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Summary

This work is dealing with the utilization of biomass feed stocks and wooden residue for
gasification process to produce the syngas which is suitable for the implementation of power
plants for electricity generation and gas production problems for further chemical and energy
purposes discussing the practical purification methods, given that the complexity of both
theme and project which carried out through detailed analysis.

Since the obtained gas has many types of unwanted contaminants, it was necessary to derive
an effective cleaning method for gas purification from chemical contaminants especialy tars
components.

The discussion of the definitions and methods for the determination of gas unwanted
components and their removal technologies on the basis of the knowledge of data collecting
and analysis, carried out through an experimental massive approach. The theoretical analysis
of the gasification process for an effective tar reduction in the produced gas has been studied
aswell.

Since the quality requirements for internal combustion engines, gas turbines and fuel cells
using the primary measurement methods cannot be achieved for gas production, this work
aimed removing different particulates and tar. The main emphasis is placed on the methods
of high cleaning taking in account the chemical and thermal specifications of the gaswhichis
based on the utilization of three different kinds of carbon materials successfully and
efficiently; char coal, black coke and active carbon, for tar removal which has a major impact
on the process parameters. The anaysis was responding with the mechanism and the
techniques of minimizing the resultant allowable concentration using suitable materials and
verifying the operation conditions without affecting the gas thermal efficiency.

The highlights of the theoretical and experimental work has been drawn up by a high concept
cleaning allowing the production of a pure gas having a quality that meets the modern
technical requirementsfor electricity generation.

Functionality the most efficient cleaning methods were based in the current project for tar
reduction on the quantity of tar removed, the materials used for tar cracking and the
conditions of the experimental work as well.

For a successful industrial application, some proposals have been settled for the improvement
of gas cleaning.
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1. Introduction

The essence of gasification process is the conversion of solid carbon fuels into carbon
monoxide by thermochemical process. The gasification of solid fuel is accomplished in air
sealed, closed chamber, under slight suction or pressure relative to ambient pressure.

Gasification uses heat, pressure, and steam to convert any feedstock that contains carbon
(carbonaceous) into synthesis gas - a gaseous mixture composed primarily of carbon
monoxide (CO) and hydrogen (H). Carbon monoxide and hydrogen are colorless, odorless,
highly flammable gases that can be used to create electricity, chemicals, pure hydrogen, and
liquid transportation fuels. Gasification systems also increasingly are being used to turn
feedstock, such as coal and biomass into useful chemical products.

There are five main advantages or benefits of gasification technology.

s Feedstock flexibility
% Product flexibility

» Near-zero emissions
High efficiency
Energy security

>
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1.1 The Current Status of Gasification Technology

There are close to 64 gasification equipment manufacturers all over the world quite a number
of those manufacturers have just produced few units, which are still in experimental stages. In
U.S.A aone there are (27) manufacturers, about 13 Universities and USDA (United states
Department of Agriculture) research stations working on various aspects of biomass
gasification.

The world’s largest gasification manufacturing facility is Gasifier and Equipment
Manufacturing Corporation (GEMCOR) in Philippines. They produce about 3000 units/ year
ranging in size from 10 - 250 kW. Besides they have recently started producing gasifiers for
direct heat applications. Brazil is another country where large scale gasification
manufacturing program has been undertaken. About 650 units of various sizes and
applications have been installed (4).

In Europe there are many manufacturers especialy in Sweden, France, West Germany and
Netherlands who are engaged in manufacturing gasification systems for stationery
applications. Most of market for these European manufacturers has been in the developing
countries.

In the U.S. and North American manufacturing activities are in the research area, the most
active program in gasification is at University of California, Davis and University of Florida
Many systems in the range of 10 - 100 kW have been developed at Davis. U.S.A aso is
ahead of the rest of world in direct heat application gasifiers. Both fluidized and fixed bed
gasifiers have been developed for this purpose (9).
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In other countries of Asia and Africa the work is being carried out in research institution and
few prototypes have been made and tested. Interestingly enough no mention of Japan is there
in any worldwide gasification literature. However if the gasification technology does pick up
it will be only a matter of time before Japan flexes its economic muscle and mass produces
the gasifiers at cheaper rates.

Most of the gasifiers (up to 100 kW range) being sold by different manufacturers show a
leveling off price of $ 380/ kWe for plant prices and about $ 150 kWe for basic gasifier
price. This leveling off comes at about 100 kW system. However, for small systems the
prices are extremely high. To this must be added the transportation costs (especially for
shipment to developing countries). These prices therefore can make the gasifiers uneconomic.
This explains the big gasifier manufacturing push being given in countries like Philippines,
Brazil etc (10).

Unfortunately with all the activities going around the world the impact of gasification
technology till to date on the economy has been negligible and far smaller than that of other
renewable energy namely Solar. However gasification is a recently rediscovered technology
and most of the development is still on learning curve.

Biomass is considered to be one of the key renewable resources of the future at both small-
and large-scale levels. From the chemical point of view, the process of biomass gasification is
guite complex. It includes anumber of stepslike:

¢+ Thermal decomposition to gas, condensable vapors and chars (pyrolysis).
¢+ Subsequent thermal cracking of vapors to gas and char.

++ Gadification of char by steam or carbon dioxide.

¢ Partial oxidation of combustible gas, vapors and char. (15).

Biomass gasification already supplies 11 % of the world’s primary energy consumption (27).
But for three quarters of the world’s population biomass is the most important source of
energy. With increases in population and per capital demand, and depletion of fossil-fuel
resources, the demand for biomass is expected to increase rapidly in developing countries.
On average, biomass produces 38 % of the primary energy in developing countries. Biomass
islikely to remain an important global source in some countries well into the next half of the
century (4). A number of developed countries use this source quite substantialy, e.g. in
Sweden and Austria 15 % of their primary energy consumption is covered by biomass.
Sweden has plans to increase further use of biomass as it phases down nuclear and fossil-fuel
plants into the next decades. In the USA, which derives 4 % of its total energy from biomass
(nearly as much as it derives from nuclear power), now more than 9000 MW electrical
power isinstalled in facilities firing biomass. But biomass could easily supply more than 20
% of USA energy consumption. In other words, due to the available land and agricultural
infrastructure this country has, biomass could, sustainably, replace all of the nuclear power
plants without a major impact on food prices. Furthermore, biomass used to produce ethanol
could reduce also oil imports up to 50% (27).
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In considering the methods for extracting the energy, it is possible to order them by the
complexity of the processes involved:

+ Direct combustion of biomass.

¢+ Thermochemical processing to upgrade the biofuel. Processesin this category include
pyrolysis, gasification and liquefaction.

+ Biological processing. Natural processes such as anaerobic digestion, (Anaerobic
digestion (AD) is a treatment that composts the waste in the absence of oxygen,
producing a biogas that can be used to generate electricity and heat.

1.2 Wood or wood waste

Wood or wood waste, as an opportunity fuel, is defined as any type of wood or wood-based
product that can be burned to generate power. There are four categories that wood and wood
waste fall into:

Figure 1.1 Forestry residue after a pine harvested operation and
Forestry residues converted to wood chipsin preparation for conversion to biofuels

7
0‘0

Dedicated energy crops.

K/
0.0

Harvested wood (wood chips).

s Mill residue (bark, sawdust and planer shavings).

R/
0.0

Urban wood waste (treated/painted wood, yard trimmings, etc.).

In most wood and wood waste applications, the wood is dried, cut into chips, and transported
to a boiler, where it is burned to produce steam that powers a steam turbine / generator. Co -
firing with coal is sometimes used to increase the net heat rate of a coal-fired plant, but its
effectiveness is limited due to wood’s poor grind ability. Pulverizes for coal are unable to
handle high quantities of wood. Stokers and cyclone boilers are the most suited to co- firing
wood and wood waste fuels as they require the least modifications.

In some cases, wood is liquefied into an Ethanol fuel or gasified. For best results with solid

wood fuels, aboiler system made specifically for wood fuels should be used.
15
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1.3 Bio-chemical composition of biomass

The chemical composition of biomass varies among species, but plants consist of about 25%
lignin and 75% carbohydrates or sugars. The carbohydrate fraction consists of many sugar
molecules linked together in long chains or polymers. Two larger carbohydrate categories
that have significant value are cellulose and hemi-cellulose. The lignin fraction consists of
non-sugar type molecules. Nature uses the long cellulose polymers to build the fibers that
give a plant its strength. The lignin fraction acts like a “glue” that holds the cellulose fibers
together.

Figure 1.2 Wood biochemical composition and wood chemical composition

Figure 1.3 Biomass conversions routs
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1.4 Proximate and ultimate analysis of biomass

Biomass fuels are characterized by what is called the "Proximate and Ultimate analyses'.
The "proximate" analysis gives moisture content, volatile content (when heated to 950 °C),
the free carbon remaining at that point, the ash (mineral) in the sample and the high heating
value (HHV) based on the complete combustion of the sample to carbon dioxide and liquid
water. (The low heating value, LHV, gives the heat released when the hydrogen is burned to
gaseous water, corresponding to most heating applications. Heat value of wood ranged from
18.55 - 19.56 MJ.kg-* of dry matter. Ager et al. (1966) studied numerous willow clones and
they found water content in the interval of 50.4 to 61.7 %, whereas heat value of wood ranged
from 19.0 to 20.0 MJ.kg-* of dry matter.

The ultimate analysis gives the composition of the biomass in wt% of carbon, hydrogen and
oxygen (the major components) as well as sulfur and nitrogen (if any).The close relationship
between the heat of combustion (high heating value, HHV) and the elemental composition as
given in the ultimate analysis. This was first noticed by DuLong in the 19th century and
brought up to date by other scientists.

The high heating value (HHV) is the value that is usually measured in the laboratory and
would be obtained during the condensation of the water vapour into liquid water. Low
heating value (LHV) is obtained when water is produced as a vapor. HHV, of typical biomass
fuel will be decreased in proportion to the relation.

LHV (net) = HHV (MAF) / 1+M+A

M = Fraction of moisture (wet basis)

A = Fraction of Ash

MAF = the moisture and Ash — free basis

The Air / Biomass ratio required for total combustion is 6.27.

The LHV, can be related to the HHV and an analysis of combustion products as:
HHV=LHV +Fm+ hw

Fm= weight fraction of moisture produced in the combustion gases
hw = the heat of vaporization of water (2257 kJkg™)

Also it is possible to rewrite these values as below:

Qi = Qs- r (W+8.94H,) KJkg

Where, Q =LHV, and Qs = HHV, r = contents of water in the fuel, and H,=Hydrogen content.
17
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1.5 Gasification process zones

1.5.1 Drying

Biomass fuels consist of moisture ranging from 5 to 35%. At the temperature above 100 ° C,
the water is removed and converted into steam. In the drying, fuels do not experience any
kind of decomposition. As the feedstock is heated and its temperature increases, water is the
first constituent to evolve:

Moist feedstock + Heat —» Dry feedstock + H,O

At moisture content of 87 % the energy content of the wood is the same as the required
energy to evaporate the moisture. The critical limit is 50 - 55 % moisture; further increased
moisture content above this level lowers the energy content dramatically, but the moisture
content should not always decrease to below a certain limit, as very dry biomass produces a
syngas with less H2. Cost increases also quickly with very dry biomass.

1.5.2 Pyrolysis

Pyrolysis is the thermal decomposition of biomass fuels in the absence of oxygen. Pyrolysis
as shown in Fig.1.4 involves release of three kinds of products: solid, liquid and gases. The
ratio of products is influenced by the chemical composition of biomass fuels and the
operating conditions.

The devolatilisation (pyrolysis) is slightly endothermic and, for temperatures above 500 °C,
75 - 90 wt% volatile matters are produced in the form of steam plus gaseous and condensable
hydrocarbons. The relative yields of gas, condensable vapors (including tars) and the
remaining char depend mostly on the rate of heating and the final temperature. A high
process temperature is maintained in various ways, depending on the type of reactor.

It is noted that no matter how gasifier is built, there will always be a low temperature zone,

where Pyrolysis takes place, generating condensable hydrocarbon. It was observed that
commercially proven pyrolysis technology at this scale of operation is not very common.

Catalytic Conversion to Hydrogen (Optional)

. Vapors Liquids
Biomass i T pe CONDENSATION Power
550°C no 02 Generation
or Chemical
Separation
COMBUSTION
Char Heat Gases

{H,, C0,CH,, CyH,, CHY)
Figure 1.4 Pyrolysis Process
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1.5.3 Oxidation

Introduced air in the oxidation zone contains, besides oxygen and water vapour, inert gases
such as nitrogen and argon. These inert gases are considered to be non-reactive with fuel
constituents. The oxidation takes place at the temperature of 700 - 2000°C.
Heterogeneous reaction takes place between oxygen in the air and solid carbonized fuel,
producing carbon monoxide. Plus and minus sign indicate the release and supply of heat
energy during the process respectively.

1.5.4 Reduction

In reduction zone, a number of high temperature chemical reactions take place in the absence
of oxygen. Heat isrequired during the reduction process. Hence, the temperature of gas goes
down during this stage. If complete gasification takes place, all the carbon is burned or
reduced to carbon monoxide, a combustible gas and some other mineral matter is vaporized.
The remains are ash and some char (unburned carbon).

1.5.5 Chemical Reactions

In complete combustion, carbon dioxide is obtained from the carbon and water from the
hydrogen. Oxygen from the fuel will of course be incorporated in the combustion products,
thereby decreasing the amount of combustion air needed (95).

Combustion, occurring in the oxidation zone, is described by the following heterogeneous
chemical reactions;

C+0O, —> CO, +393.8KJ/mol reaction (1)
C+%0;, — 3 CO+123.1KJ/ mal reaction (2)

Thus, burning 1 mol or 12.01 g of carbon to carbon dioxide releases a heat quantity of 393.9
KJ.

These two reactions provide the heat necessary for the endothermic reactions in the drying,
pyrolysis reaction zone.

The water vapor introduced with the air production by the drying and pyrolysis of the
biomass reacts with the hot carbon according to the following heterogeneous reversible water
gas reaction:

C+H,O+ 1185 KJ/mol — CO+H, reaction (3)

So, for each mol of carbon 118.5 KJ is consumed to produce one mol of CO and one mol of
Ho.

The most important reduction reactions are the water gas reaction (3) and the following
Boudouard reaction;

C+CO, +159.9 KJ/ mol — 2CO reaction (4)
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Besides these reactions several other reduction reactions take place of which the most
important ones are the water shift reaction (5) and the methanisation reaction (6).

CO,+H;+409KJYmol _—___, CO+H,O reaction (5)
C+2H, —» CH4;+87.5KJ/ mal reaction (6)

Equation (5) describes the homogenous water gas shift reaction.

CO+%0, 5 CO,+283.99 KJ mol reaction (7)
H,+%20, —» H,O+285.9KJ moal reaction (8)

The carbon or carbon monoxide may be combusted according to equations (7) and (8),
although they produce heat which is beneficial to the gasification process, they are
undesirable because they reduce the heating value.

The ratio between of the concentration of carbon monoxide (CO) and water vapor (H,0) and
the concentration of carbon dioxide (CO,) and (Hz2) is fixed by the value of the water gas
equilibrium constant (Kw).

Kw=([CO] *[HxQ]) / ([CO2]1*[H2]) reaction (9)

1.6 Producer Gas Composition

The producer gas is the mixture of combustible and non-combustible gases. The quantity of
gases constituents of the produced gas depends upon the type of fuel and operating condition.
The typical producer gas is composed of nitrogen (approximately 55% by volume), carbon
dioxide (approximately 16%), carbon monoxide (12% - 30 %), and hydrogen (2% to 10%).
Small percentages of light hydrocarbons, oxygen, solid particles, and tar, as well as other
elements particular to the process and feed material may also be present. After separation of
the solid particles, tar, and organic constituents of the gas, by gas scrubbing, the organic
pollutants are transformed into simple molecules (H, and CO).

