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Abstract
In this thesis, a new method for video super-resolution is proposed. The method is based
on the idea of using deformable convolutional layers together with optical flow to align
features from multiple sequential video frames. This novel module is then used in a U-
Net-like deep neural network to predict high-resolution frames. The proposed method is
evaluated on a dataset containing real-life scenes and compared to other methods. Multiple
different configurations of the proposed method are tested and the results are analyzed. The
results of the experiments show promising results, with the model outperforming bilinear
interpolation, and single-frame methods. Multiple different architectures of the feature
alignment module together with the rest of the U-Net architecture are tested, showing that
using Vgg19 as the encoder of the U-Net gives the best results.

Abstrakt
Cieľom tejto práce je vytvoriť novú metódu super rozlíšenia na zlepšenie kvality videa. Táto
metóda je založená na myšlienke použitia deformovateľných konvolučných vrstiev a optick-
ého toku na zarovnanie príznakov z viacerých po sebe následujúcích snímkov videa. Táto
metóda je následne použitá v neuronovej sieti založenej na U-Net architektúre na predik-
ciu snímkov vo vysokom rozlíšení. Vyhodnotenie je prevedené na datasete obsahujúcom
snímky z reálneho života a porovnané s inými metódami. Testované sú rôzne konfigurá-
cie navrhnutej metódy a výsledky sú analyzované. Výsledky experimentov ukazujú sľubné
výsledky, pričom model prekonáva bilineárnu interpoláciu a metódy založené na jednom
snímku. Testované sú rôzne architektúry modulu zarovnávania príznakov spolu s celou
architektúrou U-Net, pričom sa ukazuje, že použitie Vgg19 ako enkóderu dáva najlepšie
výsledky.
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Rozšířený abstrakt
Hlavným cieľom tejto práce je vytvoriť novú architektúru neurónovej siete pre super ro-

zlíšenie videa. Cieľom je preskúmať existujúce architektúry a navrhnúť nový modul na
zarovnanie príznakov z viacerých sekvenčných snímkov videa. Tento modul je založený na
použití deformovateľných konvolučných vrstiev a optického toku.

Zväčšenie kvality a rozlíšenia videa je dôležitým problémom v oblasti spracovania videa.
Použitie neurónových sietí na tento účel je veľmi populárne a existuje mnoho architektúr,
ktoré dosahujú dobré výsledky. Problémom a zároveň výzvou je použitie informácií z viac-
erých snímkov videa na produkciu snímku vo vyššom rozlíšení a kvalite. Častým problémom
je zarovnanie príznakov z okolitých snímkov videa. Súčasné metódy často používajú metódy
bez explicitného zarovnania príznakov, čo môže viesť k chybám v predikcii. V tejto práci
je navrhnutý nový modul, ktorý explicitne zarovnáva príznaky z viacerých snímkov videa
pomocou optického toku predikovaného predtrénovanou neurónovou sieťou RAFT. Optický
tok medzi predikovaným a podpornými snímkami videa je následne použitý ako posun
pre deformovateľné konvolučné vrstvy, ktorých zorné pole sa týmto spôsobom posúva na
miesto so zodpovedajúcimi príznakmi v podpornom snímku videa. Tento modul je následne
použitý v neurónovej sieti založenej na U-Net architektúre na predikciu snímkov vo vyššom
rozlíšení. Výsledkom práce su experimenty porovnávajúce rôzne konfigurácie navrhnutej
metódy a porovnávanie s inými metódami a takisto skripty na trénovanie a vyhodnocov-
anie rozšíreného modelu.

Architektúra a jej variácie boli boli trénované a testované na dátovej sade REDS po-
zostávajúcej z 300 sekvencíi po 100 snímkoch, kde snímky nízkej kvality mali rozlíšenie
180 × 320 pixelov, a úlohou neurónovej siete bolo predikovať odpovedajúce snímky v ro-
zlíšení 720×1280 pixelov. Vstupom siete boli 3 po sebe následujúce snímky videa a optický
tok medzi stredným a predchádzajúcim, respektíve následujúcim snímkom a výstupom si-
ete bol prostredný snímok vo vyššom rozlíšení. Pomocou enkóderu U-Net architektúry
boli extrahované príznaky v rôznych rozlíšeniach pre každý snímok. Príznaky podporných
(predchádzajúci a následujúci) snímkov boli následne spracované deformovateľnými kon-
volučnými vrstvami, do ktorých bol vloženy optický tok ako posun. Toto zarovanie prebehlo
na každej vrstve architektúry, z dôvodu zachovania informácií o zarovnaní na rôznych úrov-
niach príznakov. Výsledné príznaky boli následne spojené s príznakmi stredného snímku a
ich dimenzionalita bola znížená konvolučnými vrstvami. Týmto spôsobom bolo dosiahnute
aby množstvo príznakov sedelo s množstvom príznakov jedného snímku. Výsledné príznaky
boli následne spracované dekóderom siete, ktorý predikoval finálne príznaky snímku. Tieto
príznaky boli následne spracované sekvenciou reziduálnych konvolučných vrstiev a nakoniec
spracované konvolučnými vrstvami a PixelShuffle vrstvami, ktoré zvýšili rozlíšenie príznakov
na požadované rozlíšenie. Na tréning siete bola použitá stredná kvadratická chyba a na vy-
hodnocovanie kvality boli použité metriky PSNR a SSIM. Výsledky experimentov ukazujú,
že navrhnutá metóda dosahuje lepšie výsledky ako bilineárna interpolácia a metódy za-
ložené na jednom snímku. Výsledky sú analyzované a diskutované a sú navrhnuté možné
zlepšenia.

Experimenty boli vykonané na rôznych konfiguráciách navrhnutej metódy, kde boli
testované rôzne architektúry modulu zarovnávania príznakov spolu s celou architektúrou
U-Net. Výsledky ukazujú, že použitie Vgg19 ako enkóderú poskytuje najlepšie výsledky,
kvôli vyššej dimenzionalite príznakov na výstupe enkóderu oproti architektúre používajúcej
ResNet34 ako enkóder (32 kanálov vs 16 kanálov). Vďaka vyššej dimenzionalite príznakov
je možné zachovať viac informácií o zarovnaní príznakov z podporných snímkov, čo vedie
k lepším výsledkom. Následne boli vykonané experimenty, kde optický tok nebol priamo



vložený ako posun do deformovateľných konvolučných vrstiev, ale bol predtým spracovaný
1 konvolučnou vrstvou, ktorej úlohou boli zmeniť dimenzie optického toku aby sedeli s di-
menziami pre posuny deformovateľných konvolučných vrstiev. Výsledky tohto experimentu
preukázali lepšie výsledky ako priamo vložený optický tok.

Vo výsledkoch experimentov je vidieť, že navrhnutá metóda dosahuje lepšie výsledky
ako bilineárna interpolácia a metódy založené na 1 snímku. Najlepšie výsledky dosahuje
architektúra s Vgg19 ako enkóderom a s predspracovaným optickým tokom. Ďalšie ex-
perimenty, na rôznych architektúrach, ako napríklad GAN siete alebo metódy používajúce
koncept pozornosti, by mohli priniesť ešte lepšie výsledky.
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Chapter 1

Introduction

Video quality enhancement is a process of improving the quality of a video by removing
visual imperfections or improving its resolution. In recent years, the rise of deep learning
has brought many new methods and architectures, that are able to surpass the classical
methods.

This work focuses on the research of the existing methods and architectures and the de-
velopment of a new method for video quality enhancement, concretely for super-resolution
– a task of increasing the resolution combined with quality improvement. A common prob-
lem in a video super-resolution with neural networks is how to align matching features
from the neighboring frames. A novel module is proposed, that uses a combination of de-
formable convolutions and optical flow for this task. Experiments with this module are then
conducted on a U-Net [44] architecture to evaluate its performance. Different variations
of this module, together with different U-Net architectures are tested and compared with
state-of-the-art methods.

The experiments have shown promising results, outperforming both classical upsampling
using bilinear interpolation and learned upsampling using U-Net architecture without this
module. These results show, that the proposed module is able to align the features of the
neighboring frames, which leads to better results. Therefore, this module can be used in
other architectures and tasks, where the alignment of the features is crucial, yielding even
better results.

Starting with Chapter 2, which covers the basics of image quality enhancement, different
problems and methods are described, whether using neural networks or not, used for each
task in image quality enhancement. In Chapter 3, an overview of the state-of-the-art
methods is given with a focus on the recent and most successful architectures such as U-
Net, EDVR [52] and RVRT [32] together with a description of commonly used datasets
and metrics. In Chapter 4, a problem of video super-resolution and motivation for this
thesis is described in detail, followed by the proposed solution design. Chapter 5 covers
the implementation details, such technologies used and the structure of the source code.
Lastly, in Chapter 6, results from different experiments are shown and discussed.
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Chapter 2

Image Quality Enhancement

This chapter focuses on the methods used to improve the quality of images. These methods
then can be mapped to video, when the video is treated as a sequence of images. It covers
the most common and simple non-neural network methods, as well as the metrics used
to evaluate these methods. It also gives an overview of the most common neural network
architectures used for image quality enhancement.

2.1 Image Denoising
Image denoising can be thought of as a process of removing noise and visual imperfections
from an image. Noise can be of various forms and can be caused by various factors. The
most common causes of noise are inadequate lighting, low-quality camera sensors or move-
ment and motion. Some noise can also be caused because of image compression, which is
commonly used to reduce the size of images. During the compression, some information
is lost, which can cause visual imperfections, such as edge and detail smoothing, blocking
artifacts, etc.

2.1.1 Non-neural network methods

Before the widespread use of neural networks, image denoising was done using methods
relying on various mathematical models [12, 9]. Some of the most common methods are:

• Median filter: This method replaces each pixel’s value with the median value of the
pixels in the neighborhood. This method is very simple and fast, but it can cause
blurring of the edges.

