
T
BRNO UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF MECHANICAL ENGINEERING
FAKULTA STROJNÍHO INŽENÝRSTVÍ

INSTITUTE OF MATHEMATICS
ÚSTAV MATEMATIKY

GROVER'S ALGORITHM IN QUANTUM COMPUTING AND
ITS APPLICATIONS
GROVERŮV ALGORITMUS V KVANTOVÉM POČÍTÁNÍ A JEHO APLIKACE

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR BSc Joseph Katabira
AUTOR PRÁCE

SUPERVISOR doc. Mgr. Jaroslav Hrdina, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Mechanical Engineering

MASTER'S THESIS

Brno, 2021 BSc Joseph Katabira

A s s i g n m e n t M a s t e r ' s T h e s i s

Institut: Institute of Mathematics

Student: BSc Joseph Katabira

Applied Sciences in Engineering

Mathematical Engineering

doc. Mgr. Jaroslav Hrdina, Ph.D.

2020/21

Degree programm

Branch:

Supervisor:

Academic year:

As provided for by the Act No. 111/98 Col l . on higher education institutions and the BUT Study and

Examination Regulations, the director of the Institute hereby assigns the following topic of Master's

Thesis:

Graver's algorithm in Quantum computing and its applications

Brief Description:

Quantum computations in some algorithms use entagulation of quantum states. From a mathematical

point of view, these are indecomposable tensors of the respective order. Entagulation's states are

then used as a tool for quantum algorithms as a searchinq or cryptography.

Master's Thesis goals:

Learning the basics of quantum computing. The student chooses one of the c lassical quantum

algorithms, programs it in the chosen simulation software, for example python and will d iscuss its

complexity with respect to classical non-quantum ones.

Recommended bibliography:

DE LIMA M A R Q U E Z I N O , Frankl in, et al . : A Primer on Quantum Comput ing, SpringerBriefs in

Computer Science, 2019.

R U E , Juanjo, X A M B O , Sebastian. Mathematical essentials of quantum computing, Lecture notes

U P C , https://web.mat.upc.edu/sebastia.xambo/QC/qc.pdf

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

https://web.mat.upc.edu/sebastia.xambo/QC/qc.pdf

Deadline for submission Master's Thesis is given by the Schedule of the Academic year 2020/21

In Brno,

L. S.

prof. RNDr. Josef Šlapal, C S c . doc. Ing. Jaroslav Katolický, Ph.D.

Director of the Institute F M E dean

Faculty of Mechanical Engineering, Brno University of Technology / Technická 2896/2 / 616 69 / Brno

Abstrakt
Kvantová výpočetní technika je rychle rostoucí obor informatiky, který přenáší principy
kvantových jevu do našeho každodenního života. Díky své kvantové podstatě získávají
kvantové počítače převahu nad klasickými počítači. V této práci jsme se zaměřili na
vysvětlení základů kvantového počítání a jeho implementaci na kvantovém počítači. Ze­
jména se zaměřujeme na popis fungování, konstrukci a implementaci Groverova algoritmu
jako jednoho ze základních kvantových algoritmů. Demonstrovali jsme sílu tohoto kvan­
tového algoritmu při prohledávání databáze a porovnávali ho s klasickými nekvantovými
algoritmy pomocí implementace prostřednictvím simulačního prostředí QISKit. Pro sim­
ulaci jsme použili Q A S M Simulator a State vector Simulator Aer backends a ukázali, že
získané výsledky korelují s dříve diskutovanými teoretickými poznatky. Toto ukazuje,
že Groverův algoritmus umožňuje kvadratické zrychlení oproti klasickému nekvantovému
vyhledávacímu algoritmu, Použitelnost algoritmu stejně jako ostatních kvantových algo­
ritmů je ale stále omezena několika faktory, mezi které patří vysoké úrovně dekoherence
a chyby hradla.

Summary
Quantum computing as a new field of computing is a quickly growing field which encap­
sulates the role of quantum phenomenon in our day to day lives. Because of the quantum
characteristics, quantum computers have proved quantum supremacy over the classical
computers. In this thesis we focused on discussing basics of quantum computing and
in particular we focused on discussing the functioning, construction and implementation
of Grover algorithm as a special case of quantum algorithms. We showcased its power
as a database search algorithm over the classical non quantum ones through our algo­
rithmic construction implemented through QISKit simulation environment. To simulate
our construction, we made use of Q A S M Simulator and the State vector Simulator Aer
backends and the results obtained correlated with the earlier discussed theoretical find­
ings highly proving that Grover's algorithm provides quadratic speed up over the classical
non quantum search algorithm which is a much better improvement but as at hand, the
applicability of the algorithm as many others is still limited by several factors amongst
which includes high decoherence levels and gate errors.

Klíčová slova
Qubit, Superpozice, Grover's Algorithm, Complexity, Oracle, Diffusion Operator, Quan­
tum circuit, Quantum Gate, Grover Iterate, Initialisation, Measurement, Algorithm,
Search space, Bra-Ket Notation.

Keywords
Qubit, Superposition, Grover's Algorithm , Complexity, Oracle , Diffusion Operator,
Quantum circuit, Quantum Gate, Grover Iterate, Initialisation, Measurement, Algorithm,
Search space,Bra- Ket Notation.

K A T A B I R A , J. Groverův algoritmus v kvantovém počítání a jeho aplikace. Brno: Vysoké
učení technické v Brně, Fakulta strojního inženýrství, 2021. 59 s. Vedoucí doc. Mgr.
Jaroslav Hrdina, Ph.D.

Declaration I declare that I have written my Master's thesis on the theme "Grover's
algorithm in Quantum computing and its applications" independently, under the guidance
of my Master's thesis supervisor and using the technical literature and other sources of
information which are all quoted in the thesis and detailed in the list of literature at the
end of the thesis. As the author of the Master's thesis I furthermore declare that, as
regards the creation of this Master's thesis, I have not infringed any copyright.

BSc Joseph Katabira

I would like to thank my supervisor doc. Mgr. Jaroslav Hrdina, Ph.D. for his in­
valuable support help and advice with the thesis work. I would also like to thank my
family, graduate colleagues and friends for giving me physical, mental , emotional and
moral support that has helped me through out the process. Lastly, I would like to thank
the I N T E R M A T H S consortium for the studentship that allowed me to do my master's
studies.

BSc Joseph Katabira

CONTENTS

Contents
1 Basics of Quantum Computing 2

1.1 Introduction 2
1.2 Mathematical preliminaries 4
1.3 Circuits in Quantum computing 11
1.4 Computational complexity 19

2 Grover's algorithm 22
2.1 Some literature on Grover's algorithm 22
2.2 Grover based quantum algorithms 24
2.3 Classical quantum algorithms 25
2.4 Grover's algorithm 30

3 Grover's algorithm for a database of size 8 37
3.1 General Mathematical overview 37
3.2 Explicit Mathematical overview 42

4 Construction and Implementation of Grover's Algorithm 45
4.1 Circuit Construction 45
4.2 Discussion of Results 47

5 Recommendations and Conclusion 51

6 List of abbreviations and symbols used 56

1

1. Basics of Quantum Computing
1.1. Introduction
In this section we provide an introduction to the subject of quantum computing and gives
an explanation of the related concepts necessary for understanding the work presented in
the thesis report. The goals of this thesis are;

1. To give a simplified explanation of the basics of quantum computing.

2. To discuss how the Grover's quantum algorithm functions.

3. To discuss the complexity of Grover's algorithm with respect to classical non-
quantum ones with aid of a simulation example.

Quantum computing is based on qubits as the fundamental building block and the use
of quantum phenomena such as superposition, interference and entanglement to perform
quantum computations using quantum gates. By definition, a qubit is a two-state (or
two-level) quantum-mechanical system with the two basis states being 0 and 1 usually
denoted as |0) and |1) in bra-ket notation. A qubit can be in state |0), |1) or in a
linear combination of both states(superposition of both states). As a simplest quantum
mechanical system, a qubit can represent;

1. The spin of the electron in which the two levels can be taken as spin up and spin
down.

2. The polarization of a single photon in which the two states can be taken to be the
vertical polarization and the horizontal polarization.

Furthermore, qubits can be subdivided into single and multiqubit states where single
qubit states are described with a single qubit and they constitute the two orthogonal
basis states often referred to as the computational basis states. In 2-Dimensions, the
computational basis states can be:

1. |0) and |1) or,

2. |+) = • -J^J - and |—) = • - ' ^ J - sometimes called the computation (plus-

minus) basis.

In some literature, the computation basis [|+), |—)] is defined as;

= , o > + ^) ^ = |Q)

y/2 \/2
Multiqubit states are described by a string of single qubit states joined together under
the tensor product ((g)) operation and maybe classified into pure quantum state or mixed
quantum states where a pure quantum state is a state which can be described by a
single ket vector where as a mixed quantum state is a statistical ensemble of pure
states. A mixed state is described by its associated density matrix (or density operator),
usually denoted p. As a special case of pure multiqubit states,we shall discuss about the
two qubit states which constitute of two qubits joined together under the tensor product
(g operation to give four possible orthogonal states(computational basis states in two
qubits) that is |00), |01), |10) and |11).

2

1. BASICS OF QUANTUM COMPUTING

Superposition

This is essentially the ability of a quantum system to be in multiple states at the same
time. By the superposition principle, the quantum state of the a single qubit can be
expressed as a linear combination of the two classical states that is;

I*) = ao|0) + a i | l) ,

where
dj G C, I aj 12 = 1.

j
and similarly for the two qubits we can express the quantum state as a linear combination
of the four classical states that is;

where

etc.

I*) = a 0 0 |00) + aoi |01) + aw |10) + a n |11)

aij e C , ^ \aij\2 = 1,

Entanglement
This is a physical phenomenon that occurs when a pair or group of particles are generated,
interact, or share spatial proximity in a way such that the quantum state of each particle
of the pair or group cannot be described independently of the state of the others including
when the particles are separated by a large distance [38]. In quantum mechanics, a strong
relationship exists between quantum particles, such that observing one of two entangled
quantum states causes it to behave randomly but tells the observer exactly how the
other quantum state would act if observed in a similar manner even if separated by great
distances.

The Bell state is a direct result of entanglement and it is defined as a maximally
entangled quantum state of two qubits that exhibit perfect correlations even at spatial
separation which cannot be explained without quantum mechanics. There are four max­
imally entangled states(Bell states) on two qubits namely;

-L(|00) + |11)), - L (| 0 0) - | 1 1 » , -L(|01) + |10», and -L(|01) + |10».

The ideas discussed above can be generalised to N - qubits. We shall conclude this section
with a brief history on quantum computing.

In 1979, Paul Benioff at Argonne National Labs, submitted a paper entitled "The
computer as a physical system: A microscopic quantum mechanical Hamiltonian model
of computers as represented by Turing machines" []. In this paper, Benioff demonstrated
the theoretical basis for quantum computing and then suggested that such a computer
could be built.

In 1980 a mathematician Yuri I. Manin in his book "Computable and Uncomputable"
[30] laid out the core idea of quantum computing which was further strengthened in 1981
by Feynman when he gave a lecture entitled "Simulating Physics with Computers" [].

3

1.2. MATHEMATICAL PRELIMINARIES

In this talk, he argued that a classical system could not adequately represent a quantum
mechanical system.

David Deutsch, a physicist at Oxford, suggested a more comprehensive framework
for quantum computing in his 1985 paper [16] . In this work, he describes in detail
what a quantum algorithm would look like and anticipated that one day it would become
technologically possible to build quantum computers. He went on to develop an example
of an algorithm that would run faster on a quantum computer. He then further generalized
this algorithm in collaboration with Richard Jozsa [15].

Umesh Vazirani and his student Ethan Bernstein picked up where Deutsch and Jozsa
left off and in 1993, Bernstein and Vazirani published a paper which described an algo­
rithm that showed clear quantum-classical separation even when small errors are allowed.
Further in their 1993 paper [], they described a quantum version of the Fourier transform
(QFT) which would serve as a critical component for Peter Shor when he developed his
algorithm to factor large numbers.

In 1994, Daniel Simon then a postdoc at the University of Montreal outlined a problem
that a quantum computer would clearly solve exponentially faster than a classical one in
deriving his algorithm called Simon's algorithm []. Though prior to Daniel Simon's
work on algorithms, Seth Lloyd, working at Los Alamos, published a paper in Science
which described a method of building a working quantum computer [!] . He proposed
that a system sending pulses into a unit can represent a quantum state.

In 2001, Isaac Chuang et al. implemented Shor's algorithm on a nuclear magnetic
resonance (NMR) system to factor the number 15 as a demonstration [37]. Lov Grover
also contributed to the quantum algorithm arsenal by demonstrating that one can achieve
some speedup in a search algorithm on a quantum computer. [24]

In 1995, Cirac and Zoller proposed an ion trap as the physical system to perform quan­
tum computation. In this setup, lasers are used to ionize atoms which are then trapped
in electric potentials which contributed to the advancement of quantum computers [13].

1.2. Mathematical preliminaries
The basic playground for quantum computation is the complex vector space. The n-dimensional
complex vector space denoted as C™ consists of vectors

/ a i \
a2

a = . ,

\an)

defined by elements from complex field G C.

