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ABSTRACT 

 

Identifying vehicles’ appearances with the existence of complex surroundings and 

occlusions is a crucial task in autonomous driving. Only in Germany, 47% of vehicles are 

passenger cars, the rest is distributed among trucks, buses, and other non-conventional types. 

Moreover, using supervised methods requires a significant amount of labelled data, which is 

expensive. Self-Supervised Learning offers an efficient solution which requires less labelling 

yet improves generalization on unseen data. The study focuses on two prominent self-

supervised methods, SimCLR (contrastive) and SimSiam (non-contrastive) and compares 

their performance against conventional supervised learning. This work employs a 

comprehensive experimental setup on a domain-specific subset of ImageNet with five 

vehicle types, reproducing a similar pipeline to the original papers to fairly evaluate their 

transferability performance on vehicle-type detection task. Results demonstrated that both 

SimCLR and SimSiam score better accuracy than supervised learning. However, the 

performance dynamics vary, with SimCLR showing superior performance in classification 

task, while SimSiam surpassed in bounding box precision. The study empirically analyzes 

these SSL methods and finds that the choice of backbone architecture depth is dependent on 

the dataset size and image resolution. The findings of this thesis have important implications 

in tackling automotive industry domain gaps, offering better generalizability and robustness. 

The superior performance in vehicle-type detection can enhance the capabilities of these 

systems in trajectory planning, traffic flow analysis, and safety precautions. The study also 

opens new avenues for future research in SSL and its potential applications in more 

sophisticated object detection tasks within the autonomous driving context. 
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CHAPTER 1: INTRODUCTION 

1.1 Overview: 

Self-supervised learning (SSL) is a machine learning technique that enables models 

to learn from unlabelled data without explicit supervision. It has become a promising 

approach for addressing some of the limitations of supervised learning, including the need 

for a substantial amount of labelled data, overfitting, and generalization to unseen data. Self-

supervised learning has the potential to revolutionize various industries, including 

Healthcare, Finance, Manufacturing, and autonomous driving. 

In the domain of autonomous driving, vehicle-type detection is a critical task that 

involves identifying the type of vehicle in the environment. Accurate detection of vehicle 

types is essential for various autonomous driving tasks, including traffic flow analysis, 

trajectory planning, and collision avoidance. However, this task is challenging due to the 

complexity of the surrounding environment and variability in the appearance of different 

vehicle types. 

SSL can be employed to learn effective representations for vehicle-type detection in 

autonomous driving. By leveraging large amounts of unlabelled data, SSL can capture the 

underlying structure and relationships within the data, leading to more accurate and robust 

detection of vehicle types. For instance, SSL can learn representations of various vehicle 

parts, such as wheels, headlights, and taillights, which can then be used to identify the type 

of vehicle based on these representations. 

In this thesis, we investigate the use of self-supervised learning for vehicle-type 

detection in an autonomous driving context. We propose a self-supervised learning approach 

that leverages the structure and relationships within the data to learn effective representations 

for vehicle-type detection. We evaluate our approach on a dataset of autonomous driving 

scenarios and demonstrate its superior performance compared to existing state-of-the-art 

approaches for vehicle-type detection. 
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1.2  Problem Statement: 

Identifying the type of vehicle in an autonomous driving environment is a crucial and 

challenging task due to the variations in the appearance of different types of vehicles and 

complex surroundings. In 2020, Germany had over 47 million registered vehicles according 

to the Federal Highway Research Institute (BASt), including 47% passenger cars, 16% 

trucks, and 7% buses, making accurate vehicle-type detection essential for managing and 

optimizing the flow of these vehicles. 

Conventional supervised learning methods require a significant amount of labelled 

data, which is expensive and time-consuming to obtain. According to a report by 

MarketsandMarkets, the global data annotation market crossed 0.8 billion in 2022 and is 

expected to reach USD 3.6 billion by 2027, growing at a compound annual growth rate 

(CAGR) of 33.2%. This substantially increasing market indicates the huge expenditure on 

data annotation – whether in-house or outsourced – which is going to cost more and more as 

industries need additional data to keep their models’ performance from declining.  Therefore, 

an efficient and effective approach is needed to stop the financial drain. Self-supervised 

learning is a promising alternative that can utilize unlabelled data to learn effective vehicle-

type representations. 

Despite the potential of self-supervised learning, its utilization in autonomous driving 

remains underexplored. According to a report by Allied Market Research, the global market 

for autonomous driving technology is expected to grow rapidly from 2020 to 2027, with a 

projected market size of $556.67 billion by 2027. This growth emphasizes the urgency of 

developing swift, efficient, and practical solutions for autonomous driving.  

1.3 Research Questions: 

• How does self-supervised learning compare to other approaches in terms of 

performance for vehicle-type detection in autonomous driving? 

• What are the key factors influencing the effectiveness of self-supervised learning 

for vehicle-type detection in autonomous driving? 

• Can self-supervised learning techniques effectively handle the domain gap and 

improve the generalization capabilities of deep learning models for detecting 

various vehicle types in autonomous driving scenarios? 
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1.4 Scope of Study: 

The scope of this study is to investigate the effectiveness of self-supervised learning 

for vehicle-type detection in an autonomous driving context. Specifically, we aim to explore 

the use of self-supervised learning to learn representations of different vehicle parts and use 

them to identify the type of vehicle. We will evaluate our approach on a public dataset of 

autonomous driving scenarios and compare its performance with existing state-of-the-art 

approaches. The study will also investigate the impact of various factors on the performance 

of the self-supervised learning approach, such as the size of the training data and the 

complexity of the vehicle types. 

The study will contribute to the growing body of research on self-supervised learning 

and its applications in Autonomous Driving (AD) and possibly add enhance Advanced 

Driver Assistance Systems (ADAS) which will pave the way for further research and 

development in this area. The findings of this study may have practical implications for the 

development of safer and more efficient autonomous driving systems. 

1.5 Objectives: 

1. To investigate the effectiveness of self-supervised learning techniques for 

vehicle-type detection in the context of autonomous driving. 

2. To compare the performance of the proposed self-supervised learning 

approach with existing state-of-the-art methods for vehicle-type detection. 

3. To evaluate the impact of various factors on the performance of the self-

supervised learning approach and provide insights for improving vehicle-

type detection in autonomous driving applications. 

4. To Recommend improvements for all the possible drawbacks of the model 

and how to make it more robust and reliable. 

1.6 Methodology: 

1.6.1 Research: 

Reviewing and analyzing earlier research papers that are related to this work, 

highlighting the key issues and the various methods used to address them. In addition, 
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researching various approaches to creating such a system is crucial to getting a clear 

understanding of how to begin the project without making the same mistakes as others. 

1.6.2 System Design: 

In order to have a robust and robust system, we first need to design it. This allows us 

to define how we want our system to operate and define the key functionalities. This is the 

stage where we define the flow of our system. This stage will define the system on which the 

final code is based. 

1.6.3 System Development: 

To achieve the desired system, it's crucial to accurately integrate the components. 

Each function can be created using standard coding practices, resulting in a system that runs 

smoothly, and effectively, and is easier to debug during troubleshooting.  

1.6.4 Testing and Troubleshooting: 

Numerous tests must be performed on the system once it has been fully developed to 

check for efficiency, robustness, and accuracy when used with real data. The system's 

shortcomings or the area that needs to be improved will be revealed by the testing results. 

Tests and adjustments conducted over time will eventually produce the desired outcomes and 

consistent performance. 

1.7 Report Outline: 

Chapter I:  

Chapter 1 serves as an introduction to the study, providing an overview of the 

research topic. It defines the problem statement, research questions, scope, objectives of the 

study, and the overall methodology to approach this study, covering research, system design, 

development, testing, and troubleshooting. The chapter concludes with an outline of the 

report's structure and organization. 

 

 

Chapter II:  
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Chapter two explores the evolution of vehicle-type detection in autonomous driving, 

from early approaches to deep learning techniques. It discusses the emergence of self-

supervised learning (SSL) and its paradigms in object detection. SSL methods are compared 

with other approaches, providing insights into their significance for vehicle-type detection. 

Chapter III:  

This chapter presents the methodology employed to evaluate self-supervised learning 

for vehicle-type detection in autonomous driving. It outlines data preprocessing and the 

experimental setup. The chapter also covers evaluation metrics and the comparison with 

supervised learning. Data augmentation is utilized to improve performance in vehicle type 

detection. 

Chapter IV:  

Chapter four presents the evaluation of self-supervised learning methods for vehicle-

type detection in autonomous driving. It includes an analysis of pretraining results, 

performance comparison with supervised learning, and the impact of transfer learning. The 

chapter concludes with an interpretation of the results and their implications for autonomous 

driving systems. 

Chapter V:  

Chapter Five concludes the thesis by summarizing the key findings of the study and 

their implications for machine learning and autonomous driving. It discusses the challenges 

and limitations encountered during the research. The chapter also provides recommendations 

for future research in self-supervised learning and potential improvements in autonomous 

driving systems. 
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CHAPTER 2: RELATED WORK 

This chapter provides a comprehensive overview of the evolution of vehicle-type 

detection in autonomous driving, starting from early approaches, transitioning into deep 

learning methods, and finally focusing on the emergence of self-supervised learning (SSL) 

techniques. It dives into the different paradigms of SSL in object detection, including 

contrastive and non-contrastive methods, with a detailed examination of prominent 

techniques under each paradigm. The chapter also presents a comparison of SSL with other 

approaches and concludes with a summary of the key points. 

2.1  Evolution of Vehicle-Type Detection in Autonomous Driving: 

Autonomous driving has gained significant attention in recent years, with 

advancements in computer vision and deep learning techniques playing a crucial role. One of 

the fundamental tasks in autonomous driving is vehicle-type detection, which involves 

identifying and classifying different types of vehicles on the road. This section provides a 

general overview of the evolution of vehicle-type detection approaches in autonomous 

driving, highlighting the key milestones and contributions. 

2.1.1 Early Approaches: 

Early approaches focused on merely object detection relied on traditional computer 

vision techniques and handcrafted features such as Feature-based, Template Matching, and 

Model-based approaches.  

Feature-based Approaches utilized handcrafted features, such as edges, corners, and 

texture, to distinguish between different vehicle types. One popular approach involved 

extracting gradient-based features, like Histograms of Oriented Gradients (HOG), to 

represent vehicle shapes (Dalal & Triggs, 2005). The HOG features were then fed into 

classifiers such as Support Vector Machines (Boser et al., 1992) to classify vehicle types. 

These methods showed promising results in certain scenarios but struggled with variations in 

lighting conditions, occlusions, and complex backgrounds.  

 

Template-matching techniques were also employed for object detection, especially 

when Lim and Guntoro used them for vehicle-type detection (2001). These methods relied 

on comparing vehicle images with predefined templates or reference models to determine 
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their types (The templates could be created based on manually annotated images or through 

the use of geometric models. While template-matching approaches exhibited simplicity and 

efficiency, they were sensitive to changes in viewpoint, scale, and appearance, limiting their 

applicability in real-world scenarios. 