• Gaussian filter: A Gaussian convolution kernel is used to blur the image. This is
especially useful when trying to remove Gaussian noise. Such as the median filter,
this method also can cause blurring of the edges.

• Bilateral filter: Method, similarly to the Gaussian filter uses a convolution kernel
with weights that are commonly sampled from the Gaussian distribution. Crucially,
the weights are not only dependent on the spatial distance but also on the radiometric
distance (e.g., color intensity, depth distance, etc.). This helps to preserve sharp edges,
while still removing the noise.

• Non-local means [7]: Based on the idea that the image contains many similar
patches, this method replaces each pixel’s value with the weighted average of pixels
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located in similar patches across the image. These weights are directly proportional
to the similarity of the patches. This is very effective for preserving detailed textures,
which are often lost when using other methods.

Figure 2.1: Example of image denoising using Gaussian and Bilateral (left to right) denois-
ing kernels. Image taken from [14].

2.1.2 Neural network methods

With the rise of deep learning, many different architectures have been proposed and used
for image restoration, slowly surpassing classical methods [48]. These range from simple
convolutional neural networks (CNNs) to more complex architectures, such as generative
adversarial networks (GANs).

• U-Net [44]: Architecture originally designed for medical segmentation, but has been
widely used for other image-based tasks as well. It consists of an encoder, that com-
presses the input image into a lower-dimensional space, and a decoder, that generates
the output image from this representation. Residual connections are used to connect
the encoder and decoder, which helps to preserve the detailed textures and edges.
This architecture is discussed in more detail in Section 3.3.1.

• Denoising Convolutional Neural Networks (DnCNN) [58]: This is a type of
CNN, that is specifically designed for image denoising. Interesting thing about this
architecture is, that rather than predicting the clean image directly, it predicts the
residual image, that is the difference between the clean and the noisy image.

• Autoencoders: First proposed in the early 1990s by Kramer et al. [27], but became
widely used with the concept of generative models of data. A neural network, that is
used to learn efficient representation of the input data. This works by compressing
the input data into a lower-dimensional space and then reconstructing the original
data from this representation. By training the network on pairs of clean and noisy
images, the network can learn to map noisy images to clean ones, effectively removing
the noise and other visual imperfections.
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Figure 2.2: Example of DnCNN architecture. Taken from [58].
2 Dor Bank, Noam Koenigstein, Raja Giryes

Fig. 1: An autoencoder example. The input image is encoded to a compressed
representation and then decoded.

In the most popular form of autoencoders, 𝐴 and 𝐵 are neural networks [40]. In
the special case that 𝐴 and 𝐵 are linear operations, we get a linear autoencoder [3].
In the case of linear autoencoder where we also drop the non-linear operations, the
autoencoder would achieve the same latent representation as Principal Component
Analysis (PCA) [38]. Therefore, an autoencoder is in fact a generalization of PCA,
where instead of finding a low dimensional hyperplane in which the data lies, it is
able to learn a non-linear manifold.

Autoencoders may be trained end-to-end or gradually layer by layer. In the latter
case, they are ”stacked” together, which leads to a deeper encoder. In [35], this
is done with convolutional autoencoders, and in [54] with denoising autoencoder
(described below).

This chapter is organized as follows. In Section 2, different regularization tech-
niques for autoencoders are considered, whose goal is to ensure that the learned
compressed representation is meaningful. In Section 3, the variational autoencoders
are presented, which are considered to be the most popular form of autoencoders.
Section 4 covers very common applications for autoencoders, Section 5.1 briefly dis-
cusses the comparison between autoencoders and generative adversarial networks,
and Section 5 describes some recent advanced techniques in this field. Section 6
concludes this chapter.

2 Regularized autoencoders

Since in training, one may just get the identity operator for 𝐴 and 𝐵, which keeps
the achieved representation the same as the input, some additional regularization is
required. The most common option is to make the dimension of the representation
smaller than the input. This way, a 𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 is imposed. This option also directly
serves the goal of getting a low dimensional representation of the data. This repre-
sentation can be used for purposes such as data compression, feature extraction, etc.
Its important to note that even if the 𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 is comprised of only one node, then

Figure 2.3: A schema of an Autoencoder architecture. Taken from [6].

• Generative Adversarial Networks (GANs) [15]: GANs are a type of neural net-
work, that consists of two networks, a generator and a discriminator. The generator
is responsible for generating the clean image, meanwhile the discriminator is responsi-
ble for distinguishing between the original clean image and its generated counterpart.
Through this adversarial process, the generator learns to produce highly realistic de-
noised images, however, they can often produce nonexistent details.

Comparative Study on Generative Adversarial Networks

GANs, their methodologies, model architectures, and ex-
perimental performances. In Section 4, a comparison be-
tween different versions of GANs is provided based on dif-
ferent parameters. Finally, Section 5 concludes the paper
suggesting future work in the field of generative models.

2. Background: Generative Adversarial
Networks

Generative Adversarial Networks (Goodfellow et al., 2014)
consist of a pair of models called the generator and discrim-
inator. The generative models can be thought of as a group
of thieves trying to generate counterfeit currency whereas
the discriminative model can be thought of as police try-
ing to detect the counterfeit currency. Thus, the entire
framework resembles a two-player minimax game where
the generator tries minimize its objective function and the
discriminator tries to maximize its objective function. The
objective of this game is given as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))] (1)

Figure 1. The structure of a Generative Adversarial Network
(GAN)

Here, we have a distribution pdata over data x and a prior
on input noise variables given by pz(z). The genera-
tor learns through a differentiable function G(z; θg) rep-
resented by a multilayer perceptron with parameter θg .The
discriminator is given by D(x; θd). Also, D(x) gives the
probability that x came from data rather than pg . D is
trained to maximize logD(x) whereasG is trained to mini-
mize log(1−D(G(z))). The general architecture of a Gen-
erative Adversarial Net is shown in Figure 1.

Goodfellow et al. (2014) proposed an iterative approach of
optimization to avoid overfitting the discriminatorD. Here,

they alternate between k steps of optimizingD and one step
of optimizing G. Also, it was found that equation (1) did
not provide sufficient gradient for G to learn well. Thus,
the objective function in (1) can be modified such that in-
stead of training G to minimize log(1−D(G(z))), we can
train G to maximize logD(G(z)). The modified objective
function is given as follows:

V (D,G) = max
D

[Ex∼pdata(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]]+max
G

Ez∼pz(z)[logD(G(z))]

(2)

In the next section, we discuss the various modifications
proposed to the Generative Adversarial Networks, their ar-
chitectures for generative and discriminative models, gradi-
ent calculations, experimental performance, usage and their
advantages and disadvantages.

3. Survey
3.1. Conditional Generative Adversarial Networks

Figure 2. The structure of a Conditional Generative Adversarial
Network (CGAN)

Conditional Generative Adversarial Networks(CGANs)
(Mirza & Osindero, 2014) are the conditional version of
GANs which are constructed by feeding the data y, we
want to condition on the generator and discriminator. Here
y can be any kind of information such as class labels or
data from other modalities. In the generator for CGANs,
the prior input noise pz(z) and the auxiliary information y

Figure 2.4: An overview of GAN architecture. Taken from [19].
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2.2 Super-resolution and Upsampling
The task of increasing the resolution of an image can be split into 2 subcategories: image
upsampling and super-resolution [29]. While both tasks aim to increase the resolution of an
image, super-resolution also aims to improve the quality of the image, by removing noise
and other visual imperfections that are present in the original image. Image upsampling
is a simple process, that can be done using various interpolation methods, super-resolution
is a more complex process, that often uses deep neural networks to estimate the missing
pixels in the image.

2.2.1 Upsampling Methods

Interpolation-based methods are the simplest way to increase the resolution of an image.
These methods work by estimating the missing pixels in the image. These methods are
simple and computationally efficient, but they are not able to remove visual imperfections
in the original image, instead, they are more likely to cause new ones. Paper by Parsania et
al. [43] gives a good overview of these methods. In the following section, the most common
methods are described in more detail.

• Nearest neighbor Interpolation: Using values of the nearest pixel to estimate the
missing pixels, this method is the simplest, but it can cause heavy visual imperfections
such as blocky or jagged edges.

Figure 2.5: Example of nearest neighbor interpolation. Taken from [2].

• Bilinear Interpolation: Computing the weighted average of the four nearest pixels,
this method calculates the missing pixel. The result is a smoother image, but there
can still be visual imperfections, such as blurring.

Figure 2.6: Example of bilinear interpolation. Taken from [3].
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• Bicubic Interpolation: This method uses a cubic polynomial to estimate the miss-
ing pixels. It works similarly to bilinear interpolation, but it uses a bigger neigh-
borhood to estimate the missing pixels, sixteen pixels to be exact. This results in a
smoother and sharper image.

Figure 2.7: Example of bicubic interpolation. Taken from [4].

2.2.2 Super-resolution Methods

To increase the resolution of an image, together with improving its quality, neural net-
works are used almost exclusively. Using neural networks to estimate the missing pixels is
a more complex and computationally expensive approach, but it can produce significantly
better results. These methods range from simple U-Net-like architectures to more complex
methods involving GANs or Transformers. Newer approaches are also using the attention
mechanism, which helps the network to focus on the important parts of the image. These
methods often produce higher-quality results than the traditional interpolation-based meth-
ods, one of their biggest advantages is their ability to improve images in more ways, than
just increasing the resolution.

We can divide these methods into 3 categories by in what order they process the features:
pre-upsampling, post-upsampling and progressive upsampling [53]. The difference between
these methods can be seen in Figure 2.8.

• Pre-upsampling This method is based on upsampling the image before it is passed
through a network, refining details. The upsampling is done using traditional meth-
ods, such as interpolation-based methods, described in Section 2.2.1.

