VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA ELEKTROTECHNIKY
A KOMUNIKACNICH TECHNOLOGII

FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

USTAV RADIOELEKTRONIKY

DEPARTMENT OF RADIO ELECTRONICS

APLIKACE PRO ROZPOZNAVANI LOGA AUTOMOBILOVE
ZNACKY

APPLICATION FOR CAR LOGO RECOGNITION

BAKALARSKA PRACE
BACHELOR'S THESIS

AUTOR PRACE Tomas Uchytil

AUTHOR

VEDOUCI PRACE doc. Ing. Petr Kadlec, Ph.D.
SUPERVISOR

BRNO 2023

VYSOKE UCENI FAKULTA ELEKTROTECHNIKY

TECHNICKE A KOMUNIKACNICH
V BRNE TECHNOLOGII

Bakalarska prace

bakalafsky studijni program Elektronika a komunikaéni technologie

Ustav radioelektroniky

Student: Toma$ Uchuytil ID: 230337
Rocnik: 3 Akademicky rok: 2022/23
NAZEV TEMATU:

Aplikace pro rozpoznavani loga automobilové znacky

POKYNY PRO VYPRACOVANI:

Provedte reSerSi dostupnych neuronovych siti a vyberte sit vhodnou pro rozpoznavéani automobilového loga na
zakladé fotografie automobilu [1]. Vytvorte databazi fotografii kapot automobild obsahujici loga automobild.
V databazi budou zastoupeny fotografie s rdznou kvalitou, nato€enim, svételnymi podminkami a alespofi 10
riznymi automobilovymi znackami.

Vybranou neuronovou sit' natrénujte pomoci vytvofené databaze fotografii [2]. Neuronovou sit otestujte na
datech, ktera nebyla pouzita pro trénovani. Vytvorte aplikaci pro mobilni telefony (idealné pro Android iiOS),
ktera umozni vybrat dostupny obrazek (vyfotografovat automobil) a pouzije natrénovanou neuronovou sit pro
ur€eni znacky automobilu.

DOPORUCENA LITERATURA:
[1] WEIDMAN, Seth. Deep learning from scratch: building with Python from first principles. Beijing: O'Reilly,
[2019]. ISBN 9781492041412.

[2] MICHELUCCI, Umberto. Advanced Applied Deep Learning: Convolutional Neural Networks and Object
Detection. 1. USA: Apress, 2019. ISBN 978-1484249758.

Termin zadéani: 6.2.2023 Termin odevzdani: 29.5.2023

Vedouci prace: doc. Ing. Petr Kadlec, Ph.D.

doc. Ing. Lucie Hudcova, Ph.D.
predseda rady studijniho programu

UPOZORNENI:
Autor bakalarské prace nesmi pfi vytvareni bakalafské prace porusit autorska prava tretich osob, zejména nesmi zasahovat nedovolenym
zplsobem do cizich autorskych prav osobnostnich a musi si byt pIné védom nasledk(poru$eni ustanoveni § 11 a nasledujicich autorského

zakona €. 121/2000 Sb., v€etné moznych trestnépravnich dusledkd vyplyvajicich z ustanoveni €asti druhé, hlavy VI. dil 4 Trestniho zakoniku
€.40/2009 Sb.

Fakulta elektrotechniky a komunikacénich technologii, Vysoké uceni technické v Brné / Technicka 3058/10 / 616 00 / Brno

ABSTRACT

The thesis deals with finding a suitable neural network for recognizing a brand of a car
by its logo and programming and training this network. This is then implemented into
a mobile application that recognizes the logo on a newly taken photo or on an image
selected from the mobile phone's storage.

KEYWORDS

Logo recognition, Convolutional neural network, Car logo, Python, Kivy, Mobile app,
Android

ABSTRAKT

Prace se zabyva nalezenim vhodné neuronové sité pro rozpoznani loga automobilové
znacky a implementaci a trénovanim této sité. Ta je nasledné implementovana do mobilni
aplikace, kterd umoznuje rozpoznani loga na zakladé nové porizené fotografie, nebo na
zakladé obrazku vybraného z Ulozisté mobilniho telefonu.

KLICOVA SLOVA

Rozpoznani loga, konvolucni neuronova sit, automobilové logo, Python, Kivy, mobiln{
aplikace, Android

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZSIRENY ABSTRAKT

Neuronové sité jsou pocitacové modely, které simuluji procesy lidského mozku,
naptiklad rozpoznavani predméti podle jejich identifikacnich znakt, rozhodovani
o dalsim tkolu pocitace nebo tvorbu umeéleckych dél.

Cilem této prace je fotografovani log rtiznych automobilovych znacek a jejich
systematické oznaceni. Dalsim krokem je zjistovani informaci o neuronovych sitich
a vybér sité nejvhodnéjsi pro dané pouziti. Poslednim krokem této préace je trénovani
vybrané sité pomoci vybranych fotografii.

V praci jsem nejdiive rozebral pojmy jako rozpoznani vzorce neuronovou siti,
konvolu¢ni neuronové sité, datasety pro neuronové sité nebo matice zamén (confu-
sion matrix). Vysvétleni jsou doplnéna ilustracnimi obrazky pro jednodussi pochopeni
tématu.

Prvnim praktickym krokem bylo ziskani fotografii pro nauceni neuronové sité.
Podarilo se mi ziskat priblizné 500 nové vzniklych fotografii, 1800 fotografii ziskanych
z datasetu CompCars a 2900 fotografii z datasetu Kaggle dostupnych online.

Nasledovalo hledédni vhodné neuronové sité. Po dikladné resersi dostupnych
neuronovych siti jsem se rozhodl pro model popsany v praci |1]. Ackoli tento model
pracuje s videem, jadro neuronové sité je vhodné pro rozpoznavani statickych obrazu
automobilovych log. Proto ve své préaci vyuzivam ¢ast kodu z [1] upravenou pro praci
s jpg obrazky.

Kod jsem také doplnil o program pro rozttidéni datasetu do slozek podle znacky
automobilu (tento format je potfebny pro knihovnu k nauceni neuronové sité), a o
program pro generovani matice zameén pro posouzeni presnosti neuronové sité. Daéle
jsem si napsal program pro hrubé orezani fotografii, aby obsahovaly prevazné logo
- kvuli zvysSeni presnosti detekce a snizeni pottebného vypocetniho vykonu. Daéle
jsem vytvoril konvoluéni neuronovou sit dosahujici ispésnosti priblizné 80 %.