Another category of early object detection involved model-based approaches. These 

methods utilized geometric and dynamic properties to detect and classify vehicles, building 

consistent and efficient 2D representations out of 3D range data (Petrovskaya & Thrun, 

2009). By matching the observed image with the expected appearance based on the models, 

these approaches could estimate the position, velocity and shape of vehicles. However, 

model-based techniques often faced challenges in handling viewpoint variations, occlusions, 

and lighting conditions. 

These methods focused on extracting discriminative features and employing 

classifiers to distinguish vehicles (Sivaraman & Trivedi, 2013). However, these approaches 

often faced challenges such as limited robustness, scalability, and difficulties in handling 

complex real-world scenarios. 

2.1.2 Deep Learning Approaches: 

The advent of deep learning revolutionized the object detection concept in 

autonomous driving, expanding to pedestrians, traffic signs, vehicle types, etc. Early Deep 

learning works started the use of Convolutional Neural Networks (CNNs) to extract 

discriminative features from raw data which are fed into a classifier. Notable works include 

the implementation of CNNs for object detection by Hinton et al. (2012) and AlexNet 

(Krizhevsky et al., 2012). 

Region-based Convolutional Neural Networks (R-CNN) improved detection by 

leveraging region proposal algorithms to generate potential object regions for classification. 

The features within these regions were extracted using CNNs, and a classifier was trained for 

vehicle type identification. R-CNN-based methods, such as Fast R-CNN (Girshick, 2015), 

achieved remarkable accuracy in object detection tasks. 

Single Shot Detectors (SSD) based approaches addressed the limitations of region 

proposal algorithms by directly predicting object bounding boxes and class probabilities 

from multiple feature maps at different scales. These methods offered faster inference times 

while maintaining competitive detection performance. The works of Liu et al. (2016) and 

Redmon et al. (2016) demonstrated the effectiveness of SSD. 
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Additionally, YOLOv3 (Redmon and Farhadi, 2018) offered better real-time 

performance by leveraging a single pass through the network for object detection. Recent 

advancements in deep learning-based detection have focused on improving efficiency and 

reducing computational complexity. On the other hand, EfficientDet (Tan et al., 2020) 

introduced a family of highly efficient and accurate object detectors by optimizing the 

network architecture and scaling strategies. These detectors demonstrated state-of-the-art 

performance in various vehicle detection benchmarks.  

Although these tremendous potentials of deep learning have opened doors for 

customized object detection, especially in autonomous driving, challenges related to 

occlusions, lighting conditions, and generalization remained an issue on the path of 

advancing the capabilities of autonomous driving models to further improve. 

2.1.3 Self-Supervised Learning Approaches: 

To build upon previous works and address their challenges, self-supervised learning 

methods have been proposed for improving supervised tasks including detection. These 

methods aim to learn useful representations from unlabelled data, which can then be used for 

downstream tasks such as vehicle-type detection.  

Contrastive learning is one of the SSL methods that appeared in works like the 

Simple Framework for Contrastive Learning of Visual Representations (SimCLR) by Chen 

et al., (2020), Momentum Contrast (MoCo) by He et al., (2020) which was improved later as 

MoCo v3 (Chen et al., 2021), and SwAV by Caron et al. (2020) 

The non-contrastive method illustrates promising results as well, works such 

SimSiam, (X. Chen & He, 2021), leverage non-contrastive learning to learn powerful 

representations without requiring explicit annotations. Similarly, the BYOL method, 

introduced by Grill et al. (2020), employs a different variant of self-supervised learning to 

train a model on large-scale unlabelled data, resulting in improved performance on 

downstream tasks. Not to forget Bardes et al., (2022) who proposed a self-supervised 

learning technique called VICReg, which uses variance-invariance-covariance regularization 

to learn pretext-invariant representations. 

Moreover, self-supervised learning approaches have also been combined with other 

techniques such as domain adaptation to improve object detection in autonomous driving. 

For instance, Munir et al., (2021) proposed a domain-adaptive self-supervised learning 
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approach that leverages both unlabelled and labelled data from source and target domains. It 

was extensively evaluated on the FLIR-ADAS and the KAIST Multi-Spectral dataset. 

All of the above-mentioned methods have shown remarkable performance in 

detecting different vehicle types with limited labelled data. As self-supervised learning 

continues to advance, we can expect further improvements in better vehicle perception and 

other autonomous driving tasks. 

2.2  SSL Emergence: 

2.2.1 Pretext Tasks: 

Pretext tasks are auxiliary objectives that can be used to learn representations in a 

self-supervised manner. The idea is to design a task that allows the model to learn features 

that are useful for solving a downstream task such as colourization (; Larsson et al., 2016), 

placing image patches in the right place (Doersch et al., 2015 ; Noroozi & Favaro 2016), 

placing frames in the right order (Misra et al., 2016  Lee et al., 2017), inpainting (Pathak et 

al., 2016), or classify corrupted images (Fang et al., 2022) 

One of the main benefits of using pretext tasks is that they allow us to leverage large 

amounts of unlabelled data, which is often much easier to obtain than labelled data. By 

training on a pretext task, we can learn a set of features that are likely to be useful for many 

different tasks (Yi et al., 2022), without the need for task-specific labels. In this way, self-

supervised learning has the potential to greatly improve the efficiency and scalability of 

machine learning systems. 

Several other recent works have also explored the use of pretext tasks for self-

supervised learning, including "Unsupervised Learning of Visual Representations by Solving 

Jigsaw Puzzles" (Noroozi and Favaro, 2016), "Learning Representations by Maximizing 

Mutual Information Across Views" (Bachman et al., 2019), and "Self-Supervised Learning 

of Pretext-Invariant Representations" by Misra and Van Der Maaten, (2020). 

Choosing the right pretext task is vital for successful self-supervised learning. It must 

require an understanding of the data that is also needed for the downstream task (Zaiem et 

al., 2022). An example of this is the autoencoder, which compresses input images into a 

reduced form and then generates an output image as close to the original as possible. 

However, if the downstream task requires generating higher-quality images, the autoencoder 

would be a poor choice as it also regenerates noise in the original image. 
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Overall, pretext tasks provide a powerful tool for learning representations in a self-

supervised manner. By leveraging large amounts of unlabelled data and designing tasks that 

encourage the model to learn useful features, we can greatly improve the efficiency and 

scalability of machine learning systems. 

2.2.2 Downstream Tasks: 

In the context of machine learning, downstream tasks refer to the primary objectives 

that a model is designed to achieve after learning the representations of data through a 

pretext task. As stated by Tanaka et al. (2022b), " A typical SSL model is trained from a 

large amount of unlabelled data. Then, the trained parameters are transferred into a model for 

specific tasks called downstream tasks." These tasks usually require labelled data and are 

specific to a particular application or problem.  

Downstream tasks are crucial for evaluating the effectiveness of self-supervised 

learning. Automatic Speech Recognition (Tanaka et al., 2022b), image retrieval, and 

generative modelling are some of the most common tasks used to evaluate self-supervised 

learning. Notably, in the context of autonomous driving, there are various other tasks such as 

Object detection (Pototzky et al., 2021), semantic segmentation (Wang et al., 2022), video 

class agnostic segmentation (Siam et al., 2021), depth estimation (Xue et al., 2020), and 

action recognition (Zhou et al., 2023) which indicates the increasing significance of SSL in 

the automotive industry and autonomous driving in particular.  

2.3  SSL Paradigms in Object Detection: 

2.3.1 Contrastive Learning Techniques for Object Detection: 

Contrastive learning has recently emerged as a popular technique in the field of 

machine learning for unsupervised representation learning. However, its roots can be traced 

back to the early work on Siamese neural networks in the 1990s (Bromley et al., 1994). The 

idea of using contrastive loss to train such networks was introduced by Hadsell et al. 

(2006b), where they proposed a metric learning approach that learned the similarity between 

pairs of images. This work led to the development of many Siamese-based architectures in 

the following years. 

Wang and Gupta (2015) introduced the concept of Contrastive Convolutional Neural 

Networks for unsupervised feature learning. They trained a deep neural network to learn 

meaningful representations from unlabelled data. This work inspired the development of 
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many other contrastive-based learning approaches for unsupervised representation learning, 

including Contrastive Predictive Coding (CPC) by Hénaff et al. (2020) and SimCLR (Chen 

et al., 2020). 

Another important work in contrastive learning is the triplet loss, which was 

proposed by Schroff et al. (2015). The triplet loss aims to learn embeddings that preserve the 

relative distances between samples in the input space. The triplet loss has been used in 

various applications, including image retrieval and person re-identification. 

Recently, various contrastive learning methods have been developed, including 

InfoNCE loss (Oord et al., 2018), SimCLR (Chen et al., 2020), and MoCo (He et al., 2020). 

These methods have shown significant improvements in learning representations in both 

supervised and unsupervised settings. Contrastive learning is a promising approach to deep 

learning and has the potential to advance in various applications. We shall discuss some of 

its well-known approaches below. 

2.3.1.1 SimCLR: 

SimCLR is a contrastive learning method that was proposed by Chen et al. (2020). 

The basic idea of SimCLR is to learn representations that are invariant to different 

augmentations of the same image. This is achieved by using a contrastive loss function that 

maximizes the similarity between positive pairs and minimizes the similarity between 

negative pairs. The training process involves creating two views of each image and passing 

them through a shared encoder network. The representations of the two views are then 

compared using the contrastive loss function. 

The success of SimCLR can be attributed to several factors. Firstly, it uses a simple 

yet effective training framework that is easy to implement and scale. Secondly, it uses data 

augmentation to create different views of each image, which increases the amount of training 

data and makes the learned representations more robust. Finally, it achieves strong transfer 

learning performance by fine-tuning the learned representations on downstream tasks. 
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Figure 2.1 SimCLR architecture by Chen et al. (2020) 

In the framework above, two distinct data augmentation operators are selected from a 

common augmentation set, named 𝑡 ∼ 𝑇 and 𝑡′ ∼ 𝑇 applied to each data example to get two 

views. The encoder  𝑓(⋅) and a projection head 𝑔(⋅) are then trained to increase similarity 

via contrastive loss. After training is accomplished, the projection head 𝑔(⋅) is thrown away 

while encoder 𝑓(⋅) and representation ℎ is used for downstream tasks. 

SimCLR has been evaluated on several benchmark datasets, including CIFAR-10 

(Krizhevsky & Hinton, 2009), ImageNet ILSVRC-2012 (Russakovsky et al., 2015), and 

COCO (Lin et al., 2014). The success of SimCLR has led to several follow-up studies that 

aim to improve the method further such as Chen et al. (2021) with  MOCO v3, and Caron et 

al. (2020) with SwAV. 

2.3.1.2 MoCo: 

MoCo (Momentum Contrast) is a self-supervised learning framework for visual 

representations proposed by He et al. (2020). The framework achieved state-of-the-art 

performance on several benchmark datasets and was later improved with the introduction of 

MoCo v2 and MoCo v3. 

The basic idea of MoCo is to learn a momentum-based contrastive loss function that 

maximizes the similarity between positive pairs and minimizes the similarity between 

negative pairs. Based on the work of He et al. (2020), the training process involves creating 

two views of each image, one as a query and the other as a key. The query image is passed 

through a query network, and the key image is passed through a key network. The key 

network is updated with a momentum update rule to make it more stable and improve the 

quality of the learned representations. 



