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ABSTRACT

In the literature a differential second—order nonlinear Emden—Fowler equation
yll :l: xaym — 0

is often investigated, where o and m are constants.
This thesis deals with a discrete equivalent of the second order Emden-Fowler dif-

ferential equation
A?u(k) £ k*u™(k) =0,

where k € N(ko) := {ko,ko + 1,....} is an independent variable, ko is an integer
and u: N(ky) — R is an unknown solution. In this equation, A?u(k) = A(Au(k)),
Au(k) is the the first-order forward difference of u(k), i.e., Au(k) = u(k+1) —u(k),
and A?(k) is its second—order forward difference, i.e., A%u(k) = u(k + 2) — 2u(k +
1) + u(k), o, m are real numbers. The asymptotic behaviour of the solutions to
this equation is discussed and the conditions are found such that there exists a
power-type asymptotic:

u(k) ~ 1/k°,

where s is some constant.

We also discuss a discrete analogy of so-called “blow-up” solutions in the classical
theory of differential equations, i.e., the solutions for which there exists a point x*
such that

. y(@) = oo,

where y(x) is a solution of the Emden-Fowler differential equation

with s # 1 being a real number.
The results obtained are compared to those already known and illustrated with

examples.

KEYWORDS

Discrete equation, Emden-Fowler equation, nonlinear equation, system of discrete

equations, asymptotic properties, retract principle.



ABSTRAKT

V literature je casto studovana Emden-Fowlerova nelinearni diferencialni rovnice
druhého radu

yll :l: l,aym — 0’

kde o a m jsou konstanty.
V disertacni praci je analyzovana diskrétni analogie Emden-Fowlerovy diferencialni
rovnice

A2u(k) + k*u™ (k) = 0,

kde k € N(ko) := {ko, ko+1, ....} je nezavisla proménnd, kq je celé ¢islo a u: N(kg) —
R je feseni. V této rovnici je A%u(k) = A(Au(k)), kde Au(k) je diference vpied
prvniho fddu funkce u(k), tj. Au(k) = u(k+1) —u(k) a A?%(k) je jeji diference vpried
druhého Fadu, tj. A%u(k) = u(k +2) —2u(k + 1) +u(k), a @, m jsou redlna ¢isla. Je
diskutovano asymptotické chovani feseni této rovnice a jsou stanoveny podminky,

garantujici existence reseni s asymptotikou mocninného typu:
u(k) ~ 1/k*,

kde s je vhodna konstanta.

Je také zkoumana diskrétni analogie tzv. “blow-up” feSeni (neohranicenych feseni)
znamych v klasické teorii diferencidlnich rovnic, tj. feseni pro ktera v nékterém bodé
r* plati

. y(@) = oo,

kde y(x) je feseni Emden-Fowlerovy diferencialni rovnice

kde s # 1 je realné ¢islo.

Vysledky jsou ilustrovany priklady a porovnavany s vysledky doposud znamymi.

KLIiCOVA SLOVA

Diskrétni rovnice, Emden-Fowlerova rovnice, nelinearni rovnice, systém diskrétnich

rovnic, asymptoticke chovani, princip retraktu.
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1 Introduction

(Classical differential equations are widely used in different processes. For example,
the input continuous signal of the linear system x(¢) and the corresponding output
signal y(t) can be connected by some differential equation. But if we want to re-
place a continuous variable t with a discrete one, it leads to the replacement of the
differential equation with a difference equation.

To analyse difference equations, we can also use different analytical methods,
most of them using approaches similar to those of the classical differential equation.
We can also use numerical methods of solving obtaining a result in the form of a
numerical sequence, therefore, the difference equation in this case is perceived as
an algorithm for the functioning of a discrete system for which a suitable computer
programs can be devised.

We also mention the contribution of the mathematicians Bohner M., Georgiev,
S.G. and Peterson A.C [8], [9] and [10] to the creation of a theory that combines
both classical calculus and the theory of difference equations, expanding the scope
of application to continuous scales, as well as allowing us to consider both more
complex discrete scales and a combination of discrete-continuous time scales.

In the doctoral thesis we discuss the asymptotic properties of the Emden-Fowler
discrete equation. This equation is an extension to the theory of difference equation
of a well-known Lane-Emden-Fowler differential equation, which has a great deal of
applications in physics, cosmology, meteorology and chemistry. In [22], the form of

this equation was

d*u  2du .

where 7 is the radius of a polytropic gas sphere, n = 1/(k — 1), with k being the
polytropic index and [ some physical constant.

The change of variables u = y/r transforms (1.1) into the following equation
y' + BAri Ty = 0.
Now we get the form that is often used in mathematical literature:
y'+atlyl" Ty =0,

where k and o are constants. Later, this equation was generalized for the case of

n-th order differential equation

y™ + p() |y|*sgny = 0, (1.2)

where n > 2 is an integer, p(z) is a continuous function, and k is a constant.
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Different properties of the solutions of Emden-Fowler differential equations were
investigated by many authors. The R.Bellman’s monograph [6] had a great influ-
ence on the investigation of the Emden-Fowler equations, where he discussed the
asymptotic properties of the solutions tending to infinity. F.V.Atkinson in [5] also
made a significant contribution to the theory of Emden-Fowler equations. The list
of works devoted to the Emden-Fowler type equations is very wide, we will mention
some of them: H. J. Lane [38], H. Fowler [24], I. T. Kiguradze, T. A. Chanturia [34],
V. A. Kondratev, V.S. Samovol [35], [.V. Astashova (3], H. Goenner, P. Havas [25],
S. C. Mancas, H. C. Rost [39], C. M. Khalique [28] and P. Guha [27].

12



1.1 The current state

In previous chapter, we have already mentioned that there are many papers and
books on the Emden-Fowler differential equation. However, turning our attention
to the discrete case, we see that there are not so many articles about this type of
equation. We can refer a paper by L. Erbe, J. Baoguo and J. Peterson [23] dealing
with non-oscillatory solutions of Emden-Fowler type discrete equations providing
asymptotic properties of a similar equation on time scales.

V. Kharkov (we refer to [29, 30, 31, 32, 33]) has discussed, except other, the

asymptotic properties of the equation of Emden-Fowler type

A2y, = apn|Yn 1] €Y1,

where o € {—1.1}, 0 € R\{0, 1} and the sequence p,, satisfies the following condition
nAp,

lim
n—-+oo pn

=k keR\{-2-1-o}.

In the thesis we will discuss the asymptotic properties of the solutions to the
another discrete equivalent of the Emden-Fowler equation. Let ky be a natural
number. By N(ky) we denote the set of all natural numbers greater than or equal
to ko, that is,

N(ko) := {ko, ko + 1,...}.

We will study the asymptotic behaviour of the solutions of a second-order non-linear

discrete equation of Emden-Fowler type
A*u(k) + k*u™ (k) = 0, (1.3)

where u: N(ky) — R is an unknown solution, Awu(k) is its first-order forward differ-

ence, i.e.,

Au(k) = u(k+1) — u(k), (1.4)
A?%(k) is its second-order forward difference, i.e.,
APu(k) = A(Au(k)) = u(k +2) — 2u(k + 1) + u(k),

and a, m are real numbers. A function u = u*: N(ky) — R is called a solution of

equation (1.3) if the equality
A?u (k) £ k*(u* (k)™ =0

holds for every k € N(ko).
Equation (1.3) is a discretization of the classical Emden-Fowler second-order

differential equation (we refer, e.g., to [6])

y" £ a%y™ =0, (1.5)

13



where the second-order derivative is replaced by a second-order forward difference
and the continuous independent variable is replaced by a discrete one.

One special case of the discrete Emden-Fowler type equation has been discussed
in a recent article by Christianen, M.H.M., Janssen, A.J.E.M., Vlasiou, M., and
Zwart, B. [12], which describes the charging process of electric vehicles, considering
their random arrivals, their stochastic demand for energy at charging stations, and
the characteristics of the electricity distribution network. The equation

k
Vj+1 = 205 + 01 = u
is considered, where 7 = 1,2,...; vg = 1, v;1 = 1 + k proving that there exists a
solution with “logarithmic” asymptotic behaviour, i.e.

v; ~ j(2k ()",

when j — oo.

14



1.2 Preliminaries

This section introduces the notation, definitions and theorems used in the thesis.

Definition 1. A function wu,,, : B — R is said to be an approzimate solution to
equation (1.3) of an order g where g : N(kg) — R if

lim [A3uy, (k) £ ko™ (k)]g(k) = 0.

k=00 upp

If the main term (i.e. the term being asymptotically leading) in w,,,(k) is a

power-type function, we say that it is a power-type approximate solution.

Definition 2. We say that a function x(k) is of order O(y(k)) if there exists a
constant K, such that
(k)| < [M(y(k))|

on N(kp). We use the shorter notation O(y(k)).

Definition 3. We say that a function z(k) is of order o(y(k)) if y(k) # 0 for all
sufficiently large k£ € N(kg) and

im 2 _
Sy

This property is more simply written as z(k) = o(y(k)).

In computations below, we will also use the following modification of the Landau

order symbol big “O”.

Definition 4. Let f: N(kg) — R, g: N(kg) — (0,00). We write f = O*(g) if there

exists an index k; > ko such that inequality
|f(k)] < g(k), VEk e N(k)
holds.

Definition 5. A solution of the equation (1.2) is called a blow-up one if there exists

some point zy € R, such that

m_l}lg(l)l_o y(x) = 0.

15



1.2.1 Binomial series

In the proof of the main results, we use the following formula for the decomposition
of a binom into a “binomial series”.
Let r e R, p € R, k € N(kg) and let

.
<1
2 <
Then,
N P\ P\ ()7 p\r
(1 * k) =1t <1> P <2> R <3> B <l>kl T (1)
where

<z;> =plp—1)..(p—1+ 1)%

1.2.2 Discrete retract principle

In the proofs of the results on the asymptotic behaviour of solutions to equation (1.3),
we use an auxiliary apparatus taken from [13, 15| and described below. Consider a

system of discrete equations
AY (k) = F(k,Y(k)), k € N(ko) (1.7)
where Y = (Y, ...,Y,_1)T and
Fk,Y)=(F(k,Y),...,F,(k,Y)": N(ky) x R" — R". (1.8)

A solution Y = Y(k) of system (1.7) is defined as a function Y: N(ky) — R”
satisfying (1.7) for each k € N(kp). The initial problem

Y(ko) =Y’ =(Yy,....Y, )" e R"

defines a unique solution to (1.7). Obviously, if F'(k,Y) is continuous with respect to
Y, then the initial problem (1.7), (1.8) defines a unique solution Y =Y (ko, Y°)(k),
where Y (kg, Y°) indicates a dependence of the solution on the initial point (kg, Y°),
which depends continuously on the value Y°. Let b;,¢;: N(kg) = R, i =1,...,n be

given functions satisfying
bz(k') < Ci(k'), ke N(k’o), 1=1,....n. (19)
Define auxiliary functions B;,C;: N(ky) Xx R =R, i =1,...,n as

BZ(/{J, Y) ==Y, 1+ bz(k'), Cz(k', Y) = Y;'_l — Cz(k') (110)
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and auxiliary sets

Qf :={(k,Y): k € N(ko), Bi(k,Y) = 0, B;(k,Y) < 0,C,(k,Y) <0,

O = {(k,Y): k € N(ko), Ci(k,Y) = 0, B;(k,Y) < 0,Cp(k,Y) <0,

where i = 1,...,n.
Playing a crucial role in the proofs and being suitable for applications, the fol-

lowing lemma is a slight modification of [13, Theorem 1] (see [15, Theorem 2] also).

1.2.3 Auxiliary result of a Liapunov type
A result formulated below is proved in [14] by Liapunov-like reasonings.

Definition 6. The set () is called the reqular polyfacial set with respect to the
discrete system (1.7) if

bi(k+1)—bi(k) < Fi(k,Y) < ¢;i(k+1) —b;(k), (1.13)
for every i = 1,...,n and every (k,Y) € QY and if

bi(k+1) —ci(k) < Fi(k,Y) < ¢;(k+1) —¢;(k), (1.14)
for every i = 1,...,n and every (k,Y) € QL.

To formulate the following theorem, we need to define sets
Qk)=A{(k,Y),Y=MN,....Y,) e R"bi(k) < Y; <¢(k),i=1,...,n},
Qik)={Y): Y eRbi(k) <Y, <ci(k), i=1,...,n}.

Theorem 1. [14, Theorem j] Let F': N(ko) x Q — R™. Let, moreover, Q be reqular
with respect to the discrete system (1.7), and let the function
Gi(w):=w+ Fi(k,Yr,....,Yi,w, Y, ..., Y,)

be monotone on Q;(k) for every fived k € N(ky), each fizredi € {1,...,n}, and every
fixed

(Yiyoo Yt Yirn, ooy Vo)
such that (k,Y1,...,Yi 1,w, Y q,...,Y,) € Q. Then, every initial problem Y (kq) =
Y* with Y* € Q(ko) defines a solution Y = Y*(k) of the discrete system (1.7
satisfying the relation

Y*(k) € Q(k)

for every k € N(ko).

17



1.2.4 Auxiliary results of an Anti-Liapunov type

Now we formulate a result which is in [13] proved by a retract method sometimes
called an Anti-Liapunov method due to the assumptions used being often an oppo-
site to those used when Liapunov method is applied (such an approach goes back
to Wazewski, who formulated his topological method formulated for ordinary differ-
ential equations). The following theorem is a slight modification of [13, Theorem 1]
(see [15, Theorem 2] also).

Theorem 2. Assume that the function F(k,Y) satisfies (1.7) and is continuous
with respect to Y. Let the inequality

Fi(k,Y) <bi(k+1)—bi(k) (1.15)
hold for every i =1,...,n and every (k,Y) € QY. Let, moreover, inequality

hold for every i = 1,...,n and every (k,Y) € QL. Then, there exists a solution
Y =Y(k), k € N(ko) of system (1.7) satisfying the inequalities

bz(k') < K_l(k) < Cz(k')

for every k € N(ko) and i =1,...,n.

18



1.3 The thesis aims

First, Chapter 2 gives us all the technical details of transforming the Emden-Fowler
difference equation (1.3) into a system of two first-order difference equations. We will
need this transformation to prove the theorems about the power-type asymptotic
behaviour.

Then, in Chapter 3 we get sufficient conditions on coefficients a and m of the
Emden-Fowler difference equation (1.3), such that there exists a solution with a
power asymptotic behaviour. Here we get the results using constants as upper and
lower functions. The results of this chapter were published in [4, 36].

Next Chapter 4 shows us that if we change upper and lower functions we can
expand the area of appropriate conditions. We divide this chapter into 4 different
parts, depending on values s+ 1 and ms. The results of this chapter also include the
conditions on « and m, such that there exists a power-asymptotic solution. Some
of the results of this chapter were published in [16, 17, 20, 37].

In Chapter 5 we construct the discrete analogy of the blow-up solutions of the
Emden-Fowler equation. Part of the results corresponding to this chapter was pub-
lished in [18, 19].

Finally, in Chapter 6, some conclusions and comparisons are given.

19



2 Preliminary calculations and theorems

2.1 Constructing an asymptotic power-type solu-

tion.

In this chapter we will construct an approximate solution to equation (1.3) in a
power form.
Let us define

5= ;ii (2.1)

a = [Fs(s+ 1))/ (2.2)

and ) M 0
s+2—ms '

Remark 1. We need to assume m # 0, m # 1, s+2 # 0, and s + 2 —ms # 0, that
is, m#0,m#1, a# —2, and a # —2m.

Remark 2. If, in formula (2.2), either the upper variant of sign is in force (i.e. —)
and s(s+ 1) > 0 or in (2.2) lower variant of sign in force (i.e. +) and s(s+ 1) < 0,
then the constant m has the form of a ratio m;/my of relatively prime integers my,
ma, and msy is odd, the difference m; — my is odd as well. If this convention holds,
the formula (2.2) defines two or at least one value. As equation (1.3) splits into two
equations, when formulating the results, we assume that a concrete variant is fixed
(either with the sign + or with the sign —).

Remark 3. The equation (1.5) has an exact solution

a

= — > 0. 24
y=—_ (2.4)

Quite natural is an expectation that the discrete equation of the Emden-Fowler
type (1.3), having the formal form coinciding with equation (1.5), that is the equa-
tion

A?u(k) £ k*u™(k) =0,

should have an exact solution of the form (2.4) as well, that is, in our case an exact

solution
a

u(k) = = k € N(ko). (2.5)
But this is no more true because of the different character of both equations. Un-
fortunately, even looking for an exact solution of the form (2.5) with the values of
a and s possibly different from those given by formulas (2.1) and (2.2) does not

lead to the desired result. So, we conclude that, unlike the classical Emden-Fowler

20



type differential equation, the discrete analog does not have an exact solution of this

form.

Theorem 3. Let a, b and s be defined by the formulas (2.1) — (2.3). Then, the

function
a b
Uapp (k) X s + oot

is an approximate power-type solution of equation (1.3) of order g(k) = k3.