V dalsi fazi jsem vytvoril aplikaci pro operac¢ni systém Android, kterou jsem
umistil do obchodu s aplikacemi Google Play. Aplikace umoznuje vybrat existujici
fotografii z galerie, nebo potidit novou fotografii, a nasledné zobrazi detekovanou
znacku.

Pro tvorbu aplikace jsem si vybral framework Kivy, ktery umoznuje prevod kodu
v programovacim jazyce python, na jazyk Java nebo Swift pro mobilni platformy.
Pro tento tucel existuje vice frameworki, ale Kivy se vyznacuje Sirokou komuni-
tou zajistujici dobrou technickou podporu, a také je jednim z nejjednodussich na
programovani.

V priabéhu tvorby aplikace jsem vyuzil nékolik jiz existujicich knihoven pro
python: Kivy pro tvorbu samotné aplikace, KivyMD pro grafické prvky, Pillow pro
nacitani a ipravu obrazk, numpy pro nalezeni nejvyssi hodnoty v poli pravdépodob-

nosti vraceném neuronovou siti, os pro ziskani cesty soubort a ovéreni existence

souborti, cameradkivy pro komunikaci s fotoaparatem, knihovny base64 a requests
pro volitelné odesilani Spatné rozpoznanych fotografii na mij server pro budouci
vylepseni neuronové sité, dale knihovna Plyer pro uzivatelsky privétivéjsi volbu
soubort a PyJNIus pro komunikaci s opera¢nim systémem.

Pro kompilaci aplikace pro operac¢ni systém Android se v pripadé frameworku
Kivy vyuziva néstroj Buildozer v prikazovém tadku operac¢niho systému Linux.
Tento nastroj umoznuje nejen export aplikaci pro primou instalaci do mobilniho
telefonu, ale také tvorbu balicki (Android app bundle - aab) pro publikovani v
obchodé s aplikacemi.

Kompilace pro iOS probiha na platformé OSX na pocitacich spolecnosti Apple.
Nejprve je v prikazovém radku pomoci néstroje Toolchain z python kédu vytvoren
projekt, ktery je nasledné mozné oteviit a kompilovat v aplikaci jménem XCode
pro tentyz operacni systém. Pro publikovani v obchodé aplikaci pro iOS je nutné
pravidelné roc¢ni predplatné vyvojarského uctu, ale aplikaci je mozné do lokalniho
zatizeni instalovat bezplatné pomoci XCode studia.

P1i tvorbé aplikace jsem musel vytvorit uzivatelské rozhrani. Typicky zivotni
cyklus aplikace je nasledujici: po spusténi aplikace se zobrazi nacitaci obrazovka,
béhem niz probihaji na pozadi pripravné tikony. Nasledné je tato obrazovka nahrazena
hlavnim menu. Zde ma uzivatel moznost volby, zda vybere fotografii z galerie,
nebo poridi novou. V prvnim pripadé se zobrazi nativni nastroj pro vybér soubort,
ve druhém obrazovka fotoaparatu. Po vybrani nebo porizeni fotografie probéhne
rozpoznani, a uzivatel je pfenesen na obrazovku s vysledkem. Pokud zobrazené logo
nesouhlasi s realitou, ma uzivatel moznost kliknout na tlacitko "incorrect logo", ¢imz
odesle nespravné rozpoznanou fotografii na vzdaleny server a na 3 sekundy se zobrazi
dékovna hlaska. Pouzitim tlacitka zpét v levém hornim rohu, pripadné systémového
tlacitka zpét, se uzivatel z jakékoliv obrazovky vrati zpét do hlavniho menu.

Aplikace dale nabizi moznost personalizace pomoci obrazovky nastaveni, kam
se uzivatel dostane stisknutim ikony s ozubenym koleckem v levém hornim rohu
hlavni obrazovky. Tato nastaveni obsahuji volbu tématu (svétlé nebo tmavé) a
zapnuti vyvojarského rezimu, ktery zobrazi nékteré dodatecné informace, jako cestu
a rozliseni obrazku, na hlavni obrazovce. Tyto informace mohou nésledné poslouzit
pro hledani chyb, pokud se na nékterych zatizenich aplikace nechova dle ocekavani.
P1i normalni funkci aplikace se vyvojarsky rezim nepouzije.

V dobé tvorby mobilni aplikace nebylo mozné vytvotit aplikaci pro iOS, pro-
toze nastroj Toolchain, ktery je zodpovédny za prevod Kivy kédu na Xcode projekt,
ve verzi Apple clang 14.0.3 neni kompatibilni s nastrojem Xcode, ktery kompiluje
aplikaci do jazyka swift pro iOS, ve verzi 14.3 (14E222B). Az bude tento problém
vyTeSen ze strany vyvojart zminénych néstrojl, je uzivatelské rozhrani a vétsina

kodu diky pouziti multiplatformniho frameworku Kivy pripravena pro tvorbu ap-

likace pro iPhone, bude pouze nutné doplnit nékteré funkce specifické pro tento
operacni systém, napriklad opravnéni nebo detekei pripojeni k internetu.
Natrénovanou konvoluéni neuronovou sit nebylo nakonec v mobilni aplikaci mozné
vyuzit z divodu omezeni vyplyvajicich z architektury a vypocetniho vykonu mobil-
nich zatizeni. Byla tedy vytvorena nova, jednodussi sif, ktera ale neni tolik presné.
Nejlepsich vysledkt tedy aplikace dosahuje pro znacky Opel, Skoda a Toyota, kde
byl k dispozici dostatek kvalitnich fotografii. V pripadé ostatnich znacek by pro

vyssi presnost bylo nutné rozsitit dataset tréninkovych fotografii.

UCHYTIL, Tomas. Application for car logo recognition. Brno: Brno University of
Technology, Faculty of Electrical Engineering and Communication, Department of Radio
Electronics, 2023, 49 p. Bachelor's Thesis. Advised by doc. Ing. Petr Kadlec, Ph.D.