13 
 

MoCo v2 (X. Chen et al., 2020) and MoCo v3 (X. Chen et al., 2021) improve upon 

the original MoCo framework by introducing several new techniques. MoCo v2 introduced a 

queue-based contrastive loss function that stores a large number of negative keys and uses 

them for training. MoCo v3 introduced a contrastive learning framework for vision 

transformers that leverages the structure of the transformer model and uses a different loss 

function that is based on the dot product between query and key representations. 

 

Figure 2.2 MoCo architecture (He et al., 2019) 

In the above diagram, Momentum Contrast (MoCo) trains an encoder for visual 

representation in the provided example by applying a contrastive loss to match an encoded 

query, q, with a dictionary of encoded keys. The keys, denoted as {𝑘0; 𝑘1; 𝑘2; … } are 

calculated on the fly from a collection of samples. The dictionary is managed like a queue, 

with the current mini-batch enqueued and the oldest one dequeued, guaranteeing that the 

dictionary size remains constant regardless of the mini-batch size. The keys are encoded with 

a slowly progressing encoder that is kept up to date with momentum by the query encoder. 

This method makes it easier to build a big and reliable vocabulary, which improves visual 

representation learning. 

The success of MoCo (He et al., 2020) framework can be attributed to several 

factors. Firstly, it uses a contrastive loss function that is effective for learning visual 

representations in a self-supervised manner. Secondly, it uses momentum updates to make 

the learned representations more stable and robust. Finally, it has been shown to achieve 

strong performance on downstream tasks on datasets including ImageNet, CIFAR-10 

(Krizhevsky & Hinton, 2009), and COCO (Lin et al., 2014). 
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2.3.1.3 SwAV 

Swapping Assignments between multiple Views (SwAV) is an online algorithm for 

learning unsupervised visual representations introduced by Caron et al. (2020). It seeks to 

obtain features without the use of manual annotations and has demonstrated considerable 

performance increases when compared to supervised. The goal is to learn visual 

representations while simultaneously clustering. the data and ensuring consistency between 

cluster assignments generated for various augmentations (or "views") of the same image. It 

accomplishes this without requiring specific instructions. pairwise feature comparisons, 

which can be computationally difficult. 

SwAV employs a distinct prediction approach, where it predicts a view's code based 

on the representation of another view, rather than directly comparing image features. To 

convert scores into probabilities, SwAV incorporates a temperature parameter and computes 

assignments using the Sinkhorn-Knopp algorithm (Cuturi, 2013). The versatility of SwAV 

allows for training with both large and small batches (Caron et al., 2020), and it can 

efficiently scale to handle extensive datasets. Additionally, SwAV introduces the multi-crop 

data augmentation strategy, employing a mix of views with varying resolutions to enhance 

performance without increasing memory or computer demands. 

 

Figure 2.3 SwAV architecture (Caron et al., 2020) 

As shown from the above architecture, SWAV algorithm produces multiple views of 

a collection of images (𝑋1 and 𝑋2) by sequentially applying different augmentation 

operations. To create an embedding vector, these views go through feature extraction using a 

CNN backbone (ResNet50). The projection vector (designated as 𝑍) is created by 

performing a shallow non-linear transformation on the embedding vector. A single linear 

prototype layer (designated as 𝐶) further processes the projection vector by mapping it to 

trainable prototype vectors. The output of the layer is calculated as the dot product of the 
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prototypes and the projection vector, with the weights of the layer serving as a learnable 

prototype bank. Sinkhorn-Knopp by Cuturi (2013) is used to assign clusters using a portion 

of the output from the linear layer, resulting in a swapped prediction problem. The output of 

the Sinkhorn-Knopp algorithm is denoted as 𝑄. 

2.3.2 Non-Contrastive Self-Supervised Learning (NCSSL): 

Non-contrastive self-supervised learning (SSL) is a method of learning useful 

representations without requiring expensive target labels. It differs from contrastive SSL in 

that it does not require negative pairs (Zhuo et al., 2023), which are used to encourage 

representations of different objects to be further apart. Instead, non-contrastive SSL methods 

use positive pairs, where the hidden representations of two augmented views of the same 

object are brought closer together. 

One advantage of non-contrastive SSL is that it does not require large batch sizes or 

memory queues to provide negative pairs (Tian et al., 2021), making it more efficient and 

conceptually simple. Notable methods of non-contrastive SSL include BYOL (Bootstrap 

Your Own Latent) and SimSiam, which employ a dual pair of Siamese networks to learn 

powerful representations using only positive pairs. 

2.3.2.1 BYOL 

Bootstrap Your Own Latent (BYOL) is a self-supervised learning approach 

introduced by Grill et al. (2020). BYOL aims to learn useful visual representations from 

unlabelled data, without the need for manual annotation or supervision.  

The key idea behind BYOL is to train a neural network to predict the representations 

of a set of augmented views of an input image. Specifically, BYOL (Grill et al., 2020) 

consists of two neural networks: an online network and a target network. The online network 

is trained to predict the representations of a set of augmented views of an input image, while 

the target network is a copy of the online network that is updated with an exponential 



16 
 

moving average of the online network's weights. 

 

Figure 2.4 BYOL architecture (Grill et al., 2020) 

As shown above, BYOL’s architecture. BYOL reduces the similarity loss between 

𝑞θ(𝑧θ) and 𝑧𝜀
′ , θ is the trained weights, ϵ refers to the exponential moving average of 𝜃 and 

𝑠𝑔 refers to stop-gradient. Eventually, only 𝑓𝜃  is considered while the rest is disposed, and 

𝑦𝜃 is considered as image representation.  

BYOL's primary innovation lies in the training approach where the online network is 

responsible for predicting the target representations, while the target network does not 

undergo explicit training. Instead, the target network receives updates using an exponential 

moving average of the online network's weights. This unique approach enables the target 

network to acquire valuable representations without the need for direct supervision. 

BYOL has achieved state-of-the-art performance on several benchmark datasets, 

including Birdsnap (Berg et al., 2014), the SUN397 scene dataset (Xiao et al., 2010), and 

others. It has also been shown to be effective for transfer learning, where a model trained on 

one dataset is fine-tuned on another dataset. 

2.3.2.2 SimSiam 

SimSiam is a self-supervised learning approach for training deep neural networks (X. 

Chen & He, 2021). SimSiam aims to learn useful representations from unlabelled data, 

without the need for manual annotation or supervision. The method involves training a 

neural network with a Siamese architecture, where two identical networks share the same 

weights. The input data is randomly augmented twice and then fed into the two networks, 

and the networks are trained to predict the similarity of the two outputs. 
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Figure 2.5 SimSiam architecture (X. Chen & He, 2021) 

During the training of SimSiam, the same encoder network processes two augmented 

perspectives of the same image. Without the use of negative pairings or a momentum 

encoder, the model maximizes the similarity between both sides. (X. Chen & He, 2021). An 

important component of the training process is a stop-gradient operation, which is critical to 

prevent the model from collapsing to a constant. The stop-gradient operation treats one of 

the output vectors as a constant in the loss function, effectively creating two sets of variables 

that the model alternates between optimizing. 

The key innovation in SimSiam is it doesn’t use negative pairs, unlike many other 

self-supervised learning models that use negative sample pairs to avoid collapsing solutions, 

SimSiam directly maximizes the similarity of two views of the same image without using 

negative pairs. Secondly, it doesn’t use momentum encoders, which are commonly used in 

other models to maintain consistency in the representations. Lastly, it doesn’t require large 

batches as the model works well with typical batch sizes and does not rely on large-batch 

training. 

SimSiam has achieved state-of-the-art performance on several benchmark datasets, 

including ImageNet and CIFAR-10. It has also been shown to be effective for transfer 

learning, where a model trained on one dataset is fine-tuned on another dataset. 

2.3.2.3 VICReg 

The VICReg algorithm (Bardes et al., 2022) introduces a regularization term that 

encourages the network to learn representations that are invariant to transformations of the 

input data, while also maintaining a high variance and low covariance. This is achieved by 

minimizing the variance of the representations, maximizing their invariance to 
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transformations, and minimizing the covariance between different dimensions of the 

representations. 

 

Figure 2.6 VICReg architecture (Bardes et al., 2022) 

As illustrated above, having set 𝐼, two sets of diverse sees 𝑋 and 𝑋’ are created, 

which are at that point encoded into representations 𝑌 and 𝑌’. The representations are sent to 

an expander, which produces the embeddings 𝑍 and 𝑍’. The separation between two 

embeddings from the same picture is minimized, the fluctuation of each embedding variable 

over bunches is kept to a minimum, and the variance between sets of inserting factors over 

clusters is pulled in to zero, decorrelating the factors from each other. 

During training, the VICReg algorithm uses a two-step process. First, it applies a 

series of transformations to the input data, and then it feeds these transformed inputs through 

a neural network to obtain a set of representations. The algorithm then computes the 

variance, invariance, and covariance of these representations and uses these values to 

compute a loss function, which it then minimizes. This process encourages the network to 

learn representations that are invariant to the transformations applied to the input data, while 

also ensuring that these representations have high variance and low covariance (Bardes et al., 

2022). 

The key innovation of the VICReg (Bardes et al., 2022) is its use of a regularization 

term that encourages the network to learn representations that are invariant to 

transformations of the input data, while also maintaining a high variance and low covariance. 

This approach allows the network to learn more robust and generalizable representations, 

which can improve performance on downstream tasks. 

In summary, VICREG is a promising regularization technique for self-supervised 

learning that can improve the quality of learned representations by enforcing variance, 

invariance, and covariance constraints. The method has shown state-of-the-art performance 
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on several benchmarks and can be easily integrated into existing self-supervised learning 

frameworks. 

2.4  SSL Compared to Other Approaches 

SimCLR was evaluated across 12 natural image datasets. When fine-tuned, their self-

supervised model outperformed the supervised baseline on five datasets, while the 

supervised baseline was superior on only 2 datasets. On the remaining five datasets, the 

models were statistically tied. In the semi-supervised setting, SimCLR was better than other 

cutting-edge semi-supervised methods with both 1% and 10% of the labels.  

MoCo has been compared with ImageNet supervised pre-training, followed by fine-

tuning on various tasks. The gaps to the ImageNet supervised pre-training counterpart were 

at least +0.5%. This suggests that MoCo has outperformed supervised pre-training in certain 

tasks like instance segmentation, pose estimation, and keypoint detection. It's worth noting 

that MoCo's improvement from ImageNet is noticeable, but relatively small.  

BYOL has demonstrated superior performance compared to supervised baselines. 

This is true even when the baselines utilize more data or deeper models. When comparing 

BYOL to supervised ImageNet (Supervised-IN) across multiple benchmarks, BYOL 

outperforms the Supervised-IN baseline on 7 out of 12 benchmarks, while showing only 

marginally lower performance on the remaining 5.  