(2.6)

Proof. We are looking for a solution of the form (2.6). Substituting u(k) = ugp,(k)
in equation (1.3) we get
a 2a a b 2b b

G2y hrl)y BT Er erpn D en

ika<3+ b) ~0

or, equivalently,

e )

b (4 2\~ 2 (1 Ly~ A A
+k8+1l( +E) - (+E) +] kms—a[+&] =0

Assuming k, sufficiently large and using asymptotic decompositions of the terms in

square brackets given by (1.6), we derive

% _1 B % N 23(23— 1) 4s(s —l—31k)3(s+2) L0 (%)]
gt o ()
+ka+1 :1_2(32—1)+2(s—l—1k)2(s+2)+0(%>]
_szl _1—821“3“2)25”) O(%)]ﬂfsbﬂ
ik:f_a :1+Z;—7Z+O(%)] — 0. (2.7)

It is easy to see that the coefficients of the terms k=% and k~*~! equal zero and the

last equality reduces to

a [23(3—{—1) 4s(s+1)(s +2) —}—0(1)]

AR 353 K
~2a |s(s+1)s(s+1)(s+2) —|—O(i>
ks | 2k? 6k3 k4
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b [ 2(s+1) 2(s+1)(s+2) 1
L= 2 O (ﬁ)
20 [ s+1 (s+1)(s+2) (1)
T T e T e O
L4 _1+bﬁ+0(i) =0 (2.8)
fms—a I ak k.2 - :

Next, assume that the powers —(s+2) and —(ms—«) are equal. Then, the equation
ms—a=s+2

implies formula (2.1), that is,

_«a +2
Then, "
s las(s + 1) £a™]+ # [—as(s +1)(s+2)+b(s+1)(s+2)+ bmam—l}
+0(5) =0
If

as(s+1) £ a™ =0,

then we get formula (2.2), that is,
a = [Fs(s+ 1)/
Assuming also
—as(s+1)(s+2) +b(s+1)(s+2) £bma™ =0, (2.9)

we get

as(s +2)
 s+2—ms
and formula (2.3) is proved as well. Therefore, if u(k) in equation (1.3) is replaced
by the approximate solution (k) as given by formula (2.6), then, in the left-hand
side of (2.8), the coefficients of terms k=%, k=*~1, k=*=2 and k=%~ will be eliminated.

Then, it is possible to set g(k) = k*T3. O
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2.2 System of difference equations equivalent to

a differential equation

Below, rather than of equation (1.3), we will analyse an equivalent system of two

difference equations. This system will be constructed using the below auxiliary

transformations
uk) = = + kfﬂ (1+ Yo(k)), (2.10)
Au(k) = A <ki> LA <kb+1> (14 Vi (k)), (2.11)
AZu(k) = A? <ki> 4+ A? <%> (14 Ya(k)). (2.12)

where s, a and b are defined by formulas (2.1) — (2.3), and Y;(k), i = 0,1, 2 are new
dependent functions. Below, we derive relations connecting them. Recall a useful

known formula (we refer, e.g., to [21]), used in computations. If x and y are defined
on N(kg), then

Az(k)y(k)) = 2(k + 1) Ay (k) + (Ax(k))y(k), k€ N(ko).

Taking the first differences of the left-hand and right-hand sides of (2.10), we derive

Au(k) = A <ki> + ﬁAYO(k) +A <kb+1> (1 + Yo(k)).

Comparing the result with (2.11), we get the equation

ﬁ“@“ﬂ) +A <,€b+1> (1+ Yo(k) = A <,€b+1> (1+Yi(k)),

which is equivalent with

AYa(k) = (+ 177 A () (Yo(h) + Vi) (213)

Taking the first differences of the left-hand and right-hand sides of (2.11), we obtain

2 A2 (& b 2 b
Au(k) = A <k> + A <(k+ 1)s+1> AYi(k) + A <ks+1> (14 Yi(k)).
Comparing the result with (2.12), we get

A <(,€+—bl)+1> AYi(k) + A? <,€b+1> (14 Yi(k)) = A? <kf+1> (14 Ya(k)).
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and an equivalent equation is

IO ),

1

The derived system of difference equations (2.13), (2.14) defines the relationships
between Y;(k), ¢ = 0,1,2 implied by transformations (2.10)—(2.12). Next, we will
get a system equivalent with equation (1.3). To do this, we must express Y3(k)
in (2.14) in terms of Yy(k) using initial equation (1.3). Substitute (2.10) and (2.12)
into equation (1.3). Then,

(=Yi(k) + Ya(k)). (2.14)

a

2 [ @ o b o b m_
A <E>+A <k8+1>(1+Y2(k))j:k <k8+ﬁ(1+}f0(k))> =0 (2.15)

and, expressing Y3(k) from (2.15), an equivalent system to equation (1.3) is

AYa(k) =(k+ DA () (SYalk) + (k) (2.16)

k.s—l—l

AY (k) Azg(’{“) ) ~Yi(k) - <A2 <,§> + A <,€b+1>
s

k+ 1)+

FE- <% + %(1 + Yo(@)) ) @ : (2.17)

k.s—i—l

System (2.16), (2.17) is too cumbersome and not suitable for a direct investiga-
tion. Therefore, we will simplify it by performing some asymptotic transformations.
Equation (2.15) takes the form

a 2a a b 20 b
(k+2) (k+1) + ks + <(k +2)st (k4 1)s+1 + ks+1> (1+Ya(k))

a™ b "
S — <1 +( +Y0(k))> =0. (2.18)

Let Yo(k) = O(1) in (2.18). This property will be assumed when proving the results.
This assumption implies, as will be visible from formula (2.19) derived below, the
property Ya(k) = O(1) as well. Expressing asymptotically (using formula (1.6) and
auxiliary computations in (2.7)) each of the expressions in the previous equation,

we obtain

a 2s  s(s+1)4  s(s+1)(s+2) 8 (1)
k8<1 FTT 2w 6 PO
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2 2 6 o
b 2(s+1)  (s+1)(s+2)4
e <1 Tk T 2 gt (_

2b (s+1) (s+1)(s+2)1 1 b
_k8+1<1_ K 2 ﬁ+0(_>>+ ]

2a<1_%+s(s+1)1 s(s+1)(s+2) 1

(14 Ya(k)) [

a

m mb 1
iks+2 <1 - %(1 + Yo(k)) + O (ﬁ)) =0.

Carefully grouping the coefficients multiplying the same power functions, we simplify

this relation to

a—2a+a)+ L (—2as + 2as + (1 4+ Ya(k))(b — 20+ 1))

o s+

+

s 2as(s+1) —as(s+ 1)+ (1 + Ya(k))(—2b(s+ 1) +2b(s + 1)) £ am]

+

—as(s+1)(s+ 2)% +as(s+1)(s+ 2)% + (1 + Ya(k))(2b(s + 1)(s + 2)

k.s—i—?)

1
(s + 1)(s +2)) + mba™ (1 + Yo(k))] +0 (ks+4) 0.
Hence, we have arrived at the equation

—as(s+ 1)(s+2)+b(s+1)(s+2) + Yo(k)b(s+ 1)(s+2)

+ mba™ (1 + Yo(k)) + O (%) ~0.

Because (see (2.9))

—as(s+1)(s +2) +b(s+1)(s+2) £ mba™ =0,

we have
Ya(k)b(s + 1)(s + 2) — mbs(s + 1)Yo(k) + O (%) ~0.
Hence, .
Yalk) = <2 Yo(k) + O (E) . (2.19)

System of equations (2.13), (2.14) if Y2(k) is replaced by formula (2.19), i.e., the
system (2.16), (2.17) takes the form

1
k.s—l—l

AYo(k) = (k+ DA (17 ) (<Yolh) + Yi(k)), (2.20)

AQ % ms
Avi(k) = A(( (k1+ ) ) (s+2

k+ 1)+t

Yo(k) — Yi(k) + O (%)) (2.21)
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It is easy to verify (using (1.6)) that

1 s+ 1 1
s+1 _
(k+1) A(ks+1)—— ; +0(—)

L2
and
A? !
(W) 5+ 2 1
--2210(5).
A 1 k k2
(k4 1)s+
Applying these formulas to (2.20), (2.21), we have
1 1
Vo) = (== 40 (53) ) (Vo) + i),

witr= (2 o) (2 i o).

(2.22)

(2.23)

The system (2.22), (2.23) will be used in future investigations rather than sys-

tem (2.16), (2.17).
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3 Power-type asymptotic behaviour in case
of constant upper and lower functions

The aim of this chapter is to find conditions for the existence of solutions to equa-
tion (1.3) with the power-type asymptotic behaviour when Theorem 2 is applied
with constant upper and lower functions by(k), b2(k), c1(k) and co(k). We use the
approximate power-type solution described by formula (2.6), where s, a and b are
defined by formulas(2.1), (2.2) and (2.3). The results of this chapter were published
in [4].

We will prove the theorem, formulated below. Here we deal only with the case
s+1>0.

Theorem 4. Let s > —1, m # 0 and m # 1. Assume that there exist positive

numbers €;, 1 = 1,...,4, such that either
ms s
ms >0, €3 <ey, €9 >4, €3> T 251, g4 > 252, (3.1)
or
ms <0, €3 <&y, €9 >6y, €3> —ﬁsg, €4 > — i £1. (3.2)

542 s+ 2
Then, for a sufficiently large fixed ko, there exists a solution u: N(ky) — R of
equation (1.3) such that, for every k € N(ky),

-1

—& < < &g, (33)

a b b
U(k’) - E - k-s—f—l] [ks+1

-1

—eo < |Au(t) - A (1) - A <,€b+1>] [A <kb+1> <e, (34)
and
o)< s (1) - (58| s 5) 5]

<40 (%) (35)

Remark 4. In the proof of Theorem 4, we will apply Theorem 2 from Chapter 1,
where system (2.22), (2.23) is considered instead of a system of discrete equa-

tions (1.7). That is, in system (1.7) we set n = 2 and

By, Yo(0) Vi) i= (=2 + 0 (13) ) (-Yal) + ¥i(h).

k k2
Eyk Yo, i) o= (-2 + 0 (5)) (55 - v + 0 (1))
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The core of the proof consists of verifying inequalities (1.15), (1.16) estimating func-
tions Fy and Fy for properly defined functions b;, ¢;: N(ko) — R, i = 1,2 (see (1.9))
satisfying b;(k) < ¢;(k), k € N(kg), i = 1,2. By b; and ¢;, i = 1,2 functions B;(k,Y)
and C;(k,Y), i =1,21in (1.10) and sets Q%, Q&, i = 1,2 in (1.11), (1.12) are defined.

3.1 Proof of the theorem

Let ¢, > 0,7 =1,...,4 be fixed. Assume that kg is positive and sufficiently large
such that the asymptotic computations in the proof are correct for every k € N(kg).

Now define functions b;, ¢;, i = 1,2, satisfying (1.9), by formulas

bl(k') = &1, Cl(k') = &9, (36)
bg(k’) = —¢&3, Cg(k’) = &4 3.7
Then,
By(k,Y) := =Yy + bi(k) = =Yy — ey,
Bg(k’,Y) = —Yi + bg(k’) = —Yi — &3,
Cl(k',Y) = YE)—Cl(k') = YE)—ESQ,
Cg(k',Y) = Yi — Cg(k’) = Yi — &4
and
Q}; = (k’,Y) ke N(k’o), Yo = —c1, —&3< Y: < 64}, (38)
Q% = (k’,Y) ke N(k’o), Yi = —¢&3, —¢&1 S YE] S 52}, (39)
Qlc = (k’,Y) ke N(k’o), YE) = &9, —E€3 <Y < 64}, (310)
QL ={(k,Y): k€ N(ky), Yi = &4, —e1 <Yy <er}. (3.11)

To apply Theorem 2, inequalites (1.15) and (1.16) must hold. Since inequal-
ity (1.15) assumes (k,Y) € Q5,7 =1,...,n and inequality (1.16) assumes (k,Y) €
QL,i=1,...,n, we need to verify (taking into account specifications (3.8)—(3.11))
the following:

Fi(k,by(k), Y1) = F i (k,—e1, Y1) <b(k+1)—=b(k)=—-e1+e =0, (3.12)
Fi(k,ce1(k), Y1) =Fi(k, e, Yi)>c(k+1)—ci(k)= e3—e2=0, (3.13)
Fy(k, Yo, ba(k)) = F (k, —e3) <by(k+1)—by(k) = —e3+e3=0, (3.14)
Fy(k, Yo, ca(k)) = Fy (k, YO, gqg) >cak+1)—co(k)= e4—e4=0 (3.15)

whenever
—e3<Y; <¢gy (3.16)
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in (3.12), (3.13) and
-1 <Yy <e& (3.17)

in (3.14), (3.15).

As s+ 1> 0, we can estimate the function F} in the following way:

s+1 s+1 1
Fl(k.7b17}/i) = Fl(k'7 _617}/1) = k' (_51) - k’ Yi + O (ﬁ) .

Then, (3.12) will hold if

1
Fy(k, by, Y1) - k < max Fy(k, by, V) -k = (s 4+ 1)(—1) + (s + Deg + O (ﬁ)

< bl(k' + 1) — bl(k') =—g1+¢e1=0. (318)

Hence, (3.18) will hold if
g3 < €1. (319)

Similarly,

s+ 1 s+ 1 1
Fi(k,c1,Y1) = Fi(k,e2, Y1) = R Y1+O(—>

and (3.13) will hold if

1
Fi(k, e, Y1) -k > min By (k, e1,Y3) - b = (5 + 1)ea + (s + 1)(—e4) + 4O (ﬁ)

> Cl(k' + 1) — Cl(k') =gy —e9=0. (320)

Then, for (3.20) to hold,
Eg > €4 (321)

is sufficient.
By Theorem 2, we also need to estimate function F5, i.e., we must prove that in-
equalities (3.14) and (3.15) hold. The cases ms > 0 and ms < 0 will be considered

separately.

3.1.1 The case ms > 0.

In this case,

ms 542
Bk, Yo, bo) = Bolh, Yo, ~25) = "%

PaRCh (_53”0(%)'

Inequality (3.14) will hold if
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1
Fy(k, Yo, bo) - k < max Fy(k, Yo, by) - k = mser — (s + 2)es + O (ﬁ)

< bg(k’ + 1) — bg(k’) = —e3+e3=0. (322)

Inequality (3.22) implies

s
> . 3.23
€3 51 251 ( )
Continuing the analysis, consider
ms s+ 2 1
Fy(k, Yo, ¢2) = Falk, Yo,e0) = == ~Yo + k@+obﬂ.

Inequality (3.15) will hold if

1
Fy(k, Yo, c2) - k> min Fy(k, Yy, e4) - k = —mses + (s + 2)ey + O (ﬁ)

> Cg(k’ + 1) — Cg(k’) =eg4—¢e4=0. (324)

Then, inequality (3.24) will hold if
ms

) 2
€4 > 5122 (3.25)
3.1.2 The case ms < 0.
In this case,
ms s+ 2
Fg(k,%,bg) :FQ(I‘/;7YEJ7_€3) - _7%“’ 2 (—53)—*—0(?)

Inequality (3.14) will hold if

1
Fo(k, Yo, by) - k < max Fy(k, Yo, by) - k = —mses — (s + 2)es + O (ﬁ)

< bg(k’ + 1) — bg(k’) = —eg3+¢e3=0. (326)

Then, inequality (3.26) will hold if
ms

> — . 3.27
=3 s+ 282 ( )
Further, consider function
ms s+ 2 1
Fy(k, Yo, ¢2) = Falk, Yo,e0) = ==~ Yo + k“*oﬁﬂ'

Inequality (3.15) will hold if
1
Fy(k, Yo, c2) - k> min Fy(k, Yy, e4) - k = msey + (s +2)es + O (ﬁ)
> Cg(k’ + 1) — Cg(k’) =eg4—¢e4=0. (328)
Then, inequality (3.28) will hold if

ms
s+ 2

Ey > — £1. (329)
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3.1.3 Summary of the restrictions derived and application
of Theorem 2.
If ms > 0, then the inequalities for Fy, F5 hold if inequalities (3.19), (3.21), (3.23)
and (3.25) do. That is, we have derived the system of inequalities (3.1). If ms < 0,
then the inequalities for Fy, F, hold if (3.19), (3.21), (3.27), and (3.29) do. That is,
we have derived the system of inequalities (3.2).
Finally, all the hypotheses of Theorem 2 are true and, therefore, there exists a

solution
Y = Y(k) = (Yi(k), Ya(k))T

of system (2.22), (2.23) satisfying the inequalities
bi(k) < Yii(k) <ci(k), i=1,2
for every k € N(ko), that is, by (3.16), (3.17),
ey <Vi(k) s (3.30)

—&1 S YE](]’C) S E9 (331)

for every k € N(ky).

We conclude, by the transformation formulas (2.10), (2.11), (2.12) and by the
relation (2.19), that there exists a solution u: N(kg) — R of equation (1.3) such
that, for every k € N(ko),

lu(k) - ki - kill [ kil_ s (3.32)
[Au(k) —a(2)-a <kb+1>] [A <kb+1> ) (3.33)
[Azu(k) —ar ()4 < kfﬂﬂ [AQ < ki) e (3.34)
where
ms 1
Va(k) = 2 o(k) + O (E) . (3.35)

From (3.30)—(3.35), inequalities (3.3)—(3.5) follow.
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3.2 Clarification on the conditions in Theorem 4

using only values a and m.

Theorem 4 uses assumptions on m and s. Nevertheless, because the parameters
in Emden-Fowler equation (1.3) are m and «, it seems reasonable to analyse their
admissible values deduced from this theorem and visualize the derived results in an
(m, a)-plane. In other words, we need to find a and m for which the conclusion of
Theorem 4 holds.

In Theorem 4 two sets of hypotheses 3.1 and 3.2 are used. These together with
the assumption s > —1 guarantee the existence of a solution u = wu(k) of Emden-
Fowler equation with asymptotic behaviour described by formulas (3.3)—(3.5). Below

we analyze each set separately.

3.2.1 The case of inequalities (3.1).

Consider the system of inequalities (3.1). Then

(i) s+1>0, (ii) ms>0, (i)

S . S
251 < ez <eéyg, (ZU) 2€2<€4<€2.

s+ S
Since ¢; > 0, i = 1,...,4, inequalities (7i7) and (iv) are equivalent to
ms
<1
s+ 2

and an equivalent system of inequalities
s+1>0, ms>0, s(m—1)—2<0 (3.36)

can be considered instead of system (i)—(iv).
Moreover, using formula (2.1), system (3.36) yields

a+m+1 m(a+ 2)

>0, >0, a<0. (3.37)

m—1 m—1

To analyze inequalities (3.37), we consider subcases: m > 1 and m < 1.
The subcase m > 1. The system (3.37) is equivalent to the following one
m>1 —-2<a<0. (3.38)

The result is shown in Figure 3.1 visualized in (m, a)-plane by a yellow domain.
The subcase m < 1.
The system (3.37) takes the form

a+m+1<0, ma+2)<0, a<0
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\ 4

m

Fig. 3.1: Solution of the system (3.38)

being equivalent to the following two possibilities: either
m <0, —2 < a < min{0, —m — 1}

or

O<m<l, a<-2

Figure 3.2 highlights the resulting domains in (m, a)-plane in pink.