Complex field C
The complex field C are elements of the form;

ip = ai + ia2,

where «1,02 £ M having complex conjugates of the form •0 = a\ — ia2. For two complex
numbers ipi — a\ + ia2 and ip2 = b\ + ib2 we can define two operations namely;

4

1. BASICS OF QUANTUM COMPUTING

1. Addition

4>i+i>2 = (ai + «2^) + (6i + 62z) = (ai + bi) + (a2 + 62)«, (1-1)

2. Multiplication

ipi-ip2 = («1 + o 2i) • (61 + M) = (o>ih - a2b2) + (0162 + a 2 6 i) i (1.2)

If -01 7̂ 0 we can to write

^ l - 1 = - n - — 2 (0 1 - 0 2 «) - (!-3)

This defines the inverse element in the complex filed. For any complex number ip = a\+ia2

with complex cojugate •0, we can define the norm | | as;

f ^ = a? + a h W 2 . (1-4)

and an angle 9 as;

0 = arctan (—) . (1.5)

Generally a complex number ip can be written in exponential form as

ijj = \i\)\e

ie = |^|(cos^ + is in^) , (1.6)

where 0 < 9 < 2n.

Axiomatic definition
Definition 1 . 2 . 1 . A Vector space over a field F is a set V together with two operations:

+: V x V —> V, takes any two vectors a i , a2 G V and assigns them to ai + a2. G V,

•: F x V —> V takes any scalar b\ G F and any a\ G V and gives b\a\ G V.
such that for any three elements 01,02 and 03 G V, and 61,62 G F the following axioms
hold;

1. ai + (a 2 + a 3) = (ai + a2) + a 3 .

2. ai + a2 — a2 + a\.

3. There exists an element 0 G V such that ai + 0 = a i , Vai G V .

4. Vai G V there exists an element — a\ G V such that ai + (—ai) = 0.

5. 61(6201) = (6i6 2)a i .

6. l a i = a2, where 1 G V.

7. 61 (ai + a 2) = 6 i a i + 6 i a 2 .

8. (61 + 6 2)ai = 6 i a i + 6 2 a i .

5

1.2. MATHEMATICAL PRELIMINARIES

Definition 1.2.2. A norm is real-valued function || • ||: V —> M. with the following
properties:

1. It is non-negative, that is for every vector a i , one has ||ai| | > 0.

2. It is positive on nonzero vectors, that is, | |ai| | = 0 <̂ =̂ ai = 0.

3. For every vector ai , and every scalar b , one has ||6ai|| = |o|||ai|| •

4. The triangle inequality holds; that is, for every vectors ai and a 2 , one has

11 «i H- a.211 < ||«i|| + ||«2||-

Remark. A norm induces a distance by the formula d(ai,a2) = \\a2 — ai | | which makes
any normed vector space into a metric space and a topological vector space.

Definition 1.2.3. A n inner product space is a vector space V over the field ¥ together
with a map (•,•): V x V ¥ satisfying for all vectors a i , a2, a 3 G V and all scalars b G F
the following conditions;

1. Linearity in the first argument:

(ba1, a2) = b(a1, a2).

(ai + a 2 , a3) = (ai, a 3) + (a 2, a 3).

2. Conjugate symmetry or Hermitian symmetry:

(ai,a 2) = (a2,al).

3. Positive definiteness/'semi-definiteness: (ai,ai) > 0 i f ̂ ^ 0 and (ai,ai) = 0 if
and only if ai — 0.

The Complex vector space C™ defined by (1.1) and (2) in Section 1.2 satisfies the
Definition 1.2.1 and together with a norm defined by (1.4) satisfies the Definition 1.2.3.

Remark. If condition 1 holds and if (•, •) is also anti-linear (also called, conjugate linear)
in its second argument then (•, •) is called a sesquilinear form. Conjugate symmetry and
linearity in the first variable implies;

(a1, ba2) = (ba2, ai) = b(a2, ai) = b(a1, a2).

(ai, a2 + a 3) = (a 2 + a 3 , ai) = (a 2, ai) + (03,04) = (ai, a2) + (ai, a 3).

In t/ie case o/F = conjugate-symmetry reduces to symmetry, and sesquilinearity reduces
to bi-linearity. Hence we get

(ai,a 2) = (a 2 ,ai).

Inner product spaces are normed vector spaces with the norm defined as;

| |ai|| = a /(ai , ai).

yln mner product space is a metric space, with the distance defined by;

d(ai, a2) = ||a.2 — ai | | .

6

1. BASICS OF QUANTUM COMPUTING

Remark. The axioms of the inner product guarantee that the map above forms a norm,
which will have the following properties;

1. Polarization identity: The inner product can be retrieved from the norm by the
polarization identity.

II O i H- «2112 = | l a i | | 2 + Il a2|| 2 + 2 Re(ai, a2),

which is a form of the law of cosines.

2. Orthogonality: Two vectors are orthogonal if their inner product is zero. In the case
of Euclidean vector spaces, the inner product allows us to define the (non oriented)
angle 6 of two nonzero vectors by;

Q (ai, a2) V = arccos - — —
öl|| 1111 '

and 0 < 9 < 71.

3. Pythagorean theorem: Whenever a i , a2 G V and (a i , a 2) = 0, then

||ai|| 2 + 11 «2112 = || «1 + a2|| 2 -

4. Parseval's identity: An induction on the Pythagorean theorem yields: if a\.
are orthogonal vectors;

J] I k
i=i i=l

5. Paralleloe; ram law: For O i , 02 G V,

11 cii + a 2 | | 2 + 11 a-i — a 2 | | 2 = 2||ai||2 + 2||a2||2.

The parallelogram law is a necessary and sufficient condition for the existence of an
inner product corresponding to a given norm.

6. Ptolemy's inequality: For ai,a2,a3 G V,

II °1 — <̂ 2 11 11 <̂ 3 11 + II O2 — Ö3 II II ö l II > II ö l — Ö3 II II 02 II-

Ptolemy's inequality is also a necessary and sufficient condition for the existence of
an inner product corresponding to a given norm.

Suppose that (•, •) is an inner product on V (so it is anti-linear in its second argument).
The polarization identity shows that the real part of the inner product is;

Re(a1,a2) = - (||ai + a 2 | | 2 - ||ai - a 2 || 2) .

If V is a real vector space then

(a i , a2) = Re (a i , a2) = - (||ai + a 2 | | 2 — ||ai — a 2 | | 2)

1.2. MATHEMATICAL PRELIMINARIES

and the imaginary part (also called the complex part) of (•, •) is always 0. Assuming that
V is a complex vector space. The polarization identity for complex vector spaces shows
that,

4(ai, a 2) = - (||ai + a 2 | | 2 — ||ai — a 2 | | 2 + z||ai + m 2 | | 2 — i11ai — m 2 | | 2)

= Re(ai, a2) + % Re(ai, ia 2) .

We shall work in the N-dimensional Hermitian-complex space C2™ which comes en­
dowed with a norm II.II defined as;

;i-7)

where ip is a complex vector and ip^ is an complex conjugation and transposition. This
norm is induced by the inner product which is defined by

The qubits are going to be represented by q-vectors (quantum vectors) of order dimension
2™ which can be expressed as;

a0 0 0

+ + • • +
0

dm 0 0 o 2 »-i-

in simplified notation, this can be written as;

2™-l

i=0

where ip* is the i-th-vector with the i-th nonzero entry.

Dirac notation
In Dirac notation as often used in quantum mechanics, a vector ip defined over C2™ often
called a q-vector ip and its denoted as |^) and it is called the ket vector which will be
expressed as;

2™-l

i=0

where the q-vector ipi denoted as is one with the i-th component equal to 1 and
others zero. Similarly a bra vector which is the transpose of the ket vector is denoted as
(\&| and this will be expressed as

2™-l

j=Q
;i.9)

8

1. BASICS OF QUANTUM COMPUTING

where the q-vector ipj denoted as is one with the j-th component equal to 1 and
others are zero. A qubit is described up to a phase factor by a unit vector in C 2 . By
convention, we will always take the basis of C 2 to be;

0) ' (1 [|0>,|1>] ;i.io)

such that the state of qubit can written in the form

=a o | 0) + a i | l) ,

where aa and a\ are complex numbers satisfying the normalisation requirement that

ao + ai = 1-
From the postulates of quantum mechanics, it holds that upon taking measurement of a
vector |\&) we will obtain the state |0) with probability a2, (sometimes called amplitudes)
and the state |1) with probability (amplitude) a 2 , and these probabilities(amplitudes)
must sum to one. More generally;

2™-l 2™-l

iv) = J > i i * i > , E n 2 = 1> (Ln)
i=0 i=0

where the Oj are the respective probabilities (amplitudes) of each state. [14]

Bloch sphere

The Bloch sphere is a geometric representation of qubit states as points on the surface of
a unit sphere. Quantum operations on single qubits can be neatly described within the
Bloch sphere 1.1.

[1.12)

Figure 1.1: Bloch sphere [36] .

[3] In a Bloch sphere, a single qubit state can be written;

J*) = e

i 7 (c o s ^ |0> +e**sin^ |1»,

where 9, <p and 7 are real numbers. The numbers 0 < 9 < IT and 0 < 0 < 2ix define
a point on a unit three-dimensional sphere. Qubit states with arbitrary values of 7 are
all represented by the same point on the Bloch sphere because the factor of e n has no
observable effects, and we can therefore effectively write:

|^r) = cos - |0) + e i 0 s i n - |1). ; i . l3)

9

1.2. MATHEMATICAL PRELIMINARIES

Tensor product

Definition 1.2.4. The Tensor product of two vector spaces ipi = (ai, a2,..., am) and
ip2 = (bi, b2, • • •, bn) (over the same field) denoted as ipi (g ip2 is itself a vector space,
endowed with the operation of bi-linear composition, denoted by (g , from ordered pairs
in the Cartesian product ipi x ip2 to ipi (g ip2 in a way that generalizes the outer product.

/ a0

a i
\ (b0 \

61

\ 0 2 " - l J \ & 2 " - l /

ai&i a\b2

a2bi a2b2

aibv

a2br,

Or in index notation:

^mb\ dmb2 . . . Ojmbri

ciibj.

;i.i4)

Lemma 1.2.1. The Tensor product of vectors satisfies the following properties:

1. (ai ® a 2) T = (a2 (8) a x).

2. (ai + a2) ® a 3 = a x <g> a 3 + a 2 ® a 3 .

3. a x (g> (a2 + a3) = a x <g> a 2 + a x ® a 3 .

4- 6(ai ® a2) = (6ai) (8) a 2 = a x (g> (6a2).

5. (ai <S> a2) (g> a 3 = a x (g> (a2 (g a 3).

In bra-ket notation we shall write:

\a) (g 16)
2 " - l

i=0,j=0

;i.i5)

where
|i) <g |j) = .

This in an N-dimensional vector space can be generalised to

<g \i)2 ••• (g |i)„ = 1*1*2 •••in) •

Thus from above one can see how decomposition of a decomposable q- vector is done. Its
worth noting that this observation that lies at the heart of quantum computation allows
us to decompose any operation on an entire quantum system into operations on individual
components and makes the construction of quantum algorithms much simpler. Further
its important to note that non-decomposable q-vectors are said to be entangled and a
decomposable q-vectors are also called composite.

10

1. BASICS OF QUANTUM COMPUTING

Linear maps

Definition 1.2.5. Let V and W be vector spaces over the same field F. A function
/ : V —> W is said to be a linear map if for any two vectors a i , a2 G V and any scalar
b G F the following two conditions are satisfied:

1. / (a i + a 2) = / (ai) + /(a 2) .

2. /(6ax) = 6 / (a i) .

A C 2"-linear map T : C2™ —> C2™ (also called an operator) is determined by the 2™
images tj = Y^=o1 ^ a n d its operation can be defined as;

(2™-l \ 2™-l 2™-l

J] & |i> = E T (^ I*)) = J] \U) • (1-16)
i=0 / i=0 i=0

The linear map T, is a (unique) linear bijective map T |z) = U and in the sequel, this
observation will be the basic method used to prescribe operators. [32]
Unitary Matrices

Definition 1.2.6. A Matrix A is said to be self adjoint if A — .

Definition 1.2.7. A Matrix A said to be unitary if it satisfies the relation A^A = AA^ =
I, where I is an identity matrix and A' is called the conjugate transpose.

Definition 1.2.8. A q-computation is a unitary matrix A of dimension 2™.

For given a matrix Am^n = (a^) we shall define its transpose as A^nn = (a^), its
conjugate as A = (a^) and its conjugate transpose as A1 = (a.ij)T. Since a set of unitary
matrices constitutes a group under multiplication, it forms a fundamental work group
that will be a used in our construction. Q-computations come with special characteristics
of composition and reversibility thus we can say that a composition of two q-computations
of order n is a q-computation of order n; and reversibility guarantees that the inverse of
a q-computation of order n is a q-computation of order n. [32]

1.3. Circuits in Quantum computing
Quantum gates

Quantum gates can be represented as matrices describing transformations on qubits. The
normalization condition a\ + a\ = 1 must hold for all states, so all actions performed on
qubits must give rise to unitary vectors . The matrices describing such transformations
are unitary matrices. Since unitary matrices always have an inverse, all transformations
described by them are reversible. Consequently all quantum gates must be reversible
(except the measurement gate which destroys the quantum state).This implies that the
circuit must be able to be run in reverse.

A quantum circuit as represented by a diagram in equation 1.17 constitutes of lines
in which each line represents the timeline of a qubit read from left to right. A gate
acting on a qubit is denoted by the symbol of the gate placed on the qubit it is acting

11

1.3. CIRCUITS IN QUANTUM COMPUTING

on. When describing quantum gates as discussed in 1.3 below, the corresponding circuit
representation can be shown together with the equivalent matrix representation.