• Post-upsampling This method uses a neural network to obtain features from the
low-resolution image and then uses these features to generate the high-resolution
image. This method is more computationally efficient, because of the lower spatial
dimensions of the image being processed by the neural networks. Most commonly,
traditional methods are used to upsample the features, but using neural networks is
also possible, such as Pixel Shuffle layer [46] or Transposed Convolutions [56].

• Progressive upsampling For problems, where big scaling factors are required, pro-
gressive upsampling methods are used. These methods use multiple neural network
sections, each scaling the image by a smaller factor. This approach is computationally
expensive, but it can produce significantly better results, especially when the scaling
factor is high.
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(a) Pre-upsampling. Taken from [16].

(b) Post-upsampling. Taken from [16].

(c) Progressive upsampling. Taken from [16].

Figure 2.8: Different methods of deep learning architectures for image upsampling.
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Image super-resolution is traditionally strongly supervised, meaning that the network
is trained on pairs of low and high-resolution images. However, a common problem is not
having the high-resolution images available. Therefore, multiple different weakly-supervised
methods have been proposed. While these methods show promising results, they are usually
not as performant as the fully-supervised methods.

• Self-supervised learning The biggest advantage of this method is that it does not
require any high-resolution data at all. The network is trained only on low-resolution
samples. For example, paper Self-Supervised Super-Resolution for Multi-Exposure
Push-Frame Satellites by Nguyenet.al [39] uses 1 of the frames from the satellite as
the ground truth and the other as the input.

• Semi-supervised learning This method uses a small number of samples consisting
of high and low-resolution pairs and a large number of samples consisting only of low-
resolution images. The network is trained on the labeled data. Then different methods
are used to utilize the unlabeled data, such as consistency regularization as in paper
Mean teachers are better role models: Weight-averaged consistency targets improve
semi-supervised deep learning results [49] or pseudo-labeling, which was popularized
by paper Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method
for Deep Neural Networks [28].

• Unsupervised learning This method does not require any labeled data. The net-
work is trained on the low-resolution images only. It is more commonly used in image
restoration tasks, where the reference image is not available. A popular architecture
for this task is CycleGAN proposed in paper [59]. The main idea behind this method
is to use generator and discriminator networks. More about this method can be found
in Section 2.1.2.

2.3 Metrics
Determining the quality of an image is a crucial, yet difficult task, due to the subjective
nature of human perception. While technical parameters, such as dynamic range, noise
ratio, etc., can be used to measure the quality of an image, they do not always correlate
with the perceived quality of the image. However, there exists a plethora of metrics that
can be used to measure image quality.

The connection to human perception is fundamental because the ultimate goal of many
image-processing tasks is to produce images that are pleasing or useful to human view-
ers. Thus, metrics often strive to mimic the way humans evaluate visual quality. This
is challenging because human perception is highly complex and subjective, influenced by
a multitude of factors including context, prior experience, and even individual differences
in vision. We can split these metrics into 3 categories: full-reference metrics, no-reference
metrics and reduced-reference metrics [5]. As stated in the previous section, the most com-
mon way to evaluate the quality of an image is to compare it to a reference image, therefore
full-reference metrics are usually used to optimize the neural networks. However, to assess
the perceived quality of the images, no-reference and reduced-reference metrics can be used.
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Mean Squared Error (MSE) is a very simple, yet widely used full-reference metric. It
is calculated as:

𝑀𝑆𝐸 =
1

𝑀 ×𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

[𝐼(𝑖, 𝑗)−𝐾(𝑖, 𝑗)]2 , (2.1)

where 𝐼 is the original image, 𝐾 is the predicted image and 𝑀 and 𝑁 are the dimensions
of the image, 𝑖 and 𝑗 are the indices in the image. Therefore this can be interpreted as the
average squared difference between each pixel of the original and predicted image. This
method is heavily influenced by the outliers, which can cause the metric to be very high,
even if the image is visually very similar to the original.

Mean Absolute Error (MAE) can be a better choice in case outliers are not considered
a problem. It is pretty similar to the mean squared error, but instead of squaring the
difference, the absolute value is used. This effectively makes the outliers have a lesser
impact on the result. Is calculated as follows:

𝑀𝐴𝐸 =
1

𝑀 ×𝑁

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

|𝐼(𝑖, 𝑗)−𝐾(𝑖, 𝑗)| . (2.2)

Peak Signal-to-Noise Ratio (PSNR) [21] is a widely used metric for measuring the
quality of an image. It quantifies the accuracy of the reconstructed image by assessing
the level of distortion or noise introduced during image processing. It is expressed in
decibels providing a logarithmic scale for the comparison of the original and reconstructed
images. Higher values of PSNR indicate better quality of the reconstructed image, where
the threshold for good values varies from task to task. The formula for PSNR is as follows:

𝑃𝑆𝑁𝑅 = 20 · log10
(︂
𝑀𝐴𝑋𝐼√
𝑀𝑆𝐸

)︂
, (2.3)

where 𝑀𝐴𝑋𝐼 is the maximum possible pixel value of the image calculated as 2𝑏 − 1, where
𝑏 is the number of bits per pixel. As mentioned before, 𝑀𝑆𝐸 represents the mean squared
error metric. However, while PSNR is widely used, it is not a perfect metric.
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Structural Similarity Index (SSIM) [21] is an advanced metric used for measuring
the similarity between 2 images. It considers image degradation as a change in structural
information. The idea behind structural similarity is that the pixels in the image are not
independent, but they are related to their neighboring pixels. SSIM is calculated using
three terms: luminance, contrast and structure. Calculating SSIM is done by applying the
following formula to multiple windows of the image:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
, (2.4)

where 𝑥 and 𝑦 are the predicted and original windows, 𝜇𝑥 and 𝜇𝑦 are the average intensity
values of the windows, 𝜎2

𝑥 and 𝜎2
𝑦 are the variances of the windows, 𝜎𝑥𝑦 is the covariance of

the windows, 𝐶1 and 𝐶2 are constants, that are used to stabilize the division in case of a
small denominator, calculated as:

𝐶1 = (𝐾1𝐿)
2, 𝐶2 = (𝐾2𝐿)

2, (2.5)

where 𝐾1 and 𝐾2 are usually set to 0.01 and 0.03 respectively, and 𝐿 is the dynamic range
of the pixel values, calculated as 𝑀𝐴𝑋𝐼 in peak signal-to-noise ratio.

Perceptual Loss [23] is a different method of obtaining the error metric, using a pre-
trained neural network to do so. This method is called perceptual loss. The idea behind
this method is to use a neural network trained on a large dataset to extract features from
2 images being compared on different levels. These features are then compared using a
predefined function, which can be simple, such as Euclidean distance. This method is more
complex and aims to minimize the difference between the feature maps extracted from the
original and the predicted image. This helps to also include the human perception of the
image, as the neural networks learned to mimic the behavior of the human cortex.

No Reference Image Quality Evaluation Metrics While all the previously men-
tioned metrics require a reference image to compare the predictions to, in some tasks, such
as image restoration, the reference image is not available. Therefore, multiple unsupervised
image quality evaluation metrics are used.

These metrics are mostly based on the idea, that a good-quality image should conform
to some statistical properties. Some of the most common metrics are: Naturalness Im-
age Quality Evaluator (NIQE) [36], Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [37] or Perceptual Sharpness Index (PSI) [13]. These metrics are not a part
of this work, as a comparison to the reference image is possible. Therefore the metrics
mentioned in the previous sections are used.

2.3.1 Metrics in Video Quality Enhancement

All of the previously mentioned metrics can be used only to measure the quality of a single
frame. To use these metrics on a video as a whole, the average of those metrics is used
the most often. However, this can lead to some problems, such as flickering or motion
blur caused by the instability of the predictions. Therefore, metrics that take the temporal
aspect of the video into account can be used [41].
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Chapter 3

Video Super-resolution and
State-of-the-art Architectures

Video super-resolution is a process of increasing the resolution and quality of a video. This
task has become increasingly popular in recent years with the rise of deep learning, allowing
far better results than the traditional methods. Video super-resolution shows promising
results in many different areas, such as medical imaging, gaming, video surveillance, etc.

With the rise of deep learning, many different architectures and approaches have been
proposed. Most of them are based on the same principles as the image super-resolution while
taking the temporal aspect of the video into account [24]. Some are modeling this using
3D convolutional layers [25, 57], another commonly used approach is to use a combination
of 2D convolutional layers and recurrent layers [32, 30]. In recent years, using attention
mechanism to attend to different frames also became widely used [8].

This chapter focuses on the most recent and state-of-the-art methods used for video
quality enhancement. It covers the most common neural network architectures, as well
as the most common datasets used for training and evaluation, while also briefly covering
optical flow, which is commonly used in video quality enhancement.

3.1 Single to Multi-Frame Techniques
There are different ways to produce a high-quality video from a low-quality one. They differ
in many aspects, number of input and output frames of one neural network forward pass,
being one.

Frame-by-Frame The simplest way to improve the quality of a video is to improve
the quality of frames one by one, neural network is used to predict a single frame from
a single frame. This approach is simple and computationally efficient, however, it does
not take neighboring frames into account, which leads to temporal information being lost.
This approach is the same as image quality enhancement but is applied to each frame of
the video sequentially. This approach is not used very commonly, as it usually leads to
visual imperfections, such as flickering. More about methods used for single-image super-
resolution can be found in paper [54]. These methods can then be applied to each frame of
the video sequentially.
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N-Frame to 1-Frame This method uses multiple input frames to produce a single high-
quality frame. This approach is more complex and computationally expensive because of
more input data. However, this approach takes into account the temporal information from
neighboring frames, which usually leads to better results, with visual imperfections, such
as motion blur, flickering, etc., being reduced. A deeper insight into how the information
from the neighboring frames is used can be found in paper Rethinking Alignment in Video
Super-Resolution Transformers [45]. This is also the most common approach used in state-
of-the-art methods [30, 8].