The heating values of producer gas vary from 4.5 - 6 MJm? depending upon the quantity of
its constituents. Carbon monoxide is produced from the reduction of carbon dioxide and its
quantity varies from 15 - 30 % by volume basis. Although carbon monoxide posses higher
octane number of 106, itsignition speed islow.

Figure 1.5 Producer gas compositions
20
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This gas is toxic in nature. Hence, human operators need to be careful while handling gas.
Hydrogen is also a product of reduction process in the gasifier. Hydrogen posses the octane
number of 60 - 66 and it increases the ignition ability of producer gas. Methane and hydrogen
are responsible for higher heating value of producer gas. Amount of methane present in
producer gas is very less (up to 4 %). Carbon dioxide and nitrogen are non-combustible
(inert) gases present in the producer gas. Compared to other gas constituents, producer gas
contains highest amount (45 - 60 %) of nitrogen. The amount of carbon dioxide varies from 5
- 15 %. Higher percentage of carbon dioxide indicates incomplete reduction. Water vapor in
the producer gas occurs due to moisture content of air introduced during oxidation process,
injection of steam in gasifier or moisture content of biomass fuels.

1.7 Environmental Consider ations

Gasification, the conversion of biomaterial into energy, offers an environmentally sound,
outstanding alternative to expensive and environmentally unfavorable disposal of residual
organic wastes in landfills. Wastewater treatment residuals, agricultural crop by-products,
and manure represent excellent, low-cost fuel for high-efficient gasifier. The removal and use
of these “waste-products” can also help to control non-point source pollution in
environmentally sensitive areas. Since the gasification process uses plant and organic matter
or organic residuals to generate electricity and other energy sources, the fossil fuels are in
essence, simply replaced with organic matter as a fuel source, creating a cleaner, renewable
energy alternative, and reducing air pollution associated with the combustion of fossil fuels.
In this way, Biomass fueled energy systems offer the potential to reduce greenhouse gases
and have nowhere near the global warming impacts of fossil fuel plants. Biomass fuels can be
referred to as carbon dioxide (COz2) neutral, given that the plant material absorbs as much
carbon dioxide during its life asis released even if it were directly combusted. Gasification /
pyrolysis technologies can capture / convert CO2 further reducing its impact when compared
to direct-burn bioenergy systems. Since biomass fuels seldom contain elevated concentrations
of Sulfur compounds, SOx emissions are often times zero or very small compared to fossil
fuels.

2. Types of gasification plants

An extensive review of gasifier manufacturers in Europe, USA and Canada identified 50
manufacturers offering ‘commercial’ gasification plants from which:

75% of the designs were downdraft type.

20% of the designs were fluidized bed systems.
2.5% of the designs were updraft type.

2.5% were of various other designs. (135)

Gasifier operating conditions vary over a range of temperatures from a few hundred to over a

thousand degrees Celsius, and pressures from near atmospheric to as much as 30
atmospheres. Both pressurized and atmospheric operations of gasifiers have advantages and
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disadvantages athough gas compositions and heating values are not significantly different for
either system.
+ Pressurized Gasifier has the following features:

.
EX3

®
L4

.
°n

Feeding is more complex and very costly, as the feedstock has to be supplied at
pressure.

The system has to be cleaned out by blowing it through (purging) with inert gas
Capital costs of pressure equipment are much higher than atmospheric equipment
although sizes are much smaller.

Gas is supplied to the turbine at pressure removing the need for gas Compression
before use in a gas turbine and also allowing relatively high tar contentsin the gas.
Overall system efficiency is higher due to retention of sensible heat (i.e. that already
acquired by the gas) and chemical energy of tarsin the products.

Atmospheric Gasifier has the following features:

For gas turbine applications the product gas is required to be sufficiently clean for
compression prior to the turbine. For engine applications the gas quality requirements
are less onerous and pressure is not required.

Atmospheric applications have a potentially much lower capital cost at smaller
capacities of below around 30 MWe.

Changing the pressure and temperature at which the reactions take place affects the
composition of the product gas. Increasing the temperature of the process (at constant
pressure) increases the amounts of carbon monoxide and hydrogen produced. Increasing the
pressure (at constant temperature) increases the amount of Methane produced. Methane is the
main constituent of natural gas and has a HHV of 40 MJm3. Of all the available gasifier
types, the downdraft gasifier has received the most attention and is suited for smaller power
levels (i.e. ~ 100 kWe). The updraft gasifier is preferred for 35 MWe power levels. The
fluidized bed is best suited for 10 MWe and above.

Figure 2.1 Downdraft and Updraft gasification power Plants (27)
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Figure 2.2 Fluidized bed gasification power plants (39)
2.1 The Updraft Gasifier

Which is the oldest type, consists of a fixed bed of carbonaceous fuel (e.g. coal or biomass)
through which the "gasification agent" (steam, oxygen and/or air) flows in counter-current
configuration. The ash is either removed dry or as a slag. The throughput for this type of
gasifier is relatively low and thermal efficiency is high as the gas exit temperatures are
relatively low. However, tar and methane production is significant at typical operation
temperatures, so product gas must be extensively cleaned before use or recycled to the
reactor. These systems often are called Lurgi or Sasol gasifiers.

The common reactor configurations are outlinein Table 2.1 (45).

Uses a bed of solid fuel particles through which the air
Fixed bed gasifier and gas pass either up or down. They are the simplest type
of gasifiers and are the only ones suitable for small-scale
application

Developed to convert high volatile fuels (wood, biomass)

Downdr aft gasifier - The
co-current fixed bed

into low tar gas and therefore has proven to be the most
successful design for power generation.

Widely used for coal gasification and non-volatile fuels
such as charcoal. However, the high rate of tar production
(5%-20%) makes them impractical for high volatile fuels

Updraft gasifier — The
counter - current fixed bed
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where aclean gasis required.

Favored by many designers for gasifiers producing more
than 40GJh and for gasifiers using smaller particle
feedstock sizes. In a fluidized bed, air rises through a
grate covered in sand at high enough velocity to levitate

the particles above the grate, thus forming a “fluidized
bed”.

Above the bed itself the vessel increases in diameter,
lowering the gas velocity and causing particles to
recirculate within the bed itself. The recirculation results
in high heat and mass transfer between particle and gas
stream.

Fluidized bed gasifiers

Table 2.1 Common reactor configurations

2.2 The downdr aft Gasifier

Is similar to the counter-current type, but the gasification agent gas flows in co-current
configuration with the fuel (downwards, hence the name "downdraft gasifier"). Heat needs to
be added to the upper part of the bed, either by combusting small amounts of the fuel or from
external heat sources. The produced gas leaves the gasifier at a high temperature, and most of
this heat is transferred to the gasification agent added in the top of the bed, resulting in energy
efficiency on level with the counter-current type. Since al tars must pass through a hot bed of
char in this configuration, tar levels are much lower than the counter-current type. In this type
of gasifier a descending packed bed of biomass is supported across a constriction known as a
throat. A co - current of gases and solids flows through this bed i.e. both gases and solid flow
through the gasifier in the same direction. The throat is where most of the gasification
reactions occur. There is a turbulent high temperature region around the throat where the
reaction products are intimately mixed. This mixing aids the tar cracking. Some tar cracking
also takes place below the throat on a residual charcoal bed where the gasification is
completed. This configuration is ssmple, reliable and proven for certain fuels and resultsin a
high conversion of pyrolysisintermediates and hence arelatively clean gas (51).

The fuels suitable for use in this type of gasifier include relatively dry (up to about 30 % (wet
basis)) blocks or lumps and containing a low proportion of fine and coarse particles i.e. not
smaller than about 1cm and not bigger than 30cm in the longest dimension). The gas
produced has a low content of tars. Because of this, the downdraft configuration is generally
favored for small-scale electricity generation with an internal combustion engine.

The practical upper limit to the capacity of this configuration is around 50kg/h of feedstock
or 500 kWe. The limit is set by the physical limitations of the diameter of the gasifier throat
and the size of the particles.
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A relatively new concept of stratified or open core downdraft gasifier has been developed in
which there is no throat and the bed is supported on a grate. This was first devised by the
Chinese for rice husk gasification and has subsequently been used in India.

2.3 Fluid Bed Gasifier

This type of gasifier is also referred to as a bubbling fluid bed gasifier. The air bubbling
upwards through the feedstock results in a method of solid-gas contacting that has excellent
mixing characteristics and high reaction rates. As the gas passes upwards through the packed
bed of particles (coarse sand is commonly used) a pressure drop is formed across the bed.
This pressure drop increases as the gas velocity increases until the bed of solid particles
expands dlightly. At this point the individual particles become supported in the gas stream
with freedom of movement relative to one another. The bed is then said to be fluidized and
has the appearance of a boiling liquid with a well-defined free surface. Higher gas velocities
result in entrainment of the solid particles and the surface loses its well-defined interface.
Fluid bed gasifiers are the only gasifiers with isothermal bed operation i.e. the whole bed is at
the same temperature. Their typical operating temperatureis at 800 - 850°C.

Most of the conversion of the feedstock takes place within the bed. Some conversion does,
however, continue to take place in the freeboard section above the fluid bed as some
pyrolysis products are swept out of the fluid bed by gasification products. These are
converted by further thermal cracking.

In most cases, carbon conversion approaches 100%. This is not the case if excessive
carryover of fines takes place. This occurs with a top-feeding configuration. The gas
produced by the bubbling fluid bed gasifiers tends to have a tar content somewhere between
that of the updraft and downdraft gasifiers.

The bed can lose its fluidity due to sintering, which is when the solid feedstock fuses together
without melting. Alkali metals from the biomass ash form low melting point substances
(eutectics) with the silica in the sand of the bed. This results in the eventua loss of bed
fluidity. This is quite a common problem but its occurrence depends on the thermal
characteristics of the ash. The inherently lower operating temperature and better temperature
control of afluid bed provide an acceptable control measure. With biomass of high ash/inert
content it is better to use alumina or even metallic sand such as chromite sand in the fluid bed
itself (57).

The carbon loss with entrained ash may be significant. This means that fluidized beds are
uneconomical for small-scale applications. They also incur higher operating costs. This type
of gasifier can be readily scaled up. Multiple feeding is used in large beds where fuel
distribution can become a problem. Alternative configurations such as twin bed systems and
circulating fluidized beds are available. As a result, there are processes to suit aimost every
type of feedstock or thermo chemical process.

Fluidized beds can provide high rates of heat and mass transfer and good mixing of the solid
phase. Relatively high reaction rates are possible and the temperature is more or less constant
in the bed. The particles need to be in the range of 1 - 10 mm in diameter and so the feedstock
may need to be reduced in size to meet the particle requirements of the fluidized bed. The ash
is elutriated (separated by washing into coarser and finer potions) and removed as fine

particles entrained in the product gas (122).
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2.4 Circulating Fluid Bed (CFB)

In this type of gasifier the air velocity through the fluid bed is high. Because of this, large
amounts of solids are entrained with the product gas.

The system is designed so that these solids are recycled back to the fluid bed. This improves
the carbon conversion efficiency and makesit greater than that for the single fluid bed design.

Figure 2.3 Circulating bed Gasifier

2.5 Twin Fluid Bed

The use of two fluid bed gasifiers gives a higher heating value product gas than a single air
blown gasifier. It is heated with hot sand from the second fluid bed. This second fluid bed is
heated by burning the product char in air before recirculation it back to the first reactor.
Hydrogen is generated when a shift reaction occurs. This shift reaction occurs upon the
addition of steam to the gasifier. The presence of steam also encourages carbon-steam
reactions. The product gas has afairly high heating value but contains tars from the pyrolysis
process. A summary of gasifier characteristics is given in Table 2.2 compares gasification
product gas characteristics (57):
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Gasifier Type Characteristics

Simple, reliable and proven for certain fuels, Relatively simple
construction, Close specification on feedstock characteristics, Uniform
sized feed required, Very limited scale-up potential, Possible ash fusion
and clinker formation on the grate High residence time of solids, Needs
low moisture fuels High carbon conversion, Low ash carry over, Fairly
clean gasis produced, Low specific capacity.

Product gas is very dirty with high levels of tars, Very simple and robust
construction, Good scale up potential, Suitable for direct firing, High
residence time of solids, Relatively simple construction, Low exit gas
temperature, High thermal efficiency, High carbon conversion, Low ash
carry over.

Good temperature control, High reaction rates, In-bed -catalytic
processing is possible, Greater tolerance to particle size range, Moderate
tar levels in product gas, Higher particulates in the product gas, Good
gas-solid contact and mixing, Tolerates variations in fuel quality, Easily
started and stopped, Good scale-up potential, Low feedstock inventory,
Carbon loss with ash High specific capacity, Can operate at partial |oad.
Good temperature control and high reaction rates In-bed catalytic
Circulating | processing not possible, Greater tolerance to particle size range,
Fluid Bed Moderate tar levels in product gas, Relatively simple construction and
operation High specific capacity, Very good scale-up potential, High
carbon conversion, Good gas-solid contact.

Downdr aft

Updr aft

Bubbling
Fluid Bed

Table 2.2 Gasifier characteristics

Also gas quality for each gasifier isgivenin Table 2.3:

‘ Gasifier Type Gas Quality \

Dust

Fluid bed air-blown ' poor
Updraft air-blown fair
Downdr aft air-blown good
Downdr aft oxygen-blown fair

Multi-solid fluid bed ' poor
Twin fluidized bed ' poor
Pyrolysis (for comparison) good

Table 2.3 Gas qualities for each gasifier
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3. Gasifier Fuel Characteristics

Almost any carbonaceous or biomass fuel can be gasified under experimental or laboratory
conditions. However the real test for a good gasifier is not whether a combustible gas can be
generated by burning a biomass fuel with 20 - 40% stoichiometric air but that a reliable gas
producer can be made which can also be economically attractive to the customer. Towards
this goal the fuel characteristics have to be evaluated and fuel processing done.

Many gasifiers’ manufacturers claim that a gasifier is available which can gasify any fuel.
There is no such thing as a universal gasifier. A gasifier is very fuel specific and it istailored
around a fuel rather than the other way round. Thus a gasifier fuel can be classified as good
or bad according to the following parameters (49):
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Moisture content

Dust content
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Tar content
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3.1 Energy content and Bulk Density of fuel

Energy content of fuel is obtained in most cases in an adiabatic process. The values obtained
are higher heating values which include the heat of condensation from water formed in the
combustion of fuel. The heating values are also reported on moisture and ash basis. Fuel with
higher energy content is always better for gasification. The most of the biomass fuels (wood,
straw) has heating value in the range of 10 - 16 MJKkg, whereas liquid fuel (diesel, gasoline)
posses higher heating value. The higher the energy content and bulk density of fuel, the
similar is the gasifier volume since for one charge to get power for longer time. Bulk density
is defined as the weight per unit volume of fuel. Bulk density varies significantly with
moisture content and particle size of fuel. Volume occupied by stored fuel depends on not
only the bulk density of fuel, but also on the manner in which fuel is piled. It is also
recognized that bulk density has considerable impact on gas quality, as it influences the fuel
residence time in the fire box, fuel velocity and gas flow rate (63).