SimSiam, has been found to yield superior results across various tasks. These tasks 

include VOC 07 detection: a Faster R-CNN (Ren et al., 2015) model was fine-tuned on the 

VOC 2007 trainval dataset and evaluated on the VOC 2007 test dataset; COCO detection 

and instance segmentation: a Mask R-CNN (He et al., 2017) model was fine-tuned on the 

COCO 2017 train dataset and evaluated on the COCO 2017 validation dataset. In all these 

tasks, SimSiam outperformed all other methods including supervised ones in 𝐴𝑃50, 𝐴𝑃75. 

According to Caron et al. (2020), the SwAV algorithm shows great performance 

compared to supervised pretraining on various transfer tasks such as linear classification 

tasks on datasets like VOC07 (Everingham et al., 2009), Places205 (Zhou et al., 2014) and 

iNaturalist2018 (Van Horn et al., 2018). Moreover, SwAV paper was the first self-

supervised method to outperform ImageNet supervised features on all transfer tasks and 

datasets, including object detection using Faster R-CNN (Ren et al., 2015) and DETR 

(Carion et al., 2020). Thus, SwAV demonstrates remarkable performance compared to 

supervised pretraining in these transfer scenarios. 
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VICReg had a good performance across various benchmarks. In linear classification 

tasks, VICReg outperforms the supervised method on mAP for VOC07 (Everingham et al., 

2009), Places205 (Zhou et al., 2014) and iNat18 (Van Horn et al., 2018) datasets, except for 

a slight (+0.3%) margin on iNat18. For object detection on the VOC07+12 dataset plus 

another object detection and instance segmentation with Mask R-CNN model with an FPN 

backbone (He et al., 2017) on the COCO dataset (Lin et al., 2014), it outperforms other 

methods, improving performance by approximately 1%.  

2.5 Summary 

This chapter reviews self-supervised learning (SSL), especially its use in vehicle-type 

detection for autonomous driving. It traces the evolution of vehicle detection, from early to 

deep learning approaches, and the rise of SSL. It explores SSL paradigms in object 

detection, including contrastive techniques like SimCLR, MoCo, SwAV, and non-

contrastive methods like BYOL, SimSiam, and VICReg. The chapter compares these SSL 

methods with supervised and semi-supervised approaches and discusses the CIFAR-10 and 

ImageNet ILSVRC-2012 datasets used in the thesis. 
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CHAPTER 3: METHODOLOGY 

3.1 Introduction 

This study aims to evaluate the effectiveness of self-supervised learning for vehicle-

type detection in autonomous driving. The research questions focus on comparing self-

supervised learning to other approaches, identifying key factors influencing its effectiveness, 

and assessing its ability to handle the domain gap and improve the generalization capabilities 

of deep learning models. This chapter’s methodology can be summarized in the following 

diagram: 

 

Figure 3.1 General workflow 

The chapter is structured to provide a comprehensive understanding of the research 

process. It begins with a description of the dataset and preprocessing steps, followed by a 

detailed explanation of the self-supervised learning methods used. A supervised learning 

baseline is also established for comparison. The chapter then delves into the training 

procedure, evaluation, and experimental setup. The chapter concludes with a summary of the 

methodology used in the study. 

3.2 Dataset and Preprocessing 

This section discusses which datasets were used in this study, how they were pre-

processed, augmented, and formatted for pre-training and Transfer learning. 

3.2.1 Description of Dataset 

The datasets used in this study are a subset of the ImageNet Large Scale Visual 

Recognition Challenge 2012 (ILSVRC2012) dataset (Russakovsky et al., 2015) and CIFAR-
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10 (Krizhevsky, 2009). However, most of the training and preprocessing was done on 

ImageNet. 

The CIFAR-10 dataset is a collection of 60,000 32x32 coloured images in 10 classes, 

with 6,000 images per class. It is divided into 50,000 training images and 10,000 testing 

images. The dataset is widely used in machine learning and computer vision research. 

Although CIFAR-10 is less diverse and smaller in scale than ImageNet, its simplicity can be 

advantageous for initial model testing and rapid prototyping. The ten classes in CIFAR-10 

are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck (Krizhevsky & 

Hinton, 2009). 

The ImageNet ILSVRC-2012 (Russakovsky et al., 2015) dataset is labelled with a 

single object class out of the 1000 possible classes, and the dataset is divided into several 

parts: a training set with around 1.28 million images with 732-1300 images per class, and 

bounding box annotated images ranging from 91-1268 per class, a validation set with 50,000 

images, and a test set with 100,000 images (Russakovsky et al., 2015).  

For the purpose of this study, we focus on vehicle-related classes in ImageNet. 

ImageNet's comprehensive dataset splits wheeled vehicles into ten car classes, five truck 

classes, and five van classes, making it a suitable choice for the task of vehicle-type 

detection in autonomous driving. These classes cover a wide range of vehicle types, which is 

crucial for measuring the ability to distinguish different types of vehicles in various 

autonomous driving scenarios. Two sets of five vehicles were used in this study – as shown 

below – the first set included a firetruck, golf cart, pickup truck, police van, and school bus, 

while the second set had an ambulance, cab, dustcart, jeep, and minivan. 

 

Figure 3.2 ImageNet Subset_I classes. 
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Figure 3.3 ImageNet Subset_II classes  

Both datasets, despite their differences, contribute to the study by providing a range 

of data complexities. This allows for a more comprehensive evaluation of the self-supervised 

learning methods under different conditions, especially ImageNet which aligns with the goal 

of evaluating self-supervised learning for vehicle-type detection. It provides a challenging 

and realistic benchmark for assessing the effectiveness of self-supervised learning methods. 

3.2.2 Preprocessing for Pretraining 

Given the organized nature of the CIFAR10 32x32 dataset, the preprocessing stage 

primarily involves splitting the data into training and validation sets (saved for linear 

evaluation). It's crucial to ensure that the split is stratified, meaning that each class is equally 

represented in both the training and validation sets. This stratified split helps maintain the 

balance of classes, preventing the model from becoming biased towards any particular class. 

It also ensures that the model's performance is evaluated fairly across all classes during the 

validation process. 

The dataset underwent a rigorous preprocessing phase to ensure its quality and 

relevance. Initially, the images were programmatically and manually cleaned to remove any 

irrelevant images. This resulted in the exclusion of at least 10% of images from each class 

due to factors such as mislabeling, irrelevance, or ambiguity. Finally, the dataset was split in 

the same fashion as the CIFAR10. 

To standardize the input for our models, all images were resized to a uniform size of 

64x64 pixels. This size was chosen to balance computational efficiency and capability to 

preserve enough details for effective vehicle-type detection. In addition, images with a 

bounding box area ratio of 10% or less were excluded as well. 
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3.2.3 Data Augmentation  

3.2.3.1 SSL Augmentation 

In the process of pretraining, this study used SimCLR and SimSiam self-supervised 

learning methods, The data augmentations applied were similar to those used in their 

respective original papers. Data augmentation is a vital component of self-supervised 

learning, as it provides a source of variability and helps the model learn robust and invariant 

features.  

For SimCLR, the augmentations included random cropping followed by resizing 

back to the original size, random horizontal flipping, colour distortions, and Gaussian blur. 

SimSiam also utilized a similar set of augmentations, as suggested in its original paper. 

These augmentations provide a rich and diverse set of training examples for the models to 

learn from.  

 

Figure 3.4 Two augmented views of the same image 

By closely following the augmentation strategies used in the original papers, we 

aimed to replicate the conditions under which these self-supervised learning methods have 

been shown to perform well. This allows for a fair comparison of their performance in the 

context of vehicle-type detection in autonomous driving. 

3.2.3.2 Additional Augmentation 

To increase the training samples for the five classes, we utilized data augmentation 

techniques to generate additional training images. This was accomplished using the data 

generator function from the Keras library, which allows for real-time data augmentation.  

The generated images – 26,000 images out of 6,500 – underwent a series of 

transformations to obtain more data These included rotation of the image by up to 40 

degrees, shifting the image width and height by up to 20%, applying random shear 
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transformations with a shear intensity of 0.2, random zooming by 20%, and random flipping. 

These augmentations not only increased the size of the training set but also introduced a 

variety of transformations that the models need to be invariant to, thereby improving their 

ability to generalize to unseen data. 

3.3 Models Implementation 

The study utilized two self-supervised learning methods: SimSiam and SimCLR. 

SimSiam is a non-contrastive method that doesn't employ negative samples. Instead, it 

focuses on learning similar representations for two augmented views of the same image 

(Chen & He 2021). On the other hand, SimCLR is a contrastive method that makes use of 

negative examples to learn representations. It aims to maximize agreement between 

differently augmented views of the same image while minimizing agreement with negative 

samples (Chen et al., 2020). In the following subsections, detailed settings of both models 

shall be discussed. 

3.3.1 Backbone, Input, Batch Sizes 

Both methods used specific architectures based on the ResNet 50 model (He et al., 

2015), a widely used deep residual network in computer vision tasks. The ResNet 50 has 

impressive performance on the ImageNet dataset, which was used for pretraining.  

All Baseline settings were replicated, but certain modifications were made to adapt 

them to the requirements of this study. To ensure consistency in training both methods 

employed a unified batch size of 256; a higher batch size was unfeasible due to resource 

constraints. 

Considering the small size of the images (64x64), the ResNet-18 architecture (see 

figures below) was used instead of ResNet-50. This decision was based on observations that 

deeper architectures like ResNet 50 may not perform as well on small images due to 

excessive downsampling and loss of important details (He et al., 2015). By utilizing ResNet 

18. With a shallower architecture, the study aimed to preserve more spatial information and 

potentially enhance performance in vehicle-type detection tasks. 
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Figure 3.5 SimSiam Model architecture 

 

Figure 3.6 SimCLR Model architecture 

3.3.2 Loss Function 

SimCLR uses a contrastive loss function, specifically the NT-Xent (Normalized 

Temperature-Scaled Cross Entropy) loss. This function encourages the model to maximize 

agreement between differently augmented views of the same image while minimizing 

agreement with negative samples. 

The NT-Xent loss for a positive pair of examples (i.e., two augmented views of the 

same image) is given by: 

L𝑖,𝑗   =   −  𝑙𝑜𝑔 
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗) / 𝜏)

Σk=1
2N  1[𝑘≠𝑖]𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖,𝑧𝑘)/𝜏)

                                        (1) 
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Where: 

o 𝑧_𝑖 and 𝑧_𝑗 are the representations of two augmented views of the same image 

(i.e., a positive pair), produced by the projection head of the model. 

o 𝜏 is a temperature parameter that controls the concentration of the 

distribution. A higher value of 𝜏 produces a softer distribution (i.e., the 

probabilities are more uniform), while a lower value produces a harder 

distribution (i.e., the probabilities are more concentrated on a few examples). 

o The sum in the denominator is over all pairs of examples in the batch (of size 

2𝑁), and 1_{[𝑘 ≠ 𝑖]} is an indicator function that is 1 when 𝑘 ≠ 𝑖 and 0 

otherwise. This sum computes the normalization term for the softmax 

function, which ensures that the probabilities sum to 1. 

o 𝑠𝑖𝑚(. ,  . ) is the cosine similarity function, which measures the cosine of the 

angle between two vectors. It is defined as: 

sim(𝑢, 𝑣) =
𝑢𝑇⋅𝑣

(||𝑢|| ||𝑣||)
                                        (2) 

where 𝑢 and 𝑣 are vectors, 𝑢𝑇 is the transpose of 𝑢, this equation denotes the dot 

product between 𝐿2 normalized 𝑢 and 𝑣 . The goal of the NT-Xent loss is to make the 

representations of positive pairs more similar (i.e., increase their cosine similarity) and the 

representations of negative pairs less similar (i.e., decrease their cosine similarity). This is 

achieved by minimizing the NT-Xent loss during training. 