Author’s Declaration

Author: Tomas Uchytil

Author’s ID: 230337

Paper type: Bachelor’'s Thesis

Academic year: 2022/23

Topic: Application for car logo recognition

| declare that | have written this thesis independently, under the guidance of the advisor
and using exclusively the technical references and other sources of information cited in
the thesis and listed in the comprehensive bibliography at the end of the thesis.

As the author, | furthermore declare that, with respect to the creation of this thesis,
| have not infringed any copyright or violated anyone's personal and /or ownership rights.
In this context, | am fully aware of the consequences of breaking Regulation § 11 of the
Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach
of rights related to intellectual property or introduced within amendments to relevant
Acts such as the Intellectual Property Act or the Criminal Code, Act No.40,/2009 Coll.
of the Czech Republic, Section 2, Head VI, Part 4.

author’s signature*

*The author signs only in the printed version.

ACKNOWLEDGEMENT

| would like to thank my supervisor, doc. Ing. Petr Kadlec, Ph.D. for his support and
advice, and for pointing me in the right direction during the making of this thesis.

Contents

2 Practical Implementation|

2.4 App creation|
[2.4.1 Android compilation| 000
[2.4.2 105 compilation|

[3 App user interface|

[3.1 Loading screen|
B2 Main screenlo

[3.6 Settings screen|

Conclusion

[Symbols and abbreviations|

A C Fihe el :] l

21

23
23
24
25
26

29
29
29
30
32
32
34
34
35
36
37
37
37

39
39
39
39
39
40
40

43

47

49

List of Figures

[LT Neural network structurel 00000 24
(.2 learned features from a convolutional neural networkl 24
(1.3 Example of a dataset for handwritten digits (MNIST dataset)| 26
(1.4 Example of the confusion matrix (emotion detection)| 27
[2.1 Example of different quality photos of my own.| 29
[2.2 Confusion matrix of the neural network pretratined using compCars
dataset only.|.o 33
[2.3 Layered view of the neural network I'm using.| 33
[2.4 Comparison of the old and new Al models.|. 36

[3.1 Diagram of navigation through the app.| 41

Introduction

Neural networks are computer models, that simulate procedures of the human brain,
e.g. classify objects depending on their identification marks, decide the next action
of a computer or create an artificial artwork.

The goal of this thesis is to take pictures of logos for multiple car brands. Find
out more about neural networks, and then find one that is the most suitable to
classify car logos. Train chosen neural network using the photos taken, as well as
some photos found online.

For easier use of the neural network, a new mobile app will be developed, im-
plementing the trained neural network and allowing users to take a new picture, or
select an existing one from the gallery, which will then automatically identify a logo
on said picture.

Kivy multiplatform framework will be used for app development. App will be
divided into two parts, app-related data, which will be installed together with the
app, and Al model, which will be downloaded separately once the app is launched.
This way, the app and the model can be updated separately, making updates easier

and limiting the amount of data needed to be downloaded.

21

1 Neural Networks

A neural network consists of several elements connected together. It tries to simulate
the behavior of the human brain and biological nervous systems by extend. Its
function is to produce an output pattern based on input parameters. In this thesis,
pattern classification is used, specifically [2]. Before we get into details, it’s necessary
to explain some neural network terms.

e Neuron - Elementary structure of a neural network. It processes input infor-
mation and generates outputs based on its trained parameters.

o Weights - It says, how much influence each neuron has on the outputs of the
network.

o Layer - set of neurons with same the parameters and function. There are three
main types of layers in a neural network. There is a visible input layer receiving
input and passing it over, visible output layer taking care of generating outputs
and hidden middle layers performing specific tasks and passing processed data
to the next layers.

o Neural network - net of interconnected layers with associated weights passing
data between themself, being tuned based on the network’s experience.

o Training - A process of finding the best combination of neuron and layer pa-
rameters by presenting images to the neural network, and then rewarding it

for correct classification and penalizing for mistakes [3].

1.1 Pattern Classification

When trying to classify a set of images into certain categories based on what they
represent, you can’t just simply check, how many bits and bytes they have in common
or try overlapping them and checking for similarities, because objects you're trying
to recognize can have a quite wide variation. What we have to do to achieve this is
to separate input data into groups, each representing one of the objects we want to
classify. When we talk about neural networks, we call these groups classes. In this
case, our classified object doesn’t need to match the others exactly, but it is instead
decided which class the image pattern is most similar to [2].

A typical use for neural network pattern classification is a handwritten let-
ter/number recognition (used for example for automatic letter sorting by Czech
Post), object recognition (can be used by security cameras for detecting intruders),
face recognition (usable for example when searching for criminals or missing peo-
ple), and many more. In this thesis, pattern classification will be used to recognize
different car logos given to the neural network as input, and select car brands, which

will be determined by the neural network as an output. The typical structure of the

23

neural network is in Fig. For our purpose, there will be one input containing a

picture of the logo, multiple hidden layers, and 23 outputs, one for each car brand.

Input Hidden Output
Layer Layers Layer

Fig. 1.1: Neural network structure [4].

1.2 Convolutional Neural Networks

A key benefit of Convolutional neural network (CNN) over Artificial neural network
(ANN) is the reduction of the number of parameters, that the neural network needs.
Also, CNN is able to detect patterns regardless of size and orientation, saving one
step of image preprocessing. In the first layers, it detects the most distinct features
of the image, like sharp edges and corners. Going on, simple shapes are detected,
and then even deeper, some finer, high-level features are obtained [5]. An example

of what CNN can see is shown in Fig. [1.2

Overlap) Overlap)
Low-level Mid-level High-level

feature feature feature

Fig. 1.2: Learned features from a convolutional neural network [6].

24

1.3 Datasets for Neural Networks

A dataset is a file or a folder containing data used to train and validate a neural
network. A very simple and small dataset for the recognition of hand-written digits
is shown in Fig. [1.3] There are several key characteristics of high-quality datasets.
They are:

o QUALITY - To avoid false classification, you need to make sure you supply
your neural network with a high-quality dataset.

e QUANTITY - To properly train your neural network model, you need to
supply it with as much data as possible.

o USABILITY - Good dataset should be easy to work with. It should be divided
into folders, properly labeled and all data should have the same format.

o SCALABILITY - You should be able to add data to your dataset on the go.
There is a possibility you may need to add another class to your dataset in the
future or risk overfitting your model (training on a small dataset causing your
model to work well on recognizing data from a dataset but badly on real world
data). In this case, you need to extend your dataset and train your network

again.