3.2 Restoration Computation
Another way to categorize the methods is by the way they compute the output frames,
some methods use parallel approaches, where each frame, a group of frames respectively
are processed independently, while others use recurrent approaches, where the information
from the previously output high-quality frames is used to predict the next one. Each of
these methods has its own set of advantages and disadvantages.

Recurrent approaches This method tries to use previously predicted frames to predict
the next one. Models using this method are usually small and computationally efficient
because they share parameters across frames, however, they lack parallelizability due to
their recursive nature. Another big disadvantage is that they lack long-range modeling
capabilities, and noise can accumulate over time.

Parallel appraches On the other hand, parallel approaches are computationally very
expensive. They process each frame, set of frames respectively, independently, which leads
to a large number of parameters, therefore the models are usually very large. However,
they are highly parallelizable, which leads to faster training and inference. Their ability
to model temporal dependencies comes from processing multiple frames and using features
from neighboring ones. A well-known method using this approach is EDVR [52], which is
described in more detail in Section 3.3.2 or Video Super-Resolution Transformer [8].

Combination of parallel and recurrent approaches Each of those methods has its
own advantages and disadvantages and there are new ways discovered pretty often. Some
recent methods, such as RVRT [32] and VRT [30] are using a combination of parallel and
recurrent approaches, where neighboring frames are processed in parallel within the globally
recurrent architecture. This approach is computationally efficient, while still being able to
use information from long-range temporal dependencies.
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3.3 Model Architectures
There are many different neural network architectures used for video quality enhancement,
ranging from simple U-Net-based architectures, to generative adversarial networks (GANs)
and vision transformers. This section covers the most common and best-performing archi-
tectures.

3.3.1 U-Net

U-Net is a simple and effective architecture, first proposed in 2015 by Ronnenberger et.al
[44]. Its main purpose was a segmentation of medical images. However, it proved to be a
very versatile architecture, that can be used for various image-related tasks. U-Net consists
of an encoder, that compresses the input image into a lower-dimensional space, and a
decoder, that generates the output image from this representation. Residual connections
are used to connect the encoder and decoder, which enables the network to preserve original
information.

Figure 3.1: U-Net architecture. Taken from [44]

Encoder consists originally of simple blocks, where each is composed of three convolu-
tional layers with the rectified linear unit (ReLU) [1] activation function and batch normal-
ization [22]. After each block, max pooling is used to reduce the spatial dimensions of the
image. The output from before the max pooling is saved, and then used as input to the
corresponding layer of the decoder where it is concatenated with the output of the lower
decoder layer.

Decoder Similarly to the encoder, consists of blocks with the same components as in the
encoder, however, they reduce the channel dimensionality of the image, instead of increasing
it. After each block, upsampling is used to increase the spatial dimensions of the image.
Up-convolutional layers are used for that.
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Over time, many different variants of U-Net have been proposed, each with its quirks.
Currently, U-Net-based architectures are widely used in different tasks in image processing,
because of the ability of the encoder and decoder to produce high-quality features, which
can then be used further. The following part of the neural network, producing the final
output is called head. The architecture of the head can vary, depending on the task, such
as linear layers for classification, convolutional layers for segmentation, etc.

3.3.2 EDVR

Another well-performing architecture is Video Restoration with Enhanced Deformable Con-
volutional Networks (EDVR), proposed by Wang et.al [52]. This architecture is specifically
designed for video quality enhancement. It uses a multi-frame approach, where multiple
frames are used to produce a single high-quality frame. The architecture is versatile and
can be used for various tasks such as super-resolution, denoising, deblurring, etc.

The architecture consists of four main parts: feature extraction, feature alignment,
feature fusion and lastly reconstruction. Many novel and unusual methods are used, such
as deformable convolutions and attention mechanism.

PCD Align 
Module

𝑡 𝑡+1𝑡−1

TSA Fusion
Module

Reconstruction
Module +

↑
Upsampling

PreDeblur  
Module

𝑡+1𝑡−1

𝑡 𝑡+1𝑡−1

𝑡

Video Super-Resolution

Video Deblurring

Upsampling
Downsampling

Aligned Features

Figure 2. The EDVR framework. It is a unified framework suitable for various video restoration tasks, e.g., super-resolution and
deblurring. Inputs with high spatial resolution are first down-sampled to reduce computational cost. Given blurry inputs, a PreDeblur
Module is inserted before the PCD Align Module to improve alignment accuracy. We use three input frames as an illustrative example.

tasks, including super-resolution, deblurring, denoising, de-
blocking, etc.

Take video SR as an example, EDVR takes 2N+1 low-
resolution frames as inputs and generates a high-resolution
output. Each neighboring frame is aligned to the reference
one by the PCD alignment module at the feature level. The
TSA fusion module fuses image information of different
frames. The details of these two modules are described in
Sec. 3.2 and Sec. 3.3. The fused features then pass through
a reconstruction module, which is a cascade of residual
blocks in EDVR and can be easily replaced by any other
advanced modules in single image SR [46, 52]. The upsam-
pling operation is performed at the end of the network to
increase the spatial size. Finally, the high-resolution frame
Ôt is obtained by adding the predicted image residual to a
direct upsampled image.

For other tasks with high spatial resolution inputs, such
as video deblurring, the input frames are first downsampled
with strided convolution layers. Then most computation is
done in the low-resolution space, which largely saves the
computational cost. The upsampling layer at the end will
resize the features back to the original input resolution. A
PreDeblur module is used before the alignment module to
pre-process blurry inputs and improve alignment accuracy.

Though a single EDVR model could achieve state-
of-the-art performance, we adopt a two-stage strategy to
further boost the performance in NTIRE19 competition.
Specifically, we cascade the same EDVR network but with
shallower depth to refine the output frames of the first stage.
The cascaded network can further remove the severe motion
blur that cannot be handled by the preceding model. The
details are presented in Sec. 3.4.

3.2. Alignment with Pyramid, Cascading and
Deformable Convolution

We first briefly review the use of deformable convo-
lution for alignment [40], i.e., aligning features of each
neighboring frame to that of the reference one. Differ-

ent from optical-flow based methods, deformable align-
ment is applied on features of each frame, denoted by
Ft+i, i∈[−N :+N ]. We use the modulated deformable
module [54]. Given a deformable convolution kernel of
K sampling locations, we denote wk and pk as the weight
and the pre-specified offsets for the k-th location, respec-
tively. For instance, a 3×3 kernel is defined with K=9 and
pk∈{(−1,−1), (−1, 0), · · · , (1, 1)}. The aligned features
F a
t+i at each position p0 can then be obtained by:

F a
t+i(p0) =

K∑
k=1

wk · Ft+i(p0 + pk + ∆pk) ·∆mk. (1)

The learnable offset ∆pk and the modulation scalar ∆mk

are predicted from concatenated features of a neighboring
frame and the reference one:

∆Pt+i = f( [Ft+i, Ft] ), i ∈ [−N : +N ] (2)

where ∆P={∆p}, f is a general function consisting sev-
eral convolution layers, and [·, ·] denotes the concatenation
operation. For simplicity, we only consider learnable off-
sets ∆pk and ignore modulation ∆mk in the descriptions
and figures. As p0 +pk + ∆pk is fractional, bilinear inter-
polation is applied as in [3].

To address complex motions and large parallax prob-
lems in alignment, we propose PCD module based on well-
established principles in optical flow: pyramidal process-
ing [31, 35] and cascading refinement [7, 8, 9]. Specifically,
as shown with black dash lines in Fig. 3, to generate feature
F l
t+i at the l-th level, we use strided convolution filters to

downsample the features at the (l−1)-th pyramid level by
a factor of 2, obtaining L-level pyramids of feature repre-
sentation. At the l-th level, offsets and aligned features are
predicted also with the ×2 upsampled offsets and aligned
features from the upper (l+1)-th level, respectively (purple
dash lines in Fig. 3):

∆Pl
t+i = f( [Ft+i, Ft], (∆Pl+1

t+i )
↑2 ), (3)

(F a
t+i)

l
= g( DConv(F l

t+i,∆Pl
t+i), ((F a

t+i)
l+1

)↑2 ), (4)

3

(a) Overview of EDVR architecture. Taken from [52].

(b) Feature alignment module. Taken from [52].

Figure 3.2: EDVR architecture and feature alignment module.
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Feature extraction As shown in Figure 3.2a, input to the neural network are 𝑁 frames,
where the center frame is the frame that is being predicted. The frames are passed through
a feature extraction network, that is the same for each of the frames. It consists of a series
of convolutional layers, that extract features and reduce the spatial dimensionality of the
frames. The output of this layer are feature maps, that are then used in the next part of
the network.

Feature alignment is the next part of the network, used to align the features of the
neighboring frames, that are misaligned due to the temporal nature of the video. EDVR
proposes a novel approach: using deformable convolutions for this task.

Input to this layer are the feature maps from the previous part, which are processed
pairwise, each frame together with the center (reference) one, as shown in Figure 3.2b.
Alignment is done by Pyramid, cascading and deformable alignment. The output of this
layer are aligned feature maps, that are then used in the next part of the network. This
part is crucial for the task, as it aligns the features of the neighboring frames. Multiple
important concepts and ideas are used in this part:

• Pyramid Concept commonly used in optical flow, using strided convolutions to down-
sample the feature maps, by a factor of 2 to be exact, effectively obtaining a pyramid
of feature maps in different spatial resolutions. Feature maps for each pair of frames
are then concatenated, passed through a series of convolutional layers and used as
offsets to the deformable convolutions. The neighboring frame is then aligned using
deformable convolutions with these offsets.