; i . i7)

The horizontal lines in 1.18 are called q-wires.

a) EE H = -\b) (1.18)

where we have the q-input a and q-output b. A q- computation of order 1 can be
expressed in matrix form as;

0
a0

—Öi Örj _
-iX e '"cos^ — elßsin

e l ß cos £ e1"1 cos ^
; i . i9)

with the relation
aoflo + a i a i = 1

being satisfied by the matrix and 0 G [0,7r]. By further notation, if we let

A = —^— and /x = —^—,

then we can write;

e lX cos -e M sin
»sf e i A cosf RzW)Ry(6)Rz(i),

where,

and

R>
e 2"

0 /1,'

(1.20)

(1.21)

Ry — (1-22)
cos(|) - s i n (|)
sin(f) cos(f)

Thus we conclude that a general element of S77 (1) (the elements of (7 (1) with determinant
1) has the form

17(0,0,7) = Rz{P)Ry{0)Rz{i). (1-23)

The geometrical meaning of the statement above is closely related to rotations in Euclidean
3-dimensional space. [32]

12

1. BASICS OF QUANTUM COMPUTING

Single qubit gates

1. Pauli gates: The Pauli gates are four namely the X - , Y - and Z-gate.

(a) The X -gate : This rotates the qubit around the X-axis of the Bloch sphere.
It is also called the bit flip gate and it can be represented as;

X 0 1
1 0 |o)(i | + |i) ;i.24)

As an example of its operation, we can see that it flips the qubit |0) to |1)
when applied as shown below;

|1>-X | 0)

As a gate it can be represented as;

" 0 1 " " 1" " 0 "
1 0 0 1

— X —

(b) The Z -gate : This rotates the qubit around the Z-axis of the Bloch sphere.
It is also called the phase flip gate and it can be represented as;

1 0
0 -1 |o> (o | - | i) (i | ;i.25)

As an example of its operation, we can see that it flips phase of the qubit |1)
to — |1) when applied as shown below;

|1>-Z\l)

As a gate it is represented as;

" 1 0 " 0 " " 0
0 - 1 1 - 1

— z —

(c) The Y -gate : This rotates the qubit around the Y-axis of the bloch sphere.It
is both a bit and phase flip gate and it satisfies the relation Y = iXZ. It can
be represented as;

Y " 0 -i ' " 0 1 " " 1 0
i 0 1 0 0 -1 - i | 0) (1| ;i.26)

As an example of its operation, we can see that it flips phase of the qubit |1)
to — % |0) when applied as shown below;

-i |0>. Z\\)

As a gate it can be represented as;

" 0 -i ' " 0 " —i
i 0 1 0

13

1.3. CIRCUITS IN QUANTUM COMPUTING

(d) The I -gate : This does nothing to the qubit.it is also called the identity
gate and It can be represented as;

1 0
0 1 |0> (0| + |1)(1| ;i.27)

As an example of its operation, we can see that it does nothing to the qubit
|0) when applied as shown below;

/|0>

As a gate, it can be represented as;

" 1 0 " " 1" " 1"
0 1 0 0 |0>.

N O T E : The Pauli matrices are self-adjoint and unitary.

2. The Hadamard -gate : This is a q- computation of order one that is unitary
and self adjoint. Geometrically, The Hadamard gate performs a 7r rotation about
the X-axis and a | rotation about the Y-axis in the Bloch sphere. The gate is used
to put the target qubit into a superposition of single qubit states having an equal
chance of being measured as |0) or |1). It can be represented as;

H
1

71
l l
l - l :i.28)

As an example of its operation,we can see that it puts state |0) in the state of equal
superposition of |0) and |1) when applied to it and similarly the same to |1) as
shown below;

H\0)

H\l)

1 1 1 1 _ |o)+|i)
s/2 1 -1 0

1 " 1 1 " " 0 " _ |0>-|1>
V2 1 -1 1 ~ V2

As a gate it can be represented as;

— H —

3. Phase shift gate : This is a q- computation of the form ;

Sa

The circuit diagram representation of the phase shift gate is;

1 0
0 eia ;i.29)

— T —

The Sa -gate is a phase shift gate related to the Pauli Z-gate via = Z , meaning
that performing a S^-gate four times will yield the same result as applying a Z-gate
once . The S^-gate corresponds to a rotation of j around the Z-axis in the Bloch
sphere.

14

http://qubit.it

1. BASICS OF QUANTUM COMPUTING

Two qubit gates

The controlled U— gate: This is a q-computation of order 2. A qubit can be added as
a control bit to any gate, so that its operation will only be executed on the target qubit
if the control bit is a one. To indicate a controlled-U gate, a C is added to the gate's
name. Common examples of controlled-U gates are the controlled not (CNOT) and swap
(SWAP) gates. A controlled- U is denoted by;

where U «00 «01

UIQ u n

C12(U)

1 0 0 0
0 1 0 0
0 0 «oo «01

0 0 «10 « i i

;i.3o)

1. C N O T gate:

A controlled-not gate is a special case of controlled-U gates which is equal to a
CX-gate and can be represented as;

C12(U)

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

'1.31}

The C N O T gate flips the second qubit (the target qubit) if and only if the first qubit
(the control qubit) is |1). Below is a caption of all the possible results obtained from
action of C N O T gate.

Table 1.1: Operation of CNOT gate
Before After

Control Target Control Target
|o> |o> |o> |o>
|o> |o> |1>
|1> |o> |1> |1>
|1> ll> |1> |o>

The circuit diagram representation of the controlled not gate is;

-©-

2. The Swap gate : This a q-computation of order 2. It is another special case the
controlled U gate that swaps the state of the two qubits involved in the operation
and it is denoted by;

" 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

K ;i.32)

15

1.3. CIRCUITS IN QUANTUM COMPUTING
Table 1.2: Operation of SWAP gate

Before After
|o> 10) |o> |o>
|o> 11) |1) 10)
|1) 10) 10) 11)
|1> 11) 11) 11)

Above is a caption of all the possible results obtained from action of SWAP gate
The circuit diagram representation of the swap gate is;

Three qubit gates

1. The Toffoli gate This a q-computation of order 3 which is also called double
controlled not gate or a Toffoli gate.it can be represented as;

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 K (1.33) 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

The C C N O T gate flips the third qubit (the target qubit) if and only if the first
and second qubits (the control qubits) is |1). Below is a caption of all the possible
results obtained from action of C C N O T gate.

Table 1.3: Operation of C C N O T gate
Before After

Control 1 Control 2 Target Control 1 Control 2 Target
|o> |o> |o> |o> 10) 10)
|o> |o> |1> 10) 10) |1>
|o> ll> 10) 10) 11) 10)
|o> ll> 11) 10) 11) 11)
ll> |o> 10) 11) 10) 10)
ll> |o> 11) ll> |o> 11)
ll> ll> 11) 11) 11)
ll> ll> 11) 11) 11) 10)

The circuit diagram representation of the Toffoli gate is;

—i 5—

16

http://gate.it

1. BASICS OF QUANTUM COMPUTING

2. The Fredkin gate: This is a q-computation of order 3 which at times is called
CSWAP gate. The Fredkin gate transmits the first bit unchanged and swaps the
last two bits if and only if the first bit is |l).it denoted as;

K

1
0
0
0
0
0
0
0

;i.34)

Below is a caption of all the possible results obtained from action of CSWAP gate.

Table 1.4: Operation of CSWAP gate
Before After

Control target 1 Target 2 Control target 1 Target 2
|o> |o> |o> |o> |o> |o>
|o> 10) |1) 10) 10) |1)
|o> 11) 10) 10) 11) 10)
|o> 11) 11) 10) 11) 11)
ll> |o> ll> |o>
ll> 10) 11) 11) 11) 10)
ll> 11) 10) 11) 10) 11)
ll> 11) 11) 11) 11) 11)

The circuit diagram representation of the toffoli gate is;

Q-procedure

A q-procedure is a sequence of actions each of which is either a q-computation or a q-
measurement that are applied successively to |0 • • • 0) (the default initial state (zero state)
of the q-memory) [32].

Q-measurement

This is the last step of any q-computation and it is non reversible process. In this step, a
measurement gate is used to project a qubit's state onto the basis vectors |0) and |1) and
once a qubit is measured its quantum state is destroyed. A measurement in a quantum
circuit is represent by the circuit element below called the meter [32]

(1.35)

17

1.3. CIRCUITS IN QUANTUM COMPUTING

Quantum register

Like classical computers, quantum computers use quantum registers made up of multiple
qubits. When collapsed, quantum registers are bit strings whose length determines the
amount of information they can store. In superposition, each qubit in the register is in a
superposition of |0) and |1) and consequently a register of n qubits is in a superposition
of all 2™ possible bit strings that could be represented using n bits. The state space of a
size-n quantum register is a linear combination of n basis vectors, each of length 2™.

2™-l

£ > i | i > (1-36)
i=0

Here % is the base-10 integer representation of a length-n number in base-2. As with single
qubits, the squared absolute value of the amplitude associated with a given bit string
is the probability of observing that bit string upon collapsing the register to a classical
state, and the the squares of the absolute values of the amplitudes of all 2™ possible bit
configurations of an n-bit register sum to unity [32].

2™-l

i=0

Q-computer and Q-algorithm

A q-computer of order n is a system endowed with the following operations [32]:

1. Q-memory

This is a store capable of holding any unit q-vector a G C™ which is called the q-
memory state.The elementary procedures 2, 3 and 4 below, are applied successively
one at a time to the current q-memory state during quantum processing.

2. One Q-bit rotations

This is a q-computation on the i-th q-bit by the U-gate defined as follows:

\-) = \ -) \ - j i -) = > \ -) U \ j i) \ -)

3. controlled negations 7V r s

This q-computation negates the s-th q-bit if (an only if) the r-th q-bit is
the linear map which is the identity on the basis q-vectors of the form
and such that

| . . . l 0 f e . . .) ^ | . . . l r . . l f e . . .)

| - - - l j - - - - l f c - - -> | - - - l j - - - - 0fc - - ->

This kind of elementary q-procedures will be called C N O T gates.

18

1. BASICS OF QUANTUM COMPUTING

4. Measurement

The quantum measurement is as discussed in the section about Q-measurement.

Q-algorithms

A q-algorithm is a q-procedure involving elementary q-procedures only. We will say that
a q-algorithm is internal if it does not involve measurements. A q-algorithm (internal
or not) will be called restricted if it only involves restricted U-gates. As a measure of
the complexity of a q-algorithm we take the number of elementary gates it involves. A
q-algorithm is polynomial if its complexity is bounded by a polynomial in n [32].

1.4. Computational complexity
Computational complexity is an important theme as far as the theory of computation
is concerned and it focuses on the classification of problems according to their inherent
difficulty in computation both in space and time used. This thus culminates in a what is
called performance of a computer algorithm. To measure performance of an algorithm,
we determine how the resource requirements of space and time scale as the size of the
computational problem being solved gets larger or harder. By definition,we shall call a
computational problem a task that can be solved by either a deterministic, probabilistic,
non-deterministic or quantum computer via an algorithm. By classifying computational
problems we inherently address questions of complexity.

Finally we define time complexity to be the total number of steps the machine makes
before it halts and outputs the answer where is complexity in space relates to the amount
of memory space required in solving a computational problem as function of its input [1].

Big-O and small-o notation
The complexity of an algorithm is often expressed using big-0 or small-o notation though
big-0 is more common. They are both mathematical notions that describes the limit­
ing behaviour of a function when the argument tends towards a larger or smaller value
respectively that is (positive or negative infinity respectively).

In computer science, the notions are used to classify algorithms according to how
their running time or space requirements grow or reduce as the input size grow or reduces
respectively.

Quite often we are usually interested in the worst case scenario of a computational
problem and thus the notions above help in giving us the upper or lower bound of the
computational time and memory space that can be used to perform a given computation.
Below are some of the classical Big-0 and small-o notations [1].

Table 1.5: B i g - 0 and Small-o notation
B i g - 0 0(1) O(logn) 0(n),0(n2),0(n3) 0(2") ,0 K)

Small-o 0(1) o(logn) o (n) , o (n 2) , o (n 3) o(2"),o(2"')

Function Constant Logarithmic Linear, quadratic, polynomial Exponential

19

1.4. COMPUTATIONAL COMPLEXITY

0(n") 1 ofays

/
s i

Oflog n)

0(1)

Input (number)
Figure 1.2: Big-0 time complexity graph [1].

An algorithm is said to be of polynomial time if its running time is upper bounded by
a polynomial expression in the size of the input for the algorithm, that is, T{n) = O (nk)
for some constant k. A l l the basic arithmetic operations can be done in polynomial time.

On the other hand, an algorithm is said to take super polynomial time if T{n) is not
bounded above by any polynomial. For example, an algorithm that runs for 2™ steps on
an input of size n requires super polynomial time. For our case its those that require
exponential time.

Complexity Classes

The known common complexity classes in computing include [26]:

1. P Polynomial time: Problems that can be solved in polynomial time on a classical
computer. This includes Problems of 0(1), 0 (log (n)) , 0 (n) , 0(n log(n)) , and O (n 2) ,

as examples.

2. NP Non-deterministic polynomial time: A problem is in NP if whenever the an­
swer is " y e s / ' there's a polynomial size witness or proof for the yes-answer which a
polynomial-time algorithm can verify.

A problem B is said to be NP-Complete if and only if it is in NP and all NP
problems are polynomial-time reducible to B.