Depending on what type of neural network you are creating, you can use many

dataset formats. You can see some of them in the list below [7]:
o TEXT/NUMERIC

— Probably the easiest one to work with. Since you don’t usually work with
extremely long numbers or sentences, you can quite easily store them in
a comma-separated text file (CSV). Then, you have both data and labels
in one file making it very convenient for neural network learning.
— Typical use cases are Al chatbots, data analysis, etc.
« AUDIO
— Slightly trickier, since it can’t be stored in one file. However, you still
work with a one-dimensional data stream.
— Typical use cases are speech recognition, music recognition, noise removal,
etc.
« IMAGE
— When talking about images, we usually talk about two-dimensional data.
In the easiest case, the image is black and white, therefore data stream
only consists of luminance information. If you want to work with the
color images, you have to process two more "layers" of the given pictures.

— Typical use cases are optical character recognition (OCR), image editing

25

(denoising, object removal...), image generating, or, as used in this thesis,
it can be used to recognize objects in the image.
« VIDEO
— Probably the hardest format to process. We usually don’t treat video as
one object representing movement, but instead as a series of individual
images.
— Typical use cases are motion tracking, 2D or 3D rendering, video pro-

cessing, etc.

0000006 Qaoap0o00CY (¢ OO
Fry v /220720 001N/
2d2LAIIP27ra212222A
3333333355333 3333
H#&8rd49 Yy #5444\ &4
55958535 SSs5859s 58554579
e &6 bLQbLbbace dédb el
T797777 07200 2%F7 77
¥ 3 2 ® 8 %P &YX PTT YT L T 8
?799999%992%49993499 9

Fig. 1.3: Example of a dataset for handwritten digits (MNIST dataset) [8].

1.4 Confusion Matrix

There are many ways to assess the accuracy of neural networks. The easiest one
is the percentage of correctly recognized data. Errors, however, are usually not
evenly distributed across all classes. Instead, some class pairs are more prone to
be mixed up. Therefore, it is useful to generate not only the average accuracy but
also a matrix that shows which classes have been confused with which during the
test. This is called a confusion matrix. Such a matrix provides much more detailed
information on the results of the test than the mere error rate. It shows which classes
were classified properly or almost properly and which were misclassified /confused
with other classes and to what degree [9].

In example Fig. [I.4] you can see the confusion matrix of the neural network for
emotion classification. The given network is more accurately detecting angry and
happy emotions, compared to sad and neutral. Another important data is the most

common misclassification is sad emotion being recognized as neutral.

26

Predicted
Happy Sad

Neutral

1.19% | 0.48%

Actual

Neutral

Fig. 1.4: Example of the confusion matrix (emotion detection) |10

27

2 Practical Implementation

For implementation, I used the programming language Python, which is widely
used for machine learning and neural networks. Firstly, I gathered some photos of
car logos. Then I found and modified a neural network to classify logos. I chose
a convolutional neural network, because the car logos I need to recognize contain
lots of sharp edges and corners, therefore using CNN should reduce neural network
parameters compared to ANN, and remove dependency on logo position and angle,
as discussed in [5]. Hopefully, due to fewer parameters of CNN, this will show
the best results for the computational power given. This neural network was then

trained and its success rate was verified using a confusion matrix.

2.1 Photo Database

I got photos from the internet, my phone camera, and some photos of less common
brands were taken by my family members. A list of photos sorted by source can be
seen in Tab. 2.1

2.1.1 Own Photos

I managed to get about 495 photos of 23 car brands on my own [11]. Photos I
took cover different light scenarios, as well as different logo angles, so these factors
hopefully won’t influence the accuracy of the final app. Also, some brands changed
their logo in the past, so I tried to include as many variants as possible. The influence
of angle and light can be seen in Fig. When taking pictures, I didn’t find a
lot of Teslas, so hopefully, there will be enough samples to accurately represent this
brand.

High quality photo Photo taken at Lower quality
angle night photo

Fig. 2.1: Example of different quality photos of my own.

29

2.1.2 Datasets

I found two datasets containing desired photos of car logos. First of them is the
Comprehensive Cars (CompCars) |[12] dataset. It contains 136,726 photos. However,
most of the photos don’t include a logo, and the ones that do, contain a lot of car
brands, which do not occur in the Czech Republic. After deleting photos not suitable
for neural network training, I am left with about 1800 photos of 23 car brands.

Another dataset is the Kaggle Car Brand Logos dataset. Kaggle is a website
unifying various tools for machine learning. There are online courses, Q&A blog,
and place, where users can share and download datasets, to name a few. This data
set contains photos of eight car brands. It’s divided into train and test images. In
the training set, there are over 300 images per brand. In the test set, there are 63
photos for each brand. There are 2562 photos in total |13].

30

Tab. 2.1: Number of photos for each car brand

Car brand | Own photos | compCars ‘ Kaggle H Total ‘

Audi 18 148 0 166
BMW 21 158 0 179
Citroen 20 64 0 84
Fiat 16 26 0 42
Ford 26 66 0 92
Hyundai 19 83 352 454
Chevrolet 7 90 0 97
Kia 24 86 0 110
Mazda 14 70 367 451
Mercedes 23 136 392 551
Mitsubishi 6 62 0 68
Nissan 7 73 0 80
Opel 21 15 351 387
Peugeot 26 81 0 107
Renault 18 29 0 47
Seat 48 3 0 51
Skoda 78 61 364 503
Subaru 10 45 0 55
Suzuki 10 72 0 82
Tesla 6 1 0 7
Toyota 23 108 356 487
Volkswagen 38 213 380 631
Volvo 9 103 0 112
Total 488 1793 | 2562 | 4843 |

31

2.2 Neural Network

After a thorough search of available neural networks, we decided to use the model
described in the bachelor’s thesis of Be. Marek Sicha [1]. After examination of his
code, I've come to the conclusion that his code, while performing a different task,

can be modified to fit my application.