3.2.2 The case of inequalities (3.2)

Consider the system of inequalities (3.2). This system implies

(i) s+1>0,
(17) ms < 0,
(1i1) e3 > e s s m232€> m2$25
it — — .
’ s+27 s+2 0 (s+22 "7 (s+2)2°
Ase; >0,1=1,...,4, we get from (7i7)
m?s?
— >0
(s +2)2
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4

—4
2

Fig. 3.2: Solution of the systems (3.39), (3.40)

Since (s +2)? > 0, system (z)—(ii7) reduces to
s+1>0, ms<0, (s+2+ms)>0

and, applying the formula (2.1), to

1 2 4
atmtl o ma+?) o atmatim (3.41)

m—1 m—1 m—1

To analyze inequalities (3.41), we consider subcases: m > 1 and m < 1.

The subcase m > 1. The system (3.41) takes the form
4
a>-m-—1, a< =2, a>——" (3.42)
m+1
Figure 3.3 highlights the resulting domain, described by these inequalities, in (m, «)-

plane in violet.

The subcase m < 1. The system (3.41) takes the form

a+m+1<0, ma+2)>0, a+ma+4m <0 (3.43)
implying the following 3 possibilities:
4
Cl<m<0, a< -2 a<-——"_ (3.44)
1+m
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Fig. 3.3: Solution of the system (3.42)

4dm

m<-—-1, a<-2, a>——, (3.45)
1+m
4m

m>0, a>-2, a<——. (3.46)
14+m

Figure 3.4 highlights the three resulting domains in (m, a)-plane in green. The
area corresponding to the solution of system (3.43) can be visualized in (m, a)-plane
as follows.

All particular cases are highlighted in Figure 3.5 in (m, «)-plane in corresponding
colours. If a fixed (m, ) belongs to the domain of admissible values, all hypotheses
of Theorem 4 are true and, for a sufficiently large fixed kg, there exists a solution
u: N(kg) — R of equation (1.3) satisfying, for every k € N(ky), inequalities (3.3)—
(3.5).
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Fig. 3.4: Solution of the system (3.43)

3.3 Examples

In this section we consider seven examples of Emden-Fowler type equations. These
are constructed in such a way that, step by step, the values (m, ) belong to each

of the seven domains shown in Figure 3.5.

Example 1. In the following example, values (m, ) belong to the domain shown

in Figure 3.1 (red domain).

Consider equation (1.3) where o = —1, m = 2, that is, the equation
1
A?u(k) £ EuQ(k) = 0. (3.47)

In this example, a and m satisfy (3.38). If we put
)
g1 =6 =1, 83:84:6’

then

S =
All inequalities (3.1) hold because

s+1=2>0, ms=2>0,
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S

f
1
[

—6, -5 . =3, -2 I_1 1 2, 3. 4 5 6

4
//a=—2/ <2

=2
76
and Theorem 4 is applicable. By formula (2.2)
a = [Fs(s + DIYC D = RO+ D]V = 2
and, by formula (2.3),

po ) 13
s+ 2—ms 14+2-2

Then, the equation (3.47) has a solution u = u(k), k € N(ko) satisfying inequali-
tites (3.3)—(3.5), that is,

2 6 671!

g <[rma @) =2 (@] (@) <3

o (f) < s () e (2] [ ()Y <10
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These formulas can be simplified to

ulk) = F7 F 15 -0(1),
Au(k) = FA (%) +A (%) L0,
A2u(k) = FA? (%) + A2 (%) L0(1).

Example 2. In the following example, the values (m,«a) belong to the domain

shown in Figure 3.2 (left yellow domain).

Consider equation (1.3) where @ = —1, m = —2, that is, the equation
2 L
Afu(k) + 7U (k) =0. (3.48)
In this example, a and m satisfy (3.39). If we put
2
g1 =6 =1, 5325425,
then
L at2 1 _2 L2 L, b
Tm_1 3 ™MT3 TR Tg STET g

All inequalities (3.1) hold because

2
63—§<€1—1, 62:1>54—_>
2> ms 21 2 2> ms 21 2
6’:— —6’ _ — . = — 6’ f— 6_— e
5737 s+2 " 5 57 YT 37 5427 5 5

and Theorem 4 is applicable. By formula (2.2),

a=[Fs(s+ 1)]1/(m_1) = [3F (—%) (g)]l/(_g) =+ G)_l/g =4 (g>1/3

and, by formula (2.3),

_as(s+2) (92 (=1/3)-(5/3) 59\
Cs+2-ms (5/3) = (1/3) ~ Ty (5) '

Then, the equation (3.48) has a solution v = u(k), k € N(k¢) satisfying inequal-
itites (3.3)—(3.5), that is,
N3 L. 59\ 1 50\ 1717
s () )"
“(k)$(2> "UER) e |[Fola) s

-1< <1,
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2<
3

s ()"0 23 (3 ()" 5]
(0" &

s ((3)" ) o (59" )

1

[0 <o)
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1
_1+10(=
+ (k><

These formulas can be simplified to

s (=3 o
Au(k) =+ A <(g>1/3 - k1/3> ~A <g (g)l/g #) L0(1),

A’u(k) =+ A2 <(g>1/3 . k1/3> _A? <g (2)1/3 #) L0(1).

Example 3. In the following example, values (m, a) belong to the domain shown
in Figure 3.2 (right yellow domain).

Consider equation (1.3) where o = —3, m = 1/2, that is, the equation

1
A’u(k) £ ﬁul/z(k) = 0. (3.49)
In this example o and m satisfy (3.40). If we put
1
€1 =¢€z =1, 53—54—§>
then 5 319
s = R =2 ms=1, s+1=3, s+2=4

m—-1 1/2—-1

and all inequalities (3.1) hold because

s+1=3>0, ms=1>0,

1
63—§<€1:1, 62—1>54:_>
1>ms 1 1>ms 1
€3 = — 1= —, E4=~— €9 = —
BT 9T syt Ty TP T 9T s 427y
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By formula (2.2),

m_ L1
a=[Fs(s+ 1))V =[52-3 = =

and, by formula (2.3),

as(s+2) 1/36-6 1

s+2—ms 4—1 18"

Theorem 4 is applicable and equation (3.49) has a solution v = u(k), k € N(kg)
satisfying inequalities (3.3)—(3.5), that is,

1 1 1 1 1 1711
_1<[“(k)_%ﬁ_EFHEﬁ] <1,

_% = [A“(k) -4 (361k2) -Aa (181k3>] ' [A (181k3>]_1 < %

“ire (%) = [Azu(k) - (361k2> oA (181k3>] ' [Az (181k3 ' i)]_l =

1
1 — .
< +O(k>

These formulas can be simplified to

1 1

=362 T Iske

Au(k) = A (361k2> A (181k3> o),

A%(k):&( ! >+A2( ! )-0(1).

u(k) o),

36k2 18k3

Example 4. In the following example, values (m, a) belong to the domain shown
in Figure 3.3 (green domain). Consider equation (1.3) where « = —3, m = 4, that

is, the equation

A2u(k) + %u‘*(k) 0. (3.50)
In this example, a and m satisfy (3.42). If we put
€1 =¢& =1, 53254:27
10
then
5= at2 —S+2_ 1 ms=-—-, s+1l=-, s+2=_
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and all inequalities (3.2) hold because

4
s+1=->0, ms:—§<0,
5—2<z—: 1, ¢ 1>¢
3 10 11— 4 2 — 4 107
9 ms 4 9 ms 4

By formula (2.2)

a=[Fs(s+ 1)]1/(m—1) _ [:F (_%) g]l/m—l) _ (ig)lﬁ

and, by formula (2.3),

as(s+2) (:|:2/9)1/3 (=1/3)-(5/3) _ 5 (:Fg>l/3 .
9

T s+2-ms (5/3) + (4/3) T o7
Theorem 4 is applicable and equation (3.50) has a solution v = u(k), k € N(kg)
satisfying inequalitites (3.3)—(3.5), that is,

2\3 5 2\ 1 1[5 /2" 1
—(+2) o 2 (22) 2 (x2)
ulk) (ig} ST (]F9> k2/3] l27 (]F9> B

-1

-1< <1,

e a () 00) 53 ()" )
1/3 -1
PEE" ] 5
—1+O(l) < | A%u(k) — A2 <(:|:g)1/3.k1/3> _ A2 <g($g>1/3i>]
k 9 27 9 k2/3
1
() )] <o)

These formulas can be simplified to

NV s 5 2\
—(+2) kB2 (F2) .
“(k)_(ig) RS (ng) g O

Au(k) = A <(:|:§)1/3 - k1/3> LA <g - (:F§>1/3 #) L0,

A2u(k) = A <(:|:§)1/3 - k1/3> +A? <g - (:pg)l/g #) L0(1).
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Example 5. In the following example, values (m, a) belong to the domain shown
in Figure 3.4 (middle rectangular blue domain). Consider equation (1.3), where

a = —3, m=—1/2, that is, the equation
L
A*u(k) + U (k) = 0. (3.51)

In this example, a and m satisfy (3.44). If we put

€1 =¢ =1, f3=81= 5,
then
a+2 2
m—1 3’
and inequalities (3.2) hold because

1 ) 8
S ms 3 s+ 3 s+

3

5 1
1==>0 =——<0,
S + 3 , ms 3

—1< =1 =1> _1
g3=—-<¢g = €9 = €4 = =
3 2 1 ) 2 4 2>

5—1> msg_l 5—1> ms _1
379 s+2 178 Tt 9 s+2 8"

By formula (2.2)

. 10 —2/3 9 2/3 9 2/3
o=lrslo+ DV = [25] = 3] = ()

and, by formula (2.3),

_as(s+2) _ (9/10)-(2/3)-(8/3) _ 16 ( 9 )2/3
S s+2-ms (8/3)+(1/3) 27

27 \10

Theorem 4 is applicable and equation (3.51) has a solution u = u(k), k € N(ko)
satisfying inequalitites (3.3)—(3.5), that is,

. 92/311692/311692/31_11
1< o)~ (55) 37 (30) k—/H2_7(1_0> i <h
1 9\2/3 1 16 £9\?% 1
—§<A“<’“>‘A<(m) W>_A<z_7'(1_o) k—/ﬂ
16,9\ 1\ 1
Mz?(ﬁ) W) <3
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1
-1 -
+O(k> <

9\ 1 16 £9\?% 1
2 _ 2 v I A e - 3
Aulk) = A <(10) k2/3> A <27 (10) k5/3>]
2 79\23 1 \]" 1
. 2 —_—— —_— — J—
[A < 5 (10) kW3> <1+0(3)-
These formulas can be simplified to
2/3 L1609 281
:(10) k2/3 7(17)) O
2/3 16 £ 9\** 1
= ( kz/s>+A<E(m) W)'O(l)’

st ()" ) 2 (2(5) ) 000

Example 6. In the following example, values (m, a) belong to the domain shown

in Figure 3.4 (left blue domain). Consider equation (1.3), where & = =5, m = —4,

that is, the equation

1
A?u(k) £ ﬁu_‘l(k) = 0. (3.52)
In this example, a and m satisfy (3.45). If we put
] 13
€1 =€y = E3=¢€4 = —
1 2 ) 3 4 147
then +2 3 12 8 13
s:;_lzg,ms:—g, s+l==, s+2=—
and inequalities (3.2) hold because
+1 s >0 = <0
s = - ms = ——
) ’ ) ’
5—13<z—: 1, 5—1>z—:—13
3 — 14 1 — 2 — 4 — 147
13 - ms 12 13 - ms . 12
BT s T T 5127 13

By formula (2.2),

24\ 715 24\ ~1/°
5 =7 (3)

y_ 05(s+2) CF(24/25)7V7(3/5) - (8/5) 24 24\
T st2—ms (13/5) + (12/5) RSV (%)

a=[Fs(s+ 1))/

and, by formula (2.3),
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Theorem 4 is applicable and equation (3.52) has a solution u = u(k), k € N(ko)
satisfying inequalitites (3.3)—(3.5), that is,

(k)i(24>—1/5 1 N 24 (24>—1/5 1 24 (24>—1/5 1
U 95) 5 - 125\25) w5 |T125\25) e

24N\ 15 1 24 724N\ 1
A“<k>i‘3<(a5) W)iA<E<%) k_/ﬂ

o[22 (24>_1/5L ‘1<13
T125 (25 e 14

24N\ "5 1 24 24\ /5 1
st o (B) " ) 0 (3 G2) )
u(k) £ & ( %) wr)EA s \s) e
288  /24\1/5 1 \]7" 1
| a2 :E——-(—) _ 1 o(_).
l ( 1625 \25 k8/5> R
These formulas can be simplified to
24\ ~Y/5 24 724\ 715 1
R —.0(1
:L( 5) k3/5 195 <25> w0
15 1 24 724N\ 715 1
A —lxAl== (= —|.001
(25) k3/5>¢ (125 (25) k8/5> oW,

24N\ 24 /24N\7V5 1
2 2 o 2 el == - X
Alulk) = F4 ((25) kfﬂS)jFA (125 (25) k8/5> o).

Example 7. In the following example, values (m, a) belong to the domain shown

-1

-1< <1,

13 -
14

1
_1+O<E> <

Il
H

Au(k)

in Figure 3.4 (blue triangle-domain). Consider equation (1.3), where o = —7/4,
m = 1/2, that is, the equation

1
k74
In this example, o and m satisfy (3.46). If we put

A%u(k) £ ——u?(k) = 0, (3.53)

€1 =€ =1, 53264257

then
at+2 1 L,
m_1_ g MT Ty STiT o STETg

and inequalities (3.2) hold because

S =
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1
s+1==>0, ms:—1<0,
1< 1 1> !
= — = = 6:—
53 3 61 762 4 37
5—1> msg_l 5—1> msg_l
73 s+2 ' 6 '3 s+2° 6

By formula (2.2),
a=[Fs(s+ 1)) = [£1/4 77 = 16

and, by formula (2.3),

as(s+2) ~ —-16-(3/4) _ 48

s+2—ms (3/2)+ (1/4) 7

Theorem 4 is applicable and equation (3.53) has a solution u = u(k), k € N(ko)
satisfying inequalitites (3.3)—(3.5), that is,

48 48 17!
1/2
~1< [u(k) —16- kY2 + 7k1/2] [_%l/z] <1,

1<
3

1/3
Au(k) = A (16-K72) + A <2_77 . (:F%) #)] .

-1+0(3) < [pum+ 2 (G55)] [ (75m)] < 1eo(r)

These formulas can be simplified to

48

—16- kY2 -
u(k) =16 -k CTRYD

Au(k) = A (16-£1/2) = A (72‘32) L0,

A2u(k) = A2 (16 K1/2) - A? (7232) L0(1).
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3.4 A remark on the case s +1 < 0.

In this section, we will show why this case is an exception. We will try to esti-
mate functions Fi(k,b1,Y7) and Fi(k, ¢, Yr) similar to formulas (3.18) and (3.20).

Assuming s < —1, we get

Fy(k, by, Y3) -k < max Fy(k, by, Y1) - k = (s + 1)(—e1) + (5 4 1)(—£4) + O (%)

< bl(k' + 1) — bl(k') = —&1+€1 = 0. (354)
Hence, (3.54) holds if
€1 +¢e4 <0.

This is a contradiction since €; and &4 are positive numbers.

A similar contradiction we get if we try to estimate Fi(k,cy, Y7):

1
Fulk,en, Y1) -k > min By(k, 1, Y1) - k = (s + 1)ea + (s + 1)es + O (ﬁ)

> Cl(k' + 1) — Cl(k') =9 — &9 =0. (355)

Hence, (3.55) holds if
€9 +e3 < 0.

This inequality contradicts the positivity of the constants €5 and e3.
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4 Power-type asymptotic behaviour for
zero upper and lower function tending
to zero

In this chapter, we will show that the areas of coefficient values for which equa-
tion (1.3) has solutions asymptotically expressed by a power-type function may
change depending on the type of the upper and lower functions. We will search for
the conditions such that there exists a solution to equation (1.3) with the following

asymptotic behaviour:

a b

1

where a, b and s are defined in (2.2), (2.3) and (2.1) and +y is a positive constant.

In this chapter, we have chosen power-type upper and lower functions b;(k),
ba(k), c1(k) and co(k) tending to zero.

The idea of the proof is similar to the one in the previous chapter while requir-
ing more complex calculations. The scheme of all investigations is the following.
The transformations (2.10)—(2.12), where a, by are computed by formulas (2.2),
(2.3), are used to transform the equation (1.3) into an auxiliary system of two equa-
tions (2.22), (2.23).

Then, some particular results of those published in [13, 15]) are applied to in-
vestigate system (2.22), (2.23). A correct use of Theorem 2 necessitates the proper
choice of the functions b;(k), ¢;(k), i = 1,2. In this chapter, we will assume
€3 €4

by(k) = ~E co(k) = (4.2)

bi(k) :=——, ci(k):= =15

kY B

where €, 7 = 1,...,4 are positive constants.

This chapter is divided into 4 parts depending on the values s+ 1 and ms, where
s is defined in (2.1). Now we can consider the following Table 4.1.

To prove all the below theorems we need to define some auxiliary sets and func-
tions identical for all four cases.

Let ¢, > 0,4 =1,...,4 and let 8 and 7 be fixed. Assuming kg positive and
sufficiently large such that the asymptotic computations in the proof are correct for

every k € N(kg), define functions b;, ¢;, 1 = 1,2, satisfying (1.9), by formulas

€ €
bi(k) ==, alk) =

€ €
ba(k) := —k—gﬂ, co(k) = k—;.

Then,

Bl(k',Y) = —YE) + bl(k') = —YE) — &1,
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the case ms < 0 ms > 0

s+1>0| Theorem 7 Theorem 5

Theorem 8 Theorem 6

s+1<0| Theorem 9, | Theorem 11,
Theorem 10 | Theorem 12

Tab. 4.1: The structure of the cases.