A problem B is said to be NP-hard if it is in NP but not all NP problems are
polynomial-time reducible to B.

3. P S P A C E - Polynomial space: It is the class of decision problems that are solvable
by some algorithm whose total space usage can be upper-bounded by a polynomial
in terms of size. This class focuses on memory resources as opposed to time.

4. BPP-Bounded-error probabilistic polynomial time: B P P is the class of decision
problems for which there exists a polynomial-time randomized algorithm that solves

20

1. BASICS OF QUANTUM COMPUTING

the problem with success probability of at least 2/3. Randomized algorithms give us
faster time results than a deterministic algorithm trying to achieve the same goal.
Problems that are in B P P either have a deterministic algorithm that can run in
polynomial time or have a probabilistic algorithm which will give the wrong answer
to a decision problem no worse than 1/3 of the time. Below are the complexity
classes that arise with quantum computing.

5. B Q P - Bounded-error quantum polynomial time: BQP is the primary complexity
class for quantum computers and it is the quantum analogue of the class B P P for
classical computation. A decision problem is in BQP if it can run in polynomial
time and yields a correct result with a high probability.

It is believed that BQP contains problems which are thought to be intractable in
the classical regime but are thought to be tractable in bounded-error polynomial
time for a quantum computer but still this awaits proof.

EQP- Exact quantum polynomial time:
This is the set of decision problems solvable by a quantum computer that yields the
correct answer with a probability of 1. In other words, this class is the same as B Q P
except that it must give the correct answer with probability of 1 instead of having
some bounded error margin. [1]

Note that a quantum computer does not render all NP problems tractable; only
problems that have some structure we can exploit can be handled efficiently by a
QC. For example, Shor's algorithm takes advantage of the periodicity of the function
which then enables us to solve the equivalent problem of factoring a large number.

Q M A - Quantum Merlin-Arthur:
Q M A is the quantum analogue to the non-probabilistic class M A . In a Merlin-
Arthur (MA) problem, a prover (Merlin) sends a message to a verifier (Arthur).
In the classical complexity class M A , Arthur can verify the message in polynomial
time.

Table 1.6: Table of Classical and Quantum Complexity Classes
Classical Quantum

P ĚQP
B P P B Q P
NP Q M A

21

2. Grover's algorithm
In this chapter, we shall give a review some literature relevant to our study, a rough

overview of some classical quantum algorithms and a broad description of Grover's algo­
rithm. Since Grover's algorithm and other classical quantum algorithms are oracle based
algorithms, we shall begin by giving a precise notion of what an oracle is. A n oracle or
sometimes called a black box function is a system which can be viewed in terms of its
inputs and outputs (or transfer characteristics), without any knowledge of its internal
workings. We shall classify the oracle types into classical and quantum oracle types.

A classical oracle of a function /(•) is a "black box" that when given a value x,
computes f(x). A special type of a classical oracle is the reversible oracle seen below.

X X

Of

y y e f(x)

Unlike a reversible classical oracle, a Quantum oracle may be given a superposition of
inputs J2X ax \x, 0), and produces a superposition of pairs J2X ax \x, f(x)), as seen below.

\x) \x)

Uf

\y) |y>e !/(*)>

When / is binary, we define the phase quantum oracle as a black box that flips the phase
of its input state \ip) if and only if f(x) = 1. Below is an illustration of a phase quantum
oracle.

X

Its quite clear to see that a quantum oracle of /(•) is sharply better than its classical coun­
terpart because when fed with a single basis state (no superposition) it easily simulates a
classical oracle.

2.1. Some literature on Grover's algorithm
This section will show research conducted on the use of Grover's search algorithm.

1. (1996) A fast quantum mechanical algorithm for database search

[>] This is the main paper by Lov K . Grover which described the Quantum search
algorithm. In the paper it is stated that in an unsorted database containing N
records of which just one satisfies a particular property with the problem of iden­
tifying the unique element. Any classical algorithm deterministic or probabilistic
would take O(N) steps since on the average it will have to examine a large fraction
of the N records where as Quantum mechanical systems could do several operations
simultaneously and achieve the same goal in O(yN) .

22

2. GROVER'S ALGORITHM

2. (1996) Strengths and Weaknesses of Quantum Computing

[5] This paper addressed the question of whether all of NP can be efficiently solved
in quantum polynomial time by a quantum computer proving that relative to an
oracle chosen uniformly at random with probability 1 the class NP cannot be solved
on a quantum Turing machine in time 0(2 n / / 2) . It was also revealed that relative
to a permutation oracle chosen uniformly at random with probability 1 the class
NP P| co — NP cannot be solved on a quantum Turing machine in time 0(2 n / / 3) . In
this paper it was stated that the former bound was tight since Lov K. Grover's work
showed how to accept the class NP relative to any oracle on a quantum computer
in time 0(2 n / 2) .

3. (1996) Tight bounds on quantum searching

[] This paper provided a tight analysis of Grover's recent algorithm for quantum
database searching. It gives a simple closed-form formula for the probability of
success after any given number of iterations of the algorithm. Furthermore, the
paper analyses the behaviour of the algorithm when the element to be found appears
more than once in the table and they provided a new algorithm to find such an
element even when the number of solutions is not known ahead of time. Finally a
lower bound on the efficiency of any possible quantum database searching algorithm
is provided and the paper shows that Grover's algorithm nearly comes within a
factor comes within 2.62 percent of being optimal in terms of the number of probes
required in the table.

4. (2004) Quantum query complexity of some graph problems

[18] This paper showed the potential of Quantum algorithm to speed up some of
the classical graph problems such as:

(a) Minimal Finding :
Suppose we are given a function / defined on a domain of size n and we want
to find an index % so that f(i) is a minimum in the image of / .

(b) Minimum Spanning Tree:
In this section undirected graphs with weighted edges are considered. In Min­
imum Spanning Tree we wish to compute a cycle free edge set of maximal
cardinality that has minimum total weight.

(c) Connectivity:
A special case of Minimum Spanning Tree when all edge weights are equal is
Graph Connectivity. The input is an undirected graph and the output is a
spanning tree provided the graph is connected.

5. (2016) On the advantages of using relative phase Toffolis with an appli­
cation to multiple control Toffoli optimization

[35] In this paper an approach for systematic optimization of quantum circuits
via replacing suitable pairs of the multiple control Toffoli gates with their relative
phase implementations was reported. This operation preserves the functional cor­
rectness. The advantage can be witnessed through the optimized resource counts.
Our demonstrated optimizations include a simultaneous optimization of the T count

23

2.2. GROVER BASED QUANTUM ALGORITHMS

by a factor of 4/3 in the leading constant the C N O T count by a factor 2 in the lead­
ing constant and the number of ancillary qubits by a factor of 2 in the leading
constant.

6. (2017) Complete 3-Qubit Grover search on a programmable quantum
computer

[21] In this paper results for a complete three-qubit Grover search algorithm using
the scalable quantum computing technology of trapped atomic ions with better-
than-classical performance were reported. Two methods of state marking were used
for the oracles namely:

(a) a phase-flip method where the oracle is implemented with a circuit consisting
of Z and Ck(Z){k < n — 1) gates that directly flip the phase(s) of the state(s)
to be marked and

(b) a Boolean method which requires an ancilla qubit that is directly equivalent
to the state marking scheme required to perform a classical search.

Results of deterministic implementation of a Toffoli-4 gate which is used along with
Toffoli-3 gates to construct the algorithms were also reported and it was revealed
that these gates have process fidelities of 70.5 percent and 89.6 percent respectively.

7. (2018) A n Introduction to Quantum Search Algorithm and Its Imple­
mentation

[17] This article described Grover's search with an example of its applications and
limitations. Also exploration the functionality of quantum circuit oracle circuit that
is particular to Grover's was made. This article concluded with the Grover's search
advantage over classical search.

8. (2020) Grover's search algorithm for n qubits with optimal number of
iterations

[1] In this work, a general scheme for the construction of n-qubit Grover's search
algorithm with 1 < M < N target states is presented, along with the procedure
to find the optimal number of iterations for a successful search. It is also shown
that for given N and M , there is an upper-bound on the success probability of the
algorithm.

2.2. Grover based quantum algorithms

In this section we will discuss the most common Grover based quantum search algorithm.

Amplitude amplification

Originally Grover's Algorithm was designed for search of a single item in an unstructured
search space. [11] further developed the algorithm by generalizing its core idea of amplitude
amplification. In this algorithm knowledge of the exact solution is not required and it
provides a possibility for multiple solution search. Further, they introduced amplitude
amplification which uses Shor's phase estimation to estimate the success probability of a

24

2. GROVER'S ALGORITHM

quantum algorithm. Since there are some polynomial-time heuristic search algorithms,
they showed that the combination of classical heuristic and amplitude amplification would
still lead to a quadratic speedup in the estimated time a solution is found.

Fix—point quantum search

Because in situations where the fraction of valid states within the overall search space is
unknown Grover's algorithm and the generalized amplitude amplification are both hard
to use. [] suggested the so called fix-point search in which one only needs a lower bound
on this fraction and always amplifies marked states through running the algorithm long
enough which improves the success probability of the solution asymptotically but the only
cost of this algorithm is that the initial quadratic speedup is lost. However, [39] recently
presented a fixed-point search that achieves both quadratic speed up and improved success
probability of the solution through adjusting the phases of Grover's reflection operator. It
can be used as a subroutine for every amplitude amplification application and eliminates
the need to run the algorithm multiple times.

Grover adaptive search

Grover Adaptive Search is based on the work of [] and [] illustrated its application
on combinatorial optimization problems in his work which uses amplitude amplification
from [] to solve the minimum searching problem with Grover's quadratic speedup.

In the work by [] an illustration on how to implement pure adaptive search with
the generalized version of Grover's Search Algorithm was made. The Grover Adaptive
Search searches for the optimum value of a function by iteratively applying Grover's
Search Algorithm while sampling randomly from all the better solutions and uses them
to further optimize the solution. [] uses this method and it provides a framework for
an efficient automated oracle construction in its core. This framework is efficient for
constraint polynomial binary optimization and especially for quadratic unconstrained
binary optimization which are common to model combinatorial optimization problems.

2.3. Classical quantum algorithms
Most of the classical algorithms as described in this section are known as "black box"
or "query model" quantum algorithms. They are endowed with an underlying function
which is unknown to us but through constructing another function called an oracle which
we can query, we are able to determine the relationship of specific inputs with specific
outputs. We shall consider and provide more insight as into major classical algorithms
that are highly correlated to Grover's algorithm in addition to Grover's algorithm.

Deutsch Josza algorithm

The Deutsch Josza algorithm is a generalisation of the Deutsch's algorithm []. In
the Deutsch-Jozsa problem, we are given an oracle that implements some function / :
(0, l) n —> (0,1) that is a function that takes n-digit binary values as input and produces
either a 0 or a 1 as output for each such value with a promise that the function is either
constant (0 on all outputs or 1 on all outputs) or balanced (returns 1 for half of the input

25

2.3. CLASSICAL QUANTUM ALGORITHMS

domain and 0 for the other half). The task then remains to determine if / is constant or
balanced by using the oracle. Clearly, for any classical algorithm run on a deterministic
computer this can take it 2 n _ 1 + 1 evaluations of / in the worst case to prove that / is
constant which is slightly over half the set of inputs must be evaluated and their outputs
found to be identical. Under Deutsch Josza, the lucky case occurs where the function is
balanced and the first two output values that happen to be selected are different. For a
randomized algorithm run on a classical computer, a constant p evaluations of the func­
tion suffices to produce the correct answer with a high probability (failing with probability
e < 1/2P with p > 1). However, if we want an answer that is always correct, we always
need p = 2 n _ 1 + 1 evaluations. The Deutsch-Jozsa quantum algorithm produces an an­
swer that is always correct with a single evaluation of / . Its important to ensure that the
oracle computing f(x) from x doesn't decohere x as the Deutsch-Jozsa algorithm wont
work in case x is decohered. Also, it must not leave any copy of x lying around at the
end of the oracle call. The algorithmic steps of Deutsch Josza algorithm are;

1. We input n + 1 bit state lO)0™ |1) . That is, the first n bits are each in the state |0)
and the final bit is |1) .

2. We apply Hadamard transform to each bit to obtain the state;

2™ —1

v s a r E w t W - i D) .

3. We apply the quantum oracle which maps the state \x) \y) to \x) \y © f(x)). Ap­
plying the quantum oracle gives;

^ E l * > (! / (*) > H i © / (*) >) ,

where for each x,f(x) is either 0 or 1. Testing these two possibilities, we see the
above state is equal to;

2™ —1

* £ (- !) « . > W (|0>-|1>).
V Z x=0

We may ignore ••=— and therefore we remain with;
V2

2"-l

L E (- i) ' w i * > .
x=0

4. Applying the Hadamard transform to each qubit we obtain;

2™-l / .. 2™-l \ .. 2 n - l / .. 2™-l

•1 K w -1
x=0 \ x=0 / x=0 \ x=0

where x • y = xoyo © %iyi © • • • © Xn-iVn-i is the sum of the bit wise product.

26

2. GROVER'S ALGORITHM

5. Finally we perform the measurement and examine the probability of measuring
\0fn

2™-l
/(*)

x=0

which evaluates to 1 if / (x) is constant (constructive interference) and 0 if f(x) is
balanced (destructive interference). In other words, the final measurement will be
|0)®n(i.e. all zeros) if f(x) is constant and will yield some other states if f(x) is
balanced.

Below is the circuit diagram of deutsch josza algorithm.