2.2.1 Code Modifications

To reuse found code, I had to make the following changes:

e Original code worked with .ppm image format. While images could be con-
verted to this format quite easily, my project is supposed to work with images
imported from the user’s mobile phone or taken by the phone’s camera, and
these are usually in .jpg format. Therefore, I changed the input image format
to .jpg to eliminate unnecessary conversion.

o I moved the image size, which was hardcoded as 32x32 pixels in [1], to the
global variable. This allows me to experiment with different image sizes/reso-
lutions to find the most reliable combination for the best classification results.

I replaced the model definition with one found in |14]. I found better results
using this model with approximately 90% accuracy over about 60% using
model based on [1] (results after only training the compCars dataset).

o [had to write some Python functions to quickly sort dataset photos into folders
and crop them to only contain logos, which is the only part of the photo I'm
concerned about, with regard to this project.

o [also created a function to generate a confusion matrix to evaluate neural
network accuracy. This function takes the trained model and image path as
input. It then classifies each image in a path with a trained neural network and
compares the result to the known brand name. Finally, it outputs the number
of correctly and incorrectly recognized photos. Once the neural network was
modified and trained (using only the compCars dataset for easier changes and
faster feedback), I generated a confusion matrix, which can be seen in Fig.
2.2

32

"SUISN W,] YIOM)OU [RINAU O} JO MIIA PoIoAer] ¢ "SI

%SP'E

onjop, ualemsyjop

LT
%r9'T

%SY'E

ejoho]

“A[uo jesejep sreHdurod Sursn poaurjeijald JI0MISU [RINSOU 9} JO XLIYRUW UOISNJUO)) :7'G "SI

%.60 %160

%/ %0
%GR'T

%799
WBLET
%IF'T WiY'T
%TL'S
%9T'T %9T'T

%I¥'C
%CST %CST

e[sa pnzng niegng epoys 1eag neusy 1098nad [ELN) UBSSIN 1ysiqNsUA S2padIay epze|p ely 19]0JA3YD

HET'T %EC'T

%LV0 %70
%S8T %EGD

%EG'D ej0ho]

e[sa]
pnzng
59 |

e wpos
jesg
%SP'E
E 1023nad
lado
Ko K
s

}neuay

%LET uessiN
%9T'T

%IT'T 13]01A3Y)

lepuniy

piod

el

uzon

muwg

1pny

1epunA pioj ey usonpn muwg 1pny

33

2.3 App development

The goal of this thesis was to create a multiplatform mobile app to classify a picture
of a car logo, and since I opted for using python for my neural network, I had to
find a framework allowing me to convert python code to code required by all mobile

platforms in question. That’s Java or Kotlin for Android and Object-C for iOS.

2.3.1 Framework

For such a framework, I had a few choices, each with its advantages and disadvan-
tages.

« Kivy is probably the easiest framework to work with python code-wise. It
includes a python interpreter in the compiled app, which allows it to work with
most of the available python libraries. On the other hand, it brings a larger
app size because these resources are not very optimized for the target platform.
This framework requires Linux to compile for Windows and Android, and OS-
X for iOS compilation. It can be debugged by installing required libraries and
then running source code on Windows with Python installed.

Kivy has been available since 2011, therefore it’s a well verified framework
[15].

« BeeWare is more developer friendly, compared to Kivy, and it uses platform-
specific UI toolkit, so it looks and feels like a native app. The main dis-
advantage of BeeWare is, that it’s still quite a new framework. Therefore, it
doesn’t have as good documentation as other frameworks, and very few python
libraries are supported [15].

o Django is very strong for backend programming, however, it provides very
little frontend-wise. It requires another framework like React native or Kivy
(mentioned above). It’s mainly used in applications dealing mainly with online
data transfers [16].

For some reasons mentioned above, I decided to use the KIVY framework. Mainly
because I really needed to use python libraries (TensorFlow library for neural net-
work, at the very least) and I didn’t want to combine different frameworks for
frontend and backend, which could result in some compatibility problems in devel-
opment.

I decided to overcome one of the biggest disadvantages of Kivy (namely its
terrible non-native and vintage-like UI) by including a UT library called KivyMD.
MD in the name stands for Material design, which is a design system by Google. This
library quite successfully ports this design to the Kivy framework, and in addition,

allows one-line theme changes. This library also adds a bit of the native-like feel

34

mentioned above.

2.3.2 Libraries used for app development

Various tasks I was trying to achieve were already solved by other people before,

therefore, there are so-called libraries available for use. In programming, a library is

a module responsible for performing specific activities. Here are some of the libraries

I used with a brief description of their purpose.

Kivy - Framework responsible for making an app out of Python code. This
library was discussed in more detail in the chapter above.

KivyMD - Material design module for Kivy. It makes the app and its user
interface look more modern, i.e. creating rounded shaded buttons, instead
of plain rectangles. It also adds some new controls, like a top bar with an
optional action button on the left side.

Pillow - Image library used to load images, and also for resizing them to
Al-required size and making them grayscale.

numpy - The Al model returns a result as an array of probabilities in the
order in which they were trained. Therefore, the numpy library is used to find
a class with the highest probability and return the ID of the selected class.
It’s also used to convert image output from Pillow to a float-type array for a
neural network.

os - This library is used to get the path of the main Python file, and also to
check for the existence of a given file.

camera4kivy - Library responsible for communication with the device cam-
era. Unlike other similar libraries, this one is a very universal platform-vise
and also allows pinch-to-zoom gestures on the preview.

base64 and requests - Two libraries with a common purpose. When the
user marks the logo recognition as incorrect (more on that later), base64 turns
an image into a base64 encoded string, which is then, with the help of the
requests library, sent to a server using an encrypted HTTPS POST request.
Plyer - It is used to call the device default file-chooser. It would be possible
to develop an in-app file selector without another library, but it would require
more permissions to be requested, and I think it would feel more natural and
private for users to use the same file selector across the whole OS.

PyJNIus and android - Libraries directly communicating with OS on the
lower Java layer. In my app, it is used to get the Android version from the
system and ask for permissions (In Android 13 and higher, the app must use

run-time permission requests instead of just declaring it needs to use them).