• Cascading Another commonly used concept in optical flow extraction. Used here to
refine the alignment of the frames. If we denote that the pyramid has 𝐿 levels and
lower levels have smaller spatial resolution, then cascading is done by upsampling
and concatenating the offsets from level 𝑙 + 1 to the concatenated features at level 𝑙,
this effectively incorporates the information from lower resolution levels to refine the
alignment of the higher resolution levels.

• Deformable Convolutions Dai et al. [10] first proposed the deformable convolution
layer in 2017, its purpose is to allow convolution kernels to use information from
different parts of the image, rather than just the fixed grid. This is achieved by adding
offsets to the convolutional kernels, that are learned during the training process. This
allows the network to focus on the important parts of the image, such as edges,
textures, etc. Original convolutional layers use a fixed grid, where the kernel is applied
to each location 𝑝 on the grid. This can be calculated as:

𝑦(𝑝0) =
∑︁
𝑝𝑛∈ℛ

𝑤(𝑝𝑛) · 𝑥(𝑝0 + 𝑝𝑛), (3.1)

where 𝑅 denotes the grid of locations of the convolutional kernel, 𝑤 are the weights
of the kernel and 𝑥 is the input feature map.
As stated, deformable convolutions propose to add offsets to the grid, those offsets
effectively change the grid to an irregular grid of locations where the kernel is applied
as shown in Figure 3.3.

𝑦(𝑝0) =
∑︁
𝑝𝑛∈ℛ

𝑤(𝑝𝑛) · 𝑥(𝑝0 + 𝑝𝑛 +∆𝑝𝑛), (3.2)
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where ∆𝑝𝑛 are the offsets. These offsets are usually learned, they are typically frac-
tional, to work around this, bilinear interpolation is used to calculate the value at the
location of the kernel.

Figure 3.3: Example of deformable convolution. Taken from [10].

Feature fusion in video quality enhancement is more difficult than in a strict image
context. For video, both temporal and spatial relations must be accounted for. EDVR
proposes a method called TSA (Temporal and Spatial Attention) mechanism. It is based
on the idea, that the more similar the neighboring frame is to the reference one, the more
attention should be paid to it. This is done by calculating the similarity between the frames
in an embedding space, these temporal attention maps are then multiplied with the feature
maps pixel-wise as such:

𝐹𝛼
𝑡+𝑖 = 𝐹𝛼

𝑡+𝑖 ∘ ℎ(𝐹𝛼
𝑡+𝑖, 𝐹

𝛼
𝑡 ), (3.3)

where 𝐹𝛼
𝑡+𝑖 is the feature map of the 𝑖-th frame, ℎ(𝐹𝛼

𝑡+𝑖, 𝐹
𝛼
𝑡 ) is the similarity distance

between reference and neighboring feature maps. This effectively weights the feature maps,
so the network can focus on the important frames.

After this, spatial attention is used to focus on the important parts of each frame. Using
convolutional layers, spatial masks are then calculated from the fused feature maps, these
masks are then multiplied pixel-wise with the original fused features.

Reconstruction is the last part of the network, where the final high-quality frame is
produced. To produce the final high-quality frame, the fused feature maps are passed
through a series of residual blocks, as described in the following paragraph, that further
refine the features. This is highly modular and can be replaced by any other architecture,
depending on the task and nature of the data.

Upsampling is then used to decrease the channel dimensionality, while increasing the
spatial dimensionality of the feature maps. Worth noting is that in the case of other video
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processing tasks, where inputs already have high resolution, this step is not skipped, but
rather at the beginning of the neural network, the original images are downsampled using
strided convolutions.

Residual Blocks were first proposed by He et al. [17] in 2015. A type of neural network
architecture whose primary purpose is to help with the training of very deep neural net-
works. Due to the nature of backpropagation, the gradients tend to vanish in the case of
very deep networks.

The proposed solution is to add a clear path for the information to flow forward, there-
fore the information has a clear path in backpropagation as well. This is achieved by adding
a skip connection, that bypasses the convolutional layers. The output of the convolutional
layers is then added to the input of the block, this is called residual connection. The formula
for the residual block is as follows:

𝑦 = 𝐹 (𝑥, {𝑊𝑖}) + 𝑥, (3.4)

where 𝐹 (𝑥, {𝑊𝑖}) is the mapping to be learned, 𝑥 denotes input to the block, and 𝑦 is
the output. The operation 𝐹 + x is performed by a shortcut connection and element-wise
addition.

Figure 3.4: Examples of different residual blocks. Taken from [18].

This architecture is widely used, and the learnable mappings can have various forms as
visible in Figure 3.4. One of the most common ones is Bottleneck residual block, where
the mapping consists of 1×1 convolutional layer, followed by 3×3 convolutional layer, and
another 1× 1 convolutional layer. This is used to reduce the number of parameters, while
still being able to learn complex mappings. Since the original formula requires the mapping
to preserve spatial dimensions, the convolutional layers use a stride of 1 and a padding of
1 while maintaining the number of channels.
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3.3.3 RVRT

An architecture proposed by Liang et al. [32] is currently one of the state-of-the-art ar-
chitectures used in image and video quality enhancement. It’s a leading architecture in
multiple benchmarks, such as Vimeo90K [55]. As stated in Section 3.2, this architecture
uses a combination of parallel and recurrent approaches. Authors propose a solution that,
given video features 𝐹 𝑖 ∈ R𝑇×𝐻×𝑊×𝐶 , where 𝑇 is the number of frames, features are then
split into 𝑇

𝑁 groups of features 𝐹 𝑖 ∈ R
𝑇
𝑁
×𝑁×𝐻×𝑊×𝐶 , where 𝑁 is the number of frames in

a single clip. Each of these clips is then processed in parallel while using information from
previous frames and previous layers in a globally recurrent manner.
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Figure 3.5: Overview of RVRT architecture. Taken from [32].

As in most other architectures, architecture consists of three main parts: feature ex-
traction, feature refinement and high-quality frame reconstruction. However, authors use
novel methods in multiple places in the neural network, such as Residual Swin Transformer
Blocks [34] or Guided Deformable Attention mechanism, which is used to align the features
from different clips.

Feature extraction is done by a sequence of layers, where firstly features are extracted
by a simple convolutional layer, and then those features are passed through a series of
Residual Swin Transformer Blocks (RSTB), further described in the following paragraph.
In case of tasks different than super-resolution, the input features are downsampled before
the RSTB layers, to reduce the computational cost.

Residual Swin Transformer Blocks are a modification of the Vision transformers,
as proposed in [11] have become a standard architecture used in image processing tasks,
however, due to the 𝑂(𝑛2) complexity of the attention mechanism [51], they are very ex-
pensive computationally, which makes them not-so suitable for video and image processing.
To address this issue, Liu et al. proposed a version called Swin Transformer [34]. This
method works by splitting the image of input shape 𝐻 × 𝑊 × 𝐶 into non-overlapping
patches of shape 𝐻𝑊

𝑀2 × 𝑀2 × 𝐶, where 𝑀 × 𝑀 is the size of the patch and 𝐻𝑊
𝑀2 is the

total number of patches. This effectively reduces the computational complexity of the at-
tention mechanism. This is computed in parallel multiple times, following [51] and results
are concatenated. However, if the partitioning of the image is fixed for different layers, the
network can not connect different parts of the image. Because of that, shifted windows are
used in alternation with regular windows. Windows are shifted by ([𝑀2 ], [

𝑀
2 ]) pixels before

partitioning. This allows the attention mechanism to attend to the whole image. Residual
Swin Transformer Blocks [31] are then just successive Swin Transformer Blocks followed by
a convolution layer, whose output is then added element-wise to the input of the block, as
shown in Figure 3.6a.
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(b) Swin Transformer Layer. Taken from [31].

Figure 3.6: Architecture of the Residual Swin Transformer Block and its components.
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Figure 3.7: An overview
of the feature refinement
module. Taken from [32]

Feature Refinement follows the feature extraction. The
video features are split into clips 𝐹 ∈ R

𝑇
𝑁
×𝑁×𝐻×𝑊×𝐶 , where

𝑁 is the number of frames in 1 clip, 𝑇 is the original number
of frames of the video, and 𝐶, 𝐻, 𝑊 are the number of chan-
nels, height and width of the feature maps. Each of these clips
is then processed in parallel by a sequence of recurrent feature
refinement blocks in a globally recurrent framework, utilizing
the information from the previous clips, as shown in Figure 3.7.
This is done by aligning the features from the previous clip us-
ing the Guided Deformable Attention (GDA). Afterwards, the
aligned features of the previous clip, together with features out-
put by the previous refinement layers are used to predict the
output features of the current clip and current layer. This can
be generalized as such:

𝐹 𝑖
𝑡−1 = 𝐺𝐷𝐴(𝐹 𝑖

𝑡−1, 𝑂𝑡−1→𝑡, 𝐹
𝑖−1
𝑡−1 , 𝐹

𝑖
𝑡 )

𝐹 𝑖
𝑡 = 𝑅𝐹𝑅(𝐹 0

𝑡 , 𝐹
1
𝑡 , . . . , 𝐹

𝑖−1
𝑡 , 𝐹 𝑖

𝑡−1),
(3.5)

where 𝐹 0
𝑡 , 𝐹 1

𝑡 , . . ., 𝐹 𝑖−1
𝑡 are the features from the feature extrac-

tion, previous layers respectively, 𝑅𝐹𝑅 is the recurrent feature
refinement module, that consists of multiple convolution layers
together with RSTB blocks and 𝐺𝐷𝐴 is the guided deformable attention mechanism. The
RSTB blocks are modified, to use 3D attention maps, so they can attend to the temporal
and spatial features of the features.
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3.4 Optical Flow
Optical flow is a pattern of motion of objects in a scene caused by the relative motion
between the observer and the scene [20]. Optical flow is represented by a two-dimensional
vector field, where each vector is a displacement vector showing the movement of points
from one frame to another. Optical flow is computed from a sequence of images. It is
calculated by various methods, from simple methods, such as Lucas-Kanade method [35],
to more complex methods, such as deep neural networks. In this work, optical flow is used
to align the features of the neighboring frames inside a neural network. To extract it, a
neural network called Recurrent All-Pairs Field Transforms for Optical Flow (RAFT) [50]
is used. This network is state-of-the-art in optical flow extraction and is used in many
different tasks, such as video quality enhancement, video object segmentation, etc.