Wo) \¥x)
t t

Wl) I ^3>

Figure 2.1: Deutsch-Jozsa. Source: Wikipedia
Figure 2.1 shows Deutsch-Jozsa quantum algorithm.

Deutsch's algorithm

Deutsch's algorithm was the first algorithm to show the advantage quantum computers
have the classical ones. It is a special case of the general Deutsch-Jozsa algorithm.
The oracle in this case checks the condition /(0) = / (l) which is equivalent to checking
/ (0) f f i / (l) which is again equivalent to a quantum X O R gate implemented as a Controlled
NOT gate where if zero, then f is constant, otherwise f is balanced. The procedure is as
follows;

1. We begin with an input of two-qubit state |0) |1) and we apply a Hadamard trans­
form to each qubit. This yields

^(|0> + | 1 » (| 0 > - | 1 » .

2. Applying the quantum oracle which maps \x) \y) to \x) \y © f(x)) yields;

^ (| o > (|o © /(0)> - |1 © / (0) » + |1) (|0 © /(1)> - |1 ©

< = ^ ((- i) / (0) | o) (| o) - | i)) + (- i K « | i) (| o) - | i)))

= (- l) / (o) I (| 0 > + (- l) / (o) e / (i) | i }) (| o > - | i » .

Ignoring the last bit and the global phase then yields the state

27

2.3. CLASSICAL QUANTUM ALGORITHMS

- L (| 0) + (- l) / (W) | l)) .

3. Applying a Hadamard transform to this state we get

1
(
1

(|0) + |1> + (_i)/(o)e/(D | 0) _ (_!)/(o)e/(i)

((1 + (_i)/(o)e/(i)) | 0) + (1 _ (_ 1) / (o) e/ (i))

/(0) © / (l) = 0 if and only if we measure |0) and /(0) © / (l) = 1 if and only if we
measure 11).

So with certainty we know whether f(x) is constant or balanced.

Bernstein and vazirani algorithm

The Bernstein-Vazirani quantum algorithm was invented by Ethan Bernstein and Umesh
Vazirani in 1992 and it solves the Bernstein-Vazirani problem []. It's a restricted version
of the Deutsch-Jozsa algorithm in such a way that instead of distinguishing between two
different classes of functions i.e balanced or constant, it tries to learn about a string, s
encoded in a function. The Bernstein Vazirani algorithm was the first algorithm developed
that shows a clear separation between quantum and classical computing because even if
we allow for some room of error, it still has an advantage over the classical ones in terms
of speedup which fails in the Deutsch Josza case. It was designed to prove an oracle
separation between complexity classes B Q P and BPP. Given an oracle that implements a
function / : {0,1}™ —> {0,1} in which f(x) is defined to be the dot product between x and
un known string secret string s G {0,1}™ modulo 2 i.e f(x) = x-s = XiSi+x2s2-\ Vxnsn

we ought to find s.
Classically, the most efficient method to find the secret string is by evaluating the

function n times with the input values x = 2L for all % G { 0 , 1 , n — 1} In contrast to the
classical solution which needs at least n queries of the function to find s, only one query
is needed using quantum computing. The quantum algorithm is as follows:

1. Apply a Hadamard transform to the n qubit state lO)0™ to get —j= Y^x=o \x) •

Apply the oracle Uf which maps \b) \x) —> \b © f(x)) \x). This makes a transforma­

tion of \x) to (—l)-f(s) |a

the superposition into ;

tion of \x) to (—l)-f(s) |x).By applying this oracle to •p— \x). This transforms
V2

2 x=0

3. Applying the Hadamard transform to each qubit. This gives that for qubits with
Si — 1, its state is converted from |—) to |1) and for qubits where Sj = 0, its state
is converted from |+) to |0).

4. Perform a measurement in the standard basis (|0), |1)) on the qubits to obtain s.

28

2. GROVER'S ALGORITHM

X
Figure 2.2: Bernstein-Vazirani, Source: Wikipedia

Graphically, the algorithm may be represented by the following diagram.

Mathematically we can summarise the steps as illustrated below;

— V \x)
'On 1 '

xe{o,i}n

uf.

xe{0,l}™ x,y£{0,l}n

- 9 n Z^xe{o,i}"^ ^
1

- V" (_-\ \x-s+x-y
- r,n Z^xe{o,i}"^ L>

1
- 2 n Z^ze{o,i}"^ -"-̂

= 1 if s © y = 0, 0 otherwise
Since s © y = 0 is only true when s = y, this means that the only non-zero amplitude
is on \s). So, measuring the output of the circuit in the computational basis yields the
secret string s.

Simons algorithm

As stated in [34] Simon's problem is a computational problem that can be solved expo­
nentially faster on a quantum computer than on a classical (or traditional) computer. We
Assume we are presented with a quantum oracle Uf of a function / : {0,1}™ —> {0,1}™
that is 2-to-l. We are assured that Vx: f(x © b) for some unknown constant b. The
problem is to find that b. Below is a description of The quantum algorithm to solve this
problem as adapted from [27] and it requires two n-bit registers;

1. (a) Initialize the input register to H |0), and the output register to |0).

(b) Apply the oracle Uf to the combined register.

(c) Apply the Hadamard transform H to the input register.

(d) Measure the input register. The result rrii satisfies b-rrii — 0 where " •" denotes
the inner product mod 2.

2. Repeat these steps until acquiring n linearly independent m^s.

Extracting b from them is a straightforward polynomial classical process (Gauss-Jordan
elimination) which requires no oracle queries. The average number of repetition (and
oracle queries) required to find the linearly independent set of m^s. is 0(n). A n m with

29

2.4. GROVER'S ALGORITHM

a • rrii = 0 is never measured because of a special feature of the Hadamard transform when
\x) + \x © 6) are transformed their "odd" \m) elements cancel out. A classical algorithm
requires 0(22) oracle queries on average. Hence in the case of this problem quantum
computation is exponentially faster than classical computation.

Shors algorithm

As stated in [.] Shor's algorithm solves two problem (Factorization and Discrete Loga­
rithm) whose hardness is the core of the security of RSA and DiffieHellman cryptographic
protocols respectively. In his paper, [31] Shor showed that both the Factorization and
the Discrete Logarithm problems are reducible to finding the period of a function. In the
case of factorization, finding the prime factorsp, q of TV is equivalent to finding the period
°f fN,a(x) — a x m ° d N (This is true for most a E 2, • • • , N — 1). Further, Shor showed
how a period can be found efficiently using a quantum computer. The key algorithm to
perform this task is the Quantum Fourier Transform

^ / (x) | x) ^ ^ (- ^ e ^ / (x)) \y).
x y

When \y) is measured, the outcome is in the close vicinity of the period of f(x) with
high probability. Two other important aspects are answered by Shor that is how the
initial distribution J2xf(x) \x) can be created efficiently for the given fN,a(%) and how
to perform Q F T efficiently. The overall complexity of Shor's algorithm is 01og 3(iV)
(polynomial in the number of bits) while the best known classical algorithm's complexity
is rj(ec^1°s^Ar-)-)3(los(Ar))3))) (super-polynomial in the number of bits) [27].

2.4. Grover's algorithm
As coined by Lov Grover in his paper [23], Grover's Algorithm is a quantum algorithm
used to make a search over an unordered set of TV = 2™ items to look for a unique element
satisfying a specific condition.

A n unstructured search problem is one where we known nothing(or we have
no assumption made) about the structure of the search space and search statement / .
For example determining f(xo) gives no idea related to the possible value of f(x\) for
XQ^XI. [8]

A structured search problem on the other hand is one where we know something
about the search space and search statement / . For instance searching an alphabetical
list gives information about the structure of the search space and this can be exploited to
construct efficient algorithms. []

Consider a search space of size N, Grover's Algorithm in a perfect environment would
run in 0(y/n) time steps and 0(y/n) operations which is a quadratic speed up compared
to the fastest search over an unordered data set in a classical algorithm which runs in
steps of order 0(n).

Problem set up

Consider an A-dimensional search space, supplied by a register with n = log 2 N qubits.
Assume that the search space has exactly M solutions with 1 < K < N and consider the

30

2. GROVER'S ALGORITHM

problem of finding an index of the search space that satisfies the search criterion / which
is a function that maps search space entries x to 1 or 0 that is f(x) = 1 if and only if x
satisfies the search criterion (x = OJ) otherwise f(x) = 0.
The simplest case is if K — 1 that is there exist exactly one x such that f(x) = 1. To
explicitly define this problem we have the following to do;

1. Label the search items of the search space with integers 0 , l , 2 , - - - , i V — 1 ,

2. label the unknown marked item by OJ.

3. let / be an n bit binary function / : (0,1)™ <—> (0,1)

f(x) = 1 for x = OJ,

f(x) = 0 for x 7^ OJ .

We are then provided with access to an oracle(subroutine)which is a unitary operator
Uu, that acts as follows:

Uu \x) \x) for x — OJ, that is,f(x) = 1.
Uu \x) = \x) for x 7^ OJ, that is, f(x) = 0.

Alternatively the oracle maybe defined with an ancillary qubit system in which case
the oracle Uu then acts with a conditioned inversion (NOT gate) conditioned by the value
of f(x) on the main system, (like in the quantum circuit depicted below).

Giover diffusion operator

1)
i'

2 |0"> (0 n |

Repeat 0{<J~N) times

Figure 2.3: Grover"s algorithm , Source : Wikipedia

\UU \x) \y) = l

(Uu \x) \y) = l

The oracle then acts as follow;

x) - i \y) for x = OJ that is , f(x) = 1,
x) \y) for x 7^ OJ that is f(x) = 0,

or briefly,

Uu\x)\y) = \x) \y®f(x))

If the ancillary qubit is prepared in the state

|-> = ^ (| 0 > - | l >) = l f | l > ,

then the variants of the oracle are equivalent as illustrated below and this leaves the
ancillary system removed from the main system:

31

2.4. GROVER'S ALGORITHM

Uu(\x) ® | -)) = (*7W \x) |0) - *7W |x> |1»

= ^(\x)\f(x))-\x)\l®f(x)))

- ^=(| x) | l) - | x) | 0)) = - | x) ® | -) i f / (s) = l ,

- ^ (| x) | 0) - | x) | l)) = | x) ® | -) i f / (x) = 0

In both setting,the goal remains the same .

Algorithmic set up

Suppose \s) denotes the uniform superposition over all states i.e

N-l

N

j N ~ l

x=0

Then we can define the Grover diffusion operator as:

Ua = 2 \s) (s\ - I

The steps of Grover's algorithm follows;

1. We initialize the system to the state \s) by application of hadamard transformation
on the initial state.

1 N-l

2. We perform the following "Grover iteration" described below r(N) times.

(a) we apply the operator Uu (i.e the oracle reflection Uu to state \s)).

(b) we apply the operator Us (i.e final reflection Us that maps Uu to UJJS) .

3. We then perform the measurement a with the measurement result being the eigen­
value A w having probability close to 1 for N ^> 1. From A w , u may be obtained.

Us = 2\s) (s\

Description of first iteration

From our definition of Us i.e

Uu can be expressed as;
Uu = I-2\u) {u\

To prove that this works, it suffices to check how Uu acts on basis states:

(1 — 2 \üü) (üü\) \üü) — \üü) — 2 \üü) (üü\ \üü) — — \üü) — UUJ \ÜÜ) ,

(1 — 2 \ÜÜ) (ÜÜ\) \x) — \x) — 2 \ÜÜ) (ÜÜ\ \x) = \x) = Uu \x) Vx 7̂ ÜÜ.

32

2. GROVER'S ALGORITHM

The following computations shows what happens in the first iteration:

1 1 1
(u>\ \s) = (s\ \u>) = —= (s\ \s) = N-

2
Uu \s) = (J - 2 \u) (co\) \s) = \s) - 2 \u) {u\ \s) = \s) j= \u)

Us (\s) - -4= \u)) = (2 |s> (s\ - I) (\s) - -4= \u>)

N

N J \ VN

4 2
2 Is) (s\ Is) — Is) = Is) (s| \u) H = \u)

x/N X/N
4 1 2 4 2

= 2 |s) - |s) -;= • —= |s) + —= \u) = |s) - — |s) + —= |cu)
Vn Vn Vn n 1 Xn

N XN

It is worth noting that for a special case of N = 4 with a single marked state with a
single grover iteration We obtain USUW \s) = \u).

After application of the operators Uu and Us, the square amplitude of the queried
element increases from;

I I W 1 1 = 2 1

to

\{u\UaUu\s)\ 2 1 N-4 2
+

2 _ (3 A ^ - 4) 2 _ g / _ _ 4 _ y 1
N3 \ 3NJ N

Description of the oracle

In this description, we will leave the inner workings of the oracle as a black box, but we
will explain how the sign is flipped. The oracle in Grover's algorithm is a function f that
returns f(x) — 1 if \x) is a solution to the search problem and f(x) = 0 otherwise. The
oracle is a unitary operator operating on two qubits:

k) \q) \x) \q®f(x)) ,

where \x) is the index qubit and \q) is the oracle qubit. The operation flips the oracle
qubit if f(x) = 1 and leaves it unchanged otherwise. In Grover's algorithm this is achieved
by setting the oracle qubit in the state (|0) — | l)) / \ /2 which is flipped to (|0) — | l)) / \ /2
if \x) is a solution otherwise nothing happens to (|0) — \l))/\/2:

u.. \x)(\o)-\i))/V2^(-iyw i * x i o > - | i »

We regard \x) as flipped thus the oracle qubit is not changed. So by common analogy
the oracle qubits are usually not mentioned in the specification of Grover's algorithm and
thus the operation of the oracle Uu is simply written as

| x) - ^ > (- l) / (z) \x).