35

2.3.3 Tensorflow lite

For neural network to work on mobile devices, Tensorflow has to be converted to a
simpler Tflite model. Because this conversion limits the number of model operators,
conversion can provide various results. Since I wasn’t happy with the quality of the
converted Tensorflow AI model, I settled on creating a new Tflite one, based on
the pre-trained Keras Sequential 1 model. With this approach, accuracy increased
from 65% to 80%. Detailed results can be seen in Fig. As you can see, the new
neural network has fairly fewer incorrect classifications, and most of the incorrect
ones come from Fiat, Tesla, and Subaru, which all had quite a small dataset. Part
of the result could also be a difference between input shapes of neural networks,
with most of the images in the test dataset being about 300x300 pixels, which could
mean that the old network might outperform the new one when dealing with lower

quality photos, but simply not being as good at it with higher quality ones.

Old tensorflow model (input size 128 x 128)

Output class (result of classification)

Mazda Peugeot [Renault [seat

Input class (correct)

New tflite model (input size 224 x 224)

Output class (result of classification)

Peugeot |Renault |Seat Suzuki

Input class (correct)

Fig. 2.4: Comparison of the old and new AI models.

36

2.4 App creation

Since every mobile platform has its specifics, it is necessary to compile universal
Python code to Java code for Android OS, and Swift code for iOS.

2.4.1 Android compilation

For the Kivy framework, the tool for compilation is called Buildozer, and it needs to
run on Linux OS. The compilation process is quite simple. You just need to fill out
some parameters of the app, like name, version, required permissions, architectures
to compile for, etc. Buildozer itself is controlled via a command line, with the
possibility to export a debug app with an apk extension for direct installation, or
a signed app bundle with an aab extension to publish your app in the Google Play

store.

2.4.2 i0OS compilation

The theoretical compilation process for iOS apps goes as follows: you need ma-
cOS device (either Apple MAC or Macbook), where you install Python with the
Toolchain library. Toolchain should be able to convert Kivy source files to XCode
project (XCode is Apple’s proprietary app builder tool required to make apps for
i0S). After that, you open the project in XCode and compile the app. However,
when I tried to follow this process myself, I run into some issues when opening
generated project in Xcode. I think this has to do with some compatibility prob-
lems between version 14.3 (14E222B) of Xcode and version Apple clang 14.0.3 of
Toolchain. Unfortunately, I can’t use an older version of XCode, because then I
wouldn’t be able to compile apps for the new version of iOS, and iPhones can’t be
easily downgraded to test my app. Therefore, at the time of writing this thesis, I
decided it would be best to abandon iOS development attempts for now and focus

on debugging the Android version of the app.

37

3 App user interface

Since I created the app, I had to design a user interface for it as well. Navigation
through the app is illustrated in Figure |3.1) where black and yellow arrows are
showing usual application flow, red arrows demonstrate arrows pointing back to
home screen and green arrow shows, where users are taken when they press the

cogwheel icon and go to settings.

3.1 Loading screen

This is the initial screen that users see when they launch the app. When this screen
is displayed, preparatory activities for the neural network and the application itself
are running in the background.

When the app is launched for the first time, its assets are compiled to limit the
amount of downloaded data. As a result, users may remain on this screen for a little

longer while the app data is decompiled.

3.2 Main screen

On this screen, there are three buttons users can interact with. On the top left
corner, there is a cogwheel icon, that takes users to settings. In the middle, there is
a button "Choose from gallery", which is used, when the user already has the picture
of the logo in their gallery, and the "Take the picture" button, which allows them to

take a new picture.

3.3 File selector

The File Selector (also referred to as Filechooser) allows users to select an existing
image for classification. While it is possible to use the file selector provided by the
kivyMD library, I found it a bit confusing, so I went the route of calling the native
file selector because it creates a familiar environment for the user and also makes

them feel safer about the data they are providing to this application.

3.4 Camera screen

When a user wants to identify a logo they have found in real life, they usually don’t
have a picture of it in the gallery yet, so they end up on this screen. In the top

left corner, you can see an arrow pointing to the left, which returns the user to the

39

main screen. In the middle of the screen is a camera preview with a pinch-to-zoom
feature that allows users to see what they are about to photograph. And at the
bottom center is a round camera button that, when pressed, saves the image to the

user’s gallery and starts image classification.

3.5 Result screen

Whether user selects a picture from the gallery or takes a new picture, they end up
on the result screen. on the top left, there is a left-pointing arrow allowing them to
get back to the main screen, and there are a few things in the main portion of the
screen. From top to bottom, there is a visual representation of the classified logo, as
well as the brand name just below. There is also an "incorrect logo" button in the
bottom right corner, so if the shown logo doesn’t match the actual logo, the user
can send an input picture to my server, where it will later be used to retrain the

neural network, and thus make the neural network more accurate in the future.

When the user reports incorrect classification, a so-called "snackbar" will be
shown on the bottom of the screen for three seconds, informing the user about a

successful report and thanking them for their contribution.

3.6 Settings screen

This screen is currently mainly for people like me who like a dark theme for battery
savings and increased eye comfort. In addition to theme settings, there is a developer
mode. This displays information such as the path to the image, resolution, class
number, and probability on the screen. This information is not intended for normal
users, but I left it in there as an option in case there is a bug on some devices,

allowing me to get some debugging information from users.

40

‘dde oy ySnoay) uoryesiaeu jo weiser([1°¢ "9

usalI0s
elawe)

Jeqxoeus noA-yuey} usalos us8I0S uaalos
UHM UB3ITS } NSy Jnsay urey wmc_tww
08S uonjuBooes oboj 8D >
€
1893 1898
>
gt o 35000
o apow doarq

r en awoy L

uopuBoass oboj ey >

~-Suipeoq
uojyubooes oboj £ >

UopIuBooa1 06o) Je:
UonIuBo221 0B0j 120 L & e

uoniSodaa oSoj Je)

uaalos
(enneu a21n8p) Buipeo]
u9al0s
J8sooyo9|i4

41

Conclusion

In this thesis, I first focused on finding the most suitable neural network for car logo
recognition and gathering photos of car brands.