Bg(k’,Y) = —Yi + bg(k’) = —Yi — &3,
Cl(k',Y) = YE)—Cl(k') = YE)—ESQ,
Cg(k',Y) = Yi — Cg(k’) = Yi — &4

and
1 ) _ &1 &3 €4
%_%mwwewm,m_z? WSESW} (4.3)
9 ) _ & & €2
(%_{@YykeM%%K—-E@ g;ﬁnﬁgﬁ’ (4.4)
1 ) _ &2 &3 €4
%_%mwwewm,n_g? ﬁgmgﬁ} (4.5)
> _ . _ s a e
(%_{%YykeM%LY}-kW kvgngkﬁ. (4.6)

For later formulation, we will need to verify four differences: by(k + 1) — by (k),
ba(k+1) — ba(k), c1(k+1) — (k) and co(k+ 1) — co(k). As functions by (k), ba(k),
c1(k) and co(k) are similar, we will show the calculation for only one case using the

binomial formula (1.6):

&1

&1 _ —v( 1>_7_ _
Gty o ok <1+k L

(o)1) (o (D). @

To apply Theorem 1.15, inequalites (1.15) and (1.16) must hold.
Since inequality (1.15) assumes (k,Y) € Q%, i = 1,...,n and inequality (1.16)

bi(k+1)—bi(k)=—

assumes (k,Y) € QL i=1,...,n, we need to verify (taking into account specifica-
tions (4.3)—(4.6)) and (4.7) the following:
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15
Fik, b1(R): Y1)l ey viyeny, = £ (k’ _k—i’ Yl) () <Y1 <en(h)
< by(k+1) = by (k) = ;7(y+og)) (4.8)
g
Fy(k, ex(R), YOlyvo vy, = 1 (k’ k_i’ Yl) ba (k) <Yi <ca (k) g

>q%+D—@Gﬁ=—;ﬁ(L+OGJ) (4.9)

<
bl(k <Y()<Cl (k)

Falk, Yo, b2l nyec, = B (b Yo 22)

< by(k+ 1) — ba(k) = %ﬁ(ﬁ+o(éﬂ,(4m)

>
b1 (k)<Yp<ci(k)

€4
Fall Yo, 2l roipen = B2 (B Yo, o)

> ook +1) — cp(k) = — ;EO+O(D)(MM

whenever
€3 4
- = <Y <= 4.12
t v (112)
n (4.8), (4.9) and
€1 E9
— o SYs o (4.13)

n (4.10), (4.11).

The scheme of each of the following fourth sections (sections 4.1-4.4) is similar.
In each part, we give two theorems on the existence of a power-type solution. The
first theorem considers the conditions, including the values and variables not defined
in the formulation of the equation (1.3). The second theorem will define the strict
values of m and « and will be represented in the plane.

Examples illustrating all theorems can be found in section 4.6.
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4.1 Thecaseof ms >0and s+1 >0

Theorem 5. Let either
s>0, m>0 (4.14)

or
—1<s<0, m<O. (4.15)

Assume that there exists a constant vy satisfying 0 < v < 1 and positive numbers &;,
1=1,2,3,4, such that

v+s+1

< g ——— 4.16
€3 €1 $+1 ) ( )
v+s+1
- 1 417
&4 ) $+1 ) ( )
2
g1 < 53& , (418)
ms
2
g9 < 64& . (419)
ms

Then, for a sufficiently large fized ko > 0, there exists a solution u: N(ky) — R of
equation (1.3) such that, for every k € N(ky), asymptotic representation (4.1) holds

or, more presisely, this solution satisfies

€1 a b b 1N e
_E< u(k)_ﬁ_k's"'l] [k3+1] <E, (420)
€ a b b e
3 4
-2« Au(k)—A(E)—AQS“)] [A <ks+l>] <t @2
—1
S2 o (D) < ot - ar () - o ()] [ () 2
= +o(k) < |ty =82 () = 2% (o )| 8% (o ) o5
£9 1
— — . (4.22
“w o (k) (4.22)
Theorem 6. Let at least one of following assumptions hold:
me (-7T-4V3,-T+4V3), 2<a<-m-1, (4.23)
O<m<l, a<-=2 (4.24)
1
m > 1, —2<a<5(—(m—1)—|—\/(m—1)2+16m>, (4.25)
—2<a<-m—1, m<0, (m—124+16m >0 (4.26)
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and either

a<%<—(m—1)—\/(m—l)2+16m>

or

a>%(—(m—1)+\/(m—1)2—|—16m>.

Then, the conclusion of Theorem 5 holds.

4.1.1 Proof of Theorem 5

From assumptions (4.14) and (4.15), we have ms > 0 and s+ 1 > 0. These inequal-
ities are used tacitly below. Now, we will verify inequalities (4.8)—(4.11).
Let us verify inequality (4.8). It will hold if

Fl(k7b1(k)’Y]-)\(k,Y(],Yl)GQlB < max Fl(k,bl(k),yl)

T (kYo Y1)EQ)

(5 o(®)-(E-5)

<hilk+1) = by(k) = (1 +0 (%)) .

This inequality will hold if either
v<p (4.27)

or
v+s+1

= <g—. 4.28

v=p0, e<e¢ s 11 ( )

Now, verify inequality (4.9). It will hold if

Fl(ky Cl(k)y Yl)|(k’y0’y1)eglc Z (k Y()H%’ilr)leﬂl Fl(k: Cl(k)v Yi)
)20y C

_(_st1 AV (2 &
—( 2 +O<k2>> (k7+k3>

<alk+1)—alk) = 2% (1 L0 (%)) .

This inequality will hold if either
v<p (4.29)

or
v+s+1

= < gg——— . 4.30

v=0, e4<¢e s 11 ( )

Let us verify inequality (4.10). It will hold if

F’Z(k‘l7}/2]7b2(k))|(I€7YO,Y1)€Q2 < max FQ(k7%7b2(k))

B (k,Yo,Y1)eQ%

_(_5t2 LV (ms =& 88 (l))
‘( i +O<k2>>(s+2 w T O

o1




< by(k +1) = bo(k) = ;;fl (1 L0 (%)) . (431)

This inequality will hold if either
v >p (4.32)

or

2
y=0, v<1, &<@liii< (4.33)
ms

Let us note that (4.32) contradicts to (4.27). Now, verify inequality (4.11). It will
hold if

FQ(k'7 YE]) CQ(k'))|(k7YO7Y1)€Q2C 2 (k7YOI7I}l/ilr)leQ2 FQ(k'7 YE]) 62)

(o (@) G e i)

> eo(k+ 1) — eo(k) = 545 (1 O(}f)) (4.34)

e
v > f (4.35)

This inequality will hold if either

or

2
N=B, y<l, gy<elEiTE (4.36)
ms

Note again that (4.35) contradicts to (4.27).

Summing up all restrictions (4.27)—(4.36), we get the conditions (4.16)—(4.19).
Inequalities (4.20)—(4.22) follow from inequalities (4.12) — (4.13) and formulas (3.32)
~ (3.34).

This concludes the proof of Theorem 5.

4.1.2 Proof of Theorem 6
Lemma 1. Let either (4.14) or (4.15) hold. If, moreover,

(s +2)(s+3)
ms < Yt 1 (4.37)

then, the conclusion of Theorem & holds.

Proof. The system (4.16)—(4.19) is equivalent to the following (we need to remember
the conditions of this case: ms > 0 and s+1 > 0). From (4.16) and (4.18), it follows

v+s+1 Y+s+2y+s+1
Eg<egg— < €3 .
s s+1 s+ 1

And, from (4.17) and (4.19), it follows

v+s+1 Y+s+2y+s+1
Eyp < Ep— < &4 .
s+1 s+1 s+1
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Hence,
(Y+s+1)(y+s+2)

ms(s+ 1)
and, as ms > 0 and s+ 1 > 0, we get

1<

Y

(s+1)ms—(y+s+1)(y+s+2) <0
V4 y(s+1)+7(s+2) + (s +1)(s+2) —ms(s+1) >0
Y24+ v(25 +3) + (s + 1)(s + 2 — ms) > 0.

The discriminant
D= (25+3)?2—4(s+1)(s+2—ms)
of the quadratic equation
Y 4+y(25+3)+ (s +1)(s+2—ms) =0

will be positive for ms > 0 and s +1 > 0. We have

D= (25+3)*—4(s+1)(s+2—ms) = 45 + 125+ 9 — 45> — 125 +4ms* — 8 +4ms
=4ms* +4ms+1 =4ms(s+1)+1> 0.

Then, as we need v € (0,1), at least one of the following inequalities should hold:

—(2s+3) — \/4ms(s +1)+1
2

>0 (4.38)

and

—(25+3) + (/dms(s + 1) + 1
2
The first inequality (4.38) does not hold due to —(2s +3) < 0 and /D > 0, that is

<1. (4.39)

—(2s+3) — \/4ms(s +1)+1<0.

The second inequality (4.39) is equivalent to the following one

\/4ms(s+1)+1<2$+5
and, after some simplification, we get
Ams® + 4dms + 1 < 4s* + 20s + 25.

Finally,
ms(s+1) < s> + 55 + 6.
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Fig. 4.1: Summary of admissible values (Theorem 6)

Next, if
(s +2)(s+3)
(s+1)

the system of inequalities (4.16)—(4.19) holds (we can find some ¢;, i = 1,...,4 and

ms <

v € (0,1)) and we have the formulation of the main result. O
Now we are ready to prove Theorem 6. Condition (4.37) holds if
ms(s+1) < s> + 55 + 6.

According to the form of s from (2.1), we get

m(a+2)(a+m+1) < (a+2)*+5(a+2)(m—1)+6(m — 1)
o?(ml) 4+ a(m —1)* —4m(m — 1) <0,
(m—1) [Ozz—}—oz(m—l)—élm} < 0.

Asm>0and s >0, we get {0 <m < 1and a < =2} or {m > 1 and a > —2} and
D= (m—1)?+16m > 0.

Now we must analyse the following two cases.
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Fig. 4.2: Summary of admissible values - zoom (Theorem 6)

Case A.m >1and o > —2.

The formal solution of the inequality is

—(m —1) = /(m — 1)> + 16m

2 2
but

—(m —1) = /(m — 1) + 16m
2
and we get the second condition of the Theorem.
Case B.0<m<1and a < —2.

We need to prove the following inequality:

o +m(a—2)—a—2m > 0.

The proof will be divided into two parts. First, let us show that o — 2m < 0. This
is obvious because a < —2 and 0 < 2m < 2. Next, let us show that a? + m(a —
2) —a — 2m > 0. This is equal to the following (o« — m)(c + 2m) > 0, which holds

if0<m<0and o < —2.

The theorem is proved.

All suitable areas on the («, m)-plane indicated in Theorem 6 are visualized on

the figures 4.1, 4.2.
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4.2 Thecaseof ms <0O0and s+1 >0

Theorem 7. Let either
s>0, m<O0

or
-1<s<0, m>0.

Assume that there exists a constant v satisfying 0 < v < 1 and positive numbers &;,
1=1,2,3,4, such that

v+s+1
<eg——m 4.40
€3 &1 5 +1 ) ( )
v+s+1
< gg——m— 4.41
€4 < &2 s+1 ( )
2
&1 < —€3ﬂ, (442)
ms
2
g9 < —84ﬂ . (443)
ms

Then, for a sufficiently large fized kg > 0, there exists a solution u: N(kg) — R of
equation (1.3) such that, for every k € N(ky), asymptotic representation (4.1) holds

or, more presisely, this solution satisfies

a b b 170 e
2
U(k’) — E — k3+1] [ks+1] < E , (444)

-2 < lAu(k) ~a(f)-a <,€b+1>] [A <kf+l>]_ <2 @)

o) <omn-s ()5 ()] ) 2

<240 (%) . (4.46)

Theorem 8. Let m and « satisfy one of the following conditions (4.47)—(4.49):
m<0 A a < =2, (4.47)
O<m<1l A —2<a<-—-m-—1, (4.48)
m>1 A —-m—-1<a< -2 (4.49)

and let, moreover,

(1 4+m) + a(m? +8m — 1) +8m?* > 0. (4.50)

Then, for a sufficiently large fived kg > 0, there exists a solution u: N(kg) — R
of equation (1.3) such that, for every k € N(kg), asymptotic representation (4.44)—
(4.46) holds.
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4.2.1 Proof of Theorem 7

Let us verify inequalities (4.8)—(4.11). Using formula (4.7) and assumptions of this
section that could be transformed to the following inequalities

m<0 A s>0

or

m>0 A —-1<s<0.

we get

Fl(k’bl’yl)|(k,Yo,Y1)€QlB < max Fl(k',bl,Yl)

(k,Yo,Y1)EQ),

(5 ro@) G -3)

<by(h41) = by(k) = 2 (1+0(%>>, (4.51)

= ol

Fl(ka (1, }/1)|(]g7yo7y1)egé 2 (k Y(fr}l/ilr)leﬂl Fl(ky C1, }/1)
210, c

B s+1 1 €2 &4
_<— i +O<ﬁ>>( mﬂ?ﬁ)

S ek +1) — (k) = -2 <1+0(i)), (4.52)

N ky+1 kv

FQ(k7}/E)7b2)‘(k,YO,Y1)EQ2B < (k,Yf)I,lﬁi(EQQB F2(k7}/07b2)

(2o (L)) (255 o (1)
_< 2 +O<k2>> (s+2k‘f+k5+0(k

< bo(k +1) = bo(k) = kfgfl (1 L0 (%)) (4.53)

F2(k7YE)702)|(k,Y0,Y1)eQ% > (hyg’lil/ilf)le% Fy(k, Yo, c2)

(52 (LY (Lms e e (]
_( 2 +O<k2>>< s ok k5+0<k>>>

ek +1) — eok) = —22 (1 +0 (%)) C(454)

kB+1

Now, we will study each of the inequalities separately. The first of them (in-

equalities (4.51), (4.52)) were studied in the previous section in Theorem 5 where
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the following restrictions were derived:

i) > ((4.27) and (4.29)),
. +s+1
i) f = and g3 < 517$T (4.28),

... y+s+1
= dey < eg——(4.30) .
ii1) f =y and €4 < &9 P (4.30)

The third inequality (4.53) is equivalent with

m852_€3(8+2)+0( 1 )+O( 1 >+O(i><535 +O( 1 )

gt JA+1 Jor+2 fA+2 k2) " kA1 JiA+2

or with

ms 1 1 e3(B+s+2) 1
_m+152+0(kv+2>+0(ﬁ>< R +O(kﬂ+2)'

The last inequality obviously implies § < 1, v < 1, and either

iv) B < v (this restriction contradicts to 7))
or

v) f =+ and
B+s+2
ms

Eo < —€3

Finally, the last inequality (4.54) is equivalent to

m$€1+€4($+2)+0(i>+0( ! )+O(i>> €4P +O( ! )

1 fB+1 k2 kB2 k2) kAL fB+2
o 1 (B+s+2) 1
ms €4 S
- e+ 0 (o) 40 () < o4 0(5n). 45

Analyzing (4.55), we conclude that inequalities 8 < 1, v < 1 must hold. Moreover,

one of the following restriction must be fulfilled: either

vi) B < v (this restriction contradicts (7))

or
f+s+2

ms

vii) f =7 and g1 < —gy
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Combining the conditions i) — vii) we get the system of inequalities (4.40)—(4.43):

0 <y=p8<1,
v+s+1
< -
€3 &1 5 +1 )
v+s+1
< -
&4 &2 5 +1 )
2
ms
2
e < —e ¥ t2
ms
Inequalities (4.44)—(4.46) follow from inequalities (4.12) — (4.13) and formulas (3.32)

- (3.34).
This concludes the proof of Theorem 7.

4.2.2 Proof of Theorem 8

Below, we analyse this system (4.40)—(4.43). We derive

v+s+1 Y+s+2y+s+1
g3 < Eel—— < —&4 <
s+1 ms s+1
JOtst20 s+ 1) (y+s+2)7(y s+ 1)
—c2

ms (s+1)2 = (ms)? (s+1)2

Because 3 > 0,

Y

7+s+2H7+s+1

1<
’ s+1

ms
or

mslls + 1] < |y + s+ 1|}y + s +2].

The additional conditions that we assumed earlier (7 > 0, s + 1 > 0 and ms < 0)

help us get rid of absolute values resulting in

-ms(s+1) < (y+s+1)(y+s+2).
Simplifying this inequality, we obtain
Y4+ (25+3)y+ (s +1)(s+2) +ms(s+1) >0

or
Y4+ (25 +3)y+ (s+1)(ms+s+2)>0. (4.56)

Consider equation corresponding to (4.56)

Y24 (25 +3)y + (s + 1)(ms + s +2) = 0. (4.57)
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Fig. 4.3: Summary of admissible values (Theorem 8)

The discriminant of equation (4.57)
D:=(2s+3)*—4(s+1)(ms+s+2)=—dms(s+1)+1>0

is positive because ms < 0 and s + 1 > 0. For the existence of a v € (0,1), satisfy-
ing (4.56), the validity of at least one of the following two conditions is necessary
—(2s+3) - VD

N = 5 >0 (4.58)

or
(2s+3)+\/5<
2

The assumption s 4+ 1 > 0 provides the following chain of inequalities

1. (4.59)

72:_

0<2s+2<25+3.
Hence, it is easy to see that inequality (4.58) does not hold for any m and s because
0>—(2s5+3)— VD >0,
Consider the inequality (4.59). We derive an inequality
—(25+3)+ VD <2
which can be simplified to

—ms(s+1) < s+ 5s + 6.