33

2.4. GROVER'S ALGORITHM

Algebraic proof

Algebraically when we repeatedly apply USUU

matrix, We can write the action of Us and Uu

Us : a \u) + b \s) [\cu)

we can see that by eigenvalue analysis of a
in the space spanned by \s), \u) as:

- 1 0" a
2/VN 1 b

UOJ : a\u) +b\s) ^ [\u], \s)] -1 -2/y/N
0 1

a
b

So in the basis [|o;), \s)] (which is neither orthogonal nor a basis of the whole space)
the action UJJ^ of applying Uu followed by Us is given by the matrix;

- 1 0'
2/VN 1

-1 -2/VN
0 1

1 2/VN
-2/y/N 1 - 4 / A

which is in a very convenient Jordan form. If we define;

t = arcsin(l/v /iV),

we have that

where

UM» = M

M

exp(2it) 0
0 exp(-2i*)

—i i
exp(it) exp(-it)

It follows that r-th power of the matrix (corresponding to r iterations) is

M exp(2rit) 0
0 exp(—2rit)

From this form, we can use trigonometric identities to compute the probability of observ­
ing co after r iterations mentioned in the previous section;

[\u) \s)](usuwy sin 2 ((2r + l)t)

A short calculation now shows that the observation yields the correct answer ou with error

Geometrical proof

Consider the plane spanned by \s) and \u);

y/N

34

2. GROVER'S ALGORITHM

Considering the first iteration acting on the initial ket \s) ,the overlap is;

N
N

In geometric terms the angle 9/2 between \s) and \s') is given by ;

6 1
sin N

The operator Uu is a reflection at the hyper plane orthogonal to \u) for vectors in the
plane spanned by \s') and \u) i.e. it acts as a reflection across \s') . The operator Us is a
reflection through \s) therefore the state vector remains in the plane spanned by \s') and
\u) after each application of the operators Us and Uu and it is straightforward to check
that the operator UJJ^ of each Grover iteration step rotates the state vector by an angle

of 6 — 2 arcsin —=. We need to stop when the state vector passes close to \u). After this.
TV

subsequent iterations rotate the state vector away from \u), reducing the probability of
obtaining the correct answer. The exact probability of measuring the correct answer is

sin 2 ((r + 2)^^ ' w n e r e r is the (integer) number of Grover iterations. The earliest time

that we get a near-optimal measurement is therefore r 7T iV/4.

Figure 2.4: Grovers algorithm geometry, Source : Wikipedia

Extension to space with multiple targets

If instead of 1 matching entry there are K matching entries with 1 < K < N and K is
known. In this case the oracle introduces a reflection in the hyper plane orthogonal to
the vector

K

or in other manner

1
^ E iw*>

1 K

/-Hi)

35

2.4. GROVER'S ALGORITHM

the equal weighted superposition of the marked computational basis states.The original
state

s) = —= \x)
i=l

can be rewritten as :

or

where

\s) = —a H—-j=p
s/N \fN

-. \x) and 8 = —= \x)
JN - K ^ \[K ^

Following the same algorithm as described in the previous section we obtain the values
/ \ 1/2

of but the number of iterations is — (— J instead of — 7V 1 / / 2 . For the case when

K is unknown, there are several ways to handle the problem For example one could
, , • , , • • , 71 fN\1/2 7T (N\1/2 7T [W

run Grover s algorithm several times with —JM 1 , — — , — — \ —,...
6 4 ' 4 ^ 2 / ' 4 \ 4 j ' U V ? '

iterations. For any K, one of the iterations will find a matching entry with a sufficiently
high probability. The total number of iterations is at most

which is still O (TV 1/ 2). It can be shown that this can be improved. If the number of
marked items is K , where K is unknown, there is an algorithm that finds the solution in

— queries. This fact is used in order to solve the collision problem.
K

36

3. GROVER'S ALGORITHM FOR A DATABASE OF SIZE 8

3. Grover's algorithm for a database
of size 8

3.1. General Mathematical overview
In this section, we will provide a description in detail of how to perform a single item search
in an 8 elements database search using Grover's algorithm that is (M = 1, TV = 2 3 = 8)
as discussed in chapter 2, we will take the following steps.

1. Input:

(a) n = 3 qubits in the state |0).

(b) the oracle qubit in state minus that is

2. Procedure:

|Q)-|i)

(a) Apply the Hadamard gates to the 3 input qubits that is (i f 0 3) to the first 3

qubits: =• ^ E L o \X) •

(b) Apply the Grover iteration k ~ |\/S times.

[(2|*> (s\-I)(I-2\u) < c , |) f i = X > >
x=0

| Q) - | i)
V2

\U)
| Q) - | i)

V2

(c) Measure the first n qubits =>- \u).

3. Output:
The searched item.

From above its clear that for 3 qubits k = 2 which means we need two iterations in order
to get the searched element with high probability. In the classical case we would need at
least 4 queries to attain the searched element with a probability greater than 1/2.

Encoding

To uniquely encode all 8 entries in the search space, we need 3 qubits and this forms
our first register. The second register will contain the oracle qubit required to mark the
desired element.

Initialisation

We begin with our system initialised in the state 1000). We follow by applying the

Hadamard transformation to the first register which assign equal probabilities of

to all states in the system as in equation (3.1).

S> = ^ 3 | 0 0 0 > = ^] T > > . (3.1)
v x=0

37

3.1. GENERAL MATHEMATICAL OVERVIEW

Geometrically this can be represented as;

X1Z
1

2V2

|000) |001) |010) |011) |100) |101) |110) |111)

Supposing that the desired element is the element 4 which is encoded as |4) = 1100) in
binary encoding, In order to evaluate the state of our system after every computational
step we define;

u
v x=QAx^4

Using \u) we can rewrite \s) as

|000) + |001) + |010) + |011) + 1101) + 1110) + 1111>

y/7

\fl 1
| s) = J L L | U) + |ioo) (3.2)

2V2 2V2

The circuit component in the figure 3.1 shows the construction to achieve initialisation.

I*>

1*0

Figure 3.1: Initialisation circuit component

Grover oracle

In each iteration, we apply the quantum oracle Uw first which performs flip on the desired
state followed by the diffusion operator which performs an inversion about the mean.
During flip of the desired state, the oracle query will negate the amplitude of the state
desired state which is 1100), in this case thus we obtain the configuration:

V w (| i o o) | - » = - | ioo) | ->
Uw{\x)\-)) = \x)\-)) iix^A

Generally oracle application on \s) yields

u = |000) + |001) + |010) + |011) + |101) + |110) + - 1100)
2v2

Rewriting Uw(\s) |—)) using (3.2) we get

M W I - » = ^ l « > - ^ | i c o)

38

3. GROVER'S ALGORITHM FOR A DATABASE OF SIZE 8

Geometrically this is represented as;

T " T " T - | r ~ T " T l
I - i

2v'2
|000) |001) |010) |011) 1100) |10l) |110) | l l l)

The circuit component in the figure 3.2 shows the oracle construction.

I-} H
Figure 3.2: Oracle circuit component

Applying Grover's diffusion operator 2 \s) (s\ — I increases the probabilities of the
states by their difference from the average if the difference is positive and decreases if the
difference is negative:

[2 \s) (s\ - 1} \x)

:[2 |a> (s\ - I] \s)~
2V2

|100)

Since

and

=2 \s) (s\ \s) ~\s)-^= \s) (s\ |100) + |100)

2^2 2y/2.

[s\ |100) = (100| \s)
2^2

ns)-\s)-^{^2) k) + ^ |100)

Is) ~\ \s) + 72 l 1 0 °)
!l*> + ^ | i o o >

Substituting for \s) gives:

i ^ E L o ^ 4 l ^) J + 7 5 l l O O)

4 ^ E L) , ^ 4 \x) + ^ lioo) + ^ |100)

4^2

Which geometrically appears as:

39

3.1. GENERAL MATHEMATICAL OVERVIEW

• \ -

l -
173.

i _
- \ -

|000) |001) |01O} |011) |100) |101) |110) |111)

The circuit component in the figure 3.3 shows the construction to achieve an inversion
about the mean of the amplitudes. It can alternatively be implemented as H R H where
H is the Hadamard transform and R a phase shift transform.

H X X H H X X H

H X X H H X X H

H X
r 7 X H

Figure 3.3: Diffusion operator circuit component

This completes the first iteration. We Repeat the Grover iteration process but with
the new input state having;

\x) |000)
4V2 4V2

Applying the oracle we get;

1 , . 1

001)

\x)
4^2

|000)
A^2

001)

4^/2

A^2

|010)

|010)

4^2

4 ^

1

4^/2

\x) —

011) + -^=|100) + . . .+
4^/2

|011)
A^2

1100)

4^2
1100) Z—ix=0 ,x^A

l -) - i J l l 1 0 0)

Applying the diffusion transform we get;

[2\s)(s\-I]
2^2

|100)

= 2 (!) |s> (s\ \s) - | |S> - 2 (^) | a) (s\ |100) + ^ |100) 2^2

After the oracle query and after applying the diffusion transform:

J l * > + 2 f e l 1 0 0 >

- \ [i75 E L o , ^ 4 \x) + ir2 1100)] + ^ |100)

-^75 E x = o , » # 4 \x) + 7̂5 11°°)

Or in the expanded notation:

1 , . 1
\x) 8V2

|000)
8 ^

001)
8 ^

|010)
8 ^

|011)
11

8 ^
1100)

+

4^/2

AV2

| 111)

| 111)

8 ^
| 111)

40

3. GROVER'S ALGORITHM FOR A DATABASE OF SIZE 8

Measurement

Finally the qubits are measured using the gate component construction in figure 3.4.
Geometrically we get the solution with probability of success 8^2'

: i_

-i_.
I _

|00u) |001} |010> |011) |100) |101) |110) |111)

Figure 3.4: Circuit component for measurement

Observing the system, the probability that the correct solution 1100) will be measured

is l i
SV2

7/128
SV2 = 121/128 ~ 94.5%. The probability of finding an incorrect state is

5.5%. Its worthwhile to mention that as the input size increases the error
decreases further.

To implement Grover's algorithm on a physical quantum computer the following com­
plete circuit architecture is used.

41

3.2. EXPLICIT MATHEMATICAL OVERVIEW

3.2. Explicit Mathematical overview
Below we make a further more explicit step by step mathematical discussion of what
goes on inside each algorithmic step involved in our construction of the Grover circuit as
discussed in the previous section section. To lay the ground for our for our main problem
of discussion (database of size 8) , we chip in a small discussion using a basic search space
(database of size 4). The choice of chronology of discussion is to highlight the compu­
tational complexity faced as the size of the search space increases. The corresponding
search item for N = 4 and N = 8 are |11) and |111) respectively.

Case N = 4

In the search space with N = 4 with search element |11) the following mathematical
treatment underlies the procedure followed.

Initialisation

Applying Hadamard gates to the two input qubits yields an equal superposition as shown
below;

i*>i = -4(io> + i i » ® + 1 1)) = i o ° ° > + 1 0 1) + 1 1 0) + 1 1 1)) -

Oracle

Applying the oracle, the amplitude of the marked state is negated;

m2 =|(|oo> + |01) + |10»(|0> - |1» + | i i) (|i> - |0»

4 (i ° o) + i o i) + i i o) - i i i)) (i °) - i 1)) -

Diffusion operator

Applying Hadamard gates to the first 2 qubits we get;

I*3)=)[(|0) + |1))(|0) + |1»] + [(|0) + |1))(|0}-|1))]

+ [(|0)-|1))(|0) + |1))] + [(|1)- |0))(|1)- |0))]

= 1(|00> + |01> + | 1 0 > - | 1 1 » .

Applying an X gate to \^s) we have;

|*4> = ^(|11> + |10) + | 0 1) - | 0 0 » .

Applying Hadamard to the second qubit we get;

1*5) ~ [| 1) (| 0) - | 1)) + |1)(|0) + |1))

+ | 0) (| 0) - | 1)) - | 0) (| 0) + |1))

~ (| 1 0) - | 0 1)) .

42

3. GROVEWS ALGORITHM FOR A DATABASE OF SIZE 8

Application of the CNOT gate gives;

|*6> = ^ (| 1 1 > - | 0 1 » .

Applying a Hadamard gate to the second qubit we get;

I*7> = ^ [| 1 > (| 0 > - | 1 » - | 0 > (| 0 > - | 1 »]

= i(|10>-|ll>-|00> + |01».

Applying the X gates we get;

|*8> = ^(|01>-|M)-|11) + |10».

Finally after applying Hadamard gates to both qubits we obtain the searched item as
illustrated below;

l ^) = ^ [(| 0) + | l)) (| 0) - | l)) - (| 0) + |l))(|0) + |l))

- (| 0) - | 1)) (| 0) - | 1)) + (|0)-|1))(|0) + |1))]

= | (4 |11» = |11>.

The searched item |11) is obtained with probability 1 in one iteration.

Case N = 8

In the search space with N = 8 with search element |111) the following mathematical
treatment underlies the procedure followed.