In most fuels there is very little choice in moisture content since it is determined by the type
of fuel, its origin and treatment. It is desirable to use fuel with low moisture content because
heat loss due to its evaporation before gasification is considerable and the heat budget of the
gasification reaction is impaired. Besides impairing the gasifier heat budget, high moisture
content also puts load on cooling and filtering equipment by increasing the pressure drop
across these units because of condensing liquid. Thus in order to reduce the moisture content
of fuel some pretreatment of fuel is required. Generally, desirable moisture content for fuel
should be less than 20%.
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3.2 Dust content

All gasifier fuels produce dust. This dust is a nuisance since it can clog the internal
combustion engine and hence has to be removed. The gasifier design should be such that it
should not produce more than 2 - 6 g/m3 of dust. The higher the dust produced, more load is
put on filters necessitating their frequent flushing and increased maintenance.

3.3 Ash and Slugging Char acteristics

The mineral content in the fuel that remains in oxidized form after complete combustion is
usually called ash. The ash content of a fuel and the ash composition has a major impact on
trouble free operation of gasifier. Ash basically interferes with gasification process in two
ways (58):
¢ It fuses together to form slag and this clinker stops or inhibits the downward flow of
biomass feed.
< Evenif it does not fuse together it shelters the pointsin fuel where ignition isinitiated
and thus lowers the fuel’s reaction response.
Ash and tar removal are the two most important processes in gasification system for its
smooth running. Various systems have been devised for ash removal. In fact some fuels with
high ash content can be easily gasified if elaborate ash removal system is installed in the
gasifier. Slugging, however, can be overcome by two types of operation of gasifier:
s Low temperature operation that keeps the temperature well below the flow
temperature of the ash.
¢ High temperature operation that keeps the temperature above the melting point of ash.

The first method is usually accomplished by steam or water injection while the latter method
requires provisions for tapping the molten slag out of the oxidation zone. Each method has its
advantages and disadvantages and depends on specific fuel and gasifier design.

Keeping in mind the above characteristics of fuel, only two fuels have been thoroughly tested
and proven to be reliable. They are charcoal and wood. They were the principal fuels during
World War 11 and the European countries had developed elaborate mechanisms of ensuring
strict quality control on them. More research needs to be done in order to make gasification
systems running on these fuels on alarge scale (149).

3.4 Tar content

When biomass is heated the molecular bonds of the biomass break; the smallest molecules
gaseous, the larger molecules are called primary tars. These primary tars, which are always
fragments of the original material, can react to secondary tars by further reactions at the same
temperature and to tertiary tars at high temperature. This tar formation pathway can be
visualized as follows:
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Figure 3.1 Tar formation Scheme

Tar is one of the most unpleasant constituents of the gas as it tends to deposit in the
carburetor and intake valves causing sticking and troublesome operations. It is a product of
highly irreversible process taking place in the pyrolysis zone. The physical property of tar
depends upon temperature and heat rate and the appearance ranges from brown and watery
(60% water) to black and highly viscous (7% water). There are approximately 200 chemical
constituents that have been identified in tar so far.

Very little research work has been done in the area of removing or burning tar in the gasifier
so that relatively tar free gas comes out. Thus the major effort has been devoted to cleaning
this tar by filters and coolers. A well-designed gasifier should put out less than 1 g/m?3 of tar.
Usually it is assumed that a downdraft gasifier produces less tar than other gasifiers. However
because of localized inefficient processes taking place in the throat of the downdraft gasifier
it does not allow the complete dissociation of tar (107).

Tar classification system was defined based on the physical tar properties. water solubility of
tar and tar condensation, Table 3.1 gives a description for the five tar classes in the
classification system with the focus on the tar properties.

GC undetectable tars. This class includes the heaviest tars that condense at
high temperature even at very low concentrations.

Heterocyclic components (like phenol, pyridine, and cresol). These are
components that generally exhibit high water solubility, due to their polarity.
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Aromatic (1 ring) components. Light hydrocarbons that are not important in
condensation and water solubility issues like xylene, styrene, toluene.

Light polyaromatic hydrocarbons (2-3 rings PAH’s). These components
condense at relatively high concentrations and intermediate temperatures, like
naphthalene; methyl-naphthal ene; biphenyl; ethenylnaphtalene;

Acenaphthylene; acenaphtene; fluorene; Phenanthrene; anthracene.

Heavy polyaromatic hydrocarbons (4-5 rings PAH’s). These components
condense at relatively high temperature at low concentrations like fluoranthen;
Pyrene; benzo-anthracene; chrysene; benzo-fluoranthen; benzo-Pyrene;
perylene; Indeno-pyrene; Dibenzo-anthracene; Benzo-perylene.

Table 3.1 Description of the tar classes with afocus on the tar properties

The type of classification division of light and heavy tar, Light tar is al tar that is measurable
with a gas chromatograph; heavy tar is al the rest. Heavy tars are considered to have at most
4 to 7 aromatic rings, other tars with more aromatic rings are considered to be heavy tars
(gravimetric tar). Figure 3.1 shows a global overview of tars formation Scheme and since the
molecules of tertiary tar are often heavier than primary tar, methods of approach are:
< Sampling: isokinatic, high-temperature particulate filtration, tar absorption in a
solvent.
< Analysis. concentration of gravimetric tar from evaporation residue at standard
conditions (T, Pand t)
< Anaysis. concentration of individual tar compounds from GC analysis

The composition of tar depends on the gasification process. In principle tar can be divided
into two groups. low temperature tar which is formed in the updraft gasifier and consist
mostly of polar compounds and high temperature tar which is formed in the downdraft and
fluidized bed gasifier and consist mostly of non-polar compounds (129).

For the analysis, a selection of compounds were performed which called to be most
reprehensive for the composition spectrum respectively in the fluidized bed gasifier, the
following compounds were selected, benzene, toluene, phenol, indane + indene, naphthalene,
methylnaphthalene and fluorine. Fig. 3.2 shows the classes’ distribution of tar as afunction of
temperature and Fig.3.3 shows the tar dew point as calculated by ECN tar dew point
calculation program.
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Figure 3.3 Tar dew point as calculated by ECN tar dew point calculation program

4. Gas Cleaning and Conditioning

The combustible gases from the gasifier can be used:
< Ininternal combustion engines,
< For direct heat applications and
< Asfeedstock for production of chemicals like methanal.

However in order for the gas to be used for any of the above applicationsit should be cleaned
of tar and dust and be cooled. As previously mentioned cooling and cleaning of the gasis one
of the most important processes in the whole gasification system. The failure or the success
of producer gas units depends completely on their ability to provide a clean and cool gas to
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the engines or for burners. Thus the importance of cleaning and cooling systems cannot be
overemphasized.

The temperature of gas coming out of generator is normally 300 - 800°C. This gas has to be
cooled in order to raise its energy density. Various types of cooling equipment have been
used to achieve this end. Most coolers are gas to air heat exchangers where the cooling is
done by free convection of air on the outside surface of heat exchanger. Since the gas also
contains moisture and tar, some heat exchangers provide partial scrubbing of gas. Thus
ideally the gas going to an internal combustion engine should be cooled to nearly ambient
temperature (134).

Updr aft Downdr aft Fluidized

Exit t t °C
xit temperature [°C] 80 — 250 — 400 800 — 1000 700 — 1000

Tar content [g/Nm3 10 - 100 01-5 1-3

Dust content [g/Nm3] 01-1 1-10 10

Related purification Particles + (Steam Particles + (Steam

process Particles + Hydro cracking Reforming) reforming)

Operation
temperature 400 - 500 900 - 1000 900 - 1000
purification [°C]
Tar content exit 0.1- 1 Hydrogenated
purification [g/Nm3] product

0.1 0.1

Table 4.1 Typical contaminates in various gasification plants

Cleaning of the gasistrickier and is very critical. Normally three types of filters are used in
this process. They are classified as dry, moist and wet. In the dry category are cyclone filters.
They are designed according to the rate of gas production and its dust content. The cyclone
filters are useful for cleaning particles of the size of 5 um and greater. Since 60 - 65% of the
producer gas contains particles above 60 um in size the cyclone filter is an excellent cleaning
device.

The gas after passing through cyclone filter still contains fine dust, particles and tar. It is
further cleaned by passing through either a wet scrubber or dry cloth filter. In the wet
scrubber the gas is washed by water in countercurrent mode. The scrubber also acts like a
cooler, from where the gas goes to cloth or cork filter for final cleaning. Table 4.1 show the
typical contaminates in various gasification plants.

In the Gas Cleaning and Conditioning area, the goal is to achieve near-zero emissions while
simultaneously reducing capital and operating costs. Novel gas cleaning and conditioning
technol ogies are undergoing development to reach this goal. Processes that operate at mild to
high temperatures and incorporate multi-contaminant control to parts-per-billion levels are
being explored. These include a two-stage process for hydrogen, Sulphur, trace metals, HCI,
and particul ates removal; membrane processes for control of H, S, Hg, and CO; and sorbents
for NH control. Both ceramic and metalic filters are being assessed. Furthermore,
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investigation of technologies for mercury removal is currently underway. Promising
technologies will be scaled-up and integrated into existing demonstration facilities.

Development of gas cleaning and conditioning technologies is a key element in achieving
near-zero emissions while meeting system performance and cost goals. These technologies
include advanced sorbents, reactor models, particulate filters, and other novel cleaning
approaches, which remove gas contaminants.

When crude synthesis gas (syngas) |eaves the gasifier, the gas stream must be cleaned and
conditioned in order to remove feedstock contaminants. Not only must they be removed due
to environmental concerns, but also to prevent downstream materials and equipment, such as
chemical production catalysis or fuel cells, from being destroyed by contaminants.
Immediately after leaving the gasifier, crude syngas is routed through heat exchangers and
guench chambers to lower the temperature, then to a gas scrubber for further cooling and
removal of solids such as slag. Many additional processes are used in combination to remove
contaminants such as mercury and other heavy volatile metals, carbon dioxide, and Sulphur.

While gasification is already an ultra-clean technology, the cost of removing contaminants
must be reduced. Many improvements are needed in gas cleaning and conditioning to
overcome barriers to gasification system acceptance. Effective treatment of multiple
contaminants is complicated and expensive, using numerous removal processes at varying
temperatures.

Cleanup of contaminants must be more tightly integrated to increase efficiency and reduce
cost. Gases that are formed by gasification will contain some or al of the contaminants listed
(with their concomitant problems) in Table 4.2 (44).

Contaminant Examples Problems

Particulates Ash, char, fluidized bed Erosion
material

Alkali metals Sodium, potassium Hot erosion

compounds
Fuel-bound Mainly ammoniaand NOXx formation
nitrogen HCN
Tars Refractive aromatics Clogs filters Difficult to burn, Deposits
internally Corrosion
Sulphur, chlorine HCI, H2S Corrosion, Emissions

Table 4.2 Gas contaminants with their problems
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Contaminants Clean-up method

Filtration, Scrubbing

Filtration, Scrubbing

Filtration, Scrubbing

Scrubbing, SCR

Lime or Dolomite, Scrubbing, Absorption

Lime or Dolomite, Scrubbing, Absorption

Tar cracking, Tar removal

Cooling, Condensation, Filtration, Adsorption

Cooling, Condensation, Filtration, Adsorption

Other metals Cooling, Condensation, Filtration, Adsorption

Table 4.3 Main contaminants in gasification product gases and methods for removal.

The level of contamination depends mainly on two factors:

¢ Thetype of gasification process employed

% Thetype of feedstock used
If gas cleaning is not carried out, there will be erosion, corrosion and environmental problems
in the downstream equipment. Table (4.3) gives a summary of the main contaminants in
gasification product gases and methods for their removal.

4.1Tar removal Technologies

The main attempts to eliminate tar concentrate on three approaches:

4.1.1 Dry Technologiesfor Physical Removal of Tar

The raw gas leaves gasifiers at temperatures between 400 °C and 800°C. If hot gas filtration
and tar cracking and/or reforming conversion follow, the temperature should be as high as
possible. Thisisthe case of physicochemical conversion of tar.

The use of dry, medium temperature technologies for the physical removal of tar is not yet
envisaged. Fabric, ceramic, and metallic filters can remove near-dry condensing tar particles
from gasifier gas. They are based on the principle that liquid tar condensing at a relatively
high temperature will rapidly react to form solid species behaving as particulates rather than
tar. The reasons they have not been used are the following; they will be only partialy
effective at temperature higher than 150°C; an important amount of tar will remain at the gas
phase and pass through the filter without being retained. If a near liquid layer is formed on
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the surface of the filtering material, its stickiness will cause considerable mechanical
problems and frequent failures. Both operating and capital costs seem very high.

4.1.2 Wet Technologiesfor Physical Removal of Tar

7
0’0

®
L4

Cooling towers and Venturi scrubbers: Cooling/scrubbing towers are usually used after
cyclones as the first wet scrubbing units. All heavy tar components condense there.
However, tar droplets and gas/liquid mists are entrained by the gas flow, thus rendering
the tar removal rather inefficient. Venturi scrubbers are usually the next step. In Venturi
scrubbers, typically 2 kWh/1,000 m® are consumed, corresponding to a pressure drop of
approximately 7000 Pa.

Demisters: Are centrifugal flow units designed to coalesce mist droplets from their gas
flow. They resemble cyclones and hydro-cyclones and are usually used as a secondary
stage in conjunction with classical wet scrubbing units. Their design depends on mist
liquid phase properties and gas flow load. Tar and water are largely removed from
producer gas at the exit of the second stage Venturi scrubber. Wastewater containing tar
is settled out for insoluble tar skimming, then recycled back to the scrubbing loop.

Granular filters: Granular filters can be used for cold and hot gas filtration. Inorganic
beds, usually consisting of silica or alumina sand, are used as impact or surface filtration
media. Static and mobile granular bed configurations have been used or are under
development. When hot filtration is used, the filter operates usually at temperatures
higher than 500°C so that only particulates are removed while tar remains at the gas
phase. Sands are nonporous materials, characterized by low specific surface area. The
most important development work in the field of hot gas filtration has been linked with
coal gasification.

Wet electrostatic precipitators. Electrostatic precipitators are widely used to remove fine
solids and liquid droplets from gas streams. Although effectiveness with liquid droplets,
they prove inefficient when tar is in the gaseous phase. This means that, when the target is
the tar removal, high-temperature operation should be avoided. In such a case gas should
be quenched before ESP use. The operation of an ESP is based on the passage of the gas
stream through a high-voltage, negatively charged, area. Particles are thus charged and
led to a collection area where opposite charge plates remove them from the stream. Very
high, as well as very low, conductivities are detrimental to ESP operation. An appropriate
balance is required for efficient operation. This means that the nature of tar can influence
considerably the design of an ESP.

E. Wastewater treatment: All wet gas cleaning systems generate wastewater that is
contaminated with inorganic and organic pollutants. The concentration of the pollutantsis
always significant even for gasifiers with low tar production. Wastewater contaminants
include dissolved organics, inorganic acids, NH3;, and metals. Regarding the dissolved
organic compounds and most of the metal oxides, there are saturation points beyond
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which separation of phases occurs. Experimental data from runs with various feedstocks
showed difference in organics concentration at equilibrium as a function of feedstock
used.

Various technologies are proposed in the literature for these wastewater treatments before
their final disposal. There is a short description of the available technologies that comprise
extraction with organic solvent, distillation, adsorption on activated carbon, wet oxidation,
and oxidation with hydrogen peroxide (H.O,), oxidation with ozone (O3), incineration, and
biological treatment. Recent works focused on wet oxidation and adsorption on mixtures of
activated carbon and carbon-rich ashes produced during gasification. These techniques,
together with biological treatment, seem to offer the best potential for eventual application at
an Industrial / commercial level (149).