SimSiam loss, on the other hand, uses a symmetric negative cosine similarity loss. 

The goal of this loss function is to maximize the similarity between two differently 

augmented views of the same image. When sampling an input image 𝑥 from the dataset upon 

which we create two augmented views, let’s call them 𝑥1 and 𝑥2. Both views are passed to 

the encoder model 𝑓 which will output 𝑧1 and 𝑧2, the representations of 𝑥1 and 

𝑥2respectively.  

 

 

The representations are then passed to the prediction MLP ℎ that will transform the 

representation of one view and matches it to the other view’s representation. For example, 
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taking the representation 𝑧1 and transforms it to 𝑝1 = ℎ(𝑧1) and then compare it to 𝑧2. This 

distance is minimized using the following loss function: 

𝐿 = −
1

2
(𝐷(𝑝1, 𝑧2) + 𝐷(𝑝2, 𝑧1))                               (3) 

Where 𝐷(𝑝1, 𝑧2) is the negative cosine similarity function, defined as: 

𝐷(𝑝1, 𝑧2) = −
𝑝1

||𝑝1||2
⋅

𝑧2

||𝑧2||2
                            (4) 

||. || denotes the 𝐿2 norm. The loss function is minimized when the cosine similarity 

of (𝑝1, 𝑧2), and (𝑝2, 𝑧1) is maximized. 𝑧2 is treated as a constant by using gradient-stop 

(detaching the variable from the graph): 

𝐿 =
1

2
𝐷(𝑝1, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑(𝑧2)) +

1

2
𝐷(𝑝2, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑(𝑧1))                (5) 

Here the encoder on 𝑥2 receives no gradient from 𝑧2 in the first term, but it receives 

gradients from 𝑝2 in the second term (and vice versa for 𝑥1). 

3.3.3 Optimizer 

SimCLR uses the LARS (Layer-wise Adaptive Rate Scaling) optimizer (You et al., 

2017). LARS is a learning rate policy that computes individual learning rates for each layer 

of the model. It's designed to improve the performance and stability of large-scale and 

distributed training. The update rule for LARS is as follows: 

1. Compute the local learning rate for each layer: 

𝜂𝑙   =  𝜂 
|𝑤𝑙|

|∇ 𝐿(𝑤𝑙)| + 𝛽 |𝑤𝑙|
                  (6) 

   Here, ( η) is the global learning rate, (𝑤𝑙) are the weights of layer ( 𝑙 ), (∇𝐿(𝑤𝑙)) is 

the gradient of the loss function with respect to and the weights of layer ( 𝑙 ), and ( β) is a 

weight decay term. 

 

2. Update the weights of each layer: 
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𝑤𝑙
𝑡+1 = 𝑤𝑙

𝑡 − 𝜂𝑙 × (∇𝐿(𝑤𝑙
𝑡) + 𝛽 × 𝑤𝑙

𝑡)                  (7) 

   Here, (𝑤𝑙
𝑡) are the weights of layer ( l ) at time step ( 𝑡 ), and (∇𝐿(𝑤𝑙

𝑡)) is the 

gradient of the loss function with respect to the weights of layer ( 𝑙 ) at time step ( 𝑡 ). 

This optimizer allows each layer to have a different learning rate, which can help to 

stabilize the training process and potentially improve the final performance of the model. 

3.3.4 Projection Head 

In SimCLR, the projection head is a 2-layer MLP that maps the output of the base 

encoder (e.g., a ResNet) to a space where the contrastive loss is applied. The purpose of the 

projection head is to project the representations to a 128-dimensional latent space where they 

are more suitable for contrastive learning. The base encoder ℎ(. ) maps an input image 𝑥 to a 

representation vector ℎ =  ℎ(𝑥). Then the projection head g(.) maps the representation h to a 

vector 𝑧 =  𝑔(ℎ). 

Similarly in SimSiam, there is a projection head but with a 3-layer MLP that maps 

the output of the backbone network to a 2048-dimensional latent space where the loss 

function is applied. Its output function has no ReLU.  

3.3.5 Predictor (in SimSiam) 

The prediction head is another  2-layer MLP that is used to predict the output of the 

projection head of the other view of the same image. If we denote the prediction head as 

ℎ(. ), the output 𝑝 of the prediction head for an input image 𝑥 can be represented as: 

    𝑝  =  ℎ (𝑔(𝑓(𝑥)))                      (8) 

   Here, 𝑔(𝑓(𝑥)) is the output of the projection head, and `h(.)` maps this output to 

another space where the loss is computed. 

The loss function in SimSiam is then computed as the negative cosine similarity 

between 𝑧 and 𝑝 for two different views of the same image. This encourages the model to 

learn representations such that the output of the prediction head for one view is similar to the 

output of the projection head for the other view. 
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3.4 Pretraining Procedure 

The pretraining procedure followed the guidelines provided in the original SimCLR 

and SimSiam papers. Both methods were pretrained using a mutual batch size of 256. This 

batch size was chosen as it was used in both papers, ensuring a fair comparison between the 

two methods. The pretraining was run for 100 epochs, and other hyperparameters, such as 

the learning rate, weight decay, and temperature parameter (for SimCLR), were kept similar 

to the values recommended in their respective papers. This was done to adhere as closely as 

possible to the original methods, and to ensure that any differences in performance could be 

attributed to the methods themselves, rather than differences in the training setup. 

When using ImageNet data, the pretraining procedure was set up on a domain-

specific subset of ImageNet, referred to as “ImageNet_Subset_I”. Choosing domain-specific 

pretraining can give substantial and statistically significant performance gains and lead to 

better results (Li et al., 2022 ; Zheng et al., 2021). This subset was carefully selected to align 

with the specific task of vehicle-type detection in autonomous driving scenarios. 

By following this pretraining procedure, the study aimed to provide a fair and 

rigorous comparison of the performance of SimCLR and SimSiam for the task of vehicle-

type detection in autonomous driving scenarios. 

3.5 Linear Evaluation 

After pretraining the models in this study, i.e., SimCLR and SimSiam, the parameters 

are fixed, meaning that their weights are not updated during the subsequent training phase. 

Instead, a linear layer is added on top of this frozen backbone, and only the weights of this 

linear layer are trained. This setup allows us to evaluate the quality of the representations 

learned by the SSL models during the pretraining phase. If these representations are good, 

then a simple linear classifier should be able to use them to achieve good performance on the 

vehicle-type detection task. 

This approach is compared with a supervised model of ResNet18 trained in a 

supervised manner, followed by a simple linear layer. This comparison allows us to assess 

the effectiveness of the self-supervised pretraining approach relative to a more traditional 

supervised learning approach. 
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3.6 Object Detection Preprocessing 

Following the pretrained model, the image size of 64x64 was maintained. In addition, 

images with a tiny bounding box area ratio were excluded as well. The process of extracting 

labels and bounding boxes from the .xml files was applied through a custom script to parse 

these .xml files and extract the necessary information. 

However, there was a discrepancy between the number of annotations and the 

number of images per class, with the number of annotations ranging from 91 to 1268, 

compared to 732 to 1300 images per class. This discrepancy indicates that not all images had 

corresponding annotations, which decreased the data size to half and could potentially hinder 

the training of the model. 

To address this issue, data augmentation techniques were employed to generate more 

annotated data. These techniques included random transformations such as HSV, horizontal 

flipping, scaling, translation, Rotation, and shear, which can create new, varied examples 

from the existing images. The bounding boxes were also adjusted accordingly to match the 

transformations applied to the images. 

 

Figure 3.7 Augmented images with their annotations 

This resultant dataset is then used to train the SSL model consisting of a ResNet18 

backbone followed by two heads: one for classification and one for regression. This 

approach is compared with a supervised model of ResNet18, this comparison allows us to 

assess the effectiveness of the self-supervised pretraining approach relative to a more 

traditional supervised learning approach. 
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3.7 Evaluation Metrics 

In the study, different evaluation metrics are used at different stages to assess the 

performance of the models: 

3.7.1 Pretraining Metrics 

In the Pretraining stage, the metrics are used to monitor their performance: 

➢ Loss: a function that the models are trying to minimize during training, which 

its formula was discussed earlier 

➢ Projector Loss: computed in the projection space of the model. It's specific to 

the self-supervised learning methods used in this study. 

➢ Projector standard deviation: This measures the standard deviation of the 

outputs in the projection space. It provides insight into the diversity of the 

learned representations. 

➢ Predictor standard deviation (for SimSiam): This measures the standard 

deviation of the outputs in the prediction space. It's specific to SimSiam and 

provides insight into the diversity of the learned representations. 

3.7.2 Classification Metrics 

As for Classification, the following metrics are used to evaluate its performance: 

➢ Categorical cross-entropy: This loss is used in multi-class classification tasks. 

The categorical cross-entropy loss for a single instance is calculated as follows:  

𝐿 = − ∑ 𝑦𝑖
𝐶
𝑖=1 log(𝑦�̂�)                    (9) 

Here, 𝐿 is the categorical cross-entropy loss, 𝐶 is the number of classes. 𝑦𝑖 is the true 

label for class 𝑖. 𝑦�̂� is the model's predicted probability that the instance belongs to class 𝑖.  

➢ Accuracy: This measures the proportion of correctly classified instances, 

calculated as follows: 
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 Accuracy =
Number of Correct Predictions

Total Number of Predictions
                           (10) 

➢ Precision, Recall, F1 Score: These metrics provide a more detailed view of the 

classifier's performance, taking into account both false positives and false 

negatives. Their respective formulas are: 

Precision =
True Positives

True Positives+False Positives
                                (11) 

Recall =
True Positives

True Positives+False Negatives
                            (12) 

F1 Score = 2 ×
Precision×Recall

Precision+Recall
                            (13) 

➢ AUC-ROC: This is the area under the receiver operating characteristic curve. It 

measures the classifier's ability to distinguish between positive and negative 

instances, regardless of the classification threshold it is calculated as the area 

under the curve formed by plotting the true positive rate (TPR) against the false 

positive rate (FPR) at various threshold settings: 

True Positive Rate (TPR) =
True Positives

True Positives+False Negatives
                         (14) 

False Positive Rate (FPR) =
False Positives

False Positives+True Negatives
                          (15) 

3.7.3 Object Detection Metrics 

In Object Detection, the following metrics are used: 

➢ Mean Squared Error (MSE): is a common loss function used for regression 

tasks. It measures the average squared difference between the actual and 

predicted values. The formula for MSE is: 

MSE =
1

𝑛
∑ (𝑌𝑖 − 𝑌�̂�)

2𝑛
𝑖=1                              (16) 

Here, 𝑛 is the number of samples, 𝑌𝑖 is the actual value for the 𝑖-th sample, and 𝑌�̂� is 

the predicted value for the 𝑖-th sample. The squaring operation ensures all differences are 

positive and that larger differences are penalized more. The sum of these squared differences 

is divided by the number of samples to get the average. 
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➢ Intersection over Union (IoU): This measures the overlap between the predicted 

bounding boxes and the true bounding boxes. It's a common metric for evaluating 

the performance of object detection models. 