3.4.1 RAFT

Frame 1
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Optical Flow
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Figure 3.8: Architeture of the RAFT model. Taken from [50].

RAFT is a neural network architecture, first proposed in 2020 by Teed et al. [50]. Input to
the neural network are 2 frames: 𝐹1 and 𝐹2. The output is a dense displacement field (𝑓1, 𝑓2)
mapping each pixel (𝑢, 𝑣) in 𝐹1, to its corresponding location (𝑢′, 𝑣′) = (𝑢+𝑓1(𝑢), 𝑣+𝑓2(𝑣))
in 𝐹2.Raft architecture consists of 3 main parts:

Feture Encoder is a part of the network, responsible for extracting features from both
frames using a series of convolutional layers arranged in residual blocks. Feature extractor
shares weights across both of the frames. Additionally to the feature extractor, a context
network is also used. This network shares architecture, but not weights with the feature
extractor. It is used to extract extra features only from the first frame.

Correlation layer is calculated from the features extracted in the previous step. This
is done by calculating the dot product between all pairs of feature vectors. The result is a
tensor 𝐶 ∈ R𝐻×𝑊×𝐻×𝑊 , where 𝐻 and 𝑊 are the height and width of the feature maps.
Then a correlation pyramid is constructed, this is done by pooling the correlation volume
across the last 2 dimensions. This effectively gives information about both small and large
displacements.
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Iterative updates of optical flows is done by estimating a sequence of optical flows
{𝑓1, . . . , 𝑓𝑁}. In each iteration, displacement update ∆𝑓 is predicted. This is then added
to the previous one as such:

𝑓𝑛+1 = 𝑓𝑛 +∆𝑓. (3.6)

Then updating of the optical flow is done recursively. This is done by sampling the
correlation map with the current flow estimate and then using this correlation, together
with current optical flow prediction and latent hidden state to predict a new hidden state.
That is then further processed to generate the displacement update ∆𝑓 that is then added
to the current optical flow prediction. This process is repeated N times to get the final
optical flow estimate. The final estimate is in a lower resolution than the image, so it is
upsampled with a combination of convolutions and a weighted combination of neighboring
pixels.
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3.5 Datasets
This section covers the most common datasets used for training neural networks for video
quality enhancement and the types of data that are present. Gathering data is a significant
part of training a neural network. In the case of video quality enhancement, multiple
difficulties arise, such as the big differences between different visual imperfections and their
primary causes. To give an example, video taken in low light conditions will be mostly
noisy, while video taken from a moving vehicle will be heavily blurred. It is very difficult
to train a neural network that handles all these cases similarly. Therefore, it is crucial to
choose the right dataset for the task.

Table 3.1: Comparison of Video Super-Resolution Datasets

Dataset Number of Samples Types of Videos Lengths
REDS [38] 300 clips Diverse scenes, dynamic 100 frames per clip
Vimeo90K [55] 89,800 clips Various everyday scenes 7 frames per clip
Vid4 4 clips Classic test sequences 40-100 frames per clip

REDS [38] stands for Realistic and Dynamic Scenes dataset. This dataset was first
proposed in the NTIRE19 challenge and has since become one of the most widely used
datasets for video quality enhancement. As the name suggests, it contains mostly dynamic
scenes, such as moving vehicles, people, etc. It contains images with different issues, such
as blur, compression, low resolution, etc. The blur is caused by merging subsequent frames
of the original 120 frames-per-second video. The dataset contains 300 video sequences in
total, where each sequence contains 100 frames in the resolution of 720×1280 and 180×320
for the downscaled images.

Figure 3.9: Example of frames from REDS dataset. Taken from [38].

23



Vimeo90K [55] is a dataset first proposed by Xue et al. in paper Video Enhancement
with Task-Oriented Flow. This dataset is one of the largest datasets used for video quality
enhancement, containing 89,800 video clips in total downloaded from Vimeo. The dataset
contains videos with various issues, such as low camera resolution, motion blur, compres-
sion artifacts, etc. The primary purposes of this dataset are video super-resolution, video
denoising and frame interpolation.

Figure 3.10: Example of frames from Vimeo90K dataset. Image taken from [40].

3.5.1 Vid4

is a small dataset consisting of only 4 videos, each with 40-100 frames. Consists of 4
sequences: Walk, City, Foliage, and Calendar. These sequences are well-established
in the literature for assessing the performance of video super-resolution methods. It is
generally not used for training, but rather for testing and evaluation of the neural network.

Figure 3.11: Example frames from each sequence of Vid4 dataset. Image taken from [40].
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Chapter 4

Problem Definition and Proposed
Solution

Video super-resolution is the task of increasing the resolution and overall quality of a
video. The proposed solution establishes a neural network architecture that uses deformable
convolutions and explicitly calculated optical flow. The proposed architecture is small and
fast, while still being able to produce high-quality videos. This can be used in various areas,
for example in the automotive industry or medical imaging.

This work is focused on a creation of a novel module, that uses explicitly calculated
optical flow as an offset to deformable convolutions. This module is then used in a U-Net-
like architecture, which was proven to work well in video super-resolution tasks. Different
configurations of the module are proposed.

This chapter first defines the problem and draws the motivation for the work. Then,
details of the work are presented, such as the dataset used, the neural network architecture
and training details.

4.1 Problem Definition and Motivation
Video super-resolution can be interpreted as a task of increasing the resolution and quality
of a sequence of frames. Different from image super-resolution, this task can also incorporate
features from the neighboring frames. Most of the state-of-the-art methods use a feature
alignment module to align those features towards the reference one, and then extract them
using classical methods, such as convolutional layers. However, many of these methods are
computationally expensive and difficult, even impossible to use in real-time scenarios.

This work is focused on the creation of a novel module, that can be used in different
architectures as a feature alignment module. The goal is to prove that using this module
can lead to better results, outperforming the models without this module.

Given that this module requires explicitly calculated optical flow, it requires a dataset,
in which motion is present and visible. Therefore, the REDS [38] dataset is used. This
dataset while still being quite large, contains videos from mostly real-life scenarios, such as
moving vehicles, people, etc.
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4.2 Dataset Preparation and Choice
As stated, the REDS dataset is used to train and validate the network. This dataset doesn’t
contain an explicitly calculated optical flow, therefore a state-of-the-art model is used to
predict that. Model RAFT [50] was chosen for this task. More about this architecture is
written in Section 3.4.1. This model is chosen because of its high performance and speed,
while still being able to produce close to state-of-the-art results. For each triplet of input
frames, two optical flow maps are extracted, from the reference frame to the previous and
the next frame. Two image pairs are therefore passed through the RAFT model (𝑇 𝑙

𝑖 , 𝑇
𝑙
𝑖−1)

and (𝑇 𝑙
𝑖 , 𝑇

𝑙
𝑖+1), where 𝑇 𝑙

𝑖 is the reference frame, and 𝑇 𝑙
𝑖−1 and 𝑇 𝑙

𝑖+1 are the previous, next
frame respectively. These are then used to align the features of the neighboring frames
towards the reference one.

To extract optical flow, pre-trained weights for RAFT were used, as provided by the
authors of the original paper. Weights from RAFT trained on KITTI [33] dataset were
used, as this dataset contains data from dynamic scenes, similar to the REDS dataset.

The task of video super-resolution also introduces a new hyperparameter to choose, that
is the number of frames used to predict the high-quality frame. Most methods use an odd
number of frames and predict the middle frame. This thesis tests the module on 3 frames,
given reference frame 𝑇 𝑙

𝑖 is the low-quality frame in timestep 𝑖, and 𝑇 ℎ
𝑖 is the corresponding

high-quality frame, the module is using frames 𝑇 𝑙
𝑖 , 𝑇 𝑙

𝑖−1 and 𝑇 𝑙
𝑖+1 to predict 𝑇 ℎ

𝑖 . Therefore,
the optical flow mapping frame 𝑇 𝑙

𝑖 to 𝑇 𝑙
𝑖−1, 𝑇 𝑙

𝑖+1 respectively, has to be calculated.
Another decision to be made is whether to use extra augmentations to enlarge the

dataset. Creating augmentations that represent visual imperfections caused by video in real-
life scenarios is a difficult problem on its own. Because of that, the proposed architecture
being small, and the dataset being large enough, no augmentations are used. For different
architectures used with this module, this can be changed.
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Figure 4.1: Sample images from KITTI [33] dataset and resulting optical flow. Taken
from [42].

27



4.3 Neural Network Architecture
The proposed module only aligns the features between the frames. There are still other
tasks to be done, such as feature extraction, feature refinement and upscaling. For this,
a combination of already existing methods is used. To extract features, U-Net-like (2.1.2)
architecture is used, as it is a simple and effective architecture proven to work in various
computer vision-related tasks. Also, there are existing implementations of this architecture,
with different backbones and heads, such as Segmentation Models Pytorch, which is further
discussed in Section 5.1.

To further refine features, a sequence of bottleneck residual layers (3.3.2) is used. This
is done in such a way that this module can be easily replaced by any other architecture,
depending on the task and nature of the data. In the end, upscaling is done by a series of
pixel-shuffle [46] layers. This is a simple and effective way to increase the resolution of the
image. Again, changing this part of the architecture is possible, depending on the task and
nature of the data. The whole architecture can be seen in Figure 4.2.