4.1.3 The Thermal, Steam, and Oxidative Conversion of Tars

% Thermal Destruction: The consensus seems to be that temperatures in excess of 1000°C,
at reasonable residence times, are necessary to destroy the refractory unsubstituted
aromatics, without a catalyst. Apart from the economics and materials problems, such
thermal decomposition can produce soot that can be even more troublesome than the
aromatics for some processes. Benzene seems to be the least reactive, thermally, of the
light aromatics.

®
%

Steam Reforming or Cracking: Tars produced in air gasification are more refractory than
those produced in steam. Tars produced in the gasification of biomass with steam are
different than those produced in spruce gasification of biomassin air or with steam + Os..
Tar yields decrease with increasing gasification temperature and with steam / biomass
ratio. It is postulated that steam gasification tars have more phenolics and C-O-C bonds,
which are easier to reform. Pure steam produces a more phenolic tar, which is easier to
catalytically convert than tar from steam + O, gasification. In the partial oxidation of
pyrolysis vapors, the addition of steam tends to enhance the formation of benzene and
toluene. Steam also enhances phenol formation. Steam reduces the concentration of
oxygenatesin afluid-bed gasifier.

.
°

Partial Oxidation: Oxygen or air added to steam seems to produce more refractory tars but
at lower levels, while enhancing the conversion of primaries. When oxygen is added
selectively to different stages, such as in secondary zones of a pyrolysis-cracker reactor,
tars can be preferentially oxidized.

4.1.4 The Catalytic Destruction of Tars

< Nonmetallic Oxides: Calcined dolomites have been extensively investigated as biomass
gasifier tar destruction catalysts. These naturally occurring catalysts are relatively
inexpensive and disposable so it is possible to use as primary catalysts (in bed) as well as
in secondary, downstream reactors.
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Dolomite is a calcium magnesium ore with the general chemical formula CaMg (CO,), that
contains ~20% MgO, ~30% CaO, and ~45% CO, on aweight basis, with other minor mineral
impurities. Dolomites, in their naturally occurring form, are not nearly as active for tar
conversion until they are calcined. Calcination of dolomite involves decomposition of the
carbonate mineral, eliminating CO, to form MgO - CaO.

Complete dolomite calcination occurs at fairly high temperatures and is usually performed at
800°C - 900°C. The calcination temperature of dolomite, therefore, restricts the effective use
of this catalyst to these relatively high temperatures. Calcined dolomite also loses its tar
conversion activity under conditions where the CO, partial pressure is greater than the
equilibrium decomposition pressure of dolomite. This becomes an important issue in
pressurized gasification processes. As the pressure of the process increases, the operating
temperature of calcined dolomite reactor must be increased to maintain catalyst activity.
Calcination also reduces the surface area of the dolomite catalyst and makes it more friable.
Severe catalyst attrition and the production of fine particulate material plague the use of
calcined dolomite in fluidized bed reactors.

e

*

Commercial Nickel Reforming Catalysts: A wide variety of Ni-based steam reforming
catalysts are commercialy available because of their application in the petrochemical
industry for naphtha reforming and methane reforming to make syngas. Nickel-based
catalysts have also proven to be very effective for hot conditioning of biomass
gasification product gases. They have high activity for tar destruction, methane in the
gasification product gasis reformed, and they have some water-gas shift activity to adjust
the H,. CO ratio of the product gas. The content of H, and CO of the product gas
increases, while hydrocarbons and methane are eliminated or substantially reduced for
catalyst operating temperatures above ~740°C. Some studies have also shown that nickel
catalyzes the reverse ammonia reaction, thus reducing the amount of NH in gasification
product gas.

Commercial Ni steam reforming catalysts have also been widely used for biomass
gasification tar conversion. They have high, demonstrated activity for tar destruction with the
added advantages of completely reforming methane and water-gas shift activity that allows
the H,: CO ratio of the product gas to be adjusted. Some studies have also shown that nickel
catalyzes the reverse ammonia reaction thus reducing the amount of NH5 in gasification
product gas (149).

4.1.5 Adsorption of Tars by Carbon materials

The most recent research activities found the carbon materials are very effective and practical
method for tar cracking during biomass gasification; these materials include Active carbon,
Char coal and Black coke. The theory of adsorption will be described in the following chapter
and a detailed description of the utility of carbon materials as a bed filter in tar removal
through biomass gasification processis in chapter (8).
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5. Fundamentals and theory of Adsorption

Adsorption is the term for the enrichment of gaseous or dissolved substances (the adsorbate)
on the boundary surface of a solid (the adsorbent). On their surfaces adsorbents have what we
call active centers where the binding forces between the individual atoms of the solid
structure are not completely saturated (Fig.5.1). At these active centers an adsorption of
foreign molecules takes place. The adsorption process generaly is of an exothermal nature.
With increasing temperature and decreasing adsorbate concentration the adsorption capacity
decreases. For the design of adsorption processes it is important to know the adsorption
capacity at constant temperature in relation to the adsorbate concentration.
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Figure 5.1 Fundamental s of adsorption and desorption

Adsorption is the process by which particles, e.g., solvent molecules, become attached from a
fluid phase to the surface of a solid adsorbing material. Adsorption is a reversible process.
The process always rel eases heat.

5.1 Adsor ption of particlesfrom a gasto a solid surface

The adsorbate - the adsorption substance to which molecules is attached - is in a state of
equilibrium with the fluid phase, i.e., gas or liquid. The more the adsorbing material is
loaded, the higher is its vapor pressure, very low loads whose equilibrium concentration is in
the range of the statutory emission limit represent a single-place adsorption. In this range, the
vapor pressure of the adsorption substance is proportional to the load, which formally
corresponds to Henry's law. If pore condensation occurs, the vapor pressure of the adsorption
substance enters the range of the vapor pressure of the liquid phase (161).

How much substance can be taken up by the adsorbing substance, depends on three factors:

< Temperature: Higher temperatures reduce the load because the adsorption process
releases heat. Therefore, it is possible to release the adsorbed material from the adsorbing
material and thereby regenerate it by increasing the temperature.

39



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

X3

%

Chemical interaction: The properties of the adsorbing material and the adsorbed
substance, most of all the polarity, determine the degree of interaction between both.

< Partial pressure: The higher the concentration of the adsorbed material in the gaseous
phase the more material is adsorbed. Reversely, if the concentration of the adsorbed
material is low in the gaseous phase, some adsorbed material is released from the
adsorbing surface. This means that the adsorbing material can be regenerated with pure
gas. The mathematical presentation of this context is referred to as adsorption isotherm.

The adsorption isotherm does not describe time-related factors because it reflects an
equilibrium state. It is generated - often for the single grain - by determining the amount of
molecules attaching to the adsorbing material after hours of establishing the equilibrium in a
static gas atmosphere. In the technical adsorber, the gas molecule is exposed to the adsorbing
material only for a few seconds. Diffusivity, another factor critical to the function of the
adsorber, comes into play here. Diffusivity is composed of four sub-components relating to
the steps of the adsorption process:

% Diffusion of the particle through the gaseous phase, i.e., the empty space of the
adsorber;

< Diffusion through the boundary layer into the pore,

< Diffusion along the surface of the adsorbing material, and,

< Diffusion through the solid substance.

singe site monolayer  multiple pore condensation
adsorption ayer

Surface covera
pressure in the

Figure 5.2 Adsorption process

5.2 Adsor ption Parameters of Activated Carbon

Adsorption is caused by London Dispersion Forces, a type of Van der Waals Force which
exists between molecules. The force acts in a similar way to gravitational forces between
planets. London Dispersion Forces are extremely short ranged and therefore sensitive to the
distance between the carbon surface and the adsorbate molecule, they are additive, meaning
the adsorption force is the sum of all interactions between all the atoms. The short range and
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additive nature of these forces results in activated carbon having the strongest physical
adsorption forces of any material known to mankind.

% Gas Phase Adsorption - This is a condensation process where the adsorption forces
condense the molecules from the bulk phase within the pores of the activated carbon.
The driving force for adsorption is the ratio of the partial pressure and the vapour
pressure of the compound.

< Liquid Phase Adsorption - The molecules go from the bulk phase to being adsorbed in
the pores in a semi-liquid state. The driving force for adsorption is the ratio of the
concentration to the solubility of the compound.

dﬂas&s and chemicals

Activated Carbon

Skeleton
of Carbon

Fore

) L+ Absorbate

Molecule

Activated Carbon adsorbs
qases and chemicals

Figure 5.3 Active carbon particles structure

The pore space is the internal volume of the carbon granule. It consists of all the cracks and
crevices created when the coa is crushed and glued back together, and the volume between
the graphite plates.

The distance between the graphite plates determines whether the space is an adsorption pore
or atransport pore.

Adsorption pores are the internal volume where the graphitic plates are very close together
creating a higher energy. Higher energy is important to adsorption because it is the energy
that "holds" the contaminant (the carbon "adsorbs’ the contaminant). The volume where the
graphite plates are far apart and the cracks and crevices make up the transport pores. It is
important to note that all adsorption takes place in the adsorption pores and not the transport
pores (162).

There is a natural attractive force between all things in the universe. Gravity is one of these
forces. In adsorption theory, the force between contaminate and the carbon is the adsorptive
force. It technically isaVan der Waals force. It isthis attractive force that enables adsorption
to occur. The forces are a function of the distance between the two objects. The closer
together the objects are, the higher the attractive force is. The higher the attractive force, the
higher the "energy" level.
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Transport pores are the internal volume of the carbon granule where the graphitic plates are
far apart or the cracks and crevices of the particle. The transport pore act as the "highways"
for the contaminants to reach the adsorption pores where they are adsorbed. It is important to
note that no adsorption takes place in the transport pores. Transport pores are vitally
important, as they allow access to the adsorption pores - especially those deeper within the
carbon granule.

Once the contaminant enters the carbon granule via the transport pore space, it diffuses into
the carbon matrix until it enters the smaller pores where the adsorptive forces begin to take
effect, once it reaches a higher-energy area, it can no longer migrate (or diffuse) because the
adsorptive force is stronger than the diffusion force. The contaminant is adsorbed to the
carbon surface by the adsorptive forces (the Van der Waals forces). In this state, the
contaminant is referred to as the adsorbate (164).

5.3 Types of Adsorption
Adsorption usually classified into two types as following:
% Physical Adsorption or Physisorption

When the force of attraction existing between adsorbate and adsorbent are weak Van der
Waals forces of attraction, the process is called Physical Adsorption or Physisorption.
Physical Adsorption takes place with formation of multilayer of adsorbate on adsorbent. It
has low enthalpy of adsorption i.e.:

It takes place at low temperature below boiling point of adsorbate. As the temperature
increases in, process of physisorption decreases.

v

T

% = amount of absorbate
m = amount of absorbent

Figure 5.4 Physical Adsorption vs. Temperature graph
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¢+ Chemical Adsorption or Chemisorption

When the force of attraction existing between adsorbate and adsorbent are chemical forces of
attraction or chemical bond, the process is called Chemical Adsorption or Chemisorption.
Chemisorption takes place with formation of unilayer of adsorbate on adsorbent. It has high
enthalpy of adsorptioni.e.:

It can take place at al temperature. With the increases in temperature, Chemisorption first
increases and then decreases.

gl

T

% = amount of absorbate
m = amount of absorbent

Figure 5.5 Chemica Adsorption vs. Temperature Graph

5.4 Adsor ption | sotherm

The process of Adsorption is usually studied through graphs called as adsorption isotherm. It
is the graph between the amounts of adsorbate (x) adsorbed on the surface of adsorbent (m)
and pressure at constant temperature.

In the process of adsorption, adsorbate gets adsorbed on adsorbent.

Adzorption
Adszorbate + Adsorbent ——— Adsorption
desorption
A+E AR

According to Le-Chatelier principle, the direction of equilibrium would shift in that direction
where the stress can be relieved. In case of application of excess of pressure to the
equilibrium system, the equilibrium will shift in the direction where the number of molecules
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decreases. Since number of molecules decreases in forward direction, with the increases in
pressure, forward direction of equilibrium will be favored.

Ldsorption Tsothermn

e

5w

Saturation Pressure

A

T
'

P—}Ps

Figure 5.6 Basic Adsorption Isotherm

From the graph, we can predict that after saturation pressure Ps, adsorption does not occur
anymore. This can be explained by the fact that there are limited numbers of vacancies on the
surface of the adsorbent. At high pressure a stage is reached when all the sites are occupied
and further increase in pressure does not cause any difference in adsorption process. At high
pressure, Adsorption isindependent of pressure (163).

¢ Freundlich Adsorption Isotherm

In 1909, Freundlich gave an empirical expression representing the isothermal variation of
adsorption of a quantity of gas adsorbed by unit mass of solid adsorbent with pressure. This
equation is known as Freundlich Adsorption I sotherm or Freundlich Adsorption equation or
simply Freundlich Isotherm.

x/m= kP*"

Where x is the mass of the gas adsorbed on mass m of the adsorbent at pressure p and k, n are
constants whose values depend upon adsorbent and gas at particular temperature. Though
Freundlich Isotherm correctly established the relationship of adsorption with pressure at
lower values, it failed to predict value of adsorption at higher pressure.

« Langmuir Adsorption Isotherm

In 1916 Langmuir proposed another Adsorption Isotherm known as Langmuir Adsorption
isotherm. The Langmuir equation is typically used to describe adsorption of gasin coa and
takes the form:

PV=1BVn+P/Vn
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Where P is the equilibrium pressure, V is the volume of gas adsorbed at equilibrium, Vm, is
the volume of adsorbate occupying a monolayer, and B is an empirical constant. The
Langmuir Isotherm can be written as:

V(P =V_P/(P+P)
P = gas pressure
V (P) = predicated amount of gas adsorbed at P
V. = Langmuir volume parameter: the maximum volume of gas adsorbed as gas pressure
approaches infinity
P. = Langmuir pressure parameter: the pressure at which the volume of sorbed gas is 50% of
the maximum value.

This isotherm was based on different assumptions one of which isthat dynamic equilibrium
exists between adsorbed gaseous molecules and the free gaseous molecules.

Adsorption
Al +B(3) —— AEB
desorption

Where A (g) is unadsorbed gaseous molecule, B(S) is unoccupied metal surface and AB is
Adsorbed gaseous molecule.

One of the basic assumptions of Langmuir Adsorption Isotherm was that adsorption is
monolayer in nature. Langmuir adsorption equation is applicable under the conditions of low
pressure. Under these conditions, gaseous molecules would possess high thermal energy and
high escape velocity. Asaresult of thisless number of gaseous molecules would be available
near the surface of adsorbent.

Based on his theory, he derived Langmuir Equation which depicted a relationship between
the number of active sites of the surface undergoing adsorption and pressure.

8 = Number of occupied adsorption sites/ Total number of possible sites
8 = KP/1+KP

Where 6 the number of sites of the surface which are covered with gaseous molecule, P
represents pressure and K is the equilibrium constant for distribution of adsorbate between
the surface and the gas phase .The basic limitation of Langmuir adsorption equation is that it
isvalid at low pressure only (162).

At lower pressure, KP is so small, that factor (1+KP) in denominator can almost be ignored.
So Langmuir equation reduces to:
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At high pressure KP is so large, that factor (1+KP) in denominator is nearly equal to KP. So
Langmuir equation reduces to:

6= KP/IKP =1
Or:
8=cz/(1-2{1-(1-¢c)z
And:
P
z2= —
P*

In this expression P’ is the saturation pressure of the gas (i.e., the vapor pressure of the liquid
at that temperature), and c is a constant:

% BET adsorption Isotherm

BET theory is a rule for the physical adsorption of gas molecules on a solid surface and
serves as the basis for an important analysis technique for the measurement of the specific
surface area of a material. BET Theory put forward by Brunauer, Emmett and Teller
explained that multilayer formation is the true picture of physical Adsorption.