IoU =
Area of Overlap(𝐵𝐵pred,𝐵𝐵true)

Area of Union(𝐵𝐵pred,𝐵𝐵true)
                            (17) 

➢ mean Average Precision (mAP): This is a summary metric for object detection 

models. It computes the average precision (AP) for each class and then takes the 

mean over all classes. 

AP =
1

11
∑ max�̃�:�̃�≥𝑟𝑝(�̃�)𝑟∈{0.0,0.1,…,1.0}                            (18) 

Here, 𝑟 is the recall, p is the precision, and the max operation is over all recall levels 

�̃� greater than or equal to 𝑟. The mAP is then the mean of the AP values for all classes: 

mAP =
1

Number of Classes
∑ APclass

Number of Classes
class=1                           (19) 

In the context of vehicle-type detection in autonomous driving, these metrics provide 

a comprehensive evaluation of the models' performance. Here's a table summarizing the 

stages and their corresponding metrics: 

Stage   Metrics 

Pretraining Loss, Projector Loss, Projector standard deviation, Predictor 

standard deviation (for SimSiam) 

Classification Loss, Accuracy, Precision, Recall, F1 Score, AUC-ROC 

Object Detection Loss, MSE, IoU, mean Average Precision 

3.8 Experimental Setup 

The experiments were conducted at the Deggendorf Institute of Technology's Deep 

Learning Lab, utilizing AI workstations with the following specifications: 

➢ CPU: Intel Xenon W-1390P, 8 cores and 16MB cache, with 3.5 - 5.3 GHz. 

➢ RAM: 128GB DDR4-UDIMM-ECC-RAM, divided across four 32GB modules. 
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➢ SSD: Two 2TB SSDs for fast and reliable data storage. 

➢ GPU: NVIDIA RTX A5000 with 24GB memory, based on the latest Ampere 

architecture, offering up to 10 times faster compared to the previous generation. 

➢ Operating System: Ubuntu 20.04, a robust operating system for AI tasks. 

3.9 Conclusion 

This chapter starts with dataset preparation and preprocessing, including image 

cleaning, resizing, and data augmentation. It then describes the self-supervised learning 

methods, SimCLR and SimSiam, detailing their architectures and hyperparameters. The 

pretraining procedure on a domain-specific subset of ImageNet is also discussed. Evaluation 

metrics for pretraining, classification, and object detection are explained. The chapter wraps 

up with the experimental setup, detailing the hardware and software used. This methodology 

provides a solid basis for assessing self-supervised learning in vehicle-type detection for 

autonomous driving. 
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CHAPTER 4: RESULTS 

4.1 Introduction 

The purpose of this chapter is to present the results obtained from our 

evaluation, which aimed to assess the effectiveness of self-supervised learning 

methods in addressing the domain gap and improving vehicle-type detection 

performance. We conducted extensive experiments using benchmark datasets and 

evaluated the performance of self-supervised learning models against traditional 

supervised learning approaches. The findings presented here shed light on the 

potential of self-supervised learning techniques and their practical implications in the 

field of autonomous driving. 

The results presented in this chapter contribute to the existing knowledge in 

the field of autonomous driving and provide valuable insights into the potential 

benefits of self-supervised learning for vehicle-type detection. These findings have 

implications for the development of more advanced and reliable autonomous driving 

systems, ultimately aiming to enhance safety and efficiency on the roads. 

4.2 Pretraining 

4.2.1 High-level Overview 

In the pretraining stage of my thesis, two self-supervised learning methods, SimSiam 

and SimCLR, were evaluated through 100 epochs of unsupervised training and their losses 

were monitored and recorded. 

Method Loss         Projector standard 

deviation 

Projector loss Predictor standard 

deviation 

SimSiam 0.1703 0.0435 0.0852 0.0432 

SimCLR 1.3249 0.0865 - - 

Table 4.1 Pretraining Metrics 
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The table above shows that SimSiam model achieved a loss of 0.1703, which is 

significantly lower than the loss of 1.3249 observed for the SimCLR model. This suggests 

that the SimSiam model was more effective at learning representations that align with the 

self-supervised learning objective during pretraining. The projector standard deviation for 

SimSiam was slightly better than SimCLR. The projector loss and predictor standard 

deviation for SimSiam was also reported in the table. The SimCLR model does not have a 

predictor, so these values are not applicable. 

4.2.2 Detailed Visualization 

This section provides an in-depth examination of the pretraining process, the first 

phase in the self-supervised learning pipeline, demonstrating elaborative insights on the 

performance of the SimSiam and SimCLR models during this phase. 

 

Figure 4.1 SimSiam pretraining 
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Figure 4.2 SimCLR pretraining 

In all the above graphs, the shaded areas represent the range of values obtained from 

five cross-validation trials, while the actual curve represents the mean value. This 

representation allows for a visual assessment of the variability in the model’s performance 

across different trials. 

The SimSiam model's loss curve shows an initial period of instability during the first 

20 epochs. This instability could be attributed to the model adjusting to the data and learning 

the initial representations. However, after this initial period, the SimSiam model's loss curve 

becomes much smoother and eventually results in a lower loss than the SimCLR model. This 

implies that despite the initial instability, the SimSiam model is able to learn effective 

representations that minimize the loss. 

The projector loss curve for the SimSiam model follows a similar trend to the model 

loss curve, but the losses are almost halved. This indicates that the projector, which maps the 

representations to a lower-dimensional space, is able to maintain the essential information 

while reducing the dimensionality. 

The graphs showing the standard deviation of the activations of the final layer in the 

projector and predictor models provide insights into the diversity of the learned 

representations. The above standard deviations reach value ≈ 
1

√𝑑
 (where 𝑑 is the output 

dimension) illustrates that there is no output collapse, indicating more diverse 

representations, disseminated on the hypersphere, which can potentially lead to better 

performance on the downstream tasks. 

 



39 
 

Although – at first glance – there is an indication that one model is better than the 

other, this does not necessarily mean that the quality of its representations is better, linear 

evaluation and transfer learning tasks would give more insights on each model’s 

performance. 

4.3 Linear Evaluation  

4.3.1 Evaluation Scores 

This section gives a high-level overview of the scores that each method has achieved 

in five cross-validated trials. 

 

Figure 4.3 Comparison of methods (mean of 5 trials) 

Method Loss         Accuracy Precision F1 score 

Supervised 1.2611  50.85% 73.51% 28.27% 

SimSiam 0.9122 66.88% 80.17% 65.34% 

SimCLR 0.6602 75.85% 83.69% 74.37% 

Table 4.2 Metrics comparison between methods 

The Supervised Learning method – using Resnet18 – showed the highest loss and the 

lowest accuracy among the three methods. This suggests that it struggled to capture the 

complexity of the vehicle-type detection task. Its precision was relatively high, indicating 

that when it did make correct predictions, they were often reliable. However, the low F1 

score suggests that the model had difficulty in achieving a balance between precision and 

recall. 
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On the other hand, the SimSiam model showed a significant improvement over the 

Supervised Learning method. Its accuracy, precision, and F1 score were all substantially 

higher than those of the Supervised Learning method, demonstrating its strength in both 

identifying the correct classes and balancing precision and recall. However, during the linear 

evaluation stage, SimSiam was outperformed by SimCLR despite its lower pretraining loss. 

This could mean that representations might not have been generalized as well.  

The SimCLR model outperformed both the Supervised Learning and SimSiam 

methods. Despite having a higher loss during pretraining, it achieved the lowest loss in the 

vehicle-type detection task, suggesting that the representations it learned were highly 

effective. It also achieved the highest accuracy, precision, and F1 score, indicating its 

superior performance in classifying vehicle types and its ability to balance precision and 

recall. 

4.3.2 Detailed Visualization 

This section provides an in-depth examination of the linear evaluation process, a 

crucial phase that follows pretraining in the self-supervised learning pipeline, offering a 

more granular perspective on the performance of the SimSiam and SimCLR models during 

this phase. 

The below two graphs depict the progression of the linear evaluation process for both 

models. Again, the shaded areas in these graphs represent the range of values obtained from 

five cross-validation trials, while the actual curve denotes the mean value. This 

representation provides a visual understanding of the variability in the models' performance 

across different trials. 

 

Figure 4.4 SimSiam linear evaluation 
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Figure 4.5 SimCLR linear evaluation 

 

Figure 4.6 SSL methods evaluation 

The evaluation of the models included multiple trials to ensure the robustness of the 

results. A bar plot summarizing the average accuracy across five trials for each model is 

demonstrated below, the error bar denotes the standard deviation. This visualization offers a 

clear comparison of the overall performance of the Supervised Learning, SimSiam, and 

SimCLR methods.  

Interestingly, the SimCLR model's loss curve exhibits a degree of fluctuation 

throughout the entire training process, which contrasts with its behaviour during pretraining. 

Despite this fluctuation, SimCLR manages to achieve a lower loss than SimSiam by the end 

of the training process. This is evident in Figure B.3, where the green curve on the left 

(SimCLR) dips below the blue curve (SimSiam). Moreover, on the right side of the figure, 

SimCLR proves quick impressive results from the very beginning, outperforming SimSiam 
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in terms of accuracy, despite having a higher loss during the pretraining phase. This suggests 

that SimCLR's representations may be more robust or better suited to the downstream task. 

 

 

Figure 4.7 t-SNE features 

The study also dives into the t-SNE visualizations of the learned representations. t-

SNE (t-Distributed Stochastic Neighbor Embedding) is a dimensionality reduction approach 

that is particularly appropriate for the visualization of high-dimensional datasets. It works by 

estimating the likelihood that two data points in a high-dimensional space are neighbours 

and then selecting a low-dimensional embedding that produces a comparable distribution. t-

SNE is used to visualize the data points for the ImageNet_subset_I classes. Each point in the 

t-SNE plot corresponds to an image, and the spatial proximity of points reflects the similarity 

of their high-dimensional features. The classes’ features look somewhat distinct, but a 

notable part of the features are not that distant from each other, suggesting that the 

representation learned could be further improved. 

In conclusion, while the Supervised Learning method struggled with vehicle-type 

detection task as they are all subclasses of vehicles, both SimSiam and SimCLR showed 

strong performance, with SimCLR being the most effective. These results highlight the 

potential of self-supervised learning methods for complex tasks like vehicle-type detection. 

However, it's worth noting that the performance of these methods can be influenced by 

factors such as the complexity of the task, the quality of the training data, and the choice of 

hyperparameters. 
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4.4 Evaluation of Transfer Learning 

4.4.1 Transfer Learning Scores 

Here we compare all models on object detection on very similar vehicle types, more 

visualizations and insights in this section. The following graphs are comparisons between 

different methods in transfer learning averaged over five trials: 

 

Figure 4.8 Transfer learning accuracy comparison 

 

Figure 4.9 Transfer learning loss comparison (right: bounding box, left: classifier) 

The first graph, which presents the accuracy of the three methods, shows that the 

supervised method had the lowest accuracy, falling in the 40s range. This suggests that the 

supervised method was less effective at correctly classifying the vehicle types. SimSiam, a 

self-supervised learning method, outperformed the supervised method, indicating that it was 
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more successful in learning useful representations for the task. However, SimCLR had the 

highest accuracy, demonstrating its superior performance in the vehicle-type detection task. 

