *Elektrické filtry.* Brno: VUT FEKT, 2001. 96s. ISBN 80-214-0877-4.
- [3] DOSTÁL, T. Analogové elektronické obvody Brno: VUT FEKT, 200. 139s.
- [4] PACTITIS, S. A. ACTIVE FILTERS Theory and Design New Yourk: CRC Pres, 2008. 274s. ISBN 1-4200-5476-7.
- [5] SU, K. ANALOG FILTERS. Second edition. Norwell: Kluwer Academic Publisher, 2002. 406s. ISBN 1-4020-7033-0.
- [6] MARTINEK, P., BOREŠ, P., HOSPODKA, J. *Elektrické filtry*. Praha: ČVUT, 2003. 314s. ISBN 80-01-02765-1.
- [7] Schéma mikrofónu AKG C414 EB. [Online]. [cit. 2013-12-03]. Dostupné z: http://cdn.recordinghacks.com/images//mic_extras/akg/ C414EB-schematic.png>.
- [8] Datasheet MAX1932 [Online]. [cit. 2014-30-05]. Dostupné z: <http:// pdfserv.maximintegrated.com/en/ds/MAX1932.pdf>.
- [9] APPLICATION NOTE 1805 Výpočet meniča. [Online]. [cit. 2014-30-05]. Dostupné z: http://maximintegrated.com/en/app-notes/index.mvp/id/1805>.

ZOZNAM SYMBOLOV, VELIČÍN A SKRATIEK

Q	akosť
atď	a tak ďalej
SMD	bezvývodové súčiastky
DPS	doska plošných spojov
$L_{\rm ekv}$	ekvivalentná cievka
ESR	ekvivalentný sériový odpor
ELS	ekvivalentná sériová indukčnosť
I_{D1-AVG}	priemerný prúd diódou
I_{Q1-RMS}	efektívny prúd tranzistorom
φ	fázový posun
f	frekvencia
$f_{ m p}$	frekvencia potlačenia
GIC	general impedance convertor
f_{S-MAX}	maximálna frekvencia
D_{MAX}	maximálny pracovný cyklus na najvyššej spínacej frekvencii
I_{O-MAX}	maximálny výstupný prúd
V_{O-MAX}	maximálne výstupné napätie
V _{IN-MAX}	maximálne vstupné napätie
$f_{ m m}$	medzná frekvencia
V _{IN-MIN}	minimálne vstupné napätie
f_{S-MIN}	minimálna frekvencia
D_{MAX}	maximálny pracovný cyklus na najvyššej spínacej frekvencii
η_{MIN}	minimálna účinnosť odvodu
U	napätie

$K_{\rm P}$	prenos potlačenia
$K_{\rm ZVL}$	prenos zvlnenia
$H_{\rm DP}$	prenosová funkcia dolnej priepuste
$H_{\rm HP}$	prenosová funkcia hornej priepuste
I_{L1-AVG}	priemerný prúd cievkou
I_{D1-AVG}	priemerný prúd diódou
obr	obrázok
RC	odpor, kondenzátor
RLC	odpor, cievka, kondenzátor
tz	to znamená
tzv	tak zvané
V_{O-RPL}	zvlnenie na výstupe vo voltoch

ZOZNAM PRÍLOH

\mathbf{A}	Butterworthova aproximácia	44
	A.1 Tabuľka Butterworthovej aproximácie	44
\mathbf{B}	Technické parametre mikrofónu a meracieho prístroja	45
	B.1 Charakteristika meracieho mikrofónu M2010	45
	B.2 Špecifikácia meracieho mikrofónu M2010	46
	B.3 Špecifikácia meracieho prístroja XL 2	47
	B.4 Špecifikácia meracieho prístroja XL 2	48
С	Schéma pasívneho filtra	49
D	Prehľad možností použitia gyrátora	50
\mathbf{E}	Výrobná dokumentácia	51
		51
\mathbf{F}	Konštrukcia	55