U-Net Encoder

Feature
alignment Feature fusion

U-Net Decoder

Refine and
Upscale

Optical Flow
Extraction

Optical
Flow

Low Resolution
Video Frames High Resolution

Video Frame

Figure 4.2: Schema of the proposed solution. Details about the concrete modules used are
discussed further in this chapter.

4.3.1 Feature Extraction

Firstly, multi-resolution features from frames 𝑇 𝑙
𝑖−1, 𝑇 𝑙

𝑖 and 𝑇 𝑙
𝑖+1 are extracted using a back-

bone of the U-Net. Weights of the backbone are shared across all frames, which is done by
reshaping mini-batch of inputs 𝑋 ∈ R𝐵×𝑇×𝐻×𝑊×𝐶 to R𝐵*𝑇×𝐻×𝑊×𝐶 , where 𝐵 is the batch
size, 𝑇 is the number of frames, 𝐻 and 𝑊 are the height and width of the image, and 𝐶 is
the number of channels. This is then passed through the backbone, and reshaped back to
R𝐵×𝑇×𝐻×𝑊×𝐶 .

4.3.2 Feature Alignment

The feature alignment module is the main part of this work. Given mini-batches of features
(𝐹𝑖−1, 𝐹𝑖, 𝐹𝑖+1), where 𝐹𝑖 is the reference frame, and 𝐹𝑖−1 and 𝐹𝑖+1 are the neighboring
frames, the module aligns the features from the neighboring frames to the reference frame.
Outputs of each resolution level of the U-Net backbone are used, this is done to align
features with different spatial resolutions. Also, this enables processing basic features in
the first levels, and more complex features in the higher levels.

As the outputs of the U-Net backbone grow in the number of channels and their spatial
resolution decreases, matching optical flow maps are downsampled in a bilinear manner to
match the spatial dimensions of the features. With decreasing spatial dimensions, the opti-
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cal flow maps are also divided by 2 element-wise, to adapt the magnitude to the decreasing
spatial dimensions. Optical flow for each pair of frames, (𝐹𝑖−1, 𝐹𝑖) and (𝐹𝑖+1, 𝐹𝑖) is then
reshaped and expanded to the shape of:

𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑏𝑙𝑒_𝑔𝑟𝑜𝑢𝑝𝑠 * 𝑘𝑒𝑟𝑛𝑒𝑙_𝑤𝑖𝑑𝑡ℎ * 𝑘𝑒𝑟𝑛𝑒𝑙_ℎ𝑒𝑖𝑔ℎ𝑡 * 2 ×𝐻 ×𝑊, (4.1)

where deformable groups are a hyperparameter of the network, kernel width and height is
the size of the convolutional kernel and 𝐻 and 𝑊 are the height and width of the feature
maps. Then, fixed relative offsets of the convolutional kernel ((−1,−1), (−1, 0), . . . , (1, 1))
are added across the first dimension, to get the final offsets. These offsets are then used
as input to the deformable convolution layer. This effectively aligns the features from the
neighboring frames to the reference frame, on each level of the backbone. Experiments were
also conducted using learnable mapping, such as convolutional layers to reshape and calcu-
late the offsets given the raw optical flow. More about this is discussed in the Chapter 6.
Since pair (𝐹𝑖, 𝐹𝑖) maps the features from the reference frame to itself, the resulting optical
flow would be a zero tensor. Therefore, a series of default convolutional layers is used, only
to match the output shape of the reference frame to the ones of the neighboring frames.
The schema of the feature alignment module can be seen in Figure 4.3.

T

T+1

T-1

Deformable
Convolution

Deformable
Convolution

2D Convolution Concat

T -> T-1
Optical Flow

T -> T+1
Optical Flow

Figure 4.3: Schema of the feature alignment module.
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4.3.3 Feature Fusion

Technically, not a part of the feature alignment module, but still crucial for the task.
Feature fusion is done by a series of convolutional layers, that combine the aligned features
from both neighboring frames with the reference frame. This is done by first concatenating
the features along the channel dimension and then passing them through a sequence of
convolutional layers, reducing their channel dimensionality. In this work, the number of
channels is reduced by a factor of 3, to match the number of features from a single frame,
to be then passed further through the decoder part of the architecture. As this module is
used in each level of the U-Net architecture, the fused features are also processed further by
the decoder part of the network, where they’re combined with the features from the lower
levels.

Experiments were done with different ways of fusing the features, such as using fused
features of the lower spatial resolution as correction to the higher resolution features, etc.
More about this is discussed in the Chapter 6.

4.3.4 Feature Refinement

The output of the U-Net decoder is effectively a single mini-batch of features 𝐹 ℎ
𝑖 ∈

R𝐵×𝐶×𝐻×𝑊 , where 𝐵 is the batch size, 𝐶 is the number of channels, and 𝐻 and 𝑊
are the height and width of the feature maps. Because of the network still being relatively
small, these features are then passed through a series of bottleneck residual blocks 3.3.2,
that further refine the features, enhancing the quality of the final output. This part of the
network is highly modular, and can be easily replaced by any other architecture, depending
on the task and nature of the data.

4.3.5 Upscaling

To increase the resolution of the image, a series of pixel-shuffle [46] layers in combination
with convolutional layers is used. This is a simple and effective way to increase the resolution
of the image, while still being able to produce high-quality results. This part of the network
is also highly modular. The number of pixel-shuffle layers can be changed depending on
the desired scaling factor.

4.4 Training Details
To train the neural network, it is crucial to choose the right loss function and optimizer.
For the loss function, Mean Squared Error is used. This is a simple and effective loss
function, that is widely used in image processing tasks. It is calculated as the average
squared difference between each pixel of the original and predicted image. To optimize the
neural network, Adam [26] optimizer is used. This is a widely used optimizer, that is known
for its fast convergence and good generalization capabilities. It is currently one of the most
widely used optimizers and is considered a standard in the field of deep learning.

To evaluate the performance of the neural network, Peak Signal-to-Noise Ratio [21] and
Structural Similarity Index [21] are used. These are widely used metrics for measuring the
quality of an image. The higher the value of the PSNR and SSIM, the better the quality
of the image.
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Chapter 5

Implementation Details

In this chapter, the implementation details, such as used technologies, programming lan-
guages, patterns and reasoning behind those choices are discussed. The architecture of the
program, neural network and modules is presented.

5.1 Technologies Used
As is the standard in the field of deep learning, Python programming language is used.
The reason for this is the wide range of libraries, tools and frameworks available for this
language. Python is also widely used in the scientific community due to its simplicity and
high-level nature, abstracting away the low-level details such as memory management, etc.

Pytorch

To develop the neural network, Pytorch1 is used. It offers an object-oriented API, that is
easy to use and develop in. Pytorch is also widely used in the scientific community and
is considered one of the best deep-learning frameworks available. Another benefit is the
ability to use graphics card acceleration, which speeds up the training process significantly
due to its highly parallel nature. This is available on many different graphic card backends,
such as CUDA or METAL

Pytorch Lightning

To further abstract the training, Pytorch Lightning2 is used. This is a high-level interface
for Pytorch, that abstracts away the low-level details of training, such as setting up the
training loop or logging. The main reason behind choosing this framework was its ability to
easily scale the training to multiple GPUs, even multiple nodes, which is crucial for training
large neural networks.

1https://pytorch.org/
2https://lightning.ai/docs/pytorch/stable/

31

https://pytorch.org/
https://lightning.ai/docs/pytorch/stable/


Segmentation Models Pytorch

To use the U-Net architecture, a library called Segmentation Models Pytorch3 was used.
This library offers an API for many different architectures, such as U-Net which was used in
this work. These architectures are easily configurable, with different backbones, provided
by Pytorch Image Models (TIMM)4, heads and number of layers. This library also offers
pre-trained weights for many different architectures, which can be used to speed up the
training process.

Weights and Biases

Weights and Biases, or W&B5 is a tool used for logging, visualization and experiment
tracking. It provides integration with Pytorch Lightning, which makes logging and tracking
of the model hyperparameters very easy. It also offers a wide range of visualizations, such
as visualizing model gradients throughout the training process, which can be helpful in
debugging the neural network.

Other libraries were used for smaller tasks, such as:

1. MMCV6 – for an implementation of the deformable convolution layer.

2. Matplotlib7 – for visualization of the data, metrics and results.

5.2 Architecture of the Program
The codebase is divided into 2 main folders: src and scripts, where src contains the
main parts of the source code, such as neural network architecture, loss functions, training
loop, etc. and scripts contains scripts for data preparation and evaluation. Inside the
configs folder, multiple JSON files are located, that contain the configuration options for
the neural network, such as the number of layers, number of channels, etc. These are then
loaded into the program and proper classes are instantiated using factory methods.

Src folder contains the main codebase of the program, such as classes required by Py-
torch Lightning or all the different datasets and neural network architectures. Those are
located inside a arch subfolder, where each module is split into a separate file. Code
for SRUnetDecoder and SuperResolutionUnet is adapted and edited from Segmentation
Models Pytorch, however rest of the source code is written from scratch.

The main training script is located in the main.py file, where the neural network is
trained, and the results are logged to Weights and Biases, or Tensorboard8 respectively.
This script is also responsible for loading the configuration, setting up the training loop,
saving model checkpoints, etc.