Initialisation

Applying Hadamard gates to the three input qubits yields an equal superposition as shown
below;

l* i> = ^ (1 0) + | i » ® ^ (1 0) + |1» ® ^ (| 0) + |1»

1 (|000) + |001) + |010) + |011) + 1100) + |101) + |110) + 1111>)
2\/2

Oracle

Applying the oracle, the amplitude of the marked state is negated;

\ij2) =^(|000) + |001) + |010) + |011) + 1100) + |101) + |110))(|0) - |1)) + 1111> (|1) - |0))

1 (|000> + |001) + |010) + |011) + 1100) + |101) + |110) - 1111>)(|0> - |1))
4

43

3.2. EXPLICIT MATHEMATICAL OVERVIEW

Diffusion operator

Applying Hadamard gates to the first 3 qubits gives;

1*3) = \[(\0) + |1» ® (|0> + |1» ® (|0) + |1»] + [(|0> + |1» ® (|0> + |1» ® (|0> - |1»]

+ [(|0) + |1» ® (|0> - |1» ® (|0> + |1»] + [(|0) + |1» ® (|0> - |1» ® (|0> - |1»]
+[(|o) - |1» ® (|0) + |1» ® (|0> + |1»] + [(|0) - |1» ® (|0> + |1» ® (|0> - |1»]

+[(|o) - |1» ® (|0> - |1» ® (|0> + |1»] + [(|0) - |1» ® (|0> - |1» ® (|0> - |1»]

=jj |ooo) +1 |ooi) +1 |oio) - I | o i i) +1 | ioo) -1 | i o i) -1 | i i o) +11111)

After applying an X gate to |^ 3) we have;

| * 4) = I | i n) +1 | n o) +1 | i o i) -1 | ioo) +1 | o i i) - I |oio) - I |ooi) + 11000)

Applying Hadamard to the second qubit;

1*5) = ^ = [6 |H) (|0) - |1» + 2 |11) (|0) + |1» + 2 |10) (|0) - |1»

- 2 |10) (|0) + |1» + 2 |01) (|0) - |1» - 2 |01) (|0) + |1»
- 2 | 0 0) (| 0) - | 1)) + 2|00)(|0) + |1))]

1 [4 |001> -4 |011) — 4 |101> — 4 I 111) + 8|110)]
8\/2

Application of the C C N O T gate gives;

|*6> = — =̂[4 |001> — 4 |011> — 4 |101> — 4 1110) -h 8 1111>]
8 v 2

Applying a Hadamard gate to the last qubit gives;

1*7) = y^[4 |00) (|0) - |1» - 4 |01) (|0) - |1» - 4 110) (|0> - |1»

-4 |11)(|0) + |1)) + 8|11)(|0)- |1))]

= J[|ooo) - |001) - |010) + |011) - |100) + |101) + |110) - 3 1111>]

Applying the X gates we get;

|tf8) = J [| l l l > - |110) - |101) + 1100) - |011) + |010) + |001) - 3 |000>]

Applying Hadamard gates to the three qubits yields;

| * 9) = -^t=[|000) + |001) + |010) + |011) + |100) + |101) + |110) + 5 |111>]
4y 2

Further going through the same process for the second iteration as discussed above, we
2

obtain the state |111) with probability ^ = 121/128 w 94.5%.

44

4. CONSTRUCTION AND IMPLEMENTATION OF GROVER 'S ALGORITHM

4. Construction and Implementation
of Grover's Algorithm

In this section, we begin with the discussion of the construction and implementation
of our Grover's algorithm using QISKit simulation environment and we conclude with a
discussion of results. QlSkit is an open-source quantum simulation software developed
created by I B M . It consists of the quantum-lab which is written in Python and offers a
variety of tools used to create and manipulate quantum programs which then can either
be simulated on a local device or run on the IBMQ backend.

We implemented and executed our algorithm using QISKit simulation environment
and to simulate our Quantum circuit, we made use of Q A S M Simulator and the
Statevector Simulator Aer backends. We executed our implementation of the algorithm
2000 times in each run.This was defined by the number of execution shots and the results
obtained were stored in the dictionary called results.

4.1. Circuit Construction

N-Toffoli gates
Since the N-Toffoli gate as a main component of our algorithm is not available through
the QISKit environment and we had to build it. To construct it, we made use Ancilla bits
as illustrated in figure ??. Ancilla bits are extra bits which are not involved in the logical
operation being performed that give circuit constructions "room to move". In addition to
making constructions possible in the first place, ancilla bits can allow for simpler or more
efficient constructions. The type of Ancilla bits used were borrowed bits where the bits
can be in any state beforehand and must be restored to that same state afterwards. The
advantage of using Borrowed Bits is that they can be reused and hence reduce the number
of Qubits required. The downside of our construction is that we increase the number of
qubits and gates gates required thus increasing circuit depth and width.

control \
LUihiLs

target
qubit

•I l)

.12)

I j n - l)

e 5

jl)

lin-l)

rondo-]
lis)

II)
n,

0)

©
4>

"4
©

4'
(
-o—

h)

»
i».

Figure 4.1: Generalized Toffoli gate decomposition []

45

4.1. CIRCUIT CONSTRUCTION

The implemented stages of the algorithm
Initialization

The circuit diagram component below was used to put the six input qubit states in the
state of equal superposition with amplitudes of ^

q .

q

Figure 4.2: Initialisation circuit component for N = 64

Oracle

Below is the oracle construction that was used to negate the amplitude of the marked
state |111111).

6 r 6

Figure 4.3: Oracle construction for N =64

Amplification

The construction below describes the amplification stage in which an inversion about the
mean of the amplitudes is made. It was implemented using borrowed ancilla bits and
Z-gate as shown below.

46

4. CONSTRUCTION AND IMPLEMENTATION OF GROVER 'S ALGORITHM

©
©
©
©
©
©

©
©
©
©
©
©

i i
i i
i i
i i

6 • ©
Figure 4.4: Grover diffusion operator construction for N =64

Measurement
Finally the qubits were measured and below a thorough discussion of the obtained results
is made.

4.2. Discussion of Results
The execution was performed for a single item search using search spaces of 8 elements.
16 elements , 32 elements and 64 elements as represented in the figures below. The search
items were |111), | H H) , and 1111111) respectively.A total number of 2000 shots
was made for each execution. The execution results correspond to one iteration of Grover's
iterate in each search space instance.

Figure 4.5: Q A S M simulation results for 8 element search space

47

4.2. DISCUSSION OF RESULTS

OAS

I 0.30

0.15

0.00

Figure 4.6: Q A S M simulation results for 16 element search space

0.32

0.24

L
1 0.16

o.oe

o.oo
ini.iiiiii.iiiiiilii.ii.ii.nl
s o o o o o c o o S S S S c C>0 CaCsC? 1

Figure 4.7: Q A S M simulation results for 32 element search space

0-12

0.09

0.06

0.03

o.oo1 iiuiiinminuiMimuuimumnnimiiimuiinmuii i

Figure 4.8: Q A S M simulation results for 64 element search space

From the results above it clear that in just one execution one can get the desired item,
or marked item with probability greater than 0.5.

48

http://ini.iiiiii.iiiiiilii.ii.ii.nl

4. CONSTRUCTION AND IMPLEMENTATION OF GROVER 'S ALGORITHM
Table 4.1: Execution results

S U M M A R Y O F E X E C U T I O N R E S U L T S
Measurement parameters. N=8 N=16 N=32 N=64
Probability of having state 1) in 0.8750 0.7187 0.6172 0.5606
a disentangled state system.
Purity of reduced state. 0.9063 0.8770 0.9103 0.9468
Probability of marked state based 0.7840 0.4820 0.2640 0.1490
on counts.
Amplitude of marked state. 0.8839 0.6875 0.5082 0.3672
Number of valid counts per 2000 1568 948 528 266
shot.

Discussion of the differences in execution results

From the data, the probability of having state 11) for all states in all search spaces kept on
reducing because the level of entanglement goes on increasing with the increase in search
space size. The choice to of consideration of this parameter is because all the search items
in all cases were strings of l's.

From the data, its observable that the purity level of reduced states increases with in­
crease in the number qubits. This implies that with larger qubit string sizes, the likelihood
of getting the searched item in its pure state increases.

It is also observable from the data that the probability of the marked state and its
amplitude based on counts reduces with increase in search space size. This spins from
increase in sample size and the confusion (noise) resulting from the high error rates of
current quantum devices (NISQ) coupled with the data being representative of one itera­
tion as opposed to 3,4,6 and 8 necessary iterations of the Grover iterate that are required
for the various search space respectively.

From the data it is expected that for the 8, 16, 32 and 64 search space sizes, in every
1568, 948, 528 and 266 counts made respectively out of the 2000 made the marked state
is obtained.

The number of valid counts of the in every 2000 shots made also reduces with increase
in qubit length still due to the high error rates of current quantum devices and the data
representing one iteration as opposed to 3,4,6 and 8 necessary iterations of the Grover
iterate that are required for the various search space respectively.

49

4.2. DISCUSSION OF RESULTS

Discussion of differences of execution results and theoretically obtained opti­
mal results

Table 4.2: Comparison of execution and theoretical results
Result type Search space size Probability of success

Theoretical results 8 0.9453125
16 0.9613190
32 0.9991823
64 0.9965857

Simulation results 8 0.875
16 0.71875
32 0.6172
64 0.5606

From the data above, it clear that there is high discrepancy between the the theoretical
result and the ones achievable via simulation mainly because the data represents one
iteration as opposed to 3,4,6 and 8 necessary iterations of the Grover iterate that are
required and secondly due high error rates of current quantum devices.

Computational complexity
Table 4.3: Comparison of computational complexity

Computational type Search space size Number of iterations
Classical 8 8

16 16
32 32
64 64

Quantum 8 3
16 4
32 6
64 8

tompanst n fit .-r.rviT-.it:j*:nn.H comp ̂ sity

» 30 *

Figure 4.9: Grover computational complexity

From the data and plot above it is clear that quantum search using Grover's provides
quadratic speed up over classical search which provides linear search. It is also easily seen
that the power of quantum search using Grover's algorithm on small search spaces is not
fully exploitable.

50

5. RECOMMENDATIONS AND CONCLUSION

5. Recommendations and Conclusion
In this section we make discussions about the limitations to effective operation of our

algorithm, possible recommendations for better performance, further explanations on the
vast discrepancy in results is still made and We conclude the section with recommen­
dations for further possible studies that can be done on the work and on the quantum
studies whole.

Limitations
In performing our simulations, we were faced with a number of challenges and among
included;

1. The threat that having multiple iterations would increase decoherence and gate
error which would reduce the occurrences of measuring the marked state.

2. Secondly the fact that the N-Toffoli gate construction is not available in the pro­
visions made available by the QISKit environment prompted introduction of more
qubits inform of work bits which constituted increase in circuit depth which au­
tomatically affected the performance since each gate addition comes with its error
addition.

3. Performing single iterations efficiently brought out the desired effect of the study
but in the long run it brought about vast increase in discrepancy of the results with
increase in search space.

A combination of the above issues among others as suggested above constituted a big
threat to performance of our simulations and thus limited us to relatively small sample
size.

Suggestions for improvements
To improve the quality of our simulation work in the QISKit environment, the following
could have been adopted as solutions;

1. We could have reduced gate error by application of quantum error correction but be­
cause it comes with a cost of requiring more qubits and gates that further threatens
shrinking our executable problem sizes, it was not adopted.

2. We could also have improved performance by using more efficient oracle and diffuser
constructions that don't add more work bits. This would have eliminated redundant
gates thus reducing circuit depth and width but it was not the case because of
inability to achieve the construction with our intended circuit depth requirement
for easy simulatability.

3. Performing the search with the right number of iteration would be the best option
as it maps exactly to the desired outcome but the threat of decoherence and gate
error with larger circuit sizes threatened the occurrence of the correct solution to
our problem thus it was not adopted.

51

Suggestions for further studies
Given the scope of our study and results achieved,the following ideas can be taken on for
further study;

1. A study on how to make possible gate combinations to reduce gate complexity or
gate error which would provide means to improve performance of results.

2. A more analytical study using more measures of central tendency and measures
of variation can be done to shade more light on the practical impact of Grover's
algorithm in the quantum era.

3. A more performance related study using Grover's algorithm carried out with the
required amount of iterations with efficient circuit construction the is susceptible to
less decoherence and gate errors can also be done.

These among many possible related studies can be undertaken.

Conclusions
While our study was more involved in a more rigorous theoretical and mathematical
overview of Grover's algorithm and our implementation inclined to that end, it is worth
noting that the algorithm doesn't fall short of challenges as pointed out in the above
section and finding solutions to the problems would serve to enhance the impact of the
algorithm for further future use in quantum applications related to solving NP problems.
I hope that the mathematical discussion availed in this thesis report would help create
a more intuitive understanding of the Grover's algorithm to those still having questions
about its operation.

52

BIBLIOGRAPHY

Bibliography
[1] Scott Aaronson, G Kuperberg, C Granade, and V Russo. Complexity zoo. URL

http://www. complexity zoo. com, 2005.

[2] Marco Affronte, Filippo Troiani, Alberto Ghirri, Stefano Carretta, Paolo Santini,
Valdis Corradini, Raffael Schuecker, Chris Muryn, Grigore Timco, and Richard E
Winpenny. Molecular routes for spin cluster qubits. Dalton Transactions, -
(23):2810-2817, 2006.

[3] Vladimir M Akulin. Entangled states of composite quantum systems. In Dynamics
of Complex Quantum Systems, pages 477-527. Springer, 2014.

[4] Paul Benioff. The computer as a physical system: A microscopic quantum mechan­
ical hamiltonian model of computers as represented by turing machines. Journal of
statistical physics, 22(5):563-591, 1980.