60



m=1I
|
1 |
|
a+m+1=0 :
AN 0.5 |
N I
N
—0.5
\\ ——O'L———t- + I' '
EESIEN ~T+4/3 |0 0.5 Il 1.5 m
N
N |
N I
S —05 |
b |
N
N -1 |
~ ]
\
~ |
b |
2 |
15 P |
b |
N
A
o=-2 —2 r—\
m=20

Fig. 4.4: Summary of admissible values - zoom (Theorem 8)

Replacing s by formula (2.1), we get

a+2 a—l—m—l—1<(a—|—2)2 a+2
m—1 m-1 (m—1)2 m—1

—m
This can be simplified to
—m(a+2)(a+m+1) < (a+2)?+5(a+2)(m—1)+6(m —1)%
Further simplification gives
(1 4+m) + a(m? +8m — 1) +8m?* > 0.

Finally, we conclude that Theorem 8 is proved.

In figures 4.3, 4.4 the resulting domains in (m, «)-plane is highlighted in violet.
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4.3 Thecaseof ms < 0Oand s+1<0
Theorem 9. Let o # 0 and
s<—=1, m>0, s# =2

Assume that there exists a constant v, satisfying 0 < v < 1 and positive numbers
g, 1=1,2,3,4, such that

v+s+1
g XSt 4.60
T (4.60)
v+s+1
< —gg———m— 4.61
€3 €2 S +1 9 ( )
2
g9 < —€3ﬂ, (462)
ms
2
g1 < —84ﬂ . (463)
ms

Then, for a sufficiently large fized ko > 0, there exists a solution u: N(ky) — R of
equation (1.3) such that, for every k € N(ky), asymptotic representation (4.1) holds

or, more presisely, this solution satisfies

a b N
2
uh) =5 - k8+1] [kSH] Sk

£5 a b b\ e
—22 < Ak - A () - A <ks+1>] lA <ks+1>] <2
—1
€1 1 9 9 ( a ) o b o b ms
- — — A —Al—=)—A A
o O (k) < |ATulk) = frl ) 512
E92 1
Theorem 10. Let the numbers o and m satisfy
a 7é {07 _2m}>
a+m+1
at? (4.65)
m—1
20+ 5m — 1
(m—1)(a®+am—a—4m) <0 (4.67)
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and I
SR L ) (4.68)
m—1

where v is a fized number such that v € (v*,1) and

L 1 20+ 3m + 1 a+2 a+m+1
V= | -+ [4m +1].

2 m—1 m—1 m—1

Then, the conclusion of Theorem 9 holds.

4.3.1 Proof of Theorem 9

Let us again verify inequalities (4.8)—(4.11). Using formula (4.7) and the assump-

tions of this section that could be transformed into the following inequalities

Fy(k, Y0, Yl vovn)enr, < . Fy(k, by (k), Y1)
210, B

B s+1 1 €1 €4
- ( 2 +O(k2)> (m * kﬂ)

<b(k+1) = by(k) = (1 +0 (%)) (4.69)

Fl(k>%>}q)|(k7yo7y1)egé 2 * Ygrﬁl/ilr)leﬂl Fl(k'acl(k)7}/i) =
X0, c

(@) (F-8)

> ek 4 1) — eal) = 2 (1 +0 (%)) (470)

FQ(k’>YEJ>}/1)|(k,Yo,Y1)€Q2B < (k,YleZE(GQ% FQ(k’>YEJ>bQ(k'))

(2 (LYY (M e s (]
_( 2 +O(k2>>(s+2m+kﬂ+0(k>>

<ck+1)—co(k) = ;ﬂg_fl (1+O(%))’

and

FQ(k’>YEJ>}/1)|(k,Yo,Y1)€Q2C > (k,Yg,Iﬁl/ilI)leQQC FQ(k’>YEJ762) =

B s+ 2 1 ms € €4 1
_( 2 +O(k2>>( stk kﬂ+0(k>>

> eo(k+1) — eo(k) = —;;fl (1 +0 (%)) .
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Now, we will study each of the inequalities separately.
Inequality (4.69) is equivalent with

s+1 s+1 1 1 €17 1
T LT A eat O (sz) +O(kﬂ+2> < o +0 (sz)

or with +1 1 +s+1 1
S v+
e+ 0 () <l 0 ().
The last inequality implies

i) B>~
or
ii) f =~ and

ey < g YT+ L

* Vsl

Inequality (4.70) is equivalent with

s+1 s+1 1 1 €97y 1
o C2 T T e +0 (sz) +0 (kﬁ+2) Z T +0 (sz)

or with +1 1 +s+1 1
S v+
s+ 0 () >~ =+ 0 (5m)-
The last inequality implies
iii) >~
or
iv) § =~ and
v+s+1
E3 < —Eg————— .
s+1

The last two inequalities are the same as in Theorem 7 ((4.53) and (4.54)).
Therefore, we must consider the following conditions:
v) f < 7 (contradicts i) and iii))

or
vi) f = and
f+s+2
€9 < —gg———
ms
vii) f = and
B+s+2
£ < —gy———
ms

Hence, we have the system of conditions (4.60)—(4.63).

Remark 5. Note the following. For the solvability of the system of inequali-
ties (4.60)—(4.63), the inequality

T+ 0 (171)

is necessary as, in the opposite case, inequalities (4.60), (4.61) cannot be satisfied

due to the positivity of €;, 1 = 1,2, 3,4 and the property s + 1 < 0.
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4.3.2 Proof of Theorem 10

First, lest us mention that, due to a symmetry between the sub-system of inequal-
ities (4.60), (4.63) and the sub-system of inequalities (4.61), (4.62) as well as the
first one being independent of the second and vice versa, it is sufficient to analyse
the solvability of only one of these two sub-systems. Below, sub-system of inequali-
ties (4.60), (4.63) is considered. We get

v+s+1 - Yy+s+27+s+1
s+1 Y oms s+1

ey < —€&1

(Y+s+1D(y+s+2) —ms(s+1)>0. (4.72)

We rewrite (4.72) as a quadratic inequality with respect to 7,
D(y) =7 +7(2s+3)+ (s +1)(—ms+s+2) >0 (4.73)
with discriminant D of quadratic equation I'(y) = 0,
D= (2s+3)?—4(s+ 1)(—ms+s+2) =4ms(s+ 1)+ 1> 0.

Two real roots 71, 72, 71 < 72 of equation I'(y) = 0 are

T2 = % (—(23 +3)F \/4ms(s +1)+ 1) : (4.74)

Inequalities (4.60)—(4.63) will be solvable (i.e. suitable ¢;, i = 1,2,3,4 will exist) if
v1 > 0 or 75 < 1. Below, both cases are discussed.

The case of v > 0

If 4 > 0 then, as it follows from (4.74),

VaAms(s + 1) +1 < —(2s +3) (4.75)

and, consequently, inequality
2s4+3<0 (4.76)

must be fulfilled. Replacing in (4.75) the value s by (2.1),
we get inequality

2 1 2 2 —1))?
gy &2 atmt +1<((a+ )+ 3(m—1))
m—1 m-—1 (m—1)2

which can be reduced to
ala+m+1)(m—1) <0

or to
a(s+1) < 0. (4.77)

65



Inequality (4.77) can be valid only if @ > 0 and, from the (2.1), we have m € (0, 1).

Therefore, considering all the assumptions we get
a>0, 0<m< 1. (4.78)

It is easy to verify that (4.78) implies the validity of inequality (4.76). However,
inequality (4.71) is not satisfied for a v € (0,7,) because we have

1
71+s+1:§(—(2$+3)—\/4ms(s—|—1)—l—1>—l—s+1:

—%(1+\/4ms(s+1)+1) <0,

The case of v2 < 1 Let 75 < 1. Then, by formula (4.74), we will analyse the

inequality

Vams(s +1) +1<25+5 (4.79)

to see that a necessary condition for its solvability is
25 +5 > 0. (4.80)
Inequality (4.79) is equivalent with
dms(s+1) +1 < (25 +5)> (4.81)

Replacing s in (4.81) by formula (2.1), we have

a+2 a+m—+1

4 .
mm—l m—1

2 2
+1< (20‘+ +5) . (4.82)
m—1

Calculating inequality (4.82), we derive its equivalent form
(m —1)(a® +am —a —4m) < 0. (4.83)

Considering all assumptions, we see that the theorem holds if inequalities s +1 < 0,
ms < 0, (4.71), (4.80) and (4.83) hold. These are the conditions of our Theorem (9).

4.3.3 Some remarks to this section

Remark 6. The systems of inequalities (4.64)—(4.68) and (4.60)—(4.63) are solvable.
We show that the system of inequalities (4.64)—(4.68) is satisfied, e.g., for the choice
m =1/2, a = —27/20. In such a case, inequality (4.64) holds since

a+2_ 13 +1_oz+m+1_ 3<0
m—1_ 10 T T T T 107

S =

inequality (4.65) holds since

B a—l—2_ 13<
M=o T1 T T2

0,
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inequality (4.66) holds since

2 bm — 1 12
2$+5:O‘+—m:_>0’
m—1 5

inequality (4.67) holds since
(m—1)(a® +am —a — 4m) = ~300 < 0.
Moreover

1 2 1 2 1 1 1
Ny = = _MJF g L2 atmt 41| = -2 + 2V1.78 = 0.467
2 m—1 m—1 m—1 5 2

and inequality (4.68) holds since

3
l=v——>>0
Y+ s+ 7710 ;

where 7 is a fixed number such that v € (19, 1). Let, e.g., v = 0.8. Then the system
of inequalities (4.60) — (4.63) equals

y+s+1  08-03 5

— s B 4.84

g4 < —€1 sl €1 03 3€1> ( )
Y4 s+2 08-03+1 30

__ __ 803+l 30 4.85

LS TS T30 13 (485)

The choice, e.g., e = €4 = 1, while solving the sub-system (4.84), (4.85), solves the
sub-system (4.60), (4.63) as well.

Lemma 2. Let inequalities (4.64)—(4.67) hold. Then, the root 73, defined by for-

mula (4.74), is positive.
Proof. First, assume 5 = 0. From (4.73), we have
F'o0)=(s+1)(—ms+s+2)=0. (4.86)
Because s + 1 < 0, (4.86) implies
-ms+s+2=0

and, by (2.1),

2 2
—ms+s—|—2:—ma+ +a+ +2=—-a=0.
m—1 m-—1

But o # 0 as, in the opposite case, inequalities (4.65) and (4.67), i.e.,

2m

— <0, (m—1)(—-4m) <0
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give a contradiction. Therefore, vo # 0. Next, let 75 < 0. Then, (4.74) implies
2s + 3 > 0 and the inequality

\/4ms(s+1)+1<2$+3

yields
ms(s+1) < (s+1)(s+2).

As s+ 1 < 0, the last inequality is equivalent to
s(m—1) > 2.

Replacing s by the formula (2.1), we get a > 0. Now, let us show that the positivity
of a leads to a contradiction.

If m > 1, then the condition s+1 < 0 implies & < —2 and we get a contradiction.
Let m < 1. The conditions s+ 1 < 0 and ms < 0 imply 0 < m < 1. The assumption
2s + 3 > 0 can be transformed into

20+ 3m+1 <0,

which is not possible as a > 0 and m > 0. O

Remark 7. The domain defined by inequalities (4.64)—(4.68) in Theorem 10 is
visualized in (m,«)-plane by Figure 4.5. This domain splits into two open sub-

domains, one of them being blue color and other green.
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Fig. 4.5: Summary of admissible values (Theorem 10)

4.4 Thecaseofms >0and s+1 <0
Theorem 11. Let a # 0 and
s<—=1, m>0, s#—2.

Assume that there exists a constant v, satisfying 0 < ~v < 1 and positive numbers
gi,1=1,2,3,4, such that

v+s+1
< g7 - 4.87
€4 €1 s+1 ( )
v+s+1
< g 7= 4.88
€3 €2 s+1 ( )
2
&1 < €3ﬂ , (489)
ms
2
Eo < 54& . (490)
ms

Then, for a sufficiently large fized kg > 0, there exists a solution u: N(kg) — R of
equation (1.3) such that, for every k € N(kg), asymptotic representation (4.1) holds
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or, more precisely, such a solution satisfies

&1 k a b b -1 £9
G A = B o
€3 a b b ! Eq
<A - A () -a <ks+1>] lA <ks+1>] <

Alu(k) — A? (%) - <kb+1>] lAQ <kb“> 37182]_1

E9 1
<—=40 (—) .
P O\R
Theorem 12. Let numbers o and m satisfy
a # {0, —2m}
1
aftmrl o, (4.91)
m—1
o+ 2
>0 4.92
T —1 ’ (4.92)
2 om —1
Eom =L, (4.93)
m—1
a® +8m? + 8ma — a + ma® + m*a > 0 (4.94)
and I
v+ 2T S (4.95)
m—1

where v is a fized number such that v € (v*,1) and

L 1 20+ 3m + 1 a+2 a+m+1
V= ———"——+/1—-4m . .
2 m—1 m—1 m—1

Then, the conclusion of Theorem 11 holds.

4.4.1 Proof of the Theorem 11

Let us again verify inequalities (4.8)—(4.11). Using formula (4.7) and assumptions

of this section, which could be transformed into the following inequalities

Fy(k, Y0, Yl vovn)enr, < o Fy(k,by(k), Y1)
)10y B

B s+1 1 €1 €4
- ( 2 +O(k2)> (m + kﬂ)
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<hilk+1) = (k) = (1+0(%)), (4.96)

Fl(ky YEJ, le)’(kyo’yl)egé > (k Y(fril/ir)leﬂl Fl(ky Cl(k)a }/1) =
) s X1 C

(0@ (& -%)

> ek +1) — (k) = _/;231 (1 +0 (%)) . (4.97)

E5(k Y0, Y1)l vo v ez, < (kﬁyg;i‘?(e% Fy(k, Yy, by (k))

(2o (L)) (2585 o (1)
_( i +O(k2>><s+2m+kﬂ+o<k
535

< bk + 1)~ by(k) = o0 (1 +0 (%)) (4.98)

and

Fy(k, Y0, Y1) |y )0z, = (k’Yleilf)le% Fy(k, Yo, c2)

. s+ 2 1 ms &g €y <1)>
=0 (@) (e -w ol
546 1
> ool +1) = eolk) = — 2 (1 10 (E)) . (4.99)
Since inequalities 4.96 and (4.97) duplicate inequalities (4.69) and (4.70), we get

the following conditions

i) B>~
or
ii) f =~ and
y+s+1
ey < —&e—.
s+1
iii) f =~ and
Y+s+1
€3 < —Egq— .
s+1

Since inequalities 4.98 and (4.99) duplicate inequalities (4.31) and (4.34), we get
the following conditions

iv) v > 3 - contradiction to (i)

or
v) B =~ and
vy+s+2
g1 < €3
ms
vi) f = and
vy+s+2
€9 < &4
ms
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Hence, we get the hypotheses of Theorem (11).

Note that, in this case, we can make the same remark as in Theorem (9).

Remark 8. For the solvability of the system of inequalities (4.87)—(4.90), the in-
equality
Y+s+1>0 (4.100)

is necessary as, in the opposite case, inequalities (4.87), (4.88) cannot be satisfied

due to the positivity of €;, 1 = 1,2, 3,4 and the property s + 1 < 0.

4.4.2 Proof of Theorem 12

To solve the system (4.87)—(4.90) we can write out the chain of inequalities

1 1 2 1)2 2

P b e <_%7+s+ Y+ s+ <€;7+s+)(7+s+)
s+1 s+1 ms (s +1)2ms

(v +s+1)?(y+5+2)°

(s + 1)%2(ms)?

(4.101)

&4

As g4 >0, (4.101) implies

(v+s+1)*(y+ s+ 2)?

S PRy TP

and

(Y +s+1)(y+5+2) = (s+1)ms)] [(y+ s+ 1)(y+5+2) + (s + 1)ms] > 0.

(4.102)
Put
Gi(7) == (y+s+1)(v+s+2) = (s+ Lms,
Ga(7) =(y+s+1)(v+s+2)+ (s+ 1)ms.
Inequality (4.102) will hold if either
G1(y) >0 and Gay(v) >0 (4.103)

or

Gi(y) <0 and Ga(v) < 0.

Let us consider each of the above possibilities separately.

The case G1(v) > 0, G2(v) > 0. Consider system of inequalities (4.103).
Because s +1 < 0 and ms > 0, inequality Ga(vy) > 0 implies G;(y) > 0. Conse-
quently, it is sufficient to consider the inequality Ga(vy) > 0 only. Rewrite the last

inequality as a quadratic one with respect to -,

Go(y) =+ 7925 +3)+ (s +1)(s +ms+2) >0
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with discriminant D of a quadratic equation Ga(y) = 0
D=(25+3)2—4(s+1)(s+ms+2)=1—4ms(s+1) > 0.

The two real roots 71, 72, 71 < 72 of the equation Gy(y) = 0 are

—(25+3)F /1 —4ms(s+1)
T,2 = \/2 . (4.104)

System (4.87)—(4.90) will be solvable (i.e. suitable &;, i = 1,2,3,4 will exist) if
v1 > 0 or if 75 < 1.

The case v; > 0. In this case, the necessary condition (4.100) does not hold

because, for v < 1, we have

—(25s+3) — \/1 —4ms(s+1)

YHs+1I<m+ts+1l= +s+1

2
—1— /1 —4ms(s + 1)
= < 0.
2
The case v, < 1. This inequality is equivalent with inequality
V1 —4ms(s +1) < 25 +5. (4.105)
The necessary condition for its solvability is the inequality
25 4+5 > 0.
If it is fulfilled, then inequality (4.105) is equivalent to
1 —4ms(s+1) < (25 +5)?
and, replacing s by formula (2.1), we get the following condition
a® 4+ 8m? + 8ma — a + ma® + m?a > 0. (4.106)

Considering all the assumptions, we state that Lemma 1 is applicable if inequal-
ities s + 1 < 0, ms > 0, (4.105), (4.106) and (4.100) hold, that is, if

1
s41=21"% 0 (4.107)
m—1
2
ms = ma+ > 0, (4.108)
m—1
2 om — 1
95 45— 0T Ly (4.109)
m—1
o® +8m?* + 8ma — a + ma? + m?a > 0 (4.110)
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and
a+m+1

Yyts+l=7v+
m— 1

>0, (4.111)

where v is a fixed number such that v € (7,,1) and

’Yz:l(—(2s+3)+\/1—4ms(s—|—1)) —

2 m—1 m—1 m-—1

4.4.3 Some remarks to this section

Remark 9. The system of inequalities (4.107)—(4.111) is solvable and so is the
system of inequalities (4.87)—(4.90). We show that system of inequalities (4.107)—
(4.111) is satisfied, e.g., for the choice m = —2, a = 3/2. In such a case, inequal-
ity (4.107) will hold since

a+ 2 7 a+m+1 1

- 1= <0
m-1_ 6 °F m—1 6 ="

S =

inequality (4.108) will hold since

a+2 B
m—1

7
= =>0
ms=1m 3 ,
inequality (4.109) will hold since

2 bm—1 8
pepso 2FIm=1_8
m—1 3

inequality (4.110) will hold since
2 2 2 2 41
a“ +8m* + 8ma — a+ ma” + ma = vy > (.