A BUTTERWORTHOVA APROXIMÁCIA

A.1 Tabuľka Butterworthovej aproximácie

n	l_1	c_2	l_3	c_4	l_5	c_6	l_7	c_8	l_9
2	1,4142	1,4142							
3	1,0000	2,0000	1,0000						
4	0,7654	$1,\!8478$	$1,\!8478$	0,7654					
5	0,6180	1,6180	2,0000	1,6180	$0,\!6180$				
6	0,5176	$1,\!4142$	$1,\!9319$	$1,\!9319$	$1,\!4142$	$0,\!5176$			
7	0,4450	1,2470	1,8019	2,0000	$1,\!8019$	1,2470	0,4450		
8	0,3902	$1,\!1111$	$1,\!6629$	$1,\!9616$	$1,\!9616$	$1,\!6629$	1,1111	0,3902	
9	0,3473	1,0000	1,5321	1,8794	2,0000	1,8794	1,5321	1,0000	0,3473
	c_1	l_2	c_3	l_4	c_5	l_6	c_7	l_8	c_9

Tab. A.1: Butterworth

B TECHNICKÉ PARAMETRE MIKROFÓNU A MERACIEHO PRÍSTROJA

B.1 Charakteristika meracieho mikrofónu M2010

Obr. B.1: Mikrofón M2010

B.2 Špecifikácia meracieho mikrofónu M2010

Microphone type	1/2" pre-polarized condenser, free field				
Polar pattern	omni-directional				
Sensitivity	-29 dBV/Pa	a ±3 dB (35 r	mV/Pa @1kH	Hz)	
Flatness	better Class 1 (IEC61672-1) < ±1 dB @ 100 Hz - 4 kHz < ±2 dB @ 10 Hz - 20 kHz				
Maximum SPL	145 dBspl ty	ypical @ THD	3%, 1 kHz	, 48 VDC	
Equivalent Noise level	< 24 dBspl ((A-weighted))		
Temperature coefficient	0.01 dB/°	C @ (-10°C 1	to +50°C)		
Long term stability	>250 years /dB				
Electrostatic capacitance	18 pF (cartridge only)				
Output impedance	100 Ohm (50 Ohm (si	(balanced) ingle ended)			
Power supply, phantom power	48 VDC	24 VDC	15 VDC	10 VDC	
Worst case maximum SPL (@ THD 3%, 1 kHz, Rp*)	>142dBspl	>134dBspl	>128dBspl (>124dBspl	
Power consumption @ dBspl max	4 mA typic	al			
Overall shell length	50 mm (1.9	9")			
Shell diameter	13.2 mm (0.52") with protective cap				
Connector	3-pole XLR	(NEUTRIK®)			
Cable	1.5 m (5 ft cable is de 3-pole Nar), diameter 3 tachable at t noCon® (NEU	3.6 mm, he amplifier ITRIK®)	r side,	

Obr. B.2: Technické parametre meracieho mikrofónu M2010

B.3 Špecifikácia meracieho prístroja XL 2

Sound Level Meter				
Product Configu- rations	XL2 with M2210 microphone: Class 1 freq. response acc. to IEC 61672 XL2 with M4260 microphone: Class 2 acc. to IEC 61672			
Conforms with Standards	IEC 61672, IEC 60651, IEC 60804, ANSI S1.4, ANSI S1.43, DIN 15905-5, DIN 45645-1*, DIN 45645-2, SLV 2007			
Measurements	 SPL actual, Leq, Lmin, Lmax, LCpeak Gliding LAeq with t = 5", 10', 15' and 60' All measurement results are simultaneously available Correction value measurement wizard Logging all data or subsets in selectable intervals Recording of WAV-files (ADPCM) and voice notes Limit monitoring showing exceeding sound levels Level resolution: 0.1 dB Internal noise: 1.3 µV A-Weighted 			
Functions Extended Acoustic Pack (optional)	 Percentiles: 1%, 5%, 10%, 50%, 90%, 95%, 99% Time weighting: Impulse Sound Pressure Level L_{Ieq}, Sound Exposure Level L_{AE} TaktMax and values as specified in DIN 45645-1 High-resolution FFT, up to 0.4 Hz resolution in the range of 5 Hz - 20 kHz Digital I/O interface Recording of WAV-files (24 bit, 48 kHz) 			
Weighting	 Frequency Weighting: A, C, Z Time Weighting: Fast, Slow, optional: Impulse 			
Real Time Analyzer RTA	 Frequency resolution: 1/3 octave, 1/1 octave, wide band Frequency range: 6.3 Hz to 20 kHz, level resolution: 0.1 dB Band pass filters conform IEC 61260 class 0, ANSI S1.11-2004, class 1 			
Acoustic Analyze	r			
FFT Analysis	 Real time FFT with LZF and Leq Level resolution: 0.1 dB Ranges: 7 Hz - 215 Hz, 58 Hz - 1.72 kHz, 484 Hz - 20.5 kHz Optional: High-resolution FFT in the range of 5 Hz - 20 kHz 			
Reverberation Time RT60	 1/1 octave bands results from 63 Hz - 8 kHz, based on T20 1/3 octave bands results by post processing Range: 10 ms - 14 seconds Measurement according to ISO3382 by Schroeder-method Test signal: Impulse source or gated pink noise generated by the MR-PRO, MR2 or the included NTi Audio Test CD 			
Delay Time	 Propagation delay between electrical reference signal and acoustical signal using the internal microphone Range: 0 ms - 1 second (0 m - 344 m), Resolution: 0.1 ms Test signal: NTi Audio delay test signal generated by the MR-PRO, MR2 or the included NTi Audio Test CD 			
Polarity	 Checks polarity of speakers and line signals Positive/Negative detection of wideband and individual 1/1 octave bands through internal microphone or XLR/RCA connector Test signal: NTi Audio polarity test signal generated by the MR-PRO, MR2 or the included NTi Audio Test CD 			
STI-PA Speech Intelligi- bility (optional)	 Single value STI and CIS test result according to IEC 60268-16, 2003 release, DIN VDE 0833-4, IEC 60849, DIN VDE 0828-1 Modulation indices and individual band level results with error indicator, post processing with recorded spectra supported Test signal: NTi Audio STI-PA signal generated by the MR-PRO, NTi Audio TalkBox or the STI-PA Test CD 			