Under the condition of high pressure and low temperature, thermal energy of gaseous
molecules decreases and more gaseous molecules would be available per unit surface area,
due to this multilayer adsorption would occur. The multilayer formation was explained by
BET Theory and the BET equation is given as:

Viotal = Vimono C [P/Pq] / [1-P/Pg] [1+C (P/Po) - PIPg]
Another form of BET equation is:
P/ Vtota] (P' PO) = ]J Vn"[)no C + (C' 1)/ano C [P/PO]

Where Vinono be the adsorbed volume of gas at high pressure conditions so as to cover the
surface with a unilayer of gaseous molecules,

Ka/K¢

Here AgesH and AygH are the enthalpies of desorption from the monolayer and of
vaporization of the liquid adsorbate, respectively

Theratio is designated C. K isthe equilibrium constant when single molecul e adsorbed per
vacant site and K is the equilibrium constant to the saturated vapor liquid equilibrium.
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Figure 5.7 Five different types of adsorption isotherm

The BET isotherm is found to describe adequately the Physisorption at intermediate coverage
(6 = 0.8 - 2.0) but fails to represent observations at low or high coverage. The BET isotherm
is reasonably valid around 8 =1.0, however, and this is useful in characterizing the area of the
absorbent. If one can determine experimentally the number of moles of adsorbate required to
give 6 = 1.0 (i.e. amonolayer), one can determine the specific area of the absorbent:

A= surface area of absorbent [m,] / mass of absorbent [g]

6. Biomass gasification kinetics

Wet biomass

Drying
Dry biomass l
Iy 7 ' T ! Pyrolysis
Biomass Pyrolysis gas (CO,  Oxygen containing PAH, tar
X €0, CH, H,0,H,, compounds [phenol, oil l
| c,:\&Hﬂ ﬂtlds{ - Combustion
' | ST AT S &
) = ~\ 7 Gasification
v = W
Ash Fuel gas (€O, CO,, Tar and aqueous
CHy Ny, Hy, CHL) solution

Figure 6.1 Different stages of biomass Pyrolysis
A correct design of the reactor is fundamental to achieve an optimal conversion of the
chemical energy present into the biomass feedstock. To evaluate syngas composition, the
main steps of the calculation procedures are summarized as follows:
¢ Input of the biomass composition and the oxidization type.
«» Input of the general reactor design parameters: length, thickness and wall materials.
¢ Evaluation of the bottom temperature.
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¢+ Studying of bed hydrodynamics, heat and mass transfer and gasification kinetics.
+« Comparison of the results with experimental data.

6.1 Evaluation of the overall reaction kinetics

The gasification reactions occur at equilibrium and thermodynamic equilibrium compositions
are predicted for biomass. The pyrolysis and partial combustion are supposed to be much
faster than the gasification, and then the related solid (carbon) and volatile products (COa,
CH,4, and H,0) are fixed as the initial gasification species. Their amount depends on type of
biomass considered. The only hydrocarbon accounted in the syngas has been CH,4, while the
other minor species CnHm have been neglected and eventually included in the CH,. The
amount of Hy, CO, CO,, CH4 and Char in molar fraction per mole of biomass has been
evaluated.

6.2 Equilibrium of Biomass Gasification

The main aim is to produce producer gas from biomass and to be used for power generation;
the tar in the outlet gases is cracked thermally in the tar cracking unit (The carbon filter).

6.2.1 Assumptions

1. Biomassis represented by the general formula CHx Oy.

2. The gasification products contain CO,, CO, H,, CHg, N2, H,0 and un-burnt carbon.

3. Thereactions are at thermodynamic equilibrium.

4. The reactions proceed adiabatically.

Based on the above assumptions, the general reaction of biomass with air and steam is written
as.

CHxOy+z(pO2+ (1-p) N») +kH,O0=aCO,+bCO+cHy+dCH,;+eN, +fH,O0+gC (1)

Where, x and y are the H/C and O/C mole ratio, respectively. The moisture content of the
biomass is neglected and the product quality depends on the x and y. The above reaction
represents an overall reaction of a number of competing intermediate reactions take place
during the process, these are:

1) Oxidation: C+ O,=CO, 2
2) Steam gasification: C+H,O=CO+H; (©)]
3) Boudouard reaction: C+ CO,=2CO 4
4) Methanation reaction: C+2H,=CH, (5)
5) Water gas-shift reaction: CO+ H,O=CO,+ H; (6)

Out of these only four reactions are independent reactions, which are chosen as oxidation,
steam gasification, Boudouard reaction, and the methanation reaction. The water gas shift
reaction can be considered as the subtraction of the steam gasification and Boudouard
reactions. Oxidation reaction is typically assumed to be very fast and goes to completion and
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the three reactions namely Boudouard reaction, steam gasification and methanation are in
equilibrium (76). The three equilibrium relations for the three reactions (other than
oxidation) are:

1) Boudouard reaction:

Kel=Y2coPt/Y co, (7)

2) Steam gasification reaction:

Ke2=Y co YH> Pt/ YH,O (8)

3) Methanation reaction

Ke3= YCH./ Y2 H, Pt 9)

The equilibrium constants are given by

InKe=-AG,/RT (10)
Where, AG, is the Gibb’s free energy (kJ/mol), T is the temperature in Kelvin and R is the

universal gas constant in consistent units (84). The energy balance can be considered as
follows the heat of the overall gasification reaction (1) is given by:

A = ( )+

~

(11)

Heat of reaction at the reference temperature is calculated using specific heats of combustions
of the species.

()=4A -A -A -A (12)
Thus:
0= ( )+ C (13)
Where:

= The heat of reaction
A = the heat of combustion of species

n; = The moles of species
Cpi = The specific heat capacity of species.

The eight non-linear algebraic equations (7-13 and 14) are solved simultaneously in order to
determine a, b, c, d, e, f, g (which determine the product gas composition) and the adiabatic
temperature, at various pressures without energy balance. This gives the expected exit gas
compositions at each temperature and pressure (47).

49



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

7. Resear ch Activitiesand Work Objectives

7.1 Experimental Facilities

This section will describe relevant details of the experimental techniques and the procedures
involved in this work. All the experimental works carried out within the Institute of Power
Engineering, Department of Mechanical Engineering at Brno University of Technology,
Czech Republic.

Experiments will be carried out at fluidized bed atmospheric gasifier with stationary fluidized
bed called Biofluid 100 (Fig.7.1). The unit can be operated in both gasifying and combustion
modes. Fluidized bed gasifier start-up to steady state is carried out by way of combustion
mode. Process temperature control is carried out by changing the fuel to air ratio with
temperature control range being within the 750°C to 900 °C brackets. Average heating value
of the produced gas ranges from 4 MJm?3n to 7 MJmen, the content of solid particlesisin the
region 1.5 g/m3, to 3 g/m3, and the content of tars from 1 g/m3n - 5 g/m3n depending on fuel
used and operating conditions.

Fuel comes from rake-equipped storage tank to be fed to the gasifier in batches by a screw
feeder. Blower-compressed air is delivered to the gasifier, to under its grate, as primary air
ensuring partial oxidization of fuel and maintaining the fluidized bed. Moreover, air can be
supplied at two other levels as secondary air and tertiary air. In a cyclone, the produced gasis
rid of particulates and consequently combusted by a burner equipped with a small stabilizing
natural gas fired burner with its own air inlet. Ash from the gasifier is discharged to ash bin
on intermittent basis by means of a purpose-designed special moving grate. To be able to
examine impact of air preheating, electric heater has been installed at the back of the blower.
Simplified diagram of the experimental facility is shown in (Fig.7.1) more detailed
descriptionisgivenin (Fig.7.2). The parameters of the gasifier are asfollows:

Output (in generated gas) 100 kWt

Input (in fuel) 150 kWt

Fuel consumption max. 40 kg/h

Air flow max. 50 m3, /h

The type of fuel to be used is limited, primarily, by the size of the fuel screw feeder and then
by moisture content. Optimum moisture content is from 20% to 30%. Wood biomass mostly
consists of shavings or small wood chips, their size being 2 cm to 3 cm, herbaceous biomass
either mostly consists of finely chopped matter or smaller size pellets. Chopped matter did
not prove to be much of a success as there are major problems with fuel feeding, particularly
with crust formation in the fuel storage bin. Neither is this type of fuel treatment optimal for
formation of fluidized bed

0:0
0:0
0:0
0:0
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T101-103: temperatures in the gasifier, T106: temperature inside the cyclone, T107: temperature of the
incoming primary air, T108: gas temperature at jacket outlet, F 1-3: air flows, F4: gas flow, P stat: outlet gas
pressure, Pstatl: tank pressure, DP1.: fluidized bed pressure difference

Figure 7.1 (A) and (B) Simplified layout of atmospheric fluidized Biofuel
bed gasifier Connections

7.2 Experimental unit Biofluid 100

Gas quality measurement is usually carried out in two ways. One consists of an on-line
monitoring of gas composition with simultaneous gas sampling to gas-tight glass sample
containers. The samples are subsequently analyzed using gas chromatograph. Tar sampling is
carried out in line with IEA methodology by capturing tar in a solution that is subsequently
analyzed by gas chromatograph with mass spectrometer. Presences of HCI, HF and NHs in
the gas are examined by their trapping in an (NaOH) solution.

Operating parameters are monitored during operation and continuously recorded by the
control computer. They include, in particular, mass flow of fuel, temperatures at various
points of the unit, pressure difference in the fluidized bed, gas flow and pressure, and the
temperature and flow of primary air. The layout of a complete cleaning line was designed
with an optional configuration of connection. The fuel is brought to the fuel storage (1), from
where it is fed by screw feeder to the gasifier (2). The generated gas passes cyclone to
remove semi-coke (3). The cyclone is followed by gas cleaning line consisting of hot
catalytic filter (4), and the filter filled with the carbon material (6). At present, the gas is
combusted using flame holder (7), the final step will consist of connection of a CHP unit and
a combustion engine (8).
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1. Fuel storage 2. Gadifier 3. Cyclone 4. HCF
6. Carbon filter 7. Burner 8. Combustion engine

Figure.7.2 Overall layout of Biofluid 100
7.3 Objective and outline of the research

The scientific objectives of this project concern the set up and test of the gas cleaning system

adapted to biomass gasification plant and to demonstrate the concept of a biomass air

gasification process to produce fuel gas having a higher heating value with less tar formation

by the utilization of different carbon materials as a bed filter . The experiments will

investigate the impacts of parameters variation such as temperature profiles in the reactor,

pressure distribution and the air/biomass ratio on tar formation, gas composition and energy

transformation including carbon conversion and cold gas efficiency. Additional objectives of

the research are:

< contribute to the knowledge about biomass and solid waste pyrolysis and gasification;

< optimize the biomass gasification process in order to improve the syngas quality and to
obtain high energy efficiencies;

< To develop and evaluate gas cleanup and conditioning systems, including tar and hot gas
particulate removal, required for the production of fuels and chemicals from syngas
derived from biomass gasification.

< Compare traditional and alternative energy production of biomass and assessment of
energy and environmental balance.
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The research is based on an extensive literature search will mainly focus on the following:

< Processes of gasification of various kinds of wood biomass

< Primary methods of tar removal

< Secondary methods of tar removal, using the activated carbon, char coal and black coke
as the bed main filter with the help of utilization of the dolomite as a hot catalytic filter
(HCF) which traps dust particles contained in the produced gas.

The carbon filter mainly serves for removal of tar that is the biggest problem in subsequent
energy use of the gas.
Tar formation is one of the mgor problems to deal with during biomass gasification. Tar
condenses at reduced temperature, thus blocking and fouling process equipments such as
engines and turbines. Considerable efforts have been directed on tar removal from fuel gas.
Tar removal technologies can be divided into two approaches; hot gas cleaning after the
gasifier (secondary methods), and treatments inside the gasifier (primary methods). Although
secondary methods are proven to be effective, treatments inside the gasifier are gaining much
attention as these may eliminate the need for downstream cleanup. In primary treatment, the
gasifier is optimized to produce a fuel gas with minimum tar concentration. The different
approaches of primary treatment are:

< Proper selection of operating parameters.

< Use of bed additive/catalyst.

< Gasifier modifications.

The operating parameters such as temperature, gasifying agent, equivalence ratio, residence
time, etc. play an important role in formation and decomposition of tar.

There is a potential of using some active bed additives such as dolomite, olivine, char, etc.
inside the gasifier.

Different carbon materials are experimented to be very effective not only for tar reduction,
but also for decreasing the amount of tar compounds. The reactor modification can improve
the quality of the product gas. The concepts of two-stage gasification and secondary air
injection in the gasifier are of prime importance.

8. Experimental work procedure

8.1 Testing materials

Three different kinds of carbon materials have been chosen, char coal, active carbon and
black coke. A detailed explanation of the testing procedure will be shown in following
chapter.

8.1.1 Active carbon

Activated carbons are complex products, solid, porous, black carbonaceous material, tasteless
(Budavari, 1996). Activated carbon is distinguished from elemental carbon by the removal of
all non-carbon impurities and the oxidation of the carbon surface which are difficult to
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classify on the basis of their behavior, surface characteristics and preparation methods.
However, some classification is made for general purpose based on their physica
characteristics.

A gram of activated carbon can have a surface area in excess of 500 m2, with 1500 m?2 being
readily achievable with average pore diameter ranges from 20 to 40 microns, typical for most
commercially used adsorbents. Adsorption capacity of the activated carbon depends on:

X3

%

Physical and chemical characteristics of the adsorbent (carbon);

Physical and chemical characteristics of the adsorbate;

Concentration of the adsorbate in liquid solution;

Characteristics of the liquid phase (e.g. pH, temperature)

Amount of time the adsorbate isin contact with the adsorbent (residence time).

e

*

e

4

e

*

0,
”n

In industrial operations, adsorption is accomplished primarily on the surface of interna
passage within small porous particles. Three basic mass transfer processes occur in series.

2

% Masstransfer from the bulk gas to the particle surface.
% Diffusion through the passages within the particle surface.
< Adsorption on the internal particle surfaces.

2
o’

Each of the process depends on the system operating conditions, the physical and chemical
characteristic of the gas steam and the solid adsorbent. Often one of the transfer processes
will be significantly slower than the other two and will control the overall transfer rate, the
other two will operate nearly at equilibrium. Heat transfer may also play an important role in
an adsorption system. The adsorption process is exothermic.

Activated carbon does not bind well to certain chemicals, including alcohals, glycols,
ammonia, strong acids and bases, metals and most inorganic, such as lithium, sodium, iron,
lead, arsenic, fluorine, and boric acid. Activated carbon does adsorb iodine very well and in
fact the iodine number is used as an indication of total surface area

Activated carbon can be used as a substrate for the application of various chemicals to
improve the adsorptive capacity for some inorganic (and problematic organic) compounds
such as hydrogen sulfide (H.S), ammonia (NHs), formaldehyde (HCOH), radioisotopes
iodine-131 (**Y1) and mercury (Hg). This property is known as chemisorptions. There are
many types of activated carbon products each is used for a different application such as:

X3

%

Powdered activated carbon (PAC)
Granular activated carbon (GAC)
Extruded activated carbon (EAC)
Impregnated carbon

Polymers coated carbon

X3

%

X3

%

o, o,
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Figure 8.1 Types of the Industrial Active Carbon

Industry Application

Filters for gas removal, Purification of various raw - materia and

General Gas Application
process gases.