Moreover,

72:5 m—1 m-—1

1 2 1 2 1
(_ a+3m1+ +\/1—4ma+ a+m+
m_

) = 0.46597

and inequality (4.111) holds since

1
l=9y——=>0
Y+s+ 719 )

where 7 is a fixed number such that v € (y2,1). Let, e.g., v = 5/6. Then, sys-
tem (4.87)—(4.90) has the form

v+s+1
€4 < —61————— = 4eq,
* Ys+ !
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< —gg———— =4
€3 £2 s 1 €2,
Yy+s+2 5
ms 7
Yy+s+2 5
€9 < Ey————— = —£4.
ms 7

The choice, e.g., 61 = 5 = 1, £3 = ¢4, = 2 solves this system.

Lemma 3. Let inequalities (4.107)—(4.111) hold. Then, the root v2 defined by for-
mula (4.104)is positive.

Proof. Assume that v < 0. Then

V1 —dms(s + 1) < 25 + 3. (4.112)
Inequality (4.112) can hold only if
25+3>0 (4.113)
holds. Moreover, (4.112) implies
—ms > s+ 2. (4.114)

From (4.113) and (4.114), we can derive a chain of inequalities

3 1
—mszs+22—§+2:§>0.

This is in contradiction with the assumption ms > 0. Therefore, v, > 0.
O

Remark 10. The domain defined by inequalities (4.91)—(4.95) in Theorem 12 is
visualized in (m,«)-plane by Figure 4.6. This domain splits into two open sub-

domains, one of them shown in red while the other in blue.
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a+m+1=0\\ Y |
< A !
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X A\ 1
< N
N N |]
<
N \al
8 A, h—'_b
-3 -2 -1 X 0 1 m
<
<
<
\Jl
-1\
\
i \
m=0 N

Fig. 4.6: Summary of admissible values (Theorem 12)

4.5 All the above cases unified and compared with
the case of constant upper an lower functions

In this section, we will compare the above results. The results of Theorems 5 — 12
can all represented by the below Figures 4.7 and 4.8.

Now, in addition, we need to compare these results with those of the Theorem 4
of Chapter 3. As the proof of this theorem is structured similarly, it should be
mentioned that the crucial role in applying Theorem 2 is played by a proper choice
of upper and lower functions b;(k) and ¢;(k), where @ = 1,2. Both sets of the

upper and lower functions chosen ((3.6) and (3.7)) and (4.2) lead to the identical
asymptotic relation

&1 I a b b -1 €9

T S W E | ] S w
£y a b b\ e
_Ex:AMM—A(E)—AQﬁJ]P<WHN <

o)) )2

E9 1
<E+O(k>’
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- -
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|
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a2+8m2+8ma—a+ma2+m2a=0\‘ | < \
! el
] i @ N
Lo 5 M
\
N %
—20] | 7// hY
N\ 2N
) 2
(NN O
m=0

Fig. 4.7: Summary of admissible values (Theorems 5-12)

or more precisely

nlaX{€1,€2}|bi|

s (k) — ash™ = bah ™| <

ks+v+1 )
-5 —s— b max{eq, e
‘Aui(k) —as Ak — b Ak 1‘ <A <;€:+1>‘ Eml 2},

A (k) — az A" = b A%

b ms 1
2 + -
A <ks+1>‘ <max{51,52}m|8+2| + ‘O (k)D )

However, the change of the form of upper and lower functions from constants

<

to power functions extends the set of appropriate conditions reopening the question
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Fig. 4.8: Summary of admissible values - zoom (Theorems 5-12)

of the asymptotic behaviour of the Emden-Fowler equation solutions in the case of
s+1<0.

To illustrate that the set of appropriate conditions has expanded even in the case
of s+ 1 > 0, all sets are put in a single Figure 4.9. Here the yellow domain is the
summary of the results of this chapter (non-constant case) while the green domain
summarises the results of Chapter 3 (constant case).

Let us show that the union of all green domains is a subset of the union of all
yellow domains. It is sufficient to prove that there exists no solution of the system

of equations:

ma + a+4m = 0,

a? 4+ 8m? 4+ 8ma — a + ma? + m2a = 0,
m%{()’l}?

a # —2.

(4.115)
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\\ r\:\ 0 |
\ \ 100 I
\| NN ]
Noa |
‘ N (] I
oY 3 A
s N a?+am—a—4m=0
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Fig. 4.9: Summary of admissible values (Theorems 5-12) and Chapter 3)

From the first equation of the system (4.115) we get:

4dm
m+1

Hence, substitution provides the following

16m? Csm? 8 4m N 4m N 16m? s 4m 0
———— +8m° —8m m —mi— =
(m+1)2 m+1 m+1 (m+1)2 m+ 1

and, finally, we get
m(m —1)*(m + 1) = 0.

So, there are no solutions of the system (4.115) and, hence, the border curves
do not intersect. It is easy to see that points (10, —5) and (—10, —5) belong to the

yellow domain, but not to the blue one.
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For the point (10, —5):

contradicts to (3.42) and
a® + 8m? 4+ 8ma — a + ma® + m’a = 180 > 0

satisfies condition (4.50).
For the point (—10, —5):

contradicts to (3.42) and
a® + 8m? 4+ 8ma — a + ma® + m’a = 480 > 0

satisfies condition (4.50).
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4.6 Examples

Example 8. In the following example, values (m, a) belong to the domain shown
in Figure 4.2 (blue domain). Consider equation (1.3) where a = 1, m = —4, that
is, the equation

A*u(k) + ku=*(k) = 0. (4.116)

In this example, a and m satisfy (4.23). If we put

3
5125225, ez =¢e4=1, ’721,
then, by formula (2.1),
o+ 2 3
S = = ——
m—1 5’

by formula (2.2),
25

a=[Fs(s+ 1Y =22

and, finally, by formula (2.3),

b= as(s +2) ::|:21 25
s+2—ms 25\ 6

Theorem 6 is applicable and equation (4.116) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.20)—(4.22), that is,

—1
25 1
3/5 2/5 -
\/ k \/ kz/s] { \/ k ] NSYEZE
25 +2VE
Au(k) — A(j: Fk%) —A( j;}éz

2k3/4

1
k3/4

25 +5V%
AZu(k) — A2 (i, /Fws) A (_252 i

-1
21 5/25
.AQ(i%\/%)] <21 +O(1>.

k2/5

1 1
BT 0 (E) =
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These formulas can be simplified to

25 .. 2125 1 1
u(k) = {2 B {2 k2/5+0(—k23/20),
52 " 21 [25 1 1
j:A( y k/> A( g2 k2/5>+0(—k43/20),
/25 21 /25 1 1

Example 9. In the following example, values (m, a) belong to the domain shown

in Figure 4.2 (red domain). Consider equation (1.3), where « = —3, m = %, that is,

the equation

A%u(k) £ E3u?(k) = 0. (4.117)
In this example, a and m satisfy (4.24). If we put

1
g1=8& =3, ez3=¢g=1, ’725,

then, by formula (2.1),

by formula (2.2),

a=[Fs(s+ 1)]1/(m_1) =3

and, finally, by formula (2.3),

as(s+2) 2
s+2—ms 27

Theorem 6 is applicable and equation (4.117) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.20)—(4.22), that is,

_i<[(k)_ L2 H 2 ]_1<i
iz S Y 36k2 27k3) [27K3 j1/2

- ﬁ < [A“(k)_A(361k2>_A(272k3>] ' [A (272/%3)]_1 = ﬁ’

a % 0 (%) = [Azu(k) - (361k2> - (272k3>] '

[2(5)] <mmeols)
[A (27k3 <mrto\%)
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These formulas can be simplified to
1 2 1
ulh) = 32 + g7 O (W) ’
1 2 1
Aulk) = A (36k2> A (271&) o (W) ’

1 9 1
Alu(k) = A7 (36k2> +A° (271&) +0 (k11/2>

Example 10. In the following example, values (m, ) belong to the domain shown

in Figure 4.2 (red domain). Consider equation (1.3), where a = 1, m = 6, that is,

the equation
A?u(k) £ ku®(k) = 0. (4.118)
In this example, a and m satisfy (4.25). If we put
51252:1, 53254:1.21, ’}/:04,
then, by formula (2.1),

a4+ 2
m—1

§ = = 0.6,

by formula (2.2),
a=[Fs(s+ )] = £9/1.56

and, finally, by formula (2.3),

2 39
as(s+ 2) _ =39 yiEs.

T s+2—ms 155

Theorem 6 is applicable and equation (4.118) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.20)—(4.22), that is,

_i<[(>im_im

Y156 39 717! 1
106 155k16 : < 704’

155k16 k-

— o < [But £ A (ViSigs) + A (ViSo s )

. 30 \17'  1.21
'[A(HF 1561551&6)] < Joa

—#+%3<W<ﬁﬁw—') (V055 |

)] <m0 (i)
o (P s i O\g)
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These formulas can be simplified to

u(k) = FV1.56 W¥\/15 155k16 +O(k2)
: 39 1
Au(k) = TA (\/1.56W) A (\/1 56 155]{1.6) L0 (ﬁ) ,
o L 39
Al = = (V18655 ) 5 2 (VIS0 5 ) +0 ()

Example 11. In the following example, values (m, ) belong to the domain shown
in Figure 4.2 (red domain). Consider equation (1.3), where v = 2, m = —16, that

is, the equation

A?u(k) £ K*u (k) = 0. (4.119)
In this example, a and m satisfy (4.26). If we put

13
51252:17 63:54:1'87 7:1_77

then, by formula (2.1),
at+2 4

m—1 17

289
a=[Fs(s+ "V = £ 722
52
and, finally, by formula (2.3),
,_ osls+2) 00 [250
T st2-ms 289 V57

Theorem 6 is applicable and equation (4.119) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.20)—(4.22), that is,

S =

by formula (2.2),

1
1 17/ 289 AT 1T 289 60 17/ 289 60 1
13/17 < + 52 k + 59 989k13/17 + ‘59 989k13/17 < L13/17

1.8 171289 417 9
T 1317 < |Au(k) F A ( \ 52 -k 289k13/17 ’

@

- 28 1.8
:F 2 289k13/17 < k13/17°
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1 1
RN +0 (E)

/289 [289 60
2 2 [ 17 4/17 2 [ 17/ <09 .
A (k) :FA ( K ) + A ( 592 289/€13/17>]
-1
. 28 1
52 28%13/176 < qoym O (k)

These formulas can be simplified to

- 289 ir o289
A -y 289k13/17 +0 (k%/” )

9 i . 28 60 1
A ( F 52 2sor/ | O (k43/17>

289 0 L /289 60 1
Azu(k):iAQ(\/7 TR )” %5 o) O ()

Example 12. In the following example, values (m, ) belong to the domain shown

| |
H_

in Figure 4.4 (red domain). Consider equation (1.3), where o = —4, m = —3, that

is, the equation

A?u(k) £k *u3(k) = 0. (4.120)
In this example, a and m satisfy (4.47) and (4.50):

(1 +m)+ a(m? +8m — 1) +8m? = 152 > 0.

If we put

1
e1=¢e=1, g=g=1, ’725,
then, by formula (2.1),

by formula (2.2),
a=[Fs(s+1)]
and, finally, by formula (2.3),

325

0
Theorem 8 is applicable and equation (4.120) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

1
25 3 1
_W < Julk k02 101&2 10k12 REER
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—1
J25 3 1
A (i Flow)] = oz

These formulas can be simplified to

VF k— \/ 101&2 _)
25 3 1
= _—— > — O a4
( 6 k02 ) ( 6 10k1~2) * (k“)’
/25 1 25 3 1

Example 13. In the following example, values (m, ) belong to the domain shown

in Figure 4.4 (red domain). Consider equation (1.3), where o = —=7/4, m = 1/2,
that is, the equation

A%u(k) £ k7740 ?(k) = 0. (4.121)

In this example, a and m satisfy (4.48) and (4.50):

29
(14 m) + a(m? + 8m — 1) + 8m? —3—2>0.

If we put

1
e1=é& =1, e3=¢g=1, ’725,

then, by formula (2.1),

by formula (2.2),
a=[Fs(s+ 1)]Y™ D =16

and, finally, by formula (2.3),
as(s+2) 48

T s+2—-ms 7
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Theorem 8 is applicable and equation (4.121) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

-1

1 48 1 48 1 1
~ 55 < u()—16\/_+7\/_H 7 <w
1 48 1 48 1 \17! 1
~ s < Au(k) — (16\/_) <7ﬁ>] : [A <_7—k> < o5
%+o(é) < |A%u(k) - A2 (16VE) + A2 <478% ]

[ ()] <deold)

These formulas can be simplified to

u(k):16\/_—478% 0(3),

Au(k) = A (16vE) — A <478%> +0 (%) :

A%u(k) = A? (16VE) — A <478 \}) +0 ( ! ) .

Example 14. In the following example, values (m, ) belong to the domain shown
in Figure 4.4 (red domain). Consider equation (1.3), where a = —3, m = 4, that is,

the equation
A?u(k) £ k—3ut(k) = 0. (4.122)
In this example, a and m satisfy (4.49) and (4.50):

(1 +m) + a(m? +8m — 1) + 8m? = 32 > 0.

If we put
e1=¢ex=1 e=¢e=1, ’725,
then, by formula (2.1),
a+?2 1
S om—1 3’
by formula (2.2),
_ 2
a=[Fs(s + D] = £
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and, finally, by formula (2.3),

po @5 +2) 5 2
s+2—ms 27V 9

Theorem 8 is applicable and equation (4.122) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

-1
2 1 5 J2 1 5,2 1 1
uR TN FTE g\ omn | (Tar\ome| <A
2 2 1
Au(k):FA(\‘Q’/g-kl/:*’)j:A( \[kz/g)

-1
5.2 1 1
A(ﬂ? §k_/>] N

() )
{ (37 5%)] < to()

1

_W<

1
VR

1 1
~ato(p) < |

These formulas can be simplified to

_ o2 gf; (1)
u(k)_jzgk 179/% +Ok’

1
Au(k) = + ( k1/3> 27%2/3 +o(ﬁ),

2 5 42 1 1
2 . 2 302 1.1/3 2 3=
Au(k) = £A (\/9 k )ZFA (_27“9—k2/3>+0(k3)'

Example 15. In the following example, values (m, ) belong to the domain shown
in Figure 4.5 (red domain). Consider equation (1.3), where o = —27/20, m = 1/2,
that is, the equation

A%u(k) £ k7272012 (k) = 0. (4.123)

In this example, o and m satisfy all the conditions of Theorem 10: condi-

tion (4.64) is
a+m+1 3 <0
m—-1 10
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condition (4.65) is
m2 2 _ 13 <0
m—1 20

condition (4.66) is
2a+5m—1 12

— >0
m—1 )
and condition (4.67) is
199
—1)(a? —a—4m)=——— <0.
(m—1)(a” + am —a —4m) 200
If we put
8
51252:1, 53254:1, ’}/:EZOS,
then, the condition (4.68) is applicable:
N a+m+1 i -0
TTTmC1T T 1o
and ,by formula (2.1),
a+2 E
Tmo1T 10
by formula (2.2),
1521
— )Y = 222 — 01521
a=[Fs(s+1)] 70000
and, finally, by formula (2.3),
2
as(s£2) _ 30758 . 1095067

T s+2—ms 300000

Theorem 8 is applicable and equation (4.123) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

1 1521 1509 | 30758 3/10H 30758 3/10]—1 1
ko = [u(k) 10000 " T 300000 " 500000 " < 0

1 AL 13/10) (30758 3/10)]
j08 = [A“(k) A(10000 k +2 (300000

30758 -1
B AN 3/10)] —
[ ( 300000~ < s

b 1 2 A2 ( 1521 13/10) 2 ( 30758 3/10)]
s 7O (k) < [A u(k) = A7 Tog00  F + 2" (350000 "

30758 -1 1
[ o] e roll)
[ 300000 " < Oz
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These formulas can be simplified to

u(k) = ﬂ . e13/10 30758 E3/10 0 (L)

10000 300000 /2
/1521 13/10)_ (30758 3/10) (L)
A“(k)_A(loooo k 2\ 300000" O\ )
1521 30758 1
2 _ 13/10 3/10 L
Alu(k) = A7 (10000 K ) A (300000k ) O(W?)'

Example 16. In the following example, values (m, ) belong to the domain shown
in Figure 4.5 (red domain). Consider equation (1.3), where @ = —3.1, m = 2, that

is, the equation

Au(k) £ k1 u* (k) = 0. (4.124)

In this example, o and m satisfy all the conditions of Theorem 10: condi-

tion (4.64) is
a+m+1

=-01<0
m—1
condition (4.65) is
2
L )
m— 1
condition (4.66) is
2 -1
a+om 98>0
m— 1

and condition (4.67) is

(m—1)(a* +am —a —4m) = —1.49 < 0.