I took about 500 photos and downloaded 1800 photos from CompCars and 2900
photos from Kaggle datasets. This results in approximately 5200 photos for training
my neural network. After training and testing the neural network, I found that for
some brands, the dataset did not contain enough photos for reliable detection. This
problem should be solvable by taking a higher number of photos and retraining the
existing neural network.

I developed an Android app and published it in the Google Play app store. The
app works mostly offline, however, certain features, such as reporting incorrectly
recognized pictures, require an internet connection. The speed of recognition is not
the greatest, but I'd consider it acceptable. It could be improved if the app would
be optimized for each platform, but since the goal was multiplatform development,
I settled with some drawbacks, like a larger app size or slower speed.

I planned to develop an iOS app as well, but I got stuck due to the compatibility

issues, as explained in [subsection 2.4.2| If this issue gets resolved at some point in

the future, the complete layout and most of the code can be used as is, thanks to the
use of the multiplatform Kivy framework. However, some platform-specific parts of
the code, like permission handling, network checks, etc. would have to be written
from scratch, because I wasn’t able to successfully convert my code into an Xcode
project, and therefore I couldn’t access the necessary debugging information for me
to write the code.

My initial approach of creating a convolutional neural network and converting it
to tflite proved to not be feasible, for several reasons. First is the accuracy problem.
I created a test dataset consisting of 20 photos for each of the 23 car brands (460 in
total), selected from the VLD-45 dataset [17] that was not used for the training of
neural network. Using all available photos, CNN did not reach the expected quality,
but only about 65% on this test dataset. Second, converting the convolutional
network to tflite proved to be highly problematic, due to limitations caused by the
architecture and computational power of the device.

Since my original approach failed, I decided to create a new neural network di-
rectly in the tflite format. This neural network is based on the pre-trained Keras
sequential 1 model, to which the dataset images are post-trained. This network
achieved better results than the previously mentioned convolutional network, reach-
ing approximately 80% accuracy on the same dataset. However, I think this result
is due to the fact that this neural network is based on an already pre-trained model,

and the success rate of the convolutional neural network could at least match this

43

result if more photos were used. The disadvantage of this approach is about 20
times longer classification time, compared to a tensorflow model.

One of the options I initially considered was also hosting a server running Python
with the TensorFlow model loaded, and the mobile app would send the images to
this server, which would process and classify them. It could then return the result
back to the mobile app, which would display the recognized brand. I didn’t take
this route originally because I wanted the app to work offline, and I didn’t want to
worry about server scalability if more users started using my app. In retrospect,
I can see that this might have been a better choice that would have saved me the

trouble of trying to convert a trained Al model.

44

Bibliography

1. SICHA, Marek. Detekce dopravnich znacek v redlném case. 2021. Available
also from: https://www.vut.cz/studenti/zav-prace/detail /133597.
Bakalatrska prace. Brno: Vysoké uceni technické v Brné, Fakulta elektrotech-
niky a komunikacnich technologii, Ustav radioelektroniky. Vedouc prace: Ing.

Tomés Bravenec.

2. PICTON, Phil. What is a Neural Network? In: Introduction to Neural Networks
[online]. London: Macmillan Education UK, 1994 [visited on 2022-11-21]. ISBN
978-1-349-13530-1. Available from DOI: 10.1007/978-1-349-13530-1 1.

3. GUPTA, Dishashree. 25 must know concepts for beginners in Deep Learning
¢ Neural Network [online]. 2019. [visited on 2022-12-29]. Available from: https:
//www . analyticsvidhya . com/blog /2017 /05 /25 - must - know - terms —

concepts-for-beginners-in-deep-learning/|

4. MA, Yaoyao; XU, Xiaoyu; YAN, Shuai; REN, Zhuoxiang. A preliminary study
on the resolution of electro-thermal multi-physics coupling problem using physics-
informed Neural Network (PINN) [online]. Multidisciplinary Digital Publishing
Institute, 2022 [visited on 2022-12-15]. Available from: https://www.mdpi .
com/1999-4893/15/2/53.

5. ALBAWI, Saad; MOHAMMED, Tareq Abed; AL-ZAWI, Saad. Understanding
of a convolutional neural network. In: 2017 International Conference on Engi-
neering and Technology (ICET) [online]. 2017, pp. 1-6 [visited on 2022-11-21].
Available from DOI: [10.1109/ICEngTechnol.2017.8308186.

6. ELGENDY, Mohammed. 3 convolutional neural networks (cnns) - Deep Learn-
ing for Vision Systems [online]. 2020. [visited on 2022-12-15]. Available from:
https ://1livebook . manning . com/book /deep- learning - for - vision -
systems/chapter-3/v-7/117.

7. KOCH, Robert. Machine learning datasets - definition, applications, resources
[online]. 2022. [visited on 2022-11-28]|. Available from: https://www.clickworksr.

com/customer-blog/machine-learning-datasets/.

8. RIZVI, Mohd Sanad Zaki. CNN image classification: Image Classification using
CNN [online]. 2020. [visited on 2022-12-15]. Available from: https://www.
analyticsvidhya.com/blog/2020/02/1learn-image-classification-cnn-

convolutional-neural-networks-3-datasets/.

9. SUSMAGA, Robert. Confusion Matrix Visualization. In: Intelligent Informa-
tion Processing and Web Mining. Springer Berlin Heidelberg, 2004, pp. 107—
116. Available from DOI: [10.1007/978-3-540-39985-8 12.

45

https://www.vut.cz/studenti/zav-prace/detail/133597
https://doi.org/10.1007/978-1-349-13530-1_1
https://www.analyticsvidhya.com/blog/2017/05/25-must-know-terms-concepts-for-beginners-in-deep-learning/
https://www.analyticsvidhya.com/blog/2017/05/25-must-know-terms-concepts-for-beginners-in-deep-learning/
https://www.analyticsvidhya.com/blog/2017/05/25-must-know-terms-concepts-for-beginners-in-deep-learning/
https://www.mdpi.com/1999-4893/15/2/53
https://www.mdpi.com/1999-4893/15/2/53
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://livebook.manning.com/book/deep-learning-for-vision-systems/chapter-3/v-7/117
https://livebook.manning.com/book/deep-learning-for-vision-systems/chapter-3/v-7/117
https://www.clickworker.com/customer-blog/machine-learning-datasets/
https://www.clickworker.com/customer-blog/machine-learning-datasets/
https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/
https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/
https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3-datasets/
https://doi.org/10.1007/978-3-540-39985-8_12

10.