Solvent Recovery and catalyst |Removal of generally harmful and odorous gases, Recovery of solvents.

Water Purification Water Dechlorination.

Liquid Phase Refining De-coloration and refining of raw material and intermediates.

Decolonization in Food processing industry, Cleaning solvents and

Liquid Phase De-coloration waste water.

Table 8.1 Active carbon industrial applications

The activated carbon used in all the experiments was manufactured by (Resorbent sr.o).
Reactivation of saturated activated carbon is done in the rotating countercurrent furnace with
active medium (hot gases and water vapour) with gradual growth of temperature to 820 - 850
°C and with the period of delay - 30 minutes. The specification discription of the activated
carbon used is shown below:

Coal based activated carbon produced by high
temperature steam activation
min. 95% no bigger particles 200 MESH)

Description

Particle size (ASTM D2862)

> 900 in,
lodine number (ASTM D4607) mg/g min

> 900 m&/g min.
Surface area (BET N3) g min

< 15% max.

Ash (ASTM D2866)

5% max.
Moisture (ASTM D2867)

Table 8.2 Active Carbon MA C5 P200 properties (134)
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8.1. 2 Char coal

The characteristics of charcoal products vary widely from product to product. Thus it is a
common misconception to stereotype any kind of charcoal, which burns hotter. There are
different types of Charcoal:

< Lump charcoal

< Briquettes

% Extruded charcoal
Charcoal usually used for:

< Cooking fuel

< Industrial fuel

< Automotive fuel

< Purification/ Filtration

< Art

8.1.3 Black coke:

Discovered by accident to have superior heat shielding properties when combined with other
materials, coke was one of the materials used in the heat shielding on NASA's Apollo
program space vehicles. In its final form, this material was called AVCOAT 5026-39. This
material has been used most recently as the heat shielding on the Mars Pathfinder vehicle.
Although not used for modern day space shuttles, NASA is utilizing coke and other materials
for a new heat shield for its next generation space craft, named Orion, which is due to be
completed in 2014 (31). Coke is used as a fuel and as a reducing agent in smelting iron orein
a blast furnace. Since smoke-producing constituents are driven off during the coking of coal,
coke forms a desirable fuel for stoves and furnaces in which conditions are not suitable for
the complete burning of bituminous coal itself. Coke may be burned with little or no smoke
under combustion conditions, while bituminous coal would produce much smoke. Coke may
be used to make fuel gases; these useful gases require careful handling because of the risk of
carbon monoxide poisoning.

Figure 8.2 Materials Used in the Experiments
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8.2 Fuel used and Properties

Wood chips were used as a feedstock during the experiments to achieve the higher fuel use
efficiency; the two key quality aspects for wood chips are moisture control and particle size.
A uniform particle size is very important for reliable operation of chip feed and burning
mechanism. A load of wood chips fuel should have no stones or sail, little dust, and crucialy,
no oversize chips, twigs or long slivers — these can jam feed mechanism. In principle, less
than 30% of moisture content would be ideal.

Both the results of proximate and ultimate analyses show that woody plants make better
quality fuels. There is no substantial difference between individual fuels in the two major
categories (Culm plants and Woody plants). Woody plants, however, in general, contain
higher amounts of combustible matter, particularly volatile matter, which is important for
gasification, and smaller amounts of ash matter. Fig.8.3 show the wood chips used in the
experiments.

Figure 8.3 Wood Chips Used
As shown by ultimate analyses, woody plants contain larger amounts of carbon and smaller
amounts of nitrogen (14).

Agricultural

: other waste
biomass

Woody biomass

Willow, straw,
afafa

Sewage
sludge

Typical biomass wood chips, forest
fuel residue, paper mill waste

Ash content

1-5%w

4 -11%w

10 - 45% w

Sulphur content

<01% w

0.1-03%w

01-1%w

Nitrogen content

04-07% w

05-3.0%w

0.5-6%w

Chlorine content

< 0.1 %w

0.1 - 0.25%w

0.1 - 1%w

Alkaline (Na+K)

0.05 - 0.4%w

0.3-3 %w

Table 8.3 Properties for woody plants (147)
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8.3 Testing Procedure

In order to prepare the Char coal and the Black coke, first of all it was necessary to go
through the following operations:

% Thegrinding
A hammer was used to grind the multiple size pieces of raw materias, smaller sizes are more
convenient for testing procedure and for it is impossible to get all the pieces in the certain
size required, this operation should be followed by filtration.

< TheFiltration
The equipment (ANALY SETTE 3.PRO) was used for filtration, only the 2 mm particles size
were collected where the slaving time was 4 minutes.

< Theweighing
400 ml, 200ml of each of the testing materials have been chosen for filter filling separately
for each series of experiments. A sensitive scale was used to certify the amount of the carbon
material weight 100g and 50g.

I

Figure 8.4 (ANALY SETTE 3.PRO) and the Carbon material after filtration

L

Figure 8.5 Testing flask

< Filter filling
The filter was filled with the mentioned amount of the carbon materials, 400ml; 100g of each
material was used in the first series of experiments then the amount of 200 ml,50g of each

58



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

material has been used in the second and third serious of experiments. . Fig.8.6 shows the
filter filling procedure:

Figure 8.6 Filter filling (upper photo) and closing (lower photo) procedure
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Preparationsfor filter installment were shown in Fig.8.7.

Figure 8.7 Filter isolation preparations for installment

Figure 8.8 Filter after installment

9. Tar and Gas Sampling Procedure

The measurement principle is based on discontinues sampling of the gas stream containing
particles and condensable organic compounds. The sampling applicable approach at FSI-
VUT is shown below:
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Figure 9.1 Tar sampling experimental procedure

9.1 Calculation of tar sampling conditions

According to tar protocol, the producer gas flow rate and the isokinatic sampling flow rate
can be calculated from nitrogen based or carbon based mass balance. The nitrogen based
balance can be applied to air — flown gasifier; the carbon based mass balance can be applied
to al types of gasifiers (air — blown — and oxygen / steam gasifier. The nitrogen based
method provides the actual producer gas flow rate (m3n: normal conditions, 273.15 K,
101325 Pa = 1.01235 bar, dry basis) as the sasmpled gas volume is also measured as dry gas,
the target isokinatic sampling flow can be controlled during sampling by monitoring and
adjusting the gas meter.

The nitrogen content in the producer gas can be measured directly or as the difference of
100% of all other main producer gas components (CO, CO,, CH4, H,, and H,0).

Where:

_ Producer gas flow rate [men/h]

- = Primary air flow rate [m3n/h]
— N3 content of primary air [Vol %]
_N content of primary air [V ol %]

The carbon based method is based on a total carbon balance and can be applied when the
following requirements are satisfied: Gasifier operation is stable, Main gas composition (CO,
CO,, CH,,) is known, Fuel feeding rate (in Kg/h), fuel moisture and carbon content are
known.
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Solid or liquid carbonaceous stream (bottom ashes, particles, tar) and their carbon content are
known. The general calculation of the producer gas flow rate based on an elemental carbon
balance can be written as:

+Y = ( + + ) +

Where:
= Fuel feeding rate [kg dry biomass/ h]
= Carbon content of fuel [kg C/ kg dry biomass] (= 0.47 for woody biomass)
= Gasification agent feeding rate [m3n/h]
= Carbon content of gasification agent [kg C / m3n]
= Producer gas generation rate [m3n/h]
= Carbon content of non — condensable gases (CO, CO,, CH,) in producer gas [kg C
/ m3n]
= Tar concentration in producer gas [kg C/ men]
= Carbon content of tar [kg C / kg tar]
= Particles concentration in producer gas [kg C/ mén|
= Carbon content of particles[kg C/ kg dry biomass]
= Bottom ash rate [kg dry ash/ h]
= Carbon content of bottom ash [kg C/ kg dry ash]
= 0, since the gasification agent does not contain any carbonaceous gas components,
except, when the bed material contain carbon containing additives like limestone.

Where:
= Producer gasyield [m3,/ kg dry biomass]
= Ash content of fuel [kg / kg dry biomass]

Tar compounds are divided into two different groups, the gravimetric tars and a number of
individual organic compounds. The gravimetric is defined as the evaporation residue at
conditions according to the temperature, pressure and duration. Individual organic
compounds are not defined but those to be expected in biomass producer gases listed in a
compound list in the tar measurement standards. The analysis can be performed separately
depending on the type of the information required. Fig.9.2 shows tar sampling protocol and
Fig. 9.3 shows the global overview of the detectability of tars with a gas chromatograph.

In the tar sampling process, a serious of four glass vessels contained ‘Acetone’ as an organic
solvent connected to the pre filter tab and another serious of four vessels was connected to the
filter exit tab. Both vessels serious were located in iced salted Water - Ethanol mixture in
order to achieve the optimal condensation temperature.

The detailed sampling procedure for both gas and tar is shown in next pages.
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Figure 9.2 Tar sampling according to Tar Protocol

Figure 9.3 Global overview of the detectability of tars with a gas chromatograph

Figure 9.4 Tar sampling container
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Figure 9.5 Tar sampling flasks

Figure 9.6 Condensation of tar during sampling

Figure.9.7 Tar samples before collection
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All the experimental approach for tar sampling applied in the study is clearly shown in the
Figures 9.4 - 9.8.

The final samples taken either pre or post the filter for each experiment separately were
underwent an extensive tar analysis in order to indicate the total amount of each tar
component. This procedure was repeated and applied for the three kinds of bed filters (Char
coal, Black coke and Active carbon) for a series of different temperatures.

Figure 9.8 Collecting tar samples
During the experiment, the dolomite filter mainly traps dust particles contained in the
produced gas that temperature in the dolomite catalytic fitter was about 400 ° C; this
temperature is not enough for tar cracking. Fresh dolomite is fed from vessel equipped inlet
periodically. The pressure drop of the filter depends on the flow rate and the filling materia

inserted. The gas flow rate through the HCF was (25 m3/h) with a corresponding pressure
drop of 2.5 - 3 kPa. The behavior of the pressure drop shows that it increases as the filter is
clogged with dust and the development of the filter cake, If the dolomite is not partially
exchanged in the filter, the filter pressure drop will increase sharply up to 10 kPa, while the
gas flow rate through the filter decreases accordingly

Figure 9.9 Dolomite and Dolomite feeding inlet
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9.2 Gas sampling procedure:

In order to study the producer gas achieved by the experimental series, and to investigate the
concentration of different components of the gas, several gas samples has been taken during
each experiment and under each set of conditions.

The gas sampling procedure comprised the replacement of the tab water by the producer gas
using specified glass bottles as a sample twice, before and after the carbon filter. This
operation gave the best understanding to identify the difference of composition of the gas
samples before and after the carbon filter and to analyze the activity of the carbon filter
during gas purification.

Figure 9.10 Gas sampling preparation (Water filling)

Figure 9.11 Ready for gas sampling

Figure 9.12 Gas sampling pre filter
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Figure.9.13 Gas sampling post filter

Figure 9.14 Final gas samples marked as pre and post filter

Figure.9.15 Final gas and tar samples
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10. Results and discussion of Char coal filter

A series of data obtained through the direct monitoring of experiments. The data show that
the temperature gradient along the gasifier where the gasification temperature was almost

800 ° C. The ranges of all the active temperatures around the hot catalytic filter were 300 -
400 ° C. Fig. 10.1 illustrates the temperature in the different part of the gasifier. The
experimental working conditions of the char coal filter are shown in Table 10.1.

T1 = Temperature in the lowest part of the gasifier, T2 = Temperature in the central part of the gasifier
T3 = Temperature in the highest part of the gasifier

Figure 10.1 Temperature of the gasifier

Experimental conditions
Temperature of the carbon material filter 70-200°C
Char coal sample weight 100g

Char coal particle size 0.2mm
Gas flow rate through the hot catalytic filter during sampling 5 lit/sec
Amount of gas for tar sampling 100 lit

Table 10.1 Experimental conditions of the char coal filter
Experimental temperatures in the char cod filter were selected from 70-200 ° C taking in
account that it is very difficult to control the temperature inside the filter.
Fig.10.2 shows temperature in the upper, central and lower parts of the filter which were
denoted as T1, T2, and T3.
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T1=Temperature in the lower part of the char coal filter, T2= Temperature in the central part of the filter
T3= Temperature in the upper part of the filter

Figure.10.2 Temperatures in the parts of char coal filter

10.1 Gas samples analysis

For the range of temperatures (70 - 200 °C) the results obtained showed that the analyzed
data are approximately the same which means the poor influence of temperature on gas
components adsorption through the char coal filter.

Gas component N5 CO, H, 0O,

Per centage /unit volume 50-55 % 16-18% 13-15% 0.12 - 0.14%

Table 10.2 Percentage of gas components post the char coal filter

In order to guarantee an optimal functioning, test equipments has been investigated for the
development measurement of the main components of gas composition such as (CO, Ha,
CO;,, CHy4, Oy) The measurement of N, Ar, C;H,, CoHe, Benzene, toluene and xylene, are
available through a complete analysis of both gas and tar analysis.

At the moment faster measurement technologies are being used for these components. This
analysis has been used and done in VSCHT.

Results of the utilization of char coal material as a bed filter show the normal gas components
concentration pre and post filtration. The percentage concentration per unit volume of all
components is as illustrated in Table 10.2. Graphically the gas components pre and post the
char codl filter are shown in Fig 10.3. Table 10.3 shows the gas amounts pre and after the
char cod filter.
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Date

Time
sample
O2inthe
sample *
COo2

H2

(6{0)

CH4

N2

Ar

Ethane
Ethylene
acetylene
Propane
Propen
butane
1,3-butadiene
1-buten-3-inch
Benzene
Toluene
others

sum

LHV MJ/m3

A= After the Filter B=Before the Filter
Table 10.3 Gas sampling average results pre and post char coal filter

Figure 10.3 Gas components concentration per unit volume pre and post the char coal filter
Other gas components such as Ar, Ethane, Ethylene, Acethylen,Propane,Propene,Butan,1,3-

butadiene,propin,Benzene, Toluene n, and the others has been studied as well and it will be
referred as CxHy,
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These components were expressed in very small concentration per unit volume post the char
coal filter, which indicates the modest ability of this carbon material for CxHy absorption
however the better ability for the adsorption some hydrocarbon components as will be
discussed latter. The concentration of CxHy gas components per unit volume are shown in
Fig.10.4. The achieved resultant gas components show the ability of the charcoal carbon filter
for gas purification.

Figure 10.4 CxHy Concentration per unit volume per unit volume pre and post char coal filter

In order to study the activity of char coal for tar removal, several experiments has been
achieved in different conditions, all the experiments show a gradua improvement of
performance. The performance was influenced with different operational factors such as the
stability of the gasification process itself and the temperatures achieved inside the carbon
filter since it is very difficult to control the temperature in the various parts of the filter.

The gas low heating value has been studied pre and post the char coal filter, the study shows
an approximate value of 4.8 — 55 MJmor LHV. This value considered acceptable
especially that most filtration process for gas purification causes a significant drop in the gas
LHV.

Fig 10.5illustrates the low heating value pre and post the char coal filter.
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Figure 10.5 LHV (MJm?) pre and post the char coal filter

10.2 Tar samples analysis

Tar can be classified to different classes depending on the nature of each class and its
behavior during reactions as fellow:

R/
0’0

Class Il - of tar components are the heterocyclic compounds. The components that
exhibit high water solubility like Phenal, cresol, and pyridine. The value is very small
or decreased to half or almost non-existent.