The second graph presents two types of loss: classification loss and bounding box 

mean squared error (MSE). In terms of classification loss, the supervised method had the 

highest loss, followed by SimSiam, and then SimCLR. This suggests that SimCLR was most 

effective at minimizing classification errors, while the supervised method struggled the most. 

The right side of the second graph shows the bounding box MSE, which is a measure 

of the model’s performance in predicting the location of the vehicles. Interestingly, SimCLR, 

which had the highest accuracy and lowest classification loss, had the highest bounding box 

MSE. This suggests that while SimCLR was effective at classifying the vehicles, it struggled 

with accurately predicting their locations. The supervised method had the lowest bounding 

box MSE, indicating that it was most successful at this aspect of the task. However, as the 

number of epochs increased, the difference in bounding box MSE between the supervised 

method and SimSiam diminished, implying that SimSiam was improving in its ability to 

predict vehicle locations over time. 

For further understanding of the methods’ performances, the table below provides 

further metrics to properly evaluate the vehicle-type detection task: 

Method accuracy precision recall  F1 score 𝑚𝐴𝑃50 

Supervised 41.2 % 43.36 % 39.27 % 39.09 % 46.86 % 

SimSiam 65.55 % 65.77 % 64.24 % 64.256 % 65.13%    

SimCLR 71.85 % 71.22 % 70.99 %  71.01 % 50.73 % 

Table 4.3 Object detection scores on test set 

The table above demonstrates comparisons among various metrics, in terms of 

accuracy, precision, recall, and F1 score, SimCLR outperformed both SimSiam and the 

supervised method. These metrics all measure different aspects of the model's ability to 

correctly classify instances, and SimCLR's superior performance suggests that it was most 

effective at this aspect of the task. SimSiam, while not as effective as SimCLR, still 

outperformed the supervised method, indicating the potential benefits of self-supervised 

learning methods for this task. 

However, the results for the 𝑚𝐴𝑃50 metric, which measures the model's performance 

at a stricter intersection over union (IoU) threshold, tell a different story. Here, SimSiam was 

the best performer, outperforming SimCLR by a significant margin of 15%. This suggests 
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that while SimCLR was better at classifying instances overall, SimSiam was more effective 

at precisely localizing the objects when a higher IoU threshold was required. This could be 

due to differences in the way the two models learn representations of the data, with SimSiam 

perhaps learning representations that are more effective for precise localization. 

The supervised method was the least effective across all metrics, further highlighting 

the potential advantages of self-supervised learning methods for this task. 

4.4.2 Detailed Transfer Learning Visualizations 

This section provides the specifics of the transfer learning process, a critical phase in 

the self-supervised learning pipeline, providing a more detailed view of the performance of 

the SimSiam and SimCLR models during this phase. 

 

Figure 4.10 ImageNet_subset_II class distribution 

A general analysis was done on the ImageNet_subset_II dataset, which includes five 

classes: jeep, cab, minivan, dustcart, and ambulance. The distribution of images across these 

classes is presented in Figure 4.10, a bar chart that provides a clear visual representation of 

the dataset's composition. The dataset underwent further analysis, with 173 bad files 

discarded, leaving 2248 valid image cases. These valid cases were then split into 1798 

training images and 238 test images. 
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Figure 4.11 SimSiam classification heatmap 

 

Figure 4.12 SimCLR classification heatmap 
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The two figures above show classification heatmap for the self-supervised learning 

methods. Heatmaps are a powerful tool for visualizing data and can provide valuable insights 

into the behaviour of each self-supervised learning method. In this case, the heatmap shows 

that SimCLR outperforms SimSiam in the classification task, indicating that SimCLR's 

learned representations may be more effective for this task. 

Although the two heatmaps seem visually indistinguishable, especially in the 

diagonals, SimSiam was having difficulties in precisely recognizing the “Jeep” class, making 

it lag in the overall precision score. It is obvious also that “Ambulance” class representations 

were the best learned by both models. 

 

Figure 4.13 Visualization of bounding boxes with different colors (blue: ground truth,  

green: predicted box with true label, red: predicted box with false label) 

After training the added classifier and regressor for object detection, a visualization 

of the detected objects has been performed on a few test images to understand how the 

system is performing as illustrated above. Additionally, Intersection over Union (IoU) is 

demonstrated on each image with its actual and predicted bounding box, showing a green 

box when the predicted class matches the actual and red when it doesn’t. 
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Figure 4.14 IoU values distribution comparison 

The distribution of Intersection over Union (IoU) values is also presented in the  

histogram above. IoU is a common metric for evaluating the quality of object detection 

models, as it measures the overlap between the predicted bounding box and the ground truth 

box. The histogram shows that SimSiam performs well in precisely locating the vehicle in 

the image, providing further evidence of the effectiveness of its learned representations. 

 

Figure 4.15 SimSiam AUC- ROC 
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Figure 4.16 SimCLR AUC- ROC 

Additionally, the Area Under the Receiver Operating Characteristic (AUC-ROC) 

curves for each self-supervised learning method was added, including the supervised 

ResNet18 method. The area under the curve (AUC) captures the performance of the model at 

various threshold levels and provides a comprehensive assessment of that performance in a 

single value. The AUC value ranges from 0 to 1, with 1 denoting perfect classification and 

0.5 denoting random guessing. The AUC-ROC curves provide insights into the models' 

behaviour, particularly their trade-off between sensitivity (true positive rate) and specificity 

(false positive rate).  

Here SimSiam average sensitivity was 0.66 while specificity was 0.91, on the other 

hand, SimCLR scored 0.72 sensitivity and 0.93 specificity. The blue dashed line represents 

the average curve for all classes. The classes from 0 to 4 are jeep, cab, minivan, dustcart, and 

ambulance respectively. From the area under the curve of each class, both SSL methods have 

the same area for the ambulance class, i.e., both methods are equally able to distinguish 

whether the class is an ambulance or no not. However, with regard to other classes, SimCLR 

is more capable. 
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4.5 Discussion of Results 

The comparison results revealed that self-supervised learning methods, specifically 

SimSiam and SimCLR, outperform traditional supervised methods in vehicle-type detection 

tasks. This is a significant finding as it underscores the potential of self-supervised learning 

in scenarios where labelled data is scarce or expensive to acquire, reaching very good results 

even when using 10% of training data compared to the supervised method. 

SimCLR, despite having a higher pretraining loss, excelled in classification metrics 

such as accuracy, precision, recall, and F1 score. This shows that SimCLR's contrastive 

learning approach is effective in learning robust representations that generalize well to the 

downstream task. However, when it comes to precise object localization, as measured by 

𝑚𝐴𝑃50, SimSiam outperforms SimCLR. This indicates that SimSiam's approach, which does 

not rely on negative pairs, might be more effective in learning representations that are useful 

for precise localization tasks.  

The previous sections provided a profound dive into the implementation details, 

shedding light on the intricacies of the methods and the nuances of their performance. The 

pretraining graphs elucidated the trajectory of learning for both SimSiam and SimCLR. 

While SimSiam was promising during pretraining, the true quality was tested during the 

linear evaluation phase.  

The t-SNE cluster visualizations offered a visual representation of the feature spaces 

learned by the models. These clusters provided insights into the separability and 

distinctiveness of the representations, with tighter, well-separated clusters indicating more 

discriminative features. The cluster visualizations indicated in general that both methods 

learned representations very well, which is a good indication that pretraining was making 

positive progress, but it’s hard to tell how good it is unless it is transferred to a downstream 

task – vehicle-type detection in this case – to comprehend their generalizability quality. 

The transfer learning graphs further expanded on the models' adaptability and 

showcased the versatility of the learned representations. The performance of both SimSiam 

and SimCLR in this phase was indicative of their potential, each one of them surpasses the 

other in certain areas.  SimSiam was outstanding in the localization task while SimCLR 

excelled in classification, this showcase that the quality of representations learned is more 

important than just reaching a lower pretraining loss faster.  
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The classification heatmap, on the other hand, provided a significant representation 

of the models' classification decisions, allowing for a broader understanding of areas where 

the model excels or falters. SimSiam was having difficulties in precisely recognizing the 

“Jeep” class, failing to accurately detect this class almost by 50%. In other classes, the 

difference was somehow tiny between the two SSL methods except for the Ambulance class 

where SimSiam has shown some competition and even surpassed SimCLR slightly, but this 

came with a penalty of making double false positive detections compared to SimCLR.  

Lastly, the AUC-ROC curve and classification heatmap provided a holistic view of 

the models' classification prowess. The AUC-ROC curve, highlighted the true positive rate 

against the false positive rate in which both methods are equally powerful when it comes to 

the detection of Ambulance class, but unlike SimSiam, SimCLR remained consistent and 

maintained a high score on the other classes. This curve supports the interpretation of 

Ambulance class from the heatmap, showing that despite the better sensitivity in Ambulance 

class of Simsiam over SimCLR (86% against 79%), the specificity was rather low with 85% 

against 92.8%.  

In light of these findings and the detailed insights from all statistics and 

visualizations, it's evident that self-supervised learning, especially the methods explored in 

this study, holds significant promise for the field of machine learning and autonomous 

driving. The pretraining process of the SSL models is a crucial step to push the technological 

advancement level further in this area, followed by a linear evaluation to validate the quality 

of pretraining. Moreover, to validate whether the model has a better generalizability and 

tackling the domain gap, transfer learning experiments are essential. Additionally, utilizing 

such SSL models for transfer learning to other implementations in autonomous driving 

scenarios besides vehicle-type detection would definitely boost the efficiency of that 

industry.  

Overall, those various metrics in vehicle-type detection are vital for spotting exactly 

the small areas where the SSL model fails or does not perform as expected. This would 

allow faster and more efficient troubleshooting processes whether it was in data preparation, 

pretraining, or fine-tuning phase, utilizing such technology to the maximum extent, and 

pushing the productivity upwards. 



52 
 

CHAPTER 5: CONCLUSION  

5.1 Summary 

The study embarked on a comprehensive exploration of self-supervised learning 

methods, particularly SimSiam and SimCLR, and their applicability in the realm of vehicle-

type detection for autonomous driving systems. The results from Chapter Four underscored 

the potential of these methods, with both outperforming traditional supervised learning in 

various metrics. 

These findings have significant implications for autonomous driving systems. 

Vehicle-type detection is a crucial component of these systems, contributing to safer and 

more efficient navigation. Knowing the type of vehicle can inform the autonomous system's 

decision-making process in several ways: 

1. Trajectory Planning: Different types of vehicles have different driving 

behaviours and characteristics. For instance, trucks typically move slower and 

have larger turning radii than smaller vehicles. By identifying the type of vehicle, 

the autonomous system can better predict its future positions and plan its 

trajectory accordingly. 