11.

12.

13.

14.

15.

16.

17.

NARAYANAN, Venkatraman. Prozemo: Gait-based emotion learning and Multi-
view proxemic fusion for socially-aware Robot Navigation [online]. 2020. [visited
on 2022-12-28]. Available from: https://deepai.org/publication/proxemo-
gait-based-emotion-learning-and-multi-view-proxemic-fusion-for-

socially-aware-robot—-navigation.

UCHYTIL, Tomas. Car Logo Dataset [Online|. 2023. [visited on 2023-05-27].
Available from: https://mega.nz/folder/wvwOOTxQ#Z1Y01ik9bRcbirvS JmAGNA.

YANG, Linjie; LUO, Ping; LOY, Chen Change; TANG, Xiaoou. A large-scale
car dataset for fine-grained categorization and verification. In: 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) [online]. 2015,
pp. 3973-3981 [visited on 2022-10-11]. Available from DOI: 10.1109/CVPR.
2015.7299023!

OZDEMIR, Volkan. Car brand logos [online]. 2021. [visited on 2022-10-10].
Available from: https://www.kaggle.com/datasets/volkandl/car-brand-

logos“?resource=download.

OZDEMIR, Volkan. car logo classification [online]. 2020. [visited on 2022-12-
28]. Available from: https://www . kaggle . com/code/ jp0909/car-logo-

classification/notebook.

BAROT, Parth. Comparing kivy and BeeWare: Understanding the key differ-
ences [online]. 2023. [visited on 2023-04-01]. Available from: https://www.

botreetechnologies.com/blog/kivy-vs-beeware-difference/.

MORASCHINELLI, Walter. Picking a python mobile app development frame-
work [online]. 2023. [visited on 2023-04-01]. Available from: https://www .
pangea . ai/dev-python-resources/picking-a-python-mobile-app -
development-framework/.

YANG, Shuo; BO, Chunjuan; ZHANG, Junxing; GAO, Pengxiang; LI, Yujie;
SERIKAWA, Seiichi. VLD-45: A Big Dataset for Vehicle Logo Recognition and
Detection. IEEE Transactions on Intelligent Transportation Systems [online].
2022, vol. 23, no. 12, pp. 2556725573 [visited on 2023-05-25]. Available from
DOI: 110.1109/TITS.2021.3062113.

46

https://deepai.org/publication/proxemo-gait-based-emotion-learning-and-multi-view-proxemic-fusion-for-socially-aware-robot-navigation
https://deepai.org/publication/proxemo-gait-based-emotion-learning-and-multi-view-proxemic-fusion-for-socially-aware-robot-navigation
https://deepai.org/publication/proxemo-gait-based-emotion-learning-and-multi-view-proxemic-fusion-for-socially-aware-robot-navigation
https://mega.nz/folder/wvw00TxQ#ZlYOlik9bRcbirvSJmAGNA
https://doi.org/10.1109/CVPR.2015.7299023
https://doi.org/10.1109/CVPR.2015.7299023
https://www.kaggle.com/datasets/volkandl/car-brand-logos?resource=download
https://www.kaggle.com/datasets/volkandl/car-brand-logos?resource=download
https://www.kaggle.com/code/jp0909/car-logo-classification/notebook
https://www.kaggle.com/code/jp0909/car-logo-classification/notebook
https://www.botreetechnologies.com/blog/kivy-vs-beeware-difference/
https://www.botreetechnologies.com/blog/kivy-vs-beeware-difference/
https://www.pangea.ai/dev-python-resources/picking-a-python-mobile-app-development-framework/
https://www.pangea.ai/dev-python-resources/picking-a-python-mobile-app-development-framework/
https://www.pangea.ai/dev-python-resources/picking-a-python-mobile-app-development-framework/
https://doi.org/10.1109/TITS.2021.3062113

Symbols and abbreviations

CNN Convolutional neural network
ANN Artificial neural network
Al Artificial intelligence

Tflite Tensorflow lite

47

A Content of the electronic attachment

PP root directory of the attached archive
L AT model oottt e e e latest tflite AI model
tmodel_4_2.tflite

tensorflow_CNN_model.url

Y o] o app source files and precompiled binary
| noncompiled
camerax_Providercceeeeeiiiinnnnnnn support files for app camera
data..... app icon, app splashscreen, labels and demo image of each brand
buildozer.spec......ccovvvveennn.. configuration for Android compilation
layout . kv ..o app layout configuration
1B TS o I PP app source code
| compiled.urlcovniiiiiiiiiiiiiien link to download compiled apk
| Play_store_link.url

| datasets ittt links to all datasets used in thesis
CompCars.url
Kaggle.url
my_photos.url
VLD-45.url
| PYthOn _SCTiPES c ittt e scripts used for thesis

convert_tensorflow_to_tflite.py
crop_all_by_third_from_each_side.py.used for pre-crop to save some time
sort_CompCars_dataset.py ... for filtering and sorting CompCars dataset by

brands

sort_VLD_dataset.py.......ccovvuuunnnnn. for sorting VLD dataset by brands
tensorflow_classifier.py..... would be used, if classification changes from
in-app to server

tensorflow_classifier_train.py............ for creating tensorflow model
tensorflow_confusion_matrix.py for testing model performance
tflite_confusion_matrix.py........... for testing tflite model performance
tflite_model MakKer . Py.ceeeuuunnnnneeeeeeenennnnn for creating tflite model

49

	Introduction
	Neural Networks
	Pattern Classification
	Convolutional Neural Networks
	Datasets for Neural Networks
	Confusion Matrix

	Practical Implementation
	Photo Database
	Own Photos
	Datasets

	Neural Network
	Code Modifications

	App development
	Framework
	Libraries used for app development
	Tensorflow lite

	App creation
	Android compilation
	iOS compilation

	App user interface
	Loading screen
	Main screen
	File selector
	Camera screen
	Result screen
	Settings screen

	Conclusion
	Symbols and abbreviations
	Content of the electronic attachment