3https://smp.readthedocs.io/en/latest/
4https://huggingface.co/docs/hub/timm
5https://wandb.ai/site
6https://mmcv.readthedocs.io/en/latest/
7https://matplotlib.org/
8https://www.tensorflow.org/tensorboard
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Scripts folder contains scripts for data preparation and evaluation. To prepare the train-
ing and validation dataset, the RAFT model is used, source code was adapted and edited
from the official implementation of the model9. The script to extract optical flow using this
model prepare_dataset.py is located inside the RAFT subfolder, it was created based on
the existing evaluation scripts from the official RAFT repository. This script is responsible
for loading the dataset, passing it through the model and saving the optical flow maps in
a proper format.

Then, scripts for preparing a single video, and evaluating the neural network are present
in this folder. These scripts are responsible for loading the video provided by the user, saving
it in a proper format and then upscaling it to the desired resolution.

9https://github.com/princeton-vl/RAFT
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Chapter 6

Experiments

In this chapter, the details of the experiments and training setup are presented. Different
architectures of the feature alignment module are tested, together with different configura-
tions of the neural network. The results are then compared to the baseline models, such as
single-frame U-Net and bilinear interpolation.

6.1 Training Setup
Different configurations of the neural network are tested and trained. Multiple graphics
cards of type Nvidia A5500, and A5000 respectively were used for training. The experiments
were conducted for a maximum of 1000 epochs, but the training was stopped early if the
validation metrics weren’t improving.

To speed up the training process, the optical flows were pre-calculated and saved to
disk. This was done to avoid recalculating the optical flow for each epoch, as this is a time-
consuming process. The optical flow was calculated using the RAFT model, as described
in Section 3.4.1. The dataset used for training and validation was REDS, containing 300
video clips in total, each consisting of 100 frames in the resolution of 180× 320 and ground
truth high-quality frames in the resolution of 720× 1280, however, the images were padded
to the resolution that is processable by the U-Net architecture. Models were trained on
different batch sizes, differing from 4 to 24, based on the configuration of the neural network.
ModelCheckpoint 1 provided by Pytorch Lightning was used to save the model weights after
each epoch, if the validation metrics improved. Adam [26] optimizer was used, together
with a learning rate ranging from 1𝑒 − 4 to 3𝑒 − 4, depending on the configuration of the
neural network. The learning rate was adapted during the training process using a learning
rate scheduler 2.

6.2 Single Frame vs Multi-Frame
The first experiment was conducted, whether processing multiple frames at once and fusing
the aligned features would show better results than single-frame methods, such as a simple
U-Net architecture with a single frame as input or bilinear interpolation. To adapt the
U-Net architecture for super-resolution, an upsampling module consisting of a series of
pixel-shuffle layers, together with convolutional layers was added to the end. To adapt the

1https://lightning.ai/docs/pytorch/stable/api/lightning.pytorch.callbacks.ModelCheckpoint.html
2https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CosineAnnealingLR.html
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architecture for processing multiple features, a feature alignment and fusion module were
added instead of classical U-Net skip connections. How this module works, is shown in
Figures 4.2 and 4.3. A comparison of the results is shown in Figure 6.1, where zoomed-
in parts of multiple images are shown. The results show that using multiple frames and
fusing the aligned features can improve the quality of the images significantly, mostly in
details such as sharp edges. The results are also compared to bilinear interpolation, which
is surpassed significantly by both single and multi-frame methods.

Bilinear Single frame Multiple frames Original

Figure 6.1: Comparison of different methods.

6.3 Different Configurations of U-Net Architecture
The second experiment was conducted, whether using a different backbone with a different
number of levels would prove beneficial. Pytorch Image Models provide implementations
of different backbones, so ResNet [17] and Vgg [47] were compared, where Vgg19 was used
with 4 levels, compared to ResNet34 with 5 levels. The results in Table 6.1 show that using
Vgg19 with 4 levels gives slightly better results, this could be due to the fact of higher
output channels of the decoder (32 compared to 16 in ResNet34). Therefore, for future
experiments with the proposed module architecture, as described in Section 6.4, Vgg19
with 4 levels was used.

Table 6.1: Performance Metrics for ResNet34 and Vgg19 backbones

Model Validation Training
SSIM PSNR (dB) SSIM PSNR (dB)

ResNet34 0.790 27.70 0.824 27.41
Vgg19 0.800 28.02 0.845 28.33
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6.4 Proposed Module Architecture Experiments

6.4.1 Cascading of Lower-Level Features

Feature
Alignment Feature Fusion Conv2DEncoder Li

Conv2D

Feature
Alignment Feature Fusion Conv2DEncoder Li+1

Feature
Alignment Feature Fusion Conv2DEncoder Li-1

Conv2D

Figure 6.2: Schema of the cascading of lower-level features. Lower-level features (purple
dashed lines) get concatenated with current-level fused features, further processed and
passed into the decoder.

This section describes the experiments conducted with the proposed feature alignment
module. The first proposed test was to use a cascading of lower-level features from the
feature-alignment module, to concatenate them with current-level fused features, further
process them and pass them through the decoder. Schema of this approach can be seen
in Figure 6.2. The results in Table 6.2 show that this approach very slightly improves the
performance of the network, while also showing the training metrics being very similar to
the validation ones, meaning further training could prove beneficial.

Table 6.2: Performance Metrics for Cascading of lower-level features

Model Validation Training
SSIM PSNR (dB) SSIM PSNR (dB)

Vgg19 0.800 28.02 0.845 28.33
Vgg19 + cascading 0.810 28.05 0.828 27.91
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6.4.2 Learnable Mapping of Optical Flow

All of the previous tests used raw optical flow, reshaped and expanded to the shape fitting
the deformable convolution layer, this process is described in Section 4.3.2. The next exper-
iment used a single convolutional layer to preprocess the raw optical flow, this effectively
creates a learnable mapping of the raw optical flow to the offsets used in the deformable
convolution layer. In Table 6.3, final results and comparison can be seen, proving that
learnable mapping of the optical flow improves the results significantly, both in terms of
PSNR and SSIM metrics. A comparison to bilinear interpolation and single-frame U-Net
can be seen as well. Further visual results can be seen in Figure 6.3.

Table 6.3: Performance Metrics for Final Evaluation of the Models

Model Validation Training
SSIM PSNR (dB) SSIM PSNR (dB)

Bilinear 0.700 25.70 0.710 25.50
Single-frame U-Net 0.790 27.40 0.815 27.15
ResNet34 0.790 27.70 0.824 27.41
Vgg19 + cascading 0.810 28.05 0.828 27.91
Vgg19+cascading+learnable OF 0.818 28.28 0.892 30.17

6.5 Summary of Experiments
The first experiment proved that using multiple frames and fusing them, shows better
results than a single-frame method, also surpassing bilinear interpolation. Further experi-
ments showed that experimenting with different U-Net backbones and leaving the channel
dimensionality of the fused features as high as possible can improve the performance sig-
nificantly. To further refine the high-level features on the higher levels of the network,
cascading of lower-level features can be used, which slightly improves the performance and
makes the details of the images sharper. Afterward, preprocessing the raw optical flow by
a single convolution layer, creating a learnable mapping, improves the performance signif-
icantly, visual results together with the performance metrics are shown in Figure 6.3 and
Table 6.3 respectively.
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Low-quality original High-quality original

Bilinear Single frame ResNet34 Final approach Original

Low-quality original High-quality original

Bilinear Single frame ResNet34 Final approach Original

Figure 6.3: Visual results of different methods.
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Chapter 7

Conclusion

The purpose of this work was to study existing methods of video super-resolution, conduct
experiments and propose a novel module that can be used in different architectures, to
improve the feature alignment between the frames, which is a common challenge in video
super-resolution.

To complete this task, studying current methods was necessary to learn the problems
in video super-resolution and their existing solutions. Then finding a suitable dataset was
crucial, as the dataset is the foundation of the neural network training. REDS was chosen,
as it contains videos from real-life scenarios, such as moving vehicles, people, etc. This
dataset was then used to train the neural network and to evaluate the performance of the
proposed module. Lastly, the neural network architecture for the experiments with the
proposed module had to be chosen and implemented. U-Net was chosen, as it is a simple
and effective architecture that is proven to work in various computer vision-related tasks.
Then, multiple experiments were conducted, using different hyperparameter combinations,
different configurations and different feature alignment module architectures.

As shown in Chapter 6, the proposed module showed promising results when plugged
into U-Net architecture, with experiments showing that using Vgg19 [47] encoder gives
slightly better results than using ResNet34 [17] encoder. Also as shown in the table 6.2
better results are seen when using cascading of lower-level features inside the feature align-
ment module. In table 6.3, a bigger improvement can be seen with the preprocessing of the
raw optical flow by a single convolutional layer.

While the experiments showed results that significantly surpassed single-frame U-Net
architecture and bilinear interpolation, multiple improvements could be still done. For
example, experimenting with the feature fusion module could prove very beneficial, as using
a single convolutional layer, as done in this work, might not be enough to fuse features from
multiple frames properly. Implementing this with a temporal attention module could prove
beneficial for the overall results. Experiments with different loss functions, such as learnable
loss functions, like Adversarial or Perceptual loss. Another improvement could be made in
the feature upscaling module, where changing it for a more complex architecture could show
further improvements. Also, experiments with the proposed feature alignment module in
different types of neural networks, such as GANs may show interesting results.

In the end, this work proposes a new module for feature alignment of multiple frames
in a task of video super-resolution, with the implementation of easily configurable training
and inference of different models.
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Appendix A

Structure of the Attached Medium

src/ Folder with source files for training and network architectures.

scripts/ Folder with scripts for evaluation, data preparation and adapted
RAFT source code.

Weights/ Folder with pre-trained weights.

tex/ Folder with LATEX source files.

data/ Folder with sample data for training and evaluation.

configs/ Folder with example config files for training.

README.md README file with instructions.

requirements.txt Python libraries requirements.

poster.pdf Poster file.

video.mp4 Short video with the results.

thesis.pdf Thesis.

thesis-print.pdf Thesis for print.
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