If we put .
51252:1, 53254:2, ’}/25205,
then, the condition (4.68) is applicable:
1

m—1
and by formula (2.1),

a+2

s = —1.1,
m—1

by formula (2.2),

_ 11
a=[Fs(s+ 1YY = F1og = FOU1

and, finally, by formula (2.3),

as(s +2) 1089 .
b= ———"=4+—— = 40.0351.
s+2—ms 31000
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Theorem 8 is applicable and equation (4.124) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

1 11 1089 1089 L
o :l:_ 11/10 i 1/10:| |::|:—_k,1/10:|
oz = [u(k) 00 F " T 37000 * 31000 RVEVER
9 1089
A k, :l: A ( k,ll/l(]) A (— 3 k,l/10>:| 3
A [ u(k) 100 T2 31000

1089 -1 g
a (2222 kl/m)] =
[ ( 31000 REYCL

. 1 2 2 ( 11/10) ( 1089 1/10)]
s T O (k) = [A u(k) £ A% 100 F F A% 31000 ¥

1089 1 1
A2 1/10 L
[A ( 31000 "~ )] S 5n +O(k> '

These formulas can be simplified to

11 1089 1
o k,ll/lO + k,l/lO O (_)
100 31000 + k3/5

1089 1
11/10 1/10 L
Auk) = :FA(100 b )iA(i%lOOOk >+O(k8/5)’

1089 1
Au AQ( 11/10) 1L A2 ( 1/10) ( ) .
(k) =+4" (100 " * 31000" O\
Example 17. In the following example, values (m, ) belong to the domain shown

in Figure 4.5 (red domain). Consider equation (1.3), where o = 3/2, m = —2, that

is, the equation

A%u(k) £ B u"2(k) = 0. (4.125)

In this example, o and m satisfy all the conditions of Theorem 10: condi-

tion (4.91) is
a+m+1 1

=——<0
m—1 6
condition (4.92) is
a+2 7 -0
m —
m—1 3
condition (4.93) is
2 —
a+om—1 940
m— 1

and condition (4.67) is

41
a2+8m2+8ma—a+ma2+mazz>0.
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If we put -
e1=¢ex=1, e3=¢e,=2, 1=
then, the condition (4.68) is applicable:

a+m-+1 2
_*_7:

>0
m— 1 3
and, by formula (2.1),
a+2 7
5= —=
m—1 6’

by formula (2.2),

. 36
a=[Fs(s+ 1)V = :Ff"/7 = F1.7261

and, finally, by formula (2.3),

as(s +2) 4/ 3635
S+2—ms T 754
Theorem 8 is applicable and equation (4.125) has a solution u = u(k), k € N(ko)
satisfying inequalitites (4.44)—(4.46), that is,

1
/363 1
1:1/6 1/6 L
\/ \/ ” 754k ] < /6

b= = ¥1.1188.

_k-5/6
2 3/% 7/6 5/3639 16 )
k5/6 Au(k):l:A( - k FA 1 -k

—1
AN EREL A
A(j: 1 -k <k5/6’
36 36 /35
2 2 [ 320 76 2 390 (90 46
A%u(k) + A (,/7 . ):FA 7(54 . )
-1
36 35 1 1
2 39099 11/6 _ _
A (i 7 54 g )] <k5/6+0(k)'
These formulas can be simplified to
1
7/6 1/6
,/ 5 4 ,/ k/ kz/g),
36 . 3635 16 1
Au(k) = TA (,3/7-k /6) +A (,3/75—4k / ) +O(W)’
36 36 35 1
2 _ 2 [ 399 76 2 [ 39992176 L
A2u(k) = FA (,/7 k )j:A (,/754k )+0(k8/3).
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5 A discrete analogy of the blow-up so-
lution

To illustrate an analogous blow-up phenomenon for a discrete second-order equation,

we will use an autonomous second-order Emden-Fowler type differential equation

y' (@) = y*(2), (5.1)

where s # 1 is a real number.
Let us show that (5.1) can have blow-up solutions.
First, equation (5.1) is solvable and its general solution can be written in the

form

(z)
/y =1z — 2 (5.2)
Yo ,/szsdz+0

where C' is an arbitrary (but admissible) constant and (xg,%o) is an arbitrary ad-
missible point. If, for example, s = 3 and C' = 0, then it is easy to derive from (5.2)

a class of solutions

y(z) = im (5.3)

where K is an arbitrary constant and one can see the blow-up phenomenon explicitly
if v - +K.

In directly transferring the above phenomena to discrete equations, there are
some circumstances to be taken in consideration because the independent variable
in discrete equations is discrete running over a set of integers.

Therefore, we prove the existence of this phenomenon implicitly as follows. First,

we transform equation (5.1) by a transformation

z = u(y) (5.4)

where © is a new unknown function. This transformation will be such that = has
a finite limit as y tends to infinity. For example, writing solution (5.3) in the

form (5.4), we derive
2
r=u(y) = :I:£ - K. (5.5)
)
If y — oo, then, by (5.5),  — —K. Next, we will compile a differential equation for
w in (5.4) and the form of this equation will serve as a motivation for constructing
a related discrete equation.

Differentiating the transformation (5.4) with respect to z, we derive

1=y -y, (5.6)
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Differentiating (5.6) with respect to = again, we have
" /\2 / "

Assuming u; # 0, from (5.7), we get

"2
=2 u(,y) (5.8)
and, using (5.1), (5.6), (5.8)
" "2 "
gy = u(ly) _ _(Z')3
and, finally, for u we derive
' = —yt ()’ (5.9)

Then, a discrete analogy to differential equation (5.9) is the following
A%(k) = —k* (Av(k))>. (5.10)

A problem equivalent to blow-up phenomena for differential equation (5.1) is one
of proving the existence of a nontrivial solution to equation (5.9) such that the limit
lim, o u(y) exists and is finite. Therefore, we consider the problem to prove the
existence of a nontrivial solution to equation (5.10) such that the limit limy_,, v(k)
exists and is finite. More exactly, under condition s > 1, we prove the existence of
a solution to equation (5.10) such that

lim v(k) = 0. (5.11)

k—o00

5.1 An approximate solution of second-order dis-

crete Emden-Fowler equation (5.10)

We will search for an approximate solution of discrete equation (5.10) with asymp-
totic behaviour
v(k) ~V(k):=c- k¢

as k — oo where ¢ and « are constants still unknown. We assume ¢ # 0, o # 0 trying
to find these constants. To do this, we must replace Av(k) and A?v(k) with AV (k)
and A%V (k) in (5.10). Let us perform, for & — oo, auxiliary asymptotic computation
of AV (k) and A%V (k). With the necessary order of accuracy for AV (k), we obtain

1 —Q
AV(E) = c(k + 1) — ck = ck—® (1 + E) -
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Cu a ala+l) ala+1)(a+2) 1
=ck <1_E+ - —l—O(—)—l)

2k2 6k3 k*
_ca cafla+1) cala+1)(a+2) 0 1
- Lo+l ofa+2 - Glo+3 (ka+4>

and, for A%V (k), we have

APV (k) = ek +2)—2e(k + 1) 4ck = <(1 4 g) T (1 4 l)_a+1>

ke k k
_c 20 2a(a+1) dala+1)(a+2) ( 1 )
_k_a<<1_?+ R 3k O\
a ala+l) ala+1)(a+2) (1)
—2<1 Tt o5 +0 (7)) +1
_cafa+1)  cala+1)(a+2) 0 1
T otz 3La+3 (ka+4> :

Then, replacing in (5.10) Av(k) and A%v(k) with AV (k) and A%V (k), we derive

cala+1) LN ca  ca(a+1) 1 ’
g O (ka+3) =t <_ ot T g 1O (ka+3)

and
cala+1) 1
e 0 (o)
_ Ao 333 (a+1) 3PP (a+1)? o 1
-  kBat3 9f3a+4 o A30+5 + (k3a+5> :
The last expression implies
cala+1) A3ad 1 1
ka+2 = k.3a+3—s + O (k3a+4—s) + O (ka—l—?)) : (512)
Relation (5.12) is satisfied for
92— -
o+ 3a+ 3 — s, (5.13)
cala+1) = a.
The values
—1 Vi 1 V2 2
a=32 R e S $+1 (5.14)
a s —

solve the system (5.13). Since V' (k) can assume two values, we denote

\V 23 + 2]{:(1_8)/2.

Vi) = Valk) = £

95



5.2 System equivalent to discrete Emden-Fowler
equation (5.10)

Define the following change of variables:

v(k) = ck™(1+ Yi(k)), (5.15)
Au(k) = (A(ck™))(1+ Ya(k)), (5.16)
Pu(k) = (A% (ch™®))(1 + Y3 (k) (5.17)

where Y;(k), i = 1,2,3 are new dependent functions Y;: N(kg) — R, c and « are de-
fined by (5.14). In (5.10) replace Av(k), A%v(k) with (5.16), (5.17). First, compute

—a __ -« —a _ .-« 1 _a_ _ -« _g Oé(Oé+1)_
A= (k1) — k" =k [(1+k> 1]_k [1 s

ala+1)(a+2) Lo (1) B 1] ~_a alatl)  alat+l)(a+2) +O( 1 )

63 k4 T gotl T 2fo+ 6ot oot
and

2\~ 1\~
AR = (k+2) " —2(k+1)™ +k—“=k—a[(1+z> _2(1+E> +1]

_ o [ a—l—l Cdala+1)(a+2) | 2a(a+1)(a+2)(a+3)

3k3 3kt

o ala+l)  ala+1)(a+2) ala+1)(a+2)(a+3)
< TE e o 21K ) o (kfi)]

aa+1) ala+1)(a+2) Ta(la+1)(a+2)(a+3) 1
= k’a+2 k.a-f—?, 12]€a+4 + O (—ka+5> . (518)

Let us take the first difference of equation (5.15):

Av(k) = A (ck™(1+Yi(k)) = ¢ [(AGR™) (1 + Ya(k)) + (k + 1) A1 + Yi(k))]
= c[(A(k N+ Yi(k) + (k+ 1) AYi(k) -
Substituting it to equation (5.16), we get

c(A(R™))(A + Ya(k) = c[(ART*) (1 + Ya(k)) + (K +1)"*AY(k)].

Simplifying this expression, we have

a ala+1)  ala+1)(a+2)
ot T opez T T pand

AVI(F) = (SK~)0506) = Vi (B) -+ 1= -

+O( 1 )) k (14—1)&(}/2(]{)_yl(k)):<_g+oz(a+1) _alat+1)(a+2)

fot+d k k 2k2 6k3

96


file:///Jfe5

+0 (i» : <1 poyaa—l) alelie=?) o, (i)> (Ya(k) — Y1 (k)

k4 k 2k? 6k3 k4
- (G e - e o ()
(Ya(k) — Y (k) = <_% o? +2ozk2— 202 N —a(a? +36(Z: 2) + 602 O (%))
- k) — v = (= - 2=t - 2O o () agr) - v

and, finally,

AV () = [% pae ) alaz a2 (ki)] ik~ V(B (5.19)

Let us take the first difference of equation (5.16):

A’o(k) = A((A(ck™))(1 + Ya(k))) = (A*(ck™))(1 + Ya(k))
(A (el + 1)) AL+ Ya(k)) = (A2 (k™)) (1+ Ya(k)) + c(A((k +1)~)) AYa (k).

(5.20)
Compute
Alk+1) = (k+2) — (k+ 1)~ = k a(1+z) s a(1+E)
o 20 da(a+1)  8a(a+1)(a+2) 16a(a+1)(a+2)(a+3) (1)
=k ll_?+ % ok 24K Ve
_ o 1_g+a(a—|—1) Cale+(a+2)  ala+1)(a+2)(a+3) O(i)
k 2k2 6k3 244 k®
_a Bala+1) Ta(a+1)(a+2) 15a(a+1)(a+2)(a+3) 0 1
T ket etz gRets 24fot " (ka+5) '
(5.21)

From (5.17) and (5.20), we derive
(A%(ck™))(1 + Y3(k)) = c(A*(k™))(1 + Ya(k)) + c(A(k + 1)7)AYa(k)

and
AYa(k) = (A% ) (A + 1)) (Va(k) — Ya(k)). (5.22)

In the following two parts, this equation will be simplified. First, we will compute
the coefficient
(A?E™)(A(k +1)")~h (5.23)

Next, Y3(k) will be expressed using equation (5.10) and transformation formu-
las (5.16) and (5.17).
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5.2.1 Equation (5.22) - simplification of the coefficient (5.23)

Now, compute the coefficient (5.23) appearing in (5.22). Using (5.21), we have

- Lo+l 9 fat+2 Glot3
a(a+1)(a+2)(a+3) +O( 1 )]

(A<k+1>‘°“)_1=[ o Salatl) To(atl)(a+2)

-1

24 fot Jeo+5
feort! 3(a+1)  T(a+D(a+2) 15(a+1)(a+2)(a+3) 1\ 1"
T a [1 - <_ o ok 24k3 o (ﬁ))]
ket 3(a+1)  T(a+1)(a+2) 15(a+1)(a+2)(a+3) 1
T a [1 B <_ 2k 6k? B 2413 o (ﬁ))

(o Teshiern o (L)) (3650 o gt ol

_ ket [1 N 3a+1l) T+ 1)(a+2) N S(a+1)(a+2)(a+3)  9(a+1)?
a 2k 6k2 83 42
e+ 1)*a+2) | 27T(a+1)° Lo (L)]
2k3 8k3 k4
_ ke [1 N 3(a+1) N (o + 1) (=14 — 28 4 27 + 27)
Q 2k 12k2
(a+1)(5(a® + 5a + 6) — 28(a? + 3a + 2) + 27(a® + 2a + 1) 1]
* 8k3 o (ﬁ)

kott l1+3(a+1) (a+1)(13a — 1) (a+1)(4a2—5a+1)+0(i>_

a 2%k 12k 8k3 k)

ket 3(a+1) (a+1)(13a—1) (a+1)(a—1)(4a—-1) 1

T a [1 o T 1242 * 8k? o (ﬁ) '
(5.24)

Now, we use (5.18) and (5.24) to calculate the coefficient

(A25) (A (k+1)-2)1 = [a(a +1) ala+1)(a+2) n Ta(a+1)(a+2)(a+3)

ka+2 ka+3 12ka+4
1 kot la+1) (a+1)(13a—1) (a+1)(a—1)(4a—1)
o (ka+5>] ' <_ a ) [1 o T 1242 * 8K

<0 ()]

a+l (a+1)(a+2) T(a+1)(a+2)(a+3) 1
:[_ KR 12k +o( )]

98



14

3a+1l) (a+1)(13a—1) (a+1)(a—1)4a—-1) 1
o 12 e * O( )]

a+1 N (a+1)(a+2) Ta+D(la+2)(a+3) 3(a+1)?

k k2 B 12k3 O 2k?
Bla+1)(a+2) (a+1)*(13a—1) o (i)
2k3 12k3 k*

a+1+(a+1)(2a+4—3a—3)

k 2k2
n (a+1)(=7a* — 35a — 42 + 18a® + bda + 36 — 13a? — 120+ 1) Lo (i)
12k3 k4
__a+1_(a+1)(a—1)_(a+1)(2a2—7a+5)+0 i)
-k 2k? 123 et
_a+1l (a+l)(a—1) (a+1)(a—1)2a—25) (1)
Tk 2%? - 123 TO(m) 6:2)

5.2.2 Equation (5.22) - computation of Y3(k)
Substituting the changes of variables (5.16) and (5.17) into equation (5.10) gives
A*(ck™)(1+ Y3(k)) = =k (A(ck™))*(1 + Ya(k))’

or, expressing ¢ by the formula in (5.14),

a—+1
a?

A2 4 (A2 ) Ya(k) = —k* S C = (AK™)3(1 + 3Ya(k) + 3Y2(k) + Y3(k)).

From the last relation we derive

+1
Vo) = |k S (AR + Y (k) + BY2(E) + Y () — A% - (A%
(5.26)
Let us perform auxiliary computations of the expressions appearing in (5.26).

We start with A?(k~*)~! using formula (5.18).

(A% lzla(ko;j;) _a(a—;il(gcx—l—%_*_?a(a—{—1iéia—i42)(a+3) *O(kal%)]_l
_ a(l::_fl) [1+ <_az2 . 7(a+122)k(3+3) +O(%)>]‘1
_ a(l;afl) [ N az2 (o +122)k(3+3) a+22 (%)]
:%[HaZQJF(a+2)(—7a1—2221+12a+24)+O(%>]
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ko2 a+2  (a+2)(5a+3) 1
" a(a+1) [H k 1242 O(ﬁ)]'

Using this relation and formula (5.18), we compute

(A2 M Ak (a+ 1)a?
_a+l Kk l1+a+2 (a+2)(5a + 3) 0(1)]

o? ala+1) k 12k2 k3
a ala+1) ala+1)(a+2) 0 1 ’
’ _k.a—l—l + 2k.a+2 o 6]€a+3 (ka+4>
a+2 3 3
_k 3 [1+ a+2  (a+2)(5a+3) (i)] _ [_ o) 3a%(a+1) 0( 1 )]
a k 12k2 k3 k3a+3 2k3a+4 f3a+5
ko2 a? 3a3(a+1) ad(a+2) o 1
T3 | k3ets ok3at+d  3atd ( k.3a+5>

1 a-1 1
T L2041 + 9 k20+2 + (k.2a+3> :
Hence, simplification of (5.26) yields

1 a—1 1
Volh) = (s = o O (s ) ) (14 3%2(0) + 3Y2(0) + YE() — 1.