[5] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM journal on Computing,
26(5):1510-1523, 1997.

[6] E Bernstein and U Vazirani. Proceedings of the 25th annual acm symposium on
theory of computing. ACM, New York, 11, 1993.

[7] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal
on computing, 26(5): 1411-1473, 1997.

[8] Eva Borbely. Grover search algorithm. arXiv preprint arXiv:0705.4171, 2007.

[9] Michel Boyer, Gilles Brassard, Peter H0yer, and Alain Tapp. Tight bounds on
quantum search. In Proceedings of the Workshop on Physics of Computation:
PhysComp'96, pages 36-43, 1996.

[10] Gilles Brassard. Searching a quantum phone book. Science, 275(5300):627-628, 1997.

[11] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53-74, 2002.

[12] David Bulger, William P Baritompa, and Graham R Wood. Implementing pure
adaptive search with grover's quantum algorithm. Journal of optimization theory
and applications, 116(3):517-529, 2003.

[13] Juan I Cirac and Peter Zoller. Quantum computations with cold trapped ions. Phys­
ical review letters, 74(20) :4091, 1995.

[14] Franklin de Lima Marquezino, Renato Portugal, and Carlile Lavor. A Primer on
Quantum Computing. Springer, 2019.

[15] D Deutsch. Rapid solution of problems by quantum computation. Proceedings of the
Royal Society A, 435:563-574, 1991.

53

http://www

BIBLIOGRAPHY

[16] David Deutsch. Quantum theory, the church-turing principle and the universal quan­
tum computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97-117, 1985.

[17] Jose P Dumas, Kapil Soni, and Akhtar Rasool. A n introduction to quantum search
algorithm and its implementation. In Data Management, Analytics and Innovation,
pages 19-31. Springer, 2019.

[18] Christoph Diirr, Mark Heiligman, Peter Hoyer, and Mehdi Mhalla. Quantum query
complexity of some graph problems. SIAM Journal on Computing, 35(6):1310-1328,
2006.

[19] Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum.
arXiv preprint quant-ph/9607014, 1996.

[20] Richard P Feynman. Simulating physics with computers. Int. J. Theor. Phys,
21(6/7), 1982.

[21] Caroline Figgatt, Dmitri Maslov, K A Landsman, Norbert Matthias Linke, Shan-
tanu Debnath, and C Monroe. Complete 3-qubit grover search on a programmable
quantum computer. Nature communications, 8(1): 1—9, 2017.

[22] Austin Gilliam, Stefan Woerner, and Constantin Gonciulea. Grover adaptive search
for constrained polynomial binary optimization. Quantum, 5:428, 2021.

[23] Lov K Grover. A fast quantum mechanical algorithm for database search. In Pro­
ceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages
212-219, 1996.

[24] Lov K Grover. Quantum mechanics helps in searching for a needle in a haystack.
Physical review letters, 79(2):325, 1997.

[25] Lov K Grover. Fixed-point quantum search. Physical Review Letters, 95(15): 150501,
2005.

[26] Jack D Hidary. Quantum Computing: An Applied Approach. Springer, 2019.

[27] Dan Kenigsberg and El i Biham. Grover's Quantum Search Algorithm and Mixed
States. PhD thesis, Computer Science Department, Technion, 2001.

[28] Carlile Lavor, L R U Manssur, and Renato Portugal. Grover's algorithm: quantum
database search. arXiv preprint quant-ph/0301079, 2003.

[29] Seth Lloyd. A potentially realizable quantum computer. Science,
261(5128):1569-1571, 1993.

[30] Yuri Manin. Computable and uncomputable. Sovetskoye Radio, Moscow, 128, 1980.

[31] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79,
2018.

[32] Juanjo Rue and S E B A S T I A N X A M B O . Mathematical essentials of quantum com­
puting. In Preprint. Seminar on Quantum Processing.

54

BIBLIOGRAPHY

[33] Simanraj Sadana. Grover's search algorithm for n qubits with optimal number of
iterations. arXiv preprint arXiv:2011.04051, 2020.

[34] Daniel R Simon. On the power of quantum computation. SIAM journal on computing,
26(5): 1474-1483, 1997.

[35] Akanksha Singhal and Arko Chatterjee. Grover's algorithm. 2018.

[36] Philip Stromberg and Vera Blomkvist Karlsson. 4-qubit grover's algorithm imple­
mented for the ibmqx5 architecture, 2018.

[37] Lieven M K Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S Yannoni,
Mark H Sherwood, and Isaac L Chuang. Experimental realization of shor's quantum
factoring algorithm using nuclear magnetic resonance. Nature, 414(6866):883-887,
2001.

[38] Edward T H Wu. Quantum entanglement and hidden variables interpreted by yangton
and yington theory. IOSR Journal of Applied Physics (IOSR-JAP), 12(2), 2020.

[39] Theodore J Yoder, Guang Hao Low, and Isaac L Chuang. Fixed-point quantum
search with an optimal number of queries. Physical review letters, 113(21):210501,
2014.

55

6. List of abbreviations and symbols
used

c Set of Complex numbers.

F A Field.

E Set of real numbers.

c n Complex vector field in n-dimensions space.

c 2 " Complex vector field in 2n-dimensions.

A Matrix of dimension m x n.

AT
m,n Transpose of A m n .

At
m,n

Conjugate transpose of AmjTl.

A Conjugate of matrix A m n .

a'ij i-jth component of AmjTl.

u„ Oracle function.

Grover diffusion operator.

Tensor product operator.

TV Controlled Negation of sth bit with rth contol.

u1 Unitary operator of determinant 1.

su1 General group of Unitary operators of determinant 1

Hadamard transform on n Qubits .

NISQ Noisy Intermediate-Scale Quantum.

Q F T Quantum Fourier Transform.

N M R Nuclear Magnetic Resonance.

P Polynomial time.

NP Non-deterministic polynomial time.

P S P A C E Polynomial space.

B P P Bounded-error probabilistic polynomial time.

BQP Bounded-error quantum polynomial time.

EQP Exact quantum polynomial time.

56

6. LIST OF ABBREVIATIONS AND SYMBOLS USED

Q M A Quantum Merlin-Arthur.

C N O T Controlled NOT gate.

C C N O T Controlled Controlled NOT gate

CSWAP Controlled SWAP gate.

Q-Computer Quantum Computer.

Q-Computation Quantum Computation.

Q-Measurement Quantum Measurement.

Q-Procedure Quantum Procedure.

Q-Algorithm Quantum Algorithm.

Q-Memory Quantum Memory.

Q-Vector Quantum Vector.

Q-bit rotation Quantum bit rotation.

57

LIST OF TABLES

List of Tables
1.1 Operation of C N O T gate 15
1.2 Operation of SWAP gate 16
1.3 Operation of C C N O T gate 16
1.4 Operation of CSWAP gate 17
1.5 B i g - 0 and Small-o notation 19
1.6 Table of Classical and Quantum Complexity Classes 21
4.1 Execution results 49
4.2 Comparison of execution and theoretical results 50
4.3 Comparison of computational complexity 50

58

LIST OF FIGURES

List of Figures
1.1 Bloch sphere [36] 9
1.2 Big-0 time complexity graph [I] 20
2.1 Deutsch-Jozsa. Source: Wikipedia 27
2.2 Bernstein-Vazirani, Source: Wikipedia 29
2.3 Grover"s algorithm , Source : Wikipedia 31
2.4 Grovers algorithm geometry, Source : Wikipedia 35
3.1 Initialisation circuit component 38
3.2 Oracle circuit component 39
3.3 Diffusion operator circuit component 40
3.4 Circuit component for measurement 41
4.1 Generalized Toffoli gate decomposition [28] 45
4.2 Initialisation circuit component for N = 64 46
4.3 Oracle construction for N =64 46
4.4 Grover diffusion operator construction for N =64 47
4.5 Q A S M simulation results for 8 element search space 47
4.6 Q A S M simulation results for 16 element search space 48
4.7 Q A S M simulation results for 32 element search space 48
4.8 Q A S M simulation results for 64 element search space 48
4.9 Grover computational complexity 50
6.1 Grover circuit for N = 64 60
6.2 Code snippet 61
6.3 Code snippet 62

59

LIST OF FIGURES

60

•
c-

*

•

- • — •

oooooo

ô
o—

N

- • — *

ooooco

Figure 6.1: Grover circuit for N = 64

LIST OF FIGURES

import numpy as np
Importing standard Qiskit libraries
from qisk i t import QuantuirCircuit, transpile, Aer, IBMQ
from q i sk i t . too l s , jupyter import *
from qisk i t .v i sua l iza t ion import *
from ibm_quantum_widgets import *
from q isk i t .v i sua l iza t ion import latex as _lat5x

Loading your IBH Q accowit(s)
provider = IBMQ.load_accountO

from qiski t import QuantumRegister, ClassicalRegister, QuartumCircuit
from riumpy import p i

qreg_q = QuantumRegister(6, "q')
qreg_iv = QuantumRegister(5, 'w')
qreg_a = QuantumRegister(l, ' a ')

c i r cu i t = QuantumCircuit(qxeg_qr qreg_iv, qreg_aj

^INITIALISATION
circuit,h(qreg_q[0])
circuit.htqreg_q[l])
circuit,hfqreg_q[2])
circuit,hrqreg_q[3])
circuit,h(qreg_q[4])
circuit.hCqreg_q[5]J
circuit,x(qreg_a[0])
circuit,h(qreg_a[0])
#ORACLE
#circuit.barrier(qreg_q[9], qreg_q[l], qieg_q[2], qreg_«[9], qreg_w[l], qreg_a[8])
circuit.ccx(qreg_q[O], qreg_q[l], qreg_w[G])
circuit.ccx(qi"eg_q[2], qreg_w[3], qreg_w[l])
circuit.ccx(qxeg_q[3] , qreg_w[l] t qreg_w[2]5
ciicuit.ccx(qreg_q[4], qreg_w[2], qreg_w[3]J
circuit,ccx(qreg_q[5], qreg_w[3], qreg_w[4])
circuit.cx[qreg_iv[4] r qreg_a[0]}
ci rcui t .ccx£qreg_q[5] , qreg_ra[3], qreg_w[4])
circuit.ccx(qreg_q[4], qreg_«i[2], qreg_w[3])
circuit,ccx(qreg_q[3], qreg_«i[l], qreg_w[2])
circuit.ccx(qreg_q[2], qreg_w[9], qreg_w[l])
circuit.ccx(qreg_q[0], qreg_q[l], qreg_w[0])

Figure 6.2: Code snippet

61

LIST OF FIGURES

WIFFUSER
fcircuit.bazrier(qreg_q[ej, qreg_q[l], qreg_q[2], qieg_*t[6], qreg_w[l], qieg_a[8])
Scircuit. barrier (qzeg_q[9], qreg_q[l], qreg_q[2], qreg_i[8J, qreg_w[l], qreg_a[8])
circuit.h(qreg_q[0])
circuit.h(qreg_q[l])
circuit.h(qreg_q[2]5

c i r c u i t . ti(;qreg_q[3])
circuit.h(qreg_q[4])
circuit.h(qreg_q[5])
circuit.x(qreg_q[0])
circuit.x(qreg_q[l])
circuit.x(qreg_q[2])

circuit.x(qreg_q[3])
circuit.x(qreg_q[4])
circuit.x(qreg_q[5])

c i r c u i t . zfqreg_iv[4])

62

qres Lq[l], qieg_w[S])
qres !_•[«]. qreg_w[l])
qrej L « [i] , qreg_w[2])
qre£ L»[2] , qreg_w[3]]
qre£ L»[3] , qreg_w[4])

qreg_n[3], qreg_w[4])
L«[2] , qreg_w[3])

qres qreg_w[2])
qres Lw[0], qreg_w[l])
qreg_q[l], qreg_w[e])

^circuit.barrier(qreg_q[8], qreg_q[l], qreg_q[2], qreg_w[8], qreg_w[l], qieg_a[9])
circuit.x(qreg_q[B])
circuit .x(qreg_q[l])
c ire ui t .x(q reg_q[2])
circuit,x(qreg_q[3])
c ire u i t .x (q reg_q [4])
circuit.x(qreg_q[E])
fcizcuit.barrier(qreg_q[8], qreg_q[l], qreg_q[2], qreg_w[8], qreg_w[l], qieg_a[8])
circuit.h(qreg_q[8])
circuit.h(qreg_q[l])
circuit.h(qreg_q[2])
circuit.h(qreg_q[3])
circuit.h(qreg_q[4])
c i r cu i t . hi;qreg_q [5])
c ire ui t .x(q reg_a[8])
circuit.h(qreg_a[8])
circuit,draw(output='latex_source')

^measuring with the statevectoi simulator
shots =29QQ
sv_5im = Aer.get_backend(; statevector_siirulatoi-')
qobj = c i r cu i t
[result = sv_sim.run(qob],shots = shots,
max_credits = 5, timeout=l).result()
statevec = result,get_statevector()
from qiskitjtextbook.tools import vectoi'21atex
veetor21atex(statevec, pretext="|\\psi\\rangle ="]

ftmeasuring will the qasm simulator
shots = 2090
c ire u i t . inea sure_all O
qasm_siti = Aer.get_backend('qasm_s initiator ')
qob] = c i rcu i t
result = qasm_sim.run(qobj,shots = shots,
max_credits = 5, timeout=l).resultQ
counts = result.get_counts()
plot_histogram(counts)

Figure 6.3: Code snippet

http://sv_sim.ru