2. Traffic Flow Analysis: Understanding the composition of traffic, such as the 

proportion of cars, trucks, and motorcycles, can help the autonomous system 

anticipate the general flow of traffic and adjust its driving strategy. 

3. Priority Vehicles: Identifying priority vehicles like ambulances or fire trucks is 

crucial for autonomous driving systems. These vehicles have the right of way in 

all circumstances, and the system must be able to recognize them and yield 

appropriately. 

4. Safety Precautions: Certain types of vehicles, like trucks or buses, may require 

extra safety precautions due to their size and potential blind spots. Recognizing 

these vehicles can prompt the autonomous system to maintain a safe distance. 

Beyond vehicle-type detection, the self-supervised learning models and transfer 

learning approach used in this study could be applied to other object detection tasks within 

the autonomous driving context. For instance, they could be used for pedestrian detection, 

traffic sign recognition, or lane detection. The ability of these models to learn useful 
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representations from unlabelled data could be particularly valuable in these tasks, where 

obtaining large amounts of labelled data can be challenging.  

In conclusion, this study highlights the potential of self-supervised learning methods 

do not only validate the efficacy of these methods, but also pave the way for their adoption 

in broader applications within the autonomous driving ecosystem. 

5.2 Challenges 

The journey to the successful outcomes of this study was not a straightforward path. 

It was marked by numerous challenges that required innovative problem-solving and 

perseverance. These obstacles were not only integral to the research process but also 

provided valuable insights that enriched the study. Some of the key challenges encountered 

during the study are included in the table below: 

Challenge Description How it was tackled 

Dataset Selecting a dataset was a tough task as 

available datasets do not have the 

luxury of subdividing vehicles into 

various classes 

Through rigorous inspection, 

ImageNet was selected, it has 

various 20 vehicle classes 

while others barely have 3 

Data pre-

processing 

Data were not very clean, it contained 

irrelevant, mislabelled images, tiny 

bounding boxes, and notable class 

imbalance 

By handling inconsistent data 

programmatically and adding 

augmentation when needed 

to compensate for deficit 

SSL Model  

tuning 

Applying hyperparameters did not 

always yield optimal performance, 

downgrading data size and resolution 

due to computational restrictions has 

influenced performance 

Through various 

experiments, methods were 

slightly adjusted to ensure the 

best possible performance for 

such a customized dataset 

Deep 

learning lab 

devices 

All images of Ubuntu had problems in 

verifying CUDA installations, 

preventing GPU utilization in training 

A clean image was set up 

from scratch with admin 

rights to properly use GPU 
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Transfer 

learning 

performance 

In the pursuit of better results, data 

augmentation and grid search were 

used to get the best results, but the 

outcome was not good 

Data augmentation was 

removed because the actual 

bounding boxes were not 

perfected aligned, and 

augmenting bounding box 

has additional error margin, 

this confuses the model 

instead of helping it 

5.3 Limitations  

Despite the significant findings and contributions of this study, it's important to 

acknowledge the limitations that may have influenced the outcomes and our understanding 

of the results. These limitations offer opportunities for future research to build upon this 

work. Some of the key limitations include: 

1. Limited Dataset: While this ImageNet subset was carefully chosen and 

preprocessed, it may not fully represent the diversity and complexity of real-

world scenarios in autonomous driving. This limitation could impact the 

generalizability of the findings since the number of images per class was low, and 

bounding box annotations were even lower. 

2. Hyperparameter Selection: Although authors have put effort to optimize the 

hyperparameters of SSL models, there is no standardized way to select the best 

hyperparameters based on dataset quantity and quality, except for some rare 

occasions.  

3. Computational Constraints: Despite the use of high-performance workstations, 

computational resources were still a very limiting factor. More extensive 

experiments, such as larger models or longer training times, might have been 

possible with more computational resources. 

These limitations, while constraining, provide valuable directions for future research. 

By addressing these limitations, future studies can further advance our understanding of self-

supervised learning and its applications in autonomous driving. 
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5.4 Recommendations 

The findings of this study, while promising, also highlight areas for further 

exploration and improvement. The following recommendations are proposed for future work 

in this area: 

1. Expanding the Dataset: To enhance the generalizability of the models, future 

studies could incorporate more diverse and complex datasets that better represent 

real-world scenarios in autonomous driving. Or create their own dataset for 

specific domain studies. 

2. Exploring Other Models: While SimSiam and SimCLR were the focus of this 

study, many other SSL models could be explored in future research. These 

models could potentially yield better performance. 

3. Leveraging More Computational Resources: If more computational resources 

are available, future studies could explore larger models, longer training times, or 

more extensive hyperparameter tuning, which could lead to improved results. 

4. Incorporating Additional Evaluation Metrics: Future research could incorporate 

additional evaluation metrics to provide a more comprehensive assessment of the 

models' performance. 

5. Refining Transfer Learning Implementation: Future work could explore 

different approaches to transfer learning, such as fine-tuning more layers to 

potentially improve the performance of the downstream task. 

6. Fixed Architecture: This work – as well as other SSL works – used a fixed 

architecture (ResNet) for the models. Other architectures might yield different 

results and offer more insights into the behaviour of SSL models. 

In conclusion, this study has made significant strides in exploring the potential of 

self-supervised learning for vehicle-type detection in autonomous driving. However, there is 

still much to learn and many opportunities for further research in this exciting field. By 

building on the findings of this study and addressing its limitations, future research can 

continue to advance our understanding of self-supervised learning and its applications in 

autonomous driving, ultimately contributing to safer and more efficient autonomous driving 

systems. 
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APPENDIX 

 

This appendix elaborates on a variety of experimentations in order to provide further 

insights on SSL methods, whether on different backbone architectures, dataset sizes, or image 

resolutions. The experiments are more related to understanding the behaviour of these 

methods under different conditions rather than directly contributing to the results of this 

study. 

Appendix.A CIFAR Pretraining  

Appendix A provides a different perspective on the pretraining process, this time 

using the CIFAR10 dataset, another data with a smaller image resolution but more diversity 

of 6000 images per class. The works of SimSiam and SimCLR had experimented on 

CIFAR10 also, so the hyperparameters were kept the same here. 

 

Fig A.1 SimSiam CIFAR pretraining 
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Fig A.2 SimCLR CIFAR pretraining 

In all the presented graphs, the shaded regions depict the range of values derived 

from five cross-validation trials, while the actual curve signifies the mean value. This 

graphical representation provides a visual understanding of the variability in the models' 

performance across different trials. 

As seen in Figure A.1, the loss curve of the SimSiam model exhibits an initial 

period of instability during the first 40 epochs. This fluctuation could be ascribed to the 

model's adaptation to the data and the learning of initial representations. However, post 

this initial phase, the loss curve of the SimSiam model stabilizes and eventually 

achieves a lower loss than the SimCLR model, as shown in Figure A.2. This suggests 

that despite the early instability, the SimSiam model successfully learns effective 

representations that minimize the loss. 

The projector loss curve for the SimSiam model mirrors the trend of the model 

loss curve, except that losses were nearly halved. This suggests that the projector, which 

translates the representations into a lower-dimensional space, is capable of preserving 

critical information while reducing dimensionality. The graphs depicting the standard 

deviation of the activations of the final layer in the projector and predictor models offer 

insights into the diversity of the learned representations. A higher standard deviation 

signifies more diverse representations, which could potentially enhance performance on 

downstream tasks. 

It may seem from here that one model outperforms the other, but this doesn't 

necessarily indicate the superior quality of its representations. Further insights into each 

model's performance can be gleaned from linear evaluation. 
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Appendix.B CIFAR Linear Evaluation 

The assessment of the models incorporated several trials to guarantee the reliability of 

the outcomes. A bar graph illustrating the mean accuracy across five trials for each model is 

presented below, with the error bar indicating the standard deviation. This graphical 

representation provides a straightforward comparison of the overall effectiveness of the 

Supervised Learning, SimSiam, and SimCLR methodologies. 

 

Fig B.1 CIFAR mean accuracy Linear Evaluation 

 

Fig B.2 CIFAR Linear Evaluation graph comparison 

The Supervised Learning method – using Resnet18 – showed again low accuracy 

among the three methods. During the linear evaluation stage, SimSiam this time 

outperformed SimCLR as expected based on its lower pretraining loss. This could mean that 



66 
 

representations might have generalized as well, opposite to what was observed in the linear 

evaluation of ImageNet_subset_I.  

 

Fig B.3 CIFAR SimCLR linear evaluation 

 

Fig B.4 CIFAR SimSiam linear evaluation 

Regarding graph fluctuation in linear evaluation, SimSiam and SimCLR behave 

oppositely in CIFAR10 compared to what has been observed in ImageNet_subset_I. On the 

other hand, SimSiam loss remains better in all scenarios, and this time, its superiority was 

dominant in accuracy as well.   

 

 

 

s 
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Appendix.C Further ImageNet Experiments  

More experiments have been implemented on the default backbone (ResNet50) 

architecture of most of the current SSL methods. The default backbone was used on the large 

ImageNet dataset exclusively, but this might not necessarily be the best choice for datasets 

with smaller resolution or size. 

 

The evaluation of the models included multiple trials to ensure the robustness of the 

results. A bar plot summarizing the average accuracy across five trials for each model is 

demonstrated below, the error bar denotes the standard deviation. This visualization offers a 

clear comparison of the overall performance of the Supervised Learning, SimSiam, and 

SimCLR methods.  

 

Fig C.1 ResNet50 linear evaluation on ImageNet_subset 

 

Fig C.2 SimCLR ResNet50 linear evaluation graph on ImageNet_subset_I 
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Fig C.3 SimSiam ResNet50 linear evaluation graph on ImageNet_subset_I 

In the linear evaluation phase, an interesting phenomenon was observed when 

comparing the performance of ResNet18 and ResNet50 backbones on 64x64 images. Despite 

ResNet50's deeper architecture and theoretically superior capacity for feature extraction, it 

was ResNet18 that delivered better results in experiments.  

This counterintuitive outcome can be attributed to the nature of our dataset. The 

64x64 images used in our study are relatively low-resolution, which means that the additional 

layers in ResNet50 may not provide much benefit. In fact, they could potentially over-

complicate the model, leading to overfitting and poorer generalization performance. 

ResNet18, being a shallower model, is less prone to overfitting and may be better suited to 

the task at hand. 

In terms of specific performance metrics, both SimCLR and supervised learning with 

ResNet50 scored in the mid-forties, with supervised learning having a slight edge. This 

suggests that both methods were able to learn better representations from the data compared 

to SimSiam, but neither was able to fully exploit the potential of the ResNet50 backbone.  

On the other hand, SimSiam lagged, scoring in the range of the thirties. This is due to 

the reason that non-contrastive methods like SimSiam are extraordinarily sensitive to model 

size as reported by Alexander Li et al. (2022). The authors added that the increase or decrease 

in SimSiam performance is not apparent if we only look at the SimSiam loss, whether it is on 

the training set or validation set. While this design has been shown to be effective in some 

contexts, it may not be as well-suited to this scenario of vehicle-type detection with such a 

dataset size. As a result, it was outperformed by SimCLR in both ResNet50 & ResNet18 

backbones.  