Class 1V - Light poly-aromatic hydrocarbons (2-3) rings PAHs, Naphthalene, indene,
and biphenyl , these components condense at relatively high concentrations and
intermediate temperatures, where it disappeared completely, except for Naphthalene
which decreased to half of its concentration.

Class V - Heavy poly-aromatic hydrocarbons (>4-rings PAHSs), Fluoranthen, Pyrene,
Chrysene, these components condense at relatively high temperature at low
concentrations. Some were present and ended with a concentration equals to zero.
Graphically Tar components concentration and amounts are shown in Fig.10.6 and
10.7. Table 10.4 illustrates the concentration of different tar classes’ pre and post char
codl filter.
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Figure 10.6 Concentration of tar components pre and post the char coal filter

I Component Prefilter Post filter Efficiency of thefilter I

Concentration mg/m®

Concentration mg/m?®

Phenol

2.7

0.0

100%

Methyl phenol

8.7

0.0

100%

Benzofuran

0.0

0.0

100%

Dibenzofuran

0.0

0.0

100%

M ethylbenzofuran

0.0

0.0

100%

Naphtha Benzofuran

0.0

0.0

100%

Component

Pre-filter

Post filter

Concentration mg/m?®

Concentration mg/m?®

Efficiency of thefilter

M ethylnaphthalene

1.0

0.8

20%

Biphenyl

26.1

0.0

100%

Acenaphthylene

0.0

0.0

100%

Fluorene

0.0

0.0

100%

Phenanthrene

0.0

0.0

100%

Phenanthrene

0.0

0.0

100%

Component

Pre-filter

Post filter

Concentration mg/m®

Concentration mg/m®

Efficiency of thefilter

Fluoranthen

248

0.0

100%

Pyrene

2.6

0.0

100%

Methyl fluoranthen

0.8

0.0

100%

Methylpyrene

0.0

0.0

100%

Anthracene

1.0

0.0

100%

Fluorene

0.0

0.0

100%

Table 10.4 Tar components according to classes’ pre and post char coal filter

Using the char coal filter affected a wide range of tar components otherwise the concentration
of Benzene and Toluene was found in higher concentration and there was no effect on these
components.

According to data series obtained, it is found that the efficiency of the char coal filter ranging
between 65 -75 % .Table 10.5 shows the filter efficiency as afunction of filter temperature.

Fig.10.7 shows the different tar components pre and post the char coal filter.
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A= After B=Before
Figure 10.7 Tar compositions per unit volume pre and post char coal filter

Gasification Temperatur e 800-850° C

Char coal Filter
Temperature
Efficiency of 400 ml 69% 2% 66% 75%

70°C 90°C 100°C 13°0C

Table 10.5 Tar removal efficiency of char coal filter as a function of filter temperature

volume of gas, |

Volume of acetone, ml

date

Sample place:

short name

Benzene

Toluene
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m + p + o-xylene + ethyl benzene

Styrene

C3-benzene summa

others1

BTX summa

oxygen summa

Phenol

methyl phenol

Dibenzofuran *

Nitrogen

inden +indane

naphthalene

methylnaphthalene

ALKYLNAPHTHALENES (Alkyl> = C2)

biphenyl

acenaphtylene

acenaphtene

fluorene

PAH oM /Z =165.166

Phenanthrene

anthracene

methylfenantren 4 H-cyclopenta [def] Phenanthrene

fenylnaftaleny

fluoranthen2

pyren3

benzfluoreny

methylfluoranten + methylpyrene

PAH circlesof 4** (m/z =226.228)

summartar (non-BTX)

Table 10.6 Tar sampling average results per unit volume pre and post char coal filter

If Benzene will not be considered as a PAH substance, then the concentration of the other
different tar components created during the gasification process possible to be shown in
Fig.10.8.
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Figure 10.8 Tar compositions per unit volume pre and post char coal filter without Benzene

11. Results and discussion of Black cokefilter

Following the same procedure included the experimental conditions for both gas and tar
sampling; the black coke filter has been tested.

The optimal gasification temperature in was 800-900° C where the hot catalytic filter
temperature performed around 300-400 °C. The temperature operating black coke filter was

70-200 °C.

The pressure inside the fuel reservoir and the outlet gas was approximately 10-12 kPa where
the pressure drop in fluidized bed and the hot catalytic filter were extremely 100 Pa

Fig 11.1 shows all the temperature profile during the experiment.
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T101 - T108 = Temperatures along the gasification plant (Fig.7.1).
Figure 11.1 Temperatures Profile of the gasifier

Fig 11.2 shows pressure of the outlet gas and the fuel reservoir, Fig. 11.3 Pressure lost in the
fluidized bed, Fig. 11.4 shows Pressure drop in the hot catalytic filter.

PlI-1= Pressure on outlet from gasifire
PI-2= Pressurein fuel reservoir

Figure 11.2 Pressure of the outlet gas and the fuel reservoir

In the above figure it was shown some points of drastic drop in pressure, these points are
actually due to either turning off the gasifier after a sudden serious hazard signal or due to
mistakes during monitoring however these points does not affect the final results, both
pressures were kept in acceptable level.
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PDI-2 = Pressure lost of the fluidized bed
Figure 11.3 Pressure lost in the fluidized bed

PDI-201 = Pressure lost of the hot catalytic filter

Figure 11.4 Pressure lost in the hot catalytic filter
In both Figure 11.3 and Figure 11.4, it is shown that some error points have been occurred
during the testing procedure either because the feeding or changing the amount of the

dolomite material each 30 minutes and causes an operating of the rotary grate.

These points are negligible since it has no effect on the normal presented curve.
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T211, T212 = Temperatures in upper and lower parts of the hot catalytic filter

Figure 11.5 Temperatures in the hot catalytic filter
It is shown that the temperature of the hot catalytic filter is almost 400 °C, which is not nearly
enough for tar cracking and for this reason; the dolomite bed filter has been used as a dust
trapper.
The temperatures in the various parts of the black coke filter were recorded between 70 - 200
°C. Fig. 11.6 illustrates the variation of temperature inside this filter. It is clear that the
temperature T1 inside the black coke was not stable ranging from 60-120°C. This instability
is showing clearly the gas and tar sampling procedure effect.

T1=Temperature in the upper part of the filter (inlet gas)
T2= Temperature in the central part of the filter, T3= Temperature in the lower part of thefilter (the catalytic filter)

Figure.11.6 Temperature inside the black coke filter
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11.1 Gas samples analysis:

Black coke filter show a dlight activity for adsorption of the formative different gas
components athough the large surface area of the material particles and the fair experimental
conditions. The concentration per unit volume for O,, CO2 H,, CO, CH4and N, pre and post
the black coke filter is shown in Table 11.1 and the gas composition pre and post the black
cokefilter isshown in Fig.11.7.

Figure 11.7 Gas compositions per unit volume pre and post black coke filter per unit volume

Other gas components which were referred to as CxHy were performed in very small
concentrations, Ar, Ethylene and Propen recorded the highest concentration. Fig.11.8 shows
the concentration of CxHy pre and post the black coke filter.

It is very common to have massive amounts of some components of CxHy due the tar
destruction during the gasification process; this is visible in the components like Ethan,
Ethylene and Butadiene.

Table 11.2 show the gas sampling analysis pre and post black coke filter.

Gas
component

CO, H»

Per centage

. 18-22% 10-12 %
/unit volume

Table 11.1 Percentage of gas components post the black coke filter
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Figure 11.8 Concentration of CxHy pre and post the black coke filter per unit volume

Where the average LHV for the gas is equals to 4 - 7 MJm?®, the gas LHV pre and post the
black coke filter was ranging in between 3 - 4 MJm®, which is lower, compared to the
previous experiment using the char coal filter.

However the black coke filter does not cause a dramatic drop in the LHV which usually
accrues during gas cleaning procedure.

Fig 11.9 shows the gas LHV pre and post the black coke filter.
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Figure 11.9 Low heating value pre and post the black coke filter

02

H2

CcoO

CH4

N2

Ar**
Ethan
ethylene
acetylene
propane

Propen

butane
1,3-butadien
propane
1-buten-3-in
cyklopentadi
en

benzene

toluene

ostatni

suma

LHV,MJ/m3

A= After B=Before
Table 11.2 Gas sampling analysis pre and post black coke filter
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11.2 Tar samplesanalyss:

Tar samples analysis pre and post black coke filter show ineffectiveness of this material for

tar removal. For all tar classes it was found that no significant change either in amounts or
concentrations.

Table 12.3 shows concentration of tar classes pre and post the black coke filter.

In order to study the effect of the filter on tar adsorption four experiments has been done and
it was found out that even in low temperature, the different tar classes variation pre and post
filter took very small range of variation and this did not affect the amounts of PAH and the
components which appeared in very low concentration pre filter kept the same concentration

post thefilter.

Table 11.3 Concentration of tar classes and the filter efficiency for tar removal pre and post

Component

Pre-filter

Post
filter

Concentrati

on mg/m®

filter
Efficiency
%

Phenal

0.0

0.0

100%

Methyl phenol

0.0

0.0

100%

Benzofuran

41.6

30.0

25%

Dibenzofuran

8.4

6.1

25%

M ethylbenzofuran

14

1.0

93%

NaphthaBenzofuran

45.9

331

27%

Component

Pre-filter

Post
filter

Concentration mg/m®

filter
Efficiency
%

M ethylnaphthalene

0.9

0.6

44%

Biphenyl

294

21.2

11%

Acenaphthylene

0.0

0.0

100%

Fluorene

47.1

34.0

60%

Phenanthrene

25

18

68%

Phenanthrene

0.0

0.0

100%

Component

Prefilter

Post
filter

Concentration mg/m®

filter
Efficiency
%

Fluoranthen

0.4

0.3

100%

Pyrene

0.0

0.0

100%

M ethyl fluoranthen

4.1

3.0

100%

Methylpyrene

45

0.4

100%

Anthracene

0.0

0.0

100%

Fluorene

2.2

0.2

the black coke filter
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The black coke filter shows a poor ability for the cracking of Benzene, Toluene and
Naphthalene. It was shown that the concentrations of these materials still in the high level of
close to the conditions pre filter as shown in Figure 11.10.

Concentration %

B2 Al 2 A3

m Benzene mToluens m Styrens m Phenol m methylphencl

m dibenzofurans = minden+ indan naphthalene m methylnaphthalene biphenyl

m acenaftylen macenaphthene fluorene phenanthrene anthracene

fenylnaftaleny flucranthen2 pyren3 benzfluoreny methylfluoranten+methylpyren

Figure 11.10 Tar composition pre and post black coke filter
Fig. 11.11 shows the tar components without Benzene. It is shown that only a small amount
of Phenol has been adsorbed, the only obvious change has been accrued on the Phenanthrene.

Figure 11.11 Tar composition without Benzene pre and post black coke filter
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10:40- 12:15- 13:10- 13:50- 10:47- 12:15- 13:10- 13:50-
11:06 12:35 13:40 14:30 11:06 12:25 13:40 14:30
27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20
08 08 08 08 08 08 08 08

volume of gas, | 102.0 101.0 120.0 100.0 126.0 105.0 150.0 100.0
Volume of acetone, ml 184 140 180 152 205 139 170 136

27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20 | 27/05/20
08 08 08 08 08 08 08 08

taking place: B1 B2 B3 B4 Al A2 A3 A4
Benzene
Toluene 440
m + p + o-xylene + ethylbenzene +
phenylethyn

Styrene 68

Description / start collecting

sample (marked)

date

35

C3-benzene summa (nas + NENAS) 18
others1 1
BTX summa

Oxygen summa 50
Phenol 25
Sample B3
methyl phenol 0

Dibenzofuran * 24

Nitrogen 1

inden + indane 53

naphthalene
methylnaphthalene 38
ALKYLNAPHTHALENES (Alkyl> =
C2)

biphenyl 10
Acenaphthylene 27

17

acenaphtene 5 4 11

fluorene
PAH oM /Z = 165.166
Phenanthrene

anthracene

methylfenantren 4 H-cyclopenta [def]
Phenanthrene

fenylnaftaleny

fluoranthen2

pyren3

benzfluoreny

methylfluoranten+methylpyren

PAH o4 kruzich** (m/z=226,228)

summartar (non-BTX)

A= After B= Before
Table 11.4 Tar analysis pre and post black coke filter

A summary of the results obtained using black coke filter is shown in Table 11.4 and the
efficiency in different operating temperaturesillustrated in Table 11.5.

85



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

Gasification Temperatur e 800-850 °C

Black coke Filter
Temperature
Efficiency of 400 ml 55% 46% 51% 48%

70°C 90°C 100°C 130°C

Table 11.5 Black coke filter efficiency as afunction of filter temperature

12. Results and discussion of Active carbon Filter

A series of experimenta studies has been done on the active carbon material as a filter
through the biomass gasification process. All the experiments show the successful and
efficient utilization of this material.

Temperatures in the different part of the gasifier 800-850 °C as shownin Fig.12.1

T1=Temperature in the upper part of the gasifier, T2=Temperature of central part of the gasifier
T3=Temperature in the lower part of the gasifier

Figure 12.1 Temperature in the different part of gasifier
Where the temperaturs inside the different parts of hot catalytic filter were 300-450 °C as
shown in Fig.12.2.

T212= Temperature in the lowest part of the reactor, T213= Temperature in the middle part of the reactor.
T214= Temperature in the upper part of the reactor,

Figure 12.2 Temperatures of the hot catalytic filter
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The pressure of the fuel reservoir and the pressure of gas in outlet of the gasifier were
approximately the same. The peak record of both was about 20 kPa as shown in Fig.12.3.

PI-1= Pressure lost of the fuel resevior
PI-2= Pressure lost of outlet gas

Figure 12.3 Pressure of the fuel reservoir and gasin outlet of the gasifier
The pressure lost through the gasification plant was roughly 1 kPa as shown in Fig.12.4

L0 T—

looa

200

00 4

400

Pressure different (Pa)

20 44

L ; : . .
700 800 900 1000 110D 1300 1300 MO0 1500 16:00 1700

Time (h)

Figure 12.4 Pressure lost through the gasification plant
The temperature in the central part of the active carbon filter which is denoted by T3 was
recorded between 75-105 °C as showsin Fig.12.5. (Note: T1 and T3 inside the active carbon
filter has been lost due to some error in the monitering system during the experemital work.)

Gas component N, CO;, H, (O]}

Per centage /unit volume 55-59 % 16-20% 10-16% 0.12- 0.14%

Table 12.1 Gas composition post active carbon filter

87



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

Figure 12.5 Temperature in the central part of the active carbon filter

12.1 Gas samples analysis

Analysis of gas using the active carbon filter show diffrent results for each of the formative
component where the amounts of CO,CO, and CH, has been influinced by the filter and the
persentage concentration has been decreased by 5 - 10% , the concentration of other
components remain in the same level before and after the filter. Table 12.1 illustrates the
percentage of gas components using the active carbon filter.

Fig 12.6 shows the gas composition pre and post the active carbon filter.

Figure 12.6 Gas composition concentrations per unit volume pre and post active
carbon filter
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Figure 12.7 Concentration per unit volume of C,Hy pre and post active carbon filter

02

H2
CO
CH4
N2
Ar**
Ethan

ethylene

acetylen
e

propane

Propen

butane
1,3-
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1-buten-
3-in

cyklope
ntadien

benzene

toluene

suma

LHV.M
J/m3

Table 12.2 Gas composition pre and post active carbon filter

Other gas components denoted as CxHy pre and post the active carbon filter recorded as
shown in Fig.12.7 .The amounts of Ar, Ethan and Ethylene were almost around the same
level however other components slightly decreased and some were completely disappeared.