Obr. B.3: Technické parametre meracieho prístroja, str.1

B.4 Špecifikácia meracieho prístroja XL 2

п

Audio Analyzer	
Level RMS	 True RMS detection in V, dBu and dBV Range XLR/RCA input: 2 μV - 25 V (-112 dBu to +30 dBu) Accuracy: ± 0.5 % @ 1 kHz, flatness: ± 0.1 dB @ 12 Hz to 21.3 kHz Bandwidth (-3 dB): 2 Hz to 23.6 kHz Resolution: 3 digits (dB scale),5 digits (linear scale) or 6 digits (x1 scale)
Frequency	 Range: 9 Hz to 21.3 kHz, resolution: 6 digits Accuracy: < ± 0.003%
THD+N (Total Harmonic Distortion + Noise)	 Range: -100 dB to 0 dB (0.001 % to 100%) Minimum level: > -90 dBu Fundamental bandwidth: 10 Hz - 21.3 kHz, bandwidth: 2 Hz - 23.6 kHz Resolution: 3 digits (dB scale) or 4 digits (linear scale) Residual THD+N @ XLR/RCA input: < 2 µV
Scope	Auto ranging, auto scaling
Filter	Frequency weighting: A, C, Z, Highpass 400 Hz, Highpass 19 kHz
Input / Output In	terfaces
Audio Inputs	 XLR balanced with input impedance = 200 kOhm, phantom power: +48 V switchable, automated sensor detection for M4260/M2210 RCA unbalanced with input impedance >30 kOhm Built-in condenser microphone for polarity testing, delay measurements and voice note recording
Audio Outputs	 Built-in speaker Headphone connector 3.5 mm Minijack Stereo
USB Interface	USB mini connector for data transfer to PC and charging of Li-Po battery
Digital I/O	Optional 1-wire interface for control of external peripherals
TOSLink	24 bit linear PCM audio signal output (prepared for later firmware extension)
Memory	Mini-SD card, 2 GByte, removable, storing ASCII data, screenshots, voice notes and WAV-files
Power Supply	 Rechargeable Li-Po battery included, type 3.7 V / 2260 mAh, typical battery lifetime > 4 hours Dry cell batteries type AA, 4 x 1.5 V, typical battery lifetime > 4 hours Linear external power supply 9 VDC (charges Li-Po battery in operation)
General	
Clock	Real time clock with lithium backup battery
Calibration	 Recommended calibration interval: one year Microphone calibration supported with external calibrator Calibration certificate for new instruments optional available
Mechanics	 Tripod mount and wire stand mounted on rear side Display: 160 x 160 pixels grey scale with LED back light Dimensions: 180 mm x 90 mm x 45 mm (7.1" x 3.5" x 1.8") Weight: 480 g (1 lbs) including built-in Li-Po battery
Temperature	Operation: +5 °C to +45 °C (41° - 113°F) Storage: -10 °C to +60 °C (14° - 140°F)
Humidity	5% to 90% RH, non condensing
Electromagnetic Compatibility	CE compliant: EN 61326-1 Class B, EN 55011 class B, EN 61000-4-2 to -6 & -11