(5.27)

5.2.3 Equation (5.22) - a simplified form

Finally, we use (5.25) and (5.27) to get the following simplified version of equa-
tion (5.22):

AYs(k) = — <O‘Zl + (a+12)k(3_1) +O(%)>

(( s~ e +O (km%)) (1 3Y5(K) + BYZ () + Y3 () — 1= Ya(h) )

By (5.14), we have 2a + 1 — s = 0 so that the last equation can be rewritten in the

form

s = (2 o(8)

. ((1 — Lo (%)) (1 + 3Ya(k) + 3V2(k) + Y2 (k) — 1 — Yz(k>)

- (2 Lo (%)) ((+o (%)) (1+3Y5(0k) + 3Y2(0) + Y () — 1 = Ya(h)

or, keeping only the necessary order of accuracy, and assuming Y3(k) = O7 (1) (this

assumption will also remain in force in the below analysis), 5be preserved in analysis
below),

Ay = - (4 . Lo (%)) (25(0) +3Y2(0) + Y 0) + 0 (%))  (528)
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Now, the resulting equations (5.19) and (5.28) form the following system of equations
with respect to variables Y;(k) and Y3(k) defined by the change of variables (5.15)

and (5.16) (with a sufficient order of accuracy preserved)

AYi(k) = (% szl o (ki)) (Vi(k) - Ya(h)). (5.20)

AYy(k) = — (O‘ . Lio (%)) (m(k) +3Y2(k) + Y (k) + O (%)) (530

5.3 Investigation of system (5.29), (5.30)

Analysing the structure of system (5.29), (5.30), we conclude that the second equa-
tion of the system depends on variable Y5(k) and does not depend on variable Y; (k).
This is clear from (5.22) and (5.26). Then, the system (5.29), (5.30) is of a “triangu-
lar” type. Therefore, it is possible to consider the second equation (5.30) separately

and then continue with the investigation of equation (5.29).

5.3.1 Investigation of equation (5.30)

In this part, we assume o > —1 (this assumption is equivalent to the assumption
s > —1). Consider the second equation (5.30) in the system (5.29), (5.30) separately.

That is, we will analyse the equation

AYs(k) = — (O‘ Z Lo (%)) (2Y2(k) F3Y2(R) + Y(k) + O (%)) .

where Y3(k) = O'(1) is assumed. As, after having investigated equation (5.30),
we will continue with the investigation of the first equation (5.29), we use following
settings, a part of them will be used later.
Set b;(k) := —e;, ¢;i(k) := ~; where g;, ; are fixed positive numbers less than 1.
Put
Bi(k,yl,yz) ==Y — &, Ci(k,yl,yz) =Y, -y, 1=1,2

Auxiliary sets Q%, Q2 are reduced as follows

Q% = {(k’,lfg) ke N(k’o),YQ = —62},
Q% = {(k’>lf2) ke N(kO)>Y2 = 72}'

We will apply Theorem 1 to equation (5.30). This means that, we need to show
that (1.13) and (1.14)) hold for ¢ = 2 where
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Fy(k, 1, Ys) = Fy(k, V) = — (O‘T“w (%)) (216(k)+3Y22(k)+Y23(k)+0 (%)) |

The inequality (1.13) now has the following form
0=0by(k+1) = ba(k) < Falk,Y2)|(kyp)e0z < 72 + 2. (5.32)

The function

a+1 1 1
Fg(k’, Y2)|(ka2)€QQB = Fg(k', —52) = — ( 2 +0 (ﬁ)) (—252 + 353 - 5?2) +0 (E))

takes on positive values for all sufficiently large k if
2ey — 365 + €5 = e9(ea — 1)(e2 — 2) > 0,

that is, if 2 € (0,1) U (2, +00). Because we assume Ys(k) = O (1), only values
g9 € (0,1) can be used. Then, the right inequality in (5.32) holds for all sufficiently
large k. The left inequality in (5.32) holds as well.

Now, we show that (1.14)) holds for ¢ = 2. This inequality reduces to

—&2 =2 = bz(k + 1) - Cz(k) < FQ(k>Y2)|(k,Yg)eQ2C <=7 =0, (5-33)

where

a+1 1 1
Fo(k, Y2) |k vayenz, = Fa(k,72) = — ( T 0 (ﬁ)) (272 +35 4% +0 (E)) '

The function Fy(k,72) is, for 75 € (0,1) and for all sufficiently large k negative, so
the right inequality in (5.33) holds. The left inequality in (5.33) holds, too, because
the function Fy(k, ) is vanishing as k — oo.

Finally, we need to show that the function
Go(w) == w + Fy(k,w) (5.34)
is monotone on
Qo(k) ={(w): weR,by(k) <w <c(k)} ={(w): weR,—ey <w <y}

for every fixed k € N(kg). We will verify this monotonicity by computing G'(w).
Since, in formula (5.34), the function F5(k,w) is defined by (5.31), direct computa-
tion of the derivative is not possible. The reason is that the variable w is “hidden”
in the Lambda order symbol, for which the operation of taking derivative is not
defined.
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Therefore, we use the original expression for F,(k, w) given by the formula on the
right-hand side of the equation (5.22) where Y3(k) is expressed by formula (5.26).
Then

Gy(w) = w + Fylk,w) = w + (A2k~*)(A(k +1)") !
1
- ((—kso‘ (AR + 3w + 30 + w?) — A?k—a) (A2 - w)
o

and, therefore,

Gh(w) = 1+ (A?

-((AQ(

=1-(A(k+ 1) )

~a (A(k+ 1)—6“)‘1

)
_a) ( s &

O‘a“ (Ak ) (3+6w+3uw?)— (A% ) (A(k+1)‘“)_1

k
. RN ) -(3+6w+3w2)>—1)

We calculated (see formulas (5.25), (5.18), (5.24))

(A% ) (A + 1)) = -2 Z L_(af 12)]55‘ V.o (%) :

W o ala+1)  ala+1)(a+2) 1
Ak - _k.a—i—l + 2]€a+2 o 6k.a+3 0 (ka+4>

and

(A(k+ 1)_a)_1 _ ket [1 N 3(a+1) N (a+1)(13a — 1) Lo (iﬂ .

« 2k 12k2 k3
Then
Gh(w) =1+ azl + (O‘Jrl;k(f_l) +O(%)
N k(:l <1 N 3(@22— 1) N (a+ 1i(22;€32a -1) Lo (%))
-kso‘;l <_k5+1 aéczatzl) _a(a Jgklig +2) ka+4 ) (34 6w+ 307)
e et (o
e 1t Y o ()] 2
_ [1_ a;};l N (a+16)k(;z+2) +0(%)r(3+6w+3w2)
e et ()
N D)
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+0(;3)] (3 + 6w+ 3u?).

. 1_a+1+(a+1)(a—|—2) (a+1)2
2k 6k? 4k?

Since, by (5.14), 2a — s + 2 = 1, we have

Gg(w)=1+o‘zl+(o‘+12)k(§‘_l) 0(%)
a+1 3(a+1) (a+1)(13a—1) 1
ok lH o 122 +O(ﬁ)]
a+l (a+1)Ba+7)  (a+1)2 )
-[1— e - +0(k3)] (3 + 6w + 3u?).

and, for all sufficiently large k, G4(w) ~ 1. That is, G4(w) > 0 and G5 is mono-
tone. Theorem 1 is applicable and, therefore, there exists a solution Y, = Y (k) to

equation (5.30) satisfying inequality
— &9 < Y;(k’) <7, k€ N(k’o) (535)

where kq is sufficiently large and positive numbers €9, 72, €2 < 1, 79 < 1 are
fixed. Note that this solution is not trivial as it follows, e.g., from the analysis
of relations (5.22), (5.26).

5.3.2 Investigation of equation (5.29)

In this part, we assume « > 0 (this assumption is equivalent to assumption s > 1).
Now we use Theorem 2 to analyse equation (5.29), that is, the equation
a  ala—1)
avi) = (2 + 252 0 (5)) i) - (k) (5.36)
In part 5.3.1, we proved that there exists a solution Y, = Y, (k) of equation (5.30)
with an asymptotic behaviour described by inequality (5.35). Let us assume such a

solution in (5.36). Then, we arrive at the equation

AY; (k) = <% + w Lo (k3)> (Yi(k) = Y7 (k). (5.37)
In Theorem 2, put
A = R = (F+ 2 o () mim - i)

while using the notation defined in part 5.3.1. Auxiliary sets QL, QF are reduced as

follows

Q}; = {(k’,lfg) ke N(k’o),yl = —61},

104



QlC = {(k’>lf2) ke N(kO)>Y1 = 71}'

Then, for k € N(ky), inequality (1.15) has the form

a ala—1 1 .
Fl(k'>}/i)|(k,Y1)€Q]1B = Fl(k', —81) = [E + % +0 (ﬁ>‘| (—51 - Y2 (k’)) <

<bi(k+1)—bi(k)=0. (5.38)
Due to (5.35), we derive

a  ala—1) a  ala—1)

Tt @ 10 (%)] (a1 =Yy (k) < | o+ —5—+0 (%)] (—e1tes)

and inequality (5.38) will hold if ey < 1. Then, for k& € N(ky), inequality (1.16) has

the form

o} a—1
Bk Y)lroey = Filkon) = | £ +0 (25| (n = Y5 0) > (bt D) =ea (k) = .
(5.39)
Due to (5.35), we derive

Qo a—1 a—1

[E L0 (7)] = Y5 (k) > [% + 0( . )] (=)

and inequality (5.39) will hold if 74 > ~5. Theorem 2 is applicable. Therefore, there
exists a solution Y; = Y{*(k) to equation (5.37) satisfying inequality

—e1 < Y{'(k) <m, k€ N(ko)
where ky is sufficiently large and numbers 0 < €5 < 67 < 1,0 < 7 < 1y < 1 are

fixed. Note that this solution is not trivial because Y5 (k) is not trivial.

5.3.3 Existence of a bounded solution to system (5.29)—
(5.30)

Summarized, the investigations conducted in parts 5.3.1, 5.3.2 in fact prove the

following theorem.

Theorem 13. Let s > 1. Let g;, v;, 1 = 1,2 be fized positive numbers such that o <
g1 <1, 7o < v < 1. Then, there exists a solution Y (k) = Y*(k) = (Y;*(k), Y5 (k))
to the system (5.29), (5.30) such that

provided that kq is sufficiently large.
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5.4 [Existence of a nontrivial solution to equation (5.10)
with property (5.11)

In this part, we show that Theorem 13 implies the existence of a nontrivial solution

to equation (5.10) with property (5.11).

Theorem 14. Let s > 1. Let g;, v;, © = 1,2 be fized positive numbers such that
g9 < &1 <1, 79 <m < 1. Then, there exists a solution v = v(k) to equation (5.10)
such that

—e1le|k™ < v(k) — k™ < vk,

—e272A(|e[k™)) < Av(k) — (A(ck™)) < 2A(c[k™))

and

A*v(k) = O(1) (5.41)
for all k € N(ko) provided that kqy is sufficiently large.

Proof. The conclusion of the theorem is a consequence of the transformation formu-
las (5.15)—(5.17), inequalities (5.40) in Theorem 13 and (in the case of formula (5.41))
formula (5.27). O
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6 Conclusion and Comparisons

This doctoral thesis studies the asymptotic behaviour of solutions of a discrete
Emden-Fowler equation. Analysis of the results reveals two different types of asymp-
totic behaviour.

The first one may be termed a power type. The method used consists in the
retract principle and we see that the choice of different upper and lower functions
provides us with different areas of existence of a power-type asymptotic behaviour.

The second one is an analogy for the blow-up solutions. The method of search-
ing for solutions of this type can be applied to other different non linear discrete
equations.

Moreover, the equation
A?v(k) £ pk®v™ (k) = 0, (6.1)

(1.3)
(1.3), can obviously be transformed to the form (1.3) by a transformation v(k) =

qu(k) where ¢ is a positive number defined as g = p'/(=™).

where p is a positive constant, which is somewhat more general than equation

We can also extend the results achieved in Chapters 3 and 4, by adding to the
equation (1.3) (or (6.1)) a perturbation - function w: N(ky) — R assumed to be

sufficiently small. Thus, we can study the equation
Au(k) £ E*u™ (k) = w(k).

Here, “sufficiently small” is understood as:

w(k) =0 (k31+4) ’

From the proofs, we can see that all the calculations can be applied as this

where s was defined in (2.1)

“smallness” is hidden in the Landau symbol “big O”.

This thesis includes several theorems on the conditions for the existence of so-
lutions to the Emden-Fowler type difference equations with power-type asymptotic
behaviour. Each theorem is supplemented with a figure to be more illustrative.
Also, examples are given to show applications of the results achieved.

As we have already mentioned in Current State, there are some already existing
results on this topic. Thus, it is necessary to relate them to the results of this
doctoral dissertation.

First, we refer to the results by L.Erbe, J. Baoguo and J. Peterson [23], where

the authors proved that there exists a solution z(t) to equation

222 (t) + p(t)z™(t) = 0, (6.2)
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such that there exists a nonzero finite limit

lim 2(t) =A (6.3)
t—oo
provided that .
/ 17 [p(t)| At < o0, (6.4)
to

where the integral is understood on a given time scale.
This is the result of time scales calculus where the concept of derivative on time
scale is defined as follows. The function

o(t) =inf{s inT: s > 6},

where T is a time scale (i.e., a closed nonempty subset of R) is called a forward
jump operator and the function

p(t) =sup{s inT : s < t}
is called a backward jump operator. Define

Tk — T\ (p(supT),sup T] if supT < oo,
I T sup T = oo.

The function z: T — R is delta differentiable at ¢ € T* provided that the limit

z2(t) == lim 7‘%@) —2(s)
s»t t—s
exists if o(t) = t and z is continuous at ¢, #°(t) is called the delta derivative. If
o(t) > t, we put
(e o TlO®) = o)
o(t)—t
This investigation is close to our topic because the definition of the first dif-
ference is a special case of a time scale delta derivative. The main distinction is
that we investigate the asymptotic properties of the solutions without assuming the
integral (6.4) being convergent.
Reformulating the result of [23] in terms of a difference equation, we see that the

time-scales integral becomes an infinite sum and we have the following lemma.
Lemma 4. Let m > 0 and

Z E™|p(k)| < oo.
k=1

Then, equation
A?z(k) 4+ p(k)z™(k) = 0

has a solution x = x(k) such that

kh_}rgox(k)/k =A#0.
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Now we can show that even a weaker Theorem 4 has examples that do not work
with the result in [23].

Example 18. Let us consider equation (see Example 1)
A?u(k) — k™' (k) =0

where m = 2.

This equation has a solution described by the asymptotic formula

u(k):%—{—O(%)

In this case, the left-hand side of condition (6.4) with p(k) = k=1 is

Dk kT =)k = 0.
k=1 k=1
Therefore, (6.4) does not hold and the result of [23] is not applicable.

Example 19. Let us consider equation (see Example 2)
Au(k) + k=74 u2(k) =0

where m = 1/2. This equation has a solution described by the asymptotic formula

u@yzm-wﬁ+o(é%). (6.5)

In this case, the condition (6.4) with p(k) = k~7/* holds because

i k'_7/4 i k,l/2 — i k'_5/4 < 00
k=1 k=1

but formulas (6.3) and (6.5) describing the asymptotic behaviour of a solution are
different. It means that solutions described by these formulas are different.

Next, we refer to the results by V.Kharkov, where in[30] asymptotic representa-

tions of so-called P(\)-solutions of equation

A%y, = ap,|y,|7sign y,

are considered, where o € {£1}, 0 € R\ {0, 1} and {p,} is a positive sequence. The

results are applied to equation
Azyn = ank|yn|USign Yn
and, among others, the condition

alk+2)(k+0+1)>0 (6.6)
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must be fulfilled. Adapting notation from in [30], we state that (despite equations
considered being not equivalent), e.g., for equation (15), where the upper sign variant
+ is considered, we have a = —1, k = —27/20, 0 = 1/2 and inequality (6.6) does
not hold. Therefore, the results are independent.

Although close in terms of their topics, different equations or asymptotic prob-
lems are studied in the following papers [40, 11, 31].

In [40] the author studies a difference equation of Emden—Fowler type
Amxn = an.f(xo(n)) + bn

and, assuming f to be a power type function and knowing that A™y,, = b,,, sufficient
conditions are given guaranteeing the existence of a solution x such that z, =
Yn + 0o(n®), where s < 0.

The paper [11] considers a class of equations of Emden-Fowler type

Ala,| Az, |“sign Ax,) + by | Ay iq|PsgnAa, 1 = 0

where o > 0, § > 0, {a,} and {b,} are positive sequences. Among others the
existence of nonoscillatory solutions is studied.

A full classification of positive solutions of equation

Azyn = apn|yn+1|USign Yn+1, (67)

where a € {£1}, 0 € R\ {0, 1} and lim,,,(nAp,)/pn =k € R\ {-2,—-1—0}, can
be found in [31]. In this paper, unlike the “direct” discretization

v~k oy() ~uk), y'(z) ~ Atu(k)

a different one is used. Therefore, the classes of the considered equations (1.3)
and (6.7) (regardless of a different coefficient in (6.7)) are different.

We finish our comparisons with referring to books [1, 2, 7, 21, 26, 42, 41] where a
variety of results can be found on asymptotic behaviour of solutions of some classes
of difference equations.

Let us formulate some open problems related to the topic of the thesis.

Open problem 1. A discrete analogy to the blow-up solutions was discussed in
Chapter 5, where a discrete analogue of differential equation (5.1) of Emden-Fowler
type was investigated. We expect that, for nonlinear solutions that are more general
than (5.1), it will be possible to prove the existence of blow-up solutions as well. It
seems that the time-scale calculus would be an apparatus more suitable for investi-
gating solutions rapidly tending to infinity near a fixed finite point by the methods

used in the thesis. A time-scale T suitable for this case can be, e.g., the set

1
T(x(]) = {5170 - 57'% € N}>
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where xg € R. Then, sufficient conditions would be given for the existence of a

solution blowing-up at the point xg.

Open problem 2. The clarification of the asymptotic behaviour of solutions to
equation (1.3) if the definition of the first-order forward difference (1.4) is changed
to

Au(k) = u(k + h})L — u(k)’

where h is a positive number and is used to discretize equation (1.5). Then, the

expected results could coincide, if h — 0, with the results known for differential
Emden-Fowler equation (1.5). We also expect that, in the event of h — 0, the

domain of the respective points (m,a) will expand to the whole plain R?.
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List of symbols

N
N(ko)
7

R

the set of natural numbers {1,2,...}

the set of integers {ko, ko + 1,...}

the set of integers

the set of real numbers

a time scale set

Landau symbol big “O”

Landau symbol little “0”

the first-order forward difference of the function (k)
the second-order forward difference of the function u(k)

the time scale delta derivative of the function x(t)
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