The low heating value of the resultant gas obtained was in an acceptable level that it reached
5MJIm? which is possible to consider as a successful method for gas cleaning since the
normal LHV of the producer gas is 4 - 7 MJm?®, and the acceptable value of solid particles
(soot, dust and ash) is 1.5 g/m®, calculated at T=0°C and P=101 kPa, where it is very possible
for any cleaning process to result a sudden drop in LHV value.

Fig 12.8 shows the resultant LHV pre and post the active carbon filter.

LHY
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3.000 +

2.000 +

1000 +

0000 2

11:00 44
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00 43.0p —

1400 4500 |

Time (h)

Figure 12.8 LHV (MJm?®) pre and post active carbon filter

90



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

12.2 Tar samplesanalysis

Tar samples analysis using the active carbon material show a significant success due to the
impressive results which indicates the capability of this material for tar cracking during
biomass gasification process. The percentage of cracking for aimost all the classified tar
components where the amounts and the concentration have been deducted amost zero.
These results applied to heterocyclic aromatics - Class |l like pyridine, phenol, cresol, and
quinoline, Class 11 - aromatics (1 ring) like xylene, styrene and toluene, light PAH (2, 3 ring)
- ClasslV like naphthalene; methyl-naphthalene;  biphenyl;  ethenylnaphtalene;
Acenaphthylene; acenaphtene; fluorene; Phenanthrene and anthracene as well as the heavy
PAH (>3 rings) like fluoranthen; Pyrene; benzo-anthracene; chrysene; benzo-fluoranthene;
benzo-Pyrene; perylene; Indeno-pyrene; Dibenzo-anthracene and Benzo-perylene. Table
12.3illustratesthe amount and concentration pre and post the active carbon filter.

Prefilter Post filter

Tar removal
efficiency %

Component

Concentration mg/m® Concentration mg/m®

147.
Phenol 0 100%

M ethyl phenol 0,0 100%
Benzofuran 100%

Dibenzofuran ' 100%

41
M ethylbenzofuran 100%

Naphtha Benzofuran

0.0

100%

Component

Prefilter

Post filter

Concentration mg/m®

Concentration mg/m®

Tar removal
efficiency %

M ethylnaphthalene

72.9

0

100%

Biphenyl

29.2

0

100%

Acenaphthylene

93.3

100%

Fluorene

27.2

100%

Phenanthrene

23.2

100%

Methylphenantren

0.8

100%

Component

Prefilter

Post filter

Concentration mg/m®

Concentration mg/m?®

Tar removal
efficiency %

Fluoranthen

2.3

100%

Pyrene

44

100%

Methyl fluoranthen

0.0

100%

M ethylpyrene

0.0

100%

Anthracene

8.0

100%

Fluorene

2.3

100%

Table 12.3 Tar composition and tar removal efficiency % pre and post filter
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Analysis results show that most the tar components in spite of classes were completely
adsorbed within the active carbon material filter.

It was found that even the concentration of Benzene and Toluene has been decreased to
recognizable values thisis shown in Fig. 12.9.

Figure 12.9 Tar components per unit volume pre and post active carbon filter

Fig.12.10 shows the concentration percentage of each tar component pre and post the active
carbon filter without Benzene.

Figure 12.10 Tar components per unit volume pre and post active carbon filter without
Benzene
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The tar removal using active carbon materia in temperatur ranges between 70 - 200 °C was
completly sucsseful for different PAH 4,5,6 circles that it is possible to confirm 100%
efficiency. This sucsses encouraged to continue the experimental work to get a new series of
data by examinining different range of temperatures and different amount of active carbon
material.

Average tar concentration analysis for the three experiments pre and post the active carbon
filter isillustrated in Table 12.4.

Description / start collecting

sample (marked)

volume of gas, |

Volume of acetone, ml

date

taking place:

Benzene

Toluene

m + p + o-xylene + ethyl benzene +
phenylethyn

Styrene

C3-benzene summa (nas + NENASs)

others1

BTX summa

oxygen summa

Phenol

Mathylphenol

Dibenzofuran *

Nitrogen

inden + indane

naphthalene

methylnaphthalene

ALKYLNAPHTHALENES (Alkyl> =
c2)

biphenyl

Acenaphthylene

acenaphtene

fluorene

PAH oM /Z =165.166

Phenanthrene

anthracene

methylfenantren 4 H-cyclopenta [def]
Phenanthrene

fenylnaftaleny
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fluoranthen2

pyren3

I benzfluoreny

I methylfluoranten + Methylpyrene

PAH circlesof 4 ** (m/z =226.228)

PAH 5circles*** (m/ z = 252)

summartar (non-BTX)

Table 12.4 Tar analysis (average) pre and post the active carbon filter

12.3 Second series of active carbon filter experiments— Results and discussion

Examining the active carbon filter in a new series of experements was ramarkable in order to
study the ability of this materile to handle the different ranges of temperature using only
200ml of active carbon material. Thiswill enable to study both inflouance of temperature and
amount on tar cracking. Table 12.5 shows the experimental conditions for the second series
of experiments.

Experimental conditions Exp.no.1 | Exp.no.2 | Exp.no.3 | Exp.no.4
Temperature of the active carbon filter 70°C 100°C 150° C 200° C
Active carbon sample weight 50g 50g 50g 509
Active carbon particle size 0.2 mm 0.2mm 0.2 mm 0.2 mm
Gas flow rate through the hot catalytic filter | 5lit/sec | 5lit/sec | 5lit/sec | 5lit/sec
during sampling
Amount of gas for tar sampling 100 lit 100 lit 100 lit 100 lit

Table 12.5 Experimental conditions of the second series of experiments with active carbon
filter

Six experiments has been done in different six temperatures starting from 70° C - 200°C, it
was found that all tar components of classes I, IV and V are entirely adsorbed by the active
carbon material with a percentage of 100% as shown in Table 12.6 shows tar classes’
concentration pre and post active carbon filter.

28/04/ 28/04/

Date: 200910 200912
Amount of

Acetone, ml e 20
Place of Ad A6
sample:

Class 2
Class4
Class5

Sum of Tar
(without BTX)
BTX sum -
Class3

B=before the filter
Table 12.6 Tar classes (average) concentration pre and post active carbon filter

A=after the filter
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The temperature distribution inside the active carbon filter during the experiment shown in
Fig. 12.11.

Figure 12.11 Temperature distributions inside the active carbon filter

Figure 12.12 Concentration of tar per unit volume pre and post the active carbon filter
Fig.12.12 shows the concentration of the different tar classes’ pre and post the active carbon

filter. It is shown that the class |11 of tar components is the only component remained in the
samples with lower concentration where the others were disappeared.
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12.4 Third series of active carbon material filter experiments— Results and discussion

In order to study the period for the active carbon filter to reach the saturation, ‘the time for
the material to loss it’s ability to absorpe an extra amounts of tat components as a result of
pores blockage, a series of experermints were achieved using 200ml of active carbon in a
sereies of different temperature experemts. It was found that there was no signs of pores
blockage on the resultant data obtained which supported the idea of the utilization of active
carbon material as a strong candidate for tar cracking in biomass gasification

06/05/200 | 06/05/200 | 06/05/200 | 06/05/200 | 06/05/200 | 06/05/200 | 06/05/200 | 06/05/200

Date: 9 9 9 9 9 9 9 9
Amount of Acetone, ml 176 110 121 155 100 100 100 150
Place of samples: Bl B2 B3 B4 Al A2 A3 A4
Class2 305 387 298 277 8 12 4 9
Class4 1926 1896 1356 1785 7 6 12
Class5 31 12 16 29 0 0 1 1
sum of Tar (without
BTX)
BTX sum - Class 3
A= After B= Before

Table 12.7 Concentration (Average) of different tar classes pre and post the active carbon

filter

The results obtained showed that the tar components of classes 11, 1V and V were completely
adsorbed by the active carbon material where the class 111 components remained in lower
concentration. These results obtained in repeated use are amost the same as the results
obtained after the utilization of the active carbon filter for the first time which means that the
active carbon material has the ability to handle enough a mounts after a multiple use. This
particularity has a massive importance in the industrial utilization of the active carbon
material in the purification of gas produced from biomass gasification especialy if the
resident time of this material has been studied.

Table 12.8 shows the efficiency of the active carbon material in different range of
temperatures.

Fig. 12.13 shows the tar classes’ concentration pre and post active carbon filter. It is clearly
shown that big differences achieved pre and post this material.

Gasification Temperature 800-850 °C
Filter Temperature 70°C 90°C 100°C 130°C

Efficiency of 400 ml 95% 96% 97% 98%
Efficiency of 200 ml 96% 96% 97% 98%

Table 12.8 Efficiency of different amounts of active carbon material during the experiments
Asafunction of filter temperature

96



Brno University of Technology — Faculty of Mechanical Engineering — Energy Institute
Doctoral Thesis - Purification of producer gas in biomass gasification using carbon materials

Figure 12.13 Tar classes’ concentration per unit volume pre and post active carbon
filter

12.5 Specifications of active carbon material after multiple utilization

Active carbon material is a pores material features with a huge serfacr area and the utilization
of this material for tar cracking in biomass gasification depends mainly on the ability of this
material to adsorp the different high density PAH components taking in account that the
multiple utilization may cause theses components may couse blockage of active carbon pores.
It was found that there is no change in color, size, hardness or physical properties of the
material after multiple uses. It is very possible to reactivate and reuse this material since it
will present a practical solution involves an economical purpose for gas purification.

Fig. 12.14 shows the active carbon material pre and posts multiple uses in the experiments.

Figure 12.14 Active carbon material pre and posts multiple usesin the experiments
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13. Conclusions

[1] The utilization of biomass feed stocks and wooden residue for gasification process to
produce syngas suitable for the implementation of power plants of electricity
generation.

[2] Since the obtained gas has many types of unwanted contaminants. It was necessary to
derive an effective cleaning method for gas purification from Dust, Chemical
contaminants and tar components.

[3] Three kinds of carbon materials has been use successfully and efficiently, char coal,
black coke and active carbon. The three materials gave different results.

[4] Char coal material gave acceptable results in both gas and tar components
purification, thanks to its fragile nature and the huge surface area due to porous of this
material.

[5] Black coke material is an inefficient material for tar cracking however it has a good
ability for gas contaminants adsorption.

[6] Active carbon is the best material tasted in a range of temperatures and a series of
efficient experiments. This materia gave the desired results which encouraged
working further in order to investigate the maximum ability of this material either for
tar cracking in another temperature series or the saturation degree suitable to be
known for the industrial purposes. Fig 13.1 shows the efficiency of 400ml of each
carbon material versesthe filter temperature.

Figure 13.1 Carbon filter efficiency as afunction of filter temperature
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The maximum efficiency achieved was using the active carbon material with the amount of
400ml at the temperature of 110°C where the maximum efficiency of the 200ml of active
carbon material was at the temperature of 100°C as shown in Fig.13.2.

Figure 13.2 Active Carbon filter efficiency as afunction of filter temperature
14. Evaluation of experimental and theor etical results

Since the carbon materials adsorption are following the BET Theory put forward by
Brunauer, Emmett and Teller explained that multilayer formation which isthe true picture of
physical adsorption and the Freundlich Adsorption Isotherm which is mathematically
expressed as.

— = Or: -
m m
Where:

X = mass of adsorbate

m = mass of adsorbent

p = Equilibrium pressure of adsorbate

¢ = Equilibrium concentration of adsorbate in solution.
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K and 1/n are constants for a given adsorbate and adsorbent at a particular temperature.

Figure 13.3 Freundlich Adsorption Isotherm
The theory is a rule of the physical adsorption of gas molecules and serves the basis for an
important analysis technique for measurement of specific surface area of a material. Under
the conditions of high pressure and low temperature, thermal energy of gaseous and would be
available per unit service area. The activated carbon adsorption capacity parameters and
properties can be described as:

/7

s Capacity parameters. determine loading characteristics of activated carbon.
Maximum adsorption capacity of activated carbon is only achieved at equilibrium.

« Kinetic parameters. determine the rate of adsorption and have negligible effect on
adsorption capacity.

< Surface Area: Adsorption capacity is proportional to surface area (determined
by degree of activation).

< Pore Size: Correct pore size distribution is necessary to facilitate the
adsorption process by providing adsorption sites and the appropriate channels

to transport the adsorbate.

< Particle Size: Smaller particles provide quicker rates of adsorption.

Note: Total surface area is determined by degree of activation and pore structure and
not particle size.

< Temperature: Lower temperatures increase adsorption capacity except in the
case of viscous liquids.

< Concentration of Adsorbate: Adsorption capacity is proportional to
concentration of adsorbate.
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< pH: Adsorption capacity increases under pH conditions, which decrease the
solubility of the adsorbate (normally lower pH).

% Contact Time: Sufficient contact time is required to reach adsorption
equilibrium and to maximize adsorption efficiency.

15. Suggestions for futurework

[1] Testing the resident life time for the active carbon material to investigate the
efficiency of thismaterial for very frequent utilization.

[2] Modeling of the equipment for industrial work is very possible due to the successful
results obtained and the simplicity of both design and experimental procedure.

[3] The utilization of carbon materials frequently for gas purification in industrial plants
will be no longer expensive because of the ability of either reactivation or using the
saturated material as afeed stock during the gasification process. Thiswill support the
procedure economically.

[4] Resize the filter to fit the industrial requirements and or increase the filter dimensions
in order to fit further amounts of carbon material if this will help according to the
industrial requirements.

[5] To reach the optimal design it is possible to change the gas inlets and outlets if it is
necessary to obtain the perfect performance.

[6] Improve the design using two or three stages of carbon material filters to reach the
acceptable levels suitable with different industrial requirements.
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List of symbols
Ash content of fuel [kg / kg dry biomass]
Fm Weight fraction of moisture produced in combusted
gases
hw Heat of vaporization of water (2257 kJ kg™ )
Q MJIm?
Qs MJIm®
r Contents of water in the fuel
\Y; Volume of gas adsorbed at equilibrium (m°)
P Gas equilibrium pressure (kPa)
V (P) Predicated amount of gas adsorbed at P
V. Langmuir volume parameter (m°)
P. Langmuir pressure parameter (m®)
8 Number of sites of the surface
K The equilibrium constant for distribution of adsorbate
=3 Saturation pressure (kPa)
R Gas constant JK mol
AvpH Enthal py of vaporization (J)
DgesH Enthal py of desorption (J)
Vinono The adsorbed volume of gas at high pressure (m°)
AG, Gibb’s free energy (kJ/mol)
The heat of reaction
A The heat of combustion of species
n; The moles of species
Cpi The specific heat capacity of species (JK).
Fuel feeding rate [kg dry biomass/ h]
Carbon content of fuel [kg C / kg dry biomass]
Gasification agent feeding rate [men/h]
Carbon content of gasification agent [kg C / m3n]
Producer gas generation rate [m3n/h]
Carbon content of non — condensable gases
Tar concentration in producer gas [kg C / m3n]
Carbon content of tar [kg C / kg tar]
Particles concentration in producer gas [kg C / m@n]
Carbon content of particles [kg C / kg dry biomass]
Bottom ash rate [kg dry ash / h]
Carbon content of bottom ash [kg C / kg dry ash]
Producer gasyield [m3,/ kg dry biomass]
X Mass of adsorbate (Kg)
m Mass of adsorbent (Kg)
p Equilibrium pressure of adsorbate
C Equilibrium concentration of adsorbate in solution.
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