Obr. B.4: Technické parametre meracieho prístroja, str.2

Obr. C.1: Schéma prepínateľnej hornej priepuste

D PREHĽAD MOŽNOSTÍ POUŽITIA GYRÁ-TORA

Obr. D.1: Využitie gyrátora k simulácii obvodu

E VÝROBNÁ DOKUMENTÁCIA

E.1 Doska plošných spojov

Obr. E.1: Kompletná schéma zariadenia

Obr. E.2: Obrazec plošných spojov - strana spojov

Obr. E.3: Doska plošných spojov prepínača

Obr. E.4: Osadzovací plán - vrchná vrstva

Obr. E.5: Osadzovací plán - spodná vrstva

Part	Value	Device	Package
C1	1u	C-EUC1210	C1210
C2	22n	C-EUC1206K	C1206K
C3	0.47u	C-EUC1210	C1210
C4	0.1u	C-EUC1210	C1210
C5	1u	C-EUC1210	C1210
C6	22n	C-EU050-025X075	C050-025X075
C7	33n	C-EU050-025X075	C050-025X075
C8	47n	C-EU050-025X075	C050-025X075
C9	10n	C-EU050-025X075	C050-025X075
C10	10n	C-EU050-025X075	C050-025X075
C11	10n	C-FU050-025X075	C050-025X075
C12	22n	C-EU050-025X075	C050-025X075
C13	2.5n	C-EU050-025X075	C050-025X075
C14	100n	C-FU050-025X075	C050-025X075
C14	22n	C_EU050-025X075	C050-025X075
C10	2211 33n	C-EU050-025X075	C050-025X075
C12	47n	C-EU050-025X075	C050-025X075
C10	4/11		
C19 C20	100		
C20	TUN	C-EU050-025X075	C050-025X075
C21	10n	C-EU050-025X075	C050-025X0/5
C22	22n	C-EU050-025X0/5	C050-025X0/5
C23	2.5n	C-EU050-025X0/5	C050-025X0/5
C24	100n	C-EU050-025X075	C050-025X075
D1	SS110B	SCHOTTKY-DIODE	SMB
D2	BZX85-C20	ZENER-DIODE	DO34Z7
L1	39u	WE-PD2_7850	WE-PD2_7850
L2	330u	WE-PD2-744773115	WE-PD2_4532
LED1	LED3MM	LED3MM	
P1	50k	R-TRIMM64Y	RTRIM64Y
P2	10k	R-TRIMM64Y	RTRIM64Y
P3	10k	R-TRIMM64Y	RTRIM64Y
P4	10k	R-TRIMM64Y	RTRIM64Y
P5	10k	R-TRIMM64Y	RTRIM64Y
P11	50k	R-TRIMM64Y	RTRIM64Y
P12	10k	R-TRIMM64Y	RTRIM64Y
P13	10k	R-TRIMM64Y	RTRIM64Y
P14	10k	R-TRIMM64Y	RTRIM64Y
P15	10k	R-TRIMM64Y	RTRIM64Y
Q1	BSS123	BSS123	SOT23
R1	300R	R-EU_M1206	M1206
R2	20k	R-EU_M1206	M1206
R3	1M	R-EU_M1206	M1206
R4	25k	R-EU_M1206	M1206
R5	33k	R-EU_M1206	M1206
R6	1k3	R-EU_M1206	M1206
R7	23R	R-EU_M1206	M1206
R8	6k8	R-EU_M0805	M0805
R9	6k8	R-EU_M0805	M0805
R10	240k	R-EU_M0805	M0805
R11	47k	R-EU_M0805	M0805
R12	27k	R-FU_M0805	M0805
R13	10k	R-FU_M0805	M0805
R20	240k	R-EU_M0805	M0805
R21	27k	R-EU_M0805	M0805
R22	27k	R-FU_M0805	M0805
R23	10k	R-FIL MOROS	M0805
R\/R1	300P		M0805
	24k		M0805
πνD∠ T1	∠ 4 K 25€2240		
11 T0	2362240	23(3330	
1Z	2302240		IU92-ECB
UŞI	IVIAX 1932	IQEN	

Obr. E.6: Zoznam súčiastok

F KONŠTRUKCIA

Obr. F.1: Výrobné výkresy panelov